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ABSTRACT 

SURVEILLANCE OF SOUTH DAKOTA MOSQUITO ABUNDANCE, INFECTION RATE, AND 

INSECTICIDE SUSCEPTIBILITY 

GEOFFREY P. VINCENT 

2018 

 

The aim of this dissertation was to survey and evaluate the abundance, infection 

rate, and insecticide susceptibility of mosquito fauna present in South Dakota. Mosquito 

surveillance has been conducted across South Dakota to record and track potential 

West Nile virus (WNV) vectors from 2004 to 2017.  The nuisance mosquito Aedes vexans 

was found to be the most abundant species overall in the state and most abundant in 

many of the regions.  The WNV vector, Culex tarsalis, was found to be the second most 

abundant mosquito and the most abundant vector mosquito across the state.  However, 

geospatial variation did exist between both the vector and nuisance, as well as between 

different WNV vectors latitudinally across the state.  A total of 22 mosquito species 

were identified, and 6 were found each year. Positive relationships were found between 

average Cx. tarsalis weekly abundance and average weekly human cases of WNV at a 

two to three-week lag. Weaker relationships existed between Ae. vexans and human 

cases of WNV and between the ratio of Cx. tarsalis to total mosquito abundance and 

human cases of WNV.  We were not able to identify any relationship between yearly 

vector abundance and human cases.  Logistic regression modeling using mean daily 
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temperatures and total daily precipitation determined the best weekly collection period 

for collections to have the highest proportion of Cx. tarsalis.  Infection rates of potential 

mosquito vectors were calculated using the minimum infection rate method.  Though 

Cx. tarsalis infection rate was lower than other present vector species, due to its large 

relative abundance to other highly susceptible species it is still considered to be the 

primary method for human WNV infection. In testing susceptibility to the insecticide 

permethrin, we determined the diagnostic dose for multiple time periods and ranged 

from 27.0 µg/ml at 60 min to 38.4 µg/ml at 30 min. There was no significant difference 

detected in mortality rates between Cx. tarsalis and Ae. vexans for any diagnostic time 

and dose. For practical purposes, mosquitoes in 2017 were tested at 38 µg/ml for 30 

min; expected mortality rates were 93.38% for Cx. tarsalis and 94.93% for Ae. vexans.  

Actual 2017 mortality rates were 92.68% for Cx. tarsalis and 96.12% for Ae. vexans, 

validating the usefulness of this baseline at an additional location and year.  

These findings suggest that mosquito control efforts are not selectively 

diminishing nuisance mosquitoes that may contribute to human avoidance behaviors 

that may limit exposure to WNV.  These base line time and diagnostic values can allow 

for future studies to monitor these two important South Dakota mosquito species for 

resistance to insecticides. 
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Chapter 1: Introduction 

Mosquito-borne diseases have had a significant impact in human health. In the 

United States, mosquitoes are responsible for transmission of various pathogens such as 

West Nile virus (WNV), Chikungunya, St. Louis encephalitis, Western and Eastern equine 

encephalitis, La Crosse virus, and most recently Zika virus (ZIKV). Out of the many 

mosquito species populating any region, only a few typically vector diseases endemic to 

that region.  As the arbodiseases change in a region, the relative importance of each 

species as vectors may also change.   Species that are not vectoring regionally endemic 

diseases serve only as a nuisance to the people in that region.  Yet, there is growing 

recognition that even nuisance mosquito species may be important in limiting disease 

transmission by discouraging human behaviors associated with transmission by vector 

species (Gujral et al. 2007).   Therefore, it is not only important to understand 

population dynamics for current vectors in a given region, it is also important to 

understand these dynamics for the predominant species that are currently functioning 

only as a nuisance. 

  Prior to 2002, Culex. tarsalis Coquillett was only a vector for Saint Louis 

encephalitis (SLE) and Western equine encephalitis (WEE) in the Northern Great Plains 

(Janousek and Kramer 1998); however, the last major outbreak for either of these 

diseases in SD occurred in 1975 (Easton, Coker, and Ballinger 1986).  The first human 

case of WNV was  reported in SD in 2002 (Kightlinger 2017).  Culex tarsalis has been 

considered the primary WNV vector throughout the northern Great Plains, including SD 
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(Bell et al. 2006), and is considered to be the second most abundant mosquito in the 

state (Gerhardt 1966; Easton 1987b). Aedes vexans (Meigen) has been recorded as the 

most abundant species in the state (Easton 1987b), and is considered a major nuisance 

mosquito. Recently, Ae. vexans has been documented as a possible vector for ZIKV 

(O’Donnell et al. 2017), but as local transmission of ZIKV in SD has not occurred, this 

mosquito is still considered a nuisance mosquito for this region.  As a major nuisance 

mosquito in SD, its high abundance may be significant in diminishing human behaviors 

associated with WNV transmission risk (Gujral et al. 2007). 

Few mosquito surveys have been performed in the past 50 years for South 

Dakota.  Gerhardt (1966) published a general survey that listed 40 species found in 

South Dakota based upon mosquito collection surveys and previous studies.  In 1984 

and 1985, a survey on mosquitos from select Native American reservations across South 

Dakota documented 10 species of mosquito (Easton 1987b). Both surveys noted that Ae. 

vexans (Meigen) was the most abundant species collected followed by Cx. tarsalis.  

In addition to Cx. tarsalis, South Dakota has three additional Culex species that 

can vector WNV, including: Culex pipiens L, Culex restuans Theobald, and Culex 

salinarius Coquillett. Though these species have not been considered as important 

vectors for WNV in South Dakota, Cx. pipiens is an important vector throughout eastern 

U.S.A. (Molaei et al. 2006). Mosquito populations in the neighboring states of Minnesota 

and Iowa recorded Cx. pipiens as more abundant than Cx. tarsalis (Dunphy, Rowley, and 

Bartholomay 2014; Kinsley et al. 2016).  Studies in both Nebraska and Colorado found 

Cx. tarsalis to be the most abundant vector for WNV (Barker et al. 2009; Janousek and 
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Kramer 1999) while Cx. pipiens was one of the least abundant captured in both states. In 

general, these studies show an apparent east to west spatial change in vector 

abundance from Cx. pipiens to Cx. tarsalis.  

Minnesota, Iowa, Nebraska, and Colorado all list their most abundant nuisance 

mosquito species as Ae. vexans (Barker et al. 2009; Barr 1958; Kinsley et al. 2016; 

Dunphy, Rowley, and Bartholomay 2014) After this, the number of mosquito species 

identified and their abundances vary between the states and even within different sites. 

Aedes albopictus (Skuse) has become a mosquito of concern for its potential to transmit 

the ZIKA virus.  This mosquito has been found in the midwestern states of Minnesota, 

Iowa, Nebraska, Kansas, and Missouri, over the past ten years (Moore and Mitchell 

1997).  Some of these areas that Ae. albopictus have been found in these neighboring 

states are within some of the same  ecoregions found in South Dakota, raising concerns 

that this invasive mosquito could also become established in this region (Bailey et al. 

1994).  

 In addition to surveillance of mosquito species and abundance, monitoring 

infectivity of potential vector mosquitoes is necessary for a more complete picture on 

predicting human risk of disease transmission.  Locally, data sets are often created and 

maintained in order monitor these risks.  In South Dakota, mosquito species 

composition and abundance, West Nile virus (WNV) infection rate, and the number of 

human cases reported have been created and used since 2002 to help assess risk 

potential for human infection of WNV. These different data sets have been used to 

create a variety of methods for assessing risk.    
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A common method for monitoring human risk is through the minimum infection 

rate (MIR) which is the ratio of positive pools of mosquitoes to the total number of 

mosquitoes tested. Mosquito pool testing is useful in assessing the prevalence of WNV 

virus in the bridge vector mosquitoes (i.e. mosquitoes that feed on the bird reservoir 

and humans); however, the assumption in this technique is that only one mosquito in a 

pool size is infected which can severely underestimate the true infection rate if the virus 

is abundant in the population (Gu, Lampman, and Novak 2003). Additionally, this 

technique does not account for the varying levels of vector competency of multiple 

vectors within a geographical region.  The vector index was designed to create a more 

complete picture using abundance, the species tendency to feed on mammals, infection 

prevalence in mosquitoes and an index for the vectors competence (Kilpatrick et al. 

2005). However, in diseases such as West Nile virus (WNV), the reservoir hosts are not 

mammals, and so higher ratios of mammal feeding will not necessarily increase human 

risk.  

Other effective tools include datasets that utilize meteorological and landscape 

ecology and have been used to developed models which have assessed human WNV risk 

based upon multiple factors, such as temperature and rainfall in various times of the 

year (Parham and Michael 2010; Wimberly et al. 2014), and land cover as an influence 

(Chuang, Hockett, et al. 2012).   

Recently, a combination of both infection rates and environmental effects have 

been combined to create prediction models for human WNV risk that has been 

successful in South Dakota (Davis et al. 2017).  This technique calculates mosquito 
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infection growth rate (MIGR) and found that human risk was at its highest when the 

environmental conditions were met, and early season infection data was available 

(Davies in press).  However, the process of collecting, sorting, transporting mosquitoes 

to testing facilities, infection testing, and ultimately reporting the results can take 

multiple weeks to complete.  This lag in testing shortens the window of predictive 

capabilities available to the model. 

Understanding the various impacts of these factors may help public health 

officials to predict and respond to threats of mosquito transmitted pathogens.  While 

some success has been had in predicting the severity and timing of WNV outbreaks in 

South Dakota, the relationship of early season mosquito abundance to virus prevalence 

has not been thoroughly studied. Should early season mosquito abundance be able give 

insights into WNV amplification, the need for testing mosquito infection rate could 

decrease as the season progresses. 

From 2002 until 2004, all species collected in South Dakota were tested for 

infection of WNV. After this time, the South Dakota Department of Health focused on 

the vector mosquito Culex tarsalis (Kightlinger 2017) and has focused its efforts on 

monitoring the MIR of this species.  As mentioned in chapter 2, increases in Cx. tarsalis 

abundance are correlated with increases in human WNV cases; however, the overall 

abundance of the Cx. tarsalis does not relate to the overall incidence of human cases 

(Nielsen et al. 2008).  From a public health perspective, identifying all sources of 

potential transmission as well as predicting the level of amplification of virus within 

those vectors could further the predictive ability of current models.  
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Multiple species that have been confirmed as potential vectors are present in 

the state.  While Cx. tarsalis was the most abundant vector species in the state, Culex 

pipiens was also present in the state, predominantly on the eastern side. Both species 

are known to switch from feeding on birds in the spring to mammals later in the 

summer (Goddard et al. 2002; Tempelis 1975).  The species Culex salinarius is known to 

feed on both birds and mammals and may also contribute to the amplification of the 

virus (Molaei et al. 2006). Culiseta inornata is one of the first species to appear in traps, 

and while it does primarily feed on mammals, it is known to take avian blood meals 

(Tempelis 1975; Anderson and Gallaway 1987).  Having some avian host preference 

combined with a moderate ability to transmit WNV makes it an excellent candidate for 

early season amplification (Goddard et al. 2002). Both Aedes vexans and Aedes dorsalis 

have experimentally been shown to transmit WNV; however, both of these species 

prefer feeding on mammals (Kramer, Reisen, and Chiles 1998; Molaei and Andreadis 

2006); however, Ae. vexans was the most abundant mosquito in many areas of the 

state, especially those with high numbers of human cases.   

In this study we aimed to determine if mosquito abundance of these 

experimentally determined vectors present in South Dakota influence infection rates 

derived either from MIR or through MIGR. Additionally, we investigated precipitation 

and temperature effects on the abundance of two important species in the state. 

Surveillance of mosquito resistance to insecticides is also needed to assist in the 

prevention of mosquito transmitted pathogens. Insecticides play a major role in 

controlling vector-borne diseases.  One of the first major movements to eradicate a 
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vector-borne disease was in the 1950’s when the World Health Organization attempted 

to use DDT to eradicate malaria carrying mosquitoes.  This, however, ended in failure as 

resistance to the insecticide ultimately ceased the effectiveness of DDT.  Today, we still 

use new insecticides to help control populations of insects that can transmit human 

diseases; however, a focus on monitoring, measuring, and understanding the impacts of 

insecticide resistance has come to the forefront. 

 The two major classes of insecticides used today are organophosphates and 

pyrethroids.  Organophosphates work by inactivating acetylcholinesterase which is 

necessary for proper nerve function in many animals, including insects.  Concerns over 

its impact on human health have been raised and has led to a ban by the EPA for 

residential use since 2001.  Pyrethroids also attack the nervous system by preventing 

the closure of voltage-gated sodium channels in the axonal membranes. This prevents 

nerves from repolarizing, leaving them in a permanent depolarized state causing 

paralysis. Pyrethroids have recently risen in usage for both residential and agricultural 

usage as they are considered generally safer than organophosphates (USGS).   

 Insect resistance to pyrethroids has been documented in many disease vectoring 

insects including the common house fly, black flies, Tsetse fly, fleas, and mosquitoes 

(Naqqash et al. 2016). Resistance has also been found in crop pests such as the 

diamondback moth, tobacco budworm, and cotton leafworm (Elghar et al. 2005). The 

use of pyrethrin, in both agricultural use and urban mosquito control, could increase 

resistance to pyrethrin in disease vectoring mosquitoes in certain areas of the world.  
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Mosquito transmission of arboviruses to humans depends on multiple factors 

(Kilpatrick et al. 2005; Kilpatrick and Pape 2013), including human behavior [3]. Gujral 

et. al. (Gujral et al. 2007) suggest that human behavioral risk factors, such as the use of 

personal protectants, can be influenced by the “biting pressure” created by local 

mosquito populations. These populations include potential vector species and non-

vector nuisance mosquitoes, and the presence of many nuisance mosquitoes could 

increase the use of personal protectants or avoidant behavior, thereby reducing the 

chance of potential viral transmission by vector mosquitoes. Conversely, the lack of 

abundant nuisance mosquitoes may have the opposite effect. Therefore, it is important 

to consider nuisance as well as vector mosquitoes when developing comprehensive 

strategies for mosquito reduction and disease control. 

Community adulticiding efforts can limit both disease and nuisance issues caused 

by mosquitoes, but the common use of insecticides has prompted concerns over 

growing resistance to insecticides in mosquito populations. Permethrin, a broad-

spectrum insecticide in the pyrethroid family, is the primary adulticide used in the 

United States (EPA) and is used for  agriculture to reduce crop and livestock pests 

(Catangui and Berg 2002; Campbell, Boxler, and Davis 2001), as well as in residential 

areas to control nuisance and vector mosquito populations. Long-term usage of this 

class of insecticide has been shown to cause increased resistance in mosquito 

populations (Naqqash et al. 2016). Because of its broad use and the documented cases 

of resistance, monitoring of permethrin resistance is important to mosquito control 

efforts (Brogdon and McAllister 1998b; Strong et al. 2008).  
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Most studies on insecticide resistance have focused primarily on vector 

mosquito species, and few have included common nuisance mosquitoes within 

arbovirus-endemic areas. Richards et al. (2017) evaluated the susceptibilities of a 

potential Zika virus (ZIKV) vector (Aedes albopictus (Skuse)) and 2 West Nile virus (WNV) 

vectors (Culex pipiens L. and Culex quinquefasciatus (Say)) to 6 different common 

insecticides in a study that included 26 mosquito populations from four different U.S.A. 

regions. They also included the tree-hole mosquito, Aedes triseriatus (Say), in this study, 

though this species is not a significant vector for Zika or WNV and is generally only a 

minor species in most regions. They found that the Aedes species tested were less likely 

to exhibit resistance when compared with Culex species, particularly for etofenprox and 

malathion, and found that all Aedes spp. populations tested were either susceptible or 

possibly resistant to permethrin while most Culex spp. populations were resistant. Given 

the potential role of nuisance mosquitoes in encouraging the use of personal 

protectants, the susceptibility of non-vector mosquitoes to insecticides should be 

evaluated especially in arbovirus-endemic regions where nuisance species are far more 

abundant than the vector species.  

In the U.S.A. Northern Great Plains, Culex tarsalis Coquillett is the primary vector 

for WNV, and Aedes vexans (Meigen) is generally the most predominant nuisance 

mosquito (Barr 1958; Easton, Coker, and Ballinger 1986; Bell et al. 2006; Barker et al. 

2009). Recently, Ae. vexans has been reported as a potential vector for ZIKV 

(Gendernalik et al. 2017; O’Donnell et al. 2017); however, there have been no reported 

cases of local transmission of ZIKV in the Northern Great Plains. In eastern South 
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Dakota, Ae. vexans populations generally swell to very large numbers in the spring and 

remain high during the WNV transmission season (Chuang et al. 2011). The aggressive 

biting of this nuisance mosquito can motivate people to use personal protection (Gujral 

et al. 2007).  Despite its potential public health significance, we have found no studies 

directly comparing permethrin susceptibility for Cx. tarsalis and Ae. vexans.   

Brookings County, located in east-central South Dakota, is the fifth-most 

populated county and contains the fourth largest city in South Dakota, though it mostly 

consists of farmland. Both species of interest are abundant within this county. The city 

of Brookings has utilized a mosquito control program involving permethrin for over 20 

years, and the small cities in the county have had similar programs for over 10 years. 

The purpose of the present study is to compare susceptibilities of Ae. vexans and Cx. 

tarsalis to reagent-grade permethrin in a CDC bottle bioassay protocol involving 

multiple concentrations and time periods. For this comparison, we used adult 

mosquitoes freshly captured in Brookings County using CO2 baited light traps.  Use of 

wild-caught adult mosquitoes in this type of bioassay is considered acceptable from 

both the CDC bottle bioassay protocol and the WHO test procedures for insecticide 

resistance, and wild-caught adult mosquitoes have been used in previous studies where 

mosquito aquatic stages were not consistently available (CDC 2013; Rakotoson et al. 

2017; WHO 2016; Marcombe et al. 2017). Because both species prefer to lay their eggs 

throughout natural habits, harvesting Cx. tarsalis and Ae. vexans eggs and then growing 

adults for the assay was not practical, and results can be inconsistent when rearing 

mosquitoes from eggs in a lab (Strong et al. 2008). In our area, the consistent collection 
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of Cx. tarsalis larvae in large enough numbers to adequately compare its susceptibility 

to Ae. vexans was also not practical.  To minimize concerns about potential high 

variability for data collected from wild-caught adults, the susceptibility comparisons 

involved a large number of mosquitoes evaluated in multiple assays conducted 

throughout the mosquito season.  The use of field collected mosquitoes for this 

comparison also allowed for testing both species together in the same bottles and 

testing them in the various natural physiological conditions representative of the wild 

populations’ age distribution at any given time (WHO 2016).   

The data from this study were used to calculate a base-line diagnostic dose and 

time for permethrin susceptibility for both species that can be used in future studies for 

evaluating changes in permethrin resistance from this region.  We have found no studies 

identifying values for diagnostic dose and time on permethrin susceptibility for Cx. 

tarsalis and Ae. vexans, and none have been reported to the Arthropod Pesticide 

Resistance Database (Database] 2014). According to the Centers for Disease Control and 

Prevention (CDC) diagnostic dose and times should be determined for each type of 

insecticide used, and for each species of concern within a region (CDC 2013), and studies 

often emphasize the lack of reported diagnostic dose and times reported for Culex 

species, and more so with Cx. tarsalis (Richards et al. 2017). CDC guidelines recommend 

creating the diagnostic dose and time from susceptible populations; however, 

permethrin is used throughout the state for both agricultural and mosquito control 

purposes. The Center for Disease Control guidelines also recommend establishing these 
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baselines from mosquito populations in areas where treatments are applied as a 

reference point for future comparisons.   
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Chapter 2: Population Dynamics of Mosquitoes in South Dakota: A 14 Year Study 

Abstract 

  Mosquito surveillance has been conducted across South Dakota (SD) to 

record and track potential West Nile virus (WNV) vectors since 2004.  During this time, 

communities from 29 counties collected nearly 5.5 million mosquitoes providing data 

from over 60,000 unique trapping nights.  The nuisance mosquito, Aedes vexans, was 

the most abundant species in the state (39.9%), and most abundant in a majority of the 

regions.  The WNV vector, Culex tarsalis, was the second most abundant species 

(20.5%), and 26 times more abundant than the other Culex species that also transmit 

WNV. However, geospatial variation did exist between WNV vectors species, as well as 

relative abundance of vector and nuisance mosquitoes. The majority of Ae. vexans 

samples were caught between weeks 27 and 28 in the eastern portion of SD, whereas 

the majority of this species were captured by week 25 in the southwestern portion of 

the state. No relationship was found between yearly human cases of WNV and yearly 

abundance or relative abundance of Cx. tarsalis and Ae. vexans. Positive relationships 

were found between average Cx. tarsalis weekly abundance and average weekly human 

cases of WNV at a two to three week lag. Weaker relationships existed between Ae. 

vexans and human cases of WNV and between the ratio of Cx. tarsalis to total mosquito 

abundance and human cases of WNV.  Logistic regression modeling using mean daily 

temperatures and total daily precipitation determined the best weekly collection period 

for collections to have the highest proportion of Cx. tarsalis.  This study addressed the 
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need for an updated summary of mosquito species present in South Dakota and impacts 

of vector and nuisance mosquito on human transmission of WNV. 

Introduction 

Mosquito-borne diseases have had a significant impact in human health. In the 

United States, mosquitoes are responsible for transmission of various pathogens such as 

West Nile virus (WNV), Chikungunya, St. Louis encephalitis (SLE), Western and Eastern 

equine encephalitis, La Crosse virus, and most recently Zika virus (ZIKV). Out of the many 

mosquito species populating in any region, only a few typically vector diseases endemic 

to that region.  As the arbodiseases change in a region, the relative importance of each 

species as vectors may also change.   Species that are not vectoring regionally endemic 

diseases, including both species that are not competent for disease transmission and 

species that are competent yet not infected, serve only as a nuisance to the people in 

that region.  Yet, there are some studies that recognize that human behaviors may be 

responsible for varying levels of risk to mosquito transmitted pathogens (Oidtman et al. 

2016; Zielinski-Gutierrez and Hayden 2006). There is also  recognition that even 

nuisance mosquito species may be important in limiting disease transmission by 

discouraging human behaviors associated with transmission by vector species (Gujral et 

al. 2007).  Therefore, it is not only important to understand population dynamics for 

current vectors in a given region, it is also important to understand these dynamics for 

the predominant species that are currently functioning only as a nuisance. 

  Prior to 2002, Culex tarsalis Coquillett was only a vector for SLE and Western 

equine encephalitis (WEE) in the Northern Great Plains (NGP) (Janousek and Kramer 
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1998); however, the last major outbreak for either of these diseases in South Dakota 

(SD) occurred in 1975 (Easton, Coker, and Ballinger 1986).  The first human case of WNV 

was reported in SD in 2002, and since then, it has become widespread throughout the 

(NGP) causing the highest incidence of WNV neuroinvasive disease of any region in the 

nation (Kightlinger 2017).  States within the NGP generally include: North and South 

Dakota, Montana, Wyoming and Nebraska. Species in the genus Culex are the most 

important vectors for WNV (Turell et al. 2005), and Cx. tarsalis is considered to be the 

primary WNV vector in throughout the NGP (Bell et al. 2006), and the second most 

abundant mosquito in the SD (Easton 1987a; Gerhardt 1966). Aedes vexans (Meigen) 

has been recorded as the most abundant species in the state (Easton 1987a), and is 

considered a major nuisance mosquito in the region. Recently, Ae. vexans has been 

documented as a possible vector for ZIKV (O’Donnell et al. 2017), but as local 

transmission of ZIKV in SD has not occurred, this mosquito is still considered a nuisance 

mosquito for this region.  As a major nuisance mosquito in SD, its high abundance may 

be significant in diminishing human behaviors associated with WNV transmission risk 

(Gujral et al. 2007). 

Few mosquito surveys have been performed in SD.  Gerhardt (1966) published a 

review and qualitative survey that listed 43 mosquito species found in SD based upon 

larval and adult mosquito collections from 38 different communities (in 37 counties) and 

also based on previous reports.  Among the communities surveyed, Ae. vexans, Cx. 

tarsalis, Aedes dorsalis (Meigen), Aedes nigromaculis (Ludlow), Aedes triseriatus (Say), 

and Aedes spencerii (Theobald) were listed as the most prevalent species.  In addition to 
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Cx. tarsalis, Gerhardt (1966) lists five additional Culex species from SD, including: Cx. 

pipiens L, Cx. restuans Theobald, Cx. salinarius Coquillett, Cx. territans (Walker), and Cx. 

erraticus (Dyar and Knab).  More recent surveys from 15 Native American tribal sites in 

SD conducted in 1983 (Easton et al, 1986) and 1984-1985   documented 19 species of 

mosquito.  Most of the mosquitoes collected in these two studies were trapped in New 

Jersey traps, but encephalitis virus surveillance traps producing carbon dioxide and CDC 

miniature light traps baited with dry ice were also used at a few sites.  Among all but the 

western-most SD site, Ae. vexans was the most abundant species collected, comprising 

77.9% of the trapped mosquitoes.  Overall, 13.7% of the total mosquitoes were Cx. 

tarsalis, but this ranged from 6.9% from an eastern SD site to 35.0% from the western-

most site. Among the remaining 8.4% of mosquitoes, Ae. dorsalis, Coquillettidia 

perturbans (Walker, 1856) and Ae. nigromaculis were the only species above 1%. Culex 

salinarius was the only other Culex species found in these two surveys, and it only 

comprised 0.5% of the population in SD.   

A two-year study involving 11 Nebraska communities identified more than 1.8 

million mosquitoes involving 27 species (Janousek et al, 1999). They found 6 species of 

Culex; 85.6% of the genera were Cx. tarsalis, 6.7% were Cx. salinarius, 6.6% Cx. restuans, 

0.9% Cx. erraticus, and only 0.2% Cx. pipiens.  Only one specimen of Cx. territans was 

found.  Among all mosquitoes identified, Cx. tarsalis provided 11.0% while Ae. vexans 

provided 74.1%; of the remaining species, 5.4% were Aedes trivittatus (Coquillett), 1.5% 

Aedes melanimon (Dyar), 1.0% Ae. Triseriatus, and the remaining 7.0% were spread out 

among the other species at level less than 1% per species. Among sites located along the 
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eastern edge of Nebraska, the percentage of Ae. vexans was relatively high, ranging 

from 78.2% to 91.0%, but decreased to 56.4% on sites located in the western region of 

the state.  An opposite east-to-west population trend occurred with Cx. tarsalis. 

North Dakota studies conducted from 2002 to 2004 found the most abundant 

mosquito species to be Ae. vexans, Ae. dorsalis, and Cx. tarsalis (Bell et al. 2006). Aedes 

vexans was not the most dominant species in all years in this study as Ae. dorsalis was 

the most dominant species in 2004.  The WNV vector, Cx. tarsalis, decreased in both 

over all abundance and relative abundance in each consecutive year.  The authors of 

this study indicated that the reduction in vector populations was one of the causes for 

reduced human cases of WNV in 2004 (Bell, Mickelson, and Vaughan 2005) 

In neighboring states east of SD, the prevalence of Cx. pipiens increases 

significantly as Cx. tarsalis decreased. In an oviposition study conducted in central Iowa, 

25.4% of the Culex eggs were Cx. pipiens, 55.0% were Cx. restuans, 12.2% Cx. salinarius, 

and only 0.14% were Cx. tarsalis (Lee and Rowley 2000). While they demonstrated that 

ovitraps underestimate the presence of Cx. tarsalis, New Jersey traps from that area 

showed that its prevalence was less than 4.6%.  DeGroote et al. (2008) documented the 

changing relative abundance of Cx. tarsalis and Cx. pipiens throughout Iowa where the 

Cx. pipiens/Cx. restuans complex was more common WNV vector statewide, but that Cx. 

tarsalis increased significantly in the western portion. Statewide Iowa data collected 

over 35 years showed that 71% of the collected mosquitoes were Ae. vexans, 16% were 

the Cx. pipiens/Cx. restuans complex, 6% were Ae. trivittatus, 3% Cx. tarsalis, and 2% 

were Anopheles punctipennis Say; all other species accounted for less than 1%.      The 
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only recent mosquito survey Minnesota involved a one-year study from the northern 

region where less than 2.5% of the mosquitoes were members of the genus Culex, and 

Cq. perturbans was the most abundant species 62.1% (Kinsley et al. 2016).  Older data 

suggest that mosquito populations in the southern regions are more similar to those in 

Iowa (Barr, 1958). 

   A previous study in Wyoming found the most abundant mosquito species to be 

Cx. tarsalis, followed by Ae. vexans and Ae. dorsalis. This study also determined that 

peak Cx. tarsalis abundance occurred between the second week of June and the first 

week of July (Doherty, M.K. 2007 Thesis).  A similar study conducted in Montana during 

2005 and 2006 had the same three species listed as the most abundant species but 

recorded that Ae. dorsalis was the most abundant followed by Ae. vexans and Cx. 

tarsalis which were relative close in overall abundance (Friesen and Johnson 2014).  

Seasonal host-seeking for Ae. vexans in Montana occurred between the middle of June 

through the middle of July peaking in captures during the last week of June. The 

abundance of Ae. vexans nearly disappear during the last week of July but reappear 

between mid to late August.  Culex tarsalis was predominantly captured between the 

last week of June and the last week of July with a peak at July 15th.  Culex pipiens was 

only recorded in the Wyoming study where it consisted of less than 1% of all species 

captured. 

Aedes albopictus (Skuse) has become a mosquito of concern for its potential to 

transmit the ZIKA virus.  This mosquito has been found in the midwestern states of 

Minnesota, Iowa, Nebraska, Kansas, and Missouri, over the past ten years (Moore and 
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Mitchell 1997).  Some of these areas that Ae. albopictus have been found are within 

some of the same ecoregions found in SD, raising concerns that this invasive mosquito 

could also become established in this region (Bailey et al. 1994).  

Our study aims to provide a current inventory of the mosquito species trapped in 

carbon dioxide-baited light traps located throughout SD between 2004 and 2017.  Sites 

included in the study were in communities participating in a surveillance of mosquitoes 

for WNV, and therefore, the distribution, intensity and longevity of trapping varied 

considerably based upon the perceived risk of WNV and on community resources that 

were available.  From 2002 to 2016, 71.4% of SD WNV human cases came from 

residents of counties east of the Missouri River (Kightlinger, 2017).  For this reason, the 

vast majority of mosquitoes collected in communities east of the Missouri River. 

Population dynamics are also reported from these traps for the major WNV vector and 

nuisance mosquito species.    

Methods 

Mosquito collections and identification:  

Mosquito surveillance was conducted in almost half of the counties across SD 

using C02-baited CDC miniature light traps with air-activated gates (John W. Hock Model 

1012-CO2, set to deliver 0.5 L CO2/min) from 2004 to 2017. Traps were suspended 

approximately1.5 meters from the ground and located in areas with moderate-heavy 

tree cover and vegetation. Tapping occurred overnight and were activated using light 

sensors.  
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Over the 14 years of this study, communities from 30 of the 66 counties 

contributed mosquitoes for varying numbers of years (Table 1).  Trap locations were 

most commonly found in populated communities. Over half of the trap-nights occurred 

in the Sioux Falls area (Minnehaha and Lincoln counties), and almost 30% occurred in 

Brookings, Brown and Coddington counties. Collections in the southwest portion of the 

state occurred near the Black Hills area included Fall River, Custer, Pennington, and 

Meade counties.  Because of their proximity to a unique ecoregion of the state, these 

counties were combined during regional analysis and labeled as southwest SD.  

Thoughout the study, 5,486,692 mosquitoes were captured creating 60,317 

unique samples from trapping nights.  The number of data points collected in counties 

east of the Missouri River accounted for 96.4% of the data points, and these eastern 

sites trapped 97.7% of all mosquitoes included in this study. Trapping began as early as 

April and continued as late as the end of October, but most  collections were made from 

June 1 through August 15.  All sites identified Cx. tarsalis, but the specificity of mosquito 

identification for the other species varied depending on trap location and year.  As 

designated in Table 1, some sites (Brookings, Minnehaha/Lincoln, Hughes, 

Butte/Harding) identified  mosquitoes to the species level based upon morphological 

characteristics (Darsie 2005).  A category called "non-Culex tarsalis" was used for 

mosquitoes that were not identified to species.  In some areas, such as Brown County 

and counties located in the southwestern portion of SD, the non-Culex tarsalis category 

became inflated with highly abundant mosquitoes, especially Ae. vexans. Differentiation 

of Cx. restuans and Cx. pipiens can prove difficult morphologically as features used are 
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not reliable (Harrington and Poulson 2008). Distinguishing between Cx. restuans and 

pippiens was based upon the presence or absence of white dots located on the scutum. 

Because of issues in reliably identifing these two species, we lumped the totals of these 

two species together for any statistical studies. When evaluating the regional population 

dynamics for Ae. vexans and Cx. tarsalis, both the weekly Ae. vexans and non-Cx. tarsalis 

were calculated because some regions did not identify most of their non-Cx. tarsalis 

mosquitoes to the species level. 

Human cases: 

Human case counts were obtained from the South Dakota Department of Health 

(SDDOH) on a weekly, statewide basis for all weeks in 2004-2017. Cases were assigned 

to the week they began showing symptoms. These data were collected as part of a pre-

existing surveillance system with a formal data-sharing agreement between the SDDOH 

and South Dakota State University. These data were considered exempt from IRB 

because the human case data are collected as a normal part of the SDDOH’s surveillance 

process and do not contain any personally identifying information.  

Statistical model of human cases:  

Weekly number of human cases in the state were related to various measures of 

mosquito populations collected some time before the week in question. For every week 

in 2004-2017 we defined three covariates: average Cx. tarsalis collected per trap per 

week, average Ae. vexans collected, and the ratio of Cx. tarsalis to total mosquitoes 

collected per week. These were related individually to the number of human cases in 
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the state in every week, when lagged either 0, 1, 2, or 3 weeks. The Spearman rank 

correlation coefficient (Spearman’s 𝜌) was calculated to determine the strength of any 

correlation. 

Table 1: Counties participating in mosquito Surveillance 

County 
Region # of Years 

Collected 
# 

mosquitoes 
# of data 

points 

Beadle East Central (ER) 12 170,965 591 

Brookings* East Central (ER) 14 1,207,741 7,060 

Brown Northeastern (ER) 14 2,031,810 8,641 

Butte/Harding* Northwestern (WR) 3 14,255 554 

Clay Southeastern (ER) 1 1,073 67 

Coddington East Central (ER) 13 111,677 2,020 

Custer Southwestern (WR) 4 4,485 104 

Davison Southeastern (ER) 12 64,773 316 

Dewey North Central (WR) 2 6,175 72 

Edmunds North Central (ER) 4 15,943 155 

Fall River Southwestern (WR) 4 3,725 297 

Grant Northeastern (ER) 4 21,607 85 

Hand Central (ER) 4 9,692 68 

Hughes* Central (ER) 14 159,732 959 

Lake East Central (ER) 11 48,088 968 

Lincoln/Minnehaha* Southeastern (ER) 14 1,470,899 36,464 

Marshal Northeastern (ER) 3 5,652 52 

Meade West Central (WR) 10 24,969 764 

Moody East Central (ER) 6 28,731 519 

Pennington West Central (WR) 9 68,001 352 

Perkins Northwestern (WR) 2 419 20 

Sanborn East Central (ER) 1 53 7 

Spink Northeastern (ER) 2 177 25 

Turner Southeastern (ER) 1 28 7 

Union Southeastern (ER) 3 12,637 95 

Yankton Southeastern (ER) 2 1,119 43 

Ziebach Northwestern (WR) 1 2,266 12 

*Denotes region that identified most mosquitoes to species. (ER) Denotes counties 
located east of Missouri River (WR) Denotes counties located West of Missouri River 
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Results 

State-wide mosquito survey: 

Twenty-two species were identified during the 14-year study period and eight 

species were present in every year surveyed (Table 2). Using data from counties 

identifying mosquitoes to species level for all years, Ae. vexans and Cx. tarsalis were the 

two most abundant species, accounting for 67.8% and 21.0% respectively. Aedes vexans 

populations ranged from 31.67% to 72.10% in areas in which personnel identified 

mosquitoes to the species level every year, whereas, Cx. tarsalis ranged from 15.95% to 

62.27%.  Brown county reported Ae. vexans as only 2.78 % of their total catch; however, 

this county only sporadically identified non-Culex tarsalis mosquitoes sporadically, and 

yet Ae. vexans almost certainly contributed to a bulk of the species reported in the non-

identified category. The six other species present in each year include: Aedes trivittatus, 

Ae. dorsalis, Culiseta inornata (Williston), Culex restuans, Cx. salinarius, and Anopheles 

punctipennis. These six species only accounted for 5.9% of the total mosquitoes in 

counties where all mosquitoes were identified to species. With the exception of Cx. 

salinarius in Beadle county, these mosquitoes were recorded in all the regions, but not 

all sites within some counties.  Culex. restuans and Cx. salinarius are minor vectors for 

WNV, accounting for less than 1% of all mosquitoes collected. Though these species are 

far fewer in abundance that Cx. tarsalis, Culex. restuans was more abundant and most 

frequently recorded in Brookings county while Cx. salinarius was most abundant in 

Brookings and Hughes counties (Table 2).   
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Table 2:  Mosquitoes present annually within Representative South Dakota Areas from 2004 to 
2017.  

  
Lincoln/ 

Minnehaha 
Brookings Brown Beadle Hughes 

Fall River/Custer/ 
Pennington/Meade 

Species % total % total % total % total % total % total 
Other 1.49% 6.19% 80.56%* 4.24% 0.63% 43.44% 

Ae. vexans 72.10% 67.23% 2.78%* 70.01% 31.67% 9.43% 
Cx. tarsalis 18.29% 18.84% 15.95% 22.40% 62.27% 43.42% 

Ae. 
trivittatus 

3.05% 0.89% 0.06%* 0.69% 0.62% 2.13% 

Ae. dorsalis 1.93% 0.85% 0.08%* 1.10% 2.45% 0.58% 
Cs. Inornata 1.40% 0.55% 0.07%* 0.45% 1.16% 0.37% 
Cx. restuans 0.25% 1.23% 0.06%* 0.88% 0.60% 0.23% 
Cx. salinarius 0.04% 0.29% 0.12%* 0.00% 0.31% 0.02% 

An. 
punctipennis 

0.17% 0.02% 0.01%* 0.14% 0.04% 0.04% 

   *Did not identify non-Cx.  tarsalis mosquitoes except during 1 year 

 Other species were not collected every year and tended to be present in only 

certain areas of the state, or in certain habitat under specific conditions, and could 

occasionally become a dominant species within a specific area (Table 3).  These species 

included: Cq. perturbans, Ae. triseriatus, Aedes fitchii, Psoraphora cyanescens, Ae. 

sollicitans, Anopheles walkeri, Uranotaenia sapphrina, Culex territans, Anopheles 

quadrimaculatus, Aedes japonicas, Ae. canadensis, Ae. cinereus, and Cx. erraticus. 

Though these minor species only accounted for 1.25% of the mosquitoes identified 

statewide and during all years, occasionally their abundance played an important role in 

certain locations. For example, while Cx. pipiens does not play a major role in vectoring 

WMV throughout South Dakota, it could become a significant vector in Lincoln and 

Minnehaha counties during some years (Table 3 and figure 3).  Certain of the other 

species could serve as vectors for other diseases not currently endemic to this the 
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Northern Plains, currently, they would only function as nuisance mosquitoes in certain 

locations. For example, Cq. perturbans served as an important nuisance in some sites 

within Brookings County (Table 3).  Aedes japonicus has been sporadically detected 

within South Dakota.  So far, nine specimens have been captured, four in 2009 and five 

in 2016, all in Lincoln and Minnehaha counties located on the eastern edge of the state. 

Table 3:  Mosquitoes present in South Dakota, but not every   year.         

  
Lincoln/ 

Minnehaha 
Brookings Brown* Beadle Hughes 

Southwest 
SD 

Species % total % total % total % total % total % total 

Cx. pipiens 0.63% 0.15% 0.02% 0.00% 0.06% 0.00% 

Cq. perturbans 0.00% 3.67% 0.04% 0.00% 0.06% 0.00% 

Ae. triseriatus 0.23% 0.05% 0.01% 0.01% 0.04% 0.07% 

Ae. fitchii  0.13% 0.01% 0.01% 0.00% 0.01% 0.24% 

Ps. cyanescens 0.00% 0.00% 0.09% 0.00% 0.00% 0.00% 

Ae. sollicitans 0.00% 0.00% 0.04% 0.00% 0.00% 0.01% 

An. walkeri  0.01% 0.01% 0.01% 0.06% 0.07% 0.00% 

U. sapphrina  0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 

Cx. territans 0.01% 0.02% 0.00% 0.00% 0.00% 0.00% 

An. quadrimaculatus 0.01% 0.00% 0.00% 0.00% 0.01% 0.00% 

Ae. japonicus 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Ae. canadensis 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Ae. cinereus 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Cx. erraticus 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

  *Did not identify non-Cx.  tarsalis mosquitoes except during 1 year 

Year-to-year statewide variations: 

On a statewide basis, Ae. vexans was the most abundant species during every 

year except 2007 and 2013, when Cx. tarsalis became slightly more abundant (Figure 1).  

The mean total number of mosquitoes per trap night for both species varied 

considerably on a yearly basis.  During 2006 and 2012, the total population was 
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particularly low, and particularly high during 2010.  The ratios of Ae. vexans to Cx. 

tarsalis were high during most of the other years.   

 

 

Figure 1: Yearly, season-long mean mosquito numbers trap per night for the two most 

abundant mosquitoes in South Dakota. 

The yearly proportion for the three most common minor species each reached or 

exceeded 5% in at least one of the 14 years. For Ae. trivittatus, populations spikes 

occurred  in 2004 and 2006.  For  Cs. inornata and Cq. perturbans, the spikes occurred in 

2012 and 2017 respectively.  These spikes were not only created through an increase in 

the abundance of these three species, but also affected by the low abundance of the 

two major species.  This enable these species to become more important as nuisance 
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mosquitoes during this years. The proportions for these less common species never 

exceeded 2.5%.  The statewide proportion of Cx. pipiens remainded extremely low 

throughout the study, but did exceeded 1%  during 2016 and 2017.  Proportions for Cx. 

restuans exceeded 1% during 2006, 2007, 2009 and 2013; during this later year, it 

exceeded 2% of the mosquitoes collected. In regions where these 2 potential WNV 

vectors are more common, they could contribute significantly to viral amplification 

during years when Cx. tarsalis populations are low.  The proportion of Aedes dorsalis 

exceeded 1% during three years: 2006, 2010 and 2014.    

Seasonal population dynamics of Cx. tarsalis and Ae. vexans: 

Within each mosquito season (Figure 2), the statewide mean 14-year population 

values for Aedes vexans tended to increase rapidly at around week 20, peaking at 180 

mosquitoes per trap night at week 27.  In contrast, Cx. tarsalis populations tended to 

not begin increasing until week 22 and reached its peak of 50 mosquito/night at week 

28.  The population decrease for Cx. tarsalis was fairly linear from week 28 to the 

population disappearance at week 37 (Figure 2).  The Ae. vexans population decreased 

rapidly until week 33, and then increased again to week 35 until decreasing again down 

to zero at week 42. It should be noted that before the sharp increase of human 

incidence of week 29 (Figure 5), Ae. vexans abundance drops by a third (Figure 2). 

Collections for half the annual Cx. tarsalis samples occurred between weeks 28 and 30 in 

all locations whereas half the annual state wide collections for Ae. vexans occurs 

between weeks 27 and 28. 
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Figure 2: Statewide 14-year mean for the number of Ae. vexans and Cx. tarsalis females 

captured per trap per week. 

Regional variations in Cx. tarsalis and Ae. vexans populations: 

   For each of the six SD regions shown in figure 3, the weekly population dynamics 

for Cx. tarsalis and Ae. vexans are expressed as then mean of all 14 years.  The number 

of trap sites for each region is reported in Table 1.  In this figure, the non-Cx. tarsalis 

values were also added to the graphs because in some regions (e.g. Brown County), the 

number of Ae. vexans were artificial low because most of the mosquitoes were not 

identified to the species level.  Therefore, in regions such as Minnehaha/Lincoln, 
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Brookings, Beadle, and Hughes counties, non-Cx. tarsalis and Ae. vexans are very similar; 

whereas in Brown county and Fall River/Custer/Pennington/ Mead counties, Ae. vexans 

are artificially below their actual values, and the non-Cx. tarsalis values would more 

closely represent the Ae. vexans population for that specific region. 

With the exception of Lincoln/Minnehaha counties, all of the eastern SD regions 

(i.e. Brookings, Beadle and Brown counties) showed relatively high numbers of Ae. 

vexans (or non-Cx. tarsalis species) compared to the western regions (i.e. Hughes 

County and Fall River/Custer/Pennington/Meade counties).  These eastern counties also 

showed evidence of a later resurgence of Ae. vexans populations after week 33.  Culex 

tarsalis populations were quite low in Lincoln/Minnehaha counties, and in Fall 

River/Custer/Pennington/Meade counties.  They were higher in the other counties, and 

highest in Hughes county, located in the center of the state.  Therefore, overall average 

abundance for Cx. tarsalis is lower than the non-Cx. tarsalis and  Ae. vexans population 

for all regions except Hughes county.   

Over 10% of the Culex tarsalis captured for the season occurred by week 26 in 

Lincoln/Minnehaha counties. This occurred slightly earlier for Brookings county at week 

23, for Hughes county week 23, and Beadle in week 22 . Culex tarsalis reached this mark 

in week 27 in Brown county annd in southwest South Dakota week 26. In weeks 28 to 30 

we consistently saw over half the annual average mosquito collections occur. Over 95% 

of the annual collections occurred between weeks 34 and 36 in all regions studied. 
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Over 10% of the Aedes vexans (or non-Cx. tarsalis mosquitoes) annual collections 

were captured by 23 to 25 for all regions studied, and 50%  were consistently by  weeks 

27 to 28, with the exception of the southwest region in which this occurred in week 25.  

Collections of 95% of the average annual collections varied between areas studied.  In 

Lincoln, Minnehaha, and Brookings county this occurred the latests between weeks 37 

and 39.  In the Brown, Hughes, and Beadle couties this had occurred by weeks 34 to 35.  

In the southwest region of South Dakota 95% of the average annual collections occurred 

in week 31.   Abundance of  Ae. vexans (or non-Cx. tarsalis mosquitoes) in the central 

and western portions of the state reached zero at or before week 40, while in the 

eastern portion of the state the presence of these mosquitoes could remain until as late 

as week 42. 

From the peak of both Ae. vexans and Cx. tarsalis, both species decline in 

average abundance until around week 40; however, the rate at which they decline is 

slower for Cx. tarsalis. This caused periods in which the average Cx. tarsalis abundance 

to meet or exceed Ae. vexans average abundance for certain weeks. This occures 

betweeen weeks 32 and 34 in Lincoln, Minnehaha, and Brookings counties, week 34 in 

Brown county, weeks 24, 25, 30 and 31 in Beadle county, and nearly all weeks for 

Hughes and southwest South Dakota. 
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Figure 3: Average mosquito collections per trap over all years. A) Lincoln/Minnehaha 

counties B) Brookings county C) Brown county D) Beadle County E) Hughes County F) 

Fall River/Custer/Pennington/Meade counties. 
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Relationship between mosquito abundance and human cases: 

We ran Spearman's rank correlations between human cases of WNV and all four 

measures of mosquito abundance (Cx. tarsalis and Ae. vexans trap per night totals and 

relative abundance) by year, and in no case was a relationship found (p > 0.05) The 

highest abundance of Cx. tarsalis occurred in both 2010 and 2011, yet the number of 

human cases for WNV were among the lowest (Fig 4).  Conversely, years with some of 

the highest numbers of WNV cases were years where the abundance of Cx. tarsalis were 

particularly low such as in 2006, 2007, and 2012. There were also years in which both 

human cases of WNV and abundance of Cx. tarsalis were both low (2008 and 2009), and 

where human WNV cases and Cx. tarsalis abundance were high (2013) (Figure 4A).  

When comparing the proportion of Cx. tarsalis and Ae. vexans relative to the total 

number of mosquitoes collected, we did see years of high human WNV incidence in 

which the proportion of Cx. tarsalis to Ae. vexans was higher such as in 2007 and 2013 

(Figure 4B). However, this trend was not seen in all years such as 2005 and 2012 which 

has large numbers of human cases and proportionally more Ae. vexans. 
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Figure 4: (A) Average abundance per trapping night of Ae. vexans and Cx. tarsalis using 

statewide data from 2004 to 2017 (Line left axis) along with human cases of WNV (Bar 

right axis).  (B) Proportion of Ae. vexans and Cx. tarsalis to total mosquitoes captured. 

Analysis of weekly mosquito averages and mean human cases of WNV show 

some positive relationships at a three week lag. Human WNV cases began increasing at 

week 24, and continued to increase long after the the Cx. tarsalis population peaked 

(Figure 5).  Human cases continue about three weeks after the disappearance of the Cx. 

tarsalis population.  The population decrease for Cx. tarsalis was fairly linear from week 

28 to the population disappearance at week 37.  The mean population for Ae. vexans 

decreased rapidly until week 33, and then increased again to week 35 until decreasing 

again down to zero at week 42. It should be noted that before the sharp increase of 

human incidence of week 29, Ae. vexans abundance drops by a third.  

The results of a Spearman rank correlation coefficient analysis to evaluate 

potential relationships between the abundance of Cx. tarsalis and Ae. vexans versus 

weekly human WNV cases statewide are shown in Table 3 at four different lags periods. 

In tests of significance, all coefficients differed from 0 significantly (p < 0.0001 in all 
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cases). Increases in both the average number of Cx. tarsalis and its ratio to the total 

population have a positive relationship with human cases of WNV, most noteably at a 

three week lag.   

 

Figure 5: Statewide average of the mosquitoes Ae. vexans and Cx. tarsalis captured per 

trap per week for all years against human cases denoted by the bar graph for years 

2004-2016. 

Table 3: Spearman rank correlation coefficients for weekly human cases statewide vs. 
average Cx. tarsalis, Ae. vexans and the ratio of Cx. tarsalis to total mosquitoes.   

  lag 0 lag 1 lag 2 lag 3   

Average Cx. tarsalis collected 0.607 0.74 0.827 0.865   
Average Ae. vexans collected 0.265 0.362 0.444 0.506   
Ratio of Cx. tarsalis to total 0.433 0.498 0.519 0.503   
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Discussion 

 This study updates and expands on previous studies of mosquito populations in 

South Dakota and compares patterns of population dynamics for Cx. tarsalis and Ae. 

vexans that might influence WNV transmission to humans throughout the NGP.  The few 

previous studies conducted from this region suggest that Cx. tarsalis and Ae. vexans are 

the two most common species present (Easton 1987a; Easton, Coker, and Ballinger 

1986; Gerhardt 1966), and this is supported by the present study where both species 

accounted for 88.8% of all species identified.  Our study has demonstrated that Ae. 

vexans is the primary nuisance mosquito for this region, and that Cx. tarsalis is the 

primary vector for WNV. All of the other 20 species reported in this study have been 

identified in other studies from SD or neighboring states (Bell, Mickelson, and Vaughan 

2005; DeGroote et al. 2007; Easton, Coker, and Ballinger 1986; Friesen and Johnson 

2014; Janousek and Kramer 1999). Small numbers of Aedes japonicus has been found in 

Iowa and Minnesota, but had not been identified in states within the NGP (Kaufman and 

Fonseca, 2014), and our report of a few specimens captured on two separate years in 

the Sioux Falls area constitutes a new record for SD. Recently, the potential ZIKA virus 

vectors, Aedes albopictus and Aedes aegypti, have been specifically targeted for 

surveillance within eastern South Dakota, and though neither species has been 

detected, Kaufman and Forseca (2014) point out that Ae. japonicus share similar habitat 
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preferences to Ae. albopictus, which indicates that the Sioux Falls area is a logical 

location for continued surveillance for these ZIKA vectors.    

 Because 97.7% of the mosquitoes collected in this study were from counties east 

of the Missouri River, the population intensities described more closely resembled 

distributions in Minnesota, Iowa and eastern Nebraska, than those found in neighboring 

states to the west. Further studies involving additional locations from western SD would 

be useful in determining predominant species in those locations as well confirming the 

presence of species previously recorded in South Dakota that did not appear in this 

study, such as Aedes nigromaculis. 

In addition to Cx. tarsalis, SD has three additional Culex species that can vector 

WNV, including: Culex pipiens L, Culex restuans Theobald, and Culex salinarius. In spite 

of the growing recognition that Cx. tarsalis is the primary vector for WNV throughout 

the NGP, no studies have evaluated the year-to-year population fluctuations occurring 

in this vector species, or the weekly population changes that occur throughout an 

average mosquito season within this region.    

The purposes of Gerhardt (1966) and older studies in South Dakota were to 

determine the mosquito species present, utilizing multiple trapping techniques 

throughout most regions of the state, and therefore, identified more species than was 

found in the present study utilizing only the carbon dioxide-baited trap.  This may be 

due to some mosquitoes having geographical limitations and do not appear in eastern 

South Dakota, such as Culiseta impatiens (Walker) that inhabits coniferous forests in the 
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western region of South Dakota and Aedes nigromaculis (Ludlow) that was caught in 

areas where our current study has limited data west of the Missouri River (Gerhardt 

1966). His study and ours do agree that after almost 50 years, Ae. vexans and Cx. tarsalis 

are still the most abundant mosquito species. However, our data shows that the peak 

abundance for Cx. tarsalis to be in July compared to Gerhardt’s observation of their 

peak a couple weeks before fall (Gerhardt 1966). Another study located in north central 

South Dakota also showed that Ae. vexans and Cx. tarsalis to be the most abundant 

species during their survey in 1984 and 1985.  This study was able to concur with our 

study that Cx. tarsalis is at its most abundant during July (Bolling et al. 2009; Fauver et 

al. 2016).   

 A short coming of these previous studies was a lack of geospatial comparisons 

between the raw abundance and specific proportional differences, as well as limited 

information on the temporal abundance of important mosquito species.  These previous 

studies showed Cx. tarsalis to be the most abundant ins Lincoln/Minnehaha counties, 

but our study showed Ae. vexans to be the most abundant. In Hughes County, Gerhardt 

reported Ae. vexans to be the most abundant mosquito species while this current study 

not only shows that Cx. tarsalis was the most abundant, but that Ae. vexans abundance 

was the lowest of the regions that identified this species. Our study showed that the 

abundance of an important nuisance mosquito, Ae. vexans, to be the most abundant 

species in South Dakota; however, this is only at the state level.  Regionally, Ae. vexans 

varies between predominant and secondary in abundance and this drop in relative 

abundance occurs from east to west through the state. This east to west trend in 
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reduced relative abundance of Ae. vexans is supported through studies neighboring SD.  

Iowa shows this species to be their most abundant mosquito statewide whereas studies 

in Montana showed relative abundance of Ae. vexans and Cx. tarsalis to be more similar 

(DeGroote et al. 2007; Friesen and Johnson 2014). These changes in relative abundance 

between vectors and non-vectors could impact human avoidance behaviors if important 

nuisance mosquitoes are not as abundant. Reduction in biting pressure generated by 

non-vector mosquitoes could reduce avoidance behaviors such as applying repellent or 

seeking shelter.  Previous studies have shown that the public is more inclined to take 

action to prevent bites when they are aware of mosquito presence (Zielinski-Gutierrez 

and Hayden 2006). 

 In addition to changes between vector and non-vector abundance, we saw a 

shift in abundance between two major WNV vectors. The increase in Cx. tarsalis 

abundance from the eastern portion of the state to the central portion has similar 

patterns in other surrounding midwestern states. Culex tarsalis is far less abundant in 

Iowa while having higher numbers of Cx. pipiens. In Nebraska, mosquito surveys showed 

the abundance of Cx. tarsalis increased from east to west while the abundance of non-

Cx. tarsalis mosquitoes decreased in overall abundance towards the central portions of 

the state. Another important WNV vector, Cx. pipiens, falls in abundance as we move 

westward in South Dakota. Iowa reported this mosquito as their second most abundant 

mosquito, while in Nebraska, both its abundance and relative abundance drops 

progressively towards the west. Studies conducted in states located to the west of 

South Dakota report that Cx. pipiens is either not present or less than 1% of total 
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captures. South Dakota appears to be a part of a large longitudinal boundary in the 

upper great plains for a transitional shift between two prominent WNV vectors, Cx. 

tarsalis and Cx. pipiens. These geospatial shifts between mosquito vectors and between 

vectors and non-vectors abundance may be important in monitoring human risk of 

mosquito transmitted pathogens.   

 Our study was not able to find any significant relationship between the 

abundance, or relative abundance between Cx. tarsalis and Ae. vexans and human WNV 

on a yearly basis. However, our statistical models were able to find a relationship 

between the weekly abundance of Cx. tarsalis and human infection of WNV particularly 

at the two and three week lags, which is expected as diagnosis of WNV in humans can 

take weeks after the infectious bite, though this may also be a result of the seasonality 

of both the vector and human cases of WNV. Vector abundance has been used in 

attempts to predict potential human risk to WNV and has been shown in other studies 

to positively correlate with a few week lag in human cases (Bolling et al. 2009; Kilpatrick 

and Pape 2013). However, infection rates of mosquitoes increased while the average 

abundance of the vector sharply decreased.  This could indicate that the proportion of 

infected mosquitoes is more important than the abundance of the potential vector.  In 

this situation, non-infected vectors act nuisance mosquitoes that could apply biting 

pressure to encourage avoidance behaviors in humans. Therefore, an increase in the 

number of infected mosquitoes with a decrease in overall numbers could be the driving 

factor in increased human cases. In another study, two cities where infection rates were 

similar, compared vector index and human cases and found a negative association 
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(Gujral et al. 2007). They concluded that while the infection rates were the same, the 

increase in vector index was due to increased mosquito abundance that resulted in 

avoidance behaviors.   

Recently, South Dakota has used a new model which has shown success over the 

past few years (Davis et al. 2017).  This new technique uses mosquito infection data 

along with climate variables to predict human risk of WNV, however, the model does 

not use any mosquito abundance data.  Understanding the roles and impacts of the 

various mosquitoes have on infection rates, human behaviors, and ultimately human 

infection of WNV, could enhance models currently used to predict human risk of WNV.    
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Chapter 3: Comparisons of Vector Abundance to Minimum Infection Rate and Mosquito 

Infection Growth Rate 

Abstract 

 Predicting human risk for West Nile virus (WNV) in North America has been a 

topic of study since its inception in 1999.  Many factors have been used to predict 

human risk including mosquito abundance and infection rate.  In this paper we intend to 

study the relationship between early season mosquito abundance and two different 

methods of estimating infection rate in six mosquito species found in the Northern 

Great plains. Mosquito abundance was calculated as the average collected per trapping 

night. Minimum infection rate (MIR) was calculated for all species that have tested 

positive for WNV in South Dakota to determine which species could potentially drive 

infection prevalence. Minimum infection rate and the mosquito infection growth rate 

(MIGR) were then compared, using the Pearson statistic, to mosquito abundance 

collected before July 15th from four counties in South Dakota. Infection rate for all 

species that have tested positive for WNV in order of highest infection rate to lowest 

are: Aedes fitchii, Culex pipiens/restuans, Aedes cinereus, Culex salinarius, Culex tarsalis, 

Aedes dorsalis, Culiseta inornata, and Aedes vexans. Of the six species, Aedes vexans, 

Aedes dorsalis, and Culex tarsalis abundance all had a negative relationship. Culex 

pipiens/restuans and Culex salinarius abundance had negative correlations with MIR but 

had positive correlations with MIGR. Culiseta inornata abundance maintained a positive 

correlation compared to both MIR and MIGR. Effects of temperature and precipitations 

were evaluated on the abundance of Ae. vexans and Cx. tarsalis as they are the most 
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abundant species found across the state.  Short term effects on Cx. tarsalis were 

positively correlated for both temperature and precipitation; however, these effects 

were relatively small compared to Ae. vexans. Precipitation had a large effect on Ae. 

vexans abundance at the two to three week lag period. Temperature had a positive, but 

declining, relationship with Ae. vexans abundance during the zero to two week lag 

period, turning to a negative relationship past the three week lag.  Understanding the 

relationship of mosquito abundance to mosquito infection rates within a system can be 

important in understanding the dynamic and complex system of virus amplification.  

Though most species abundance was negatively associated with infection rates, this 

could indicate that environmental conditions may have a greater driving force in viral 

amplification than just vector abundance alone.  The positive relationship seen with Cs. 

inornata could indicate that this early emerging mosquito may, in conjunction with 

environmental factors, have an important impact in early season amplification.  

Introduction 

 Human transmission risks associated with mosquito-borne diseases has become 

an area of recent study in disease modeling across the world (Reiner et al. 2013).  

Locally, data sets are often created and maintained in order to monitor these risks 

(Sucaet et al. 2008).  In South Dakota, mosquito species composition and abundance, 

West Nile virus (WNV) infection rate, and the number of human cases reported have 

been created and used since 2002 to help assess risk potential for human infection of 

WNV. These different data sets have been used to create a variety of methods for 

assessing risk (Chuang, Hockett, et al. 2012; Davis et al. 2017; Fauver et al. 2016; 
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Janousek and Kramer 1999; Jian et al. 2016; Karki et al. 2018; Kilpatrick and Pape 2013; 

Wimberly et al. 2014).    

A common method for assessing human risk to WNV is through monitoring the 

minimum infection rate (MIR) for vector mosquitoes, which is the ratio of virus positive 

pools of mosquitoes (usually tested in groups of less than 50 mosquitoes) to the total 

number of mosquitoes tested for that time period. Mosquito pool testing is useful in 

assessing the prevalence of WNV virus in the bridge vector mosquitoes (i.e. mosquitoes 

that feed on the bird reservoir and humans); however, in doing so, it is assumed in this 

technique that only one mosquito in a pool is infected, which can lead to an 

underestimation of the true infection rate if the virus is abundant in the population (Gu, 

Lampman, and Novak 2003). Additionally, this technique does not account for the 

varying levels of vector competency of multiple vectors within a geographical region.  

The vector index was designed to create a more complete picture by including the 

abundance of each vector, the species tendency to feed on mammals, infection 

prevalence in mosquitoes and an index for the vectors competence (Kilpatrick et al. 

2005). However, in diseases such as West Nile virus (WNV), the reservoir hosts are not 

mammals, and so higher ratios of mammal feeding will not necessarily increase human 

risk.  

Other effective tools in monitoring human risks to WNV include datasets that 

utilize meteorological and landscape ecology combined with  developed models which 

than then  assess human WNV risk based upon multiple factors, such as temperature 
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and rainfall in various times of the year (Parham and Michael 2010; Wimberly et al. 

2014), and land cover as an influence (Chuang, Hockett, et al. 2012).   

Recently, a combination of both infection rates and environmental effects have 

been combined to create prediction models for human WNV risk that have been 

successful in South Dakota (Davis et al. 2017).  This technique calculates mosquito 

infection growth rate (MIGR) and found that human risk was at its highest when the 

environmental conditions were met, and early season infection data showed that the 

virus was being amplified (Davis in press).  However, the process of collecting, sorting, 

transporting mosquitoes to testing facilities, infection testing, and ultimately reporting 

the results can take multiple weeks to complete.  This lag in testing shortens the 

window of predictive capabilities available to the model. 

Understanding the various impacts of these factors may help public health 

officials to predict and respond to threats of mosquito transmitted pathogens.  While 

some success has been had in predicting the severity and timing of WNV outbreaks in 

South Dakota, the relationship of early season mosquito abundance to virus prevalence 

has not been thoroughly studied. Mosquito control programs can often operate with 

limited resources (Kilpatrick and Pape 2013), so finding means for determining 

predictive factors that are both cost effective and available sooner should be a priority.  

From 2002 until 2004, all species collected in South Dakota were tested for 

infection of WNV. After this time, the South Dakota Department of Health focused on 

the vector mosquito Culex tarsalis (Kightlinger 2017) and has focused its efforts to 
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monitor the MIR of this species.  As mentioned in chapter 2, increases in Cx. tarsalis 

abundance are correlated with increases in human WNV cases within a season; 

however, the overall year-to-year abundance of the Cx. tarsalis does not relate to the 

overall incidence of human cases (Nielsen et al. 2008).  From a public health 

perspective, identifying all sources of potential transmission as well as predicting the 

level of amplification of virus within those vectors could further the predictive ability of 

current models.  

Multiple species that have been confirmed as potential vectors are present in 

the state.  While Cx. tarsalis was the most abundant vector species in the state, Culex 

pipiens was also present in the state, predominantly on the eastern side. Both species 

are known to switch from feeding on birds in the spring to mammals later in the 

summer (Goddard et al. 2002; Tempelis 1975).  Culex salinarius is known to feed on 

both birds and mammals, and may also contribute to the amplification of the virus 

(Molaei et al. 2006). Culiseta inornata is one of the first species to appear in traps, and 

while it does primarily feed on mammals, it is known to take avian blood meals 

(Tempelis 1975; Anderson and Gallaway 1987).  Having some avian host preference 

combined with a moderate ability to transmit WNV makes it an excellent candidate for 

early season amplification (Goddard et al. 2002).   Aedes vexans was the most abundant 

mosquito in many areas of the state, especially those with high numbers of human 

cases, and both Aedes vexans and Aedes dorsalis have experimentally been shown to 

transmit WNV; however, both of these species also prefer feeding on mammals 

(Kramer, Reisen, and Chiles 1998; Molaei and Andreadis 2006), In this study we aimed to 
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determine if mosquito abundance of these experimentally determined vectors present 

in South Dakota influence infection rates derived either from MIR or through MIGR. 

Additionally, we investigated precipitation and temperature effects on the change in 

abundance of two important species in the state.  

Materials and methods 

Mosquito collections: 

Mosquito surveillance was conducted in approximately half the counties in SD 

using C02-baited CDC miniature light traps with air-activated gates (John W. Hock Model 

1012-CO2, set to deliver 0.5 L CO2/min) from 2004 to 2017. Traps were suspended 

approximately 1.5 meters from the ground and located in areas with moderate-heavy 

tree cover and vegetation. Tapping occurred overnight and were activated using light 

sensors. Mosquito species were identified species level based upon morphological 

characteristics (Darsie 2005).  Due to the difficulty in consistently identifying Cx. pipiens 

and Cx. restuans correctly based upon morphological features alone, these two species 

have been combined for analysis. 

Infection rate: 

  Most mosquito testing was performed by the SDDOH using standardized 

testing (Lanciotti et al. 2000). Testing in Lincoln, Minnehaha, and Brown counties were 

conducted using the RAMP test (ADAPCO) according to the manufacturer’s 

recommendation. 
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 The minimum infection rate (MIR) was calculated as the total number of infected 

pools divided by the total number of mosquitoes tested, and then multiplied by 10,000; 

this is a standard summary statistic and assumes that any positive pool contained only 

one infected mosquito.  Data from any point in the year were used. The MIGR was 

defined as the rate at which positive pools appeared in the early season of a given year; 

that is, how quickly the virus replicated in the mosquito population. Specifically, the 

probability of a positive pool anywhere in the state before July 15th was modeled by a 

generalized linear mixed model linear in the day of the year, with random effects on 

intercept and slope by year (glmer function, lme4 library). The MIGR was then defined 

as the estimated slope of the fit. This is conceptualized below in Figure 6.  

 

Figure 6: Conceptualization of the mosquito infection growth rate (MIGR) in two years. 

Observations are represented by points, and the mixed effects model produces the fit 

line with a slope. 
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Relationship of mosquito abundance to MIR and MIGR: 

Female mosquito collections from Lincoln, Minnehaha, Brookings, and Hughes 

counties before July 15th of any year were log-transformed and averaged, to yield an 

early-season yearly abundance for every species and year for those species that have 

been known to be infected with WNV and are present every year from 2004 to 2017. 

These abundances were compared to the MIR and MIGR calculated above, and 

relationships between the two were sought with Pearson correlation coefficients (𝜌). 

Statistical model of mosquito abundance:  

Our goal was to predict the average weekly collections of Culex tarsalis and 

Aedes vexans as a function of temperature and precipitation. Collections of each species 

were averaged by week and county. 

Raw hourly mean temperature (deg C) and total precipitation (mm) data were 

obtained for all dates beginning Jan. 1, 2003 from the North American Land Data 

Assimilation System (NLDAS) atmospheric forcing data. Temperature and precipitation 

were obtained for every combination of county and hour by sampling the appropriate 

NLDAS layer at each county centroid. These values were then aggregated to compute 

daily mean temperature and total daily precipitation for every combination of county 

and day. 

Each combination of week and county was then associated with 362 lagged 

meteorological variables, including temperature and precipitation on the day the trap 
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was set (lag 0) up to 180 days or roughly six months prior (lag 180), giving each county 

and week a six-month meteorological history. 

Lagged model: 

The average mosquito collection of each species for each week within each of 

the four counties sampled was log-transformed and then modeled by a linear model, 

with indicator for county to capture spatial variation, and an Almon-type distributed (a 

sixth-degree polynomial) to summarize the relationship between abundance and two 

environmental covariates, precipitation and temperature (Almon 1965). The model was 

fit on all historical data from the counties in the lm function (stats package, R 3.4.3). 

Results 

 From 2002 to 2004, 18 different species of mosquitoes were tested for the 

presence of WNV; however, only 9 of these species resulted in a positive WNV 

detection.  After 2004, Cx. tarsalis was primary species tested for WNV, but Cx. 

pipiens/restuans was also tested in areas where they were commonly present (Table 4).  

Overall, Cx. tarsalis had the most number of mosquitoes (n = 790,046) and pools tested 

(n = 23,681), as well as the most positive pools (n = 1,205) which resulted in an MIR of 

15.25.  Culex pipiens/restuans being the second most tested mosquito in terms of 

number (n = 24,154) and pools (n = 2,238), had only 57 positive pool, yet has a higher 

overall MIR value (23.60) than Cx. tarsalis.  Culex salinarius also has a MIR value higher 

than Cx. tarsalis at 18.50, but with far fewer mosquitoes (n = 1,081) pools tested (n = 

230) so that the potential variability is also higher. Of the Aedes species, Aedes fitchii 
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had the highest infection rate (MIR = 84.03) but was the least tested mosquito with only 

238 mosquitoes tested.  Aedes dorsalis MIR (7.47) was lower than the Culex species but 

was still higher than Ae. vexans (MIR = 0.44) and Cs. inornata (MIR = 7.27). 

 To compare infection rates within similar time periods, the values for Cx. tarsalis 

and Cx. pipiens/restuans were calculated using only data collected from 2002 – 2004.  

Even in this reduced sample, Cx. tarsalis still had the most number of mosquitoes (n = 

29,941), pools tested (n = 976), and the MIR increased to 18.70.  Culex pipiens/restuans 

MIR value calculated at 37.42, the highest for that time.  

Table 4: Results of statewide WNV mosquito testing 2002 to 2017. 

Species 
# of 

pools 
# of mosquitoes 

tested 
# of positive 

pools 
MIR 

Ae. cinereus 67 525 1 19.05 

Ae. dorsalis 254 2676 2 7.47 

Ae. fitchii 37 238 2 84.03 

Ae. vexans 580 22743 1 0.44 

Cs. inornata 210 1376 1 7.27 

Cx. pipiens/restuans 2238 24154 57 23.60 

Cx. pipiens/restuans 
(2002-2004) 

312 1069 4 37.42 

Cx. salinarius 230 1081 2 18.50 

Cx. tarsalis 23681 790046 1205 15.25 

Cx. tarsalis (2002-
2004) 

976 29941 56 18.70 

 

The effects of mean abundance for each mosquito species tested on the 

cumulative yearly MIR in South Dakota varied among the species, but all had some 

negative effect (Figure 7).  The nuisance mosquito Ae. dorsalis and the vector species Cx. 

pipiens and Cx. salinarius showed little relationship to predicting that years MIR; 

however, the Pearson correlation statistic for all three of these species did show that 
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there is some potential negative relationship at -0.28, -0.18 and -0.06 respectively.   

Both the nuisance mosquito Ae. vexans and the vector Cx. tarsalis showed a negative 

relationship to yearly cumulative MIR with the Pearson correlation coefficient at -0.61 

and -0.60 respectively. Culiseta inornata was the only species to show a positive 

relationship with yearly MIR with a Pearson correlation coefficient at 0.63. 

 The effect of mean abundance for mosquitoes tested on the MIGR statistic in 

South Dakota also varied among species (Figure 8).  The nuisance mosquitoes Ae. 

dorsalis and Ae. vexans, as well as the primary vector mosquito Cx. tarsalis all showed a 

negative relationship to the MIGR.  The strongest relationship was with Ae. vexans with 

a Pearson coefficient of -0.82, followed by Ae. dorsalis at -0.50.  The vector, Cx. tarsalis 

had the negative relationship at -0.35. The remaining vector mosquitoes Cx. pipiens, Cx. 

salinarius, and Cs. Inornata all had positive, yet relatively weak, associations with MIGR 

with Pearson correlation coefficients at 0.27, 0.20, 0.13 respectively. 

 Comparing the results of the two techniques of calculating infection rate (Figures 

7 and 8), Ae. vexans maintains a strong negative relationship to infectivity of mosquitoes 

with a much stronger relationship shown to the MIGR. While Ae. dorsalis, Cx. tarsalis 

and Cs. inornata all maintain the direction of their influence on infection rates, they 

both had less influence in the MIGR model.  Both Cx. pipiens and Cx. salinarius had weak 

associations with measures of infection rate; however, the direction of influence 

switched with Cx. pipiens and Cx. salinarius, both becoming positively associated with 

MIGR.  
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 The relationship between the number of Cx. tarsalis mosquitoes collected and 

the mean level of precipitation and temperature was very week in that increases in 

precipitation and temperature increased abundance by only a small amount between 0 

and 3 weeks (Figure 9C and D). However, there was a strong positive association 

between precipitation and Ae. vexans population levels, particularly between two to 

three weeks after a rain event (Figure 9A). Temperature had a very short- term, positive 

relationship to Ae. vexans numbers; however, as temperatures increase we saw a 

negative effect on Ae. vexans abundance around the three week lag (9B).  
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Figure 7: Cumulative MIR of WNV in Culex tarsalis mosquitoes in a year, against the log 

mean mosquito collections per species before week 26 of the same year. 
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Figure 8: Estimated mosquito infection growth rate (MIGR) of WNV in Culex tarsalis 

mosquitoes in a year, against the log mean mosquito collections per species before 

week 26 of the same year.  
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Figure 9: Effects of precipitation and temperature on the abundance of Ae. vexans (A 

and B) and Cx. tarsalis (C and D). Relationships have been standardized so that one 

standard deviation increase in either environmental covariate is directly comparable. 
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Discussion 

 Our goal was to determine if the abundances of mosquitoes that are considered 

competent for transmission of West Nile virus and found infected with WNV in South 

Dakota influence the overall infection rates among all mosquitoes in the counties 

tested. We first looked at the mosquitoes that have been tested in South Dakota to 

determine those species that have been found positive for WNV and the rate in which 

they were.  

Aedes fitchii had the highest MIR of all the WNV positive mosquitoes tested in 

South Dakota but was also the least tested mosquito and is not often collected in traps.  

This particular species has been tested elsewhere and found to be infected with WNV, 

but is considered to primarily feed on mammals and not thought to be  a major 

contributor to amplification or human transmission (Phippen, Bio, and Phippen 2014) 

Aedes cinereus had the third highest MIR; however, this mosquito is also rarely found in 

South Dakota traps.  Both of these species may be limited in collection due to being 

univoltine species that generally emerge between April and June (Ross 1947), thus 

making them unlikely candidates for amplification of the virus, and thus removed from 

comparisons to MIR and MIGR comparisons. 

Culex tarsalis and Culex pipiens/restuans are generally considered to be the most 

important vectors for human WNV infection throughout the USA and they both have 

higher MIR values in South Dakota.  The Cx. pipiens/restuans species had a higher 

average cumulative MIR than Cx. tarsalis when considering all years and the subset 

between 2002 and 2004.  However, the infection rate of these mosquitoes for this time 



57 
 

period was less than half of infection rates found in North Dakota (Bell et al. 2006; Bell, 

Mickelson, and Vaughan 2005). This also contrasts other studies where Cx. tarsalis is 

considered the primary vector, as in Colorado reported the infection rate of Cx. tarsalis 

to be equal or higher than Cx. pipiens (Fauver et al. 2016)  Though infection rates are 

higher in Cx. pipiens/restuans in SD, the abundance of Cx. tarsalis is far greater than Cx. 

pipiens/restuans in all regions of the state (see Chapter 2), making Cx. tarsalis a much 

more important vector for WNV in South Dakota.  However, Cx. pipiens/restuans should 

be considered as a possible virus amplifier in the wild, especially in eastern South 

Dakota where it is more abundant.  Additionally, Cx. salinarius also had a similar MIR 

value to Cx. tarsalis between 2002 and 2004.  This mosquito has been collected less 

than both Cx. tarsalis and Cx. pipiens/restuans; however, Cx. salinarius is known to feed 

on both birds and mammals and is considered to be a bridge vector, especially in years 

of high virus prevalence (Bernard et al. 2001; Vaidyanathan et al. 1997; Crans 1964). The 

mosquito species Cs. inornata and Ae. dorsalis had MIR values that were less than half 

of the Culex species, and Ae. vexans was the lowest reported value despite being the 

most abundant mosquito in many areas of the state. Though they may have been found 

to be competent vectors, infection rates may be lower due to their preference for 

feeding on mammals. Both Cs. inornata and Ae dorsalis had similar MIR values; 

however, Cx. inornata is generally an early spring and Ae. dorsalis abundance can 

fluctuate greatly depending on meteorological conditions, which makes them potential 

candidates for impacting early season amplification of WNV.   
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 It is not entirely surprising that these relationships between the abundance of 

most of the vectors and infection rate are not positively correlated due to the 

complexity of the WNV transmission cycle.  However, there are some patterns within 

our results that do seem to offer some insights on how some pieces fit into the larger 

puzzle.   

 The primary vectors for WNV in South Dakota, Cx. tarsalis and Cx. pipiens 

showed very little relationship to rate of infection within themselves.  This indicates that 

while these species have a role in transmitting WNV humans, the abundance of these 

mosquitoes may not be directly related to the amplification of the virus, or at the least, 

is not the limiting factor in the environment.  The only species to show any positive 

correlation when comparing species abundance to the traditional calculation for 

infection rate (i.e. MIR) was Cs. inornata. This mosquito is the first to be found in 

mosquito traps in South Dakota, and is often noted as an early season mosquito in other 

areas of the United States (Reisen, Meyer, and Milby 1989).  Correlations have been 

found in previous studies that warmer winters and springs increase risk in human WNV 

infections (Wimberly et al. 2014).  Warmer winters and springs could allow for Cs. 

inornata to emerge earlier and allow for early amplification of WNV.  Both Ae. vexans 

and Ae. dorsalis showed a negative association with both measurements of infection 

rate described within this paper.  It may not be that these two species directly impacting 

infection rates of Cx. tarsalis, and may instead indicate that environmental factors 

favoring to these two species are unfavorable to the amplification of WNV and so an 

investigation into environmental factors that drive these two species was done.  



59 
 

  The effects of precipitation on Ae. vexans abundance was considerably higher 

than its effects on Cx. tarsalis, especially between the two and three week lags.  This is 

somewhat expected as the strategies for reproduction differs between these two 

species. Whereas, Ae. vexans lays its eggs on a dry substrate and waits to be submerged 

with water following large rain events to trigger the beginning of their life cycle, Cx. 

tarsalis lays its eggs directly on standing water which can't exist without a precipitation 

event. The positive association with precipitation in Ae. vexans is contradictory to 

another in our region.  In Iowa, precipitation was found to have a negative association 

between the 2 and 3 week lag period (DeGroote et al. 2007). However, they claimed low 

collections of mosquitoes in early samples may have strongly influenced their 

calculations and this study was based upon samples for one year.  A second Iowa study 

using eight years of data found the impacts of precipitation on Cx. tarsalis and Ae. 

vexans to be similar to ours showing that large rainfall events left Cx. tarsalis abundance 

relative unchanged while Ae. vexans abundance increased significantly (Rowley 1995). 

The effect of increased temperatures on Cx. tarsalis populations were very 

similar to that of precipitation in that increased temperatures showed only a small 

increase in abundance. Short term lags in temperature have a positive effect on Ae. 

vexans which move towards a negative effect as it nears a three week lag, which is 

similar past studies done in South Dakota (Chuang, Henebry, et al. 2012). Again, this 

contradicts other local studies that showed increased temperatures positively related to 

Ae. vexans abundance (DeGroote et al. 2007). This negative effect may explain the 

general bimodal abundance pattern we see statewide in Ae. vexans population 
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dynamics across the state.  Peak abundance for Ae. vexans generally occurs during week 

27 (Chapter 2 Figure 2) which is when temperatures begin to reach their highest across 

the state. High temperatures could then be driving abundance downward until 

temperatures cool enough to allow for Ae. vexans populations to rebound. While higher 

temperatures do decrease time for mosquito larvae to mature, temperatures above 30o 

have been shown to decrease survival rate (Brady et al. 2013; Shelton 1973). 

Temperature has also been strongly associated with higher risk of WNV transmission 

(Davies in press), which could be the result of lower Ae. vexans abundance that could 

alter human behavior that would make them vulnerable to vector mosquitoes (Gujral et 

al. 2007). The weekly average abundance of Cx. tarsalis and Ae. vexans has previously 

been shown to have some relationship to weekly average human cases of WNV (Chapter 

2).   

These approaches do have some limitations in that it is taking a linear approach 

to what is possibly a non-linear system.  Non-environmental factors, such as immunity 

levels in reservoir hosts, could dramatically impact amplification of virus in vectors 

(Allan et al. 2009). Additionally, the effects of mosquito abatement programs could 

reduce amplification by reducing vector abundance. However, if these mosquito control 

steps should only impact infectivity after they are implemented, and often they are only 

implemented when nuisance mosquito populations are high, or virus has been detected 

in vectors of human concern.  These measures are unlikely to impact very early season 

amplification which could be accomplished by Cs. inornata. Further studies should be 

done to investigate the infection rate and roles of early season mosquitoes to the 
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amplification of WNV in the wild.  Knowledge of this could lead to factors that are 

available sooner and with greater cost effectiveness that could increase the lead time 

for prediction human risk of WNV.  
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Chapter 4: Permethrin Susceptibility for the Vector Culex tarsalis and a Nuisance 

Mosquito Aedes vexans in an Area Endemic for West Nile Virus 

Abstract 

In 2016, we compared susceptibility to the insecticide, permethrin, between the 

West Nile virus vector, Culex tarsalis Coquillett, and a major nuisance mosquito, Aedes 

vexans (Meigen) using baseline diagnostic dose and time values determined using the 

CDC bottle bioassay protocol. Mosquitoes were collected in the wild in Brookings 

County, South Dakota, situated in the Northern Great Plains of the USA. The determined 

diagnostic dose and time were then used in 2017 to validate these measurements for 

the same 2 mosquito species, collected at a second location within Brookings County. 

The diagnostic dose was determined for multiple time periods and ranged from 27.0 

µg/ml at 60 min to 38.4 µg/ml at 30 min. There was no significant difference detected in 

mortality rates between Cx. tarsalis and Ae. vexans for any diagnostic time and dose. 

For practical purposes, mosquitoes in 2017 were tested at 38 µg/ml for 30 min; 

expected mortality rates were 93.38% for Cx. tarsalis and 94.93% for Ae. vexans.  Actual 

2017 mortality rates were 92.68% for Cx. tarsalis and 96.12% for Ae. vexans, validating 

the usefulness of this baseline at an additional location and year. 

Introduction 

Mosquito transmission of arboviruses to humans depends on multiple factors 

(Kilpatrick et al. 2005; Kilpatrick and Pape 2013), including human behavior [3]. Gujral 

et. al. (Gujral et al. 2007) suggest that human behavioral risk factors, such as the use of 

personal protectants, can be influenced by the “biting pressure” created by local 
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mosquito populations. These populations include potential vector species and non-

vector nuisance mosquitoes, and the presence of many nuisance mosquitoes could 

increase the use of personal protectants or avoidant behavior, thereby reducing the 

chance of potential viral transmission by vector mosquitoes. Conversely, the lack of 

abundant nuisance mosquitoes may have the opposite effect. Therefore, it is important 

to consider nuisance as well as vector mosquitoes when developing comprehensive 

strategies for mosquito reduction and disease control. 

Community adulticiding efforts can limit both disease and nuisance issues caused 

by mosquitoes, but the common use of insecticides has prompted concerns over 

growing resistance to insecticides in mosquito populations. Permethrin, a broad-

spectrum insecticide in the pyrethroid family, is the primary adulticide used in the 

United States (EPA) and is used for  agriculture to reduce crop and livestock pests 

(Catangui and Berg 2002; Campbell, Boxler, and Davis 2001), as well as in residential 

areas to control nuisance and vector mosquito populations. Long-term usage of this 

class of insecticide has been shown to cause increased resistance in mosquito 

populations (Naqqash et al. 2016). Because of its broad use and the documented cases 

of resistance, monitoring of permethrin resistance is important to mosquito control 

efforts (Brogdon and McAllister 1998b; Strong et al. 2008).  

Most studies on insecticide resistance have focused primarily on vector 

mosquito species, and few have included common nuisance mosquitoes within 

arbovirus-endemic areas. Richards et al. (2017) evaluated the susceptibilities of a 

potential Zika virus (ZIKV) vector (Aedes albopictus (Skuse)) and 2 West Nile virus (WNV) 
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vectors (Culex pipiens L. and Culex quinquefasciatus (Say)) to 6 different common 

insecticides in a study that included 26 mosquito populations from four different U.S.A. 

regions. They also included the tree-hole mosquito, Aedes triseriatus (Say), in this study, 

though this species is not a significant vector for Zika or WNV and is generally only a 

minor species in most regions. They found that the Aedes species tested were less likely 

to exhibit resistance when compared with Culex species, particularly for etofenprox and 

malathion, and found that all Aedes spp. populations tested were either susceptible or 

possibly resistant to permethrin while most Culex spp. populations were resistant. Given 

the potential role of nuisance mosquitoes in encouraging the use of personal 

protectants, the susceptibility of non-vector mosquitoes to insecticides should be 

evaluated especially in arbovirus-endemic regions where nuisance species are far more 

abundant than the vector species.  

In the U.S.A. Northern Great Plains, Culex tarsalis Coquillett is the primary vector 

for WNV, and Aedes vexans (Meigen) is generally the most predominant nuisance 

mosquito (Barr 1958; Easton, Coker, and Ballinger 1986; Bell et al. 2006; Barker et al. 

2009). Recently, Ae. vexans has been reported as a potential vector for ZIKV 

(Gendernalik et al. 2017; O’Donnell et al. 2017); however, there have been no reported 

cases of local transmission of ZIKV in the Northern Great Plains. In eastern South 

Dakota, Ae. vexans populations generally swell to very large numbers in the spring and 

remain high during the WNV transmission season (Chuang et al. 2011). The aggressive 

biting of this nuisance mosquito can motivate people to use personal protection (Gujral 
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et al. 2007).  Despite its potential public health significance, we have found no studies 

directly comparing permethrin susceptibility for Cx. tarsalis and Ae. vexans.   

Brookings County, located in east-central South Dakota, is the fifth-most 

populated county and contains the fourth largest city in South Dakota, though it mostly 

consists of farmland. Both species of interest are abundant within this county. The city 

of Brookings has utilized a mosquito control program involving permethrin for over 20 

years, and the small cities in the county have had similar programs for over 10 years. 

The purpose of the present study is to compare susceptibilities of Ae. vexans and Cx. 

tarsalis to reagent-grade permethrin in a CDC bottle bioassay protocol involving 

multiple concentrations and time periods. For this comparison, we used adult 

mosquitoes freshly captured in Brookings County using CO2 baited light traps.  Use of 

wild-caught adult mosquitoes in this type of bioassay is considered acceptable from 

both the CDC bottle bioassay protocol and the WHO test procedures for insecticide 

resistance, and wild-caught adult mosquitoes have been used in previous studies where 

mosquito aquatic stages were not consistently available (CDC 2013; Rakotoson et al. 

2017; WHO 2016; Marcombe et al. 2017). Because both species prefer to lay their eggs 

throughout natural habits, harvesting Cx. tarsalis and Ae. vexans eggs and then growing 

adults for the assay was not practical, and results can be inconsistent when rearing 

mosquitoes from eggs in a lab (Strong et al. 2008). In our area, the consistent collection 

of Cx. tarsalis larvae in large enough numbers to adequately compare its susceptibility 

to Ae. vexans was also not practical.  To minimize concerns about potential high 

variability for data collected from wild-caught adults, the susceptibility comparisons 
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involved a large number of mosquitoes evaluated in multiple assays conducted 

throughout the mosquito season.  The use of field collected mosquitoes for this 

comparison also allowed for testing both species together in the same bottles and 

testing them in the various natural physiological conditions representative of the wild 

populations’ age distribution at any given time (WHO 2016).   

The data from this study were used to calculate a base-line diagnostic dose and 

time for permethrin susceptibility for both species that can be used in future studies for 

evaluating changes in permethrin resistance from this region.  We have found no studies 

identifying values for diagnostic dose and time on permethrin susceptibility for Cx. 

tarsalis and Ae. vexans, and none have been reported to the Arthropod Pesticide 

Resistance Database (Database] 2014). According to the Centers for Disease Control and 

Prevention (CDC) diagnostic dose and times should be determined for each type of 

insecticide used, and for each species of concern within a region (CDC 2013), and studies 

often emphasize the lack of reported diagnostic dose and times reported for Culex 

species, and more so with Cx. tarsalis (Richards et al. 2017). CDC guidelines recommend 

creating the diagnostic dose and time from susceptible populations; however, 

permethrin is used throughout the state for both agricultural and mosquito control 

purposes. The Center for Disease Control guidelines also recommend establishing these 

baselines from mosquito populations in areas where treatments are applied as a 

reference point for future comparisons.   
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Methods 

Mosquito collections: 

 From June through August of 2016, mosquitoes were captured using CDC 

Miniature Light Trap Model 512 equipped with photoswitches and air-actuated gate 

system (John W. Hock Company, Gainesville, Florida) and baited with CO2 at a farm 

located 1.8 km from the southwestern city limits of Brookings, South Dakota (44.25o, -

96.81o). This site was selected as populations of Cx. tarsalis and Ae. vexans are present 

in large enough abundances to test mortality rates for multiple permethrin 

concentrations. This location is also on the outskirts of a city where insecticide fogging 

applications targeting mosquitoes have occurred sporadically for 25 years. In June of 

2017, mosquitoes were again collected using the same method but from Oakwood State 

Park (44.45o, -96.98o) located 25 km northwest. In neither year were targeted mosquito 

control applications of insecticide administered near either site. 

CDC bottle bioassay: 

 The CDC bottle bioassay was chosen for its effectiveness in testing field-collected 

mosquitoes (McAllister, Godsey, and Scott 2012; Sun et al. 2014). Calibration of the CDC 

bottle bioassay was performed per the CDC Bottle Bioassay protocol (CDC 2013). These 

guidelines recommend that a baseline diagnostic value should be determined for use in 

comparisons for future resistance testing on specific mosquito species and geographical 

regions. In determining the diagnostic dose and times, we identified a concentration 

that would result in 100% mortality between 30 and 60 min, and then estimated the 

LC98, or the lowest concentration which was lethal for 98% of mosquitoes at those time 



68 
 

spans. For the 2016 bioassay calibration, tested concentrations were 1, 10, 20, and 40 

µg/ml of laboratory grade permethrin (Sigma-Aldrich, St. Louis, Mo.) suspended in 

acetone. Due to varying physiological states of wild-caught mosquitoes, a large sample 

size was used for each replicate.  Additionally, any mosquitoes that died or had physical 

injuries at the start of each trial, such as broken or missing wings or legs, were excluded.  

Replicates of each concentration were run until at least 100 mosquitoes of each species 

were tested. Each test bottle was cleaned with detergent, rinsed, and then dried in an 

oven ensure removal of residual contaminants. Each treatment consisted of clear 250 ml 

bottles coated with 1 ml of a specific concentration containing permethrin with 1 

control bottle coated with 1 ml of acetone only. For the 2017 validation bioassays, 

permethrin was prepared at a concentration of 38 µg/ml.  

 Prior to testing, captured mosquitoes were maintained in holding cages in the 

laboratory for 3 to 4 hours to acclimate to their environment. Mosquitoes were 

transferred to the experimental bottles via a mechanical aspirator to avoid introducing 

condensation to the treatment bottles. The CDC bottle bioassay protocol recommended 

determining diagnostic times between 30 and 60 minutes so mosquito mortality was 

measured every 5 min for 60 min. Mosquitoes that would no longer right themselves 

after slowly rolling the bottle were considered dead. Mosquitoes that survived past 60 

min were removed from the bottle and euthanized separately. During the 2017 

bioassays, mosquitoes were only evaluated for 30 min. Afterwards, all mosquitoes were 

identified to species. Only data from Cx. tarsalis and Ae. vexans were used in this study. 
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Corrected mortality was not needed as no mortality occurred in any of the control 

bottles. 

Statistical analyses: 

 Using mosquitoes collected in 2016, a probit model (glm function, stats package, 

R x64 version 3.2.2) was used to model the relationship between proportion mortality 

(dead per total in bottle, binomial family) as a linear function of time, with slope and 

intercept depending on species as a factor and concentration linearly. The estimated 

diagnostic dose or LC98 was defined as the lowest dose for which the expected 

mortality exceeded the susceptibility threshold defined by the CDC (98% mortality) for 

each species and concentration at 30, 45, and 60 min (CDC 2013; WHO 2013).  

A likelihood ratio test (ANOVA function, stats package) was performed against a 

simpler model in which mortality depended on concentration and time but not species, 

to determine whether the 2 species differed by mortality in any systematic way during 

the experiment. For analysis of the 2017 mosquito data, 95% exact confidence intervals 

were calculated for proportion mortality at the chosen dose and time (binconf function, 

Hmisc package) to compare with estimates obtained in 2016. 

Results 

Culex tarsalis (n = 421) and Ae. vexans (n = 1084) were tested in 2016 at various 

concentrations of permethrin. An additional 159 Cx. tarsalis and 207 Ae. vexans were 

used in control bottles containing acetone only.  No mortality in the control bottles 

occurred during the experimental period. Observed mortality rates as functions of time, 

species, and permethrin concentration are displayed in Figure 10. Mortality rates 
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increased as permethrin concentration increased and were nearly linear in time for each 

concentration of permethrin except for 40 µg/ml, which reached near 100% mortality at 

approximately 30 min for both species. At 20 µg/ml, mortality reached 50% for both 

target species at 60 min.  

The estimated LC98 for Ae. vexans was 38.4 µg/ml at 30 min and 27.0 for 60 min. 

For Cx. tarsalis it was 38.3 at 30 min and 27.5 µg/ml at 60 min (Table 5). This showed 

that increased permethrin concentrations achieved the same mortality in less time for 

both species. For a given time, mortality rates are similar between the 2 species.  We 

saw some variation at longer times using 1 ug/ml, but this may have been due to one 

trial rapidly spiking to 70% mortality near 55 minutes (Fig.10 and 11A). Mortality rates at 

10 ug/ml were consistent for both species at most times with one trial reaching near 

100% mortality at 60 minutes (Fig. 10 and 11B). Aedes vexans showed a slightly higher 

mortality rate at 20 ug/ml for between 30 and 60 minute time intervals (Fig.10) with 1 

trial reaching 100% mortality at 40 minutes and a second at 60 minutes (Fig. 11C).  

Mortality rates at 40 ug/ml for Cx. tarsalis were slightly higher than Ae. vexans at earlier 

times; however, both species reached 100% mortality at approximately the same time 

interval (Fig. 10). Mortality rates reached 100% in all trials within the bioassay time limit. 

Using a diagnostic time longer than 30 min is likely inadvisable, as both species showed 

100% mortality soon after that for the 40 µg/ml concentration (Fig 10).  
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Figure 10: Observed mortality rates for Cx. tarsalis and Ae. vexans as a function of time 

for various concentrations of permethrin in 2016. 

Table 5. LC98 Diagnostic doses and times for Cx. tarsalis and 
Ae. vexans with lower (LCL) and upper (UCL) confidence 
limits.   

Species Time (min) 
Diagnostic dose 

(ug/ml) 
LCL 

(ug/ml) 
UCL   

(ug/ml) 

Cx. tarsalis 30 38.3 36.9 40.0 

Ae. vexans 30 38.4 37.0 40.0 

Cx. tarsalis 45 32.1 30.8 33.6 

Ae. vexans 45 31.8 30.5 33.3 

Cx. tarsalis 60 27.5 26.3 28.8 

Ae. vexans 60 27.0 25.9 28.3 

 

(%
) 
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Figure 11: Observed mortality rates for each bottle bioassay replicate at time intervals 

for 1 ug/ml (A), 10 ug/ml (B), 20 ug/ml (C), and 40 ug/ml (D) of permethrin. 

 

A likelihood ratio test between the main model, used to calculate LC98s, and a 

simplified model, in which species was no longer a predictor, indicated that the 

mortality rates of the 2 species had statistically indistinguishable rates of mortality over 

concentration and time (p = 0.7803), and any function of model estimates (such as the 

diagnostic dose for a given time) is unlikely to differ between the 2 species. 

During the 2017 study, the estimated diagnostic doses determined in 2016 were 

rounded to 38 µg/ml for both species at 30 minutes. This dose was chosen rather than 

the estimated LC98s both for convenience and also so that at least some (approximately 

1 in 20) mosquitoes should be alive at 30 min. The mortality rates based on our model’s 

diagnostic dose estimated mortality at 30 minutes to be 94.93% for Ae. vexans and 
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93.38% for Cx. tarsalis. In early 2017, 380 Ae. vexans and 123 Cx. tarsalis adult females 

were used to validate these calculations. Observed mortality rates for mosquitoes at the 

diagnostic time for Ae. vexans populations collected in 2017 at Oakwood State Park 

were 297/309 = 96.12% with a 95% exact confidence interval of 93.31 to 97.98%. 

Mortality rates for Cx. tarsalis collected at Oakwood State Park at the diagnostic time 

were 114/123 = 92.68% with 95% exact CI (86.56, 96.60%). In all cases, the 95% CI for 

observed mortality in 2017 contained the expected mortality rate estimated in 2016. 

For both species, estimated and observed mortality rates as functions of time are 

displayed in Figure 15. 

 

 

Figure 12: Bioassay mortality rates for Ae. vexans (A) and Cx. tarsalis (B) collected in 

2017 (solid circles) using 38 µg/ml of permethrin, against estimated calibration curve 

(line) with 95% confidence interval (grey shaded band) generated from data collected in 

 Time in Minutes 
  

(A) (B) 
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Discussion 

This study is the first direct comparison of the permethrin susceptibilities of a 

major vector for WNV, Cx. tarsalis, to a major nuisance mosquito, Ae. vexans, where 

WNV is endemic to the region, and was conducted using collected adult mosquito from 

eastern South Dakota exposed to multiple concentrations of permethrin in a CDC bottle 

bioassay.  Scatter-plots of the data showed that while there were some variations in 

individual bottles, there was good consistency in bottles for each permethrin 

concentration (Fig.11).  The overall results showed similar mortality rates at all times for 

all concentrations between Cx. tarsalis and Ae. vexans, and we found no statistical 

difference between the calculated mortality rates of these 2 species. Comparisons were 

made based upon calculated diagnostic dose and times as recommended by CDC when 

testing for insecticide resistance (CDC 2013), and the similarities between each species 

were also reflected in the calculated diagnostic doses and times. The susceptibilities of 

Ae. vexans and Cx. tarsalis remained constant between 2016 and 2017, between 2 study 

sites, and within and between both species. A diagnostic dose and time has not been 

previously reported for either of these species.  Our calculated value for both species 

was 38 µg/ml in 30 min, which is more than twice the recommended diagnostic dose 

and time of 15 µg/ml at 30 min listed for Aedes spp. in the CDC bioassay protocol (CDC 

2013). A California study used 30 µg/ml of permethrin and was unable to knockdown 

50% of their wild-caught Cx. pipiens (McAbee et al. 2004). Richards et. al. (Richards et al. 

2017) found 2 Aedes spp. collected from 13 different locations within the United States 

that were either susceptible or possibly resistant with mortality rates ranging from 91% 
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to 100% using 15 µg/ml doses at 30 min. This same study tested 26 Cx. pipiens collected 

from St. Paul, Minnesota and achieved 96% mortality using 15 µg/ml permethrin at 30 

min. A similar study to ours tested 49 Cx. tarsalis adults reared from field caught larva 

and determined a median lethal dose of 50 µg/ml; however, they reported that this 

same concentration caused 100% mortality the following year and had to reduce their 

median lethal dose to 10 µg/ml (Strong et al. 2008).   

Our trials were able to attain consistent results from mosquitoes with varying 

physiological attributes between years and geographical locations, and the results 

should encapsulate the variation found in the wild. This is essential in disease control 

and mosquito abatement programs whose primary concern is to reduce vector and/or 

nuisance populations (Brogdon and McAllister 1998a) We determined multiple options 

for base-line diagnostic doses and times that can be used in the Northern Great Plains. 

By using this method, we have a basis for comparing various species levels of 

susceptibility and allows for future testing and comparisons of resistance in and 

between Cx. tarsalis and Ae. vexans using the CDC bottle bioassay.  

Both the vector and nuisance mosquitoes are heavily targeted within the state of 

South Dakota due to the former’s ability to transmit WNV and the latter’s large 

abundance creating a nuisance for residents. Since nuisance mosquitoes may help 

motivate humans to seek shelter or use personal protection (Gujral et al. 2007), higher 

susceptibility to insecticides in nuisance mosquitoes compared to vector mosquitoes 

may cause mosquito control efforts to actually increase human risk for WNV. Our 

findings showed that the susceptibility to permethrin between the WNV vector, Cx. 
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tarsalis, and the nuisance mosquito, Ae. vexans, were the similar in this region and that 

treatment will be equally effective, thus it will not diminish the nuisance mosquito more 

than the vector. There is a great need for future studies to understand the level of 

insecticide resistance developing in vector mosquitoes throughout the United States; 

however, these studies should also include predominant nuisance mosquitoes in areas 

where both groups are abundant to ensure that susceptibility of the vectors are similar 

or higher so that attempts to control vector species will not have a significantly greater 

effect on nuisance mosquitoes, and thus lowering the avoidance behaviors in humans.   
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Final Discussion 

This body of work, as a whole, was designed to use multiple methods of 

surveillance to enhance the body of knowledge surrounding the risk mosquitoes pose in 

in three areas: 1) Assess the current mosquito fauna presence and abundance in South 

Dakota, 2) evaluate the vector risk for these mosquito species and compare their 

abundance to virus amplification, and 3) evaluate the effectiveness of a commonly use 

insecticide on the primary mosquitoes of South Dakota.  

 An older study in South Dakota determined the mosquito fauna through the use 

of collection techniques as well as data from other authors (Gerhardt 1966). The author 

from the study acknowledged that their data set was limited; however, this list compiled 

from Gerhardt contained more species than what we found in the course of our study.  

This may be due to some mosquitoes having geographical limitations and do not appear 

in eastern South Dakota, such as Culiseta impatiens (Walker) that inhabits coniferous 

forests in the western region of South Dakota (Gerhardt 1966). His study and ours do 

agree that after almost 50 years, Ae. vexans and Cx. tarsalis are still the most abundant 

mosquito species. However, our data shows that the peak abundance for Cx. tarsalis to 

be in July compared to Gerhardt’s observation of their peak a couple weeks before fall 

(Gerhardt 1966). Another study located in north central South Dakota also showed that 

Ae. vexans and Cx. tarsalis to be the most abundant species during their survey in 1984 

and 1985 (Easton 1987b).  This study was able to concur with our study that Cx. tarsalis 

is at its most abundant during July.   
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 A short coming of these previous studies was a lack of geospatial comparisons.  

These previous studies showed Cx. tarsalis to be the most abundant ins 

Lincoln/Minnehaha counties, but our study showed Ae. vexans to be the most 

abundant. In Hughes county, Gerhardt reported Ae. vexans to be the most abundant 

mosquito species while this current study not only shows that Cx. tarsalis was the most 

abundant, but that Ae. vexans abundance was the lowest of the regions that identified 

this species. 

 The increase in Cx. tarsalis abundance from the eastern portion of the state to 

the central portion has similar patterns in other surrounding midwestern states. Culex. 

tarsalis is far less abundant in Iowa while having higher numbers of Cx. pipiens. In 

Nebraska, mosquito surveys showed the abundance of Cx. tarsalis increased from east 

to west while the abundance of non-Cx. tarsalis mosquitoes decreased in overall 

abundance towards the central portions of the state. Another Important WNV vector, 

Cx. pipiens, falls in abundance as we move westward in South Dakota. Iowa reported 

this mosquito as their second most abundant mosquito, while in Nebraska, both its 

abundance and relative abundance drops progressively towards the west. This 

geospatial shift in mosquito species abundance may be important in monitoring human 

risk of mosquito transmitted pathogens.  Differences in relative abundance between 

vectors and non-vectors can impact amplification of viruses and change human 

avoidance behaviors if important nuisance mosquitoes are not present.   

 Recently, South Dakota has used a new model which has shown success over the 

past few years (Davis et al. 2017).  This new technique uses mosquito infection data 
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along with climate variables to predict human risk of WNV, however, the model does 

not use any mosquito abundance data.  Our statistical models were able to find a 

relationship between the weekly abundance of Cx. tarsalis and human infection of WNV 

particularly at the two and three week lags, which is expected as diagnosis of WNV in 

humans can take weeks after the infectious bite, though this may also be a result of the 

seasonality of both the vector and human cases of WNV.  Abundance is often used as a 

part of an equation to calculate a vector index when predicting WNV risk to humans 

(Kilpatrick and Pape 2013). We also investigated if a relationship of the proportion of 

the vector mosquito to the total population, we found this relationship to be not as 

strong than Cx. tarsalis alone. While we did find a statistically significant and strong 

association between Cx. tarsalis and human infection of WNV, seasonality was still a 

better predicter. Even though the strength of the correlation when including other non-

vector mosquitoes was weaker, the impact of non-vector mosquitoes may still be an 

important factor in WNV transmission through its biting pressure it applies to humans. 

 Understanding of the population dynamics of the state’s vector mosquitoes is an 

important resource to state health departments and mosquito abatement programs.  

Understanding the ebb and flow of the vector abundance can help direct resources to 

specific times within a season. The use of historical mosquito data and recent 

meteorological events can allow for efficient vector collections for pathogen testing.  

This also allows for mosquito abatement programs to proactively treat for prevalent 

nuisance mosquito populations before they can impact the public.  Though our study did 

not find a strong relationship between vector and nuisance mosquito populations on 
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human WNV transmission at a state wide level, additionally studies at local levels where 

human WNV transmission is common may yield further insight to how population 

dynamics of the mosquitoes present may influence human infection of WNV. 

 Our goal was to determine if the abundance of mosquitoes considered 

competent for transmission of West Nile virus found in South Dakota influence overall 

infection rates found in South Dakota. We first looked at the mosquitoes that have been 

tested in South Dakota to determine those species that have been found positive for 

WNV and the rate in which they were.  

Aedes fitchii had the highest MIR of all the WNV positive mosquitoes tested in 

South Dakota but was also the least tested mosquito and is not often collected in traps.  

Aedes cinereus had the third highest MIR; however, this mosquito is also rarely found in 

South Dakota traps.  Both of these species may be limited in collection due to being 

univoltine species that generally emerge between April and June (Ross 1947), thus 

making them unlikely candidates for amplification of the virus, and thus removed from 

comparisons to MIR and MIGR comparisons. 

The two species generally considered to be the vectors for human WNV infection 

remain higher end of the MIR scale in South Dakota.  The Cx. pipiens/restuans species 

had a higher MIR across all years studied and when evaluation infection rate between 

2002 and 2004 only when compared to Cx. tarsalis. Though infection rates are higher, 

the abundance of Cx. tarsalis is far greater than Cx. pipiens/restuans in all regions of the 

state, making Cx. tarsalis the more likely primary vector for WNV in South Dakota.  
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However, Cx. pipiens/restuans should be considered as a possible virus amplifier in the 

wild, especially in eastern South Dakota where it is more abundant.  Additionally, Cx. 

salinarius also had a similar MIR value for the years it was tested.  This mosquito has 

been collected less than both Cx. tarsalis and Cx. pipiens/restuans; however, Cx. 

salinarius is known to feed on both birds and mammals and so should also be 

considered an important vector, especially in years of high virus prevalence.  

The remaining species, Cs. inornata, Ae. dorsalis, and Ae. vexans were on the 

lower end of the infection rate scale.  Though they may have been found to be 

competent vectors, infection rates may be lower due to their preference for feeding on 

mammals.  Aedes vexans is the most abundant mosquito found in the state, and a large 

number were tested during the first few epidemic years of WNV in the state, yet only 

one pool tested positive.  Both Cs. inornata and Ae dorsalis had similar MIR values; 

however, Cx. inornata is generally an early spring and Ae. dorsalis abundance can 

fluctuate greatly depending on meteorological conditions, which made them potential 

candidates for impacting early season amplification of WNV. 

 It is not entirely surprising that these relationships between the abundance of 

most of the vectors and infection rate are not positively correlated due to the 

complexity of the WNV transmission cycle.  Modeling attempts using meteorological 

data, mosquito abundance, mosquito infection rates, vector competency, avian 

population susceptibilities, host-seeking patterns, host-feeding shifts, and host 

behaviors have not been perfect at predicting WNV transmission.  However, there are 
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patterns within these results that do seem to offer some insights on how some pieces fit 

into the larger puzzle.   

 The primary vectors for WNV in South Dakota, Cx. tarsalis and Cx. pipiens 

showed very little relationship to rate of infection within themselves.  This indicates that 

while these species have a role in transmitting WNV humans, it may not be directly 

related to the amplification of the virus, or at the least, is not the limiting factor in the 

wild.  The only species to show any positive correlation when comparing species 

abundance to traditional calculation of infection rate was Cs. inornata. This mosquito is 

the first to be found in mosquito traps in South Dakota, and is often noted as an early 

season mosquito in other areas of the United States (Reisen, Meyer, and Milby 1989).    

Both Ae. vexans and Ae. dorsalis both showed a negative association with both 

measurements of infection rate described within this paper.  It may not be that these 

two species directly impact infection rate of Cx. tarsalis and may instead indicate that 

environmental factors that are favorable to these two species is unfavorable to the 

amplification of WNV.   

  The effects of temperature on and precipitation between these two species 

varied in some degrees.  The effects of precipitation on Ae. vexans abundance was 

considerably higher than its effects on Cx. tarsalis, especially between the two and three 

week lags.  This is somewhat expected as the strategies for reproduction differs 

between these two species. Where Ae. vexans lays its eggs on a dry substrate and waits 

to be submerged for water, large rain events will trigger the beginning of their life cycle, 

Cx. tarsalis lays its eggs directly on standing water which can exist without a 
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precipitation event.  Increased temperatures effects on Cx. tarsalis were very similar to 

the effects of precipitation, yet we saw that increased temperatures have a strong 

negative effect on Ae. vexans.  This negative effect may explain the general bimodal 

abundance pattern we see statewide in Ae. vexans across the state.  Peak abundance for 

Ae. vexans generally occurs during week 27 (Chapter 2 Figure 4) which is when 

temperatures begin to reach their highest across the state. High temperatures could 

then be driving abundance downward until temperatures cool enough to allow for Ae. 

vexans populations to rebound. Temperature has also been strongly associated with 

higher risk of WNV transmission (Davies in press), which could be the result of lower Ae. 

vexans abundance that could alter human behavior that would make them vulnerable to 

vector mosquitoes. Precipitation was shown to reduce the overall proportion of the 

vector to nuisance, this is most likely caused by a dramatic increase in Ae. vexans 

abundance. The weekly average abundance of Cx. tarsalis and Ae. vexans has previously 

show to have some relationship to weekly average human cases of WNV.  Because of 

this, predicting increases in abundance of these, and other mosquitoes, is a concern to 

state health department and mosquito abatement programs.  

However, this approach does have some limitations in that it is taking a linear 

approach to what is possibly a non-linear system.  Non-environmental factors, such as 

immunity levels in reservoir hosts, could dramatically impact amplification of virus in 

vectors. Additionally, the effects of mosquito abatement programs could reduce 

amplification by reducing vector abundance. However, if these mosquito control steps 

should only impact infectivity after they are implemented, and often they are only 
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implemented when nuisance mosquito populations are high, or virus has been detected 

in vectors of human concern.  These measures are unlikely to impact very early season 

amplification which could be accomplished by Cs. inornata. Further studies should be 

done to investigate the infection rate and roles of early season mosquitoes to the 

amplification of WNV in the wild.  Knowledge of this could lead to factors that are 

available sooner and with greater cost effectiveness that could increase the lead time 

for prediction human risk of WNV.  

The final study on susceptibility to insecticides is the first direct comparison of 

the permethrin susceptibilities of a major vector for WNV, Cx. tarsalis, to a major 

nuisance mosquito, Ae. vexans, where WNV is endemic to the region, and was 

conducted using collected adult mosquito from eastern South Dakota exposed to 

multiple concentrations of permethrin in a CDC bottle bioassay.  Scatter-plots of the 

data showed that while there were some variations in individual bottles, there was good 

consistency in bottles for each permethrin concentration (Fig. 15).  The overall results 

showed similar mortality rates at all times for all concentrations between Cx. tarsalis 

and Ae. vexans, and we found no statistical difference between the calculated mortality 

rates of these 2 species. Comparisons were made based upon calculated diagnostic dose 

and times as recommended by CDC when testing for insecticide resistance [17], and the 

similarities between each species were also reflected in the calculated diagnostic doses 

and times. The susceptibilities of Ae. vexans and Cx. tarsalis remained constant between 

2016 and 2017, between 2 study sites, and within and between both species. A 

diagnostic dose and time has not been previously reported for either of these species.  
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Our calculated value for both species was 38 µg/ml in 30 min, which is more than twice 

the recommended diagnostic dose and time of 15 µg/ml at 30 min listed for Aedes spp. 

in the CDC bioassay protocol (CDC 2013). A California study used 30 µg/ml of permethrin 

and was unable to knockdown 50% of their wild-caught Cx. pipiens (McAbee et al. 2004). 

Richards et. al. (Richards et al. 2017) found 2 Aedes spp. collected from 13 different 

locations within the United States that were either susceptible or possibly resistant with 

mortality rates ranging from 91% to 100% using 15 µg/ml doses at 30 min. This same 

study tested 26 Cx. pipiens collected from St. Paul, Minnesota and achieved 96% 

mortality using 15 µg/ml permethrin at 30 min. A similar study to ours tested 49 Cx. 

tarsalis adults reared from field caught larva and determined a median lethal dose of 50 

µg/ml; however, they reported that this same concentration caused 100% mortality the 

following year and had to reduce their median lethal dose to 10 µg/ml (Strong et al. 

2008).   

Our trials were able to attain consistent results from mosquitoes with varying 

physiological attributes between years and geographical locations, and the results 

should encapsulate the variation found in the wild. This is essential in disease control 

and mosquito abatement programs whose primary concern is to reduce vector and/or 

nuisance populations (Brogdon and McAllister 1998a) We determined multiple options 

for base-line diagnostic doses and times that can be used in the Northern Great Plains. 

By using this method, we have a basis for comparing various species levels of 

susceptibility and allows for future testing and comparisons of resistance in and 

between Cx. tarsalis and Ae. vexans using the CDC bottle bioassay.  
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Both the vector and nuisance mosquitoes are heavily targeted within the state of 

South Dakota due to the former’s ability to transmit WNV and the latter’s large 

abundance creating a nuisance for residents. Since nuisance mosquitoes may help 

motivate humans to seek shelter or use personal protection (Gujral et al. 2007), higher 

susceptibility to insecticides in nuisance mosquitoes compared to vector mosquitoes 

may cause mosquito control efforts to actually increase human risk for WNV. Our 

findings showed that the susceptibility to permethrin between the WNV vector, Cx. 

tarsalis, and the nuisance mosquito, Ae. vexans, were the similar in this region and that 

treatment will be equally effective, thus it will not diminish the nuisance mosquito more 

than the vector. There is a great need for future studies to understand the level of 

insecticide resistance developing in vector mosquitoes throughout the United States; 

however, these studies should also include predominant nuisance mosquitoes in areas 

where both groups are abundant to ensure that susceptibility of the vectors are similar 

or higher so that attempts to control vector species will not have a significantly greater 

effect on nuisance mosquitoes, and thus lowering the avoidance behaviors in humans.   

 

 

 

 

 



87 
 

REFERENCES 

Allan, Brian F, R Brian Langerhans, Wade A Ryberg, William J Landesman, Nicholas W 
Griffin, Rachael S Katz, Brad J Oberle, Michele R Schutzenhofer, Kristina N Smyth, 
and Annabelle de St Maurice. 2009. 'Ecological correlates of risk and incidence of 
West Nile virus in the United States', Oecologia, 158: 699-708. 

Almon, Shirley. 1965. 'The Distributed Lag Between Capital Appropriations and 
Expenditures', Econometrica, 33: 178-96. 

Anderson, RA, and WJ Gallaway. 1987. 'The host preferences of Culiseta inornata in 
southwestern Manitoba', Journal Of The American Mosquito Control Association, 
3: 219-21. 

Bailey, RG, PE Avers, T King, and WH McNab. 1994. 'Ecoregions and subregions of the 
United States (map). 1: 7,500,000', With supplementary table of map Unit 
descriptions, compiled and edited by WH McNab & RG Bailey. USDA Forest 
Service, Washington, DC, US. 

Barker, C. M., B. G. Bolling, W. C. th Black, C. G. Moore, and L. Eisen. 2009. 'Mosquitoes 
and West Nile virus along a river corridor from prairie to montane habitats in 
eastern Colorado', J Vector Ecol, 34: 276-93. 

Barr, A.R. 1958. The Mosquitoes of Minnesota: (Diptera : Culicidae : Culicinae) 
(University of Minnesota, Agricultural Experiment Station). 

Bell, J. A., C. M. Brewer, N. J. Mickelson, G. W. Garman, and J. A. Vaughan. 2006. 'West 
Nile virus epizootiology, central Red River Valley, North Dakota and Minnesota, 
2002-2005', Emerg Infect Dis, 12: 1245-7. 

Bell, Jeffrey A, Nathan J Mickelson, and Jefferson A Vaughan. 2005. 'West Nile virus in 
host-seeking mosquitoes within a residential neighborhood in Grand Forks, 
North Dakota', Vector-Borne & Zoonotic Diseases, 5: 373-82. 

Bernard, Kristen A, Joseph G Maffei, Susan A Jones, Elizabeth B Kauffman, G Ebel, AP 
Dupuis 2nd, Kiet A Ngo, David C Nicholas, Donna M Young, and Pei-Yong Shi. 
2001. 'West Nile virus infection in birds and mosquitoes, New York State, 2000', 
Emerging Infectious Diseases, 7: 679. 

Bolling, Bethany G., Christopher M. Barker, Chester G. Moore, W. John Pape, and Lars 
Eisen. 2009. 'Modeling/GIS, Risk Assessment, Economic Impact: Seasonal 
Patterns for Entomological Measures of Risk for Exposure to Culex Vectors and 
West Nile Virus in Relation to Human Disease Cases in Northeastern Colorado', 
Journal of medical entomology, 46: 1519-31. 

Brady, Oliver J, Michael A Johansson, Carlos A Guerra, Samir Bhatt, Nick Golding, David 
M Pigott, Hélène Delatte, Marta G Grech, Paul T Leisnham, and Rafael Maciel-de-
Freitas. 2013. 'Modelling adult Aedes aegypti and Aedes albopictus survival at 
different temperatures in laboratory and field settings', Parasites & Vectors, 6: 
351. 

Brogdon, W. G., and J. C. McAllister. 1998a. 'Simplification of adult mosquito bioassays 
through use of time-mortality determinations in glass bottles', J Am Mosq 
Control Assoc, 14. 



88 
 

Brogdon, William G, and Janet C McAllister. 1998b. 'Insecticide resistance and vector 
control', Emerging Infectious Diseases, 4: 605. 

Campbell, J. B., D. J. Boxler, and R. L. Davis. 2001. 'Comparative efficacy of several 
insecticides for control of cattle lice (Mallophaga: Trichodectidae and Anoplura: 
Haematopinidae)', Veterinary Parasitology, 96: 155-64. 

Catangui, Michael A., and Robert K. Berg. 2002. 'Comparison of Bacillus thuringiensis 
Corn Hybrids and Insecticide-Treated Isolines Exposed to Bivoltine European 
Corn Borer (Lepidoptera: Crambidae) in South Dakota', Journal of Economic 
Entomology, 95: 155-66. 

CDC. 2013. 'Parasites – CDC bottle bioassay'. 
http://www.cdc.gov/parasites/education_training/lab/bottlebioassay.html. 

Chuang, T. W., M. B. Hildreth, D. L. Vanroekel, and M. C. Wimberly. 2011. 'Weather and 
land cover influences on mosquito populations in Sioux Falls, South Dakota', J 
Med Entomol, 48: 669-79. 

Chuang, Ting-Wu, Geoffrey M. Henebry, John S. Kimball, Denise L. VanRoekel-Patton, 
Michael B. Hildreth, and Michael C. Wimberly. 2012. 'Satellite microwave remote 
sensing for environmental modeling of mosquito population dynamics', Remote 
Sensing of Environment, 125: 147-56. 

Chuang, Ting-Wu, Christine W. Hockett, Lon Kightlinger, and Michael C. Wimberly. 2012. 
'Landscape-Level Spatial Patterns of West Nile Virus Risk in the Northern Great 
Plains', The American Journal of Tropical Medicine and Hygiene, 86: 724-31. 

Crans, WJ. 1964. 'Continued host preference studies with New Jersey mosquitoes, 
1963', Proceedings. New Jersey Mosquito Extermination Association, 51. 

Darsie, Richard F. 2005. Identification and geographical distribution of the mosquitos of 
North America, north of Mexico (Gainesville : University Press of Florida: 
Gainesville). 

Database], APRD [Arthropod Pesiticide Resistance. 2014. "Search: species [Internet]." In. 
East Lansing, MI: Michigan State Univ. 

Davis, Justin K, Geoffrey Vincent, Michael B Hildreth, Lon Kightlinger, Christopher 
Carlson, and Michael C Wimberly. 2017. 'Integrating Environmental Monitoring 
and Mosquito Surveillance to Predict Vector-borne Disease: Prospective 
Forecasts of a West Nile Virus Outbreak', PLOS Currents Outbreaks. 

DeGroote, Joh, David R Mercer, Jeffre Fisher, and Ramanatha Sugumaran. 2007. 
'Spatiotemporal investigation of adult mosquito (Diptera: Culicidae) populations 
in an eastern Iowa county, USA', Journal of medical entomology, 44: 1139-50. 

DeGroote, John P., Ramanathan Sugumaran, Sarah M. Brend, Brad J. Tucker, and Lyric C. 
Bartholomay. 2008. 'Landscape, demographic, entomological, and climatic 
associations with human disease incidence of West Nile virus in the state of 
Iowa, USA', International Journal of Health Geographics, 7: 19. 

Dunphy, Brendan M, Wayne A Rowley, and Lyric C Bartholomay. 2014. 'A taxonomic 
checklist of the mosquitoes of Iowa', Journal Of The American Mosquito Control 
Association, 30: 119-21. 

http://www.cdc.gov/parasites/education_training/lab/bottlebioassay.html


89 
 

Easton, E. R. 1987a. 'Mosquito surveillance employing New Jersey light traps on Indian 
reservations in Iowa, Nebraska and South Dakota in 1984 and 1985', J Am Mosq 
Control Assoc, 3: 70-3. 

Easton, E. R., R. S. Coker, and R. Ballinger. 1986. 'Occurrence and seasonal incidence of 
mosquitoes on Indian reservations in Iowa, Nebraska and South Dakota during 
1983', J Am Mosq Control Assoc, 2: 190-5. 

Easton, E.R. 1987b. 'Mosquito surveillance employing New Jersey light traps on indian 
reservations in Iowa, Nebraska and South Dakota in 1984 and 1985', J. Am. 
Mosq. Contr. Assoc., 3: 70-73. 

Elghar, Gamal E. Abo, Zeinab A. Elbermawy, Adel G. Yousef, and Hany K. Abd Elhady. 
2005. 'Chemical Control: Monitoring and Characterization of Insecticide 
Resistance in the Cotton Leafworm, Spodoptera littoral is (Boisd.) (Lepidoptera: 
Noctuidae)', Journal of Asia-Pacific Entomology, 8: 397-410. 

EPA. 'Permethrin, Resmethrin, d-Phenothrin (Sumithrin®): Synthetic Pyrethroids For 
Mosquito Control', Accessed April 14th. 
https://www.epa.gov/mosquitocontrol/permethrin-resmethrin-d-phenothrin-
sumithrinr-synthetic-pyrethroids-mosquito-control. 

Fauver, Joseph R., Lauren Pecher, Jessica A. Schurich, Bethany G. Bolling, Mike Calhoon, 
Nathan D. Grubaugh, Kristen L. Burkhalter, Lars Eisen, Barbara G. Andre, Roger S. 
Nasci, Adrienne LeBailly, Gregory D. Ebel, and Chester G. Moore. 2016. 
'Temporal and Spatial Variability of Entomological Risk Indices for West Nile 
Virus Infection in Northern Colorado: 2006–2013', Journal of medical 
entomology, 53: 425-34. 

Friesen, K. M., and G. D. Johnson. 2014. 'Mosquito and West Nile virus surveillance in 
northeast Montana, U.S.A., 2005 and 2006', Med Vet Entomol, 28: 85-93. 

Gendernalik, Alex, James Weger-Lucarelli, Selene M. Garcia Luna, Joseph R. Fauver, 
Claudia Rückert, Reyes A. Murrieta, Nicholas Bergren, Demitrios Samaras, Chilinh 
Nguyen, Rebekah C. Kading, and Gregory D. Ebel. 2017. 'American Aedes vexans 
Mosquitoes are Competent Vectors of Zika Virus', The American Journal of 
Tropical Medicine and Hygiene, 96: 1338-40. 

Gerhardt, R. W. 1966. 'South Dakota Mosquitoes and Their Control', Research Bulletins 
of the South Dakota Agricultural Station (1887-2011), 531. 

Goddard, Laura B., Amy E. Roth, William K. Reisen, and Thomas W. Scott. 2002. 'Vector 
Competence of California Mosquitoes for West Nile virus', Emerging Infectious 
Diseases, 8: 1385-91. 

Gu, Weidong, Richard Lampman, and Robert J. Novak. 2003. 'Problems in Estimating 
Mosquito Infection Rates Using Minimum Infection Rate', Journal of medical 
entomology, 40: 595-96. 

Gujral, I. B., E. C. Zielinski-Gutierrez, A. LeBailly, and R. Nasci. 2007. 'Behavioral risks for 
West Nile virus disease, northern Colorado, 2003', Emerg Infect Dis, 13: 419-25. 

Harrington, Laura C., and Rebecca L. Poulson. 2008. 'Considerations for Accurate 
Identification of Adult Culex restuans (Diptera: Culicidae) in Field Studies', 
Journal of medical entomology, 45: 1-8. 

https://www.epa.gov/mosquitocontrol/permethrin-resmethrin-d-phenothrin-sumithrinr-synthetic-pyrethroids-mosquito-control
https://www.epa.gov/mosquitocontrol/permethrin-resmethrin-d-phenothrin-sumithrinr-synthetic-pyrethroids-mosquito-control


90 
 

Janousek, TE, and andW L Kramer. 1999. 'Seasonal incidence and geographical variation 
of Nebraska mosquitoes, 1994-95', Journal Of The American Mosquito Control 
Association, 15: 253-62. 

Janousek, Thomas E, and Wayne L Kramer. 1998. 'Surveillance for arthropod-borne viral 
activity in Nebraska, 1994–1995', Journal of medical entomology, 35: 758-62. 

Jian, Yun, Sonia Silvestri, Jeff Brown, Rick Hickman, and Marco Marani. 2016. 'The 
predictability of mosquito abundance from daily to monthly timescales', 
Ecological Applications, 26: 2611-22. 

Karki, S., N. E. Westcott, E. J. Muturi, W. M. Brown, and M. O. Ruiz. 2018. 'Assessing 
human risk of illness with West Nile virus mosquito surveillance data to improve 
public health preparedness', Zoonoses and Public Health, 65: 177-84. 

Kightlinger, L. 2017. 'West Nile Review: 15 Years of Human Disease in South Dakota, 
2002-2016', S D Med, 70: 346-51. 

Kilpatrick, A. M., and W. J. Pape. 2013. 'Predicting human West Nile virus infections with 
mosquito surveillance data', Am J Epidemiol, 178: 829-35. 

Kilpatrick, A. Marm, Laura D. Kramer, Scott R. Campbell, E. Oscar Alleyne, Andrew P. 
Dobson, and Peter Daszak. 2005. 'West Nile Virus Risk Assessment and the 
Bridge Vector Paradigm', Emerging Infectious Diseases, 11: 425-29. 

Kinsley, A. C., R. D. Moon, K. Johnson, M. Carstensen, D. Neitzel, and M. E. Craft. 2016. 
'Mosquitoes in Moose Country: A Mosquito Survey of Northern Minnesota', J Am 
Mosq Control Assoc, 32: 83-90. 

Kramer, Laura D., William K. Reisen, and Robert E. Chiles. 1998. 'Vector Competence of 
Aedes dorsalis (Diptera: Culicidae) from Morro Bay, California, for Western 
Equine Encephalomyelitis Virus', Journal of medical entomology, 35: 1020-24. 

Lanciotti, Robert S., Amy J. Kerst, Roger S. Nasci, Marvin S. Godsey, Carl J. Mitchell, 
Harry M. Savage, Nicholas Komar, Nicholas A. Panella, Becky C. Allen, Kate E. 
Volpe, Brent S. Davis, and John T. Roehrig. 2000. 'Rapid Detection of West Nile 
Virus from Human Clinical Specimens, Field-Collected Mosquitoes, and Avian 
Samples by a TaqMan Reverse Transcriptase-PCR Assay', Journal of Clinical 
Microbiology, 38: 4066-71. 

Lee, J. H., and W. A. Rowley. 2000. 'The abundance and seasonal distribution of Culex 
mosquitoes in Iowa during 1995-97', J Am Mosq Control Assoc, 16: 275-8. 

Marcombe, Sébastien, Julie Bobichon, Boutsady Somphong, Nothasin Phommavan, 
Santi Maithaviphet, Simone Nambanya, Vincent Corbel, and Paul T. Brey. 2017. 
'Insecticide resistance status of malaria vectors in Lao PDR', PLoS ONE, 12: 
e0175984. 

McAbee, R. D., K. D. Kang, M. A. Stanich, J. A. Christiansen, C. E. Wheelock, A. D. Inman, 
B. D. Hammock, and A. J. Cornel. 2004. 'Pyrethroid tolerance in Culex pipiens 
pipiens var molestus from Marin County, California', Pest Manag Sci, 60: 359-68. 

McAllister, Janet C., Marvin S. Godsey, and Mariah L. Scott. 2012. 'Pyrethroid resistance 
in Aedes aegypti and Aedes albopictus from Port-au-Prince, Haiti', Journal Of 
Vector Ecology: Journal Of The Society For Vector Ecology, 37: 325-32. 

Molaei, Goudarz, and Theodore G. Andreadis. 2006. 'Identification of Avian- and 
Mammalian-Derived Bloodmeals in Aedes vexans and Culiseta melanura 



91 
 

(Diptera: Culicidae) and Its Implication for West Nile Virus Transmission in 
Connecticut, U.S.A', Journal of medical entomology, 43: 1088-93. 

Molaei, Goudarz, Theodore G. Andreadis, Philip M. Armstrong, John F. Anderson, and 
Charles R. Vossbrinck. 2006. 'Host Feeding Patterns of Culex Mosquitoes and 
West Nile Virus Transmission, Northeastern United States', Emerging Infectious 
Diseases, 12: 468-74. 

Moore, Chester G., and Carl J. Mitchell. 1997. 'Aedes albopictus in the United States: 
Ten-year presence and public health implications', Emerging Infectious Diseases, 
3: 329. 

Naqqash, M. N., A. Gokce, A. Bakhsh, and M. Salim. 2016. 'Insecticide resistance and its 
molecular basis in urban insect pests', Parasitol Res, 115: 1363-73. 

Nielsen, Carrie F., M. Veronica Armijos, Sarah Wheeler, Tim E. Carpenter, Walter M. 
Boyce, Kara Kelley, David Brown, Thomas W. Scott, and William K. Reisen. 2008. 
'Risk Factors Associated with Human Infection during the 2006 West Nile Virus 
Outbreak in Davis, a Residential Community in Northern California', The 
American Journal of Tropical Medicine and Hygiene, 78: 53-62. 

O’Donnell, Kyle L., Mckenzie A. Bixby, Kelsey J. Morin, David S. Bradley, and Jefferson A. 
Vaughan. 2017. 'Potential of a Northern Population of Aedes vexans (Diptera: 
Culicidae) to Transmit Zika Virus', Journal of medical entomology, 54: 1354-59. 

Oidtman, Rachel J., Rebecca C. Christofferson, Quirine A. ten Bosch, Guido Espana, 
Moritz U. G. Kraemer, Andrew Tatem, Christopher M. Barker, and T. Alex Perkins. 
2016. 'Pokémon Go and Exposure to Mosquito-Borne Diseases: How Not to 
Catch ‘Em All', PLoS Currents, 8: 
ecurrents.outbreaks.2d885b05c7e06a9f72e4656d56b043cd. 

Parham, Paul Edward, and Edwin Michael. 2010. 'Modeling the Effects of Weather and 
Climate Change on Malaria Transmission', Environmental Health Perspectives, 
118: 620-26. 

Phippen, Burke, RP Bio, and Cheryl Phippen. 2014. "Final Report of the Regional District 
of Central Okanagan Nuisance Mosquito Control and West Nile Virus Prevention 
Program, 2014." In. 

Rakotoson, Jean-Desire, Christen M. Fornadel, Allison Belemvire, Laura C. Norris, Kristen 
George, Angela Caranci, Bradford Lucas, and Dereje Dengela. 2017. 'Insecticide 
resistance status of three malaria vectors, Anopheles gambiae (s.l.), An. funestus 
and An. mascarensis, from the south, central and east coasts of Madagascar', 
Parasites & Vectors, 10: 396. 

Reiner, Robert C, T Alex Perkins, Christopher M Barker, Tianchan Niu, Luis Fernando 
Chaves, Alicia M Ellis, Dylan B George, Arnaud Le Menach, Juliet RC Pulliam, and 
Donal Bisanzio. 2013. 'A systematic review of mathematical models of mosquito-
borne pathogen transmission: 1970–2010', Journal of The Royal Society 
Interface, 10: 20120921. 

Reisen, W. K., R. P. Meyer, and M. M. Milby. 1989. 'Studies on the seasonality of Culiseta 
inornata in Kern County, California', J Am Mosq Control Assoc, 5: 183-95. 

Richards, Stephanie L., Jo Anne G. Balanay, Melinda Fields, and Kurt Vandock. 2017. 
'Baseline Insecticide Susceptibility Screening Against Six Active Ingredients for 



92 
 

Culex and Aedes (Diptera: Culicidae) Mosquitoes in the United States', Journal of 
medical entomology, 54: 682-95. 

Ross, Herbert Holdsworth. 1947. 'The mosquitoes of Illinois (Diptera, Culicidae)', Illinois 
Natural History Survey Bulletin; v. 024, no. 01. 

Rowley, John K 1995. 'RESPONSE OF IOWA MOSQUITO POPULATIONS TO UNUSUAL 
PRECIPITATION PATTERNS AS MEASURED BY NEW JERSEY LIGHT TRAP 
COLLECTIONS'', Journal Of The American Mosquito Control Association, 100: 200-
05. 

Shelton, ROBERT M. 1973. 'The effect of temperatures on development of eight 
mosquito species', Mosq. News, 33: 1-12. 

Strong, Adam C., Boris C. Kondratieff, Michael S. Doyle, and William C. th Black. 2008. 
'Resistance to permethrin in Culex tarsalis in northeastern Colorado', Journal Of 
The American Mosquito Control Association, 24: 281-88. 

Sucaet, Yves, John Van Hemert, Brad Tucker, and Lyric Bartholomay. 2008. 'A web-based 
relational database for monitoring and analyzing mosquito population dynamics', 
Journal of medical entomology, 45: 775-84. 

Sun, Debin, Nick Indelicato, Jack Petersen, Eric Williges, Isik Unlu, and Ary Farajollahi. 
2014. 'Susceptibility of field-collected mosquitoes in central New Jersey to 
organophosphates and a pyrethroid', Journal Of The American Mosquito Control 
Association, 30: 138-42. 

Tempelis, C. H. 1975. 'REVIEW ARTICLE1: Host-Feeding Patterns of Mosquitoes, with a 
Review of Advances in Analysis of Blood Meals by Serology2', Journal of medical 
entomology, 11: 635-53. 

Turell, Michael J., David J. Dohm, Michael R. Sardelis, Monica L. Oguinn, Theodore G. 
Andreadis, and Jamie A. Blow. 2005. 'An update on the potential of north 
American mosquitoes (Diptera: Culicidae) to transmit West Nile Virus', Journal of 
medical entomology, 42: 57-62. 

Vaidyanathan, R, JD Edman, LA Cooper, and TW Scott. 1997. 'Vector competence of 
mosquitoes (Diptera: Culicidae) from Massachusetts for a sympatric isolate of 
eastern equine encephalomyelitis virus', Journal of medical entomology, 34: 346-
52. 

WHO. 2013. 'Test procedures for insecticide resistance monitoring in malaria vector 
mosquitoes – Second edition.'. (http:// 

www.who.int/malaria/publications/atoz/9789241511575/en/. 
———. 2016. 'Test procedures for insecticide resistance monitoring in malaria vector 

mosquitoes'. 
Wimberly, M. C., A. Lamsal, P. Giacomo, and T. W. Chuang. 2014. 'Regional variation of 

climatic influences on West Nile virus outbreaks in the United States', Am J Trop 
Med Hyg, 91: 677-84. 

Zielinski-Gutierrez, Emily C., and Mary H. Hayden. 2006. 'A Model for Defining West Nile 
Virus Risk Perception Based on Ecology and Proximity', EcoHealth, 3: 28-34. 

 


	South Dakota State University
	Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange
	2018

	Surveillance of South Dakota Mosquito Abundance, Infection Rate, and Insecticide Susceptibility
	Geoffrey P. Vincent
	Recommended Citation


	tmp.1526486365.pdf.PI5zv

