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CHAPTER I
INTRODUCTION

There is considerable interest in the study of electromagnetic
systems which are immersed in a conducting medium, This interest orige
inates from practical applications such ag commmicetions among sube
marines under the sea surface, or measurement of field intensity or
frequency change of the wave transmitted from a transmitter placed
inside the body of an enimal, The radiation from antennas immersed in
e conducting medium will be radieally different from those immersed in
a nondissipative medium., The radiated fields from the antenna suffers
additionsl attenustion and phese distortion as a result of the finite
conductivity of the medium, The power relationships are greatly modi-
fied from the case of free space,

According to Stratton®, the presence of conductivity introduces
gserious analytical difficulties, However, with the aild of the already
known field ﬁmtion‘az the genersl expressions of the total energy
radiated and the totel energy dissipated in the conducting medium can be
determined. The aim of this thesis 1s to investigate the nature of the
electromagnetic wave transmitted from a loop antenna enclosed by a
spherical insulating eavity which is immersed in a condueting medium,

IJulivs Adems Straiton, : Iheory, p. 424, MeGraw-
Hi11 Book Co., Ine., New York, 1941.

2Jemes R, Wedt, » _
W&ﬁ, Proc., ?%@&gﬁgmw“gm



Two general formulas for power radiation and dissipation have been
derived under the following sssumptionst

1. The conducting medium outside the spherical insulating cavity
was everywhere homogeneous with infinite dimension.

2. The periphericel length or the size of the loop was very
small compered with the wave length of the radiated fields.

3. The conventional sphericsl polar system of coordinates
(ry 0,9 ) was chosen with the loop situated at the origin and oriented
in the polar direction as illustrated in Figure 1,

Rationalized M, K. S, system of units have been used.

Condueting or
dissipative medium
(?’ 6 p‘p)
Insulating cavity

Loop antenna

Figure 1. Spherical Coordinates System with a Small



TABLE I, SYMBOLS USED

E
H
1
J
pl'

Fg

Electric field intensity vector, volts per meter.
Magnetic field intensity vector, amperes per meter.
Current density vector, amperes per square meter.
V=1

Total outward flovw of power, watts.

Total dissipeted power, watts.

P Powver dissipated per unit volume, watts per cubic meter.

Sy
t

Average value of Poynting's vector, watts per square meter,
Time in seconds.

V2 Laplacian operator.

X 8 € ¢ © T ™ 9

[

Conductivity of the medium, mhoe per meter.
Permittivity of the medium, farads per meter,
Permeability of the medium, henries per meter,
Polar angle of spherical coordinates, radians,
Azlimuth engle of spherical coordinates, redians,
Sealar or vector wave function.

Angular velocity, radians per second.

Vector cross product.

Vector dot produet.

Equal by definition,

e st



CHAPTER II
DERIVATION OF FIELD EQUATIONS

In this chapter, under the assumptions listed in the first
chapter, following the general procedure used by Wait’, the funda~-
mental electromagnetic field equations for a conducting medium are
derived. The general expressions for electric and magnetic fields in
spherical polar coordinates are derived from Maxwell's equations,

The ¥Wave Equation

The following expression is a general form of the wave equation‘(‘.
V2g_/, P Klz-g-;g- + Ko ...g%’.- + glxyyyz,t) (2+1)
In this expression, wave function (x,7s2,t) can be either a scalar
or a vector function, which we assume to be differentisble, and K, and
K, are real positive constants. The function g(x,y,2,t) usually represents
a source.
If the source of disturbance or foreing function does not exist
inside the region under consideration, the general form (2~1) becomes

Y = Kf_gg:. + K 2% (2-2)

Vhere the term 52%% represents the effect of damping in a passive
system, This is the type of wave equation treated in this paper.

31bid.

4prthur Bronwell, Advanced Mathematics % es and Engineering,
Chapter 2, McGraw-Hill Book Co., Inc.: New York, 1953.



Ihe Wave Equation Derived from Mexwell's Equations

Maxwell's equations in a uniform material having permeability /,
permittivity £, conductivity o, but not any charge, or any current other
than that determined by Ohm's law are ’

VX E a*p.%%.

VXH » oE *6"?5%

VeEe 0

V-E= 0
Taking the curl of the first equation and substituting vxH from the
gecond equation one obtains

2
- 2 e =)

Similarly
VXVUXE & -ry 2 - 2%
& Ty - &p -
Using the equation of vector analysis,
VXVX A= VV-A 92
vhere A is an arbitrary vector function, and using the equations

E=0, H = 0, these equations become
2
v -r-Zf ey he o
2
Vzﬂ— 9 ~¢ ..___..528 e O
3% F~5%

Thus E and H satisfy the same wave equation of the form as shown in

(2~3)

equation (2-2). The equations (2-3) ere vector equations, which means
each of the three components of E and the three components of H separately
satisfies the same scalar wave equation. Then a wave equation of the form



v? L,l/ -o'p ‘GP“% = 0 (2«4 )

Where |/, a scalar, can stand for one of the components of E or H.
Since an arbitrary time variation of the field can be represented by
Fourier analysis in terms of harmonic components, no essential loss of
generality will be incurred by the assumption that

W2(r,0,p,t) = £(r,0,p) eVt (2-5)
in spherical coordinates. Where j = /=1 and w, the angular velocity,
is a constant. Substituting (2-5) in the wave equation (2=4), we get

2= (urp -vPeply =z o0
or qul-(,jw[.l)(cr'-jve) e 0
The above equation may be written in the form

VE-7% =0 (2-6)
vhere 2 ¢ jup (7 + jue) (2+7)
The constant 7 is kmown as the propagation constant for the wave. In
general, ) is complex and has reasl and imaginary parts designated by«
and g respectively. That is 7= o+ jg . It can be shown® that

o(-Rofwﬂ) (T ¢ jue )

= /;;11' g2 (2-8)
p=w [£5 /f+m~1 (2-9)

5800 Appendix A.




Giroular Electric Weves® Qutside the Insulating Cavity

Loop antenna
with area A

Insulating
cavity with s
radius a

Figure 2, Field Vectors Produced by a Small Loop Antenna
Situated at the Origin of a Spherical
Coordinates System

63, A+ Schelkunoff, %"‘%&mg& Waves, Sec. 8.5, D. Van
Nostrand Cosy Inc., New York, 1 .
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1 -
Magnetic ——
" dipole b

In e - y%— z Fietitions magnetic current s Imo eJWt

I = Jo e¥® & Uniform inphase current in the loop
qy = Magnetic charge
M = Magnetie dipole moment £ q,1 e IAN
N = Unit vector of the area A
Figure 3. Equivslent Magnetic Dipole

As shown in Figure 3, a small loop carrying current I may be
conceived of as an oselllating magnetie dipole with magnetic moment
equal to IA.’ The wave equation of an oscillating magnetic dipole has
been solved under the condition of uniform current distribution, that is,
vhen the size of the megnetie dipole or the loop is very smell as com-
pared with the wave length.

730bn D, Kraus, Antemnas, chapter 6, McGraw«Hill Book Co., Inc.,
1950,



The wave equation (2+6) expressed in spherical polar coordinates
is

G v : 2y 2
T2 25 ) e v (o) ety 557 -7 Y

(2-10)

It is evident that the eircular loop, as shown in Figure 2, generates
circular transverse electric waves independent of 5b ,8 therefore, ‘aa?b‘k' =0
and (2+10) can be simplified as

2
S )t pme 2 ) - P 0 (24200

The resulting fields are gim9 by the following equations in terms of
a scalar vave function Wp:

Hrm e%}.’;’_. (__S%m Y2 (2421)
B = L. ¢ (2-12)
r arae

'IL" W 9T 56 (2-13)

Em = Eom s H¢m = O

vhere

R L

and the subscript m tekes the value 1 or 2 to denote the region interior
or exterior of the insulating cavity, respectively. The function Wm

Stratton, op. git., Chapter 8.
9Donald H. Menzel, %n_t_g Formulas of Physies, Vol. 1,
Sec. 5+6, Dover Publications «y New York, 19%x .
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satisfies the equatianla
R Y 4
PRl S (etneDoB) - 2r2(0 20 (214)

Now the primery field inside the cavity is well lmownit and
the field components are given by

Ba"i%' (‘33* 'é') o= 717 coso (2-25)
B o A 7, 4% =717 e (2-26)
91‘ 4»7]- ‘—b* -ﬁ-# -

E«%z - :z%—'—xﬁ- (-b + -::’1-) e =T sino (2-17)

The corresponding wave function K5 which gives rise to this
field is then

(93? ai%?_f‘iﬁ (-%. = N)e N cos o | (2-18)

Here (4’ 1s a solution obtained under the essumption that all of the
medium is the same as that of the region 1. This ean be written in
terms of the spherical Bessel functionl? of order ome of the third
type as follows:

{Pl"a Cky (73x) comp (2-19)
vhere
CzJ A vIA /oy (2-20)
% 1 g,

10, 11 Stratton, gg.“gg.. Chapter 7 and 8.

12 The spherical Bessel funstions of argument 7 are defined by
k) () » @+ L) ¢™ end 4) (2) = cosh 7 = sinh Zy5.
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Sinee )3 £ 7Va, taking the reflection of the wave into considera-
tion, the general solution for the complete wave functiom Y4 inside the
cavity, and the complete wave function ¥, outside the cavity can then
be written, respectively, as: |

Wr. Cly(Mr) cosf +4 4,( Yyr) cosg (2+21)

Yz B iy ( Yar) cosg (2-22)

vhere 11 is a spherical Bessel function of order one of the first type.
The ooefficlent A and B can be found by applying the boundery conditions
whiech require the continuity of tengential electric and magnetie fields
at the boundary of the two regioms.

The boundery conditions stated above can be represented as

follows?3;
FX(E) ~B,) = 0 or NXg) = NXEp (2-23)

. NX(Hy =Hy) =K or NXHy = K & NXHp (2-24)

Vhere N is the unit vector perpendicular to the boundary surface, and K
is the surface current density at the boundary surface. In our case K 0.

From (2-21), (2-22), (2<12) end (2-13) ve find Eg), Egp, Hyy, and
Hgp then substitute them into (2+23) and (2+24) and set rs a ve get two
equations from which A and B can be solved (In this case Hrm is not
considered because N, Hrm= 0.) 3

133amel Silver M%? } end Design, pege 67,
MeGraw«Hill Book Coe, im-s Y% . ’
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Egy .%.%‘él..%.@xl (73r) #+4 4 (7yr)] sing
2. |
B ..%..5.‘.9.2 e L[5 () sine]
B XEpm = Epplg
therefore
Cky (792) ¢4 4, (78) =Bk (7,r) (2-25)

With the relation%..l. z 7%& vhere u = 7 r, in mind we find
B ./%__z_ﬂ
01 ®Jhwr oroe

:ﬁ;’_ Lok] (7r) + 4 if (V)] sing

¢ .
H 2 / ) »

erﬂam = Hom ¢
therefore
Cky (778) +4 17 ( 7;8) -...;;Jz. Byky ( 7:8) (2-26)

Setting x = %j8, ¥ = %2, end q = f1/4, and solving (2-23)
and (2-24) simulteneously a following expression for A is obtained
cky 1) =Ky ()
=71 Xk (%) =q 73k’ (¥) |

i (x) -k ()
7 4 (x)  ~qryki(y)

Multiplying the second row of each determinant with a, then setting

¢

Az

a 7y =xand a7, =y, A becones

oy (xk, (y) = dey (y)ky (x)
SR g ) O T ) o o
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In a gimilar manner

_ o g (1r () =kt (=) (=)
xi'y (x)k, (7) = ayk'y (y)4, ()

(2-28)

The wave functions Wl and (Pz which are for inside and outside
of the cavity, respectively, arve then completely specified.
From (2+20) |

- 1T -
-&.-E-j prE (2+29)

Defining (IA) v the equivalent magnetic dipole contained within the
cavity, in the same form as (2~29)

(1), m% (2-30)

By carrying out the operations indicated by (2«11), (2«12) and (2«13)
the field equations in the region outeide the cavity arve given by

(IA) (ﬁ' Yz = %%s0s6 (2-31)
(IA) - 7.
—-—-——& 2’ -
- g ;,% sing (2-32)
. féw(n)ﬁ 7. "
N - ;Q- —L2.)e™ "2 sin g (2-33)

which are in the same forms as those of (2«15), (2+16) and (2-17).
From (2-29) and (2«30) the ratio of (m)e to IA is given by
()  a7,B

-
——

1A 7 2@ (2“‘3‘)

The above ratio may be simplified by considering the nature of
the medium within the cavity and the limitation of the operating

1 4 9 8 2 2 ad\,é %g D‘PA }z "*”35\ 3?15\ L Cf\! ‘FGF L!:RAP“’



frequencies, In actual applications

| ]
=0 py=p, =p, = 47220 -,-é=1

h =/3 ARV S L CYTRED LYCV

[l 7’,71al =2mwfafe, py ="§" x 107° x 2172 =2.1 x 10" e

For a 0,1 and f less than five megacycles per second, [x| is less
then 0,01, If |x|<<1, it can be shown™® that the ratio of mgnetic

moment is
(18)g _ 3¢
TA - yz_..” +3 (2‘35)

From (2-35) it is quite evident thet this ratio approaches the
value unity at the magnitude of y= )’29. approaches zero. In other
words, at sufficient low frequencies the cavity has little or no effect
on observed fields in the exterior reglon,

Equations (231), (2-32) and (2-33) are field equations in the
conducting medium outside the insulating eavity. Equation (2-35) is an
approximate formula for effective equivalent magnetic moment (IA),. This
formla is accurate enough for practical applications for frequencies
less than five megacycles per second,

lisee Appendix B,
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CHAPTER III
THE POWER RADIATED AND THE POWER DISSIPATED IN THE CONDUCTING MEDIUM

By applying Peyuting's theovem ts Ahe Fesults obbasied in the
previous chapter, the formulas in general form for the total outward
flow of power through the insulating cavity and the total power dissi-
pated in the conducting medium can be found.

The Totel Power Crossing the Wall of the Gavity

Since the field equations (3-31), (3-32), and (3+«33) obtained
in Chapter II are sinusoidal time varying fields, which are represented
by the complex exponential ed¥% as that given by equation (2+5), the
average value of the outward flow of power15 is

Sr = Average (E x H)

= -%- Re(E x H*)

where H* is the complex conjugate of H.
From equations (2-32) and (2~33)
Sl‘ t-%— Rg(Ech x Kz’a )

"‘%‘ Re(E29 Hg )

:-]5- R,[[ﬂﬁ.lz._"_é_xﬁ.).L. (.%2 - ..rh)o’ 'Vgrune]
T G v 3o 20 Fommey ]

136, P. Harnwell, Electromegnetism, Chapter &, McGraw-Hill Book
Co.y, Inc.: New York, 1947.
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o S (Th)e(Menstny {[-sdy + 2230 % ]

R7?
e e ol

vhere 7&* is the complex conjugate of ‘)’2,

o l(1) 12 Pousin?p
327

[0 +or - Jor ¢ o2 - 822 - pjo@r?) o~ T * IET]]
vhere o<z Rg 0 and gz In 72

.;W Re il pr = 301 + xr)]

| ]:1 + XY + (<><2 . 52)1-2 «JBr(l + 2xy)

. lg_A.h; n*;fsl'.‘!éawi_{g 22 - (o2 + @)r]]

.= ](18)e]? ;ZWL(%* Ié[z) Wéttg/‘a

-y - jar

| R,{[-J(l + or + Jpre

The total outward flow of power, Pr, through the wall of the
insulating cavity of radius a is the closed integral of Spds over the

surface of the cavity and is given by
Pr = f a Syds

The element of aree ds in spherical coordinates is given by
ds = a sine de d¢

16(21 *Zz “« & % o "“Zn)’RZI* "22.* e ® 9 "Zn*' z Z*a 12'2
(2325 ¢ o o Zp)e = Z1%p%e « oIn%, 7 4 7% w 2 ReZ
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Then
. 2 -2 2 T
Py w I(TA)e] "g oA 1 by (2% 4 D’zlz)] d¢ f sin’e do
3Rm< o 0
2 -2 8
- | (1A 2 m
& Kt Jo| 16}::: Bue (%ﬁ* 172| ) fo sin’e dp
where
T m
f sin’s dg = [--—-L eose(ain28+2)] z e
0 ) 3 o 3
therefore
- |(1a) [ FoBw o A 2
Pp = °127r (g-z-‘--f- [')’zl ) (3-1)
From (2+33)
Merdigry T
then

[(1a)el? = (Ta)g (18)F

9 [1A[? ™2
. - 32
,az 7;2 + 3&7’2 +3F i

Substituting (3-2) into (3-«1)

3R M B o 2
P . 2 (22, » ) Watts (3-3)
U2 vy LA

Equation (3-3) is the gencrai expression of the total outward
flow of power through the entire wall of the cavity. Py is a constant
which depends upon the nature of the conducting medium, the frequeney,
the radius of the insulating cavity, and the equivalent magnetic moment

of the loop antenna.
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The Total Power Disgipated in ihe Conducting Medium

- The power dissipated per unit volume in a conducting medium is

alvays given by'! E *{ , where 7 represents the current density veotor
in the conducting medium, In this case { is everywhere in the same
direction as E, therefore

E+l=%EC (3-4)

€ ean be shown to be in the seme direction as E by using Maxwell's
equation, In this case

E=E=50

H=ly=H, +H,

E —Ez _H¢—0

2r ~ |
H= t.+62% (3-5)

This squation, which is one of Maxwell's equations, shows L is in
the direction of H, In spherical polar coordinates system

Nr He N¢
Hz = | ging »r e r
2 2 2. .
or 26 59 (3-6)
By, vy O

Simcﬂzrandﬁzemm«uomefrande only as shown by
equations (2-29) and (2-30), the expansion of the right member of equation
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(3<6) contains only one non-gzero component. The non-gzero component is
in the ¢ direction which is the same es the direction of Epp « In
(3-6) Ny Np 5 and Ny are unit vectors inr, o , and & direstions re-
spectively. | i

From Ohm's law, which can be applied in this case,

e CE
The poim' dissipated per unit volume, P, becomes

P=E ¢( = CE?

For sinusoidal time varying flelds which are represented by the
axponontﬁl factor 03‘"‘, the average power dissipation per unit volume
is given by.

Pa= %‘ Eof®

3.12. TCEE*® (347)

where the # indicates the complex conjugate.
From the field equation of E (2~31)

Pal2 Bt B
,,___g[-.t ¥ v(IA)o ‘_;_5* L2y e 72“31,,3]
TR T

[ ""3 f'z\I(Ih)o (‘%1 _;2*) aine]

0 |(18) lz I"z «p
3“321:21'4 \ (1*72’)(1"72"“ stafe

g%[%}z[ 1+(7% e 7’;)1' + % 7;1'2)10‘2"“'

-sinzo
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a-%g[ﬂm)zbrgz" ]2 (142¢r + | % |2 r?) e Ta1n?p

or

yg...ﬁ[lm)ol/’z" Jz(_%z‘_ggg* | 712 ) ¢ X7 y1a?,
r

Vatts/m®  (3-8)
The average power dissipated in a volume enclosed between the
insulating cavity and a concentric sphere of radius r, where r>a, is
Pa = fv Pav
In spherical coordinates
dv = r’sing dr do d¢
Then

el v P [ ap [Masa3 « 1%
Pgy = 2 [ o ] faévfosinodej (—%1- )

c@"RXTgy
T

=Rl Pory | yrzms ppm e

Since
o
J, GarZen ) o Ter

z fr(gtxg !:2°<r - 9*'20(1' )ér +I: '72,2 e ™RXT g,

o [ glxe 2 Ry ¥
P femE, ppa]

a
therefore
0 [(1a) 2 2 2 2% 2
Pqq = 2lﬁ7;‘ [__gw & ’2, 45‘:(:]



T L{(T)g| Paw)?
1217

(122 % g2 _
=
(-%_ - ..%3!.2.)0'2“ FJ vatts (39)

By letting r approach infinity in the limit, the total average
power dissipated in the conducting medium is

Fq= lim
r>o0 Fdl
: 2
Cl'é ‘(IA)Q '2 /ng H’2 (.;_* 172’ )‘-20(‘ (3-10)
1217 a 2K
Sum:mung (3~2) into (3-10)
2
0 /”2 911412 3, 1%l o
fa = 127r (1372 +3a7’2+313"”‘*2°‘) il

or
py = 317 0p A2
aT[a2 7,2 +38 Vp+3)2

2
(.%.. - ....L.é Z’ ) Vatts  (3-12)

Since the conducting medium outside the cavity is assumed to be
infinite in extent, then according to the comservation of energy, the
total outward flow of power, P,, should be equal to the total power
dissipated, Pgs in the conducting mediume The faet that P, = P, can be

d
shown as follows:
From (3-12) and (3-3)
2
szsln' Fag v @ fow 1 2 2)
re ,72 +3a’)’2»3[ (—-3—-2-—-@ . ) oty O + |75

-y T2 fouw
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The coefficient "'05:2&'%'2“3" is unity. From equations (2-8) and (29)

03//?‘_\: 72 l"g)' v
i 2[{ (;1*’ 13 (lr 72 41) ]
2
T2 Pow
=
»L2f ;T%f .
2 -%-2/1 + 2 1
z 1
Therefore
Pa = Pp
2 ,
3IL[= fap w (g;x 1"',7212) (3413)

4T la273+3a72¢3)2

In this chapter equations for Py end P, have been derived. It
has been shown that Py and Pp are equal satisfying the requirement of

the conservation of energy.
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CHAPTER IV
DISCUSSION OF RESULTS

In this chapter the physiecal significance of each mmt of
the fleld equations is discussed. Formulas for the electromotive forges
induced in a small receiving loop antenna placed at different positions
are derived and discussed. The power dissipation vs. radisl distance
curves for sea water at different frequencies are shown in Figure 4.
Figure 5 shows the same type of curves at a fixed frequeney with the
radius of the insulating cavity varied.

Diseussion of Field Equstions in the Conducting Medium

The field equations in the conducting medium obtained in Chapter

II are
Hor =42 Ae (2 -;!Z)e 2% cosg (2431)
e (2, . T2, 2% "
e Rl (—##?31- =& ) e sing (2-32)
and
%*"’ ’02" (e (.%.‘, ~22) &~ oty (2+33)

where Hoy.; Hyy » and E,y are three component fields. The sinusoidal
time variation which is represented by the real part of the complex

exponential eJ¥t is included in the coefficient (IA)e in every field
equation. All component fields attenuate exponentially in accordance
vith the attenuation factor e %@ 72)F unieh is sywbolized by e~ *T,



24

These flelds can be resolved into three kinds of partial fields
acecording to their dependence upon the radial distance r:

(1) the "static field" varying inversely with r3,

(2) the "induction field" varying inversely with r<, and

(3) the "radiation field" varying inversely with r.
The components of static and induction fields are the same forms as those
which would be computed from a statie dipole with fixed moment. The in-
duction field is the quasi-stationary-state field commonly observed in
the neighborhood of a circuit element at low frequencies; the magnetie
component of the induection field is that which would be ealculated on the
basis of the Biot-Savert law for stationary currents. At small distances
from the dipole the statiec and induction fields predominate. At a distance
where

r}>§%%~

the radiation field becomes the predominant term and the static and in-
duction fields become negligible.

Electromotive Force Induced in a Small Loop Antenna

If a small ijaulated receiving loop antenna with its area small
enough so that the magnetic flux density can be considered uniform in the
area, and if the axis of the loop is in r direction, then the electromotive
force 1nducedls in the loop is given by

18 - B
Induced electromotive force ~.£EE. d Se
ele =-£a A8 = f/.il1rlgs

vhere <P = magnetic flux, and B = megnetic flux densiﬁy.
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ez~ Py dﬁtr As

or

e = “(n)czj"/‘kWAl ('}%* _;’);g ).-' 721' cosp volts (4,1)

vhere A8 is the area of the receiving loop. The maximum induced
electromotive force occurs at A= 0and gz=g » '

If the axis of the receiving loop is in 4 direetion, then the
induced electromotive force is

e =~ ,Uzﬁg.%.Aa

or

e s ~(I&).2J7r/’2‘14 - (%4- -;?;a'«o- ——;:2-2): 72?31:&0 volts (4-2)

In this case the maximm induced electromotive foree oceurs at 4= 7 /2.
When the receiving loop is placed near to the transmitting loop

the radiation component of equation (4~2) can be neglected, then the

maximum induced electromotive force at G=0, Qe T ,end g= 7/2

for both cases are the same. If the distence is greater than A/27

the rediation component in equation (4=2) is predominant and the maximum

induced electromotive force occurs only et g = /2, vhich is

op = ~(TA ?”Jr!fa" A% 7" volte (4=3)

Discussion of Power Dissipation and Power Radiation
Several expressions for power were derived in Chapter III, the
average power dissipated in a volume confined by the imsulating cavity
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and a coneentric sphere of radius r is given by

12
Watts (3-9)
or
‘T"s A SO ...].ZE.LZ =2xa [Ta] 2y =2~
o = lnrl mvfsru onlaiREL EE - o
Watts (3-9-a)

The totel average poﬁer diusipateci in time eondﬁéting medium, Py, and the
total average pover radiated through the insulating cavity, Pz?’ are equal
in magnitude and were found to be
Pp = Pg
31n® pew
T4 [ %° 307,432 *°

]')’2]2) Vatts (3-13)

or
Prth ) 2 2
Ty 2
=3 [I4] 0‘2 Po ¥ 5 " N [7: ) Vatts (3-13-a)
4T ,32 33')’ + 3) i :

In finding P, the effeet of Hy. was not considered. The average
power flow per unit area in 6 direction is represented by Jza- Re (EzeP K;r).
It is interesting to note that the total average power flow in the 0
direction, Po » 1s always equal to zero and is shown as follows:

*

where ds z rsing d¢dr, then



% 2 2T n
P = “Iz)'zl Fa v f ap f cosp sin®g dg
m
0 0

B Y. e ol
'J (—%24--;3) (—b#—;i) .«aolr@

a

but since
T T T
Jmeamze deufmede-/co-’a do
0 0 0
5
s [sing --%- sing (eos?p +2)]
. 0
-0
then
Peaﬁ

In Chapter III it was proved that P, is equal to Pg. They
should be equal according to the universal low of conservation of energy
vhich was applied as a check on the validity of equations for F, and Pge

The equation for Pdl is important in practical applications. It

can be vritten as

T3 l(n)cl Fo? P

Pa = [+ Tz..;.*”" (L - Tz’..).‘“”
2
=Pg - 'm);zlw ‘v = Tad"[ JomR (4o4)
or
2
pg 22,2101 B P77 (A » L2002 og)

4T |a2 ’)’22 +3a‘)’2+3|2 r ne



From which
-—-n'i"——-z—n
d -L'I'n-—&-w e

The second term on the right hand side of equation (4=4) or (4«5)
represents the power dissipated outside a m«nMc sphere of radius r.
Figure , shows an example when the eondxmﬁngmdimum

vater'® with @ =4, p, =p,= 12566 x 107, and ¢, = €/ ¢, = A
The radius of the insulating eavity is 0.1 meter, and the equivalent
magnetic dipole moment of the loop antenna is assumed to be 10. This
figure shows P,y /Py ve. T ourves for the frequencies of 5 megacycles,
500 kilogyeles, 100 kiloecyeles and 50 kilocyeles. The valwe of the
total average dissipated power, Pd' and the value of the attenuation

constant, (X , for each curve was caleulated and is shown in Table II,

TABLE II, TmGFPde&

50 kiloeycles 12,6 0.89
100 kilocyecles 464 1,256
500 kilocyeles 698 2,81

1%ugh Hildreth Skilling, of Hayes, Second
Ed., pp. 1&’ John Wiley and s@" ew Im



As can be observed from Table II and from the ourves shown in
Figure 4, the total power dissipated in the conducting mediwm, or the
total pover radiated through the insulating cavity, and the attemuation
constant both inerease with frequency, The higher the frequensy the
greater the power radiated, but sinee o also inereases with frequency,
most of the total radiated power at high frequencies dissipated as heat
in the vicinity of the radiating system, For the case of gsea mﬁn}
because of relatively high conduetivity the radiated pewer attemuates
very repldly.

Pigure 5 shows Pgy /Py va, » ourves for sea water at three different
redii of insulating cavity at a fixed frequency of 500 kiloeyeles, All
other constants are the seme as that of Figure 4. When the radius of
the insulating cavity becomes smeller o similar effect happens as when
the frequeney inereases in Figure 4.
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The nature of the electremagnetic wave in a conducting medium
generated by a loop antenna has been studied, Based on the formulas
derived, a low frequency wave suffers less attenuation than a high
frequency vave, This effect is very noticesble when the conductivity
of the medium is high, such as with sea water. A% low frequencies the
power rediation is small compered with the power supplied to the loop
antenna, The selection of frequeney end power of a transmitter depends
upon the conduotivity of the medium, the size a:wmm,m
the size of the insulating cavity. However, high frequencies ave
inefficient, becsuse at these frequencies most of the power is dissie
pated as heat in the vicinity of the antemna, Furthermore, the fre=
quency sannot be too low because of a great amount of power required.
In addition, size of a low frequency transmitter is generally larger
than a high frequency transmitter. In some practical applications size
is very impartant end consequently larger trensmitters cannot be used.
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APPENDIX A

In terms of the primary constants of the medium (7, //, and €,

the values of X are

—
-

Re Y
Roﬂwﬂ(O‘#-JweT
Re[[vP ZeZe TOTE ] ol % 07 (L)

[/v ,u(w2 €? & 0'2) ]ooe [...1.. tan1 (.Q:...)J

/w/m.zez,. 272 |02 2 272 - e ']
2 (v €2 + g2)/2 20

/\,ZEé [(14’ 0" 1/2“]

<

-
:v/-g-‘f-"- [(1 +;2Vf..z.)1/ «1]

Similarly

B

"

1]

ImYy

2 2 -1
[/V,U (wWR €2+ 0'52317 J sin [_%- tan (WU_Z' )J

As shown in the above equations, o« , the real part of the 2
[\
g
20 - vt {30 ’ & taﬁ.l (—g:--) 0 %

cos
- Ve |
JVEES & T4 €

-]I + 1086 o [ (wR E2 & 0'2)1/2 - wE
ke b /2(u2 €2 + ¢2)1/2
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propagation constant )/, is e measure of the rate at which the wave is
attenuated as it progresses through the medium. B the imaginary
part of 7, is the phase shift per unit distance for the wave.
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APPENDIX B

The ratio of the effective equivalent magnetic dipole moment,
(IA)es to the actual equivalent magnetic dipole moment, IA, can be
simplified as follows, if the defined quantity x = ')’la is much less
than unity.

From (2-26) and (2-32)

(Ih)e _.q KB _( x
W " ')":%"""yc)B

- X% (x) 4 (x) - Py’ (x) i, (x)
xyi{ (x)y (v) =3/ (y) 43 (x)

(B=1)

vhere x 2 ')’la, vz ’)’za, andq:--;:lul. x and y are complex
2
quantities, and

K (2)e(Le=)e (8-2)
k{(z)zi‘.%___ig‘ﬂ_z-(_t,....%ul)e" (8-3)
1, (s)aoochs-g%-! (B=4)

11/(5)33%5.{2:0%: -M.ﬁ—-;%——-!—-—"inh—! (8=5)

vhere 2 represents x or ye.
Divide the denominator and the mmerator of (B=1) with i, (x)
and let x approach to zero
lim (IA)e _ lim . 42 17 (x)/i - xhe’
x>0 "IA 'x-»O[ ! o " (x)/l () kll Gx)
xyiy (x) k3 (v)/i1 (x) = ¥/ (v)

J (B~6)



In (B=6) by applying L'Hospital's rule

n [ 04/

1, (x)

=l [(x+1)e"‘] Un (Zeishx-xoouhgasihs (0
b e

15, e

=1 +1lim m.]zl-».}_az (B+7)
x>0 -
x
[xzk (x)] 15‘1 (1 +x 4 xz)o""] =1 (B=8)
x->0

and

lim :11’(::) lim [

x+0 W x>0 xeosgx-aﬁ
=1lim 3 *._ﬂﬁl. =2 B=9)
" x>0 3‘] ;

Substitute (B~7), (B-8), and (B=9) in (B=6)

(IA)e : 2 = («1) :
7} 2yky (y) = yoky ()

1 ),-?J"

=2rQ ¢~§-)o‘7~%[~(1 1-1& +__;2

- (3"35)
? +3y +3

This is the approximate equation for (IA)e/IA which is accurate
for practical applications.
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