South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange

Electronic Theses and Dissertations

1958

Raw Sewage Stabilization Ponds as a Means of Sewage Treatment

John Robert Anderson

Follow this and additional works at: https://openprairie.sdstate.edu/etd

Recommended Citation

Anderson, John Robert, "Raw Sewage Stabilization Ponds as a Means of Sewage Treatment" (1958). *Electronic Theses and Dissertations*. 2492. https://openprairie.sdstate.edu/etd/2492

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

RAW SEMAGE STABILIZATION PONDS AS A MEANS

LB2385 Anzz

5.0

OF SELADE TREATMENT

By

John Robert Andersen

SOUTH DAKOTA STATE COLLEGE LIBRARY

A thesis submitted in partial fulfillment of the requirements for the degree Master of Science at South Dakota State College of Agriculture and Mechanical Arts

December, 1958

-17,

RAW SEWAGE STABILIZATION PONDS AS A MEANS

OF SEWAGE TREATMENT

This thesis is approved as a creditable, independent investigation by a candidate for the degree, Master of Science, and acceptable as meeting the thesis requirements for this degree; but without implying that the conclusions reached by the candidate are necessarily the conclusions of the major department.

-17

ACKNOW LEEK EMENTS

The author is deeply indebted to Professor Emory E. Johnson and Associate Professor James N. Dornbush of the Civil Engineering Department, and especially to Mr. Charles E. Carl, Director, Division of Sanitery Engineering, State Department of Health, Pierre, South Dakota, for their interest, technical assistance, suggestions and encouragement while the work for this thesis was being done.

Sincere appreciation is also acknowledged of the cooperation of Doctor H. M. Crothers, who, while Director of the Engineering Science and Research Projects, made it possible for the author to participate in this study.

Appreciation is extended to all those other people who were contacted during this study for their interest and for the data and observations they supplied.

J. R. A.

TABLE OF CONTENTS

INTRODU		Page 1
	Nature of Project	1
	Scope of Data	3
REVIEW	OF LITERATURE	7
	History of Sewage Treatment	7
	Reasons For Sewage Treatment	9
	Theory of Treatment Action	11
	Early History and Development of Stabilization Ponds	14
	Present Status of Stabilization Ponds	17
	Applications Other Than For Municipal Sewage	26
A NA LYSI	IS OF TR.A'D ENT OBTAINED	29
	Reduction of Bacteria	29
	Biochemical Oxygen Demand (BOD) Reductions	29
	Suspended Solids Reduction	33
	PHENT OF CRITERIA FOR FOND DESIGN, CONSTRUCTION, RATION AND MAINTENANCE	36
	Solar Radiation	37
	Area, Loading and Size	38
	Depth	39
	Shape	39
	Site Location	40
	Dikes	40
	Inlet Structure	12
	Outlet Structure	42

Method	of Operatio	on .	• •	• •	• •	• •	• •	•	•	• •	•	•	٠	•	•	Page 43
Design	Standards	• • •	• •	• •	• •	•	• •	•	•	• •	•	•	•	•	•	43
PUBLIC HEALTH	CONSIDERAT	ions .	• •	• •	•	• •	• •	•	•	•	•	•	•	•	•	45
COSTS	• • • • • •	• • •	••	• •	•	•	• •	•	•	• •	•	•	•	•	•	48
	ison Between .		ntic	nal			• •	•	•	•	•	•	•	• •	•	49
SUMARY AND C	ONCLUSIONS	• • •	• •	• •	•	• •	• •	•	•	• •	•	•	•	•	•	58
LITERATURE CI	TED • • •	• • •	• •	• •	•	• •	• •	•	•	• •	•	•	•	•	•	60
APPENDIX I.	SUM ARY OF	P ert i ne	NT I	NFO	RMAT	rion	ī.	•	• •	•	•	•	•	• •		62
Kadoka	, South Dake	ota .	• •	• •	•	•	• •	•	• •	•	•	•	•	•	•	62
Wall,	South Dakota	a .	••	• •	•	• •	• •	•	•	•	•	•	•	•	•	65
Lommor	, South Dake	ota .	• •	• •	•	• •	• •	•	•	•	•	•	•	•	•	68
Maddoo	k, North Dal	kota.	• •	• •	N 101	• •	• •	•	•	•	•	٠	•		•	71
Wishek	, North Dake	ota .	• •	• •	•	•	• •	•	• •	•	•	•	•	•	•	74
APPENDIX II.	SEASONAL SE	UHMARIE	S 08	LA	BORA	TOP	A Y	NA	LYS]	S	•	•	•	•	•	77
APPENDIX III.	SOUTH DAK DESIGN CR							-	ATI(N	POI	NDS			•	83

Ŷ

 $\{1^{m}_{ij}\}$

T

÷.

LIST OF TABLES

Table		Page
1	States	19
2	Stabilization Ponds in South Dakota	20
3	5-Day B. O. D. and Suspended Solids, Albany, Minnesota	27
4	Sessonal Per Cent Reduction in Coliforns (NPN)	30
5	Seasonal Per Cent Keduction in \mathbb{P}_{\bullet} O. D. Concentration	32
6	Seasonal Per Cent Reduction in Suspended Solids	35
7	South Dakots Stabilization Ponds Cost Data	猆
8	Conventional Sewage Works Costs in South Dakota	57

1

1

÷

 $-1^{m}_{\ \ n}$

LIST OF FIGURES

Flgure	Physical Dimensions of Five Selected Stabilization	Page
Ŧ	Ponds	6
2	Mechanism of Stabilization	13

1.4

....

1.0

INTRODUCTION

The successful operation of sewage stabilization pends by a number of North and South Dakota communities during the past few years has shown this method of disposal to be adequate in taking care of the needs of small communities. Stabilization ponds have been developed as a final disposal method principally because of the high cost of construction of more conventional types of sewage treatment. In many of the smaller cities the cost of final disposal facilities has been the deciding factor, whether or not the city could install a sewage system. Even the cost of primary treatment facilities, such as an Imhoff tank. in most cases has been too great for the cities to consider in conjunction with the installation of new sewerage systems. Since lend is relatively cheap compared to construction work involved in the building of a sevage treatment plant, and since the actual construction cost of a stabilisation pond is a comparatively small figure, this type of treatment has been readily accepted by the smaller communities. In the case of the larger communities, the cost of necessary secondary treatment of sewage, which includes not only the initial cost but costs of operation and maintenance, has often been prohibitive and the use of stabilization ponds has again appeared to be the answer from an economic standpoint. Nature of the Project

The literature contains many references concerning the use of such stabilization ponds as secondary treatment devices, particularly in Oklahoma, Texas and California. In the Dakotas, stabilization ponds have been used successfully for complete sewage treatment, but very little had been published as the Dakota development has evolved since 1950.

Research in the Dakotas, up to the time of this study, has been limited to brief observations, including laboratory studies of short duration, by the State Departments of Health of North Dakota and South Dakota. The units that were being installed had practically been designed by the rule of thumb. Some biological work had been performed on the various stabilization ponds throughout the Dakotas, but nothing had been done concerning the engineering data that is necessary for an economic design of a stabilization pond.

The State Health Departments of North Dakota and South Dakota requested a cooperative research project with the U.S. Public Health Service and upon realization of the study, invited South Dakota State College to participate in the research. At that time the author started on the project through South Dakota State College's Engineering Science and Research.

The first planning conference for this project was held in Plerre, South Dakota, on October 25, 1954. The project began with a conference at Bismarck, North Dakota, with the U.S. Public Health Service and the North and South Dakota Health Departments along with other interested parties. During the first two weeks, engineering data was gathered at 40 stabilisation ponds throughout the two state area. After the necessary engineering information had been gathered by visits to the various stabilisation pond installations and talking with the city officials that were concerned with the stabilization ponds, the U.S. Public Health Service compiled the data in cooperation with the two states and selected three stabilisation ponds in South Dakota and two ponds in North Dakota for biological investigation with biologiess and engineers of the coop-

erating states and South Dakota State College.

Scope of Data

Because stabilization ponds are primarily successful due to solar radiation and vary according to climatic seasons, the concentrated study was for a three-day period during each of the four seasons in 1955. The first field study was begun in January, 1955, at which time all stabilization ponds were heavily covered with ice. The other three seasonal studies were carried out in the spring, shortly after the transition from ice cover to open water, but before hot summer weather, during the summer, and during the fall just before freeze up.

The five installations listed below were selected for study on the basis of variation of design, loading, depth, area, type of inlet and outlet structures, and other considerations and characteristics. (Appendix I)

<u>Kadoka, South Dakota:</u> Irregular in shape and depth, this installation had been subject to some complaints of odor by nearby residents. Population served: 550-850; Area: 3.0 acres (at the time of the survey); Average loading: 22.9 pounds of biochemical oxygen demand (BOD) per acre per day.

<u>Wall, South Dakota;</u> The most shallow of all Dakota installations. Population served: 556-1000; Area: 8.9 acres: Average loading: 7.0 pounds biochemical oxygen demand (BOD) per acre per day.

Lemmon, South Dakota: The deepest of all Dakota installations, served the largest population at the time this study was initiated. Population served: 2760; Area: 27.1 acres; Average loading: 6.8 pounds of biochemical oxygen demand (BOD) per acre per day.

<u>Maddock, North Dakota:</u> The only pond with three cells in series. Population served: 741; Area: 11.7 acres (First pond); Average loading: 9.4 pounds of biochemical oxygen demand (BOD) per acre per day.

<u>Wishek, North Dakota</u>: Regular in shape and depth, and completely enclosed by dikes. Population served: 1241; Area: 7.8 acres; Average loading: 13.0 pounds of biochemical oxygen demand (BOD) per acre per day.

Plan views of each of the five stabilization ponds are shown in Figure I. Inlets, outlets, shape, and relative sizes are illustrated.

Three types of observations were made throughout the investigation and all conforming to the 10th Edition of <u>Standard Methods for the</u> <u>Examination of Water and Sewage</u> published by the American Public Health Association. The types of investigations made were:

1. <u>Physical:</u> Raw sewage and stabilization pond effluent flows, wind velocity and directions, air and pond temperatures, light intensity, structural features, and volume of pond contents.

2. <u>Biological</u>: Plankton and bottom organisms (kinds and quantity), coliform bacteria (MPN), and special tests.

3. <u>Chemical</u>: Dissolved oxygen; biochemical oxygen demands (BOD); pH; alkalinity; nitrogen: total organic, ammonia, nitrite and nitrate; phosphate: total and ortho; sulfides; chlorides; turbidity; and suspended solids.

The pH, dissolved oxygen and alkalinity chemical tests are directly related to algal activity. These analyses fluctuate in proportion to the degree of photosynthesis occurring at the time the sample was collected.

The biochemical oxygen depand is the standard yardstick for

measuring stabilization efficiency.

Oxidation or reduction will occur by bacterial action if the environment is aerobic or anaerobic respectively. Status of nitrogen balance will indicate degree to which either is occurring.

Soluble ortho phosphate is an essential nutrient for algae, and is rapidly consumed to become part of the plant cells. Total phosphate should be relatively unaffected.

The sulfides indicate the degree of septicity and the potential for odor production.

The chloride concentration is not normally affected by natural chemical or biological action. However, it is increased by evaporation and removed only by seepage or effluent discharge.

Turbidity and suspended solids are grouped together to relate relative particle size and weight, and restriction of light penetration.

Coliform bacteria is a measure of bactericidal efficiency.

There were 4000 chemical laboratory determinations made during the course of this study. Questionnaires for 53 sewage stabilization pond installations were filled out. Some 3200 observations were made of weather, climate, temperature, etc. at the pond sites. The author has no record of the numerous biological determinations and light intensity readings that were taken. A total of 20 persons worked on the study at various times. The author was one of the four men who participated on every seasonal survey plus the additional studies made.

16 J

OUTLET KADOKA		let			MADDOCK INLET POND I		POND
WALL	INLET			P	OND II		•
INLET	LEMM	ON OUT LET	-	2400	WIS SCALE 1 200	SHEK INLET N FEET 0 200	400
LOCATION	KADOKA, S.D.	WALL., S.D.	LEMMON, S.D.	MADD POND 1	OCK, N.	D. POND 3	WISHEK, N.D.
Surface Area (acres)	3.0	8.9	27.1	11.7	12.3	8.0	7.8
Depth, Max. (feet)	7.7	2.2	14.0	5.0	3.6	5.7	3.8
Depth, Ave. (feet)	4.4	1.2	5.7.	4.0	2.8	4.4	3.0

Figure I

Physical Dimensions of Five Selected Stabilization Fonds

REVIEW OF LITERATURE

History of Semie Treataent

Our earliest knowledge of man's attempt to control his actions and those of his fellow men by moral and legal codes is to be found in the Mosaic law. In that part of the law that might properly be called the first sanitary code are found basic instructions for the disposal of human wastes.¹ These rules were satisfactory for the simple life of that early civilization, and at the present time the fundamental principle stated in those rules — that health could be safeguarded only by the disposal of human wastes in such a manner as to prevent infection by contact — is still a good public health doctrine.

As civilization advanced, towns and cities were formed, with the congestion of population occurring, contacts increased and consequently, the occurrence of communicable diseases. History records the terrible lack of sanitation and the resulting endemic plagues. History need not repeat itself if the more complete rules of sanitation that the modern sanitary sciences have made available are recognized and applied in our present and future civilization.

Civilization, as we know it today, is outstanding in the history of the world because of the great exphasis that is given to the problems of public health. Few among the nations of the world give to exhitation the exphasis that it receives in these United States. Because of this interest, we realize that it is of prime-importance to remove all sewage wastes from a city to a safe place for treatment and final disposal.

-200

1. Deuteroncey 23: 10-13

In 1906, these same thoughts were profoundly expressed as follows: "The disposal of waste is a fundamental problem for all living organisms, and the attempt at scientific waste disposal is comparatively recent. The Gloaca Maxima and other so-called sewers of antiguity were drains rather than sewers, and their function was to lower the ground water level and not primarily to remove excretal wastes."²

Until 1815, the discharge of any waste but kitchen slops into the drains of London was prohibited by law, and the same regulations persisted in Paris up to 1880. Severage and sewage disposal proper really date from the epoch-making report of the Health of Towns Commission of Great Britain in 1814, which revealed the accumulation of an astonishing amount of decomposing organic matter and filth of all kinds in the cities. Only three years after the report of the Health of Towns Commission, it was made obligatory to discharge all sewage into these draine.³

In other countries the example set in an land was more or less promptly followed. In the United States, numerous drainage systems existed, one in Boston, for example, dating from the seventeenth century; but the first comprehensive severage project was designed by E. S. Cheebrough from the City of Chicago in 1855. On the continent of Europe a sever system was constructed at Hamburg after the great fire of 1842, by Lindley, an English engineer. Berlin installed severage in 1860 and other German systems quickly followed. No law of sanitation is now more clearly recognized than the principle that the wastes of human life

^{2.} C. E. A. Winslow and Earle B. Phelps, "Water-Supply and Irrigation Paper Number 185," <u>House Documents</u>, LXIII (1906), 9-13

must be diluted with an adequate supply of water and quickly removed from the region of habitation.4

with the establishment of the water-carriage system, the difficulty was shifted from the individual to the community. The insanitary conditions surrounding the dwelling were relieved, but at some point on the outskirts of the city the concentrated filth from its entire population must be disposed of.⁵

This great need for the removal of sewage wastes from a city frequently made it necessary to appropriate the use of rivers and lakes into which the wastes drained from the sewerage system of that city might be discharged. As long as those receiving waters were isolated and were not being used by others it was presumed that the wastes could be disposed of in that manner without danger. The safety of this method was dependent on the isolation of the place of disposal. The discharge of untreated sewage can be tolerated as long as it serves the sanitary needs of the city and at the same time does not create a health hazard elsewhere. Unfortunately, few cities are so situated that they can have for their use a body of water for sewage disposal by dilution, without creating a condition adverse to the interests of others.⁶

Reasons for Sewage Treatment

In the past fifty years methods for sewage disposal have received a great deal of study and during this time marked progress has been shown, especially in the line of sewage treatment devices.

- 4. Ibid
- 5. <u>Did</u>
- 6. Ibid

First, perhaps we should try to define the main purpose of the sewage treatment processes before discussing any methods by which the desired results are to be obtained.

The effluent from a properly operating sewage treatment device might be defined as one which may be discharged without cause for further concern on the part of those responsible for its production. An effluent of this nature would be the result of treatment adequate to remove the objectionable properties of the sewage to a degree sufficient to permit its discharge into the receiving body of water. That is without causing such receiving water to become more dangerous to the public health or to lose value or usefulness to the general public or to those whose riparian claims entitle them to special privileges. However, in case there is not dilution of the effluent by a receiving body of water, the sewage as discharged upon the surface of the ground must be in such condition as to prevent any cause for health or nuisance complaint. Logically it follows that the requirements for a good effluent vary widely with the local situation. Climate, topography, concentration of population, stream usage and many other factors are involved in determining just how far it is necessary to carry the mirification process in a treatment device. For example, where dilution may be available in a receiving body of water, local conditions may permit its use in the destruction of at least a portion of the objectionable properties of the sewage.

If sewage is treated uniformly to such a degree that the final effluent creates no problem or handicap to other uses of the receiving waters; first, from a standpoint of an objectionable demand for further oxygen; second, from a standpoint of a dangerous bacterial content; and

third, from the standpoint of inert chemical compounds that have characteristics that make their presence in water a limiting factor in the use of such water; then it would seen that the essential requirements of a good effluent from good treatment have been met. The effluent from stabilization ponds do meet these above requirements. Later, data from actual operation of stabilization ponds will attempt to prove this point.

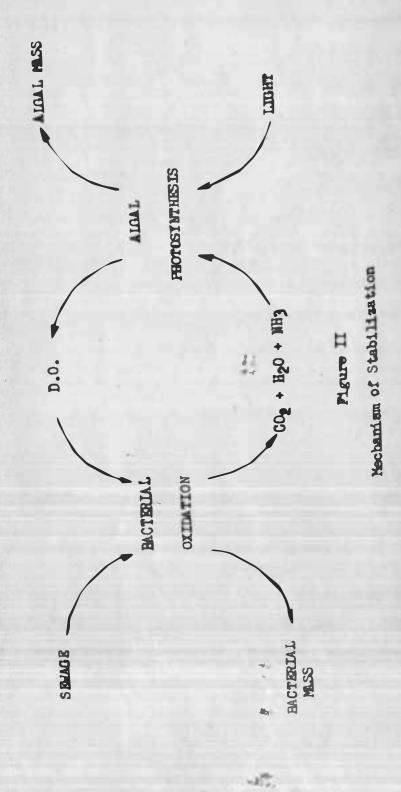
Theory of Treatment Action

The purpose of any treatment of sewage is to change its characteristics so that when the final effluent is disposed of no nuisance or manace to health is caused. All present day treatment devices accomplish this by bacterial action; however, since anaerobic bacterial action proceeds without oxygen, hydrogen sulfide and other foul smelling gases are released. Therefore, it is necessary to provide oxygen to prevent any nuisance condition from odors.

Many of the sewage treatment methods prevent such nuisance conditions from arising by bringing large quantities of air into contact with the sewage during treatment. However, this induced air requires very expensive equipment such as pumps, filters, tanks and other mechanical equipment.

In the stabilization pond a different process of obtaining oxygen is utilized. Low forms of plant life called algae which contain chlorophyll, have the characteristic of releasing oxygen when they digeet their food. This food consists of many different things but the two basic ones in which we are interested are nitrates and carbon dioxide. Aerobic bacteria, utilizing the oxygen the algae produce, oxidize the

sewage organic matter, thereby making carbon dioxide, ammonia, and other growth essentials available to the algae. In addition to the carbon and nitrogen supply from the bacteria, the algae require energy in the form of visible light. The radiant energy from the sun is the principle source of this required light.⁷ This is a very simple statement as to the method by which the process works. (See Figure II for a diagram of this statement.)


Dr. Imhoff, in his early writings on pond type treatment for sewage, stated in 1931:

The increase in oxygen concentration, which is the best index of the progressive self-purification of streams during the time of flow, shows that the natural purification is augmented as the time of flow is lengthened. If therefore, the river waters are impounded and the time of flow thereby increases, it is possible to attain the same effect in a shorter river stretch. Thus an impounding reservoir, or artificial lake, acts in a similar manner to a sewage-treatment plant in maintaining the cleanliness of a stream. The treatment plant reduces the pollutional load in the stream by reducing the cxygen demand of the waste waters, or the decxygenation of the stream. The impounding reservoir acts in an opposite manner by increasing the reoxygenation or reaeration of the waters.

Inhoff goes on to state that there are two prerequisites to the construction of impounding reservoirs as a substitute for sewage treatment plants. First, the sewage should be free from sludge forming solids as far as possible in sedimentation tanks. If this is not done, sludge will accumulate on the bottom of the pond and putrefy in summer.⁹ Present day results from actual stabilization ponds receiving raw sewage discharges show that the best efficiency of ponds is during the summer

^{7.} W. J. Oswald, H. B. Gotaas, H. F. Audwig, and V. Lynch, "Photosynthetic Cxygenation," <u>Sewage and Incustrial wastes</u> XXV, No. 6 (1953), 692.

^{8.} Karl Imhoff, "Impounding Reservoirs as a Substitute for Biological Sewage Treatment works in the Guir District," <u>Sewage Works</u> Journal, III No. 1 (January 1931), 120-124

SOUTH DAKOTA STATE COLLEGE LIBRARY

months. Imhoff also thought that ponds could well replace biological treatment, but not sedimentation. His statements were again disproved with the utilization of ponds receiving raw ecwage discharge.

Inhoff's second point was that the river must carry adequate amounts of water during the winter because during cold weather natural self-purification is greatly reduced as in the German reservoirs. This point has also been shown to be misleading because good efficiencies of BOD reduction are being obtained in the Dakotas during winter months. Early History and Development of Stabilization Ponds.

(The first stabilization ponde were almost simultaneously constructed in the States of California, North Dakota and Texas. Reportedly the first unit was at Santa Rosa, California, in 1924.¹⁰ The first pond of which this author found written record was that reported and described in 1928 and 1929 by C. G. Gillespie, Chief of the Bureau of Sanitary Engineering for the State of California. Gillespie is quoted as follows:

In the past two or three years a couple of cities have systematically developed ponds for oxidizing septic tank effluent. With ponds about two feet deep, and some cars in proportioning the amount of incoming sewage to the size of the pond so that a green or brown growth is maintained, oxidation proceeds forthwith and within eight days a stability equal to that of an average sprinkling filter is obtained throughout the year. B Coli removals are fully as high as by a sprinkling filter and in fact after about sixteen days storage, a B Coli count as low as 10 to 25 per cc is frequently obtained. In clarification the effluent is not quite as good as that of a sprinkling filter. The investment cost is exceedingly low but operating costs to keep down weeds and occasional mosquito control probably results in a maintenance expense equal to that of a sprinkling filter. 11

10. D. H. Caldwell, "Sewage Oxidation Fonds -- Performance, Operation and Design," Sewage works Journal, XVIII, No. 3 (May 1946), 443

11. C. G. Gillespie, "The Seware Mustion in California," Sewage Works Journal, I No. 4 (July, 1929), 466-75

Gillespie first reported on the two towns in 1928, and a portion of his report on Vacaville, California, which is of interest here is as follows:

Town Engineer suggested that it might be possible to pase settled sewage over the local sewage farm in such a manner that it could be stored in ponds without nuisance during the dry months. Following his suggestion the septic tank effluent was run into a header ditch, into the banks of which were inserted a number of pipe ports at intervals of 15 to 20 feet. The clarified sewage was released through these ports in a thin sheet which flowed through a thick growth of grass down a slope of about one foot per 100 feet. 12

The flow was 125,000 gallons per day. The area of the farm was eight acres and the pond held 3.5 million gallons. In the eight months dry period, when sewage was held back, some thirty million gallons of sewage was discharged but not more than three million gallons ever accumulated in the ponds. Because the soil was of gumbo or adobe they considered it quite unfavorable and doubted if much of the sewage soaked into the ground. Most of the sewage was undoubtedly lost by evaporation and by the heavy growth of graes. No mulsances were caused in the ponds during the summer operation. According to Caldwell this pond was also built in 1924; however, the state granted permission only after the observations of the ponds at Santa Rosa. The ponds at Vaceville were built in order to prevent injury to private property by the septic tank effluent.¹³

According to Svore and Van Heuvelen of the North Dakota State Department of Health, the first installation put into operation in that

12-

13. Caldwell, Loc. cit.

^{12.} C. G. Gillespie, "Simple Application of Fundamental Principles of Sewage Treatment," Sewage works Journal, I No. 1 (October, 1928) 5-70.

state was at Fessenden in 1928. This installation was not a true stabilization pond, but many of the features of modern ponds were present. A pothole was dammed off and the municipal sewage discharged along the berm directly into the pothole area. This installation worked successfully for more than 20 years and is still in operation.¹⁴ At the time this writer saw the pond it was filled with cattails and of a very shallow depth.

Schroepfer in writing a section concerned with a historical review of biological methods of removal, pointed out that Abilene, Texas, constructed a pond sometimes during the 1920's. Later in his review: "At Lund, Sweden, where climatological conditions are reportedly very similar to those in Madison, Wisconsin, a pond has been used since 1934 to dispose of settled sewages. Lund is a community of approximately 32,000 inhabitants.*15

The Ruhr District of Germany planned construction of eight artificial lakes as units for secondary sewage treatment and during the middle of 1931, Dr. Imhoff wrote that two of the eight such lakes were completed. Hengsteysee, a lake about 0.6 square miles in area was completed in 1927, and Harkortsee, about 0.5 square miles was finished in 1931.¹⁶

^{14.} W. Van Heuvelen and J. H. Svore, "Sewage Lagoons in North Dakota," <u>Sewage and Industrial Wastes Journal</u>, XXVI, No. 6 (June, 1954), 771

^{15.} G. J. Schroepfer, and others, "The Madison Lakes Problem" Part II, Report for Oscar Mayer and Company, (September 15, 1955)

^{16.} Karl Imhoff, "The Ruhrverband," Sewage Works Journal, III No. 3 (May 1931), 517-18.

Ponds in series have been used in Europe to treat settled and screened sewage without dilution. In Moscow, Russia, a series of six fish ponds averaging two to two and a half feet in depth treated 13,100 gallons of sewage per acre per day. The effluent of the last pond could be safely discharged into a stream, and the last three ponds supported fish life. Fish production which was quite general in European ponds was reported to be over 300 pounds per acre.¹⁷ In fact, stabilization ponds as we know them were called "fish ponds" in Europe, and anyone reviewing the literature should keep this in mind.

In commenting on the advantages of ponds Svore and Van Heuvelen state:

The eewage lagoon fills all the requirements for a satisfactory sewage disposal system. The sewage is carried out of the city limits and disposed of in such a manner that nuisance conditions do not develop. It also disposes of the sewage so that it neither pollutes surface or underground waters nor creates a health hasard or nuisance condition at the lagoon site. Water from a sewage lagoon can be discharged into a flowing stream because it has been satisfactorily stabilized and the pollution load of the raw sewage has been greatly reduced. However, a majority of the lagoons now operating in North Bakota have been built to provide adequate capacity to hold the entire flow of sewage in the lagoons and provide for no discharge to any watercourse.

Present Status of Stabilization Ponds

Table I indicated acceptance by the different states of the midwest. The table from French is probably complete and accurate only up to early 1955, because it is realized that many more ponds exist both in the Dakotas and isconsin than is indicated.

In the formulation of standards for the location, design, and

17. E. W. Steel, Mater Supply and Sewerage, Second Edition, p. 191

18. van Heuvelen, and Svore, op. oft. p. 776

construction of stabilization ponds for the State of South Dakota, Carl, Director of the Division of Sanitary Engineering of the State Health Department, prefaced the standards with the following remarks.

"The use of stabilization ponds as a method of sewage treatment has progressed to the point that there is little controversy as to the application of this process for sewage treatment. By 1953, the method had received enough acceptance in South Dakota to warrant the formulation and issuance of minimum standards in December of that year."¹⁹

At the present time South Dakota has fifty-four overflowing type ponds and only two ponds of the non-overflowing type. The latter two ponds are located in the western half of the state which has low rainfalls and high evaporation rates.

Table II shows the stabilization pond installations in South Dakota. Also is indicated: the population served, the size of each installation, the number of cells, the type of overflow, the type and location of the inlet, and the kind of sewage that the ponds receive.

^{19.} Suggested Minimum Standards for Sewage Stabilization Ponds, November, 1955. p-1.

STATUS OF SENAGE	Table I TREATMENT BY LAGOONS	IN MIDWESTERN	STATES 20
SMAR	Number In Operation	Number Approved	Results
Arkanzas	0	0	ین واند میرون میروند. میروند میرون میروند میروند میروند میروند میروند میروند میروند میروند میروند میروند میروند
Colorado	6	?	mostly good
Illinois*	3	1.	good
Indiana	0	0	****
Iowa	0	0	، بې د د د د د ک ې ن پې چک
Kansas	16		good
Kentucky	0	0	دین هم خو مرد مرد مرد مرد م
lichigan	0	0	این ور نیا والا کردی _{اور ک} ین والا
Minnesota*	0	2	
Missouri*	0	5	******
Montans*	12	2	Excellent
Nebraska*	6		good
North Dakota#	31	36	Excellent
Ohio	0	0	~~~~~~~~~~~~~
0klahema	19	a sin	good
South Dakota*	11	several	good
Texas	100+	100+	good
lisoonain	0	2	909040 77 0964
voming*	3	2	5003

"States In which construction of raw sewage lagoons has been approved.

۰.,

20. D. E. French, "Municipal Sewage Lagoons in the Midwest," <u>Water and Sewage Works</u>, CII, No. 13, (December, 1955), 539 TABLE 11²¹ STABILIZATION PONDS IN SOUTH DAKOTA

LOCATION	POPULATION	TOTAL	NUMBER OF CELLS	kind of Sewage	INIER	OUTLET
	1950 Cransus	ACRES			TYPE LOCATION	TYPE
Beresford	1,686	16.5	2	29W	Cravity Center	Overflow
Bison	457	3.0	l	Raw	Cravity Side	Overflow
Bonesteel	485	5.4	1	Raw	<u>Cravity</u> Center	Overflow
Bowdle	781	8.6	1	Rew	Center	Overflow
Burke	829	8.2	2	Imhoff Effl	uent <u>Gravity</u> Center	Non Overflow
Canton	2,530	30.0	2	Raw	<u>Pumped</u> Center	Overflow
Castlewood	497	16.0	2	Ray	Gravity Center	Overflow
Chancellor	193	2.0	l	Raw	Gravity Center	Overflow
Clear Lake	1,105	12.0	l	Raw	Gravity Center	Overflow

LOCATION	POPHIATION	TOTAL	NUMBER OF CELLS	KIND OF SEMAGE	INEST	OUTLET
	1950 CENSUS	ACRES			TIPE LOCATION	TIPE
Colton	521	6.2	l	Raw	Pumped	Overflow
Eagle Butte	375	8.4	1 %	Rew	Gravity Center	Overflow
Edgemont	1,151	20 • ļ	1	Rew	<u>Gravity</u> Center	Overflow
Elk Point	1,366	15.5	1	Raw	Gravity Center	Overflow
freeman ;	940	10.0	Ŀ	Ran	Cravity Center	Gverflow
Gettysburg	1,555	2 C.0	2	Raw	<u>Cravity</u> Center	Overflow
Groton	1,084	11:06	l	Rew	<u>Gravity</u> Center	Overf low
layti	413	5.0	2	Rew	Gravity Center	Overflow
loward	1,246	15.0	2	Rest	Gravity Center	Overflow
Humbolt	450	12.3	l	Rew	Gravity Center	Overflow

LOCATION	POPULATION	TO TAL	NURBER OF CELLS	KIND OF SEWAGE	INLET	OUTUIST
	1950 Census	ACRES			TYPE LOCATION	TYPE
Isabel	511	2.7	1	Ray	<u>Gravity</u> Center	Overflow
Kadoka	584	8.2	2	Raw	Gravity Center-Side	Overflow
Langford	456	5.3	1	Raw	Pumped Center	Overflow
Lemmon	2,760	27.1	l	Raw	Gravity Center	Overflow
Mission	388	4.1	2	Raw	<u>Gravity</u> Center	Overflow
Mirdo	739	9.3	1	Raw	<u>Gravity</u> Center	Overflow
New Effington	367	3.7	2	Raw	<u>Pumped</u> Center	Overflow
Oni da	٤16	11.5	1	Rew	Oravity Center	Overflow
Orient	205	2.0	1	Raw	Gravity Center	Overflow
Parkston	1,354	15.5	l	Ray	Gravity Center	Overflow

LOCATION	POPULATION	TOTAL	NIMBER OF CELLS	KIND OF SENAGE	INLET	OUTIEN
	1950 CENSUS	ACRES			TYPE	TYPE
Philip	810	5.7	2	Raw	<u>Pumped</u> Center	Overflow
Pollock	1100	4.6	2	Baw	Cravity Center	Overflow
Redfield	2,655	30.2	1	Raw	Pumped Center	Gverflow
Selby	700	10.0	2	Raw	Cravity Center	Overflow
\$1sseton,	2,871	27.0	2 *	Raw	Gravity Center	Overflow
Springfield	800	18.8	2	Raw	Cravity Center	Overflow
Tabor	373	4.9	1	Raw	<u>Pumped</u> Center	Overflow
Valley Springs	389	5.8	2	Ray	Cravity Center	Overflow
Veblen	476	2.5	2	Imboff Effluent	Pumped Center	Overflow
Wagner	1,528	21.0	l	Raw	Center	Overflow

LOCATION	EDENIAL TON	TOPAL ARFA	NUMBER OF CZLLS	KIND OF SEKAGE	INLET	OUTLET
	1950 CIRSUS	AC RES			TT PE LOCATION	TOPE
Wall	556	8.9	1	Ray	Gravity Side	Non Overflow
White River	165	5.0	l SC	Raw	Gravity Center	Overflow
Whitewood	304	4.2	l	Raw	Gravity Center	Overflow
Wilmot	583	7.5	l	Raw	<u>Gravity</u> Center	Overflow
Federal [#] Installations			1			
Badlands National Monument		2.0	2	Raw	Gravity Center	Overflow
Cherry Creek Indian School		0.34	2	Septic Tank Effluent	Gravity Side	Overflow
Settysburg Radar Station	175	1.35	2	Raw	Gravity Center	Overflow
Kyle Indian School	195	1.0	2	Rew	Gravity Center	Overflow
Dahe Administration	100	0.88	2	Raw	Gravity Center	Overflow

TABLE II (CONTINUED)

LOCATION	POPULATION	TOTAL ARRA	NUMBER OF CELLS	KIND OF SEWAGE	INLET	CUTLET
	1950 CENSUS	AC RES			TYPE LOCATION	TYPE
Pierre Indian School	450	5.1	1	Rau	Cravity Center	Overflow
Red Scaffold						
Indian School	25-50	0.30	2	Rew	Cravity	0verflow
Rosebud Boarding					Center	
School	100-200	0.8	4	Septic Tank Effluent	Gravity Center	Overflow
White Horse Indian School		0.36	2	Septic Tank	Gravity	Overflow
Installations			2	Effluent	Center	
Greenlee Packing Company		2.5	l	Imhoff Effluent	Gravity Center	Overflow
Private Installations					<u>Center</u>	
Bethesda Home (Beresford)	150	1.8	l	Raw	<u>Gravity</u> Center	Overflow
wasta	140	0.5	l	Septic Tank Effluent	Center	Overflow
weaver	50	0.5	1	Raw	Gravity Center	Overflow

21 South Dakota State Department of Health files.

Applications Other Than For Municipal Sewage.

Various installations in the Midwest have utilized sewage stabilization ponds for the biological treatment of wastes from typical local types of industry. Mainly the two types of industry that have utilized stabilization ponds for treatment are the Dairy Industry and the Meat Packing Industry.

From June 1955 to June 1956 the Minnesota State Department of Health conducted surveys at Albany, Minnesota, to determine the type and degree of treatment that was being obtained in the first sewage stabilisation pond constructed in Minnesota. Conditional permit for construction was granted by the Minnesota Water Pollutional Control Commission in April of 1954. The provisions mainly called for the village to assume all responsibility in the operation and if the system did not operate effectively upon trial, they were to construct a conventional type of sewage treatment plant to effectively treat the wastes.²²

Albany's main disposal problem was the huge quantity of milk wastes that were being contributed by two dairy processing plants in the village. Essentially it was a large milk and whey dryin plant.²³

The total pounds of 5-day biochemical oxygen demand (BOD) and sewage solids for the period of the two raw sewage sampling surveys is shown in the following table:

22. Report on Investigation of Operation of Raw Sewage Stabilization Fonds at Albany, Minnesota, June 16, 1955 to June 1, 1956, p 2

-15-

23. <u>Ibid</u> p 3

TABLE III²⁴

5-DAY B.O.D. AND SUSPENDED SOLLDS, ALBANY MINNSOTA

	February 2 - 3	June 20 - 21
Flow - Gallons per 24 hours	172,000	197,000
5-Day BOD - Pounds	790	805
Population equivalents	4,740	4,830
Suspended Solids - Pounds	315	394

The average 5-day BOD of the samples of sewage from the primary pond during the June 20, 1956, survey was less than 5 per cent of the average BOD of the raw sewage sample, while during the February 2 survey, the average BOD of the primary pond samples was about 27 per cent of the BOD of the raw sewage sample. As in the other determinations, there was only a slight variation in BOD of samples taken at the various stations in the ponds. The average BOD of samples taken in the secondary pond during each of these surveys was about half the average BOD of samples from the primary pond. The average BOD of samples from the primary pond on June 20, 1956, was 22.5 parts per million and from the secondary pond, 11 parts per million. "These figures demonstrate the remarkable reduction in BOD accomplished by the ponds during periods of no ice cover when the plankton organisms thrive and produce the necessary oxygen for stabilization of the waste."²⁵

Other uses of stabilization ponds are for the U & I Su ar Beet factory in Selle Fourche, South Dakota; The Greenlee Meat Packing Company in Sioux Falls, South Dakota; and the Homestake Mining Company

۰.,

-101

24. <u>Ibid</u> p 7 25. <u>Ibid</u> p 9 in Lead, South Dakota, who use ponds for trail wastes. All of these installations have been observed by the author and some seem to be doing phenomenal work; especially the Greenlee pond in Sicux Falls which is greatly overloaded in respect to the standards that have been established by the South Dakota State Department of Health. At present the Greenlee pond is being observed and some laboratory determinations are being made.

4

à ___

157

A. ALYSIS OF T F T ENT OBTAINED

On the Dakota Sewage Stabilization Fond study the treatment obtained has been evaluated on the basis of changes in coliform density, BOD reductions, and suspended solid reductions.

Reduction of Bacteria

Reductions in coliform density, the most probable number (MPN), were 90 per cent during more than fifty per cent of the time, and except for one sampling period at two installations, were 95 per cent or greater at all times. These per cent reduction values are based upon the geometric mean of all MPN values of the stabilization pond influent. Also, in installations at Wall, Maddock and Wishek, where there is no overflow, reductions were calculated on all etabilization pond samples collected more than 50 feet from the inlet structure.

Certain algae have been reported to produce anti-bacterial substances,²⁶ and the reductions in colifor densities accomplished by ponding may be due in part to such substances; however, the detention time alone, as observed in this study, should be sufficient to account for the reductions stated. It was also noted that reductions at different seasons were not appreciably different. Table IV shows the reductions for all seasons at the five installations studied. Biochemical Oxygen Demand (BOD) Reductions

In spite of differences in loading, shape, depth, area, and

-6-

^{26.} E. A. Birge, and C. Juday, "Solar Radiation and Inland Lakes," Transactions Wisconsin Academy of Science, XXIV (1929), 23

TABLE IV

SEASONAL PER CENT REDUCTION OF COLLFORMS (MPN)

(MPN/100 ml. (x 1000)

W I N T R		(max.)= (min.) (min.) (max.)	<u>Kadoka</u> 23700 24 <u>1</u> 23675 23699	Wall 13420 2200 420 11220 13000	Lemmon 19000 46 20 18954 18980	Maddock** 32000 1330 580 30670 31420	Wishek 60300 3380 1430 56920 58870
	\$ Reduc	tion (max.) (min.)	99•9 99•9	96.9 83.6	99 . 9 99 . 7	98.2 95.9	97.6 94.4
S P R I N		(Man.)* (min.) (min.) (max.)	43000 230 120 42770 42 80	3170 13 <u>4</u> 3157 3166	4580 43 21 4537 4559	2580 27 19 2553 2561	19950 250 45 19700 19905
G	% Reduct:	ion (max.) (min.)	99•7 99•5	99•9 99•6	99.5 97.1	99.3 99.0	99.8 98.7
	Raw Effluent	(min.) (min.) (min.) (max.)	101000 240 43 100760 100957	63240 340 40 62900 63200	34900 93 15 34807 34885	32200 298 80 31902 32120	42000 1710 234 40290 41766
	% Reducti	(max.) (min.)	99.9+ 99.8	99 . 9+ 99 . 5	99 .9+ 99 . 8	99.8 99.1	99.4 95.9
	Row Effluent	(max.)= (min.) (min.) (max.)	46000 430 45570	46000 460 240 45540 45760	2300 930 1370 2257	930 43 23 887 907	
	Reducti	on (max.) (min.)	99.1	99.5 99.0	98.1 59.6	97.5 95.4	

* Where no effluent is discharged, average of all stations is used. ** First Pond only.

presence or absence of an overflow, no striking differences in reduction were noted among the five ponds during the four seasons. At a given pond seasonal differences that were evident tended to show up in winter rather than at other times. Table V shows the seasonal percent reductions in BOD concentration for all seasons at the five installations studied.

In terms of BOD, the organic load was reduced by a minimum of 43.6 percent and a maximum of 98.4 percent. The minimum figure was obtained at Wall, South Dakota, under ice cover where, due to the shallowness of the pond beneath the ice, it was difficult to obtain a sample without picking up bottom material. Furthermore, the ice formation had concentrated the original pond contents into a much smaller volume. The minimum BOD reduction at the other locations was 70.0 percent which was also during ice cover. During open water conditions, pond and effluent samples contained large quantities of algãe which join with bacteria and other organisms in utilizing oxygen during the incubation of BOD samples in darkness. Such BOD values are not strictly comparable to those of the influent sewage, although they were necessarily used in obtaining the BOD reductions. They do not reliably indicate the probable effect upon the receiving stream, as the algae may actually produce oxygen under proper light conditions.

At Kadoka and Lemmon, where the ponds are provided with an overflow structure, BOD reductions were calculated in pounds. At Kadoka, the mean reduction during spring, summer and fall was 92 per cent. It was 99.3 per cent during the summer at Lemmon. In addition to the decrease in BOD concentration, these percentage reductions are obtained partly by seepage and evaporation losses, which are indicated by the low

TABLE V

SEASONAL PER CENT REDUCTION IN B. O. D. CONCENTRATION*

		Kadoka	Wall	Lammon	Maddock	Wishek
W I N	Raw Effluent**	560 22 538	298 168 130	100 35 365	357 83 274	499 150***** 349
T E R	% Reduction	96.2	43.6**	95 91.2	76.8	70.0
S P R I N	Raw Effluent## % Reduction	422 51 371	1,10 52 358	252 29 223	137 <u>16</u> 121	195 51 114
3	» Reduction	88.0	87.2	88.4	88.2	73.8
S U M	Raw Effluent**	463 60 403	256 29 227	142 10 132	390 11 379	219 24 195
M E R	% Reduction	8 7. 0	88.5	93_0	97.2	0.93
F	Raw Effluent##	256 35 221	2.78 <u>11</u> 2 37	165 12 153	185 <u>3</u> 182	
L L	% Reduction	86.2	85.4	92.8	98.4	

* All values shown except per cent reductions are in parts per million.

-

3

First pond only.

*** ** Bottom material in the sample

***** Drawn down in the fall.

** Where no effluent is discharged, average of all stations is used

rates of overflow. At Lemmon, for example, the volume of pond overflow was only about 10 per cent of the raw sewage inflow, while at Kadoka it was close to 50 per cent. It was noted that the BOD concentration at sampling stations within the pond itself was not significantly different than the effluent sample even though some of the sampling stations located within the pond proper were relatively close to the inlet.

At the Maddock installation, which consists of 3 cells arranged in series, the BOD is further reduced in each cell. Here there is no overflow and seepage and evaporation losses tend to maintain a uniform level. In Cell number 3, EOD was reduced to 2 to 6 parts per million. Here also, as at other installations without an overflow, dissolved solids as shown by chlorides were concentrated by freezing out in the winter and by evaporation at other times. The mean chloride concentration in rew sewage was 111 parts per million. During open water in the first cell, it was 7? parts per million, and in the succeeding cells, 227 and 228 parts per million, respectively. During ice cover, chloride concentration in the first cell was about three times that in the influent sewage. At wall, where ice occupied a greater proportion of the pond volume, the winter chloride concentration was three and one-half times that of the raw sewage. At Kadoka and Lemmon, which utilize an overflow, increases in chloride concentration were negligible at all seasons. Suspended Solids Reduction

Reductions in suspended solids are affected by two antagonistic processes; deposition on the one hand, and production of free floating algae on the other. During the winter, when algal production is at a standstill, suspended solids were reduced from 68 to 98 per cent.

During open water seasons, mean reductions have ranged from 13 to 96 per cent, and at Wall, the suspended solids increased 190 per cent during one of the test periods. The dark green color of the pond contents left no doubt as to the origin and nature of the new suspended solids.

Table VI shows the per cent reductions of suspended solids at the five installations during each season. Where there was no overflow the average of the concentrations for each station is used for comparison.

11

1.1

TABLE VI

SEASONAL PER CENT REDUCTION IN SUSPENDED SOLIDS*

-		Kadoka	Wall	Lengaon	Maddockess	Wishek
W I N	Raw Effluent##	1,030 <u>124</u> 1,006	287 92 195	370 39 331	394 13 361	885 79 806
T E R	% Reduction	97.7	67.9	89.5	96.7	91.1
S P R	Raw Effluent**	300 107 193	298 782 +484	384 145 239	297 30 257	277 241 36
I N G	% Reduction	64.3	+61.9	62.2	9.93	13.0
S U M M	Raw Effluent**	363 119 264	287 215 12	228 58 170	270 18 252	137 72 65
E R	% Reduction	68.9	14.6	74.6	93.3	47.4
FA	Raw Effluent##	320 108 212	200 640 +140	316 10 <u>1</u> 212	197 <u>8</u> 189	****
L L	% Reduction	66.3	+68.8	67.1	95 .9	

All values shown except per cent reductions are in parts per million ** Where no effluent is discharged, average of all stations is used. *** First pond only.

> -[1

16.0

DEVELOPMENT OF CRITERIA FOR POND DESIGN, CONSTRUCTION,

OPERATION AND MAINTENANCE.

A number of factors jointly determine the cause and effectiveness of stabilization pond treatment of sewage. These factors can be divided into two parts; those that are controllable by man and those that are uncontrollable by man.

Among the controllable factors are:

1. Area

2. Depth

3. Shape

4. Size

5. Loading as to sewage quantity and quality

6. The type of soil as influencia, percolation and compaction

7. Type and location of inlet and outlet structures

8. Site location

9. Method of operation

The following factors are not controllable and to a large extent determine how the controllable factors can and should be manipulated.

1. The direction and velocity of the wind

2. The amount and intensity of precipitation

3. The evaporation and humidity

4. The air and water temperatures

5. Intensity of solar radiation for photosynthesis

15.0

a) Seasonal variation

b) Daily variation

36

c) Hourly variation

d) Relation to latitude, elevation and cloud cover

e) Penetration of incident light for oxygen production

Solar Radiation

Solar radiation is important in the stabilization of sewage in ponds in three different ways. First, regional variations in annual solar radiation which differ with latitude, elevation, and cloud cover, will determine how well a pond will operate in a given location. Second, seasonal changes in daily solar radiation suggest the seasonal difficulties to be expected. Finally, penetration of incident light determines how much of the pond volume will participate in oxygen production. This will give an indication of desired pond depth.

Photosynthesis varies directly with solar radiation and is an important factor in stabilization pond performance. Light penetration into the pond was measured during each season, using matched surface and submerged phototonic cells. Because of the extremely dense growth of algae, light penetration in sewage ponds is strikingly less than that in most bodies of water which have been measured. Murdo Lake, a water supply reservoir for Murdo, South Dakota, falls within the general range of light extinction commonly reported for lakes, and absorbs 99% of the incident light in the upper $23\frac{1}{2}$ feet.²⁷ In contrast to this, the layer absorbing 99% of the light in the pond at Kadoka is only 6 inches

- 57

^{27.} G. L. Clarke, "The Utilization of Solar Energy by Aquatic Organisms," <u>Problems of Lake Biology</u>, Américan Association for the Advancement of Science, No. 10, p 31.

thick. This difference in light absorption with depth, results for the most part from the difference in algal density. The layer absorbing 99% of the incident light, is called the euphotic zone and is the stratum in which all appreciable photosynthesis occurs.²⁸

Area, Loading and Size

The principal design criteria used in South Dakota relate the area, loading and size together. In all pond installations the criteria used was loading in persons, or biochemical oxygen demand (BOD) equivalents, per acre of water surface. Assuming an average per capita sewage flow of fifty gallons per day, the total annual flow from 100 people would be slightly in excess of 5.5 acre feet. Assuming the size requirements must be 100 persons or BOD equivalents per acre, this would require an acre of land 5.5 feet deep per 100 population or BOD equivalents. However, in South Dakota, the annual evaporation ranges from approximately 30 to 75 inches and the precipitation from 10 to 29 inches; therefore an absence of overflow is not unusual. To maintain a constant operating level or to have an overflow, the incoming flow plus precipitation must equal or exceed evaporation plus seepage. If the seepage is excessive, sufficient water depth for proper pond operation will not be maintained.

To minimize odors during the critical period of operation - from the anerobic conditions of complete ice cover to aerobic conditions of open water - the loading must be reduced below that of 100 persons or BOD equivalents, per acre. This study of present loadings seemed to indicate that the spring recovery requires a minimum number of days.

- 1.

28. Ibid

During maximum algal activity and photosynthesis a much heavier loading could be maintained with excellent efficiencies resulting.

Depth

Optimum depth is controlled by many factors; some require a shallow pond while others require a deeper pond.

For maximum oxygen production a depth of a few inches might be the most efficient. Shallow depths permit better mixing and spreading of settleable solids over the entire pond area by wind action. Spring recovery with maximum oxygen production in a shallow pond would of course take place more rapidly.

From a practical viewpoint, it has been found desirable to maintain sufficient depth to discourage the growth of rooted aquatic plants. A depth of approximately 3 feet has generally been adequate to control such plant growth.²⁹ In the cold climate of South Dakota, when ice thickness may vary from a few inches to over 3 feet, a total depth of 5 feet does not appear unreasonable. Buring high temperatures of the summer months, a deeper pond would be in order to maintain a more uniform temperature for optimum algal activity.

Controlled plant or pond operation would permit operation levels consistent with the seasons. The states of North and South Bakota recommend operating depths of 3 to 5 feet and this appears reasonable. It is also desirable that the depth be uniform over the entire pond, because deep pockets tend to retard mixing of the pond contents.

Shape

The shape of the pond is probably of little importance except that

-6-

* ...

^{29.} Cadwell, loc. cit.

coves, peninsulas, and islands should be avoided. Such irregularities provide a place for any surface scum of floating material to accumulate. The flow pattern and the currents in the pond appear to be much less affected by shape and ratio of length to width than they are by wind action and temperature. Non-overflowing ponds must, of course, depend entirely upon wind action and convection currents for effective mixing of the contents. That such mixing does occur is evidenced by the uniformity of analytical results on samples collected at various points throughout the ponds during this four season study.

Site Location

To minimize possible odor complaints, stabilization ponds should be located as far as practicable from any present built-up area or any area which will probably be built up within a reasonable future period. A suitable site should be located approximately one-half mile from a community and one-fourth mile from the nearest residence. Under special conditions these distances could possibly be shortened. It is not economical to place the stabilization ponds too great a distance from the commumity because of the cost of the additional outfall sever.

The pond site should be located downwind from habitation and where the pond surface will have an unobstructed wind sweep. (Consideration should be given to the soil characteristics; whether gravity flow from the community can be obtained or if a pumpin station should be installed; and the possibility of polluting the ground water aquifer.) From an economical standpoint the cost of the land must also be considered.

Dikes

The structure of the dikes surrounding a stabilization pond will,

in all probability, determine the life expectancy of the pond. Therefore, it is of the greatest importance that initial construction be of sound engineering practice. From the results of this study and from numerous observations made in South Dakota, the following design criteria seems to be of the greatest importance:

1. Good engineering practice should be observed in providing proper soil compaction in the dike construction. If it is deemed advisable to seal the bottom of the pond to prevent seepage losses and to protect the ground water supply then this should be done.

2. If the dikes are composed of sandy loam they should be riprapped with 2 to 3 inch diameter stones one foot above and 1 foot below the maximum operating level.

3. The inside and outside faces of the dike should be planted with blue grass or some other short-rooted grasses to protect the soil from erosion. If no fencing is provided and there is danger of cattle drinking from the ponds, matrimony vines could be planted as this type of vine is a short-rooted, spreading vine containing prickly thorns that cattle will not eat nor walk through. Care should be taken to see that no deep-rooted plants are planted on the dike as this tends to cause erosion.

4. The inside slope of the dike should be approximately four horisontal to one vertical to reduce erosion by wave action. As the size of the pond increases the inside slope should be flatter as larger bodies of water tend to have larger waves and thereby increasing erosion. The free board distance above the high water level should be at least 3 feet to provide for wave action and frost heave.

5. The width of the dike should be such as to allow free movement

of a vehicle around the pond to facilitate maintenance, such as moving and repairing eroded dikes.

Inlet Structure

The location of the inlet structure to raw sewage stabilization ponds should be a sufficient distance from the shore to insure that wind action will contribute to the dispersion of incoming solids. Nost inlets in the Dekotas are on the bottom of the pond; however, a few of them are at the side and the top of the dikes. (See Table II.) In some instances, the end of the inlet pipe terminates in an elbow dischargin upward. Insofar as can be determined by observations, this holds no particular advantage over the horizontal discharge, as mixing appears to be the same in either case. There has been no trouble encountered with the clogging of these submerged inlet pipes. Neither has there been any evidence of short circuiting of the pond contents, because the flow is primarily controlled by wind directions.

Hultiple inlets could conceivably be considered necessary where large volumes of raw sewage are to be handled by a single pond. Apparently this is not necessarily so, as observations made by the author at Jamestown, North Dakota, heving a pond area of 135 acres and receiving the sewage from 12,000 persons, have shown no evidence of solids concentrating around its single center inlet. In areas less affected by winds, however, multiple inlets might well be desirable.

Outlet Structures

In South Dakots installations range from no outlet to elaborate dual spill-way drawdown structures. Other types include valved drain lines, weirs within an outlet manhole, and pipe overflows set at a permanent level. The weir-manhole structure appears to be very satisfactory especially for areas subject to severe winter temperatures. This device is not subject to clogging by floating objects or ice, and can be designed to maintain flexible drawdown levels.

Method of Operation

The only apparent variable in operation is the flexibility that is offered by multiple cells. With multiple cells there are two possible methods of operation, parallel and series. Parallel operation will result in equal loading of both suspended and dissolved organic matter to each unit. With parallel operation it is possible to divert the entire flow to one pond when first placing the system in service, thereby reducing the lag period commonly experienced in developing a desirable liquid depth to affect weed control. The size of each pond could be reduced with parallel operation thus decreasing the possibilities of wave action and dike erosion.

The operation of the different cells in series will result in practically all of the settleable solids being removed in the first pond, which may overload it to the point that aerobic conditions cannot be maintained. Therefore, the first cell in a series operation would require an area equal to the criteria developed to keep spring recovery to a minimum and aerobic conditions to a maximum.

Design Standards

The South Dakota State Health Department, Division of Sanitary Engineering, has prepared <u>Design Criteria For Sewage Stabilization Ponds</u> which generally sives recommendations for the engineering aspects of the above considerations. In the light of the information gathered during this study, these standards were reviewed point by point at the end of the cooperative project and thereby constitute the latest design criteria of stabilization ponds.

Because this writer is primarily concerned with the development of these standards as affecting the location, design and construction of ponds in South Dakota, these standards are reproduced, in their entirety, in appendix III.

The Missouri Basin Engineering Health Council, which comprises of the States of Minnesota, South Dakota, North Dakota, Nebraska, Wyoming, Montana, Kansas, Iowa, Missouri and Colorado, met in Deadwood, South Dakota on July 28, 1958 to review the design criteria of waste stabilization ponds of these various states and to formulate a set of standards to be used in the basin. It was expected that a proposed draft of the criteria would be completed in 90 days.³⁰

Design standards only provide an engineer with an outline to follow for any design. Local conditions at each proposed pond site requires careful engineering evaluation and consideration to enable the communities to economically construct and utilize a stabilization pond for treating their wastes.

30. South Dakota State Health Department files.

PUBLIC HEALTH CONSIDERATIONS

During the study it was evident that the ponds frequently were and still are attractive for recreational or other uses. It was reported to this author that boys have waded and used a sailboat in the third cell at Maddock, North Dakota; that a transient family parked a trailer near the pond at Lemmon, South Dakota, and swam in it; that water was pumped from the pond at Wall, South Dakota, and was used for road stabilization; and that at Rolla, North Dakota, pond water was used for washing trucks. Because of these unsanctioned uses, the need for humanproof fencing and signs is advisable.

The possibility that ponds may cause bacterial, viral or chemical contamination of ground water by percolating through the soils and into ground water has long been a question.

The mechanism involved in the removal of bacterial contamination for waters vertically percolating through soil is entirely different from that encountered in water flowing in ground water channels. The vertical distance a polluted liquid must travel to be free from bacterial contamination has been shown to be a function of the soils infiltration rate if there is no limiting clay lens near the surface of the soil. Studies conducted at California on the reclamation of sewage have shown that soils with low water infiltration rates, 0.5 to 1 feet per day, when spread with primary sewage produced an effluent that was relatively free from bacterial contamination after passing through 4 to 6 feet of soil. Soil with high water infiltration rates (those about 10 to 31 feet per day) require a distance of from 10 to 15 feet to produce a relatively

free bacteriological effluent.31

Once the pelluted water has mixed with the ground water, the horizontal distance required to remove the organisms is greater than that found for vertical movement. It has been reported in the literature that colliform bacteria have been observed from 10 to 400 feet away from the source of contamination and that the pollution front decreases with time.³²

The rate and extent of travel of chemical pollution in ground waters has been reported to a limited extent. Most observers agree that, in general, chemicals can be expected to travel long distances in both directions. Data that has been obtained shows that chemicals travel from 2 to 30 times as far as bacteria and in some cases pollution has been observed as far as 20 miles from the source of contamination.³³

Rew sewage ponds are attractive to waterfowl during migration and nesting periods. Several broods of mallards, showelers, and blue-winged teal were produced at Maddock during the course of this study, and broods were seen at other installations also. Questions have been raised on the hazards of handling such birds when hunting, the danger of pellet driven contaminated feathers in the flesh and the possibility that the ducks distribute patlogens when moving from one area to another.³⁴

31. Investigation of Travel of Pollution, p 19-21

32. Ibid

33. Ibid

34. R. J. Ellison and R. L. Smith, "Evaluating the Use of Semage Lagoons," Public Works, LUXV, (Farch, 1954), 69.

۰.,

Mosquito breeding on the ponds in the Dakotas have been very minor and insignificant. In August of 1956 the Public Health Service CDC Field Station, Logan, Utah, conducted a special study of the Dakota stabilization ponds to evaluate potential mosquite control problems. They found very few mosquito larvae in the lagoons but recommended that the weeds be controlled so that the mosquito breeding potential can be eliminated.³⁵

35. State Health Department, Division of Sanitary Engineering Files

20.0

-

COSTS

Cost is the major reason for the widespread utilisation of sewage stabilization ponds in South Dakota. Prior to the use of stabiligation ponds as an accepted method of sewage treatment, the cost of providing both sewers and treatment works was beyond the economic reach of most small communities in this area. The advent of stabilisation ponds, however, placed water carried sewerage, including treatment, within the economic range of these communities.

Cost data for 40 of the sunicipal stabilization ponds in South Dakota appear in table number VII. This data includes only the cost of the pond and its appurtenances and does not include outfall lines and lift stations. The data is divided into actual earthwork costs and total pond construction costs. The difference between earthwork and total costs indicates the cost of fencing, seeding, structures and other necessary items other than earthwork. Also included are columns for land acquired and the cost of land acquired, date of completion, cost per capita and cost per acre. The cost per acre is essentially the same as the cost per 100 design population which may give a truer per capita cost.

The sum ary of the data shows that the per capita treatment unit cost, exclusive of land, varies from a low of \$5.28 to a high of \$58.07, and the average cost of the installations listed is \$19.96 per capita. Land costs have not been included in determining unit costs since this cost is extremely variable and largely dependent on local conditions. The tabulation, although not conclusive, is considered to be indicative

of prevailing general construction costs.

Comparison Between Conventional and Pond Treatment

Because stabilization ponds are utilized chiefly by smaller communities who employ one san for maintaining streets, the water system, and the sewer system, it is extremely difficult to obtain any operation and maintenance costs for stabilization pond installations. Therefore, a complete cost analysis is practically impossible. However, a few comparisons can be made that pertain mostly to the first cost of construction.

In recent years, since the advent of the adaptation of stabilization ponds, conventional sewage treatment construction in South Dakota has been on the decline. Table number VIII shows the cost per capita of the conventional treatment units constructed in the smaller communities in South Dakota since 1951. The only relative factor that can be compared on an equal basis is the cost per capita.

The cost per capita shown in table number VII does not include the cost of the land and the various outfall sewer lines. Hen constructing a conventional treatment plant, an outfall sewer line is required as is land. The amount of land required for a pond is much more than that required for a conventional plant. It frequently happens that a municipality buys more land than is actually needed to affect control of the area surrounding a sewage treatment plant, and thereby, in some cases, the amount of land purchased would be the same regardless of the type of sewage unit constructed.

To make a comparison between conventional treatment and a stabilization pond, it is necessary to include the cost of the land with the construction costs for the pond. The average cost per acre of land (from table VII) is \$120.38 and for any stabilization pond extra land is required for dikes to surround the surface area required. Assuming 25 per cent excess for dikes the cost per surface acre of land for a pond would be \$150.48. Therefore, the cost per capita of stabilization ponds based on the design population would be one-hundredth that of the cost per acre including land costs and construction costs. Making this adjustment in the cost per capita a comparison can be made with conventional treatment. The average cost for conventional treatment providing secondary treatment (table VIII) is \$108.11 while the cost per capita for stabilization ponds, which provide secondary treatment, is \$18.30 including land and construction costs. This shows an average decrease of \$89.61 per capita in favor of stabilization ponds and indicates partially why they have reached such great popularity with smaller communities. Imhoff tanks and other primary treatment compares closely with stabilization ponds costwise, but at some future date these primary treatment units may be required to be expanded to provide secondary treatment.

Complete cost comparison between conventional and stabilization pond treatment cannot be made because of the absence of operation and maintenance cost records for stabilization ponds. Excause only seasonal maintenance is required it can be assumed that stabilization pond operation and maintenance costs are relatively low. Conventional treatment, on the other hand, requires daily and at least semi-weekly maintenance.

Where sewage lift stations are required for ponds, the operation and maintenance costs increase. However, because conventional treatment

requires lift stations in some installations, it can be assumed that this cost would be the same in either case. Actually comparing the treatment devices then would be a comparison between a secondary treatment plant and a stabilization pond, exclusive of lift stations.

The first cost is the controlling factor in the building of a sewage treatment unit. A low first or construction cost combined with low operation and maintenance costs is ideal. Stabilization ponds do provide this ideal cost combination and this is the greatest factor in the side adoption of stabilization ponds over the more conventional type of sewage treatment. TABLE VII³⁵ SOUTH DAKOTA STABILIZATION PONDS COST DATA

CITY DATE OF COMPLETION		IAND TREATVENT UNIT COSTS			STS	EARTHMOVING		
	COMPLETION	ACUIRED	TOTAL	PER Capita	PER	CUBIC YARDS	Cost Per Yard	TOTAL COST
			\$	\$	\$		\$	\$
Bereaford	Summer 1955	160 Acres City owned	17,265.00	10.24	1,046.36	95,000	0.14	13 , 3 00 .0 0
Bonesteel	Swamer 1955	11 Acres.	10,235.00	21. 10	1,895.37	30,500	0.20	6,100.00
Boudle	Summer 1957	160 Acres City owned	10,546.50	13.50	1,226.34	35,175	0.18	6,331.50
Burke	Fall 1953	10 Acres \$2,500	7,458.00	8.99	908.54	16,500	0.30	4,950.00
Canton	Spring 1957	City owned	24,582.00	9.72	819.40	70,000	0.17	11,900.00
Castlewood	Winter 1957	25 Acres	18,000.00	36.22	1,125.00		Lump Sum	
Chancellor	Winter 1958	3.69 Acres	11,208.20	58.07	5,604.10	20,000	0.20	4,000.00
Clear Lake	Fall 1953	18.2 Acres	12,571.00	11.37	1,047.58	40,000	0.18	7,200.00
Colton	Summer 1958	12.75 Acres	19,787.00	37.98	3,212.18	23,000	0.21	4,830.00
Ragle Butte	s Summer 1957	20.2 Acres	8,618.00	22.98	1,025.95	Lump St		6,834.00

CITY	DATE OF COMPLETIC	LAND TREATMENT UNIT COSTS				EARTHMOVING		
	JOH LEITU	ACQUIRED COST	TOTAL	PER CAPITA	PER ACRE	CUBIC YARDS	COST	TOTAL COST
			\$	\$	\$		YARD \$	\$
dgemont	Winter 1957	40 Acres	10,890.00	9.46	533.82	40,500	0.20	8,100.00
Elk Point	Under Construction	58 Acres	22,368.00	16 .37	1,443.10	60,000	0.20	12,000.00
Freeman	Summer 1956	10 Acres \$4,000	8,425.00	8.96	842.50	25,000	0.137	3,425.00
Gettysburg	Fall 1955	40 Acres	20,131.00	12.95	1,006.50	82,000	0.18	14,760.00
nayti	Fall 1953	11 Acres	15,670.00	37.94	3,134.00	25,350	0.34	8 ,619.00
Howard	Summer 1958	35.7 Acres \$4,550.00	15,200.00	12.20	1,013.33	59,000	•.20	11,800.00
Isabel	Summer 1955	5 Acres City owned	7,000.00	13.70	2,592.59	8,000	0.22	1,760.00
Kadoka	Fall 1953	14 Acres City owned	11,500.00	19.69	1,402.44	10,000	0.28	2,846.00
Langford	Fall 1956	9.16 Acres	3,869.00	8.48	730.00	22,000	с . 17	3,080.00

S

CITY	DATE OF COMPLETION	LAND	AND TREATMENT UNIT COSTS				FARTHHOVING		
	COM LIGITOR	ACU IRED COST	TOTAL	Per Capita	PER ACRE	CUEIC YARDS	Cost Per Yard	TOTAL COST	
			\$	\$	\$		\$	\$	
Letteron	Summer 1951	35 Acres	31,000.00	11.23	1,143.91	45 , 572	0•10	19,028.00	
%ission	Fall 1957	20 ACT 05	11,081.00	28.56	2 ,702.6 8	Lump Sum		6,500.00	
iturdo	Fall 1955	143 Acres	12,000.00	16.24	1,290.32	57,700	0.19	10,963.00	
ken Effington	Spring 1954	2 Acres	6,524.00	17.78	1,763.24	14,384	0.38	5,165.00	
Unida ».	Spring 1958	City cwned	18,368.00	22.51	1,597.22	Lump Sum		13,500.00	
Crient	Spring 1958		7,876.00	38.42	3,938.00	29,000	C.172	5,000.00	
Parkston	Summer 1957	36 <u>Acres</u> 5,500	20,829.65	21.29	1,559.98	150,000	0.16	24,000.00	
řhilip	Fall 1953	6 Acres	4,276.00	5.28	750.18	6,890	0.35	2,412.00	
Follock	Summer 1955	9-5 Acres	12,713.50	31.78	2,763.80	24,500	0.23	5,635.00	
Redfield	Fall 1955	87 Acres	26,96 C.00	10.15	892.72	105,000	0 .19	19,950.00	

ង

CITY DATE OF COMPLETION		LAND	LAND TREATMENT UNIT COSTS				EARTHMOVING		
	AALT POLLON	ACCUIRED	TOTAL	PER CAPITA	PER ACRE	CUBIC YARDS	COST PER YARD	TO DAL COST	
			\$	8	\$		\$	\$	
Selby	Summer 1956	27 Acres \$1,875	11,514.00	16.45	1,151.40	36,700	0.17	6,239.00	
Sisseton	Summer 1955	12,375	29,764.50	10.37	1,102.39	122,900	0.13	20 ,36 0 .00	
Springfi	eld Fall 1957	26.5 Acres	20,500.00	25.63	1,090.43	Lump Sum			
Tabor	Spring 1956	6.8 Acres	2,560.00	6.86	522.45	12,000	0.20	2,400.00	
Valley Springs	Fall 1955	15.9 Acres \$3,270	9,750.00	25.06	1,681.03	45,000	0.1?	7,650.00	
Veblen	Summer 1954	12 Acres	5,856.00	12.34	2,342.40	12,600	0.31	3,906.00	
Wagner	Under Construction	40 Acres	21,117.00	13.91	1,005.57	65,400	C.145	9,483.00	
Wall	Fall 1951	25 Acres City owned	15,000.00	26.98	1,685.39	6,975	0.35	2,611.00	
Whitewood	d Under Construction	7.8 Acres	6,607.50	21.74	1,573.21	23,000	0.20	4,687.50	

CITY	DATE OF COMPLETION	LAND	TREATHENT	UNIT CO	STS		EARTHMOVI	NG
		ACQUIRED	TOTAL	PER CAPITA	PER ACRE	CUEIC YARDS	Cost Per Yard	TOTAL COST
			\$	\$	\$		\$	\$
Wilmot	Under Construction	23.7 Acres	14,577.85	25.00	1,943.71	38,500	0.23	8,855.00

2

NOTE: Per Capita cost is based on 1950 population.

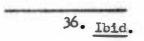
 Per Capita Cost:
 Range; \$58.07 to \$5.28
 Average; \$19.96

 Per Acre Cost:
 Range; \$5,604.10 to \$522.45
 Average; \$1,679.98

35. Ibid.

1.1

۰.


TABLE VIII

CONVENTIONAL SENAGE WORKS COSTS IN SOUTH DAKOTA 36

CITT	POPULATION 1950 CENSUS	TYPE OF TREATMENT UNITS	TREATMENT UNIT PER CAPITA COSTS \$	DATE OF COMPLETION
Dupree	438	Imhoff tank, filtration, final tank and lift station	91.32	October 1952
Hill City	361	Primary and final tank, sludge digestion and filter	110.80	Summer 1954
Lake andes	1,851	Imhoff tank	5.40	May 1954
Pukwana	302	Inhoff tank, filtration	136.89	7all 1951
8 2	2	and final settling tank.		
Roscoe	726	Imhoff tank	18.53	Winter 1952
Volga	578	Inhoff tank, filtration, final settling.	93.43	Summer 1953

RARKS :

The average per capita cost for the treatment unit providing secondary treatment is \$100.11. The average per capita cost for the primary treatment is \$11.97.

SUMMARY AND CONCLUSIONS

This thesis gives an account of the author's participation and investigation of a cooperative field study of sewage stabilization ponds during the winter, spring, summer and autumn of 1955. Physical, chemical and biological features and phenomena were observed and correlated with structural design.

The mechanism of the process of stabilization in an open body of water involves a complex biological-chemical relationship between algae and bacteria. Algal activity is almost negligible under snow covered ice; stabilization that is accomplished during the winter months is primarily a result of physical forces and anerobic bacterial activity. Treatment obtained during both open water and ice-cover is very good. Reduction in B.O.D. concentration ranged from 74 to 98 per cent during the open water seasons and from 70 to 96 per cent under ice cover.

Factors which affect the extent of treatment of raw sewage in a stabilization pond include the strength and type of sewage, loading per unit of surface area, sunlight, temperature, wind, depth, inlet and outlet structure and their location, and soil characteristics.

Site selection for locating a stabilization pond must be based on economics (land cost and if a lift station is required due to the relative elevation of the pond), soil characteristics, and wind direction with respect to the community and the outlying residences.

Public health considerations must be fully recognized. The possible contamination of humans, wildfowl, animals and insects and the contamination of ground water by seepage must be considered as potential hazards. Future

studies regarding the public health aspects need to be made to fully evaluate the significance of stabilization ponds.

Stabilization ponds in this area have been developed as a method of sewage treatment principally because of the high cost of constructing and maintaining more conventional types of sewage treatment. The cost of primary treatment such as an Imhoff tank is comparable on a per capita basis. It must be remembered that ponds provide secondary treatment and someday additional facilities may be required to be added to the primary treatment to improve the efficiency of the treatment.

Because of the present great interest shown in stabilization ponds, the 10 States of the Missouri Basin are formulating criteria standards for the location, design, and construction of ponds throughout the Midwest. Undoubtedly, because of lower land costs, sewage treatment ponds will become very commonplace in the western United States during the next few years.

At the present time there are different stabilization pond research projects in progress. The field of investigation is large, because of the lack of specific knowledge as to the maximum allowable loading, pre-treatment of sewage, soil treatment for sealing and erosion control, and practically the whole field of public health significance. It is hoped that some of these questions will be answered in the near future.

Further conclusions drawn from this study are shown, as standards, in Appendix III. These standards were formulated at the end of the period of investigation and are the design oritoria developed from this extended engineering evaluation of stabilization ponds.

1.0

LITERATURE CITED

The Holy Bible, Revised Standard Edition, New York, Thomas Nelson and Sons, 1952.

- Birge, E. A., and Juday, C., "Solar Hadiation in Inland Lakes," Transactions Wisconsin Academy of Science, XXIV, (1929), 20-33.
- Caldwell, D. H., "Sewage Oxidation Ponds -- Performance, Operation and Design," Sewage Works Journal, XVIII, No. 3., (May, 1946), 443-449.
- California State Water Pollution Control Board, Report on the Investigation of Travel of Pollution, Fublication No. 11, 1954.
- Clarke, G. L., "The Utilization of Solar Energy by Aquatic Organisms," in Problems of Lake Biology, American Association for the Advancement of Science, No. 10, The Science Press, 1939.
- Ellison, R. J., and Smith, R. L., "Evaluating the Use of Sewage Lagoons," Public Works, LXXXV, (March, 1954), 89-90.
- French, D. E., "Municipal Sewage Lagoons in the Midwest," Water and Sewage Works, CII, No. 13, (December, 1955), 537-540.
- Gillespie, C. G., "Simple Application of Fundamental Frinciples of Sewage Treatment," Sewage Works Journal, I, No. I, (October, 1928), 68-70.

"The Sewage Situation in California," Sewage Works Journal, I, No. 4, (July, 1929), 460-475.

- Imhoff, Karl, "Impounding Reservoirs as a Substitute for Biological Sewage Treatment works in the Ruhr District," <u>Sewage Works Journal</u>, III, No. 1, (January, 1931), 120-124.
- "The fuhrverband, " Seware Works Journal, III, No. 3, (May, 1931), 517-518.
- Minnesota Department of Health, Remort on Investigation of Operation of Raw Sewage Stabilization Ponds at Albany, Minnesota, June 16, 1955 to June 26, 1956, mimeographed.
- Oswald, W. J., Gotaas, H. B., Ludwig, H. F. and Lynch, V., "Photosynthetic Cxygenation," <u>Seware and Industrial wastes</u> XXV, No. 6, (1953), 692-705.
- Schroepfer, G. J., and others, "The radison lakes Problem," Part II, Report for Oscar Nayer and Company, (September 15, 1955).

South Dakota Department of Health, Division of Sanitary Engineering, Their files pertaining to stabilization ponds in South Dakota.

Suggested Minimum Standards for Sewage Stabilization Ponds, November, 1955, mineographed.

- Steel, E. W., <u>water Supply and Severage</u>, Third Edition, New York, The McGraw-Hill Book Company, 1953.
- Van Heuvelen, W., and Svore, J.H., "Sewage Lagoons in North Takota," <u>Sewage and Industrial Wastes Journal</u>, XXVI, No. 6, (June, 1954), 771-776.
- Winslow, C. E. A., and Phelps, Earle B., "Water-Supply and Irrigation Pager Number 185," in <u>House Documents</u>, LXIII, Government Printing Office, Washington, D. C., 1907.

ж.,

1.1

APPENDIX I

SUMMARY OF PERTINENT INFORMATION

KADOKA, SOUTH DAKOTA

Sewage and Sewerage

Population Served:	584 (1950 Census)			
Sewer System:	Separate - gravity.			
Pretreats:ent:	None			
Industrial Wastes:	Abattoir slaughters average 300 beef and 50 hogs per year; about 50% during October, November and December.			
Sewage: Flow: Strength: Loading:	21,100 GPD 380 ppm B.O.D. 68.7 pounds B.O.D. per day, or 22.9 pounds per acre per day.			

4

Pond

Date Completed:	Fall, 1953
Design Engineer:	Fred Brady, Spearfish, South Dakota
Description:	Single cell, irregular shape (ox-bow) and depth. Area: 3.0 acres; Ave. Depth: 4.45 ft.; Volume: 18.1 acre-feet.
Inlet Structure:	Location: at end of peninsula (see sketch); Discharge: horizontal, 1-1/2 feet below operating level.
Outlet Structure:	Location: My Corner. Depth: Surface.
Dikes:	Top width: 14 feet. Slope: inside: 1:1; outside: 1:1-1/2 to 1:3 to 1:3
	Diversion ditch prevents entry of surface run- off into pond.
Environs:	Nearest residence: 1400 feet North. Community: 1500 feet South

	Fenced: yes, but not adequa Posted: no eigns.	te to keep out	cattle.			
C0515:	Land (20 acres at \$50.00) Excavation (2250 cy. yd. at Fence (100 rods at \$3.00)	; ≩0.6 0)	\$1000.00 1350.00 <u>300.00</u> \$2650.00			
	Sewer Cost		\$3532.00			
		Engineer Misc. Total	890.00 142.00 \$7214.00			
		(\$12.35 per c	epita)			
Soil Condi						
	Type: Clay Mechanical Soil Analyses*:	Sand: 25.7% Silt: 41.5% Clay: 32.8%				
	Bottom was not "sealed"					
Effluent:	Erratic flow due to wind an outlet pipe. Ave. flow obj 13,600 GRG (Spring: 4800 GF 19,100 GPD)	erved during 1	955 studies:			
Wildfowl:	Frequented by shore birds a	ind ducks.				
Odors:	Yes, during spring, surmer	and fall.				
Operation a	Operation and sei tenance: None to date. (However, this installation was abandoned in the Spring of 1956, when the raw sewage was diverted to a new pond.)					
Weather (1	Evaporation Precipitation Temperature	Total 71.4" Total 16.3" Ave. 48.2°F: M Min15°F.	ax. 106°F;			

* Soils Laboratory, Bureau of Reclamation, Bismarck, North Dakota

1.00

Prevailing winds from NW.

Elevation: 2467 feet above sea level.

Municipal Water Supply.

Sources Well, 2670 feet deep. Constructed in 1951. Population Served: 580 Daily Consumption: 18,700 Gal. (Ave. for 1954 metered flow). Treatment: Chlorination. Chemical analysis:* (pom) Total Dissolved Solids 1841 Total Alkalinity (as CaCO3) 150 Total Hardness (as CaCO3) 222 Iron (Fe) 0.0 Ηg 7.65 Calcium (Ca) 66.5 Magnesium (Mg) 13.5 Sodium (Na) 511 Fluoride (F) Chloride (Cl) 1.4 72 Sulfate (SOL) Bicarbonate (BCO3) 1038 183 Nitrates (NO3) 2.0 Carbonates (CO3) Manganese (Mn) 0.0 Aunicipal Personnel (1955) Mayori Dr. N. J. Sundet Auditor Wesley Herrman Water and Sewage Works: Roy Bedeen Treasurer: Mr. Colburn Other persons contacted: Mr. Nielsen, meat packer.

* Analysis made by South Dakota Health Department - January 28, 1954

8

die

SUMMARY OF PERTINENT INFORMATION

WALL, SOUTH DAKOTA

Sewage and Sewerage

Population Served:		556 (1950 Census)		
Sewer System:		Separate - gravity		
Pretreatment:		None		
Industrial Wastes:		None		
Sowage:	Flow: Strength: Loading:	24,900 OPD 315 ppm B.O.D. 62.2 pounds BOD per day, or 7.0 pounds per acre per day.		

Surface run-off does not reach pond.

Pond

Date Completed:	Fall, 1951			
P				
Design Engineer:	Staven, Rapid City, South Dakota			
Description:	One cell used, although three are available. Shallow, irregular 5-sided polygon. Area: 8.87 acres: Ave. depth: 14 inches; Volume: 10.7 acre-feet.			
Inlet Structure:	Side discharge from east section of north dike.			
Outlet Structure:	Shallow ditch connected to next cell. (SE) (Very little flow, depending on wind direction.)			
Dikes:	Ave. top width: 4 ft.; Ave. height: 6 ft. Slope: inside: 4:1; outside: 2:1.			
Environs:	Nearest residence: 1000 ft. west. Community: 2000 ft. WSW.			
	Area is fenced but not posted.			

 $(C_{1,1}^{(n)})$

Land (City owned 25 acres) Costs: Excavation (3700 cu. yds.) 2400.00 12600.00 Other costs (sewer system, fence, outfall, etc.) Total cost 15 00.00 (126.98 per capita) Soll Conditions: Type: "Gumbo" Mechanical Soil Analyses*: Sand: 6.3 511t: 68.7% Clay: 25.0 Effluent: None wildfowl: Shorebirds and ducks. None noticed during survey Odors: Operation and Maintenance: None to date. We ther (1955)** Total 71.4" Evaporation Total 13.9" Precipitation Ave. 47.30F; Max. 10807: Temperature Mn. - 170F Nov. 15 - April 1 Ice Cover: (1-1/2 onths) elevation: 1934 feet above se level.

* Soils Laboratory, Bureau of Reclamation, Bismarck, North Dakota

-1-5-

Municipal Water Supply

Source:	Surface, stock dam construction, 1-1/2 miles NW of town.
Population Served:	560
Daily Consumption:	26,000 Gal. (Ave. of 1954 98% metered)
Treatment:	Coagelation FiltrationChlorination.
Chemical Analysis* (PPM)	
Total Dissolved Solid Total Alkalinity (as Total Hardness (as Ca Iron (Fe) pH Calcium (Ca) Magnesium (Mg) Sodium (Na) Fluoride (F) Chloride (Cl) Sulfate (SO ₁) Bicarbonate (HCO ₃) Nitrates (NO ₃) Carbonates (CO ₃) Manganese (Mn)	CaCO ₂) 154
Municipal Personnel (1955)	
l'ayor:	C. S. Soma
Auditor:	Deane Joyce
Water and Sewage Work	ka: Harold Welsh

* Analysis performed by South Dakota State Department of Health, Nov. 16, 1953.

-10 33

dis

•

SUMMARY OF PERTINENT INFORMATION

LEMMON, SOUTH DAKOTA

Sewage and Sewerage

Population Served:	2760 (1950 Census)				
Sewer System:	Combined - gravity.				
Pretreatment:	None				
Industrial Wastes:	Two abattoirs Ave. no. animals processed annually: 400 beef, 350 hogs, and 200 deer.				
Sewage: Flow: Strength: Loading:	125,500 GPD 186 ppm B.O.D. 186 pounds B.O.D. per day, or 6.8 pounds per acre per day.				
57 E	Combined sewers conduct about 50% of City rain run-off.				
Pond	13				
Date Completed:	Summer, 1951				
Design Engineer:	Staven, Rapid City, South Dakota				
Description:	Single cell, irregular shape and depth. Area: 27.1 acres; Ave. depth: 5.7 feet; Volume: 154 acre-feet.				
Inlet Structure:	Submerged, 1000 feet West of outlet. Depth 3 feet.				
Outlet Structure:	Surface discharge, SE corner.				
Dikes:	Nearest residence: 1/2 mile WSW Community: 1 mile SW.				
	Area is fonced but not posted.				
Coata:	Land (1/L section) \$2000.00 Excavation (47,572 cu. yds @ 0.40) 19029.00 21029.00				
	Other costs (Fees, sewers, etc.,) 12754.00				
	Total: 33,783.00 (\$12.20 per capita)				

Soil Conditions: Silty Clay Type: Sand: 34.5% Mechanical Soil Analysis:* Silt: 38.5% Clay: 27.0% Effluent: Discharges to branch of Cedar Creek. (Ave. summer flow: 14,590 GPD) Wildfowl: Many ducks and shorebirds. Occasionally noticed along feathered shore Odors: of SW cove. Operation and Maintenance: Trash and rocks are dumped along inner dikes to act as rip rap. Weather (1955)** Total 58.8" Evaporation: Total 17.3" Precipitation: Temperature: Ave. 41.5°F; Max. 101°F; Man. -21°F. Nov. 1 - April. 1 (five months) Ice cover: 2518 feet above sea level. Elevation:

> * Soils Laboratory, Bureau of Reclamation, Bismarck, North Dakota

** Shadehill weather Station, Shadehill, South Dakota

69

Municipal Water Supply

Source:	5 wells, 185-915 feet deep.		
Population Served:	2760; no meters.		
Daily Consumption:	500,000 GAL. (Estimate based on pump rates.)		
Treatment:	None		
Chemical Analysis* (ppm)	(average of five wells)		
Total Dissolved Solids Total Hardness (as CaCo Iron (Fe) pH Calcium (Ca) Magnesium (Mg) Sodium (Na) Fluoride (F) Chloride (Cl) Sulfate (SO ₁) Bicarbonate (HCO ₃) Nitrate (NO ₃) Carbonate (CO ₃) Manganese (Mn)	$ \begin{array}{c} 1498\\ 0_{3}) \\ 180\\ 0.5\\ 8.3\\ 8.4\\ 2.5\\ 560\\ 2.8\\ 91\\ 352\\ 903\\ 0.2\\ \hline \end{array} $		
Municipal Personnel (1955)			
hayor:	J. C. Jacobsen		
Auditor:	E. C. Custafson		
Water and Sewage Works	Al Robinson "Bud" Dosland		
Treasurer:	Mr. Cornish		
Other persons contacte	d: Mrs. Steward, local weather observer, Mr. Nick Biersbach, meat packer. Mr. George Wenzel, meat packer.		

*Analysis by South Dakota State Department of Health.

.

die.

SUMMARY OF PERTINENT INFORMATION

MADDOCK, NORTH DAKOTA

Sewer and Sewerage

	Populati	on Served:	741 (1950 Census)		
	Sewer Sy	stem:	Separate lift station.		
	Pretreat	ment:	None		
	Indu stri	al Wastes:	Dairy (LOC Gal. per day) Meat packer (300 beef, 100 hogs, annually)		
			267 ppm B.O.D.		
Fon	d				
	Date Completed:		Fall, 1949		
	Design L	ngineer:	Lium and Burdick,		
Description:		ion:	Three rectangular cells in series First: Area, 11.7 acres; Ave. depth, 4.0'; Volume, 46.8 acre-feet. Second: Area, 12.3 Acres; Ave. Depth, 2.8' Volume, 34.4 Acre-feet. Third: Area, 8.0 Acres; Ave. depth, 4.4' Volume, 35.2 Acre-feet.		
			Total: Area, 32.0 Acres, Volume, 116.4 acre-feet		
	Inlet Structure: Outlet Structure:		Submerged (3' depth) in center of first cell		
			None (no effluent)		
Dikes:			Top width: 10 Slope: inside: 1:4; outside 1:2		
Environs :			Nearest house: 3000 feet East. Community: 1 mile E.		

 $-\delta r_{\rm c}$

10.00

Land (65 acres @ \$100.00) Costs: \$6500.00 Excavation: 5000.00 First cell 600.00 Second Cell Third cell 00.00 \$16500.00 (#22.30 per capita) Lift Station \$9500.00 Force Main (3000' @ \$2.95) 8850.00 18350.00 Total Cost \$34850.00 (\$46.90 per capita) Soil Conditions: Type; Clay-Silt Mechanical Soil Analysis* 22.8% Sand: Silt: 56.3% 20.9% Clay: Was not necessary to seal bottom. Wildfowl: Many ducks From first pond during winter-spring transition. Odors:

Operation and Maintenance: Cutting weeds on dikes.

Weather (1955)**

Evaporation: Total 32.9" Precipitation: Total 17.1" Temperature: Ave. 38.5°F; Max. 100°F; Min. -32°F.

Elevation: 1604 feet above sea level.

* Soils Laboratory, Bureau of Reclamation, Bismarck, North Dakota ** Devils Lake Weather Station, Devils Lake, North Dakota

72

Municipal Water Supply

2 wells, 60 - 64 feet deep. Source: Daily Population served: 740 (1950 census) 43,000 Gallons (Ave. of 1954) Daily consumption: None Treatment: Chemical Analysis* (ppm) 915 Total Dissolved Solids 336 Total Alkalinity (as CaCO3) 260 Total Hardness (as CaCO3) Iron (Fe) 1.4 7.6 pH Caloium (Ca) 61.6 26 Magnesium (Mg) 158 Sodium (Na) Fluoride (F) Trace Chloride (C1) 10 Sulfate (SOL) 24 Bicarbonate (HCO3) 710 2.1 Nitrates (NO3) Carbonates (CO3) hanganese (Mn) Municipal Personnel (1955) P. W. Utgard Mayors A. P. Lyane Auditors Fireman Leigrid Water and Sewage Works: Elmer Larsen Former Water and Sewage Works: Mr. Jacobsen, Mgr., of Cther persons contacted: Co-op Dairy, Mr. Schuld, local meat packer, Mr. George Sheets, R. R. Section Foreman - furnished ice for sample perservation.

*Analysis by North Dakota State Health Department

SUMMARY OF PERTINENT INFORMATION

WISHEK, NORTH DAKOTA

Sewage and Sewerage

Population Served:	1241 (1950 census)		
Sewer System:	Saparate gravity		
Pretreatment:	None		
Industrial Wastes:	None		
Sewage: Flow: Strength: Londing:	57,200 GPD 207 ppm B.O.B. 102 pounds B.O.D. per day, or 13.0 pounds per acre per day		

Pond

Date Completed:	October 20, 1952			
Lesign angineer:	Paul Barnes, Valley City, North De	kota		
Description:	Single cell, approximately square shape. Area: 7.8 acres; Depth: (ave) 3.0'; Volume: 22.4 acre-feet			
Inlet Structure:	50' from East dike, Horizontal, 8" off bottom.			
Outlet Structure:	In west dike, 1 foot off bottom. Valve is opened twice a year, "When high level of liquid in pond backs up sewers."			
Dikes:	Top width: 14 fest. Slope: inside: 1:4; outside: 1:3.			
Lnvirons:	Nearest residence: 300 yards east. Community: 500 yards east.			
Coata:	Land (City owned)			
	Total cost öf pond	5100.00		
	(\$4.50 per capita)			
-9 c.				

Soil Conditions:

Type: Silty-clay	
Mechanical Soil Analyses:*	Sand: 16.1%
	Silt: 59.6%
	Clay: 24.3%

Wildfowl: Ducks

Odors: Not noticeable during survey.

Operation and Maintenance: Some rip rapping

Weather (1955)**

Evaporation	Total 43.2"
Precipitation	Total 18.3"
Temperature	Ave. 40.40F; Max. 100°F; Man. 32°F.

Elevation: 2010 feet above sea level.

Municipal Water Supply

Source:	Dug well, 12' diameter, 33' deep.
Population Served:	Approximately 1200.
Daily Consumption:	85,000 Gal. (Ave. of year 1952)
Treatment:	None

Chemical Analyses: *** (ppm)

T	otal Dissolved Solids			509
Т	otal Alkalinity (as CaCO3)			260
	otal Hardness (as CaCO3)			340
	ron (Fe)			3.1
p	H			6.0
Ċ	alcium (Ca)			101
	agnesium (Mg)			21
	odium (Na)			
	luoride (F)			
	hloride (C1)			14
S	ulfate (SOL)			52
Б	icarbonate (ECO3)		<i>w</i> .	317
	itrates (NO3)			
C	arbonates (CO3)			
	anganese (Mn)			
	Ψ	- 6		

*Soils Laboratory, Bureau of Reclamation, Bismarck, North Dakota **Weather Bureau, Bismarok, North Dakota ***North Daketa State Health Department.

Municipal Personnel

ayor:

Water and Sewage Works:

Elmo Nickisch Carl Fissinger

14

APPENDIX II

SEASONAL SUMMARIES OF

LABORATORY ANALYSES

The data in this appendix comprises the summarise for each season and for each sampling station and depth. Because stabilization pond performance was evaluated on the seasonal summaries, they are included in this thesis rather than each and every result from the three day sampling period during the four seasons.

The complete data, including daily observations for this cooperative study, can be found in <u>Sewage Stabilization Ponds in the</u> <u>Dakotas</u>, Volume II published by the Public Health Service, U. S. Department of Health, Education, and Welfare, Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio.

LABORATORY ANALYSIS Seasonal Summery 1955

	and the second	The second second			La montanta				K	ADOKA, SOUT	th dakota			A State of the		100 million (1997)				
STATION	SEASON	DAYS SAMPLED	TEMP.	DISSOLV	ED OXYGEN	B.C.D.	pH	ALKALI	NITY	CHLORIDE	SULFIDE	MMONIA	NITRITE	NITRATE	NITROGEN	Sec. Com	PHATE	TURBIDITY	a service and	COLIFORM
		/Depth	°C	ppm	%sat.			P ppm	Total	and the second sec	ppm	ppm ppm	ppm	ppm	ppm	Total ppm	Ortho ppm	ppm	Suspended	MPN/100 ml. (x 1000)
	finter	3		7.5		560	8.9	17.1	608	126	4.9	76	0.054	0.20	134	105	27	970	1030	23,700
	Spring	1				422	7.6	0	524	196	0.4	130	0.000	0.00	87.4	97	0	552	300	43,000
Baw	Summer	3	100	0.0	0	463	7.0	0	466	99	25.0	41.8	0.008				38	533	383	101,000
	Fall	ĩ		0.0	0	256	7.5	0	560	136	0.0		-				-	-	320	46,090
																			11112	Max. Mis.
	Winter	3/2.5*		0.0	0	62	8.4	17.3	791	215	35.3	29.0	0.000	^.22	39.7	53	29	240	56	2400 - 110
	Spring	3/0.5*	14	0.6	0	40	8.0	0	683	170	1.2	18.5	0.000	0.02	22.7	55	2.0	2 15	48	750 - 240
1-0	Summer	3/0.5'	27	0.0	0	33	9.0	122	646	158	20.0	1.6	0,008				5.0	2 15	140	430 - 113
	Fall	1/0.5	3	0.0	0	31	9.4	65	925	182	1.5	3.2				1.0			132	930
	Winter	3/5.0'	-	0.0	0	70	8.4	19.0	808	218	44.2	30.6	0,000	0.16	40,1	55	28	253	84	1100 - 110
	Spring	3/3.0'	14	0.0	õ	41	7.9	0.0	678	152		21.7	0.000		31.5	52	3.5	210	85	460 - 230
1-L	Suemer	3/3.0	26	0.0	0	34	8.8	87	625	157	0.3	2.1	0.004				7.0	203	151	110 - 43
	Fall	1/3.0*	3	0.0	0	23	8.4	65	930	185	1.5	3.5					BC 10		156	\$3 0
	Winter	3/2.5'		0.0	0	38	8.4	24.4	788	219	36.6	26.3	0.000	0.19	31.9	50	28	200	66	930 - 110
	Spring	3/0.5	14	0.1	0	41	7.9	0	679	158	0.2	18.5		0.02	26.3	55	2.5		71	230 - 43
2-U	Summer	3/0.5*	27	0.0	0	34	8.9	136	620	165	0.06	2.1					9.0	189	151	460 - 46
	Fall	1/0.5	3	0.0	0	26	8.5	6 5	930	182	1.0**	3.5	•						120	930
	Winter	3/5.0		0.0	0	45	8.5	26.0	787	219	36.6	25.6	0.000	0.12	33.1	49	27	213	59	1100 - 430
	Spring	3/5.0'	14	0.0	ŏ	39	8.0	0	680	161	0.9	20.0			24.8	55	3.0		90	240 - 230
2-L	Summer	3/5.0	24	0.0	c	120	7.6	0	918	140	100	8.3					19.0	243	85	460 - 4
	Fall	1/5.0'	3	0.0	0	50	8.5	70	935	176	1.5	3.7							152	390
	Winter	3/3.0'		0.0	0	30	8.5	33.6	791	217	36.0	21.8	0.000	0.16	28.5	41	28	200	61	15 - 3.
	Spring	3/0.5'	13	0.0	0	39	8.0	0	681	161	1.4	20.7	0.000	-	26.9	56	1.5		64	240 - 230 240 - 46
3-11	Summer	3/0.5*	24	0.0	õ	23	3.8	129	635	161	0.2	2.4	0.002				7.0	195	129	930
	Fall	1/0.5	3	0.0	Ő	30	8.4	65	950	179	1.5	3.6						1.000	140	320
	Winter	3/7.0'	2.0	0.0	0	36	8.4	30.7	800	217	42.8	21.8	0.000	0.13	28.8	41	28	197	69 77	240 - 2 460 - 430
0.7	Spring	3/5.0'	14	0.0	0	33	7.9	0	680	155	24.2	21.3	0.000		25.1	50	3.5		77	240 - 9
3-L	Summer	3/5.0'	25	0.0	0	33	7.6	0	784	150	128	8.1					20	219	84 130	430
	Fall	1/5.0'	3	0.0	õ	32	8.4	70	945	176	1.4	3.2					52		130	100
	TANA	1.0					8.4	27.1	776	219	22.1	21.2	0.000	0.13	38.3	44	26	220	124	24 - 1
	Tinter	3	12	0.0	0	22	8.2	0	687	149	0.8	10.8			34.2	58	4.0		107	230 - 120
Sffluent	Spring	3	13	4.5	46	51	8.8	104	561	161	16.0	2.4			Sec.		8.0	146	119	240 - 43
	Summer	1	26	0.0	0	60	8.1	0	932	182	0.0						11 10 10 10	*	108	430
	Fall	-		0.0	0	35	0.1		AND MARKED	105	0.0	1	and the second se			State of the second				

10

REMARKS:

Location

No. 1 -- 10° feet North of inlet No. 2 -- Center of pond at bend; 325 feet from imlet No. 3 -- Center of pond, 10° feet from outlet, 500 feet from inlet

Effluent -- At outlet structure; 650 fest from inlet

LABORATORY ANALYSES Seasonal Summery 1955

WALL, SOUTH DAKOTA

STATION	SEASON	DAYS SAMPLED	TEMP.	DISSOLVI	ED CXYGEN	B.O.D.	pH	ALRAL	INITY	CHLORIDE	SULFIDE	AMMONIA	NITRITE	NITRATE	NITROGEN	PHOSP	HATE	TURBIDITY	SOLIDS	COLIFORM
			°C	ppm	1 Sat.	ррм		P ppm	Total ppm	ppm	ppm	ppm	ppm	ppm	ppm	Total ppm	Ortho ppm	ppm	ppm	MPN/100 ml (x 1000)
	Winter	3	7	1.9	17	298	7.7	c	605	97	0.9	84.0	0.002	0.12	115	63	28	367	287	13,420
Raw	Spring	3				419	7.5	0	485	79	0.0	14.0	17.000		61.8	65	5.0	408	298	3,170
	Summer	3	15	0.0	0	256	7.0	0	413	75	0.2	45.1	0.005				23	383	287	63,240
	Fall	1	•		-	273	8.5	15	465	88	0.5	13.0					-		200	46,000
	100 0																	1		Max. Min.
	Winter	3	0.3	0.0	0	178	7.6	0	1210	352	80	54.0	0.000	0.12	75.8	66	41	280	43	1500 - 430
#1	Spring	3	12	11.1	111	53	10.5	177	737	161	0.0	10.5	0.000	0.12	46.9	44	6.5	1270	807	15 - 4.
	Summer	3	20	0.0	0	36	9.3	142	538	163	0.6	0.9	0.002				4.0	312	210	460 - 43
	Fall		0.5	2.8	21	44	9.5	110	495	143	0.0	0.0							680	240
	Winter	3	0.4	0.0	0	143	7.9	0	1390	442	52	39.0	0.000	0.19	62.9	72	55	250	66	2100 - 230
	Spring	3	14	10.7	111	60	10.5	179	527	161	0	10.5	0.000	-	75.0	53	5.0	2040	775	7.5 - 2.
#2	Summer	3	20	0.2	0	27	9.4	145	543	162	0	0.9	0.002				3.0	335	238	150 - 15
-	Fall	1	0	2.2	17	43	9.5	110	490	143	100		- 18 - L						860	240
	Winter	3	0.3	0.0	0	176	7.4	0	687	138	11	87.0	0.000	0.10	106	ol	49	350	159	24000 - 1100
#3	Spring	3	14	11.0	111	51	10.5	173	558	161	0	10.5	0.000	141	49.6	54	7.0	1360	830	9.3 - 9.
<i>"</i> •	Summer	3	20	1.2	0	29	9.4	158	595	163	0	2 0.9	0.003			1.00	4.0	331	270	240 - 93
	Fell	1	0	4.4	33	40	9.5	115	500	143	0	* 0.0	3 9 -				196		(#)	and the second
	Winter	3	0.2	0.0	0	201	7.3	0	64 1	204	35	77.0	0.000	0.15	101	79	58	340	149	4600 - 1100
#4	Spring	3	14	7.7	80	54	10.5	169	471	173	0.4	18.2	0.000	0.10	47.0	49	5.5	1570	820	240 - 43
1 a	Summer	3	20	0.9	0	28	9.4	152	557	165	0	1.1	0.003				4.0	302	240	460 - 43
	Fall	1	0	2.5	18	41	9.6	100	485	143	0	0.0					-		800	240
	Winter	3	0	0.0	0	201	7.5	0	1660	417	89	64.0	0.000	0.11	90.0	98	68	407	59	750 - 210
4s	Spring	3	15	10.3	110	50	10.4	177	476	162	0	2.6	0.000	12	45.4	52	4.0	1310	730	46 - 9.
#5	Summer	3	20	0.5	0	29	9.4	152	551	163	0	1.1	0.004				5.0	331	260	430 - 43
	Fall	1	0	5.1	38	39	9.6	100	485	143	0	0.0					1.00		100	460
	Winter	3	0	0.0	0	111	7.8	0	1400	458	58	37.0	0.000	0.16	61.2	61	56	287	77	430 - 210
46	Spring	3	15	7.7	83	46	10.5	176	493	158	0	4.0	0.000		46.8	53	3.0	1385	730	3.9 - 2.
	Summe r	3	20	0.3	0	25	9.3	158	500	160	0	1.0	0.003				5.0	321	250	460 - 39
	Pa11	1	0	3.3	24	40	9.6	105	490	143	0	0.0					-		760	460

REMARKS :

Location

Raw: Menhole at Weet end of North Dike. No. 1 : 200 feet East of West dike -- in line with utility pole and island. (500 fast from inlet)

No. 2 : Center of line between utility pole and island. (250 feet from inlet)

- No. 3 : 100 feet South of inlet -- in line with No. 2 No. 4 : 200 feet Southeast of inlet -- in line with island.
- No. 5 : 100 feet West of outlet -- in line with utility pole.
 - (350 feet from inlet)

No. 6 : 100 feet North of South dike -- in direct line of utility polee. (500 feet from inlet)

79

LABORATORY ANALYSES Semeonal Summary 1955

LEMMON, SOUTH DAKCTA STATION SEASON DAYS TENP. DISSOLVED OXYGEN B.O.D. pH ALL AUTOTTY CHLORIDE SULFIDE AIDIONIA NITRITE MITRATE HITROGE SAMPLED °c Total. /Depth % Sat. ppm ppm ppm ppm ppm DOM ppe 100 ppa OPE 10 8.2 214 1.4 51.0 0.10 82.3 Winter 3 0.3 400 0 933 0.204 -Spring 11 252 8.0 233 0.1 23.7 0.137 0.02 50.3 3 2.8 0 805 . Rew 3 142 8.0 0 511 133 0.0 41.8 0.021 Summer -. -170 Tr. 4.6 Fall 1 165 8.2 0 860 . . -0 Winter 3/1.5 1 17 44 8.6 45 857 202 10.1 0.011 0.10 17.8 3.3 0.333 3/1.5' 233 0 2.2 0.00 9.8 Spring 10 8.6 84 31 9.3 63 830 #1 3/1.5' 150 525 177 0 1.6 0.135 Summer 22 4.3 54 16 9.5 1/1.5' 90 790 200 0 0.7 Fall 2 9.9 79 21 9.2 . 7.9 851 201 0 0.004 0.08 13.6 Winter 3/3.0' 21 28 8.6 50 1 2.7 100 887 255 0 2.2 0.391 0.02 9.5 Spring 2/1.5' 11 87 28 9.0 8.8 #2 180 0 2.1 0.151 3/1.5' 11 9.5 144 485 Summer 22 3.2 40 765 188 0.7 1/1.5' 105 0 Fall 2 6.5 52 20 9.1 . 3/3.0' 8.6 49 854 202 0 7.4 0.002 0.08 Winter 1 1.0 8 26 12.0 2.2 86 807 218 0 0.712 3/1.5' 10 88 32 9.0 Spring 9.1 . -3-1 140 617 183 0 0.150 Summer 3/1.5' 23 7.9 100 13 9.6 . 140 785 194 0 0.7 Fall 1/1.5' 63 18 9.1 -2 7.9 861 207 6.7 9.0 8.5 41 0.005 Tinter 3/9.0' 0.0 0 29 0.09 13.3 2 Spring 3/6.0' 10 88 9.0 88 870 237 0 2.2 0.375 0.15 9.1 35 9.4 3-L 456 609 186 0,142 3/6.0' 9.5 0 8.3 22 30 9 Summer 2.4 188 110 790 Fall 1/6.0' 3 64 13 9.1 0 0.7 -7.8 850 0 3/3.0 8.6 53 201 8.2 0.013 0.13 Winter 2.7 21 27 13.3 1 130 840 270 0 2.2 0.529 2/1.5' 11 9.0 0.00 Spring 83 27 9.5 8.4 4-U 618 144 183 2.4 3/1.5' 9.6 0 0.156 Summer 23 90 14 7.1 120 800 194 0 0.8 Fall 1/1.5. 9.0 2 8.3 66 15 . 3/7.5* 8.6 51 854 206 16.0 7.3 0,008 0.08 Winter 11.9 2 2 26 0.2 -0/-. Spring 1 . -. --. -4-L 3/6.0" 147 619 183 0 8.1 14 9.5 0.163 Summer 23 6.6 84 115 805 194 0 0.7 Fall 1/4.0" 9.0 8.5 67 11 . 2 84.3 57 200 0.11 Winter 3/0.1* 8.6 0 7.7 0.005 13.7 35 1 30 3.8 850 90 197 3/0.1 9.2 0 2.2 0.500 0.00 9.5 Effluent Spring 11 86 29 8.7 145 621 184 0.233 2.4 3/0.1 10 9.6 0 Summer . -. 140 725 1/0.1' 176 0 0,7 Fall 12 9.1 2 7.6 60 -

REMARKS:

Location :

No. 1 : 200 feet from inlet on line between inlet and outlet. No. 2 : 500 feet from inlet on line between inlet and outlet. No. 3 : 200 feet Northweet from outlet. No. : 600 feet Northwest from sutlet. Eff ent: At outlet structure.

PROSPI	ATE	TURBIDITY	SOLIDS	COLIFORM
Total	Ortho		Suspended	MPN/100 ml (x 1000)
- PPR	ppm	ppe	ppm	1.1x 10001
82.3	27.0	473	370	19,000
51.6	1.0	650	384	4,580
	22.0	285	228	34,900
	20.0		316	2,300
19.3	15.0	130	68	823
25.2	1.0	300	120	78
	4.0	81	51	163
700	0.7		104	150
18.8	13.0	110	65	99
20.8	1.5	220	60	29
	3.0	77	44	13
	0.7		128	93
17.4	12.0	107	73	34
	1.0	300	140	47
	4.0	81	57	46
	0.7		100	43
14.6	11.0	143	84	217
18.4	1.0	297	83	32
	4.0	71	46	20
	0.7		96	93
16.5	10.0	113	53	37
18.8	0.5	226	110	58
	3.0	. 86	69	21
	0.7	1100	104	240
16.8	13.0	110	56	58
	÷4.		-21 V	
	3.0	83	59	11
	0.7		120	150
16.0	10.0	117	39	36
18.8	2.7	348	145	36
	4.0	72	58	67
1 marth	0.7		104	930

LABORATORY ANALYSES Seasonal Summary 1955

MADDOCK, NORTH DAKOTA

STATION	SEASON	DAYS SAMPLED	TEMP.	DISSOLVE	OXYGEN	B.O.D.	pH	ALKA: P PDm		CHLORIDE SULFIDE		AMMONIA NITRITE		NITRATE	NITROCEN	PHOSPHATE		TURBIDITY		COLIFORM
T	1	/Depth	3 e	DDA	X Sat.	DP			Total	<u>p</u> 00	poin	D Data	00	DDB	D	Total ppm	Ortho	ppm	Suspended	(x 1000)
	Winter	2	1.	3.0	-	357	7.9	0.0	605	105	2.7	44.5	0.331	0.12	73.6	53.4	36	425	394	32,000
Aav	Spring	3		6.0		137	7.8	0.0	627	182	0.0	7.0	0.306	0.00	41.4	32.8	1.0	196	297	2,580
	Summer Fall	3		1		390 185	7.7 8.1		580 590	106 130	0.0	15.3 50.0	0.207				30 45	304 310	270 197	32,200 930
31 - C	FRIT	-	Entite I			100	0.1	0.0	230	130	0.5	50.0	0.330			1.0	40	310	1	930
	Winter	3/2.5'	0.0	0.0	0.0	77	8.1	-	912	295	118	19.6	0.004	0.09	20.9	26.2	25	220	45	310
1	Spring	3/1.5	9	13.1	120	20	9.0	137	595	188	0.0	4.5	0.012	0.00	11.8	21.2	1.0	234	137	28
	Summer Fall	3/0.5'	21	0.7	8 72	10	8.8	95 50	602 670	187 199	0.0	1.3 23.5	0.003				8 19.4	91 180	45 77	138 23
	, alt	14.0+2	0.0	7.7	12	4.0	8.4	50	670	733	0.0	23,3	0.100				TA*#	100		*3
	Winter	3/2.5'	1	0.0	0.0	88	8.1		869	269	114	19.5	0.018	0.08	21.0	26.1	28	230	49	1,800
2	Spring	3/1.5	10	12.6	116	15	8.9	135	585	160	0.0	4.45	0.915	0.02	11.5	20.0	1.0	239	137	20
and the second second	Summer Fall	3/0.5'	21 C.O	0.5	6	11	9.0	100	618 675	183 198	0.0	1.3	0.004		1115.2		8	83 190	43 65	280 43
		1/0.5	0.0	10.1	74	2.6	0.9	60	675	190	0.0	21.8	0.150				20	190	60	
	Winter	3/2.5'	1.0	0.0	0.0	83	8.1		918	29.1	119	20.9	0.002	0.10	21.1	25.9	29	217	54	1,400
#3	Spring	3/1.5'	10	12.7	116	13	9.0	120	575	164	0.0	3.0	0.015	0.00	11.2	22.0	0.5	246	140	21
A VALUE AND AND A	Summer Fall	3/0.5° 1/0.5°	21 0.0	0.5	6	12	9.1	100 55	613 660	190 197	0.0	1.2 21.8	0.004			market	8 21	91 170	48 108	207 23
		1/0.5	0.0	3.4	69	1.0	0.0	33	000	731	0.0	21.0	0.103			Contraction of	61	110	100	
	Wister	3/2.5'	0.0	- 0.0	0.0	16	8.2		060	449	42	1.7	0.006	0.10	• 11-2	16.3	18	98	27	23
14	Spring	3/1.5'	9	9.6	88	3.1	8.7	97	520	200	0.0	1.0	0.006	0.00	0.0	7.8	0.5	26	30	0.620
	Summer Fall	3/0.5'	22	1.7 12.1	20 88	3.4	9.0	90 132	6 27 520	255 314	0.0	0.8	0.003				5	17 29	22 22	0.820
		1,000	0.0	140 L	00	2+3	7.6	AJE	320	514	0.0								3 - 5 - 1 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	A DEPARTMENT
	Winter	3/2.5'	0.0	11.4	83	2.9	8.6	59.6	731	354	0.0	0.7	0.002	0.10	1.3	4.6	4	12	12	0.030
5	Spring	3/2.5'	9	9.8	90	2.1	8.7	87	478	224	0.0	0.7	0.009	0.00	0.0	4.0	1.0	15	29	0.050
	Summer Fall	3/0.5'	21	6.9 12.1	81 88	4.3	9.5	88 145	435 445	256 288	0.0	0.5	0.002			1000	5	12 25	30 10	0.030
		4	0.0		00	4.1		145	145	200	0.0									and the second
	Winter	3/2.5'	0.0	11.4	83	3.7	8.6	65.7	721	348	0,0	0.5	0.004	0.13	-	4.6	4	12	14	0.030
6	Spring	3/1.5	9	9.9	91	1.7	8.8	75	498	194	0.0	1.2	0.026	0.00	0.0	40	0.5	17	32	0.030
	Summer Fall	3/0.5° 1/0.5°	22	5.7	68	5.8	9.3	103 135	418 422	237 287	0.0	0.4	0.002			174-2	5	7 25	7 6	0.110
	- HET	1/0.5	0.0	12.2	69	7.4	A*2	135	422	201	0.0	0.1	0.030			in the second	7.05	23	- 22 -	0.000

Location :

Raw : At lift station. Sample collected as flow entered wet well.

No. 1 : 125 feet from North and East dike (in first Pond)

No. 2 : First Pond; Directly over inlet.

No. 3 : First Pond; Approximately 25 feet North of outlet.

No. 4 : Second Pond; 200 feet South of inlet and 300 feet from East dike. No. 5 : Third Pond; 50 feet East of inlet. No. 6 : Third Pond; 125 feet from North and Weet dikes.

-

-

LABORATORY ANALYSES Seasonal Summery 1955

WISHER, NORTH DAKOTA

STATION	SEASON	DAYS SAMPLED	TENP.	DISSOLVE	D CARYCEEN	B.O.D.	рН	ALKALI	ITY	CHLORIDS	SULFIDE	AIMONIA	NITRITE	NITRATE	ITROCEN	PHOSP	HATE	TURB ID ITY	SOLIDS	COLIFORM
		/Depth	00	ppm	ppm % Sat.	ppm		P ppm	ppm	1 ppm	ppm	ppm	p.pm	ppm	ppm	Totel	Ortho ppm	ppm	Suspended	MPN/100 ml
Rav	Winter Spring Summer	3	6 19 -	2.6 5.7	÷	499 195 219	8.1 8.1 7.6	0 0 0	560 443 430	68 55 54	1.3 0.05 0.0	59 44.5 24.0	^.306 0.155 2.172	0.18 0.00	140 186	62.7 31.2	65 2 19	717 218 136	885 277 137	61, 310 19,950 42,000
# 1	Winter Spring Summer	3/1.5° 3/1.5° 3/0.5°	15 22	0.0 8.9 0.4	0 95 5	132 51 24	7.7 9.4 8.6	0 80 32	631 343 291	98 82 74	125 0.0 0.4	60 44.5 1.5	0.221 0.060 0.014	0.11 0.00	65 28.9	49.3 26.8	48 2 6	202 485 149	87 248 75	2,230
#2	Winter Spring Summer	3/1.5° 3/1.5° 3/0.5°	0 15 22	0.0 8.7 3.8	93 46	2 157 51 28.4	7.5 9.5 9.1	0 78 38	779 402 282	126 76 74	47 0.0 0.0	62 26.8 1.2	0.000 0.057 0.007	0.09 C.00	68 29.9	63.9 24.8	55 1 4	293 489 141	85 237 67	2,600 244
#3	Winter Spring Summer	3/2.0' 3/1.5' 3/0.5'	15 22	0.0 9.0 3.3	0 96 4 0	144 50 19.1	7.6 9.5 9.2	0 73 38	925 413 287	157 79 75	59 0.0 0.0	63 25.2 1.5	0.001 0.062 0.003	0.1C C.00	62 29 . 4	60.1 25.2	60 1.5 5	317 440 143	66 237 75	2,243

4.

412

REMARKS

Location :

Raw : M.H. Northeast of Imhoff Tank building.

No. 1 100 feet Weet of inlet.

No. 2 : Center of line between outlet and island.

No. 3 : 100 feet from outlet on line between outlet and island.

Fall Samples:

No employ were taken in the Fall because the operator at Wiehek had drained the pond just prior to the Fall survey.

APPENDIX III

SOUTH DAKOTA DEPARTMENT OF HEALTH

DESIGN CRITERIA FOR SEMAGE STABILIZATION PONDS

A. General

- A preliminary report for proposed sewage stabilization pond installations should be submitted for review prior to preparation of final plans. This report shall include the shape of the cell(s) (B-4), a description of soil characteristics as revealed by test borings (E-3), size, location, and other such proposed design features.
- 2. The review of proposed stabilization pond installations will be carried out on an individual basis with local conditions taken into consideration.
- 3. All plane and specifications shall be submitted at least 30 days prior to date upon which action by the approving authority is desired.
- 4. Construction as early as is possible during the construction season is encouraged to permit some initial summer operation.

B. Design

- 1. Original construction should provide at least one surface acre per one-hundred (100) population plue the industrial waste population equivalent, if significant. In terms of B.O.D., a loading of 20 pounds per surface acre should not be exceeded. Due consideration should be given possible future municipal expansion and/or additional sources of wastes when the original land acquisition is made.
- 2. The choice between the use of single cell and multiple cell ponds will be dictated on the basis of local conditions and downstream water use. Where a greater degree of treatment is necessary or desirable, one or more cells in series may be added to the primary cell; provided, however, that the primary cell should have a surface area equal to that set forth in E-1.
- 3. Where ponds of one or more cells follow some type of conventional treatment device, the requirements in B-1 may be reduced to compensate for the B.O.D. reduction in the pre-treatment unit(s). However, the area of the first or primary cell following the pretreatment unit(s) should be not less than 75% of B-1.
- 4. The shape of all cells should be such that a uniform perimiter results. No islands or peninsulas will be permitted.

C. Location

- 1. Ponds should be located at a practical distance away from built-up areas with due respect given to possible future expansion of the city.
- 2. Locating ponds in watersheds receiving significant amounts of runoff water is discouraged unless adequate provisions are made for storm water to by-pass the ponds.
- 3. In locating ponds, preference should be given sites which will permit an unobstructed wind sweep across the ponds, especially in the direction of the local prevailing winds.
- 4. Proximity of ponds to water supplies and other facilities subject to contamination should be critically evaluated to avoid creation of health hazards or other undesirable conditions.

D. Embaniments and Dikes

- 1. Compacted embaniments of impervious materials should be constructed.
- 2. Minimum embankment top width should be 8 feet. Lesser top width will be considered for very small installations.
- 3. Naximum embankment slopes should not be steeper than
 - a. Inner 3 horizontal to 1 vertical (preferably 4 or 5 to 1).
 - b. Outer 3 horizontal to 1 vertical.
- 4. Minimum embankment slopes should not be flatter thank
 - a. Inner 6 horizontal to 1 vertical.
 - b. Outer not applicable, except that significant volumes of surface water should not enter the ponds.
- 5. Minimum free board should be 3 feet plus frost heave.
- 6. Minimum normal liquid depth should be 3 feet.

-15

7. Faximum normal liquid depth should be not more than 5 feet. For ponds with surface areas of more than 10 acres, special consideration will be given to maximum liquid depths greater than 5 feet provided such depths are minimal in area. 8. Embankments should be seeded, except below the water line. Alfalfa should not be included in seed mixtures since the long roots of this plant are apt to impair the water-holding efficiency of the dikes. Additional protection for embankments (rip-rap) may be necessary as soil conditions and pond size warrant.

3. Pond Bottom

- 1. The pond bottom should be as level as possible at all points. Shallow or feathering fringe areas usually result in locally unsatisfactory conditions.
- 2. The bottom should be cleared of vegetation and debris. Organic material thus removed should not be used in embankment con-struction.
- 3. Soil formations should be relatively tight to avoid undue liquid losses through percolation or seepage. Soil borings to determine soil characteristics shall be made a part of preliminary surveys to select pond sites.

F. Influent Lines

- 1. Any generally accepted material for pond piping will be given consideration but the material selected should be adapted to local conditions. Special consideration should be given to the character of the wastes, possibilities of septicity, exceptionally heavy external loadings, abrasion, the necessity of reducing the number of joints, soft foundations, and similar problems.
- 2. The influent line into single-celled ponds should be essentially center-discharging. Influent lines into the primary section of multiple-celled ponds should be essentially center-discharging, but this does not apply to those cells following the primary cell in series operation.
- 3. Either vertical or horizontal discharging influent lines may be used. when vertical discharging lines are used the discharge end of the pipe should be located approximately one foot above the bottom of the pond and should not extend to such elevation that ice will damage the terminal structure during winter operations.
- 4. The end of the discharge line should rest on a suitable concrete apron with a minimum size of two feet square. Larger aprons and influent piping supports are suggested in cases where the soil is unstable. Flow splitters or dispersing devices are also desirable where a horizontal type of influent line terminal structure is utilized.

- 5. Influent and effluent piping should be located to minimize short circuiting within the pond.
- 6. Lanholes or clean-outs are recommended where pipes pass through the embankment.
- 7. Influent lines should be placed in or near the bottom. The use of exposed dikes carrying influent lines to the center of the pond will not be approved.
- G. Interconnecting Piping and Overflows
 - 1. Interconnecting piping and overflows should be of cast iron pipe or corrugated metal pipe of ample size. The use of frost proof overflow manholes or valve boxes for controlling liquid levels in the pond is recommended. Multiple influent lines to such structures should be provided and arranged so that overflows will ordinarily come from, at, or near the surface of the pond. The lowest of the multiple influent lines to such manholes or structures should be at least twelve inches off the bottom to control eroding velocities and to avoid pickup of bottom deposits.
 - 2. Overflow lines should discharge into anchored concrete slabs. These lines should be vented if siphoning may be developed.
- H. Hisoellaneous
 - 1. The pond area should be adequately fenced with a stock-tight fence.
 - 2. Appropriate signs should be provided to designate the nature of the facility.
 - 3. Provisions for flow measurement should be provided. Facilities for installation of a weir would be adequate for most installations.
- I. Industrial Wastes
 - 1. Ponds for industrial waste require special planning and study, and these suggested minimum standards do not apply. The South Dakota Department of Health should be consulted on such problems before the design phase is completed.

-151