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ABSTRACT 

THE ROLE OF GENOMIC VERSATILITY IN MULTI-NICHE PREFERENCES OF 
ESCHERICHIA COLI 

 

GITANJALI NANDAKAFLE 

2018 

 

Escherichia coli strains are naturally present as either commensals or pathogens in the 

gastrointestinal tract of mammals and some other vertebrates. Until recently, it was 

assumed that E. coli are solely associated with the gut and are unable to survive outside 

of a host for a long period of time, the basis of its use as an indicator organism. Recent 

reports suggest that E. coli can become naturalized to several tropical, subtropical or 

temperate soils and aquatic environments, where they have been isolated repeatedly. 

Several studies have shown that these strains are capable of surviving and proliferating in 

the environment under suitable conditions. Not only have these strains adapted to the 

environment but also, several studies have revealed that they are genetically distinct from 

their gut-associated counterparts. In this dissertation, I focused to understand the genomic 

versatility and adaptation strategies of E. coli in pasture and pond ecosystems. The 

objectives of my research were (I) to determine the E. coli diversity and niche 

partitioning in pasture and pond ecosystems, (II) to compare the growth and extended 

survival of environmental E. coli isolates and E. coli O157:H7 in soil organic matter, (III) 

to determine E. coli fitness in soil by determining the antibiotic resistance, presence of 

virulence genes and susceptibility to grazing by Dictyostelium discoideum, and (IV) to 

compare the genotypic and phenotypic diversity of 20 representative isolates. These 



 

 

xix

objectives were achieved as follows. Sampling of the pasture and pond environments in 

this study involved various representative sample types of two ecosystems. 

Phylogrouping and phylogenetic analysis of mutS and uidA genes were used to determine 

the diversity within the E. coli populations obtained, and to find out if any possible 

unique environmental strains exist or any of these isolates belongs to one of the 

previously described Escherichia clades. Furthermore, to determine the survival ability of 

isolates in soil a long-term survival study was conducted in liquid soil organic matter 

(SESOM) at 25 °C as well as in sterile soil outside over winter. The ability of E. coli to 

survive in various environments depends on several factors. The fitness of these isolates 

to survive in soil and aquatic environments was determined by biofilm and RDAR (red, 

dry and rough) formation, antibiotic resistance, presence of virulence genes and 

protozoan grazing susceptibility. Comparative analyses of the whole genome sequences 

of 20 isolates were conducted using EDGAR computational platform and R 

programming. A Phenotypic microarray assay was used to obtain the nutrient utilization 

profile of 20 isolates.  

The results of pasture isolate studies indicated the existence of environmental E. coli that 

are phylogenetically distinct from bovine fecal isolates, and which are able to better 

maintain populations in the soil environment. The pond isolates showed a distribution 

pattern of genotypic and phenotypic traits among isolates of various sample sources 

based on their niche preferences. Population genetic analysis of both the uidA and mutS 

genes supported the existence of three separate populations in the pond ecosystem. The 

bovine feces isolates belonged to one population and the snail isolates were of two, 

whereas the sediment, plant, and water isolates were an admixture of three different 
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populations.  The antibiotic resistance pattern of snail and bovine feces isolates were very 

different from sediment, plant and water isolates. The environmental strains were found 

to be more resistant to protozoan grazing, suggesting these strains may have developed 

some mechanism to avoid grazing, thereby displaying enhanced survival in soil. E. coli 

isolates from pasture soil and bovine feces displayed a high genotypic and phenotypic 

diversity within phylogroups. However the genotype diversity did not mirror the 

phenotypic distribution. Further implementation of transcriptome, proteome and 

metabolomics data is necessary to understand the genotype and phenotypic relatedness of 

organisms.  

These results suggest that E. coli strains with the potential to be pathogenic are able to 

maintain populations in the environment more broadly than previously thought. The 

presence of naturalized or environmental populations of E. coli in soil and aquatic 

environments renders the use of this bacterium as an indicator organism ambiguous at 

best. The ability to distinguish between environmental and host associated strains could 

allow for more accurate use of E. coli as an indicator for recent fecal contamination.
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Chapter 1: Literature Review 

Diversity, Survival Potential and Virulence of Naturalized Escherichia 

coli  

1. Introduction 

 Escherichia coli is one of the most adaptable and extensively studied 

microorganisms. It is widely used as a host in many biotechnology laboratories to express 

several recombinant proteins, because of its rapid growth rate, easy genetic manipulation, 

and high level of recombinant protein synthesis rate. It is being exploited in the 

biotechnology industry for large-scale production of proteins for therapeutic use. Besides 

its use as model organism in research, it is an important member of the microbiome in the 

lower intestinal tract of humans and other vertebrates, its primary habitat.  Initially it was 

believed that E. coli could only proliferate in the GI tract of warm-blooded animals. 

Recent research on the survival of E. coli in the natural environmental shows that E. coli 

can also reside outside the intestinal tract, the secondary habitat (Touchon et al., 2009). 

The occurrence of E. coli in environments outside the host has questioned the narrow 

view on its habitat. 

Studies on the physiology, biochemistry and genetics of E. coli have focused mostly on 

the commensal and pathogenic strains, as it was considered that E. coli can only replicate 

and grow in the gastrointestinal tract.    

The Genus Escherichia is a member of the class Gammaproteobacteria in the phylum 

Proteobacteria and belongs to the family Enterobacteriaceae. This family comprises a 

large number of Gram-negative bacteria that include pathogens and harmless symbionts. 
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Genera include Citrobacter, Enterobacter, Klebsiella, Pantoea, and Salmonella, Shigella 

(Farmer et al., 2010). So far the genus Escherichia is composed of six species including 

E. coli and less frequently occurring members; E. albertii, E. blattae, E. fegussoni, 

E.hermanii and E. vulneris (Farmer, 1999;Abbott et al., 2003). E. adecarboxylata has 

been renamed as Leclercia adecarboxylata, a new genus based on extensive biochemical 

study and DNA-DNA hybridization (Stock et al., 2004). E. coli and Shigella species 

share many common phenotypic characteristics, and have long been considered as a 

single species based on their DNA-DNA homology (Brenner 1984) cross ref (Fukushima 

et al., 2002). Biochemical and serological methods are used to differentiate these species; 

Shigella are non motile, unable to ferment lactose, non-gas producing isolates. However, 

this sometimes gives incorrect result due to inactive variants of E. coli (Khot and Fisher, 

2013) or pathogenic Shigella strains that exhibited E. coli characteristics and display the 

ability to ferment sugars (Pupo et al., 2000).  

Escherichia is most closely related to Salmonella species, based on the amino acid 

sequence data and 16SrRNA sequence data analysis, it has been estimated that the 

divergence of E. coli and S. Typhimurium from a common ancestor had occurred 

approximately 100-160 million years ago (Kumar and Hedges, 1998). These two species 

are considered to be phylogenetically related (Ochman and Wilson, 1987;Doolittle et al., 

1996). They shared a lot of genetic materials; termed a core genome and 2500-3100 

genes are part of the core genome that is about 50% of the total genome.  

The distribution of E. coli population worldwide is estimated to be 1020, and are 

widespread as both gut commensals in warm blooded animals and pathogens causing 

both intestinal and extra intestinal diseases in human (Whitman et al., 1998;Tenaillon et 
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al., 2010). Most of the E. coli strains pass through the GI tract in a short period of time 

without any effect on the host, but some are able to established in the intestine and 

become a part of the gut microbiome (Savageau, 1983). E. coli is identidfied by its Beta 

glucuronidase activity (Rice et al., 1990). 

 

2. E. coli as an indicator organism  

 Indicators organisms are typically used to determine the presence or absence of 

any pathogenic group of bacteria in an environmental sample. Indicator organisms are 

categorized into three groups 1. General microbial indicators are a group of 

microorganisms that show the effectiveness of a process such as total coliform for 

chlorine disinfection.   2. Fecal indicators are a group of organisms that indicates the 

presence of fecal contamination, and 3. Index organisms or model organisms a group or 

species indicate the presence of pathogens and its behavior, for example E. coli is an 

index for Salmonella, and F-RNA coliphage is an index for enteric virus (Ashbolt et al., 

2001).  

The use of an indicator organism is cost effective and simple for analyzing environmental 

media compared to analyzing samples for individual pathogens. It is difficult to 

enumerate and detect the pathogenic organisms due to their low numbers and specific 

growth requirement (Stewart et al., 2007). Fecal indicator organisms are used to monitor 

the microbial safety of various water systems for public health (Anderson et al., 2005). 

As these organisms reside in the gut of warm  blooded animals, their presence indicates 

fecal contamination in soil or water systems (Ishii and Sadowsky, 2008b).  Several 

bacteria are currently being used as fecal indicator, however a fecal indicator is required 
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to be 1.  A part of the gut microbiota of warm blooded animal, 2. Present in parallel with 

pathogens or absent otherwise. 3. Able to survive similarly in a condition as pathogens 4. 

Present in higher numbers than pathogens. 5. Incapable of proliferation in the 

environment, 6. Non pathogenic in nature, and 7. Identified and enumerated by simple, 

rapid and inexpensive procedures (Bitton, 2005).  Traditionally total coliforms, fecal 

coliform enterococci, and E. coli have all been used as fecal indicator organisms (Ashbolt 

et al., 2001;Boehm and Sassoubre, 2014 ;Payment et al., 2003). E.coli, Enterobacter, 

Klebsiella and Citrobacter all fall under coliforms, lactose fermenting gram negative 

Enterobacteriacea (Leclerc et al., 2001). Fecal coliforms basically refer to thermotrophic 

coliforms that can grow at a temperature up to 44.5 °C, which was previously suggested 

to be more specific to fecal contamination. However some thermotrophic coliform 

members such as Kleibsella can be found from non-fecal sources.  

To detect the best indicator of fecal contamination the U.S Environmental Protection 

Agency (USEPA) linked bacterial presence to swimming related gastrointestinal disease. 

The report suggested that enterococci disease incidents are related to marine water and E. 

coli with fresh water. According to the USEPA Ambient water quality; fresh water 

beaches should not be accessible if the E. coli count of a single sample exceeds 235 

colonies per 100 mL of water or the geometric mean of E. coli counts of at least 5 

samples equally spread over a 30 day period exceeds 126 colonies per 100 mL (Boehm 

and Sassoubre, 2014).  
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Fig.1.1 Schematic diagram of the lifecycle of E. coli. Once E. coli is released from its 

primary host (warm-blooded animals) through fecal droppings, the majority of the 

released bacteria die due to low nutrients and other environmental factors. Some of 

them however, become attached to soil, sand sediments or algae surfaces, and 

survive longer. In some conditions, these E. coli strains can grow and maintain their 

population long enough to become adapted or “naturalized” to the environment. 

The adapted or naturalized E. coli survive and replicate in the environment and can 

be reintroduced to animal hosts through contact with water and food.  Adapted 

from (Ishii and Sadowsky, 2008b). 
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2.1. E. coli in its Primary Habitat 

 E. coli lifecycle occurs between two main habitats such as the intestine of warm 

blooded animals – the primary habitat, and outside of the host (water, sediments, soil, 

plants) the secondary habitat (Savageau, 1983). These two habitats have extremely 

different biotic and abiotic conditions and availability and types of nutrients. Savageau 

(1983) suggested that E. coli cells survive in this transition by having dual genetic 

regulatory mechanisms, where genes are positively controlled for certain function in one 

habitat and negatively in the other. According to Whittam (1989), selection pressure 

plays an important role while going through such transitions, which evolved strains that 

are primarily adapted to the primary habitat, while others are better adapted to the 

secondary habitat.  Even though E.coli reside in the intestinal lumen of mammals as a 

commensal, certain group of E. coli can cause a widespread intestinal or extra-intestinal 

disease in humans and animals (Kaper et al., 2004;Croxen and Finlay, 2010). E. coli is 

classified in to three major groups based on its pathogenesis and genetic make up; 

commensal E. coli, intestinal pathogenic or diarrheagenic E. coli, and extra intestinal 

pathogenic E. coli (ExPEC) (Russo and Johnson, 2000). 

 

2.1.1. Commensal E. coli 

Commensal E. coli is one of the first bacteria to colonize shortly after birth, in the lower 

intestinal tract of human and other animal newborns including piglets, rats, mice and 

chickens (Benno et al., 1984;Penders et al., 2005;Palmer et al., 2007). There is also 

evidence of colonization of E. coli in fish and reptiles (cold blooded) at a suitable 

elevated temperature (Huggins and Rast, 1963;Gordon and Cowling, 2003a). E. coli is a 
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part of gut microbiome. The number of anaerobic bacteria in the gastrointestinal tract is 

much higher than E. coli, however, it is the predominant facultative anaerobic organism 

in the gut (Berg, 1996;Tenaillon et al., 2010). The density of E. coli varies among hosts; 

the occurrence in human is much higher compared to other animals, it is about 107-109 

CFU per gram of feces (Slanetz and Bartley, 1957;Penders et al., 2006), the number in 

domestic animals is approximately between 104 and 106 CFU (Slanetz and Bartley, 

1957). It has been reported that E. coli maintain a symbiotic relationship with other 

anaerobic gut microbiota. The anaerobes break down the complex polyscharides into 

simple mono or disaccharides so the E. coli can use them. On the other hand E. coli helps 

create an anaerobic environment by scavenging residual oxygen (Jones et al., 2007;Jones 

et al., 2011). Various strains of commensal E. coli together with other bacterial species 

form a stable gut microbiome, which prevents the colonization by invading pathogens, 

this barrier effect is called colonization resistance in host (Stecher and Hardt, 2011). 

Colonization of commensal E. coli Nissle 1917 and HS prevents colonization by 

pathogens by limiting nutrient availability (Maltby et al., 2013). The colonization of 

commensals also helps to stimulate the innate immune cells as well as the T-cell 

receptors (Williams et al., 2006;Petnicki-Ocwieja et al., 2009).  

 

2.1.2. Diarrheagenic E. coli 

Pathogenic E. coli are categorized into six pathotypes associated with diarrhea, they are 

collectively called diarrheagenic E. coli; 1. Shiga toxin producing E. coli or 

verocytotoxin producing E. coli or enterohemoragic E. coli (EHEC) 2. Enterotoxigenic E. 
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coli (ETEC), 3. Enteropathogenic E. coli (EPEC) 4. Enteroaggregative E. coli (EAEC) 5. 

Enteroinvasive E. coli (EIEC) 6. Diffusely Adherent E. coli (DAEC).  

 

2.1.2.1. Shiga toxin producing E.coli (STEC) 

STEC is commonly associated with most outbreaks of gastrointestinal diseases and poses 

a potential threat to public health (Heiman et al., 2015). STEC was first discovered in 

1977 and its association with Hemolytic uremic syndrome was known in 1983 

(Konowalchuk et al., 1977;Karmali et al., 1983). Enterohemorrhagic E. coli (EHEC), a 

subset of STEC is isolated from humans and responsible for several clinical symptoms 

such as hemorrhagic colitis and potential lethal hemolytic uremic syndrome (Karch et al., 

2005;Karmali et al., 2010). Shiga toxin is the principal virulence factor in STEC infection 

and it consists of two main groups Stx1 and Stx2, and each group has several structurally 

and functionally similar toxin proteins. Besides Stx genes STEC strains often carry a 

gene coding for the adherence factor intimin (eae) which is an outer membrane protein 

(Nataro and Kaper, 1998).  All STEC strains may not confer pathogenicity just by 

acquiring the Stx gene without having other virulence factors, however all EHEC strains 

are considered to be pathogenic as they expresses Stx, cause A/E lesions on epithelial 

cells, and possess a 60 MDa plasmid. A common example is E. coli O157-H7 (Levine, 

1987;Nataro and Kaper, 1998). A single EHEC strain may express Stx1 only, Stx2 only or 

both or sometimes multiple forms of Stx2. Shiga toxin is a holotoxin composed of a 

single A subunit of approximately 33kDa in association with a B-subunit of 7.7kDa (Tesh 

and O'Brien, 1991). The B-pentamer of the toxin binds to a glycolipid receptor called Gb3 

present on the surface of eukaryotic cells. The A- subunit has N-glycosidase that removes 
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a single adenine from 28SrRNA of ribosomes, thereby inhibiting protein synthesis and 

leading to cell death (Nataro and Kaper, 1998). 

 

2.1.2.2. Enterotoxigenic E. coli (ETEC) 

E. coli strains that possess genes for one of the two plasmid encoded enterotoxins; heat 

stable (ST) and heat labile are termed ETEC (Levine, 1987). The strain was first 

recognized in piglets as a cause of lethal infectious diarrhea (Alexander, 1994).  ETEC 

strains cause diarrhea due the enterotoxins LT and ST, these strains may express only LT 

or only ST or both (Sears and Kaper, 1996;Hirayama and Wada, 2000). The LT toxins 

are oligomeric in nature and have two major serogroups LT-I and LT-II. LT-I is generally 

found in human E. coli isolates and is similar (almost 80%) to cholera enterotoxin (CT) 

expressed in Vibrio cholera (Sixma et al., 1993), and LT-II are mostly associated with 

non-human isolates (Nataro and Kaper, 1998;Qadri et al., 2005). LT toxins are AB5 toxin 

(one A sub unit linked to a pentameric B subunit) and are transported through the 

bacterial membrane by a Type-II secretion system (Tauschek et al., 2002). LT-II shows 

50-57% identity to LT-I and CT, but no substantial homology to the B-subunit (Guth et 

al., 1986;Pickett et al., 1989). Both LT-I and LT-II increase intracellular cAMP levels, 

resulting in osmotic diarrhea by a similar mechanism, however LT-I use GM-1 receptor 

and LT-II use GD1 receptor (Fukuta et al., 1988). LT-II is found in animal E. coli isolates 

and rarely in humans but there is no evidence of LT-II association in any human or 

animal diseases (Nataro and Kaper, 1998). STs are small monomeric toxins with cysteine 

residues and the disulfide bonds of cysteine account for the heat stability of this toxin. 

There are two classes of STs; ST-I or STa and ST-II/STb. STa toxin is commonly found 
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in humans and porcine isolates whereas STb toxins are primarily associated with porcine 

isolates (Clements et al., 2012). Along with STa and STb ETEC strains have colonization 

factors (surface fimbriae), which help them adhere and colonize in the intestinal mucosa 

(Gaastra and Svennerholm, 1996), and the CF ETEC strains are mostly associated with 

travellers’ diarrhea and weanling diarrhea among children in developing countries. It is 

also a major cause of weanling diarrhea in pigs (Amezcua et al., 2002;Qadri et al., 

2005;Daniels, 2006).  The fimbriae or colonization factor shows species specificity, for 

example; ETEC strains with K99 are pathogenic to calves, lambs and pigs whereas with 

K88 are pathogenic to only pigs (Cassels and Wolf, 1995). 

 

2.1.2.3. Enteropathogenic E. coli (EPEC) 

EPEC is another important group of diarrheagenic E. coli that has been a major cause of 

infant diarrhea in the developing world. Attaching and effacing lesions in the ileum, 

which appear like a pedestal, is a characteristic feature of EPEC infection. These types of 

lesions are formed by the effacement of microvilli and intimate adherence of the 

bacterium with the epithelium (Knutton et al., 1987;Jerse et al., 1990). There are several 

virulence genes responsible for the pathogenicity of EPEC. An outer membrane protein 

called intimin, encoded by eae, mediates intestinal cell attachment (Jerse et al., 1990). All 

the genetic material required for A/E lesions is encoded by a large genomic pathogenicity 

island called the locus of enterocyte effacement (LEE). It encodes a gene regulator, 

structural components of a T3SS system, the bacterial surface protein intimin and a 

number of translocator proteins (EspA, EspB, EspC and EspD) (Elliott et al., 1998). In 

addition to LEE encoded effector genes there are also several non-LEE encoded (Nle) 
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effector genes classified in six pathogenicity island present throughout the genome, for 

example Nle A-H, EspG2/Orf3, Cif, EspJ and EspL (Dean and Kenny, 2009). The EAF 

plasmid encodes for BFP (bundle forming pilus) and a transcriptional regulator called Per 

(plasmid encoded regulator) (Tobe et al., 1999;Khursigara et al., 2001). EPEC strain 

E2348/69 (Serotype O127:H6) has been completely sequenced and widely used as a 

prototype to study genetics, virulence and EPEC physiology (Iguchi et al., 2009). 

 

2.1.2.4. Enteroaggregative E. coli (EAEC) 

EAEC are mainly associated with cases of acute and persistent diarrhea worldwide in 

children and adults. It has a characteristic stacked brick aggregative adherence pattern 

when attached to HEp-2 cells (Nataro and Kaper, 1998). Most EAEC strains harbor a 60-

65 MDa virulence plasmid (pAA), and a 1-Kb fragment of this plasmid that is known as 

EAEC probe or CVD432 (Baudry et al., 1990) is commonly used for epidemiological 

study (Elias et al., 2002;Scaletsky et al., 2002). pAA plasmid also encodes for AA 

fimbriae (AAF) I, II and III(Nataro et al., 1992;Czeczulin et al., 1997;Bernier et al., 

2002), the transcriptional activator AggR(Nataro et al., 1994), enteroaggregative heat 

stable enterotoxin 1(EAST-1) (Savarino et al., 1993), Pet; an autotransporter enterotoxin 

(Eslava et al., 1998), and a novel antiaggregation protein dispersin encoded by the aap 

gene (Sheikh et al., 2002). EAEC strains show a high degree of heterogeneous 

pathogenicity. In a study by Nataro et al., (1995), EAEC strain 042 which produces 

AAF/II- fimbriae, EASTI and the 108 kDa Pet toxin showed symptoms of infection in 4 

out of 5 volunteers, whereas three other strains with AAF/I positive and one with EAST1 
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did not show any symptoms. This result suggests that Pet may play an important role in 

the pathogenicity of EAEC.  

 

2.1.2.5. Enteroinvasive E. coli (EIEC)  

EIEC was first shown to cause diarrhea in 1971 in healthy volunteers as demonstrated by 

DuPont et al. (1971).  The pathogenesis of EIEC strains is closely related to Shigella, the 

site of infection is colonic mucosa.  The pathogenesis comprises of epithelial penetration, 

endocellular vacuole disruption, intracellular multiplication and infection to neighboring 

cells. It causes inflammation in the colon mucosa and in severe cases ulceration 

(Sansonetti, 1998). Both plasmid and chromosomal genes are involved in conferring 

pathogenesis. The mxi and spa loci in plasmid pInv (invasion related plasmid) encodes 

for the type III secretion system and IpaB, IpaC, IpaD are effector proteins, essential for 

invasion (Nataro and Kaper, 1998). VirG is a surface protein, that helps nucleation of 

actin filament and movement (Sansonetti, 1992). VirR, VirF and VirB chromosomally 

encoded proteins essential for regulatory cascade in Shigella virulence (Nataro and 

Kaper, 1998).  

 

2.1.2.6. Diffusely adherent E. coli (DAEC)  

DAEC are characterized by their diffusely adherent pattern on epithelial HeLa or HEp-2 

cells (Kaper et al., 2004). DAEC strains that harbor Afa/Dr family adhesins are able to 

cause enteric infection (Servin, 2005). Kyaw et al. (2003) demonstrated the presence of 

type three secretion system genes in DAEC. The secreted autotransporter toxin (SAT) 
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belonging to family serine protease autotransporter of Enterobacteriaceae (SPATE) is 

also considered to be an important virulence factor (Taddei et al., 2003).  

 

Fig. 1.2 Pathogenic schemes of diarrheagenic E. coli. The six recognized categories 

of diarrheagenic E. coli each have unique features in their interaction with 

eukaryotic cells. Here, the interaction of each category with a typical target cell is 

schematically represented. It should be noted that these descriptions are largely the 

result of in vitro studies and may not completely reflect the phenomena occurring in 

infected humans. Adapted from (Nataro and Kaper, 1998) 

 

2.1.3. Extra Intestinal Pathogenic E. coli (ExPEC) 

The common extra intestinal diseases caused by ExPEC are urinary tract infection (UTI) 

(UPEC), neonatal meningitis (NMEC) and sepsis (SEPEC). In addition to this E. coli also 

cause intra-abdominal infections, nosocomial pneumonia, cellulitis, osteomyelitis and 

wound infection. (Johnson and Russo, 2002). 
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2.2. Growth of E. coli in its primary habitat 

E. coli reside in the intestinal mucus layer as a part of the mixed biofilm and obtain 

nutrient to grow successfully. It has also been shown that each E. coli strain possesses a 

distinct nutritional practice in the intestine (Conway and Cohen, 2015). After ingestion 

E.coli survive the acid stress of the stomach by the stationary phase protective acid 

resistance system (Foster, 2004). Once they reach the colon, nutrients are necessary to 

grow from low to high numbers. The invading bacteria get eliminated if they fail to 

transition from lag to log phase. (Freter et al.,1983b). The ability of E. coli to colonize 

depends on several factors, but competition for nutrients is the main aspect for successful 

colonization in the intestine (Freter, 1992). The mammalian intestine is comparable to 

chemostat in which several hundred bacterial species live in equilibrium. To maintain this 

stable co-colonization each species must use one limiting nutrient better than all others 

(Freter et al., 1983b;Freter, 1988). The microbiota maintain a stable ecosystem in the 

healthy intestine, and resist the colonization of invading species. This ability of the 

resident microbiota to resist colonization is known as colonization resistance (Lawley and 

Walker, 2013).  

E. coli is a facultative anaerobe with the ability to respire oxygen, use alternative electron 

acceptors or ferment depending on electron acceptor availability.  The central metabolism 

system in E. coli consists of the EMP glycolytic pathway, the pentose phosphate pathway 

(PP), the Entner Doudoroff pathway (ED), the TCA cycle and diverse fermentation 

pathways. E. coli grows best on sugars, including a wide range of mono and 

disaccharides, but cannot grow on most of the complex polysaccharides as it does not 

possess the necessary hydrolytic enzymes (Fabich et al., 2008). It can also grow on amino 
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acids and carboxylates that are part of the TCA cycle. It depends on other intestinal 

anaerobes that hydrolyze complex polysaccharides to mono or disaccharides (Salyers and 

Pajeau, 1989;Goodman et al., 2009). The sources of nutrients that support intestinal 

colonization of E. coli are shed epithelial cells, dietary fibers and mucosal 

polysaccharides (Conway et al., 2004). Sugars released through hydrolysis of dietary 

fibers by other, mostly anaerobic species. Most of the required amino acids are available 

in the large intestine for the growth. E. coli strains have nearly identical catabolic 

potential, but they vary differentially in the sugars that support their colonization. For 

example pathogenic strains are predicted to grow on Sucrose while commensals are not. 

In contrast commensals are predicted to grow on galactonate while pathogens are not 

(Chang et al., 2004;Fabich et al., 2008;Maltby et al., 2013).  

There is competition for limiting resources in the intestinal ecosystem (Tilman, 1982). 

The microbial community competes for carbon and energy sources, and terminal electron 

acceptors (Freter et al., 1983a). To maximize its population, E. coli uses various 

strategies. In a nutrient limiting condition E. coli is able to utilize up to 9 different sugars 

simultaneously (Fabich et al., 2008). It has the ability to induce a number of gene systems 

for carbon source transport and catabolism when growing slowly (Ihssen and Egli, 2005) 

or under nutrient deprived condition (Liu et al., 2005). The metabolic capacity of the cell 

expands in hunger states due to physiological and genetic changes (Ferenci, 2001). To 

maintain stable colonization in the intestine, E. coli must compete for limiting nutrient, so 

it uses several sugars at a time, and also has the capacity to metabolize glycogen carbon 

store in the intestine. E. coli compete for nutrients in the intestine in three ways; first, it 

can use nutrient that no other species in the community has used. Second, it can 
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outcompete other strains for the nutrients it prefers by superior uptake systems and faster 

growth (Fabich et al., 2011). Third, it can enter in to a symbiotic association with the 

anaerobes that release its preferred sugars (Leatham-Jensen et al., 2012).  

 

2.3. E. coli in its secondary habitat (in the environment outside of hosts) 

It has been observed that most E. coli enter to the environment outside of their host at 

certain time periods, and may spend half their life there (Savageau, 1983;Gordon, 2001). 

The secondary habitat of E. coli differs from the primary habitat in large extent in both 

biotic and abiotic conditions. The gastrointestinal environment provides an optimal 

constant temperature, and availability of amino acids and sugars, which favor the growth 

of E. coli (Savageau, 1983). In the secondary environment E. coli struggles to survive the 

limited nutrient availability, osmotic stress, variable temperature and pH, UV radiation 

and predation (Rozen and Belkin, 2001;Brennan et al., 2010b). All these conditions lead 

to a decrease in density of specific strains in the secondary environment and often to 

undetectable levels (Ishii and Sadowsky, 2008b). As a result, it is believed that E. coli 

cannot grow in the external environment most of the time, the reason for its use as an 

indicator organism (Solo-Gabriele et al., 2000;Walk et al., 2007;Odonkor and Ampofo, 

2013).  

Recent reports suggest that E. coli are capable of surviving and even multiplying in the 

external environment in the absence of fecal contamination in various climatic 

conditions. Although most E. coli strains are commensals, many strains have diverged to 

take on a pathogenic life style. There are two schools of thought; E. coli originated from 

fecal contamination in the past, and over time, some strains have adapted to replicating 
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outside of their mammalian host and eventually form the part of the natural microbiota. A 

second group developed the hypothesis that E. coli was always part of the microbiota in 

the external environment and the same strains acquired the ability to cause disease in 

human and animal host. If either of these two scenarios is correct then the use of E. coli 

as an effective indicator organism is questionable (Power et al., 2005). 

 

2.3.1. E. coli associated with soil, sands, sediment and aquatic plants 

A substantial amount of research have been reported that E. coli is able to grow and 

persist in soil, beach, sand, sediments, water, and aquatic plants in various climatic 

condition (tropical or temperate) (Jang et al., 2017).   

 Tropical soil environments have appropriate nutrients to support the growth of E. coli in 

the presence of other soil microbes (Byappanahalli and Fujioka, 1998). High growth rate 

of E. coli within river bank soil has been observed in a coastal subtropical region, where 

it serve as a constant source of E. coli while mixed with water in high tide or rain (Solo-

Gabriele et al., 2000). Colonization and persistence of certain E. coli genotypes in the 

freshwater beaches of Lake Michigan was observed (Walk et al., 2007). Persistence and 

differential growth of E. coli have been reported in sediments and water columns of 

subtropical regions (Anderson et al., 2005). Naturalized E. coli strains had the ability to 

grow and maintain a population up to 105 CFU per gram of non-sterile non amended 

temperate soil of Lake Superior Watershed (Ishii et al., 2006). E. coli can occur and 

persist for an extended period of time in undisturbed temperate forest soil irrespective of 

any immediate contamination or seasonal changes (Byappanahalli et al., 2006). Several 

studies have suggested that beach sands and sediments may act as a reservoir for E. coli 
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(Wheeler Alm et al., 2003;Whitman and Nevers, 2003;Shibata et al., 2004;Ishii et al., 

2007).  

 Marine/freshwater algae are reservoirs of many microbes (Egan et al., 2013), and 

these microbes play important role in the development, defense and metabolism of plants 

(Tujula et al., 2010). Studies have shown that at freshwater lakes, the macro alga 

Cladophora is an important reservoir for E. coli, and the algal mat provides a suitable 

environment for availability of nutrient from the exudates of alga, protection from UV 

rays and predation (Byappanahalli et al., 2003;Whitman et al., 2003;Englebert et al., 

2008;Vanden Heuvel et al., 2010).  

A study on coliform bloom of Australian lakes showed that E. coli isolated from the 

bloom are encapsulated, suggesting that some E. coli evolved a free living lifestyle and 

do not need any host in order to proliferate (Power et al., 2005). 

From the above studies it could be implied that a high number of E. coli in environmental 

samples may not always be linked to fecal contamination.  

 

2.3.2. Response of E. coli to Environmental challenges 

E. coli survive and multiply in the secondary environment, in association with water, 

sand, sediments, and green algae. Soil and sediments in tropical and subtropical regions 

may allow the colonization of E. coli as it provides a suitable environment for growth 

temperature, nutrition availability, and protection from UV rays and predation (Wheeler 

Alm et al., 2003;Brennan et al., 2010a). It has been suggested that, to maintain the 

autochthonous population outside of its host, conditions should remain favorable. E. coli 
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survive in unfavorable temperature conditions like freezing cold of the winter months, 

and then when the temperature increases in the summer months the same strains of E. coli 

are able to multiply (Ishii et al., 2006).  

The ability of E. coli to adapt and survive in the secondary environment may also be the 

result of its versatility in acquisition of energy sources or nutrients (Iuchi and Lin, 

1993;van Elsas et al., 2011). It is able to survive on minimal carbon and nitrogen sources 

(van Elsas et al., 2011) and has the ability to utilize various aromatic compounds (Díaz et 

al., 2001). It is, therefore, inferred that E. coli with its ability to utilize various energy 

sources, grow at various temperatures, and both under aerobic and anaerobic conditions, 

and remain an integral part of the microbial communities in various environments (Ishii 

and Sadowsky, 2008b). It is, however, still not very clear what the fate of E. coli is under 

complex natural conditions. It is important to understand the environmental factors that 

affect the survival of E. coli in secondary environments, as in such habitats it has to face 

fluctuating or low nutrient condition, high or low oxygen levels, fluctuating temperatures, 

high or low pH, or high osmolarity.  

 

2.3.3. Availability of resources 

The availability of resources such as carbon substrate is an important factor which may 

affect the survival and growth of E. coli in the secondary environment. E. coli is a 

chemoheterotroph, and its survival depends on the acquisition of sufficient carbon 

compounds. To adapt to glucose-limited conditions, E. coli cells were shown to be 

prepared to efficiently take up various carbon sources by the upregulation of a large 

number of genes that encode periplasmic binding proteins (Franchini and Egli, 2006). 
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The level of RpoS increases upon glucose starvation, and upregulates the expression of a 

number of genes that help to combat various stresses (Mandel and Silhavy, 2005). E. coli 

can also assimilate a variety of nitrogen sources including ammonia. It responds to 

nitrogen limitation by activating nitrogen stress response (Ntr), which facilitates N 

scavenging from alternative sources by expressing about 100 of genes (Reitzer, 2003). 

Nitrogen starved E. coli cells synthesize a signal molecule, guanosine tetraphosphate 

(ppGpp), which serves as an effector molecules and initiates physiological changes 

known as the stringent response (Brown et al., 2014). E. coli was also found to show a 

high degree of catabolic flexibility, and often in nutrient limiting conditions different 

catabolic functions and binding protein become activated. This confers its fitness 

advantages to survive in the open environment (Ihssen and Egli, 2005).  

 

2.3.4. Temperature 

E. coli growth and survival is also influenced by temperature. In animal hosts the body 

temperature is usually stable, whereas it often fluctuates in the outside environment such 

as soil and water. Many survival studies of E. coli have been carried out under stable 

temperature conditions (Kudva et al., 1998;Franz et al., 2005). The effect of fluctuating 

temperature on survival and adaptation of E. coli in soil and water is not clearly 

understood.  Studies on E. coli O157-H7 showed that survival in fluctuating temperature 

is generally lower compared to at stable temperature under manure (Semenov et al., 

2007).  It has been reported that E. coli Dh5 alpha can grow at an elevated temperature up 

to 49 °C, perhaps because of mutations that permit growth at this high temperature 

(Fotadar et al., 2005). E. coli showed a decreased level of gene expression involved in 
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glycolysis, PTS sugar transport, amino acid synthesis and transport at reduced 

temperatures (33 and 28C°) (Gadgil et al., 2005). Moreover gene expression patterns may 

keep altering with fluctuating temperature. The histone like nucleotide structuring protein 

in E. coli controls a majority of thermoregulatory genes such as multiple iron and other 

nutrient acquisition systems expressed at 37 °C and stress response, biofilm formation 

and cold shock genes expressed at 23C° (White-Ziegler and Davis, 2009). Hence in E. 

coli differential gene regulation may occur at a wide temperature range to adapt to the 

changing temperature in the environment.   

In a long term study, E. coli survived for more than 260 d in autoclaved river water at a 

temperature range from 4°C to 25°C (Flint, 1987), which suggests that competition with 

other microbes in water was a cause for decline of E. coli.     

 

2.3.5. Salinity / Osmolarity  

The ability of E. coli to adapt to the fluctuation of ambient osmolarity in the secondary 

environment is of primary importance for their survival. A quick rise in the osmolarity of 

the environment causes a threat to the growth and survival of E. coli, due to water loss 

and decreased turgor of cells.  At moderate to high osmolarities, potassium glutamate and 

other compatible solutes like polyols i.e. trehalose, aminoacid- proline and methyl amine- 

glycine betain are important osmoprotectants (Munro et al., 1989;Lucht and Bremer, 

1994). The cells activated the osmoregulating system under increased osmotic pressure in 

the surrounding environment, which prevents cell shrinkage and plasmolysis. Osmotic 

pressure induces the Pex starvation protein, as well as HSPs in E. coli. In addition, high 
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osmolarity in E. coli cells is associated with reduced DNA replication, nutrient uptake 

and cell growth (Chung et al., 2006)     

 

2.3.6. pH / acid stress 

Acidic condition affects the cell function by interfering with nutrient acquisition, pH 

homeostasis in the cytoplasm, protein stability and integrity of DNA (Booth et al., 2002). 

E. coli encounter a number of potential acid stresses in nature, and they are capable of 

sensing and responding to this stress as a process of their protection mechanism. E. coli 

can survive many hours in extremely acidic (pH 2.h or lower) conditions by the use of 

effective acid resistance systems (ARs). There are three types of ARs, AR1 is glucose 

repressed and the stationary phase alternative sigma factor (RpoS) is required to develop 

acid tolerance, AR2 is based on glutamate decarboxylation, involves GadA and GAdB 

decarboxylase enzymes and GadC membrane transport protein to import glutamate, and 

AR3 requires external supply of arginine by the AdiC membrane transporter and AdiA 

arginine decarboxylase enzyme (Lin et al., 1995;Castanie-Cornet et al., 1999;Foster, 

2004). It has been shown that OmpR regulates the components of the transcriptional 

program under acid stress conditions (Stincone et al., 2011). Acid resistance in E. coli has 

been found associated with an increased amount of cyclopropane fatty acid (CFA) in the 

membrane, which reduces the membrane permeability to protons (Brown et al., 

1997;Chang and Cronan, 1999). It has been observed in several studies that E. coli 

O157:H7 in particular survives in low pH (Benjamin and Datta, 1995;Lin et al., 1996), 

and different strains showed different capacities to survive acid stress (Lin et al., 1996), 



 

 

23

but in comparison to non O157 EHEC, they all do better in their survival (Bergholz and 

Whittam, 2007).    

 

2.3.7. Oxidative stress   

Oxidative stress occurs in cells due the production of reactive oxygen species (ROS), 

natural byproduct of aerobic metabolism. It can be detrimental to the cell by damaging 

several cellular sites like iron sulfur clusters, cysteine and methionine protein residues 

and DNA (Storz and Imlayt, 1999). E. coli response to superoxide and peroxide stress by 

inducing superoxide dismutases (SOD) which dismute superoxide to H2O2 (McCord and 

Fridovich, 1969) and catalases subsequently degrade H2O2 into H2O and O2. 

 

2.3.8. Solar Radiation 

Solar radiation is another abiotic factor that causes death of E.coli in environmental water 

and soil. Solar radiation, especially UV light can directly cause DNA damage or 

oxidation of cellular contents but these mechanisms is effective when cells are present on 

the soil surface or water surface where sunlight can reach. The effect of sunlight on E. 

coli survival may vary by exposure time or turbidity of the water environment.  The 

impact of sunlight is less in soil and sediment than the water environment (Whitman et 

al., 2004).  

 

 

2.3.9. Biotic Factors or other microbial communities 
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In natural habitats E. coli interact with other microbial communities. For survival it has to 

compete with other indigenous microorganisms for limited nutrients and also defend 

against antagonistic effects in the environment. It can also be susceptible to protozoan 

predation and lysed by phages. It has been reported that these two mechanisms can 

remove fecal indicator bacteria from river water very effectively (Korajkic et al., 2014). 

There is an increase in the E. coli population in sterile soil compared to non-sterile soil 

indicating that microbial communities play a crucial role in the survival of E. coli in the 

environment (Unc et al., 2006;Ishii et al., 2010a).  

 

2.3.10. Ability to form Biofilm 

Forming biofilm may be a survival strategy of E.coli that helps them to persist in the 

natural environment. Biofilms provide protection from hostile environmental condition 

such as desiccation, UV light, protozoan predation, antibiotics or disinfectants 

(McDougald et al., 2011). The bacteria may also use it as a source of nutrients (Jang et 

al., 2017). In addition to protection offered by the biofilm against different chemicals, a 

slow growing dormant sub-population called persister cells emerged more often from 

biofilm populations than planktonic populations (Lewis, 2010).   

 

2.4. E. coli Diversity and Population genetics  

Commensal and pathogenic E. coli strains display diverse phenotype and genotype 

variants. Multiple factors from both the host and environment shape the genetic structure 

of E. coli. To characterize how E. coli adapts to different niches it is necessary to unravel 
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how the species is genetically structured on a global scale. The balance between 

recombination and mutation largely defines a population structure. It keeps shifting from 

a clonal structure where mutation is low to a panmictic structure when recombination is 

high (Tenaillon et al., 2010). High genotypic diversity in E. coli has been identified by 

various DNA finger print technique i.e. repetitive extragenic palindromic (REP) PCR 

(Byappanahalli et al., 2012;Jang et al., 2014) and pulse field gel electrophoresis (Johnson 

et al., 2013). E. coli strains vary in their phenotypic characteristics as well, such as their 

ability to form biofilm, substrate utilization, antibiotic resistance and so on. This diversity 

of E. coli has been explained by the effect of the genomic makeup of the organism 

residing in the host intestine or in the natural environment (van Elsas et al., 2011). 

Horizontal gene transfer plays an important role in the acquisition of new genes, where 

gene mutations also contribute in E. coli phenotypic diversity, such as nutrient utilization. 

In multiple E. coli genomes, strain specific or group specific genes increase the 

pangenome size, suggesting the impact of horizontal gene transfer for genome plasticity 

of E. coli (Touchon et al., 2009).  

The environmental conditions of E. coli habitat have been suggested to influence the 

genetic structure (Tenaillon et al., 2010). Unique genotypes representing environmental 

adapted strains have been reported in many studies (Anderson et al., 2005;Ishii and 

Sadowsky, 2008b;Byappanahalli et al., 2012). The comparative genome analysis between 

environmentally adapted strains and other enteric E. coli have broadened the 

understanding of the evolutionary lineage of this bacterium. Using an extended multi-

locus sequence typing (MLST) approach, Walk et al. (2009) identified and characterized 

novel Escherichia clades (CI, CIII, CIV and CV). Whole genome phylogenetic analysis 
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of nine clade isolates and other commensal isolates showed that clade isolates were 

distinctly divergent from other enteric E. coli (Luo et al., 2011a). Therefore, 

genotypically the clade isolates may represent novel species even though they are 

indistinguishable by traditional phenotypic test and 16S rRNA gene based phylogenetic 

analysis (Luo et al., 2011a). Genetic exchange of core genes was detected, but only with 

the environmental clades or within the enteric strains and not between the two groups 

(Luo et al., 2011a). This result indicates the presence of a possible ecological barrier to 

gene flow between environmental and enteric strains. Environmental and commensal 

strains may behave differently as per their growth and survival mechanisms. Comparative 

transcriptome analysis suggests that environmental strains appeared to be better adapted 

in low nutrient conditions (Vital et al., 2015). 

 

2.4.1. Tools for studying E. coli population genetics 

 Four main techniques have been used to study population genetics of E. coli  

 

2.4.1.1. Serotyping  

E.coli are serotyped based on a combination 173 O antigen (somatic), 80 K antigen 

(capsular) and 56 H antigens (flagellar). So far 700 E. coli isolates have been serotyped 

based on the O and H antigen combination (Nataro and Kaper, 1998). These methods 

have been used for many years for differentiating and characterizing E. coli. However, 

these methods are usually time consuming and not always accurate. Advanced in next 

generation sequencing technologies have made is possible to develop genetic based 
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subtyping and molecular serotyping method for E. coli, which is more discriminatory 

compared to phenotypic serotyping methods.   

 

2.4.1.2. Multilocus Enzyme Electrophoresis-MLEE  

Isolates are characterized by the relative electrophoretic mobility of several water -

soluble housekeeping cellular enzymes. The variation in the mobility of an enzyme can 

directly relate to alleles at the corresponding locus, or in other words mutations in the 

gene locus that cause amino acid substitution in an enzyme coded by the gene. The allele 

at each locus is defined as electrophoretic type, and the relatedness of isolates can be 

visualized by a dendrogram produced from a matrix of pairwise differences between 

electrophoretic types (Selander et al., 1986).  

2.4.1.3. Multi locus Sequence Typing –MLST 

MLST is a powerful tool for bacterial population genetics. It refers to the systematic 

sequencing of six to ten well conserved housekeeping genes or loci within the bacterial 

genome. Allelic variation of each locus is listed, and sequence type (ST) or lineage is 

assigned by comparing to other isolate profiles in the database. The relatedness of isolates 

can be visualized by constructing a phylogenetic tree from the nucleotide sequences. 

Currently three MLST schemes are available for E. coli, each scheme uses a different 

combination of genes.  The characteristics of the three schemes are summarized in Table1 

below.  
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Table. 1 Main characteristics of the three E. coli MLST databases 

Location Genes Website No. STs No. Strains 

Michigan 
State 
University 

aspC, clpX, fadD, icd, lysP, 

mdh, uidA  

http://www.shigatox.ne
t/ecmlst/cgi-bin/index  

1081 3965 

Warwick 
Medical 
School 

adk, fumC, gyrB, icd, mdh, 

purA, recA  

http://mlst.warwick.ac.
uk/mlst/dbs/Ecoli  

4499 7583 

Pasteur 
Institute 

dinB, icd, pabB, polB, putP, 

trpA, trpB, uidA  

http://www.pasteur.fr/r
echerche/genopole/PF8
/mlst/EColi.html  

771 1311 

 

 

2.4.1.4. Phylogrouping Triplex PCR to multiplex PCR 

This method allows strains to be assigned to one of the four main phylogroups A, B1, B2, 

and D. Since its introduction in 2000, it has been widely used because of its simplicity 

and fast results. This method is based on triplex PCR using the combination of three 

genes yjaA, ChuA and TSPE4.C2 (Clermont et al., 2000) Recently E. coli phylogenetic 

grouping has been revised based on multi locus sequence typing and genome sequence 

data and four new groups C, E, F and Escherichia Clade-I were added (Clermont et al., 

2013). A multiplex PCR method was developed to rapidly classify E. coli strains into one 

of the seven phylogroups and Escherichia Clade-I without performing MLST or 

sequencing (Clermont et al., 2013). In general, strains belonging to different phylogroup 

display different phenotypic and genotypic traits (Gordon, 2004;Meric et al., 2013), so it 

is possible that phylogenetic group recognition of unknown E. coli isolates may provide 

some important information regarding their ecology and physiology.   
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This is the era of next generation sequencing, and it is now possible to study hundreds of 

strains to help understand the whole genome level and the evolutionary processes acting 

in a population; opening the era of population genomics (Liti et al., 2009;MacLean et al., 

2009). 

 

2.4.1.5. Pulse Field Gel Electrophoresis (PFGE) 

PFGE allows the separation of DNA molecules over 1000 kb, following restriction 

digestion of genomic DNA with a soft agarose plug, DNA molecules are separated in 

agarose gel, periodically applying changes in the direction of the electrical field in which 

large DNA molecules are suspended. The unique restriction patterns of each isolate are 

then compared to one another to determine relatedness (Sander et al., 1998). 

 

2.4.1.6. Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR 

ERIC sequences are 127 base pair motifs that occurs in multiple copies across the 

genome of enteric bacteria or vibrios. ERIC PCR uses a combination of primers targeting 

to the conserved region in order to generate an electrophoretic banding pattern based on 

the frequency and orientation of ERIC sequences in the bacterial genome. The specific 

band pattern of amplified PCR products obtained using the sequences can be used to 

genotype the bacteria (Versalovic et al., 1991).  
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2.4.1.7. Repetitive Extragenic Palindromic (REP) PCR 

This method is used for fingerprinting bacterial genomes by examining strain specific 

pattern obtained from PCR amplification of repetitive DNA elements present within 

bacterial genomes (Versalovic et al., 1991). REP elements are 38 bp sequences consisting 

of six degenerate positions and a 5 bp variable loop between each side of a conserved 

palindromic stem (Stern et al., 1984).  Both ERIC and REP PCR can be performed with a 

single primer, a single set of primers, or multiple sets of primers.  

 

2.4.1.8. Arbitrarily primed (AP) PCR or Random Amplified Polymorphic 

DNA Assay (RAPD)   

It involves the use of a single arbitrary primer in the PCR reaction, resulting in the 

amplification of many discrete DNA products. This procedure detects nucleotide 

sequence polymorphisms in a DNA amplification based assay using only a single primer 

of arbitrary nucleotide sequence. In this reaction, a single species of primer binds to the 

genomic DNA at two different sites on opposite strands of the DNA template.    

 

2.4.1.9. Amplified Fragment Length Polymorphism (AFLP)   

AFLP is based on the selective amplification of a subset of DNA fragments generated by 

restriction enzyme digestion (Vos et al., 1995). Two variation of AFLP have been 

described, one with two different restriction enzymes and two primers for amplification 

and a second with a single primer and restriction enzyme. The restriction fragments are 

then ligated to linkers containing each restriction site and a sequence homologous to a 
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PCR binding site. The PCR primers used for amplification contain DNA sequences 

homologous to the linker and contain one to two selective bases at their 3’ ends. For 

example, a selective primer directed against an EcoRI site might have the sequence 5’-

GAATTCAA-3’, where the first six bases are complementary to the EcoRI site while the 

two A residues at the 3’ end are selective and allow amplification of only those EcoRI 

sites with the sequence 3’ -CTTAATT-5’. They would not amplify an EcoRI site with the 

sequence 3’-CTTAATC-5’. Thus, the selective nucleotides allow amplification of only a 

subset of the genomic restriction fragments. The banding patterns are used to compare the 

isolates, and it has a good reproducibility and ability to differentiate clonally derived 

strains (Olive and Bean, 1999).   

 

3. Conclusions and Future Perspectives 

The presence of environmental E. coli is now well established based on published reports 

over the last few decades. These E. coli may be of animal origin and have become 

naturalized in their surrounding environments; or may retain the genetic traits of their 

ancestral lineage which was environmental bacteria residing primarily in soils and 

sediments. Furthermore, these environmentally occurring E. coli may be genetically 

different from their commensal or pathogenic counterparts as a consequence of their 

adaptation to environment. If this is the situation then the suitability of E. coli as an 

indicator organism is highly questionable.  To understand the evolutionary biology of E. 

coli it is important to elucidate the relationship between gene content and adaptation to 

the ecological niche. Strains within each phylogroup occupy various ecological niches, 

however there is no clear co-relation between phylogroups and their niches. There is 
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variation in the distribution of phylogroups in different niches. Occurrence of genes or 

gene cluster in the genomic island across E. coli strains of diverse phylogroups may 

enable them to thrive in multiple niches. The presence of E. coli in the secondary 

environment raises many questions: (i). can environmental E. coli still colonize the 

intestinal tract of warm-blooded animals, (ii). What mechanisms enable them to survive 

in multiple niches (iii). Are these bacteria potentially pathogenic to humans? Further 

research is needed to answer these questions.  
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Chapter 2:  Distribution of Diverse Escherichia coli between Cattle and 

Pasture 

The contents of this chapter has appeared as Nandakafle, G., Seale, T., Flint, T., Nepal, 

M., Venter, S.N., and Brozel, V.S. (2017). Distribution of Diverse Escherichia coli 

between Cattle and Pasture. Microbes Environ. 32, 226-233. 

 

1. Introduction 

Escherichia coli occur as part of the intestinal microbiota of many warm blooded 

animals, their primary habitat, and were long thought to survive for only short periods 

outside the host (Savageau, 1983) The use of E. coli as an indicator organism is based on 

the assumption that it does not persist and grow in secondary environments such as soil, 

water and sediments, thus indicating the presence of recent fecal contamination (Lang et 

al., 2003;Osborn and Trussell, 2004). Recent studies have demonstrated that E. coli is 

able to maintain populations in aquatic and soil environments (Winfield and Groisman, 

2003;Ishii and Sadowsky, 2008a). The occurrence of E. coli in soil, sediments, and water 

in tropical and sub-tropical regions has been widely documented, and the species is now 

considered to be autochthonous to soil within such warm regions (Byappanahalli and 

Fujioka, 1998;Solo-Gabriele et al., 2000;Desmarais et al., 2002;Byappanahalli and 

Fujioka, 2004;Hartz et al., 2008;Byappanahalli et al., 2012). E. coli can also survive for 

long periods and potentially replicate in temperate environments. Strains have been 

repeatedly isolated from undisturbed riparian soils of Southern Lake Michigan, Indiana 

(Byappanahalli et al., 2006). Similarly Ishii et al. (Ishii et al., 2006) also reported the 
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isolation of naturalized E. coli strains from temperate soil of Lake Superior Watershed, 

Minnesota. E. coli were also found attached to the macro-alga Cladophora in Lake 

Michigan (Byappanahalli et al., 2003), to periphyton in Lake Superior (Ksoll et al., 

2007), and in beach sand and sediments (Beversdorf et al., 2007;Ishii et al., 2007). 

Persistent strains have also been reported from alpine pasture soils, whether sampled 

from under or away from cowpats (Texier et al., 2008).  

The genus Escherichia comprises E. coli, E. hermanii, E. vulneris, E. fergusonii and E. 

albertii, with E. marmotae recently being added (Liu et al., 2015). Only E. coli contains a 

functional ß-glucuronidase encoded by uidA (Hayes et al., 1995), allowing distinction on 

differential media such as Membrane Lactose Glucuronide Agar (MLGA). Although 

enterohemorrhagic E. coli O157:H7 lack functional ß-glucuronidase, positive variants 

have been reported (Hayes et al., 1995;Sanchez et al., 2010).  A collection of 

environmental Escherichia isolates initially considered to be E. coli have been assigned 

to four distinct genetic clusters based on their unique Multi-Locus Sequence Type 

profiles, and named clades I, III, IV, and V(Walk et al., 2009). According to the extent of 

recombination between isolates of E. coli, Clade I is viewed as part of E. coli sensu 

stricto (Luo et al., 2011b), whereas clades III, IV and V are phylogenetically distant and 

not part of the species. Environmental E. coli may be defined as resident in a primary 

habitat in an environment outside of a host. Clade I is most closely related to E. coli with 

evidence for genetic exchange between members of the two. The clade strains are 

phenotypically similar to E. coli, and generally positive for ß-glucuronidase; however 

clade III cannot ferment sorbitol and sucrose or utilize lysine (Walk et al., 2009). They 
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may be distinguished from E. coli sensu stricto by multi locus sequence typing (MLST) 

and phylogrouping.  

There is increasing evidence to show that E. coli strains occurring in secondary 

environments are genetically and phenotypically distinct from E. coli inhabiting the gut 

(Gordon et al., 2002). The allocation of E. coli to four Phylogroups by multiplex PCR 

(Clermont et al., 2000) has indicated a degree of niche partitioning. Phylogroups A and 

B1 appear dominated by environmentally occurring strains (Walk et al., 2007), whereas 

B2 and D are predominated by mammalian isolates (Le Gall et al., 2007;Diard et al., 

2010). These findings suggest niche partitioning of diverse E. coli strains across various 

environments, and thus, some strains may be autochthonous to soils. This phylogrouping 

protocol was recently refined to yield seven groups (Clermont et al., 2013). Isolates from 

temperate soil of Lake Superior Watershed displayed DNA fingerprints distinct from 

animal-derived isolates (Ishii et al., 2006). E. coli from fresh water beaches along Lake 

Huron and the St. Clair River in Michigan revealed extensive genetic diversity of MLST 

(Walk et al., 2007). The uidA sequences of E. coli from alpine pasture soil were distinct 

from fecal E. coli, indicating a naturalized population that was part of the indigenous soil 

community (Texier et al., 2008).   

Previous studies have established occurrence of E. coli in soil, water and sediments under 

various climatic conditions. The objective of the present study was to investigate whether 

niche partitioning of E. coli occurs between cattle and their pasture. We attempted to 

clarify whether E. coli from bovine feces differed phenotypically and genotypically from 

isolates maintaining a population in pasture soil over winter.  E. coli strains that survived 

in pasture soil through the extreme South Dakota winter displayed a different genotype 



 

 

48

compared to bovine fecal isolates and need to be considered as environmental or 

naturalized.  

 
2. Materials and methods 

2.1. Sample collection  

Samples were collected from a cattle pasture (12.14 Ha) divided into four separate 

encampments (GPS co-ordinates 44°22'17.70"N 96°58'1.54"W), at Volga, SD, USA in 

May, June and July, 2013. This pasture had been cleared of cattle at the end of July 2012.  

Before the reintroduction of five or more cows per encampment, soil cores (4 cm in 

depth) were collected over three weeks, between May and June, and designated Soil 

Before Grazing (SBG). Following the introduction of cattle at the start of July, soil cores, 

run-off and cattle feces samples were collected once per week for four weeks and from 

each of the four encampments. Every week a transect was drawn at random across each 

encampment, and five soil samples, five run-off samples and two fresh fecal samples 

were collected per transect. Soil samples were taken to a depth of 4 cm using a soil borer 

(2 cm in diameter), and soil cores transferred to sterile 50-mL conical screw-cap tubes.  A 

simulation of run-off was performed using a Cornell infiltrometer (Ogden et al., 1997) 

fed with sterile dH2O. Runoff was collected into sterile 100-mL screw-cap flasks. Fresh 

fecal samples were taken directly from the pasture by scooping into sterile 50-mL conical 

screw-cap tubes.  Samples were transported to the laboratory in a cooled container and 

processed on the same day. Run-off and soil samples collected at the time of grazing 

were designated as pasture samples.  
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2.2. Isolation of E. coli from soil, run-off and feces sample 

Twenty grams of soil were mixed vigorously with 100 mL sterile water and allowed to 

settle for 1 h. One-  and ten-ml aliquots were then filtered through a sterile 0.45 µm 

mixed cellulose ester filter (Millipore), which was placed on Membrane Lactose 

Glucuronide Agar (MLGA, Fluka Analytical). Run-off samples (1 and 10 ml) were 

filtered directly through the 0.45 µm nitrocellulose filters which were then placed on 

MLGA. Aliquots of ten-fold dilutions of bovine fecal samples were plated on MLGA. 

Green colonies were positive for β-Galactosidase and β-Glucuronidase activities, and 

were assumed to be E. coli. This protocol excluded ß-glucuronidase negative O157:H7 

strains.  An average of 2 colonies were picked from the highest dilutions showing growth, 

streaked onto MLGA to confirm purity, sub-cultured onto LB agar and stored at -80 °C in 

50% glycerol.   All 15 cryptic species isolates obtained from Dr. Seth Walk grew on 

MLGA and 8 formed green colonies; therefore, it is unlikely that our isolation method 

excluded potential members of clades I, III, IV or V (data not shown). 

 

2.3. Analysis of the uidA and mutS gene sequences 

Genomic DNA was extracted from overnight LB agar cultures suspended in 10 mM 

phosphate buffer (pH 7.0) using the genomic DNA Quick Prep Kit (Zymo Research), and 

stored at -20°C.  The uidA and mutS genes were amplified by PCR using primers 

described previously (Walk et al., 2009)  (Table S1), with E. coli MG1655 as positive 

control. PCR reactions (25 µl) were set up as follows: 2.5 µl reaction buffer (10X) (New 

England Biolab), 0.5 µl MgCl2 (25mM), 0.5 µl dNTPs (40mM), 0.1 µl forward primer 

and 0.1 µl reverse primer (100 µmol), 0.125 µl of Taq polymerase (NE Biolab), 0.5 µl of 
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a DNA template and 20.7 µl sterile nano pure water. The amplification cycle was 

initiated with 95°C for 2 min, followed by 30 cycles of denaturing at 95°C for 30 s, 

annealing at 56°C for 30 s and extension at 72°C for 1 min, with a final extension at 72°C 

for 5 min. DNA sequences were elucidated by the dideoxy chain termination method 

(Beckman Coulter Genomic Center at Denver, MA). uidA sequences were submitted to 

Genbank (http://www.ncbi.nlm.nih.gov/genbank/) under the BankIt number 1841773 

(accession numbers KT311394 – KT311756), and mutS sequences as the BankIt number 

1841687 (accession numbers KT311004 – KT311366). The DNA sequences were 

aligned using ClustalW (Tamura et al., 2013), and overhangs were trimmed using SeAl 

(Rambaut, 2002). The uidA and mutS sequences for all isolates and reference strains 

(Leimbach et al., 2013)  were concatenated using SeAl. A maximum likelihood analysis 

using model GTR+G+I with 1,000 bootstrap replicates was performed in the program 

MEGA6.06 (Tamura et al., 2013). The tree was then annotated and visualized using the 

ITOL online tool (Letunic and Bork, 2011).  

 

2.4. Identification of Phylogroups 

Isolates were assigned to phylogroups using the protocol described by Clermont et al. 

(2013). In order to avoid ambiguity, PCR was performed separately for each primer set 

(Table S1). In order to clarify whether the distribution of phylogroups differed by source 

or cluster, we used multinomial log-linear regression models. Multiple logistic regression 

is used when the dependent variable is nominal and there is more than one independent 

variable. It is a classification method that generalizes logistic regression to multiclass 

issues having more than two possible discrete outcomes (McDonald, 2009). The models 
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were fit using the nnet package in R (v.3.2.2)(R Development Core Team, 2015). The 

response variable in this analysis was the phylogroup of each isolate (A, B1, B2, C, D, E, 

and Unknown), and the explanatory variables were the sample source and clusters 

associated with origin of the isolates. In order to visualize the effect of significant 

explanatory variables, we used regression trees fit using Package Party (Hothorn, 2014) 

in R.  

 

2.5. Identification of the RDAR (red, dry and rough) morphotype  

The RDAR morphotype was determined as described by White et al. (2010). Briefly E. 

coli isolates were grown at 37°C overnight on LBns agar (LB without salt), followed by 

culturing overnight at 37°C in LBns broth with shaking. Spot colonies were prepared by 

inoculation of 1µl of the overnight broth culture onto LBns agar supplemented with 100 

µg.mL-1 Congo red. Colonies were observed under a stereo microscope (Olympus 

SZX16), after an incubation at 28°C for 72 h. Colony morphologies were assigned to four 

groups where white smooth colonies were “ws”, red smooth colonies were “rs”, slight 

rough colonies were “sc” and highly wrinkled (curli) colonies were “c”.  

 

2.6. Degree of biofilm formation in LB and SESOM media 

Regarding the biofilm quantification in LB media, 5 µL of overnight broth culture was 

mixed with 195 µL of LB broth in a 96-well plate and incubated for 16 h at 37°C. 

Pseudomonas aeruginosa (PAO) (obtained from Dr Sang-Jin Suh, Auburn University, 

Alabama, USA) was used as a positive control. Soluble Extractable Soil Organic Matter 
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(SESOM) was prepared for culturing in liquid soil extract using air-dried soil from the 

cattle pasture as described previously (Vilain et al., 2006).  Five microliters of overnight 

broth culture was mixed with 195 µL of SESOM, harvested by centrifugation and the 

pellet re-suspended in 200 µL of SESOM.  The staining and quantification of biofilm 

were performed using the Crystal Violet (CV) assay as described by O'Toole (2011), but 

with 95% ethanol instead of 30% acetic acid for solubilization of CV. Each treatment was 

repeated four times. Isolates were assigned to four groups based on the quantity of 

biofilm formed (absorbance at 560 nm). In SESOM group” 0” was < 0.01, group “1” was 

<0.025, group “2” was < 0.05 and group “3” was > 0.05. In LB group “0” was <0.025, 

group “1” was <0.05, group “2” was <0.1 and group “3” was >0.1.  

 

2.7. Long term survival 

In order to study the long-term survival of E. coli in soil under environmental conditions, 

45 isolates were selected to represent the three sample sources and three cluster types (see 

results). A loop full of culture was then washed two times with sterile water and the pellet 

suspended in 500 μl SESOM. Two hundred microliters of this cell suspension was 

inoculated into 20 mL of SESOM and incubated at 25ºC overnight. The overnight liquid 

culture was diluted to an optical density of 0.05 at 546 nm (106 CFU.mL-1) and 1mL of 

this diluted cell suspension was used to inoculate 5 g of double autoclaved pasture soil 

placed in a sterile 50-mL conical tube. A further 2  mL of sterile dH2O was added to 

moisten the soil, which was shaken vigorously for 1 min, and the culturable count 

measured for time zero. Each soil microcosm was set up three times. Tubes were placed 

on the soil surface outdoors from November 2014 till May 2015. Following an incubation 
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under environmental conditions for six months, each sample was supplemented with 10 

mL of sterile dH2O, and serial dilutions were prepared to measure the culturable count. 

The log10 decline was calculated for each isolate.  An Analysis of Variance (ANOVA) 

was performed to examine the significance of differences in log decline among groups 

and sample types using R (v.3.2.2) (R Development Core Team, 2015).  

 

3. Results 

3.1. Isolation of E. coli 

We isolated E. coli from pasture soil (120 isolates), run-off (163 isolates), and fresh 

bovine feces (35 isolates) while cattle were grazing. E. coli was also isolated from the 

same pasture soil before cattle were introduced for the summer, with 45 SBG (soil before 

grazing) isolates. SBG samples contained between 0 and 25 CFU.g-1 of soil, while most 

pasture samples (soil after grazing) tested positive for E. coli, with up to 100 CFU.g-1 of 

soil (Fig.1). While the average culturable count in SBG samples was lower than that 

during grazing, it was not significant according to the Welch two sample t-test (p = 

0.054). Since cattle were removed during the previous summer and re-introduced only 

after the SBG samples had been collected, these results indicated that at least some 

strains maintained populations in soil through the previous fall, winter and spring. It was 

not possible to control the access of birds or small animals such as rodents to the pasture. 

Therefore, some E. coli may have been deposited by small mammals or birds entering the 

pasture before or during the sampling period, adding to the diversity obtained. 
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Fig. 2. 1 Box and whisker plot showing the culturable population density of E. coli in 

soil before grazing (SBG) and in pasture at the time of grazing (p = 0.084).  

 

3.2. Phylogenetic data analysis 

A phylogenetic analysis of the concatenated mutS and uidA sequences of all isolates (363 

isolates), 25 human pathogen and commensal reference strains (Leimbach et al., 2013), 

and representatives of the cryptic species Clades I, III, IV and V (Walk et al., 2009)  

exhibited multiple distinct clusters (Fig. 2). These clusters were classified into three 

groups based on the origin of isolates; (i) isolates from all sample types, except bovine 

feces, i.e. SBG and pasture; designated Environmental, (ii) isolates from all sample types 

except SBG i.e. feces and pasture; designated Bovine, and (iii) groups containing all three 

sample types; designated Mixed. Only two such mixed clusters were obtained, and these 
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mostly contained SBG and pasture isolates, and only three bovine isolates. These three 

bovine isolates may be adapted to the soil and gut environments. Five clusters of isolates 

fell into the environmental class. Six well-separated bovine clusters were observed, two 

clusters with strong bootstrap support (Bov-3 and, Bov-4 with 100). Most of the 

reference strains clustered separately from our isolates, indicating E. coli different from 

current reference strains (Leimbach et al., 2013). None of our isolates clustered with any 

of the cryptic species. 

 

3.3. Phylogroup distribution 

Isolates were assigned to six out of seven possible phylogroups: A, B1, B2, C, D, and E. 

Phylogroup distribution varied across sample types (Fig. 3a). Some isolates were not 

allocated to any of these phylogroups, and were termed unknown, whereas none of the 

isolates were assigned to group-F or Clade I. Phylogroup distribution across all isolates 

showed an overall predominance of B1 and E. SBG samples contained a higher 

percentage of B1 (66%) than bovine feces (32%) or pasture samples (40%), indicating 

that some B1 strains maintained populations in soil slightly more effectively than their 

counterparts. Bovine feceal isolates displayed a higher percentage of E (40%) than SBG 

(7%) or pasture sample (28%), suggesting that phylogroup E was primarily bovine 

associated and less able to maintain populations in pasture soil. Bovine clusters Bov-3 

and Bov-4 were comprised almost exclusively of phylogroup E (Fig. 2).   There were 

very few phylogroup A isolates in feces and soil samples but the distribution pattern was 

similar to B1, indicating that A is somewhat more environmental than bovine associated, 

but not particularly competitive in either environment. Bov-5 cluster was comprised of  
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Fig. 2. 2 Phylogenetic analysis of the concatenated uidA and mutS gene sequences of 

E. coli isolates, reference strains and cryptic species of E. coli (Walk et al., 2009).  

Sequences were aligned using ClustalW and manually trimmed using Se-Al. The 

best Model: Maximum Likelihood analysis with GTR and G+I was performed in the 

program MEGA 6. Numbers represent branch support of 1000 bootstrap replicates. 

The phylogenetic tree was color coded and visualized using the Interactive Tree of 

Life. Isolates are color coded based on their sources (left panel), cluster type (center 

panel), and phylogroups (right panel). Grey circles on branches indicate a bootstrap 

value of > 80% (1000 bootstraps). 

 

mostly phylogroup C, while cluster Bov-6 was primarily phylogroup B1. The distribution 

of the C- phylogroup was similar to E, suggesting that the source of C in soil is mostly 

from cattle feces. The distribution of unknown isolates was similar to phylogroup B1. 

A multinomial log linear regression analysis of phylogroup distribution based on source 

types (Fig. 3b) suggested similarity between bovine fecal and pasture communities, while 

fecal and pasture communities were different from SBG (p = 0.01), indicating that SBG 

populations were not from cattle. Cluster-wise comparison of phylogroup distribution 

(Fig. 3c) revealed that environmental and mixed clusters were similar, indicating that the 

three bovine isolates in mixed clusters were unique, displaying fitness in the bovine colon 

and pasture. Environmental and mixed cluster composition differed from bovine cluster 

populations (p < 0.001).  
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Fig. 2. 3 Phylogroup distribution of isolates across sample and cluster types. 

Distribution of phylogroups of isolates across soil before grazing (SBG), pasture soil 

while grazing, bovine feces and raw sewage samples (a). Phylogrouping was 

performed according to the scheme of Clermont et al., 2013. Regression tree 

showing the difference in distribution of phylogenetic groups among sources and 

clusters (b). The X axis denotes phylogroups and the Y-axis represents proportion of 
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isolates. BF-bovine feces, Past-pasture, SBG-soil before grazing, SWG-sewage, BC-

bovine cluster, EC-environmental cluster, MC-mixed cluster 

 

3.4. Curli and biofilm formation 

In order to characterize phenotypes potentially associated with long-term survival in soil, 

isolates were compared for curli formation. RDAR phenotyping showed that 38% of the 

isolates were intense curli formers. SBG isolates had the greatest proportion of curli 

formers, whereas pasture isolates (38%) fell between bovine feces (26%) and SBG (61%) 

(Fig. 4). A Chi square test of distribution of RDAR by isolate source yielded p = 1.801 x 

10-11.  

 

 

Fig. 2. 4 Distribution of RDAR groups among sample sources.  
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This indicated that curli formation is associated with soil fitness of some but not all E. 

coli. No clear association was found between curli formation and phylogroup (data not 

shown), whereas most of phylogroup B1 formed curli. 

The degree of biofilm formation varied widely among isolates (Fig. S1), although all 

isolates formed more sparse biofilm than P. aeruginosa PAO (OD= 1.36). Many isolates 

formed more biofilm in LB media than SESOM; however, the reverse was observed for a 

small number, indicating variations in biofilm formation across the strains. Most SBG 

isolates formed sparse biofilm, indicating that persistence in soil was not associated with 

biofilm formation. There was no correlation between curli and biofilm formation in either 

medium (data not shown), in contrast to previous findings on isolates from human origin 

(Barnhart and Chapman, 2006). There was also no correlation between phylogroup and 

biofilm formation (data not shown). 

 

3.5. Winter survival of selected isolates 

In order to study the long-term fate of various isolates in pasture soil, strains selected 

from all three sample types and clusters were incubated in soil and kept outdoors from 

November until May. All 45 isolates were recovered after the winter, with the highest 

population decline being log10 2.5 (Fig.5a, b). SBG isolates had the lowest average 

decline, but due to the few isolates with higher decline the SBG group was not 

significantly better than the pasture and fecal isolates (Fig. 5a). Mixed cluster strains 

demonstrated a significantly greater degree of survival than the bovine cluster (Fig. 5b). 

Although not significant, environmental cluster strains showed a lower mean decline than 
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bovine strains. This result suggested that mixed and environmental clusters strains had a 

higher 

 

Fig. 2. 5 Log decline of E. coli isolates representing bovine cluster (B), 

environmental cluster (E), mixed cluster (M) and sewage (SWG) 

 

propensity to survive the winter in soil than bovine cluster isolates (p<0.05). Although 

the difference in log decline was small, it did suggest a difference in fitness that may lead 
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to shift in the predominance of strains over time. Since sterile soil was used, this 

experiment was not performed in presence of competitors, therefore, a greater decline 

may occur under natural conditions. 

 
4. Discussion 

We herein attempted to clarify whether E. coli from bovine feces differed phenotypically 

and genotypically from isolates maintaining a population in pasture soil over winter, 

indicating niche-partitioning. E. coli strains that survived in pasture soil through the 

extreme South Dakota winter displayed a different genotype compared to bovine fecal 

isolates, while only few of the bovine derived genotypes were isolated from pasture after 

the winter. These results indicated that the niche partitioning of E. coli occurs between 

cattle and their pasture. 

The phylogenetic analysis of concatenated uidA and mutS sequences showed diverse 

groups of isolates separated into different, well-supported clusters (Fig. 2). It is unlikely 

that all isolates in one cluster were clonal because multiple samples were taken from 

across a 12.14 Ha surface area populated with multiple cattle. Most of the reference 

strains used in this study clustered separately from our isolates, but were of human origin, 

and most of them were pathogenic or related to a clinical condition (Leimbach et al., 

2013). None of these reference strains clustered in environmental clusters (Fig. 2). Some 

strains collected before grazing clustered separately from any bovine associated strains. 

As shown in previous studies, strains isolated from different aqueous and soil habitats 

showed a high genetic diversity (Buchan et al., 2001;Gordon, 2001;Lasalde et al., 

2005;Higgins et al., 2007). A large number of soil isolates clustered with bovine isolates, 
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but with no SBG isolates in these clusters, suggesting that they were introduced recently 

to the pasture through feces. Mixed clusters contained only one and two bovine isolates 

respectively, indicating that select strains thrive in multiple niches, i.e. the bovine gastro-

intestinal tract as well as pasture soil under varying weather conditions. Five small 

clusters contained only SBG and pasture isolates, suggesting these E. coli strains had the 

ability to survive the winter months through freeze- thaw cycles and subsequently grow 

in the summer months. Since these isolates may be environmentally adapted or 

naturalized (Ishii et al., 2006), we designated them environmental. E. coli populations 

detected in a number of environments such as soil and water in tropical, temperate, or 

alpine climates have been designated as naturalized or environmental (Byappanahalli et 

al., 2006;Ishii et al., 2006;Beversdorf et al., 2007;Texier et al., 2008;Brennan et al., 

2010b). About 12% of our isolates fell under the environmental category and, thus, may 

represent multiple naturalized populations adapted to niches in pasture. 

E. coli is considered to be a highly versatile and diverse species equipped with the ability 

to survive in many different habitats potentially stressful to other strains of the species. 

The genome flexibility of E. coli plays a key role in its metabolic and phenotypic 

diversity, increasing the competitiveness and fitness of individual variants in specific 

niches (Leimbach et al., 2013). Recently several groups of phylogenetically distinct E. 

coli found only in the environment were grouped into four “Clades”, viz. I, III, IV and V 

(Luo et al., 2011b). These were designated by Luo et al. (2011b) as the “Environmental 

E. coli”, implying only cryptic clades are environmental in nature. Walk, et al (Walk et 

al., 2009) reported that the members of Clades I, III, IV and V were found in higher 

abundance in environmental samples relative to human isolates. We did not obtain any of 
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these Clade isolates as per the uidA and mutS sequence analysis or by phylogrouping. 

Since all 15 clade strains evaluated showed the ability to grow on MLGA, were β-

galactosidase positive, and more than half were also β-glucuronidase positive, our 

isolation protocol may have yielded Clade isolates if dominant in pasture samples. 

Members of Clusters Env 1-5 are possible environmental sensu stricto E. coli. In contrast 

to our results, Clades I, III, IV and V occur in association with backyard poultry (Blyton 

et al., 2015). 

Most studies have used the initial phylogrouping protocol described by Clermont et al  

(Clermont et al., 2000). Phylogroups A and B1 are widely viewed as primarily 

environmental, whereas B2 and D are of mammalian origin (Gordon and Cowling, 

2003b;Escobar-Paramo et al., 2006). The protocol was recently refined to yield eight 

phylogroups viz. A, B1, B2, C, D, E, F and Clade I (Clermont et al., 2013). Phylogroup C 

previously fell within A, and groups E and F fell within D. Phylogroup D was previously 

viewed as a pathogen group, and the newer group E emanating from it also contains 

pathogenic strains including enterohaemorrhagic E. coli such as O157:H7(Leimbach et 

al., 2013). We obtained many group E isolates, predominantly from bovine feces and 

recently grazed pasture, consistent with the mammalian association of the old phylogroup 

D. Phylogroup C isolates were primarily from bovine feces and pasture, with only a small 

proportion from SBG. A small number of Phylogroup B2 isolates were obtained from 

bovine feces, pasture or SBG, although association of B2 is mostly with humans and pigs 

(Carlos et al., 2010). B1 was the most numerous group in pasture soil, both before and 

after grazing. These have been reported to survive in the environment, and possibly 

become naturalized in fresh water beaches (Walk et al., 2007), and estuarine microcosms 
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(Berthe et al., 2013). The difference in the distribution of E.coli subpopulations 

(phylogroups) among various ecological sources is also influenced by fecal deposition of 

small animals (Bergholz et al., 2011). 

The RDAR (red, dry and rough) morphotype is associated with multicellular growth and 

biofilm formation of E. coli for survival under harsh conditions (White et al., 2006). E. 

coli biofilm formation is associated with the expression of curli and extracellular 

polymeric substances such as adhesin, amyloid-forming protein, and exopolysaccharide. 

(Jonas et al., 2007;Romero et al., 2010;Vlamakis et al., 2013)We did not observe a 

correlation between phylogroup and RDAR morphotype, or between RDAR morphotype 

and biofilm formation, indicating that neither phenotype is conserved phylogenetically 

across bovine and pasture –associated E. coli. Phylogroup B1 was the notable exception 

with a high proportion of curli forming isolates. B1 phylogroup isolates from various 

animals, humans, and water had a markedly higher RDAR positive rate than the other 

phylogroups (White et al., 2011).  

All E. coli isolates evaluated showed population survival in soil through the winter. 

However, the log decline was significantly different between members of the bovine 

versus mixed clusters. Since the mixed clusters contained only one and two bovine 

isolates, it is possible that these bovine isolates displayed fitness for the soil and GI tract 

niches. The overall log decline was not very high, this may have been because there was 

no competition with other microorganisms or predators. A previous study reported that E. 

coli K12 viability declined at a higher rate in non-sterile water, soil and sea-water than 

under sterile conditions (Bogosian et al., 1996). E. coli O157–H7 in pure culture 

maintained the population until day 30, and there was only one log10 decline after 179 
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days. Naturalized E. coli isolated from soil survived and grew better in sterile than non-

sterile soil, indicating the presence of indigenous microbes negatively affected the growth 

of E. coli (Ishii et al., 2010b).   

 

5. Conclusion 

We demonstrate the occurrence of diverse groups of sensu stricto  E. coli in a cattle 

pasture, some clustering with SBG, but not cattle isolates, indicating niche partitioning. 

The strains of these clusters were better able to survive winter freezing in soil. Amarked 

variation in the distribution of phylogroups also described the genetic diversity among 

isolates. Our results add further support to the existence of environmental sensu stricto 

(non-cryptic species) E. coli that has become naturalized in soil and form a reservoir of 

populations in the environment. Further studies are required in order to characterize the 

biology of these environmental E. coli isolates, including their adaptive abilities and 

pathogenicity.    
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Table S2. 1 List of Primers 

Primer 
Name 

Sequence (5’ – 3’) Size of 
product 

References 

uidA CATTACGGCAAAGTGTGGGTCAAT 
(F)  

TCAGCGTAAGGGTAATGCGAGGTA 
(R) 

658 bp Walk et al. 
, 2009 

mutS GGCCTATACCCTGAACTACA (F) 

GCATAAAGGCAATGGTGTC   (R) 

596 bp Walk et al. 
, 2009 

chuA ATGGTACCGGACGAACCAAC (F) 

TGCCGCCAGTACCAAAGACA (R) 

288 bp Clermont 
et al. , 
2013 

yjaA CAAACGTGAAGTGTCAGGAG (F) 

 AATGCGTTCCTCAACCTGTG (R) 

211 bp Clermont 
et al. , 
2013 

TspE4 CACTATTCGTAAGGTCATCC (F) 

AGTTTATCGCTGCGGGTCGC (R) 

152 bp Clermont 
et al. , 
2013 

arpA  AACGCTATTCGCCAGCTTGC (F) 

 TCTCCCCATACCGTACGCTA (R) 

400 bp  

Clermont 
et al. , 
2013 

Group E 

Specific 

ArpAgpE 

GATTCCATCTTGTCAAAATATGCC 
(F) 

GAAAAGAAAAAGAATTCCCAAGAG 
(R) 

301 bp Clermont 
et al. , 
2013 

Group C 

specific 

trpAgpC 

AGTTTTATGCCCAGTGCGAG (F) 

 TCTGCGCCGGTCACGCCC (R) 

219 bp Clermont 
et al. , 
2013 

bp : Base pair 
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Chapter 3: Niche Preferences of Escherichia coli in a Peri-Urban Pond 

 

The work reported in this chapter was conducted by Gitanjali NandaKafle in 

collaboration with Taylor Huegen, Sarah C. Potgieter, Emma Steenkamp and Stephanus 

N. Venter 

 

1. Introduction 

Escherichia coli is a very diverse species with a large pan genome, and viewed primarily 

as a resident of the mammalian colon (Touchon et al. 2009). The sources of E. coli found 

in water bodies are believed to be humans, farm animals or wild animals, so-called fecal 

contamination (Ishii et al. 2006; Ishii et al. 2007). This includes commensals and diverse 

strains pathogenic to humans and animals. E. coli was thought unable to grow in 

secondary habitats such as water, soil, and sediments (Winfield and Groisman 2003). 

Recent studies have shown that E. coli can survive and even grow in water, sediments, 

soil, and water-plants in various climatic regions where no evidence for fecal 

contamination exists (Byappanahalli and Fujioka 1998; Byappanahalli et al. 2006; Ishii et 

al. 2006; Beversdorf et al. 2007). Some E. coli appear to become naturalized in the 

environment, with distinct genotypes from strains in animal hosts (Ishii et al. 2006; 

NandaKafle et al. 2017). E. coli populations from different aquatic environments also 

showed extensive genetic diversity (McLellan 2004; Byappanahalli et al. 2007; Casarez 

et al. 2007). Previous studies have suggested that there is a relationship between 
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genotypes of E. coli found among specific animal hosts and the geographic location from 

which they were isolated (Byappanahalli et al. 2006; Ishii et al. 2006; Petit et al. 2017). 

DNA fingerprinting methods have revealed the diversity of E. coli populations obtained 

from different sources (McLellan et al. 2003; Anderson et al. 2006; Chandran and 

Mazumder 2013; 2014). E. coli strains are typically classified into four major 

phylogroups (A, B1, B2 and D)(Clermont et al. 2000), and later eight phylogroups based 

on their genomic information. Of these, seven (A, B1, B2, C, D, E, F) belong to E. coli 

sensu stricto whereas the eighth one is represented by cryptic clade-I (Clermont et al. 

2013). There are variations in genotypic and phenotypic traits among strains of different 

phylogroups (Bergthorsson and Ochman 1998; Gordon 2004).  It is widely held that the 

four major phylogroups differ in their ecological habitats, with phylogroups A and B1 

occurring more frequently in the environment than B2 and D (Walk et al. 2007). 

Moreover, phylogroup B2 and D strains were frequently isolated from extra-intestinal 

sites within host bodies (Gordon 2004). Some strains belonging to phylogroup B1, were 

reported to persist in water (Walk et al. 2007; Ratajczak et al. 2010) and soil (NandaKafle 

et al. 2017). Many studies have also reported that phylogroup B2 and, to a lesser extent D 

strains are likely to be more virulent than other phylogroups (Picard et al. 1999; Johnson 

and Stell 2000; Le Gall et al. 2007). Interestingly, virulence genes are more frequently 

present in phylogroup B1 isolates from environments where phylogroup B2 strains are 

absent (Unno et al. 2009). Thus, identification of the phylogroup of unknown isolates 

may provide information on their physiological and ecological characteristics.  

Although most E. coli are commensal, eight pathovars have been well characterized. 

Each of these pathovars uses a large collection of virulence factors to disrupt host cellular 
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functions to augment its virulence activities (Croxen and Finlay 2010). Among the eight 

pathovars, Enterohemorrhagic E. coli (EHEC) and Enterotoxigenic E. coli (ETEC) are 

well recognized for causing infection in humans and domestic animals. EHEC is a human 

pathogen responsible for bloody diarrhea and hemolytic uremic syndrome (HUS). The 

morbidity and mortality associated with several outbreaks of EHEC disease poses a 

serious public health concern (Nguyen and Sperandio 2012). EHECs are often 

characterized by the presence of specific virulence factors; most strains produce at least 

one Shiga like toxin (encoded by Stx1 or Stx2), hemolysin (EHEC specific plasmid 

encoded hemolysin, encoded by hlyA), and intimin (attachment and effacement protein, 

encoded by eaeA) (Fagan et al. 1999).  ETEC strains that cause diarrhea produce heat 

labile (LT) and heat stable (ST) enterotoxins (Erume et al. 2008). These are the common 

cause of diarrhea in children and adults living in the developing world with inadequate 

clean water and poor sanitation, also known for causing traveler’s diarrhea (Qadri et al. 

2005). Neonatal and post weaning diarrhea due to ETEC is an important cause of 

economic loss to the pig industry (Francis 2002).  

 

Bacterial infections are becoming increasingly difficult to treat due to wide spread 

antibiotic resistance among pathogens. The current emergence of antibiotic resistant 

pathogenic bacteria in worldwide has become a matter of concern for public and animal 

health. Antibiotics are often used for the treatment of E. coli infections and may be 

incorporated into commercial livestock and poultry feed at a sub-therapeutic dose to 

promote growth. Over time, selection pressure selects resistant strains with specific 

resistance genes, and E. coli populations may show a specific antibiotic resistance pattern 
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depending on their habitats (Smith and Coast 2002; Collignon et al. 2009; Amaya et al. 

2012).  

We hypothesized that environmentally adapted E. coli associate preferentially with 

specific niches. A secluded peri-urban pond adjacent to cattle pasture was selected as 

sampling site. We isolated E. coli from water, sediment, submerged water plants and 

water snails, as well as from bovine feces in adjacent pasture. To determine evidence of 

niche partitioning, isolates were characterized genotypically by phylogrouping and 

analysis of their uidA and mutS sequences, and phenotypically for antibiotic resistance 

and virulence gene distribution.    

 

2. Materials and Methods:  

2.1. Sample source  

Samples were collected from a secluded pond (GPS co-ordinate 44.2719° N, 96.7736° 

W) at the edge of Brookings, SD, USA during June and July 2013. This pond is located 

between the edge of town and a nature park, and surrounded by dense scrub and trees, 

rarely frequented by humans. Water (31), sediment (27), water plant (35), and snail 

samples (20) were collected from the pond, and bovine feces (7) was collected from an 

adjoining cattle pasture. Samples were placed into sterile 50 mL conical screw cap tubes, 

brought to laboratory on ice and processed on the same day.  
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2.2. Isolation of E. coli 

Water samples were filtered (10 mL and 1 mL) through a sterile 0.45 μm mixed cellulose 

ester filter (Milipore) and the filters placed on Membrane Lactose Glucuronide agar 

(MLGA, Fluka analytical). Sediment samples were mixed with 15 mL of sterile dH2O 

and 1 and 10 mL aliquots filtered before placing filters onto MLGA. Water plants, snails 

were rinsed with sterile dH2O, then crushed in 10 mL sterile dH2O, and 100 μL plated 

directly on to MLGA plates. An aliquot of tenfold dilutions of suspended feces samples 

and all other samples were also plated onto MLGA. Green colonies indicated positive for 

β-Galactosidase and β-Glucuronidase and were assumed to be E. coli. This protocol 

excluded ß-glucuronidase negative O157:H7 strains.  An average of two colonies were 

selected at random from the highest dilutions showing growth, streaked onto MLGA to 

confirm purity, sub-cultured on LB agar, and stored at -80 °C in 50% glycerol.   

 

2.3. Analysis of the uidA and mutS gene sequences 

Genomic DNA was extracted from overnight LB agar cultures suspended in 10 mM 

phosphate buffer (pH 7.0), using the genomic DNA Quick Prep Kit (Zymo Research), 

and stored at -20°C.  The uidA and mutS genes were amplified by PCR using primers 

described previously (Walk et al. 2009) (Table S1). PCR reactions (25 µl) were set up as 

follows: 2.5 µl reaction buffer (10X) (New England Biolab), 1.5 µl MgCl2 (25mM), 0.5 

µl dNTPs (40mM), 0.1 µl forward primer and 0.1 µl reverse primer (100 µmol), 0.125 µl 
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of Taq polymerase (NE Biolabs), 0.5 µl of DNA template and 20.7 µl sterile nano pure 

water. The amplification cycle was initiated with 95°C for 2 min, followed by 30 cycles 

of denaturing at 95°C for 30 s, annealing at 56°C for 30 s and extension at 72°C for 1 

min, with a final extension at 72°C for 5 min. DNA sequences were determined by the 

dideoxy chain termination method (Beckman Coulter Genomic Center at Denver, MA). 

The uidA and mutS sequences were submitted to Genbank 

(http://www.ncbi.nlm.nih.gov/genbank/) under BankIt2031081: MF459726 - MF459846 

and BankIt2031086: MF459847 - MF459967 respectively.  

The sequences generated were analyzed using two approaches. To infer the relationships 

among isolates, DNA sequences were aligned using ClustalW (Tamura et al. 2011), and 

overhangs were trimmed using SeAl (Rambaut 2002). The uidA and mutS sequences for 

all isolates and reference strains (Leimbach et al. 2013) were concatenated using SeAl. A 

maximum likelihood analysis using model GTR+G+I with 1,000 bootstrap replicates was 

performed in the program MEGA6.06 (Tamura et al. 2011). The tree was then annotated 

and visualized using the ITOL online tool (Letunic and Bork 2011).  

 

2.4. Population genetic analysis         

To infer population structure and assign isolates to distinct populations, we employed a 

model-based clustering method using the STRUCTURE software (Falush et al. 2003). 

More specifically the admixture model was applied using sample locations as prior 

(LOCPRIOR). By assuming mixed ancestry, individuals within a population are thought 

to have inherited a fraction of their genome from an ancestor in the population (Pritchard 

et al. 2000). Ln probability values and the variance of Ln likelihood scores were 
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estimated for the concatenated uidA-mutS sequences, assuming the presence of 2 

populations (K = 2, with an adjusted alpha = 0.5) and performing twenty iterations for 

each K from K = 1 to K = 6. Estimated burn-in period of 10 000 and a run length of 500 

000 (Hubisz et al. 2009). All other parameters in STRUCTURE were left as default. The 

resulting data from STRUCTURE were collated and visualized using the web-based 

program Structure Harvester (Pritchard et al. 2000) to assess which likelihood values 

across the multiple estimates of K best that explained the data (in this case K=3 was the 

best) using the Evanno method (Evanno et al. 2005; Earl and Vonholdt 2012). 

Furthermore, optimal alignments for the number of replicate cluster analyses were 

generated using the FullSearch algorithm in CLUMPP (Jakobsson and Rosenberg 2007) 

and resulting output files were used directly for cluster visualization as plots in Excel and 

the program Distruct 1.1 (Rosenberg 2004). 

                                                                                

2.5. Phylogroup analysis 

Isolates were assigned to phylogroups using the protocol of Clermont et al. (2013). To 

avoid ambiguity, PCR was performed separately for each primer set (Table S1). 

Phylogroup similarity among the sample courses was determined by carrying out 

UPGMA analysis using the constrained Jaccard coefficient in PAST version 3.14 

(http://folk.uio.no/ohammer/past) (Hammer et al. 2001). To determine whether the 

distribution of phylogroups differed by source or cluster we used multinomial log-linear 

regression models. The models were fitted using the nnet package in R (v.3.2.2)(R 

Development Core Team 2015). The response variable in this analysis was the 

phylogroup of each isolate (A, B1, B2, C, D, E, and Unknown), and the explanatory 
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variables were the sample source and clusters associated with origin of the isolates. To 

visualize the effect of significant explanatory variables, we used regression trees fitted 

using Package Party (Hothorn 2014) in R. 

2.6. Virulence gene assays 

PCR for detection of stx1, stx2, eaeA, hlyA genes, was performed using primers as 

described by Fagan et al. (1999) (Table S-2) and for ST and LT virulence genes as 

described by Osek (2001) (Table-S2).  DNA samples for PCR were prepared by the 

boiling method. Stock cultures were recovered on LBA, two colonies suspended in 500 

µL dH2O, washed by centrifugation and suspension in fresh sterile dH2O, lysed by  

incubating at 100°C for 10 min, and immediately chilled on ice for 5 min. Debris was 

removed by centrifugation for 1 min at 12,000 X g and the supernatant was carefully 

transferred to a new sterile tube and stored at -20°C for further use as PCR template. PCR 

reactions were carried out in 25 µl volume containing 1 µl of DNA template, 2.5 µl 

reaction buffer (10X) (New England Biolab), 1.5 µl MgCl2 (25mM), 0.5 µl dNTPs 

(40mM), 0.1 µl forward primer and 0.1 µl reverse primer (100 µmol), 0.1 µl of Taq 

polymerase (NE Biolab), and 19.2 µl sterile nano pure water. PCR amplification for stx1, 

stx2, eaeA, and hlyA were performed under the following conditions: initial 95°C 

denaturation step for 3 min followed by 35 cycles of 20 s denaturation at 95°C, 40 s 

primer annealing at 58°C, and 90 s extension at 72°C. The final cycle was followed by a 

72°C incubation for 5 min (Fagan et al. 1999). LT and ST were amplified under the 

following conditions: an initial DNA denaturation step at 94 C for 5 min followed by 30 

cycles of 1 min of denaturation at 94°C, 1 min of primer annealing at 55°°C, and 2 min of 
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extension at 72°C. The final extension step was performed at 72°C for 5 min (Osek 

2001).  
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2.7. Antibiotic resistance assays 

Antibiotic susceptibility of 120 E. coli isolates was determined using disk diffusion assay 

following the CLSI standard (CLSI 2015). Stock cultures were recovered in 5 mL 

Mueller Hinton (MH, Oxoid) broth at 37°C for 16h. Cells were harvested by 

centrifugation (10,000 X g, 2 min), re-suspended in sterile tap water and the cell density 

adjusted to 0.5 on the McFarland turbidity standard. Cell suspensions were spread onto 

the MH agar (Oxoid), and antibiotic disks Ciprofloxacin (5 μg), Meropenem (10 μg), 

Ceftrixome (30 μg), Gentamicin (10 μg), Azythromycin (15 μg), Tetracycline (30 μg), 

with Penicillin (10 μg) as control) were placed on the surface. After 18h incubation at 

37°C, zone diameters were measured and isolates scored as intermediately or fully 

resistant according to the (CLSI 2015). Isolates resistance to two or more antimicrobials 

were defined as multidrug resistant. E. coli ATCC 25922 was included for each assay as 

a negative control.  

 

3. Results 

E. coli were obtained from water, sediment, water plants and water snails in the pond, as 

well as from bovine feces in the adjoining pasture. The population composition as 

determined by both genotypic and phenotypic traits was similar for water, sediment, and 

water plant niches, while the population composition of snail and bovine fecal 

populations differed.  
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3.1. Phylogroup distribution  

Populations obtained from the water, sediment and submerged water plants showed 

similar phylogroup distribution (Fig. 1), predominated by phylogroups B1, E and some 

B2 isolates. Sediment isolate distribution differed. 

 

 

Fig. 3. 1 Phylogroup distribution across isolates from the five sample types. 

Phylogrouping was performed according to the scheme of Clermont et al., 2013. The 

relatedness between virulence gene distribution profiles was determined by 

UPGMA using the constrained Jaccard coefficient. 

In contrast, snail populations were predominated by phylogroup B2. Multinomial log 

linear regression supported a significant difference (p < 0.001) between snail populations 

and the water, sediment and plant populations (Fig. 1S). Fecal isolates were all 
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phylogroup E. As our isolation method was based on MLGA (β-Glucuronidase and β-

Galactosidase), phylogroup E strains lacking the uidA gene for β-Glucuronidase would 

have been excluded (Chang et al. 1989). Yet, we obtained several isolates from feces. 

 

Fig. S3. 1 Multinomial log-linear regression analysis of phylogroup distribution of 

isolates across sample types. Phylogrouping was performed according to the scheme 

of Clermont et al., 2013. The X axis denotes phylogroups and the Y-axis represents 

proportion of isolates. Sed – sediment, W – water, WP – water plant, SN – snail 

 

3.2. Phylogenetic analysis  

The concatenated mutS and uidA sequence phylogeny formed many well-separated 

clusters with strong bootstrap support (Fig. 2). Grey circles denote greater that 80% 

bootstrap support. Most of the water, water plant, and sediment isolates fell into mixed 

clusters, some with reference strains. This indicated the co-occurrence of these strains 

across the three niches. None of our isolates aligned with any of the Clade I, III, IV or V 
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Fig. 3. 2  Phylogenetic analysis of the concatenated uidA and mutS gene sequences of 

E. coli isolates, reference strains and cryptic species of E. coli.  Sequences were 

aligned using ClustalW and manually trimmed using Se-Al. The best Model: 

Maximum Likelihood analysis with GTR and G+I was performed in the program 

MEGA 6. Numbers represent branch support of 1000 bootstrap replicates. The 

phylogenetic tree was color-coded and visualized using the Interactive Tree of Life. 

P1Sed1-4B1

TW09308V

P1Dp-3E

Ssonnei

EDL933E

P1Sed3-4A

P1Sed2-1E

P1Sed1-1B1

P2Snail-19D

P2W2-1B2

P1WP3-10E

P2WP2B1

P1Wg-5E

P1Man4E

P1W2-3B1

TW09276III

TW10509I

P1Man-2E

P1W3-5B2

P2W1-5B2

P2W2-3B2

P2Snail-9B2

P1W3-3E

P2Snail-6D

P1Dp-7B1

Sboydii

P1W2-1B1

P2Sed2-3B2

P1WP3-8E

P1Sed2-5B1

P2Sed2-4E

P1WP2-1B2

P2Sed1-5B1

P2Sed1-1E

P1Wg-1B1

O111HB1

P2Sed3-4B1

P2W3-3C

P1Dp-2B1

P2Snail-17B2

SE11B1

042D1

P1Man-3E

P1W3-6E

P2Snail-5E

P2W1-7Unkn

P1Man-5E

P1Wg-2B1

P1Sed2-3E

P1Sed2-4B1

ABU83972B2

P1Wg-4B2

P2W3-1B1

UTI89B2

ED1aB2

E1118V

P1WP3-2B2

IHE3034B2

P2DP3E

P2Sed3-3B1

P1Sed3-6E

P2W3-5B2

P2Snail-12B2

S88B2

P2Sed1-2B2

P1W2-4E

E24377AB1

P1WP3-4C

P1Sed1-5B2

P1WP1-1B1

P1Sed3-1E

O26H11B1

P1WP3-6E

P1W3-1E

P2Snail-16B2

P1WP3-3E

P2W1-1E

P1WP3-1B1

P1W3-2B1

P2Snail-18B2

P1WP1-3E

CFT073B2

P1Sed2-6Unk

Sflexneri

P2Sed1-4B2

P2W1-3E

P1WP1-2E

K12A

P2Snail-10B2

P2Snail-20B2

P1Sed2-2E

P2W2-2B2

Sdysenteriae

P2Snail-15B2

P1Dp-5Unk

P2W1-6E

P1Sed3-3A

O103H2B1

P2Sed3-5E

P2Snail-14B2

P2Snail-13E

P1WP1-5B1

P1Man-6E

P1W3-4B1

P2DP2B2

TW14182IV

P2W3-4B1

P1WP3-9E

P2W1-2B2

P1Man-7E

P1Man-1E

P2Sed3-1B1

P1Sed1-2Unkn

P1WP3-7B1

P1WP3-5E

P1Dp-1B1

P2Snail-7B2

P2Snail-11B2

P2DP1B2

P2DP4E

55989B1

APEC01B2

P1W1-2Unk

P2W1-4E

TW09231III

P2DP5B2

P2Snail-2B2

H605IV

P2Sed1-3B1

IAI1B1

P2Snail-4B2

P1WP2-2E

P2Sed2-5B1

P1Dp-4E

P1Sed3-5A

P2WP1B1

P2Snail-3B2

P1Sed3-7E

P2Sed3-2E

P2Sed2-1B1

P1Sed1-3Unkn

P1WP1-6E

P1W2-5B1

P1WP2-4B1

P2Snail-8E

Clade 

Sediment 

Feces 
Snail 

Water plant 

Water 

Reference 



 

 

85

Isolates are color-coded based on their sources. Grey circles on branches indicate a 

bootstrap value of > 80% (1000 bootstraps). 

 

strains. The majority of snail isolates grouped into three unique clusters that contained no 

water, sediment or water plant isolates, and also no reference strains, indicating unique 

strains, and supporting a preference of these strains for snails over surrounding water, 

sediment or water-plant isolates. Three of the snail isolates did cluster with water plant, 

sediment, water and reference strains. All bovine fecal isolates formed a separate cluster 

with no reference strains (Fig. 2), indicating hitherto poorly studied diversity of species.    

 

3.3. Population genetic analysis  

Population genetic analysis of concatenated uidA and mutS genes was performed 

assuming one aquatic and one fecal population (i.e. K = 2, alpha = 0.5). The result 

obtained from the Evanno table was K = 3, supporting the existence of three separate 

genetic backgrounds (Fig. 3). The bovine fecal population was homogenous, indicating 

one genetic background. The snail population comprised of two homogenous 

backgrounds, one of these being identical to fecal background. In contrast, water, 

sediment and water plant population isolates comprised of a mixture of three 

backgrounds. Some were as bovine feces, some as the second snail background, but a 

distinct third admixture was observed, unique to all aquatic populations but snails. Thus 

the pond ecosystem comprised of an admixture of strains representing three populations, 

one likely due to introduction of bovine-derived strains, a second associated with snail 
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Fig. 3. 3 Population structure analysis of isolates based on their uidA and mutS 

sequences. The admixture model was applied, assuming one aquatic and one fecal 

population, for K=2, alpha = 0.5. The result obtained from the Evanno table was K 

= 3, supporting the existence of three separate genetic backgrounds represented by 

the three colors. 

 

populations, and a third unique to the aquatic environment. This indicates that the water, 

sediment and water plant populations have shared gene flow, but with admixture from the 

fecal and snail populations. The water, water plant, sediment, and snail populations did 

not contribute any admixture to the fecal population. The pond ecosystem isolates 

represented three genetic backgrounds that are not specifically linked to phylotypes. 

 

3.4. Virulence gene distribution 

All isolates were screened for the presence of major virulence genes associated with 

diarrhaeagenic E. coli in order to determine their pathogenic potential. Out of six genes 

four (Stx2, eaeA, hlyA and STb) were detected in these isolates. Among these eaeA was 

the most frequently detected (36.13%), then Stx2 (12. 61%), LTa (10.9%) and hlyA 

(3.36%).  Distribution of the virulence genes in E. coli populations of water, sediment 



 

 

87

and water plants was similar, supporting exchange of isolates among these niches (Fig. 

4).  

 

Fig. 3. 4 Virulence gene distribution across isolates from the five sample types.  

The relatedness between virulence gene distribution profiles was determined by UPGMA 

using the constrained Jaccard coefficient. 

Yet the water population was much richer in prevalence of the STb gene, and had no 

isolates with the hlyA gene. Virulence gene distribution of snail populations was 

different, with more than half the isolates containing the eaeA gene. We did not detect 

any isolates with the Stx-1 and LT genes, although the positive control EDL933D and 

O157:K87:K88 (Francis and Willgohs 1991) yielded positive results confirming 

reliability of the assay. While all bovine feces isolates belonged to phylogroup E, none 

contained any of the six virulence genes (Fig. 4). The MLGA used for primary isolation 

would not obtain β-glucuronidase negative strains, so some phylogroup E strains that 

may have contained some virulence genes may have been excluded. 
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3.5. Antibiotic resistance profiling 

 

Fig. 3. 5 Antibiotic resistance across isolates from the five sample types. The 

relatedness between resistance profiles was determined by UPGMA using the 

constrained Jaccard coefficient.  

 

One antibiotic was chosen from each of seven target classes to test the susceptibility of 

isolates:  ceftriazone (class cephalosporins), ciprofloxacin (class- fluoroquinolones), 

gentamicin (class-aminoglycosides), azithromycin (class-macrolides), meropenem (class- 

carbapenems), and tetracycline. Water and water plant populations showed a similar 

distribution, with 60% of isolates resistant to gentamicin (Fig. 5). Sediment antibiotic 

resistance was different somewhat from water and water plant populations. Water, water 

plant, and sediment samples contained isolates resistant to three antibiotics, many of 

which also contained the eaeA gene as well as either STb or hlyA (Fig. 6). Snail 
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populations had a unique antibiotic resistance profile, with 80% of isolates sensitive to all 

antibiotics (Fig. 6), whereas only 20% of water, sediment and water plant isolates were 

not resistant to any of the antibiotics. However, most of the snail isolates displayed 

intermediate resistance to three or four antibiotics (Fig. S2).  Bovine feces populations 

displayed their own antibiotic resistance profile (Fig. 5), with 80% of isolates displaying 

intermediate resistance to either two or three antibiotics. 

 

 

Fig. 3. 6 Sensitivity and multidrug resistance (resistance to 0, 1, 2 or 3 antibiotics) 

across sample types, compared to occurrence of virulence genes (percentage) 
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4. Discussion   

The goal of this study was to determine whether environmental E. coli associate with 

specific niches. To obtain the evidence in support of niche partitioning, isolates from five 

niches were characterized genotypically and phenotypically. 

Phylogroup distribution in water was similar to water plants while the sediment 

population differed, containing phylogroup A but not phylogroup C. Yet no statistical 

significance difference could be shown among the three. Snail population were 

significantly different to all other populations, predominantly phylogroup B2. Isolates 

from water, water plant and sediment were predominantly B1 and E, with fewer B2. This 

result was consistent with previous studies where B1 were generalist and harbor traits 

linked to plant association whereas B2 strains are more host associated (White et al. 

2011; Meric et al. 2013). Phylogroup distribution within the E. coli population in both 

water and superficial sediments showed spatial variation (Petit et al. 2017). It has also 

been reported that phylogenetic groups are adaptable and genotypically influenced by 

changes in environmental conditions, however phylogroup B1 isolates seem to persist in 

water (Ratajczak et al. 2010; Jang et al. 2014). Our data indicated that B2 populations 

occurring in fresh water pond persist in snails. Likewise, phylogroup E strains 

predominant in feces deposited nearby did not thrive in the pond. The phylogroup E 

strains in the pond differ from those in feces, indicating niche preference among them.  

The composition differences of phylogroups among populations in different 

environments may be caused by differences in adaptability and plasticity of E. coli strains 

(Jang et al. 2014). Such variation in phylogroup distribution suggests that E. coli 

phylogroups are affected by niche specific selective pressures (Meric et al. 2013). 
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The mutS and uidA phylogenetic tree analysis showed that some clusters are devoid of 

reference strains and some are with reference strains. B1 phylogroups clustered with 

reference strains, indicating some of these strains may come from human sources. All 

isolates from the bovine feces fell under phylogroup E but formed a completely different 

cluster in the phylogenetic tree of mutS and uidA sequence, indicating a separate group of 

isolates. Phylogroup E did not cluster with any reference strains suggesting these isolates 

are different to those from humans.  In our previous study we also found a higher 

percentage of phylogroup E in bovine fecal isolates compared to soil isolates 

(NandaKafle et al. 2017). Population genetic analysis of mutS and uidA supported the 

existence of two separate populations. The bovine fecal population has no admixture 

whereas pond ecosystem has an admixture of two separate populations. 

High prevalence of eaeA was observed in all four pond niches, but not in feces, indicating 

presence of eaeA may play a role in aquatic fitness that is distinct from virulence. 

Byappanahalli et al. (2015) detected a high level of eaeA in algae and to a lesser extent in 

water and sand samples from lake Michigan. eaeA is one of the most frequently detected 

pathogen genes in the environment (Hamilton et al. 2010; Chandran and Mazumder 

2015; Zhang et al. 2016). It is not certain that these isolates with virulence genes are 

pathogenic and survive in the environment, or whether they acquire these genes from 

these environments. The presence of eaeA, Stx2, hlyA, and STb indicates the presence of 

potential pathogens, though it has been suggested that the occurrence of single or 

multiple virulence genes in E. coli does not confirm its pathogenicity, unless it has the 

appropriate combination of VGs to cause disease to the host. It has been reported that 

enteric pathogens exposed to vegetables express similar genes those required to the 
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colonize host intestine, indicating that enteric bacteria may have the ability to colonize 

vegetables by using similar mechanism required for animal cells (Goudeau et al. 2013). 

The antibiotic resistance showed different pattern for sample types. Isolates all five 

sample types showed some resistance to gentamicin, and all samples types but snail 

showed resistance to ceftriazone. The antibiotic resistance pattern varied among sample 

types, except water and water plants showed more than 90% similarity. Sediment samples 

showed about 60% similarity with water and water plant, some isolates in sediment 

samples showed resistance to meropenem, azithromycin and tetracycline. The similarities 

of patterns of resistance in different sample types suggested there might be a common 

source of resistant strains. The resistance pattern in snail and bovine fecal samples were 

very different from water, water plant and sediment isolates. This pond is not being used 

for any human or domestic animal activities and also there is no direct in put of any 

wastewater or farm run-off. It is interesting to find strains with multiple antibiotic 

resistance in all sample types but snail. Previous studies have shown that E. coli isolated 

from various sampling sources showed variation in the antibiotic resistance patterns 

depending on the use of antibiotics and their exposure to environments (Sayah et al. 

2005; Ibekwe et al. 2011; Amaya et al. 2012). We are interested to understand these 

strains with multiple antibiotic resistance, whether they have acquired antibiotic 

resistance from various antibiotic exposure or they have these genes naturally (Vaz-

Moreira et al. 2014).  

In conclusion, our study showed a distribution pattern of genotypic and phenotypic traits 

among isolates of various sample sources based on their niche preferences. Here, 

sediment, water and water plants isolates showed similarities in phylogroup distribution, 
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occurrence of virulence genes and antibiotic resistance pattern, whereas snail and bovine 

fecal isolates were different.  

 

 

5. References  

Amaya, E., Reyes, D., Paniagua, M., Calderon, S., Rashid, M.U., Colque, P., Kuhn, I., 
Mollby, R., Weintraub, A., and Nord, C.E. (2012). Antibiotic resistance patterns 
of Escherichia coli isolates from different aquatic environmental sources in Leon, 
Nicaragua. Clin Microbiol Infect 18, E347-E354. 

Anderson, K.L., Whitlock, J.E., and Harwood, V.J. (2005). Persistence and Differential 
Survival of Fecal Indicator Bacteria in Subtropical Waters and Sediments. Appl 

Environ Microbiol 71, 3041-3048. 
Anderson, M.A., Whitlock, J.E., and Harwood, V.J. (2006). Diversity and distribution of 

Escherichia coli genotypes and antibiotic resistance phenotypes in feces of 
humans, cattle, and horses. Appl Environ Microbiol 72, 6914-6922. 

Bergthorsson, U., and Ochman, H. (1998). Distribution of chromosome length variation 
in natural isolates of Escherichia coli. Mol Biol Evol 15, 6-16. 

Beversdorf, L.J., Bornstein-Forst, S.M., and Mclellan, S.L. (2007). The potential for 
beach sand to serve as a reservoir for Escherichia coli and the physical influences 
on cell die-off. J Appl Microbiol 102, 1372-1381. 

Byappanahalli, M.N., and Fujioka, R.S. (1998). Evidence that tropical soil environment 
can support the growth of Escherichia coli. Water Sci Technol 38, 171-174. 

Byappanahalli, M.N., Nevers, M.B., Whitman, R.L., and Ishii, S. (2015). Application of a 
Microfluidic Quantitative Polymerase Chain Reaction Technique To Monitor 
Bacterial Pathogens in Beach Water and Complex Environmental Matrices. 
Environ Sci Technol Lett 2, 347-351. 

Byappanahalli, M.N., Richard, L.W., Shivelya, D.A., John, F., Ishii, S., and Sadowsky, 
M.J. (2007). Population structure of cladophora-borne Escherichia coli in 
nearshore water of lake Michigan. Water Res 41, 3649-3654. 

Byappanahalli, M.N., Whitman, R.L., Shively, D.A., Sadowsky, M.J., and Ishii, S. 
(2006). Population structure, persistence, and seasonality of autochthonous 
Escherichia coli in temperate, coastal forest soil from a Great Lakes watershed. 
Environ Microbiol 8, 504-513. 

Casarez, E.A., Pillai, S.D., and Di Giouanni, G.D. (2007). Genotype diversity of 
Escherichia coli isolates in natural waters determined by PFGE and ERIC-PCR. 
Water Res 41, 3643-3648. 

Chandran, A., and Mazumder, A. (2013). Prevalence of Diarrhea-Associated Virulence 
Genes and Genetic Diversity in Escherichia coli Isolates from Fecal Material of 
Various Animal Hosts. Appl Environ Microbiol 79, 7371-7380. 



 

 

94

Chandran, A., and Mazumder, A. (2014). Occurrence of Diarrheagenic Virulence Genes 
and Genetic Diversity in Escherichia coli Isolates from Fecal Material of Various 
Avian Hosts in British Columbia, Canada. Applied and Environmental Microbiol 
80, 1933-1940. 

Chandran, A., and Mazumder, A. (2015). Pathogenic Potential, Genetic Diversity, and 
Population Structure of Escherichia coli Strains Isolated from a Forest-Dominated 
Watershed (Comox Lake) in British Columbia, Canada. Appl Environ Microbiol 

81, 1779-1789. 
Chang, G.W., Brill, J., and Lum, R. (1989). Proportion of beta-D-glucuronidase-negative 

Escherichia coli in human fecal samples. Appl Environ Microbiol 55, 335-339. 
Clermont, O., Bonacorsi, S., and Bingen, E. (2000). Rapid and simple determination of 

the Escherichia coli phylogenetic group. Appl Environ Microbiol 66, 4555-4558. 
Clermont, O., Christenson, J.K., Denamur, E., and Gordon, D.M. (2013). The Clermont 

Escherichia coli phylo-typing method revisited: improvement of specificity and 
detection of new phylo-groups. Environ Microbiol Rep 5, 58-65. 

Clsi (2015). "Twenty-Fifth Informational Performance Standards for Antimicrobial 
Susceptibility Testing Supplement.", in: CLSI document M100-S25. (Wayne, PA: 
Clinical and Laboratory Standards Institute). 

Collignon, P., Powers, J.H., Chiller, T.M., Aidara-Kane, A., and Aarestrup, F.M. (2009). 
World Health Organization ranking of antimicrobials according to their 
importance in human medicine: A critical step for developing risk management 
strategies for the use of antimicrobials in food production animals. Clin Infect Dis 
49, 132-141. 

Croxen, M.A., and Finlay, B.B. (2010). Molecular mechanisms of Escherichia coli 
pathogenicity. Nat Rev Microbiol 8, 26-38. 

Earl, D.A., and Vonholdt, B.M. (2012). STRUCTURE HARVESTER: a website and 
program for visualizing STRUCTURE output and implementing the Evanno 
method. Conserv Genet Resour 4, 359-361. 

Erume, J., Berberov, E.A., Kachman, S.D., Scott, M.A., Zhou, Y., Francis, D.H., and 
Moxley, R.A. (2008). Comparison of the contributions of heat-labile enterotoxin 
and heat-stable enterotoxin b to the virulence of enterotoxigenic Escherichia coli 
in F4ac receptor-positive young pigs. Infect Immun 76, 3141-3149. 

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of 
individuals using the software STRUCTURE: a simulation study. Mol Ecol 14, 
2611-2620. 

Fagan, P.K., Hornitzky, M.A., Bettelheim, K.A., and Djordjevic, S.P. (1999). Detection 
of Shiga-Like Toxin (stx(1) and stx(2)), Intimin (eaeA), and Enterohemorrhagic 
Escherichia coli (EHEC) Hemolysin (EHEC hlyA) Genes in Animal Feces by 
Multiplex PCR. Appl Environ Microbiol 65, 868-872. 

Falush, D., Stephens, M., and Pritchard, J.K. (2003). Inference of population structure 
using multilocus genotype data: linked loci and correlated allele frequencies. 
Genetics 164, 1567-1587. 

Francis, D.H. (2002). Enterotoxigenic Escherichia coli infection in pigs and its diagnosis. 
J Swine Health Prod 10, 171-175. 



 

 

95

Francis, D.H., and Willgohs, J.A. (1991). Evaluation of a Live Avirulent Escherichia coli 
Vaccine For K88 Positive Lt Positive Enterotoxigenic Colibacillosis In Weaned 
Pigs. Am J Vet Res 52, 1051-1055. 

Gordon, D.M. (2004). The Influence of Ecological Factors on the Distribution and the 
Genetic Structure of Escherichia coli. EcoSal Plus 1. 

Goudeau, D.M., Parker, C.T., Zhou, Y.G., Sela, S., Kroupitski, Y., and Brandl, M.T. 
(2013). The Salmonella Transcriptome in Lettuce and Cilantro Soft Rot Reveals a 
Niche Overlap with the Animal Host Intestine. Appl Enviro Microbiol 79, 250-
262. 

Hamilton, M.J., Hadi, A.Z., Griffith, J.F., Ishii, S., and Sadowsky, M.J. (2010). Large 
scale analysis of virulence genes in Escherichia coli strains isolated from Avalon 
Bay, CA. Water Res 44, 5463-5473. 

Hammer, Ø., Harper, D.a.T., and Ryan, P.D. (2001). PAST: Paleontological Statistics 
Software Package for Education and Data Analysis. Paleontol Electronica 4, 1-9. 

Hothorn, T. (2014). "Party, v.1.0-17. Comprehensive R Archive Network". (Vienna, 
Austria: R Foundation for Statistical Computing ). 

Hubisz, M.J., Falush, D., Stephens, M., and Pritchard, J.K. (2009). Inferring weak 
population structure with the assistance of sample group information. Mol Ecol 

Resour 9, 1322-1332. 
Ibekwe, A.M., Murinda, S.E., and Graves, A.K. (2011). Genetic Diversity and 

Antimicrobial Resistance of Escherichia coli from Human and Animal Sources 
Uncovers Multiple Resistances from Human Sources. Plos One 6. 

Ishii, S., Ksoll, W.B., Hicks, R.E., and Sadowsky, M.J. (2006). Presence and growth of 
naturalized Escherichia coli in temperate soils from Lake Superior watersheds. 
Appl Environ Microbiol 72, 612-621. 

Ishii, S., Meyer, K.P., and Sadowsky, M.J. (2007). Relationship between phylogenetic 
groups, genotypic clusters, and virulence gene profiles of Escherichia coli strains 
from diverse human and animal sources. Appl Environ Microbiol 73, 5703-5710. 

Jakobsson, M., and Rosenberg, N.A. (2007). CLUMPP: a cluster matching and 
permutation program for dealing with label switching and multimodality in 
analysis of population structure. Bioinformatics 23, 1801-1806. 

Jang, J., Di, D.Y.W., Lee, A., Unno, T., Sadowsky, M.J., and Hur, H.G. (2014). Seasonal 
and Genotypic Changes in Escherichia coli Phylogenetic Groups in the Yeongsan 
River Basin of South Korea. Plos One 9. 

Johnson, J.R., and Stell, A.L. (2000). Extended virulence genotypes of Escherichia coli 
strains from patients with urosepsis in relation to phylogeny and host 
compromise. J Infect Dis 181, 261-272. 

Le Gall, T., Clermont, O., Gouriou, S., Picard, B., Nassif, X., Denamur, E., and 
Tenaillon, O. (2007). Extraintestinal virulence is a coincidental by-product of 
commensalism in B2 phylogenetic group Escherichia coli strains. Mol Biol Evol 
24, 2373-2384. 

Leimbach, A., Hacker, J., and Dobrindt, U. (2013). E. coli as an all-rounder: the thin line 
between commensalism and pathogenicity. Curr Top Microbiol Immunol 358, 3-
32. 

Letunic, I., and Bork, P. (2011). Interactive tree of life v2: online annotation and display 
of phylogenetic trees made easy. Nucleic Acids Res. 39, W475-W478. 



 

 

96

Lukjancenko, O., Wassenaar, T.M., and Ussery, D.W. (2010). Comparison of 61 
sequenced Escherichia coli genomes. Microb Ecol 60, 708-720. 

Mclellan, S.L. (2004). Genetic diversity of Escherichia coli isolated from urban rivers 
and beach water. Appl Environ Microbiol. 70, 4658-4665. 

Mclellan, S.L., Daniels, A.D., and Salmore, A.K. (2003). Genetic characterization of 
Escherichia coli populations from host sources of fecal pollution by using DNA 
fingerprinting. Appl Environ Microbiol 69, 2587-2594. 

Meric, G., Kemsley, E.K., Falush, D., Saggers, E.J., and Lucchini, S. (2013). 
Phylogenetic distribution of traits associated with plant colonization in 
Escherichia coli. Environ Microbiol 15, 487-501. 

Nandakafle, G., Seale, T., Flint, T., , Nepal, M., Venter, S.N., and Brözel, V.S. ( 2017). 
Distribution of Diverse Escherichia coli between Cattle and Pasture. . Microbes 

environ ME17030. 
Nguyen, Y., and Sperandio, V. (2012). Enterohemorrhagic E. coli (EHEC) pathogenesis. 

Front Cell Infect Microbiol 2. 
Osek, J. (2001). Multiplex polymerase chain reaction assay for identification of 

enterotoxigenic Escherichia coli strains. J Vet Diagn Invest 13, 308-311. 
Petit, F., Clermont, O., Delannoy, S., Servais, P., Gourmelon, M., Fach, P., Oberle, K., 

Fournier, M., Denamur, E., and Berthe, T. (2017). Change in the Structure of 
Escherichia coli Population and the Pattern of Virulence Genes along a Rural 
Aquatic Continuum. Front Microbiol 8. 

Picard, B., Garcia, J.S., Gouriou, S., Duriez, P., Brahimi, N., Bingen, E., Elion, J., and 
Denamur, E. (1999). The link between phylogeny and virulence in Escherichia 

coli extraintestinal infection. Infect Immun 67, 546-553. 
Pritchard, J.K., Stephens, M., and Donnelly, P. (2000). Inference of population structure 

using multilocus genotype data. Genetics 155, 945-959. 
Qadri, F., Svennerholm, A.M., Faruque, A.S.G., and Sack, R.B. (2005). Enterotoxigenic 

Escherichia coli in Developing Countries: Epidemiology, Microbiology, Clinical 
Features, Treatment, and Prevention. Clin Microbiol Rev 18, 465-483. 

R Development Core Team (2015). "R: A language and environment for statistical 
computing". (Vienna, Austria: R Foundation for Statistical Computing). 

Rambaut, A. ( 2002). SE-AL v. 2.0a11: sequence alignment program. 
(http://tree.bio.ed.ac.uk/software/seal/). 

Ratajczak, M., Laroche, E., Berthe, T., Clermont, O., Pawlak, B., Denamur, E., and Petit, 
F. (2010). Influence of hydrological conditions on the Escherichia coli population 
structure in the water of a creek on a rural watershed. BMC Microbiol 10, 222. 

Rauch, E.M., and Bar-Yam, Y. (2004). Theory predicts the uneven distribution of genetic 
diversity within species. Nature 431, 449-452. 

Rosenberg, N.A. (2004). DISTRUCT: a program for the graphical display of population 
structure. Mol Ecol Notes 4, 137-138. 

Sayah, R.S., Kaneene, J.B., Johnson, Y., and Miller, R. (2005). Patterns of antimicrobial 
resistance observed in Escherichia coli isolates obtained from domestic- and wild-
animal fecal samples, human septage, and surface water. Appl Environ Microbiol 
71, 1394-1404. 

Smith, R.D., and Coast, J. (2002). Antimicrobial resistance: a global response. Bull World 

Health Organ 80, 126-133. 



 

 

97

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). 
MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, 
evolutionary distance, and maximum parsimony methods. Mol Biol Evol 

Touchon, M., Hoede, C., Tenaillon, O., Barbe, V., Baeriswyl, S., Bidet, P., Bingen, E., 
Bonacorsi, S., Bouchier, C., and Bouvet, O. (2009). Organised genome dynamics 
in the Escherichia coli species results in highly diverse adaptive paths. PLoS 

Genet 5. 
Unno, T., Han, D., Jang, J., Lee, S.N., Ko, G., Choi, H.Y., Kim, J.H., Sadowsky, M.J., 

and Hur, H.G. (2009). Absence of Escherichia coli phylogenetic group B2 strains 
in humans and domesticated animals from Jeonnam Province, Republic of Korea. 
Appl Environ Microbiol 75, 5659-5666. 

Vaz-Moreira, I., Nunes, O.C., and Manaia, C.M. (2014). Bacterial diversity and antibiotic 
resistance in water habitats: searching the links with the human microbiome. 
Fems Microbiol Rev 38, 761-778. 

Walk, S.T., Alm, E.W., Calhoun, L.M., Mladonicky, J.M., and Whittam, T.S. (2007). 
Genetic diversity and population structure of Escherichia coli isolated from 
freshwater beaches. Environ Microbiol 9, 2274-2288. 

Walk, S.T., Alm, E.W., Gordon, D.M., Ram, J.L., Toranzos, G.A., Tiedje, J.M., and 
Whittam., T.S. (2009). Cryptic lineages of the genus Escherichia. Appl Environ 

Microbiol 75. 
White, A.P., Sibley, K.A., Sibley, C.D., Wasmuth, J.D., Schaefer, R., Surette, M.G., 

Edge, T.A., and Neumann, N.F. (2011). Intergenic sequence comparison of 
Escherichia coli isolates reveals lifestyle adaptations but not host specificity. 
Appl. Environ. Microbiol. 77, 7620-7632. 

Winfield, M.D., and Groisman, E.A. (2003). Role of nonhost environments in the 
lifestyles of Salmonella and Escherichia coli. Appl Environ Microbiol 69, 3687-
3694. 

Zhang, Q., Eichmiller, J.J., Staley, C., Sadowsky, M.J., and Ishii, S. (2016). Correlations 
between pathogen concentration and fecal indicator marker genes in beach 
environments. Sci  Total Environ 573, 826-830. 

 

 

  



 

 

98

Table S3. 1: Primers used for determining the uidA and mutS genes, and for 

phylogrouping. 

Primer Sequence (5’ – 3’) Size Reference 

uidA CATTACGGCAAAGTGTGGGTCAAT (F)  

TCAGCGTAAGGGTAATGCGAGGTA (R) 

658 bp* (Walk et al. 2009) 

mutS GGCCTATACCCTGAACTACA (F) 

GCATAAAGGCAATGGTGTC   (R) 

596 bp (Walk et al. 2009) 

chuA ATGGTACCGGACGAACCAAC (F) 

TGCCGCCAGTACCAAAGACA (R) 

288 bp (Clermont et al. 2013) 

yjaA CAAACGTGAAGTGTCAGGAG (F) 

 AATGCGTTCCTCAACCTGTG (R) 

211 bp (Clermont et al. 2013) 

TspE4 CACTATTCGTAAGGTCATCC (F) 

AGTTTATCGCTGCGGGTCGC (R) 

152 bp (Clermont et al. 2013) 

arpA  AACGCTATTCGCCAGCTTGC (F) 

 TCTCCCCATACCGTACGCTA (R) 

400 bp (Clermont et al. 2013) 

Group E 

ArpAgpE 

GATTCCATCTTGTCAAAATATGCC (F) 

GAAAAGAAAAAGAATTCCCAAGAG (R) 

301 bp (Clermont et al. 2013) 

Group C 

rpAgpC 
AGTTTTATGCCCAGTGCGAG (F) 

 TCTGCGCCGGTCACGCCC (R) 

219 bp (Clermont et al. 2013) 

* bp = base pair 
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Table S3. 2: Primers used for amplification of virulence genes.  

Primers Sequence (5’ – 3’) Size 
(bp) 

Reference 

Stx1 Forward ACACTGGATGATCTCAGTGG 

Reverse CTGAATCCCCCTCCATTATG 

614 Fagan et 
al.(1999) 

Stx2 Forward CCATGACAACGGACAGCAGTT 
Reverse CCTGTCAACTGAGCAGCACTTTG 

779 Fagan et al. 
(1999) 

eaeA Forward GTGGCGAATACTGGCGAGACT  

Reverse CCCCATTCTTTTTCACCGTCG 

890 Fagan et al. 
(1999) 

hlyA Forward ACGATGTGGTTTATTCTGGA 
Reverse CTTCACGTGACCATACATAT 

165 Fagan et al. 
(1999) 

STa Forward GCCTATGCATCTACACAATC 

Reverse TGAGAAATGGACAATGTCCG 

278 Osek (2001) 

LTb Forward TATCCTCTCTATATGCACAG 

Reverse CTGTAGTGGAAGCTGTTATA 

480 Osek (2001) 

* bp = base pair 
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Chapter 4: Growth and extended survival of Escherichia coli O157:H7 in 

soil organic matter 

The contents of this chapter have appeared as NandaKafle G, Christie AA, Vilain S and 

Brözel VS (2018) Growth and Extended Survival of Escherichia coli O157:H7 in Soil 

Organic Matter. Front. Microbiol. 9:762. doi: 10.3389/fmicb.2018.00762 

 

1. Introduction 

Escherichia coli O157:H7 and related enterohaemorrhagic strains have been associated 

with many serious food-associated outbreaks, (Hilborn et al. 1999; Currie et al. 2007; 

Grant et al. 2008; King et al. 2009). The infectious dose is low so that food products are 

required to be free from enterohaemorrhagic Escherichia coli O157:H7, but despite 

various measures taken during processing, consumers can still be exposed to this 

pathogen (LeBlanc 2003; Yang et al. 2017). Cattle are widely believed to be the primary 

host and several outbreaks have been associated with beef–based products (Currie et al. 

2007; King et al. 2009). E. coli O157:H7 is known to be associated with the bovine 

gastrointestinal tract, specifically the cecum (Yoon and Hovde 2008; Wang et al. 2017), 

currently believed to be the primary source of entry into the food chain. More recently 

various plant foods such as spinach, tomato, lettuce and fresh fruits have been identified 

as sources (Grant et al. 2008; Herman et al. 2015; Denis et al. 2016). Initially these foods 

were thought to be fecally contaminated, but recent reports suggest growth of E. coli 

O157:H7 (Brandl 2008; Wright et al. 2013; Wright et al. 2017) in tissues of salad leaves 

and tomatoes. Upon inoculation from an unknown source, the enteric bacteria multiply 
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inside the growing plant, and cannot be removed through surface treatment such as 

washing. The annual nature of these crop plants excludes them as an environmental 

reservoir of these enteric bacteria. Rather, these crop plants would need to be infected 

during growth. 

E. coli are found in both gastrointestinal systems, and in the environment (Adamowicz et 

al. 1991; Ishii et al. 2006; Ksoll et al. 2007). Once shed from a mammalian host, E. coli 

populations are widely believed to enter a dead end, relying for extended survival on 

stress responses (Winfield and Groisman 2003). The paradigm assumes slow decline 

following fecal contamination, the basis of the fecal coliform test (Tallon et al. 2005). 

This is supported by decline of E. coli O157:H7 in manure (Williams et al. 2008; Looper 

et al. 2009) and in soil (Berry and Miller 2005) over time. Yet enterohaemorrhagic E. coli 

maintain culturable populations in various soils for many months, even moisture is 

limited, and with slower decline at lower temperatures (Berry and Miller 2005; Fremaux 

et al. 2008). Some E. coli appear to grow in sub-tropical environments such as riverbank 

soil and river sediment (Desmarais et al. 2002). More recently persistent E. coli 

populations have been reported from temperate forest, watershed soils (Byappanahalli et 

al. 2006; Ishii et al. 2006), and pasture (NandaKafle et al. 2017). Naturalized E. coli 

strains believed to be autochthonous to soil were able to maintain populations in soils 

from Lake Superior shore. 

Persistence of bacterial populations in soil would require a suitable nutrient pool. Soil is a 

complex assemblage of particulate components with varying concentrations of organic 

and inorganic matter. The dissolved organic matter (DOM) in soils is a cocktail of sugars, 

aromatic compounds, amino acids, and organic and fatty acids between C14 and C54 



 

 

102

(Huang et al. 1998; Kalbitz et al. 2000). The concentrations of solutes like amino acids 

range from 0.1-5 µM. Monoprotic acids (e.g. formate, acetate and lactate) range from 1 

µM to 1000 µM, and di- and trivalent low molecular organic acids (e.g. oxalate, malate 

and citrate) from 0.1-50 µM (Strobel 2001; Pizzeghello et al. 2006). Monomeric 

intermediates such as carboxylic acids and amino acids have residence times in the order 

of hours in soils (Jones et al. 2005; Van Hees et al. 2005). Carbohydrates like mono-, di- 

and oligosaccharides vary in presence and concentration (Lynch 1982; Guggenberger and 

Zech 1993b; a; Kaiser et al. 2001; Kalbitz et al. 2003). Surprisingly, glucose is present in 

soils up to 100 μM concentrations (Schneckenberger et al. 2008). The variety of sugars, 

organic and amino acids in these soils suggest that enteric bacteria should, generally, be 

able to grow here. We have reported a detailed analysis of liquid extract of deciduous 

forest soil, able to support growth of Salmonella Typhimurium (Liebeke et al. 2009).  

The source of contamination of annual food crops by enterrohaemorrhagic E. coli is 

unresolved. Soil has been underestimated as a potential reservoir. As persistence of 

bacterial populations in open systems is the product of growth, death, predation, and 

competition, measurement of numbers over time shows the overall net effect, and cannot 

inform autecology of the species. Whether population maintenance of E. coli O157:H7 in 

soils is due to a combination of cell division and death, predation and competition, or 

simply to extended survival alone, is unresolved. It has been shown that E. coli O157:H7 

is able to grow in sterile fresh water (Vital et al. 2008). In order to understand how soil is 

a potential reservoir for enterrohaemorrhagic E. coli, autecological studies are required. 

Here we report that E. coli O157:H7 is able to grow in liquid extract of soil. Furthermore, 

soil extract-grown populations demonstrate extended culturability over cultures grown in 
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laboratory media, and display a unique stationary phase proteome. 

 

2. Materials and Methods 

2.1. Culture and culture media:  

The partially attenuated E. coli O157:H7 933D (stx-II) (Strockbine et al. 1986) was 

maintained in 50% (v/v) glycerol at -80ºC. Soils used were corn field soil (Brandt silty 

clay loam, Aurora, South Dakota, USA), a commercially available garden top soil, and 

deciduous forest soil (Oak Lake Field Station, Brookings, South Dakota, USA). Cow 

manure from a herd fed an antibiotic-free diet was obtained from the South Dakota State 

University Beef Unit. Soil-extracted solubilized organic matter (SESOM) was prepared 

as described previously (Vilain et al. 2006). Briefly, 100g of air-dried soil, or 90g soil 

and 10g manure, was suspended in 500 mL MOPS buffer (10 mM, pH 7, 50ºC) and kept 

shaking at 200 rpm for 1h. The extracts were filtered sequentially through filter paper, 

hydrophilic PVDF membranes with 5, 1.2, and 0.45, pore sizes to remove particulates, 

and sterilized using a polyethersulfone membrane with a 0.22 µm pore size. The sterility 

of each batch was determined by placing 5µl SESOM onto LB agar plates and incubating 

at 30˚C for 24h. 

 

2.2. Culturing conditions:  

Growth and survival in the various liquid extracts was determined by measuring 

the optical density periodically. Overnight cultures of E. coli O157:H7 were prepared in 

LB broth, diluted 1:1,000 into 50mL fresh LB broth and incubated to mid-exponential 
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phase at 28°C (3h, A546 = 0.41). Cells were harvested by centrifugation (10,000 x g, 10 

min, 30 °C), washed twice, and re-suspended in 2mL sterile tap water. Triplicate 250mL 

flasks with 50mL pre-warmed liquid medium (LB, 1/40th strength LB and SESOM from 

deciduous forest soil) were inoculated to an initial A546 of 0.005, and incubated at 28ºC 

while shaking (120 rpm). The culturable count was determined every hour till 8h, at 24h 

and daily till 24d by the droplet plate technique (Lindsay and Von Holy 1999). Briefly, 

20 µL volumes of serial dilutions were plated onto LB agar and incubated for 18h at 

30°C. Culturable counts reflected the average of nine droplet counts, with three droplet 

counts from each of three replicate cultures.  The homogeneity of variance was checked 

at 1d, and then every four days till 24d. There was no reason to reject the null hypothesis, 

meaning that homogeneity of variance of CFU of three media was equal.  Thus, the data 

were subjected to an ANOVA test with multiple LSD comparison using Statistix 9.0.5 

(Informer Technologies, Inc.).  

 

2.3. Effect of cell density on culturability:  

The effect of cell density on extended culturability of populations was 

investigated by concentrating or diluting populations, and re-suspending in cell-free 

supernatants of the same culture type. LB-grown populations were harvested at 24h of 

incubation (10,000 x g, 10 min, 30 °C) and re-suspended to one tenth their density in cell-

free supernatant. Conversely, 1/40th strength LB and SESOM-grown populations were re-

suspended to ten-fold density in their respective cell-free supernatants. All cultures were 

then incubated at 28 °C while shaking, and the culturable count determined every 24h to 

day 24. Culturable counts reflected the average of nine droplet counts, with three droplet 
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counts from each of three replicate cultures. Statistical analysis was performed as 

described above. 

 

2.4. Protein sample preparation:  

SESOM and LB – grown populations of E. coli O157:H7 were harvested in mid-

exponential phase (180min and 140min) at A546 0.055 and 0.183, respectively, and 

SESOM, LB, and 1/40th strength LB populations were harvested in late stationary phase 

(3d). Cells were harvested by centrifugation (10,000 x g, 10 min, 4ºC), washed in 5mL 

potassium phosphate buffer (100 mM, pH 7.0), and re-suspended in 2ml IEF buffer (7 M 

urea, 2 M thiourea, 2% (w/v) 3-[3-chloamidopropyl] dimethylammonio-1-

propanesulfonate (CHAPS), 2% (w/v) Amidosulfobetaine-14 (ASB14), 10mM 

dithiothreitol (DTT) and 2% (v/v) carrier ampholytes (pH 3.5 - 10; Amersham)). Cells 

were disrupted by two cycles of freeze thaw (from -80°C to 20°C) followed by 

ultrasonication at 4°C (15W, 12 pulses of 3min). Cell debris was removed by 

centrifugation (10,000 x g, 10min), and the protein concentration was determined using 

the Bradford protein assay (BioRAD), with bovine serum albumin as the standard (Vilain 

et al. 2001).  

 

2.5. Two-dimensional gel electrophoresis (2DE):  

IPG strips (pH 4 – 7, 18 cm, GE Healthcare) were re-hydrated for 16h with 400 μL IEF 

buffer containing 50 μg protein for 2D gel map construction, and 200 μg protein per IPG 

strip for protein identification. Proteins were separated by IEF on an Amersham 
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Pharmacia horizontal electrophoresis system for a total of 44 kVh (150 V for 1 h, 350 V 

for 1 h, 500 V for 4 h, 750 V for 1h, 1 kV for 1 h, 1.5 kV for 1 h and 3.5 kV for 11 h). 

After IEF, the IPG gel strips were frozen at -80 °C, thawed and equilibrated for 10 min in 

equilibration buffer (6 M urea and 30% glycerol, 1% SDS) with 20mg/mL DTT, and for 

10 min in equilibration buffer with 260 mM iodoacetamide. The second dimension 

consisted of SDS-PAGE using a 12.5% (w/v) running polyacrylamide gel and a 4.65% 

stacking gel (width, 18 cm; length, 20 cm; thickness, 1 mm). Gels were stained with 

silver (Rabilloud 1992) for spot detection and protein map construction, and with 

colloidal Coomassie Blue G250 for protein identification (Vilain et al. 2001). 

Uninoculated SESOM was run on a one-dimensional SDS PAGE to check for proteins 

present, but following staining, none were found. 

 

2.6. Gel analysis, spot detection and protein map construction:  

Gels were scanned using a transmission scanner (ScanMaker 9800XL, Microtek) in 

transmission mode. Gel images were analyzed using PDQuest software (version 7.3.1; 

Bio-Rad) which allows detection, quantification and matching of protein spots. Spots 

were quantified on a Gaussian image and pooled on a reference image. The following 

formula was used to calculate the quantity of Gaussian spot: Spot height × σx × σy × π; 

where: Spot height is the peak of the Gaussian representation of the spot, σx is the 

standard deviation of the Gaussian distribution of the spot in the direction of the x axis, 

and σy is the standard deviation in the direction of the y axis. SESOM-derived spots 

either higher than two-fold or less than half the intensity in LB broth were excised from 

stationary phase LB, LB 1/40, and SESOM derived gels, and identified by MALDI-TOF 
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mass spectrometry of tryptic digests as described previously (Voigt et al. 2006), but using 

the E. coli O157:H7 EDL933 sequence database 

(ftp://www.expasy.org/databases/complete_proteomes/fasta). 

Principal component analysis (PCA) of the 2D electrophoretograms was performed as 

described previously (Vilain and Brozel 2006), using Statgraphics Plus 4.0 (Manugistics). 

Briefly, calculations of the Eigen value were comprised by taking the data set and 

subtracting the mean value from each dimension (ie. effect of culture medium) until all 

means were zero. A covariance matrix was then calculated since the data set has more 

than one dimension. By calculating the covariance matrix on means of zero a line 

develops that characterizes the data. The lines, or Eigen values, determine the statistical 

significance of each of the components. 

 

3. Results 

The enterohaemorrhagic pathogen E. coli O157:H7 was able to grow using water-soluble 

organic matter from various soils, as indicated by increases in optical density during 

incubation (Fig. 1). The yield in SESOM was 1 Log lower than in LB broth, and varied 

among extracts of various soils. To determine whether cell density during entry into 

stationary phase affects future culturability, we sought to culture in LB to the same 

population density achieved in SESOM. Various dilutions of LB (1/30, 1/40, 1/50, 1/70, 

and 1/100) were evaluated to determine which supported a final optical density similar to 

SESOM (results not shown). LB diluted 40 times yielded the desired density, and the 

resulting populations remained culturable longer than in LB, with a stable population of 

108 CFU/mL at d9 (Fig. 2a), after which culturability declined.  
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Fig. 4. 1 Growth of E. coli 0157:H7 933D stxII- in SESOM from deciduous forest soil 

(����), corn field soil (����), corn field soil supplemented with 10% (m/v) cow manure 

(����), garden soil (����), and LB broth () while shaking at 30°C. 

 

Fig. 4. 2 Growth and survival of E. coli O157:H7 933D in LB, dilute LB (1/40) and 

SESOM (a), and when cultures were either concentrated ten-fold in own 

supernatant (SESOM and 1/40th LB - grown), or diluted ten-fold (LB - grown) at 

24h (b). Error bars indicate one standard error of the mean. 
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This indicated that population density in stationary phase may play a role in maintenance 

of culturability of cells, with higher density associated with decreased survival. The pH 

on d12 was 6.6. Cells that entered stationary phase due to nutrient limitation in 1/40th 

strength LB were more resilient than populations grown to higher density in LB. SESOM 

grown cells were, however, more resilient than 1/40th LB grown cells, although both 

entered stationary phase due to nutrient limitation (Fig. 2a). This indicated that soil 

grown E. coli populations would persist longer in soil than predicted by laboratory 

experiments. Cultures in M9 minimal medium with 10 g.L-1 glucose displayed loss in 

culturability over time, similar to in LB (data not shown), indicating that increased 

longevity could not be attributed to growth requiring a greater degree of anabolic 

reactions. 

Cell density appeared to play a role in stationary phase survival of LB-grown populations 

(Fig. 2a). To further investigate the role of cell density in survival, we modified cell 

density 10-fold upon entry into stationary phase. LB-grown stationary phase cells (24h) 

were harvested and resuspended to one tenth their original density in their own spent 

broth, and the culturable count determined for 24d. The population lost one log10 of 

culturability after d4 (Fig. 2b), as opposed to 2 log10 in undiluted culture (Fig. 2a). This 

could indicate that LB-grown E. coli are able to maintain only a certain cell density into 

stationary phase. To determine whether the resilience of populations grown in 1/40 

strength LB was due to lower final density, stationary phase populations were 

concentrated ten-fold and resuspended in their own supernatant. The increased cell 

density did not initially lead to much loss of culturability, similar to the un-concentrated 

culture (Fig. 2 a & b). After decline at d8, late stationary phase population density 
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remained at ten-fold that of the original 1/40 th LB grown culture. Importantly, the 

concentrated 1/40th LB population was at the same density as LB-grown population 

entering stationary phase, but did not undergo the 2 log10 decline. Thus 1/40th LB – grown 

cells were more likely to survive than LB-grown ones, irrespective of cell density post-

stationary phase. These results indicated that conditions upon entry into stationary phase 

affect the condition of the cells, thereby determining their potential for survival over long 

term incubation. 

SESOM-grown populations maintained at ten-fold concentration in their own spent 

medium declined slowly, only showing a five-fold decline at d19 (Fig. 2b). Thus SESOM 

– grown cells were more likely to survive than 1/40th and LB-grown ones, irrespective of 

cell density post-stationary phase. Collectively the results indicated that extended 

longevity of SESOM-grown populations was due to both a lower cell density, but also to 

a SESOM-associated factor. These results suggested that SESOM-grown populations had 

an altered physiological state when entering stationary phase.  

To gain insight into possible physiological reasons underlying the extended longevity of 

SESOM-grown populations, the proteomes of LB and SESOM-grown cultures in 

exponential and stationary phase (d3), were determined by 2DE, and compared to the 

1/40th LB stationary phase proteome. For exponential phase, care was taken that 

populations had not yet begun transition to stationary phase. The five proteomic datasets 

were then subjected to principle component analysis (PCA). Four components were 

revealed at an Eigen value greater than 1, viz. 2.69, 2.51, 1.53 and 1.20. These 

components were sequentially compared in pair-wise fashion using biplots (Fig. 3). The 

results showed that exponential phase LB- and SESOM grown populations differed 
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significantly, as did stationary phase populations in the two media. Intriguingly, the LB 

1/40th stationary proteome was very similar to the SESOM- proteome in the first three of 

four coordinates, and quite different to the LB stationary phase proteome.  

 

Fig. 4. 3 Principle component analysis of exponential (exp) and stationary phase (3d) 

proteomes of E. coli O157:H7 933D cultured in LB, 1/40strength LB and SESOM at 

30°C. Four components with Eigen values >1 were revealed, shown as principle 

components 1 and 2 (A) and 3 and 4 (B). 
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Collectively the PCA analysis showed that stationary phase populations had culture 

medium-specific proteomes that could explain the different physiological states and 

propensity to survive. 

A large number of protein spots had significantly different abundance as determined 

using the criteria outlined above in materials and methods. All these spots were identified 

by MALDI-TOF MS, and collectively paint a unique physiological state of E. coli 

O157:H7 persisting in soil organic matter (Table 1). Stationary phase LB populations 

appeared to experience several stresses as indicated by elevated levels of the universal 

stress protein UspA and the carbon starvation protein Slp. They also had elevated levels 

of the alkyl hydroperoxide reductase AhpC. By contrast SESOM-grown cells appeared 

less stressed and more active, indicated by increased levels in transcriptional (DksA and 

RpoA) and translational proteins (GroEL, TufA and YeiP). This suggested sustained 

transcriptional and translational activity during stationary phase in SESOM versus LB. 

Many uptake systems were either over or under-expressed in SESOM-grown populations, 

including outer membrane and periplasmic uptake systems. This indicates that cells 

growing on SESOM have the ability to sense what the surrounding environment has to 

offer. These proteins reinforce the notion that E. coli O157:H7 is very adaptable to non-

host environments such as soil. In addition to various uptake systems, several systems 

involving substrate metabolism were found to be over and under-expressed in SESOM-

grown cells, indicating different approaches to catabolic activity in stationary phase. 

Structurally, cells grown in SESOM appear to be different based on the expression of 

several membrane and cell structure proteins, primarily those involved in membrane lipid 
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biosynthesis. YmcD and Adk were both up-regulated in SESOM. This suggests that the 

cellular envelope is formed differently in SESOM-grown populations as opposed to LB- 

or LB 1/40-grown populations. Perhaps the cellular envelope is thicker to provide 

protection from adverse conditions. Both structural and regulatory flagellar proteins were 

present in increased abundance in SESOM-grown cells suggesting that the cells are 

potentially motile and responsive to chemotactic behavior in soil organic matter. Overall,  

Table 4. 1. Proteins of different abundance in stationary phase (3d) populations of 

E. coli O157:H7 grown and maintained in LB, 1/40-strength LB and SESOM at 30 

°C. Blue color-less expressed, white color- intermediate and red color- highly 

expressed 

Protein 

name 
Function Relative amount1 

  LB 
LB 

1/40 
SESOM 

Stress responses 

AhpC Alkyl hydroperoxide reductase 12154 6044 3483 
OsmY Hyperosmotically inducible periplasmic protein, RpoS-inducible 1668 11249 3075 
Slp C starvation and stationary phase inducible outer membrane lipoprotein 4807 1755 505 
UspA Universal stress protein 14202 4034 1136 
Motility 

FliC Flagellin filament structural protein 21614 4395 122538 

FliY Cystine-binding protein; not required for motility; may regulate FliA (sigma 
F) 3680 9158 14844 

Outer membrane proteins 

OmpA Outer membrane protein 3a 12108 16971 30333 
OmpC Outer membrane protein 1b 22919 29601 662 

OmpW OmpW functions as an ion channel in planar lipid bilayers, global iron-
dependent gene regulation in Escherichia coli 58638 6649 1190 

Membrane and wall functions 

Adk Pleiotropic effects on glycerol-3-phosphate acyltransferase activity - plays a 
role in phospholipid biosynthesis 267 311 1810 

ClsC Phosphatidylserine/phosphatidylglycerophosphate/cardiolipin synthases 1376 2791 15315 

MipA 
Mediates assembly of MltA to PBP1B into a complex. MltA is Lipoprotein 
lytic transglycosylase; membrane-bound murein hydrolase, affecting 
sacculus maturation 

3590 219 552 

NemA N-Ethylmaleimide reductase - induced by menadione, dimethyl maleate and 
linoleic acid, possibly due to lipid peroxidation 7294 8193 576 

Pbl 
Lytic Transglycosylase family, catalyze the cleavage of the beta-1,4-
glycosidic bond between N-acetylmuramic acid (MurNAc) and N-acetyl-D-
glucosamine (GlcNAc). 

8967 9143 1884 

Periplasmic uptake systems 
AnsB Periplasmic L-asparaginase II 13285 2099 1726 
ArgT Lysine-, arginine-, ornithine-binding periplasmic protein 4800 14535 30498 
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ArtJ Arginine 3rd transport system periplasmic binding protein 2830 403 334 
GlnH Periplasmic glutamine-binding protein; permease 3131 419 678 

HisJ histidine-binding periplasmic protein of high-affinity histidine transport 
system 1055 2117 6397 

MalE Periplasmic maltose-binding protein 7356 8303 33319 
ManX PTS enzyme IIAB, mannose-specific 9091 2549 10576 
ModA Molybdate-binding periplasmic protein; permease 3109 684 5682 
PtsI PEP-protein phosphotransferase system enzyme I 3194 635 386 
TbpA Thiamine-binding periplasmic protein 6422 4762 1045 
Transcription 

DksA Involved in control of transcription initiation 480 2241 3971 
RpoA RNA polymerase, alpha subunit 69 605 495 
Translation and protein processing 

ClpP ATP-dependent proteolytic subunit of clpA-clpP serine protease 3499 181 667 
GroL GroEL, chaperone Hsp60, peptide-dependent ATPase, heat shock protein 1009 321 9468 
HtpG Chaperone Hsp90, heat shock protein 5681 1028 1316 
PheS Phenylalanine tRNA synthetase, alpha-subunit 1748 1144 125 
RpsA 30S ribosomal subunit protein S1 7350 412 565 
Tsf Protein chain elongation factor EF 43187 50227 17501 
TufA TufA - duplicate gene for EF-Tu subunit; elongation factor, unstable 1872 2890 11999 
YbdQ Universal stress protein G enhances cell survival during prolonged stress 8891 1620 1024 
YedU Chaperone protein HchA  - Type 1 glutamine amidotransferase 4852 4958 982 
YeiP Putative translation elongation factor 1104 1251 13845 
Central metabolism 

AckA Acetate kinase, acetate to acetyl phosphate: in acetate utilization 2402 2247 260 
AldA Aldehyde dehydrogenase, NAD-linked 6097 1557 1903 
Eno Enolase 1810 419 332 
FrdA Fumarate reductase, anaerobic, flavoprotein subunit 1309 756 446 
Lcd Isocitrate dehydrogenase, specific for NADP+ 9996 287 433 
LpcA Phosphoheptose isomerase 1144 126 595 

Lpd Subunit of various ezymes: dihydrolipoate dehydrogenase, 2 oxoglutare 
dehydrogenase and pyruvate dehydrogenase 4928 5364 1148 

MaeB Putative NADP+-linked malic enzyme 1878 2983 438 
Mdh Malate dehydrogenase 863 1346 5757 
PckA Phosphoenolpyruvate carboxykinase 1994 2875 749 
Pgk Phosphoglycerate kinase 272 424 9162 
PpsA Phosphoenolpyruvate synthase 2972 1017 620 
PrpR Propionate catabolism operon 2330 440 734 
SdhA Succinate dehydrogenase, flavoprotein subunit 5316 7050 1387 
TtdA L-tartrate dehydratase, subunit A 2071 147 584 
YbhE Putative, 6-phosphogluconolactonase, or also 3-carboxymuconate cyclase 537 910 4429 
YfiD Putative formate acetyltransferase 3946 590 748 
ATPase function 

AtpA Membrane-bound ATP synthase, F1 sector, alpha-subunit 31963 31551 3123 
AtpH Membrane-bound ATP synthase, F1 sector, delta-subunit 5737 207 255 
Ppa Inorganic pyrophosphatase  - hydrolyzes diphosphate to 2 Pi 11687 677 2019 
Amino acid biosynthesis 
AspA Aspartate ammonia-lyase (aspartase) 17030 3517 2553 
CysK Cysteine synthase A, O-acetylserine sulfhydrolase A 1812 5513 4567 
FklB Peptidyl-prolyl cis-trans isomerase 9539 635 1158 

GcvT Aminomethyltransferase (tetrahydrofolate-dependent) of glycine cleavage 
system 4291 828 773 

GdhA NADP-specific glutamate dehydrogenase 2287 1747 314 
GlyA Serine hydroxymethyltransferase – glycine synthesis 2051 5348 3469 
SerC 3-phosphoserine aminotransferase – serine biosynthesis 11626 2421 4729 
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TnaA Tryptophanase 18108 5384 1077 
WrbA Affects association between Trp repressor and operator in stationary phase 3109 345 226 
Virulence factors, toxins and resistance 
AcrA Acridine efflux pump, related to MAR system 7322 214 1496 
Hha Modulates expression of haemolysin genes hly 1328 3285 4941 
PmbA Antibiotic peptide MccB17 10512 29643 25983 
TerZ Putative phage inhibition, colicin resistance and tellurite resistance protein 4970 119 962 

TolB Periplasmic protein involved in the tonB-independent uptake of group A 
colicins 4304 927 363 

FolA Dihydrofolate reductase type I; trimethoprim resistance 187 482 1461 
Miscellaneous 

CcmH Required for synthesis of c-type cytochromes 71 479 756 

NrdH Glutaredoxin-like protein involved in electron transport system for 
ribonucleotide reductase system NrdEF 5360 492 325 

RibB 3,4 dihydroxy-2-butanone-4-phosphate synthase – riboflavin biosynthesis 544 2255 4423 
CchA Putative acetyl/butyryl P transferase 124 82 1069 
NohB Putative DNA packaging protein of prophage CP-933R 2689 528 708 
Unknown function 
YbiM Unknown Hypothetical protein 1131 228 2423 
YdcL Predicted lipoprotein 857 3147 171 
YidQ Putative periplasmic lipoprotein 5199 769 398 

1. The relative amount is the average normalized amount of protein per spot across three separate gels. 

 

SESOM-grown stationary phase cells appeared less stressed, more motile, metabolically 

different, and with suggestions of less altered membrane composition when compared to 

LB-grown populations. 

 

4. Discussion 

E. coli is not thought to survive for long periods outside the host intestine, so produce-

associated outbreaks have widely been ascribed to recent fecal contamination. The 

suspected sources of produce contamination include soil amendments (manure or 

compost), irrigation water contaminated with cattle feces, or contaminated surface runoff 

(Ongeng et al. 2015). Our results showed that E. coli O157 can grow using nutrients 

available in soils (Fig. 1). There have been countless studies reporting numbers of E. coli 

O157 in soils over time, and some have suggested growth in soil. Survival of E. coli in 
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soil has been reported by many researchers; more than 200 d under natural environmental 

conditions and 500 d in frozen soil and on plant roots (Gagliardi and Karns 2002; Islam et 

al. 2004). This is the first report showing definitively that E. coli O157 is able to grow 

using water soluble nutrients in soil. 

Soil-grown E. coli O157 appeared more resilient than laboratory-grown cultures, with 

almost 100% culturability maintained over 28 d (Fig. 2). This finding pointed to an 

altered physiological state of SESOM-grown cells entering stationary phase. This 

suggests that E. coli responds differently to nutrient limitation in SESOM, preparing cells 

for stationary phase differently. To gain insight into possible physiological reasons 

underlying the extended longevity of SESOM-grown populations, the proteomes of LB 

and SESOM-grown stationary phase cultures were compared (Table 1). The stationary 

phase proteome of SESOM-grown E. coli differed significantly from LB-grown and 

dilute LB-grown populations (Fig. 3), indicating cells with substantially altered 

composition, and therefore catalytic and structural properties. 

SESOM grown cells had lower levels of several proteins associated with cellular 

responses to stress, including Alkyl hydroperoxide reductase (AhpC), the carbon 

starvation response lipoprotein Slp, and the universal stress protein UspA (Table 1). 

AhpC is the primary degrader of hydrogen peroxide and reactive nitrogen intermediates 

in E. coli, protecting the cell against oxidative stresses (Chen et al. 1998). The 

substantially lower concentration of AhpC in SESOM-grown cells indicated decreased 

oxidative stress, or possible alternative mechanisms to cope with reactive oxygen and 

nitrogen species. Slp accumulates in response to carbon starvation (Alexander and St 

John 1994), but our data showed that LB grown cells expressed the most Slp, although 
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SESOM-grown cells were clearly nutrient starved following entry in stationary phase 

(Liebeke et al. 2009). Clearly, SESOM-grown cells responded differently to nutrient 

starvation and entry in stationary phase. UspA is induced as soon as the growth rate falls 

below the maximum rate supported by the medium (Nystrom and Neidhardt 1994). 

Despite the abrupt transition from exponential to stationary phase in SESOM, cells 

expressed less UspA than in LB. SESOM populations contained a much greater amount 

of the flagellar components FliC and FliY, indicating increased motility. 

OmpA, the major outer membrane protein in E. coli, was more prevalent in the SESOM 

population. Loss of OmpC in E. coli contributes to antibiotic resistance (Liu et al. 2012), 

but this is only significant in the exponential-phase, while such difference in stress-

resistance becomes trivial after bacteria reach the stationary phase (Wang 2002). The 

elevated OmpA in LB populations is likely due to the high NaCl concentration. The ratio 

of OmpC to OmpF increases at higher temperature and pH, as well as under oxidative 

stress (Snyder L et al 2013 4th edition), consistent with increased level of AhpC in LB 

cells. Elevated levels of Adk and ClsC indicated differences in membrane lipid 

composition of SESOM versus LB-grown populations due to their role in synthesis of 

phospholipids. An addition, Adk has been linked to mutational fitness effects. It was also 

observed that the length of the lag phase is more sensitive to variation in Adk catalytic 

capacity than is the exponential growth rate, so that the lag phase appears to be optimal 

with respect to variation in Adk catalytic capacity (Adkar et al. 2017). NemA, abundant 

in LB cultures, is involved in reductive degradation of toxic nitrous compounds 

(Umezawa et al. 2008), again consistent with elevated AhpC in LB populations. 

Enhanced levels of the peptidoglycan-modulating factors MipA and Pbl in LB cultures 
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indicates differences in cell wall structure between the stationary phase cultures. High 

levels of MipA have been reported in sessile compared to planktonic cultures (Rivas et al. 

2008). 

Periplasmic nutrient uptake systems varied in quantity across the three culture media, but 

would be remnants from exponential phase where amino acid and sugar uptake were 

required. The high levels of AnsB, ArtJ and GlnH in LB cultures is puzzling as LB 

supplies ample amino acids derived from tryptone and yeast extract. Our forest SESOM 

did not contain detectable levels of lysine, arginine, ornithine or histidine (Liebeke et al. 

2009), explaining the enhanced level of ArgT and HisJ. ArgT expression is increased in 

response to nitrogen starvation and during early response glucose limitation (Kabir et al. 

2004; Franchini and Egli 2006), and our SESOM contained very little glucose. 

Molybdenum (molybdate) is essential as cofactor for the assembly and function of 

several enzymes including nitrate reductase, formate dehydrogenase, dimethyl-sulfoxide 

reductase, trimethylamine-N-oxide reductase, and biotin-sulfoxide reductase 

(Rajagopalan and Johnson 1992). PtsI, more prevalent in LB, is a component of the 

glucose uptake system that is inhibited by α-ketoglutarate during nitrogen limitation, 

when it was over expressed the metabolic rate was increased fourfold (Chubukov et al. 

2017).  

DksA was highly expressed in SESOM grown cells, suggesting a stringent response with 

induction of ppGpp synthesis due to nutrient limitation. DksA activated by ppGpp binds 

to the β-subunit of RNA polymerase, directly affecting the affinity to different promoters 

and thus altering the expression level of more than 80 genes, most importantly 

suppression of all components of the protein biosynthesis system: rRNA, ribosomal 
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proteins, and translation factors (Pletnev et al. 2015). This indicates that transcription is 

shut down tightly in SESOM-grown stationary phase cells. 

LB populations appeared more stressed as indicated by elevated levels of various stress 

proteins and chaperones. LB populations contained more ClpP, part of the proteosomal 

protein degradation system. Controlled degradation of cytoplasmic proteins has long been 

considered essential for survival of bacteria under stress conditions, due to the 

requirement for efficient removal of misfolded or otherwise damaged proteins by ClpP 

(Weichart et al. 2003). The corresponding low abundance of ClpP in cultures with no 

decline phase indicated either a reduced need for protein turnover, or a lower degree of 

damaged proteins. A different profile of damaged proteins was supported by the 

differences in chaperones GroL (SESOM and 1/40 LB) and HtpG (LB). HtpG expression 

is increased in cells grown in a complex medium with ample amino acid availability (LB) 

following heat shock, but low in glucose minimal medium. HtpG expression unaffected 

or even repressed by imposition of a nutrient stress condition in minimal medium (Mason 

et al. 1999). The stressed nature of LB stationary cells was supported by elevated levels 

of Tsf (Elongation factor EF), which plays a role in sequestering surfaces of heterologous 

proteins to prevent protein–protein interactions leading to formation of inclusion bodies 

(Han et al. 2007). Elevated levels of the putative stress proteins YbdQ and YedU further 

indicated greater degree of stress in LB populations, as also indicated by alkyl 

hyodroperoxide reductase. The elevated levels of TufA (Elongation factor Tu) in SESOM 

indicates minor starvation due to nutrient limitation. TufA plays an important role in a 

minor starvation defense mechanism where it helps in rescuing stuck ribosomes (Pletnev 

et al. 2015). 
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A total of 17 central carbon metabolism enzymes were detected, and 14 of these were 

more abundant in LB, indicating that SESOM populations had prepared for reduced 

metabolic activity going into stationary phase. E. coli grown in rich medium undergo a 

reconstruction of their proteome in stationary phase, with increases in proteins required 

for scavenging and metabolizing rare nutrients and general cell protection (Li et al. 

2014). An example was AckA (acetate kinase), part of the acetate switch that occurs as 

cells deplete their environment of acetate-producing carbon sources and scavenge for 

acetate. The accumulation of extracellular acetate during stationary phase occurs as cells 

co-metabolize acetogenic amino acids, e.g. l-threonine and l-alanine, with those that 

require the TCA cycle, e.g., L-glutamate (Wolfe 2005). A second example was the 

elevated levels of ATP synthase components in LB populations, indicating continued 

need for ATP synthesis driven by periplasmic proton motive force. A third example was 

PckA (phosphoenolpyruvate carboxykinase), elevated in LB and 1/40th LB. PckA 

increases 100-fold in the stationary phase independent of cyclic AMP, probably to 

provide carbohydrates required for energy reserves after cessation of growth, since 

protease activity, Krebs cycle enzyme activities, and glycogen synthesis all increase in 

the stationary phase (Goldie and Sanwal 1980). 

LB-grown populations had higher overall levels of amino acid biosynthetic enzymes, 

than both SESOM and dilute LB cultures. This contrasts with the abundance of 

metabolizable oligopeptides available in LB. However, bioassay of LB medium after 

growth of E. coli showed that it no longer contains significant amounts of recoverable L-

serine, L-threonine, L-proline, glycine, L-arginine, L-glutamine, L-asparagine, L-
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cysteine, and L-lysine (Sezonov et al. 2007), indicating a need for synthesis in stationary 

phase. 

E. coli O157 933D appears well adapted to grow using soluble nutrients available in soil 

(SESOM). Moreover, SESOM grown populations did not display a detectable death 

phase, but remained culturable for at least 24 d. This was supported by the substantially 

altered proteome of SESOM-grown stationary phase populations. Our results suggest that 

E. coli may well be a soil commensal that maintains stable populations in soil, as growth 

supported by soil nutrients combined with enhanced longevity of cells would help 

counter the effects of competition and predation. Soil itself should, therefore, be included 

as potential source of contamination of fresh produce. Future work should investigate the 

roles of competition and predation affecting E. coli populations in soil. 
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Chapter 5: Growth and Population Maintenance of Escherichia coli in 

Soil Organic Matter   

The work reported in this chapter was conducted by Gitanjali NandaKafle in 

collaboration with Alexander W. Kena 

 

1. Introduction  

Escherichia coli is the foundational model organism for molecular biology (Russo, 

2003), used widely as a tool to produce various biomolecules including plasmids and 

proteins (Rosano and Ceccarelli, 2014), and is the primary indicator of fecal 

contamination (Edberg et al., 2000). When exposed to amenable organic energy and 

carbon sources it grows by binary fission, displaying exponential growth until resources 

fall below the required threshold, leading to growth arrest or stationary phase (Nystrom, 

2004). Transition to stationary phase entails preparation for enhanced tolerance to stress, 

and stationary phase cells synthesize proteins at about 20% or the exponential rate (Reeve 

et al., 1984). Stationary phase endures for 2 to 5 days, after which cells begin to die, the 

decline phase (Ericsson et al., 2000;Finkel, 2006). Intriguingly about 1% of cells survive, 

and enter Long Term Stationary Phase (LTSP) (Finkel, 2006), or Constant Activity in 

Stationary Phase (CASP) (Gefen et al., 2014).  

In nature bacteria are largely nutrient limited, dividing rarely, and spending most of their 

time in stationary phase (Gefen et al., 2014). The ability of E. coli to enter LTSP and 

remain culturable for long periods in absence of added nutrients suggests an ability to 

survive in the environment. E. coli is widely viewed as a gastrointestinal bacterium, but 
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can be isolated from a range of habitats, several of which are subject to fluctuating 

conditions including changes in pH, oxygen availability, nutrient availability, 

temperature, and osmolarity (van Elsas et al., 2011). Sources include surface waters, 

sediments, fresh produce and soil (Winfield and Groisman, 2003;NandaKafle et al., 

2017). E. coli has been isolated from various soils with no evidence for recent fecal 

contamination, including cattle pasture devoid of grazing cattle for 10 months 

(NandaKafle et al., 2017).  Population maintenance of bacteria in soil is the product of 

growth, predation, competition and death, so growth through cell division should be a 

prerequisite for population maintenance.  It has been shown that E. coli can survive in 

different soil environments and possibly grow when conditions are suitable (Morris et al., 

1998;Ishii et al., 2006;Brennan et al., 2010;van Elsas et al., 2011). Most studies on 

survival of E. coli in soil have used enterohemorrhagic strains such as O157:H7, which 

can survive in soil for more than 90 days, even after fumigation (Ibekwe et al., 2007). 

Several studies have shown progressive decline to below the detection limit in soil and 

soil-like environments, but there was very little decline when occurring in sterile soil, 

indicating that other soil organisms may play a role in E. coli population density 

(Bogosian et al., 1996;Duffitt et al., 2011). Soil provides a wide variety of nutrients that 

can be utilized by a diverse group of microorganisms (Killham, 1998). Our laboratory 

established a protocol to prepare Soil Extracted Soluble Organic Matter (SESOM) as 

culture medium (Vilain et al., 2006). SESOM contains a range of amino acids, 

carbohydrates, low molecular weight organic acids and a range of inorganic compounds, 

and supports the growth of Bacillus cereus (Vilain et al., 2006) and various other Gram 

negative and positive bacteria (Liebeke et al., 2009). We have recently reported that E. 
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coli O157:H7 is able to grow in liquid extract of various soils (NandaKafle et al., 2018).  

Populations of the O157:H7 strain 933D grown in deciduous forest soil extract did not 

display a decline phase but retained 100% culturability for at least 24d (NandaKafle et 

al., 2018). 

Factors leading to presence of E. coli in soils without recent fecal contamination are still 

poorly understood. While many studies have reported survival, there is scant direct 

evidence for growth using the nutrients available in soils. We hypothesized that diverse 

E. coli other than the enterohaemorrhagic O157 can grow using soluble components in 

soil and display the same soil-associated extended survival phenotype with no decline 

phase. E. coli K12, Clade I, 25 isolates obtained from cattle pasture and 933D were 

inoculated into sterile pasture soil SESOM and incubated for 24d, using LB broth as 

control. All strains could grow in the pasture SESOM, with no decline phase observed. 

 

2. Materials and methods 

2.1. Source of strains used:  

We selected 25 E. coli isolates from a recent collection of 390 isolates obtained from 

cattle pasture (NandaKafle et al., 2017). The experimental pasture was enclosed as four 

separate units, and cattle were introduced for one month during July every year. Isolates 

were obtained during June from soil before cattle were introduced (Soil Before Grazing, 

SBG), soil during grazing, and from fresh cattle feces. Phylogeny was determined using 

concatenated mutS and uidA genes, and yielded multiple clusters, classified as 

environmental, bovine and mixed clusters based on the sample types in each cluster 

(NandaKafle et al., 2017). Isolates were allocated to phylogroups using the scheme of 



 

 

130

(Clermont et al., 2013). Isolates were selected to represent a cross section of sample types 

and phylogroups. E. coli MG1655 (K12), 933D and TW 10509 (Clade I) were included 

as controls.   

 

2.2. Preparation of culture media:  

SESOM was prepared as described by Vilain et al. (2006). Briefly 100 g of the dried 

pasture soil was mixed with 500 mL warm (60°C) 2mM MOPS buffer (pH 7.0) in a 2 L 

flask and shaken for 1 h at 200 rpm. The suspension was filtered using filter paper, and 

then through 5 µm and 1.2 µm membrane filters (Millipore), and filter sterilized using 0.2 

µm pore size filters (Thermo Scientific Nalgene) membrane filter under vacuum. Sterility 

of SESOM medium was confirmed by inoculating a few drops onto LB agar plates and 

incubating at 28°C for 3 d and observing for any growth. LB broth (Miller) containing 10 

g NaCl per liter was used as control. 

 

2.3. Incubation conditions:  

All E. coli isolates were retrieved from -80°C glycerol stocks onto LB agar and incubated 

at 37°C overnight. Colonies were inoculated into 50 mL SESOM and LB broth in 250mL 

flasks and incubated overnight while shaking at 25° C. Cells were harvested by 

centrifugation (10,000 x g, 5 Min), washed two times with sterile tap water and re-

suspended in SESOM or LB broth respectively to A546 = 2.5. SESOM and LB were 

inoculated with 100 μL of this suspension, to yield an initial density of A546 = 0.005. 

Samples for culturable counting were taken immediately (0 h), at 1, 2, 3, 4, 5, 6, 7 h after 
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inoculation, and on days 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22 and 24. The 

culturable count was determined using the droplet plate technique (Lindsay and Von 

Holy, 1999). Briefly, 20 µL volumes of serial dilutions were plated onto LB agar in 

triplicate and incubated for 18h at 30°C. 

 

2.4. Statistical Analysis:   

Data were analyzed using the R statistical language. A broken line linear regression 

model fitted in the R package Segmented (Muggeo, 2008) was used to identify the 

transition points of lag phase, log phase and decline phase as three separate slopes. The 

results of 95% confidence intervals were visualized using the ggplot2 package.  

 

3. Results 

E. coli O157:H7 933D is able to grow in soluble organic matter available in deciduous 

forest soil, and survive for extended periods (NandaKafle et al., 2018). To determine 

whether a range of E. coli displayed exponential, stationary and decline phase when 

growing in pasture SESOM, pasture and bovine fecal isolates were incubated in SESOM 

for 24d. The culturable count data were broken into three phases, growth (slope1), 

stationary (slope2) and decline phase (slope3) and analyzed using broken line linear 

regression. The long-term culturable density of E. coli strains in batch culture of SESOM 

and LB media showed four different patterns (Fig.1a). Few strains followed the classical 

pattern of exponential, stationary and decline phase, especially in LB broth. For some 

there was no detectable stationary phase, while in others, stationary was not followed by 
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a decline phase.  A significant increase or decrease in culturable count over time was 

indicated by confidence intervals (95% confidence) either completely above (increase) or 

below (decrease) the zero line (Fig. 2). 

All 25 pasture and bovine fecal isolates with K12, 933D and Clade-I grew in the pasture 

SESOM, evidenced by a significant increase in their culturable count (Fig 1), and a 

confidence interval in slope_1 greater than 0 (Fig. 2a). This indicated presence of growth-

supporting nutrients in the pasture soil. It further indicated that growth using soluble 

organic matter in soil is not unique to E. coli O157:H7 strain 933D (NandaKafle et al., 

2018), but displayed by a range of E. coli. 

In SESOM, 22 of the 25 isolates and strains 933D and K-12 did not show any decline 

directly following the end of exponential phase (Slope_2, Fig. 2b), displaying a classical 

stationary phase for 4 – 5d. Three strains and Clade I went directly from exponential 

phase into decline. Only 6 isolates and 933D displayed a stationary phase in LB, while all 

others transitioned from exponential directly to decline phase. The Clade 1 strain, 

purportedly an environmental E. coli (Luo et al., 2011), went directly from exponential 

into decline phase, both in SESOM and in LB.   

The classical stationary phase ends after a few days, followed by decline or death phase 

(Finkel, 2006). All isolates and the three control strains displayed unchanged culturability 

in SESOM for the remainder of the experiment. The three pasture isolates and Clade-I 

that declined during d1 – 5 (stationary phase) in SESOM, did not display further decline 

from d5, showing a growth curve pattern of ‘b’ (Fig. 1a). The remaining 22 isolates 

showed a growth curve pattern of ‘d’ (Fig. 1a) in SESOM. In LB the majority of isolates 

declined, or kept on declining after d 5, following classical decline phase or growth curve 
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pattern a. Out of 28 strains, 5 followed growth curve pattern ‘a’, 7 pattern ‘b’, 15 pattern 

‘c’ and only one of the isolate followed pattern ‘d’ (Fig. 1a). This indicated that a wide 

array of E. coli are somehow more resilient when grown in SESOM, displaying 

significantly greater longevity than in laboratory media such as LB.  

 

  

Fig. 5. 1 Four possible patterns of E. coli growth curve 

 

 

 

 

 

 

Fig. 5. 2 Culturable counts of four E. coli isolates in LB and SESOM 
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Fig. 5. 3 Plots of 95% confidence intervals using ggplot2 in R.  Slope_1 represents 

lag and log phase; Slope_2 represents “stationary” (or decline) phase; and Slope_3 

represents ”death” (stationary, decline or incline phase). Range >0 indicates 

significant increase over time, range<0 indicates significant decrease over time, and 

if zero falls between maximum and minimum range there was no significant change.  

 

4. Discussion  

Factors leading to the presence of E. coli in soils without recent fecal contamination are 

still poorly understood. The aim of this work was to determine whether diverse E. coli 

strains were able to grow using nutrients available in pasture soil, and how this affected 

their long-term survival. We followed the culturable count of 25 environmental E. coli 

isolates in pasture soil SESOM to determine whether isolates a) were able to grow using 

soluble nutrients in pasture soil, and b) they survive or decline following classical 
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stationary phase. All 25 isolates obtained from cattle pasture grew in nutrient extract of 

pasture soil, indicating that population maintenance is possible as E. coli can grow using 

available nutrients.  

Cells cultured in various laboratory media show a population density pattern of 5 phases 

i.e. lag, exponential, stationary, decline and long term stationary phase.  The isolates did 

not transition from stationary to decline phase during the 24d incubation period, 

indicating that none of the cells senesced. This implies that cells grown using soil organic 

matter display superior longevity, remaining culturable for long periods. Growth and 

survival of E. coli has been studied using a plethora of complex and minimal culture 

media. The nature and concentration of nutrients affect growth rate and cell size 

(Schaechter et al., 1958). Balanced exponential growth transitions to stationary phase. 

Cessation of proliferation in rich media such as LB is triggered by cell density, but in 

nutrient limited media, stationary phase is reached due to the exhaustion of specific 

nutrients required for biomass production, commonly carbon, nitrogen or phosphate 

(Gonidakis and Longo, 2013).  The nature of the limiting nutrient that causes transition to 

stationary phase affects the composition and gene regulation of cells (Matin, 

1991;Ericsson et al., 2000). After stationary phase for 3-5 days (Ericsson et al., 2000), 

cells enter the decline phase and about 99% of the cell die (Finkel, 2006;Todar, 2006), 

but those patients enough to follow the fate of cultures discovered that a subset of the 

population does not die, but enters Long-Term Stationary Phase (LTSP) (Finkel and 

Kolter, 1999;Lewis, 2010). Cells that survive during LTSP are subject to selection of 

mutants with beneficial alleles, or adaptive evolution, expressing the Growth Advantage 

in Stationary Phase (GASP) phenotype (Finkel and Kolter, 1999). LTSP cultures have 
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been reported to remain viable for 5 years with addition of just water (Zambrano and 

Kolter, 1996;Zinser and Kolter, 2004). E. coli grown in pasture SESOM did not exit 

stationary into decline phase, with all cells surviving for 24d. Select cultures followed for 

120 d still maintained 100% culturability. Cells grown in very rich media experience 

higher oxidative stress, which leads to higher glycation levels and mutation frequency, 

and sometimes do not enter LTSP (Kram and Finkel, 2015). It is possible that the 

opposite holds for very low nutrient environments such as SESOM, where no decline was 

observed. While the mechanism underlying zero decline is unknown at present, the 

phenomenon appears conserved across many E. coli. It could be linked to the nutrient 

composition of SESOM, which contains a diverse array of sugars and other 

carbohydrates, organic and amino acids in very low concentrations (Liebeke et al., 2009). 

Soil persistent strains have been reported to have a unique growth and metabolic 

characteristics compared to control strains such as K-12 and its derivatives (Brennan et 

al., 2013). Soil persistent cells were shown to retain fully functional RpoS regulated 

general stress response, which indicates that the isolates have gone through continuous 

selective pressure, resulting in well maintained stress resistance despite nutrient 

limitations (Somorin et al., 2016). In our hands, K-12 and 933D strains displayed the 

same absence of decline phase in SESOM as the 25 environmental and bovine isolates, 

suggesting that cells grown in SESOM showed a similar adaptation by all isolates in 

response to nutrient limitations. This suggests that the development of longer-living cells 

in SESOM is conserved across the species. Isolation of E. coli from diverse soils with no 

recent evidence of fecal contamination points to maintenance of populations in soils. This 
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populations maintenance, while under pressure from decimating effects such as predation 

and competition, is possible through growth and extended longevity of E. coli in soil. 
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Chapter 6: Differentiating Escherichia coli Fitness in Soil by 

Susceptibility to Grazing by Dictyostelium discoideum 

The work reported in this chapter was conducted by Gitanjali NandaKafle in 

collaboration with Lane A. Blasius 

 

1. Introduction 

In the last decade, research efforts have found substantial populations of E. coli harboring 

in the soil, freshwater sediments, water plants, and even in beach sand (Ishii et al., 2006; 

Byappanahalli et al., 2007;Byappanahalli et al., 2012;Jang et al., 2017). When dealing 

with particular pathogenic strains of E. coli in the open environment, the degree of its 

survival and factors that affect this survival rate are crucial from the fundamental point of 

view (van Elsas et al., 2011). However, survival of E. coli in an open environment 

requires the ability to overcome environmental stresses, such as nutrient deprivation, 

fluctuating temperature, salinity, exposure to solar radiation, competition with 

autochthonous microbial communities, and protozoan grazing. Although both biotic and 

abiotic factors play roles in the growth and decline of E. coli populations in the 

environment, studies have shown that E. coli populations decline in natural soils while 

there is a minimal or no decline in sterile soils (Jiang et al., 2002;Semenov et al., 2007). 

Korajkic et al. (2013) reported that E. coli decay was minimal in outdoor microcosms that 

were exposed to natural UV radiation when the natural microbiota (pedation and 

competition) was removed by disinfection. This suggests that the natural microbiota plays 

a relatively important role in controlling the growth of E. coli in the natural habitat.  
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Some strains of E. coli survive by acquiring selective growth advantages to maintain its 

population for long periods of time and become a persistent or naturalized community. 

To date, few studies have assessed the survival of different E. coli isolates in the presence 

of natural microbiota, specifically protozoa. This is important because the bacterial 

elimination rate by natural protozoa varies depending on different bacterial characteristics 

such as cell size, cell wall composition, presence of virulence factors, and location 

(González et al., 1990;Iriberri et al., 1994;Steinberg and Levin, 2007;Adiba et al., 2010). 

Protozoa are the most prevalent predators of bacteria in soil, and play a major role in 

controlling the bacterial population, although not all bacteria seem to be an equally 

suitable food source for protozoa. E. coli has been found to be an excellent food source 

for three types of amoeba: Acanthamoeba polyphaga, A. castellanii, and H. vermiformis 

(Weekers et al., 1993). Various protozoa isolated from dairy wastewater has been 

reported to have different grazing effects of E. coli (Ravva et al., 2010).  

The fitness of E.coli O157 to resist predation was tested for the curli positive and curli 

negative phenotypes and it was concluded that the curli negative trait is selective for 

survival against predation (Ravva et al., 2014).    

Virulence factors of E. coli have also been shown to be responsible for enhancing their 

survival by providing protection against predation from bactivorous protozoa, nematodes 

and other predators in the soil, water or gastrointestinal tract of bovine hosts (Steinberg 

and Levin, 2007).  Protozoan predation is considered to be an important factor in shaping 

the genotypic and phenotypic structure of planktonic and terrestrial bacterial communities 

(Hahn and Hofle, 2001;Jurgens and Matz, 2002). Since protozoan predation contributes 

to the decline of bacterial populations, it is possible that bacteria can become resistant to 
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this predation through evolutionary processes. There are various defense mechanisms that 

bacteria can use to either avoid or endure predation (Matz and Kjelleberg, 2005). It has 

been reported that the susceptibility of bacteria to predation varies within and between 

species. Some serotypes of Salmonella enterica are more resistant to predation by 

amoeba than others (Tezcan-Merdol et al., 2004; Wildschutte et al., 2004) Salmonella 

enterica serovar Thompson survives better than Listeria monocytogenes within the food 

vacuoles of Tetrahymena pyriformis (Brandl et al., 2005). Smith et al. (2016) have shown 

that isolates Pantoea ananatis exhibit differential grazing susceptibility with some being 

resistant to amoeboid grazing; they identified rhlA and rhlB genes involved in the 

biosynthesis of surfactant glycolipid that enables swarming motility of P. ananatis 

BRT175 and is cytotoxic to amoeba. Some studies, comparing the survival of commensal 

E. coli and E. coli O157:H7 in situ and in vitro showed that E. coli O157 was more 

resistant to predation (Jenkins et al., 2011), and other virulence strains (ExPec carrying 

virulence genes iroN, irp2, fyuA involved in iron uptake) were resistant to the grazing of 

Dictyostelium discoideum (Adiba et al., 2010). It is likely that E. coli O157 has the ability 

to survive in the food vacuoles of protozoa, which enhance their survival advantages in 

the environment and thereby their chances of transmission to humans (Brandl, 2006). 

There are also reports with contradictory findings showing that E. coli is equally 

susceptible to predation compared with commensal E. coli and other fecal indicator 

bacteria (Artz and Killham, 2002;Avery et al., 2008). Steinberg and Levin (2007) have 

reported that the Stx encoding prophage of E.coli O157:H7 provides protection against 

predation by grazing protozoa, while (Schmidt et al., 2016) did not find any evidence of 

protective effects of neither Stx nor the products of other bacteriophage genes on 
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protozoan predation (Paramecium caudatum and Tetrahymena pyriformis) on E. coli (E. 

coli O157:H7 (EDL933D and its isogenic mutant).  

The soil dwelling amoeba Dictystellium discoedium is a good model organism to study 

the interaction of bacteria and protozoan predation. It lives as an independent haploid cell 

under favorable conditions and feeds on bacteria. When food is scarce it co-aggregates 

into a multicellular motile slug and then forms fruiting bodies. About 20% of cells die to 

form a long thin stalk that the rest of the cells ascend. A globular structure formed at the 

tip of the stalk by the remaining cells is known as a sorus, which contains the spores.  

This is a strategy for spore dispersal by passing animals (smith et al., 2014). Once a 

favorable new environment is found the spores hatch into vegetative cells and the cycle 

continues.  

In addition to eating bacteria, D. discoedium can also form symbiotic association with 

different bacterial species. In amoeba this trait appears to be binary, some clones pick up 

and carry their edible bacterial source throughout their life cycles (DiSalvo et al., 2014).  

In this experiment we were sought to find out if E. coli isolated from pasture soil and 

bovine feces   exhibited different grazing susceptibilities to the amoeba Dictyostelium 

discoideum, and if there is any correlation between the presence of virulence factors and 

protozoan resistance of the strains.   

 

2. Materials and Methods:  

E. coli culture condition: E. coli isolates were collected from pasture soil (126), run-off  

(160) SBG (46) and bovine feces (35) as described in our previous work (NandaKafle et 
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al., 2017). For grazing assay E.coli isolates were recovered from -80° C glycerol stock on 

a LB plate and for grazing assay E. coli was grown in HL5 medium (10 g L-1 protease 

peptone, 10 g L-1 glucose, 5 g L-1 yeast extract, 0.35 g L-1 Na2HPO4 7H2O, 0.35 g L-1 

KH2PO4, pH 6.5) in a shaker incubator at 28° C (Adiba et al., 2010). Cells were washed 

once and then resuspended in HL5 media and the optical density was adjusted to 0.5 A546. 

The bacterial culture (4 μL) then applied on lactose agar plates (1 g L-1 lactose, 1 g L-1 

proteose peptone and 20 g L-1 agar).  

 

2.1. Amoeba strain and culture condition 

Amoeba D. discoideum axenic strain was obtained from Carolina Biological Supply. 

Amoeba was grown in 50 mL HL5 medium at 24°C in a shaker incubator for overnight, 

cells were washed once and the optical density was adjusted to 0.5 A546 to use for grazing 

assay. For HL5 agar media and broth we replaced thiotone E peptone as mentioned in 

(Adiba et al., 2010) with protease peptone as it was not available to purchase. Initially we 

used HL5 agar media to grow D. discoideum, but it did not see any grazing effect (no 

fruiting body was formed) so, we tested various media such that LB, R2A and LA 

(lactose agar). In LA media D. discoideum cells were able to make fruiting bodies, which 

is a condition when there is no available of immediate food source for amoeba.    

 

2.2. Grazing resistance assay 

All E. coli isolates were evaluated for grazing resistance by using a quantitative assay as 

described by (Moore et al., 2016) with some modifications. For this assay D. discoideum 
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was co-cultured with E. coli on LA plates. To test a particular isolate 4 μL (0.5 OD A546) 

bacterial suspension applied on plates in triplicate lines.  Four microliter of D. 

discoideum broth culture was inoculated on the middle of each line as shown in (Fig.1a). 

All plates were incubated at room temperature for five days. As D. discoideum consumed 

the bacteria and proliferated or grazed. The proliferating (grazing) front advanced along 

the bacterial lines (Fig.1b). The distance of amoeba grazing was measured in mm. To 

determine the difference in grazing susceptibility among sample types an ANOVA test 

was performed using R program.  

 

2.3. Grazing preferences by amoeba 

For grazing preferences determination we chose two highly susceptible (strains with 

highest grazing distance) and six resistant (strains with least grazing distance) strains. 

Each susceptible strain was inoculated on LA plates in combination with resistant strains. 

Four μL cultures were streaked on the plate as straight lines touching each other at one 

end, four μL of amoeba broth culture was then placed on the touching point of the E. coli 

cultures as shown in Fig. 2. Plates were incubated at room temperature for 5 days and 

grazing distances were measured.     

 

2.4. Virulence gene determination 

To determine the presence of six virulence genes (stx1, stx2, eaeA, hlyA, ST and LT) in 

E. coli isolates we used PCR based method as described previously in Chapter # 3.  
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2.5. Whole genome of E. coli isolates 

Out of 20 whole genome sequences available (previously sequenced for genome analysis 

study in our laboratory Chapter # 6) 5 least grazed isolates and 5 most grazed isolates 

were chosen to study their genetic relatedness. The two groups were denoted as least 

grazed group (LGG) and highly grazed group (HGG).  The unique genes related to each 

group and the core genes were identified using EDGAR bioinformatics platform (Blom et 

al., 2016) and R program (R Development Core Team, 2015). 

 

3. Results 

3.1. Grazing resistance 

Grazing susceptibility of E. coli isolates from soil, run-off, SBG and bovine feces were 

measured by the grazing distances of D. discoideum on E. coli as shown in Fig. 1. The 

grazing susceptibility varied from strains to strain suggesting some strains are capable of 

resisting  

 

Fig 6. 1. Growth of E. coli on LA agar after 24h at 25 °C, and with D. discoideum 

applied at center (a), and after a further 96h incubation at 25 °C in the dark (b). 

a b 
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Fig 6. 2. Box and Whisker Plot depicting the grazing distances of D. discoideum on 

E. coli isolates from different sources. Sample groups with the same letter were not 

significantly difference as determined by ANOVA. 

predation may be due to difference in genotype and so phenotypic behavior.  The 

distribution of grazing susceptibility significantly varied among sample types; isolates 

previously (NandaKafle et al., 2017) found to persist in soil (SBG) showed the least 

susceptibility to grazing by D. discoideum (Fig. 2). This result indicates that E. coli 

population persistence in soil is at least in part due to decreased grazing susceptibility. 

 

3.2. Grazing preferences by D. discoideum 

In this assay, when D. discoideum was grown in presence of two E. coli isolates (one 

least susceptible and one highly susceptible) it preferred one over the other. The grazing 

was initiated first on the highly susceptible isolates and grazed a longer distance and later 

a    ab    

c    

b    
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it grazed on the least susceptible isolates (Fig. 3). Our results indicate that even though D. 

discoideum grazes both isolates but it has a preference for bacterial cells.   

 

Fig. 6. 3 Grazing preference of D. discoideum between two different E. coli isolates     

 

3.3. Presence of virulence genes and grazing susceptibility  

To determine if there is any relationship of the presence of virulence genes and grazing 

susceptibility of E. coli, six virulence genes (stx1, stx2, eaeA, hlyA, ST and LT) were 

checked for all isolates by PCR method. Our result did not show any co-relation between 

the presence of virulence genes and grazing susceptibility of E. coli Fig. S1.  
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3.4. Comparison of whole genomes of least grazed and most grazed groups 

The average genome size for the least grazed group (LGG) was 4852 genes and the 

highly grazed group (HGG) had 5100 genes and there were 3414 core genes between 

these two groups. It was interesting to find that there were more than double unique genes 

specific to the highly grazed groups than there were unique genes specific to the least 

grazed groups, LGG had 130 genes unique to the group and the HGG had 389. These 

unique genes were grouped based on their function. The numbers of membrane related 

genes in HGG was 33 and in LGG it was only 8, suggesting there is a huge difference in 

their membrane structure and the substrates they secrete. The HGG group contained 23 

transporter genes compared to LGG having only 10 transporter genes. The HGG group 

also possessed many fimbial and flagellar genes with small toxic proteins and hemolysin 

genes.  

The LGG group had only three fimbrial and invasion related genes, suggesting that the 

HGG group could possibly contribute more virulence genes compared to LGG. There are 

also a high number of toxin-antitoxin system genes in HGG compared to LGG. The 

quorum sensing molecules such as autoinducer-2 related genes were more abundant in 

HGG compared to LGG, where only one autoinducer 2-binding protein gene, LsrB, was 

present. Surprisingly, we found that the secretory proteins related genes in HGG were 

only four and were related to secretory system-III, whereas in LGG there were 10 

secretory system-II proteins related genes present.  

Our results suggested that the LGG and HGG strains are phenotypically and 

genotypically different from each other.  
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Table 6. 1 List of unique genes in two groups (HGG and LGG) of E. coli isolates 

 

Highly    Grazed    HGG    (Susceptible)    Least    grazed-LGG    (Resistant)    
Membrane    protein    Membrane    protein    

00706,D-methionine-binding    lipoprotein    MetQ    precursor    02333,LPS-assembly    protein    LptD    

01754,Outer    membrane    protein    IcsA    autotransporter    

precursor    

04132,Periplasmic    trehalase    

00603,Outer    membrane    usher    protein    FimD    precursor    04745,Inner    membrane    protein    YijD    

02959,putative    outer    membrane    usher    protein    ElfC    

precursor    

02531,Cryptic    outer    membrane    porin    

BglH    

03321,Threonine-rich    inner    membrane    protein    GfcA    

precursor    

02786,Inner    membrane    protein    YmfA    

03320,putative    lipoprotein    GfcB    precursor    02787,Inner    membrane    protein    YcfZ    

04701,Bestrophin,    RFP-TM,    chloride    channel    03086,Outer    membrane    usher    protein    

PapC    

04713,Outer    membrane    usher    protein    FimD    precursor    02865,Major    curlin    subunit    

05195,Outer    membrane    porin    protein    OmpD    precursor        

05048,Inner    membrane    protein    YnbA        

03566,Outer    membrane    protein    G    precursor        

03559,Inner    membrane    ABC    transporter    permease    protein    

YcjP    

    

03558,Inner    membrane    ABC    transporter    permease    protein    

YcjO    

    

00078,Inner    membrane    protein    YnjI        

00071,Inner    membrane    metabolite    transport    protein    YdjE        

00065,Inner    membrane    metabolite    transport    protein    YdjE        

04633,Inner    membrane    protein    YedR        

04857,putative    inner    membrane    protein        

05409,Lipoprotein    YlpA    precursor        

05429,Type    IV    conjugative    transfer    system    lipoprotein    (TraV)        

03405,Outer    membrane    protein    IcsA    autotransporter    

precursor    

    

03404,Inner    membrane    protein    YmgF        

02742,InvH    outer    membrane    lipoprotein        

02737,Lipoprotein    PrgK    precursor        

05051,Phospholipase    YtpA        

00929,Putative    penicillin-binding    protein    PbpX        

01085,Inner    membrane    protein    YiaV    precursor        

01084,Inner    membrane    protein    YiaW        

03190,Inner    membrane    protein    YidI        

01369,putative    outer    membrane    usher    protein    ElfC    

precursor    

    

01208,Inner    membrane    protein    YihN        

02823,Energy-coupling    factor    transporter    transmembrane    

protein    EcfT    

    

02855,Inner    membrane    protein    YhaI        

Transporter    protein    Transporter    protein    
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03297,putative    transporter    YycB    00866,Ribose    import    permease    protein    

RbsC    

01955,4-hydroxybenzoate    transporter    PcaK    00865,Ribose    import    ATP-binding    

protein    RbsA    

02919,Inner    membrane    transporter    YcaM    03286,Putrescine    transporter    PotE    

03317,Polysialic    acid    transport    protein    KpsD    precursor    00867,Autoinducer    2    import    system        

permease    protein    LsrD    

03444,putative    autotransporter    precursor    01281,Electron    transport    complex    

subunit        

RsxC    

04676,Proline/betaine    transporter    02631,Fe(2+)    transporter    FeoB    

04692,Sugar    efflux    transporter    01383,L-fucose-proton    symporter    

00208,Multidrug    transporter    EmrE    01554,C4-dicarboxylate    TRAP    

transporter    

    large    permease    protein    DctM    

05180,putative    D,D-dipeptide    transport    system    permease    

protein    DdpB    

02501,D-galactonate    transporter    

05182,putative    D,D-dipeptide    transport    ATP-binding    protein    

DdpD    

01553,Sialic    acid    TRAP    transporter    small        

permease    protein    SiaQ    

05183,putative    D,D-dipeptide    transport    ATP-binding    protein    

DdpF    

    

00040,L-carnitine/gamma-butyrobetaine    antiporter        

04851,putative    autotransporter    precursor        

03444,putative    autotransporter    precursor        

02739,Yop    proteins    translocation    protein    F        

00997,Sugar    efflux    transporter    C        

03543,Putrescine    importer    PuuP        

00040,L-carnitine/gamma-butyrobetaine    antiporter        

00871,putative    formate    transporter    1        

03372,Inner    membrane    ABC    transporter    permease    protein    

YtfT    

    

02824,Energy-coupling    factor    transporter    ATP-binding    

protein    EcfA1    

    

02825,Energy-coupling    factor    transporter    ATP-binding    

protein    EcfA1    

    

02206,High-affinity    glucote    transporter        

Virulence    related    Virulence    related    

00605,Type-1    fimbrial    protein,    A    chain    precursor    04227,putative    fimbrial-like    protein    

YadM    

00604,Chaperone    protein    FimC    precursor    00840,Invasin    

00602,putative    fimbrial-like    protein    ElfG    precursor    03085,putative    fimbrial-like    protein    

YbgD    

00601,Type-1    fimbrial    protein,    A    chain    precursor    04227,putative    fimbrial-like    protein    

YadM    

01601,Fimbria    A    protein    precursor        

00600,Virulence    factors    putative    positive    transcription    

regulator    BvgA    

    

02958,putative    fimbrial    chaperone    protein    ElfD    precursor        
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02957,Fimbrial    subunit    ElfA    precursor        

02960,putative    fimbrial-like    protein    ElfG    precursor        

02961,putative    fimbrial-like    protein    YcbU    precursor        

02962,putative    fimbrial-like    protein    YcbV    precursor        

02963,putative    fimbrial    chaperone    YcbF    precursor        

03417,Hemolysin    E,    chromosomal        

04573,Small    toxic    polypeptide    LdrD,IDENTICAL        

PARALOGS:,04574,Small    toxic    polypeptide    LdrD    

    

    

04714,S-fimbrial    protein    subunit    SfaG    precursor        

04715,S-fimbrial    adhesin    protein    SfaS    precursor        

04716,S-fimbrial    protein    subunit    SfaH        

02361,Flagellin        

03185,Small    toxic    protein    TisB        

02744,flagellar    biosynthesis    protein    FliR        

02745,flagellar    biosynthesis    protein    FliQ        

02746,Flagellar    biosynthetic    protein    FliP    precursor        

01370,putative    fimbrial-like    protein    ElfG    precursor        

01367,Type-1    fimbrial    protein,    A    chain    precursor        

Toxin    antitoxin    system    Toxin    antitoxin    system    

00418,Antitoxin    DinJ    02097,Toxin    YoeB    

03953,Antitoxin    ParD1    02096,Antitoxin    YefM    

01856,Antitoxin    HicB    04560,Toxin    HigB-2    

03953,Antitoxin    ParD1    04561,Antitoxin    HigA-2    

01875,Antitoxin    VapB        

04711,Antitoxin    HipB        

03952,Toxin    ParE1        

02588,Antitoxin    MazE        

04802,Antitoxin    PrlF        

04801,Toxin    YhaV        

02876,Antitoxin    HigA        

03367,Antitoxin    ChpS        

Quorum    sensing    Quorum    sensing    

04705,Autoinducer    2-binding    protein    LsrB    precursor    00864,Autoinducer    2-binding    protein    

LsrB    

04706,Autoinducer    2    import    system    permease    protein    LsrD        

04707,Autoinducer    2    import    system    permease    protein    LsrC        

04708,Autoinducer    2    import    ATP-binding    protein    LsrA        

04709,Transcriptiol    regulator    LsrR        

04710,Autoinducer    2    kise    LsrK        

04703,Autoinducer    2-degrading    protein    LsrG        

stress    protein    stress    protein    

00310,Stress-induced    bacterial    acidophilic    repeat    motif    02418,General    stress    protein    A    
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4. Discussion  

This study showed that E. coli isolates showed different susceptibility to protozoan 

predation and the grazing distance of E. coli isolates were different even though they 

share the same habitat. However, we reported that the majority of isolates from SBG 

samples that are considered as environmental (NandaKafle et al., 2017)  showed 

significantly higher resistance to grazing compared to soil, run-off and the bovine feces 

sample. This indicates that E. coli may have harbored a different trait to escape predation 

and survive in the soil. We also confirmed our result by growing least susceptible and 

highest susceptible strains together with D. discoeideum (Fig. 3) to see if there is a 

preference for grazing on E. coli isolates, it was clearly shown that D. discoeideum 

00069,General    stress    protein    69    02415,General    stress    protein    A    

        

Secretory    protein    Secretory    protein    

04251,Secreted    effector    protein    pipB2    04794,Putative    type    II    secretion    system        

protein    D    

02748,type    III    secretion    system    protein    SpaO    03006,Type    II    secretion    system    protein    

E    

02740,Type    III    secretion    system    protein    PrgH-EprH    (PrgH)    03005,Type    II    secretion    system    protein    

F    

02748,type    III    secretion    system    protein    SpaO    04791,Putative    type    II    secretion    system        

protein    G    

    02998,Type    II    secretion    system    protein    

M    

    02999,Type    II    secretion    system    protein    

L    

    03000,Putative    type    II    secretion    system        

protein    K    

    03001,Type    II    secretion    system    protein    J    

    03002,Type    II    secretion    system    protein    I    

    03003,Type    II    secretion    system    protein    

H    

    03004,Type    II    secretion    system    protein    

G    

    03007,Type    II    secretion    system    protein    

D    

    03008,Type    II    secretion    system    protein    

C    
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initiated grazing on the least susceptible isolates.  Adiba et al. (2010) have shown that D. 

discoideum was able to survive and phagocytize E. coli strains not harboring virulence 

genes involved in iron capture (ironN, fyuA, irp), are not resistance to bile, serum, 

lactoferin or that do not belong to phylogroup B2.  

In our study interestingly, we also found that isolates belong to B2 phylogroup showed 

resistance to protozoan grazing although there were very few B2 isolates in our collection 

(total 368 isolates and only 9 B2 isolates). The highest grazing distance was 7.2 cm and 

the range of grazing distance for isolates belong to phylogroup B2 was 0-3.1 cm. It has 

been shown E.coli strains that harbor virulence genes are able to survive and replicate in 

common environmental protozoa such as E. coli O157, (Barker et al., 1999;Steinberg and 

Levin, 2007) or extra intestinal pathogenic E. coli (Adiba et al., 2010). To determine the 

correlation between the presence of virulence genes and grazing resistance, we detected 

the presence and absence of six virulence genes in all isolates. We did not find any 

correlation between the presence of virulence genes and grazing resistance of E. coli. We 

also measured the grazing distance of E. coli O157:H7 strains and did not find any 

significant resistance by the strain. Our result is consistent with Schmidt et al. (2016) as 

reported previously that Paramecium caudatum consistently reduced both E. coli 

O157:H7 (EDL933D) and non Shiga toxin cattle commensal E.coli population  by 1-3 

log CFU when grown together in broth culture with over three days in an ambient 

laboratory temperature.  

If virulence genes are not the major factor for E. coli to be resistant to predation then 

what are the traits responsible for their ability to evade grazing instead. To find out the 

difference between the least grazed isolates (resistant isolates) and the highly grazed 
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group (susceptible isolates) we chose 5 isolates from least grazed group (denoted as 

LGG) and 5 isolates from highest grazed group (HGG) and made two groups to compare 

their genome data. We found that the two groups shared a core genome consisting of 

3414 genes, while each group also has some unique genes they do not share. For the 

HGG groups there were 389 genes, and for the LGG there were 130 unique genes. It was 

interesting to know that the HGG group has a higher abundance of membrane protein, 

transporter protein, fimbrial and flagellar protein, toxin-antitoxin system related protein 

and autoinducer-2. However, the LGG has a high number of secretory system-II proteins 

compared to HGG, which has fewer Secretory system-III proteins.   

 A recent study by Snyder et al. (2017) found that mutant strains of E. coli that are 

resistant to D. discoideum phagocytosis possess several genes related to flagella, 

oxidoreductase and acid resistance. These genes may have the potential to develop a 

mechanism to resist D. discoideum predation, which contributes to selection and 

maintenance of bacterial virulence factors against mammalian host. Salmonella enterica 

subsp. Typhimurium inhibits the D. discoideum starvation response through the type III 

secretion system there by preventing sporulation (Sillo et al., 2011). The type-III 

secretion system in HGG may also play a role in secreting substrate that may allow the 

starvation response of D. discoideum. Type –II secretion system occur in both pathogenic 

and non-pathogenic E. coli, and the output T2S secretory proteins can be a diverse group 

of toxins, degradative enzymes and other effector proteins. This system is clearly used by 

bacteria for environmental survival and virulence (Cianciotto and White, 2017). This 

report suggests that  the T2S system may play an important role for LGG to resist 

predation. We also found that Autoinducer-2 related genes in HGG which are part of 
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quorum sensing system that allows communication with many different bacterial species 

(Federle, 2009). It has been also reported that functional quorum sensing is important for 

interaction of Vibrio cholera and the amoeba Acanthamoeba castellanii., Upon 

phagocytized by the amoeba Vibrio cholera can resist intracellular killing (Van der Henst 

et al., 2015). The presence of autoinducer II in HGG indicates that the cells interact with 

D. discoideum to phagocytose. It may be possible that the cells are not completely killed, 

but form a symbiotic association with amoeba of farmer clones that carry bacteria 

through their social stages or dispersal stages and can be identified by the presence of 

bacteria in their sorus (Brock et al., 2011). It will be interesting to investigate the 

presence of E. coli cells in the sorus of D. discoideum  that  has grazed on HGG isolates.  

Our study did not give any detailed information about the association of specific genes to 

E. coli survival from protozoan predation. The presence of genes unique to HGG and 

LGG may play a role in grazing susceptibility or grazing resistance of bacteria. To 

determine the role of these genes of protozoan predation more investigation is needed.   

Our results of characterizing amoeba grazing on distinct E. coli isolates and a correlation 

between the presence of virulence genes and grazing resistance, deviate from previous 

reports (Adiba et al., 2010;Jenkins et al., 2011). These inconsistencies could easily be 

attributed to differences in amoeba clones, plating methods, nutrient conditions and the 

laboratory atmosphere. In our study we distinctly found that plating medium clearly 

affects the growth of amoeba clones on distinct E. coli.  

In conclusion, our study clearly depicts that there is a difference in grazing susceptibility 

of E. coli isolates and in that environmental E. coli are found to be more resistance to 
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grazing. The highly grazed group and least grazed group possess unique genes that may 

play roles in their ability to be grazed or resist grazing.  
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Fig S6. 1 Correlation between grazing distance and presence of pathogenic genes  
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Chapter 7: Comparative Analysis of Whole Genome Sequences of 

Escherichia coli Isolated from Pasture Soil 

 

The work reported in this chapter was conducted by Gitanjali NandaKafle in 

collaboration with Dakota York and Joy Scaria 

 

 
1. Introduction:  

Escherichia coli is a commensal bacterium found in the lower intestine of warm-blooded 

animals, but it can also be pathogenic in nature causing serious illness to humans and 

domestic animals (Kaper et al., 2004;Croxen and Finlay, 2010;Tenaillon et al., 2010). 

The primary habitat of E. coli is assumed to be within the animal host and to thrive in 

such a diverse nutrient rich habitat the bacterium needs to be genetically adapted 

(Winfield and Groisman, 2003). Despite the intense competition within the densely 

populated gut ecosystem, E. coli is the most abundant facultative anaerobe species in 

human intestine (Dubreuil, 2012). E. coli also often enters the environment (considered 

as secondary habitat) through fecal deposition, where until recently it assumed to survive 

for a short period of time (Ishii and Sadowsky, 2008). In recent years wide spread reports 

on E. coli survival and growth in soil, water, sediments, water plants in tropical, sub-

tropical and temperate regions have been reported (Byappanahalli and Fujioka, 

1998;Solo-Gabriele et al., 2000;Desmarais et al., 2002;Whitman et al., 2006;Ishii et al., 

2007;Texier et al., 2008;Brennan et al., 2010b). The considerable disparity in conditions 

out in the environment, and in the primary host habitat, raises the question of how the 
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organism survives and competes for niche spaces in the outside environment. Some 

reports indicate the naturalized E. coli form genetically distinct populations with DNA 

finger prints different from that of the primary host isolates (Gordon et al., 2002;Walk et 

al., 2007;Texier et al., 2008). E. coli is highly versatile in its ability to adapt in multiple 

environments, which justifies its immense diversity within species (Bergthorsson and 

Ochman, 1998). Recently, strains phenotypically indistinguishable but genetically 

distinct from E. coli have been reported and named Escherichia clades I to V (Walk et 

al., 2009;Luo et al., 2011). A multiplex PCR based method that enables strains of E. coli 

to be assigned to a phylogroup based on the presence and absence of genes (yjaA, arpA, 

chuA, TSPE4.C2 and trpA) and E. coli strains can be classified into one of the seven 

phylogroups denoted as A, B1, B2, C,D, E, F and  recently, Clade-I is considered as the 

eighth phylogroups (Clermont et al., 2013). Although, the distribution of phylogroups 

depends on the diet or geographic conditions, strains belonging to phylogroup A and B1 

are highly adapted to humans and vertebrate animals, the A phylogroups being 

predominant in humans and B1 strains in animals (Duriez et al., 2001;Gordon and 

Cowling, 2003;Skurnik et al., 2008). Some strains from phylogroup B1 were found to 

persist in water and soil environment (Walk et al., 2007;Ratajczak et al., 

2010;NandaKafle et al., 2017). The new phylogroup assignment method has not been 

used extensively, however human fecal isolates screened using this method demonstrated 

that about 13% of E. coli isolates belong to newly described phylogroups C, E, F and 

Clade-I (Clermont et al., 2013). In a recent study phylogroup B1 and E were found to be 

the major groups in E. coli isolated from cattle (Morcatti Coura et al., 2015). Our 

previous work also showed similar results with the majority of cattle isolates belonging to 
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phylogroup E and environmental isolates belonging to phylogroup B1(NandaKafle et al., 

2017). Although E. coli O157:H7 belongs to phylogroup E, very few strains of this group 

has been recorded so far.  

“The ability to identify clonal /clonal complex /phylogroups is crucial as a strains 

ecological niche, life style and propensity to cause disease vary with its phylogenetic 

origin” (Clermont et al., 2015). There are currently three multi locus sequence type 

(MLST) schemes; Michigan State University (http://www.shigatox.net/ecmlst/cgi-

bin/index), Warwick Medical School (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli), and 

Pasteur Institute (http://www.pasteur.fr/recherche/genopole/PF8/mlst/EColi.html) in use 

to assign a sequence type (ST) to phylogroups. The Warwick scheme is largely being 

used for ST nomenclature.   

Analysis of sequenced E. coli genomes shows a broad variability of their size and genes 

content, more importantly, sequencing has revealed the extraordinary flexibility and 

dynamics of the E. coli genome that contribute to its phenotypic and genotypic diversity. 

Comparative genome analysis of bacterial genomes of same species suggested that 

bacterial species can be characterized by pan-genome which consist of the core genome 

(genes common among all strains), a dispensible genome or accessory genome (genes 

that are present in subset of strains) and the unique genes (specific to strain)(Tettelin et 

al., 2005). The popular lab strains K-12, O157:H7, and the uropathogenic strain CFT073 

share only 39% of their genes (Welch et al., 2002). Subsequent sequencing of more 

genomes reduced the core genome to less than 20% of the pangenome of 16000 genes or 

more (Lukjancenko et al., 2010;Kaas et al., 2012). Sixty-one publicly available genome 

sequences of E. coli strains were compared and it was found that 20% of the genes 
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belong to the core and the remaining 80% were not found in all other E. coli genomes 

(Lukjancenko et al., 2010). The size of the E. coli genome can vary greatly among 

strains. The standard laboratory strains have genomes of ~4.5 million base pairs with 

about 4000 genes, while pathogenic strains can have genomes of over 5.9 million base 

pairs with 5500 genes (Lukjancenko et al., 2010;de Muinck et al., 2013).  Extensive gene 

acquisition and loss has led to lineages that differ in their abilities to use diverse 

metabolites and survive in harsh environments, and their potential to be pathogenic, and 

resistant to various antibiotics. Such mobile genetic modules along with point mutations 

facilitate the rapid adaptation of E. coli to changing environments (Brzuszkiewicz et al., 

2009;Dobrindt et al., 2010).  

E. coli displayed phenotypic characteristics which may increase their ability to survive 

and compete for resources in low temperature soil (Brennan et al., 2010a). The versatile 

nature of nutrient utilization of this facultatively anaerobic bacterium has also been 

suggested to contribute to survival and growth in the environment (Ishii and Sadowsky, 

2008;O'Reilly et al., 2010). Indeed, the ability to metabolize a wide array of carbon, 

nitrogen, phosphorus and sulphur sources would represent a significant advantage under 

nutrient-limiting conditions, typical of E. coli secondary habitat (Durso et al., 2004).  

Our goal in this study was to understand the genetic diversity of  20 E. coli isolates (of 

phylogroup A (2 isolate), B1(8 isolate), E (9 isolate) and B2 (1 isolate)) collected from 

environmental samples and their comparison with other reference strains (disease 

associated E. coli O157:H7, environmental clade-I -TW10509 and laboratory strain K12 

MG1655), and to characterize their ability to metabolize various C, N, P and S sources.   

2. Materials ad Methods 
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2.1. Selection of Escherichia coli isolates:  

Twenty isolates were selected from three clusters of E. coli environmental, bovine and 

mixed clusters (NandaKafle et al., 2017) of Phylogroup B1, E, A and B2 for whole 

genome sequencing and phenotypic microarray assay, BIOLOG.  

 

2.2. Whole genome sequencing of Escherichia coli isolates:  

Genomic DNA was extracted from overnight LB agar cultures suspended in 10 mM 

phosphate buffer (pH 7.0) using the genomic DNA Quick Prep Kit (Zymo Research), and 

all extracted DNA samples were quantified using Nanodrop Spectrophotometer as well as 

Quibit Fluorometer. The DNA samples were sent to Microbes NG, UK for sequencing 

(http://www.microbesng.uk), which is supported by the BBSRC (grant number 

BB/L024209/1). The protocol used for sequencing is briefly explained; the Genomic 

DNA libraries were prepared using Nextera XT Library Prep Kit (Illumina, San Diego, 

USA) following the manufacturer’s protocol with the following modifications: two 

nanograms of DNA instead of one were used as input, and PCR elongation time was 

increased to 1 min from 30 seconds. DNA quantification and library preparation were 

carried out on a Hamilton Microlab STAR automated liquid handling system. Pooled 

libraries were quantified using the Kapa Biosystems Library Quantification Kit for 

Illumina on a Roche light cycler 96 qPCR machine. Libraries were sequenced on the 

Illumina HiSeq using a 250bp paired end protocol. Reads were adapter trimmed using 

Trimmomatic 0.30 with a sliding window quality cutoff of Q15 (Bolger et al., 2014). De 

novo assembly was performed on samples using SPAdes version 3.7 (Bankevich et al., 

2012), and contigs were annotated using Prokka 1.11(Seemann, 2014)  
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2.3. BIOLOG Phenotypic Microarray (PM):  

We performed the BIOLOG phenotypic microarray (BIOLOG, Hayward, CA, USA) 

according to the manufacturer’s recommendations. The Biolog microplate assay is based 

on measurement of bacterial respiration which produces NADH (Bochner et al., 2001). If 

E. coli metabolizes a specific substrate, electrons from NADH reduce a tetrazolium dye 

in an irreversible reaction generating a purple color in the PM plates well. The isolates 

were tested with the 96 well plates PM1 to PM4, containing 190 carbon (PM1 and PM2), 

95 nitrogen (PM3), 59 phosphorous (PM4) and 35 sulfur (PM4) substrates. Bacterial 

colonies obtained after 18 h at 37°C on BUG-B agar plates were suspended in the 

inoculating fluid from BIOLOG, each well of the plate was inoculated with 100 µL of 

cell suspension. The plates were incubated at 37°C for 24 h. Following incubation the 

metabolism of various substrate was measured spectrophotometrically at 590 nm, using a 

microtiter plate reader. The color intensities of the wells were normalized against that of 

the negative control well, combined with the visual increase in turbidity. Plates were 

scored in binary fashion as either positive or negative (Classen et al., 2003).  

 

2.4. Data Analysis:  

The BIOLOG data were normalized and arranged based on their positive and negative 

substrate utilization (positive was denoted as 1 and negative utilization was denoted as 0). 

Genome data were also arranged based on their presence and absence of genes in the 

pangenomes. For both pangenome and BIOLOG results heatmaps were created using the 

heatmap.2 function from the package: "gplots" in R (R Development Core Team, 2015) 

to observe the similarity among isolates.  
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A comparative analysis of 20 pasture isolates with reference strains E. coli O157 

EDL933D, K-12 MG1655 and Clade-I (TW10509) were conducted using EDGAR 2.0 

platform (Blom et al., 2016). The pan and core genome development plot, neighbor-

joining tree using the core genes of 23 isolates were constructed.  

 

2.5. Multi locus Sequence Type (MLST):  

Multi locus sequence typing of 20 isolates was performed by uploading the whole 

genome assembled contigs in the database https://cge.cbs.dtu.dk/services/. Two different 

MLST schemes (Achtman or Warwick scheme as MLST #1 and Pasteur scheme as 

MLST # 2) were used to identify the sequence types of isolates by using MLST 1.8 

(Larsen et al., 2012). For Achtman (Warwick) scheme internal fragments of the seven 

house keeping genes adk, fumC, gyrB, icd, mdh, purA, recA (Wirth et al., 2006)  and for 

Pasteur scheme eight house keeping genes dinB, icdA, padB, polB, putP, trpA, trpB, uidA 

(Jaureguy et al., 2008)were used.  

 

2.6. Virulence Factors:  

Virulence genes of E. coli isolates were determined by uploading the assembled genome 

sequences in the CGE tool for virulence finder database (Joensen et al., 2014). It is 

possible to select configurations for the organism of interest, and in addition, it is possible 

to select percent identity (%ID) threshold between the input and the best matching 

database gene. The output consists of best-matching genes from BLAST analysis of the 

selected database, against the submitted genome, with genes set to cover a minimum of 
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three-fifths of the length of the database genes. The output contains information on the 

virulence gene, the %identity, the length of query and database gene, the position of the 

hit in the contig, and the accession number of the hit. 

 

3. Results 

3.1. Whole genome sequence analysis 

A total of 23 isolates (2 isolates of phylogroup A, 8 of phylogroup B1, 1 isolate of 

phylogroup B2, 9 isolates of phylogroup E and reference strains K12, 933D and 

TW10509) whole genome sequences were analyzed to understand the similarity and 

diversity of various isolates of diiferent phylogroups. The total numbers of core genes for 

all 20 isolates were comprised of only 33.8%, the accessory or indispensible genes were 

of 46.6% and the unique genes were 19.6% (Fig.1). Each genome had more than 20% 

genes of unidentified function named as hypothetical genes (Table. 2). The average 

numbers of genes of 20 isolates were of 4,948, where as the E phylogroup isolates were 

consist of 5,267 genes and both phylogroup A and B1 together the average genes were 

4,638 (Table. 2). The higher genome size of phylogroup E isolates suggesting a great 

diversity among these isolates. 
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Fig. 7. 1 Genomic subset distribution of 20 isolates. Core gene consist of 33.8%, 

dispensable or accessory genes 46.6% and singletons or unique genes are of 19.6%  

 

3.2. Pan-genome and core genome analysis  

The neighbor joining tree constructed by 3,238 core genes sequence alignment showed 

that the Clade-I and B2 phylogroup isolates are very different from other isolates in the 

group (Fig. 2). Two environmental isolates (NandaKafle et al., 2017) of E phylogroup 

formed very distinct cluster whereas two E isolates clustered together with B1 and A 

suggesting a very diverse group of E phylogroups (Fig. 2). The reference strain 933D and 

K12 did not cluster with any E or A phylogroup isolates. But, 933D was closer to E and 

K12 was closer to A phylogroup isolates (Fig.2). The heat map constructed based on the 

presence and absence of pangenes showing the similarity among isolates (Fig. 3). Based 

on presence and absence of pangenes the three isolates clade-I, 933D and the B2 isolates 

made a separate cluster, however all three were very different from each other. 

Phylogroup A and B1 isolates were very similar genotype compared to E isolates.  
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Fig. 7. 2 Neighbor joining tree constructed by EDGAR using sequences of core 

genome of 20 pasture isolates and 3 reference genomes; Clade-I, E. coli O157:H7 

933D and E. coli K-12 MG1655 

 

However, in the E phylogroups, 3 isolates clustered together at a closer distance from 

reference strains EDL933D and TW10509. Other six isolates make three clusters each of 

2 isolates (7-8, 9-10, 11-12), those two isolates of each cluster appeared to be very similar 

(Fig. 3). These E isolate clusters are closer to A and B1 clusters. The core genome tree 

and pan-genome tree showed similarity with respect to the clustering of isolates, but the 

reference strains 933D in the core genome tree clustered with E isolates but in pan-

genome tree it was distinctly clustered from E isolates, indicating that the accessory 

genes of reference strains were very different. The reference strain K-12 was clustered 

with phylogroup A isolates in pan-tree whereas in core –tree it was not clustered with any 

A isolate.  
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Fig. 7. 3 Heat map of total genome composition of 23 isolates, based on the presence 

and absence of genes. Red color represents high similarity and blue color less 

similarity 

 

3.3. Core-pan genome development plot 

The contribution of each genome to complete pan-genome of E. coli is demonstrated in 

Fig. 4 where the pan-genome and core-genome was plotted for 20 isolates including three 

reference strains (K-12, EDL 933D and TW10509). The size of pan- and core genome for 

different groups of isolates was summarized in Table-1. For all 20 isolates and 3 
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reference strains the pangenome was 11,550 and the core genome was 3,238. When the 

Clade-I genome was removed the pangenome reduced to 10,939 and core genome did not 

change a lot, it was only increased to 3,251. This suggested that the Clade-I has 

contributed 611 genes in the pan-genome curve, which are unique to this strain. The pan-

core plot for only 20 isolates showed pangenome size of 9,946 and the core genome size 

was 3,362. So, the three reference strains contributed about 1600 genes suggesting our 

isolates are very different from the reference strains based on their pan genome. To find 

out the contribution of phylogroup A, B1 and E we plotted two pan-core development 

curves one with phylgroup E isolates and 933D and other with phylogroup A, B1 and 

K12 together. The pangenome for phylogorup E isolates together with 933D was 8,746, 

which was 1,754 genes more than the pan-genome of A, B1 phylogroup together. This 

result also suggests that E phylogroup isolates are very diverse in nature, with larger 

genome size than B1 and A (Table.2).  

 

Fig. 7. 4 Pan-and core genome plot of 23 isolates. The black pan-genome curve 

represents the cumulative number of gene families present in the total genomes and 

the blue core genome curve represent the conserved number of gene families    
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Table 7. 1 list of pan-genes and core genes while comparing the whole genome of 

different groups of isolates 

 

3.4. Sequence typing 

All E. coli isolates were sequence typed by two MLST scheme. According to the MLST 

# 1 scheme, out of 20 isolates analyzed 18 were assigned to different sequence types 

(STs) and two isolates could not be assigned to any available STs. Two isolates from 

phylogroup B1 was belonged to ST294, whereas from phylogroup E, ST392 was 

assigned to 2, ST6645 was assigned 3 and ST392 was assigned to 2 isolates indicating the 

presence of clonal isolates. Other nine isolates were assigned to different STs. 

Phylogroup B2 isolate was assigned to ST95, which is same as a reference strain E. coli 

S88 (Clermont et al., 2015). According to MLST # 2 scheme only seven isolates were 

assigned to sequence type and 13 isolates were remained unassigned. Two isolates were 

assigned with ST295 other five sequence types were ST654, ST339, ST303, ST363 and 

ST1. The isolate with phylogroup B2 was assigned with ST1 (by MLST#2) and ST95 (by 

MLST # 1) it is consistent with the result previously reported (Clermont et al., 2015).  

 

 

 

Group	of	isolates	 Core	gene	 Pan	genes	

20 isolates with K12, 933D and TW10509 3,238 11,550 

20 isolates with 933D and K12 3,251 10,939 

20 isolates only 3,362 9,946 

Phylogroup E isolates with 933D 3,575 8,746 

Phylogroup A and B with K12 3,578 6,992 
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3.5. Virulence genes 

The presence of virulence related genes were identified in 20 isolates. A total of 10 

virulence related genes were detected through out 20 isolates. The list of virulence related 

genes were given in Table. 2.  

Table 7. 2 Detail information on genomes of 20 E. coli isolates  

 

 

The distribution of these genes were differ from strain to strain, iss (increased serum 

survival) was present in 12 isolates, gad (glutamate decarboxylase) was present in all 20 

isolates, vat (vacuolating autotransporter toxin) and cdtB (cytolethal destending toxin) 

Isolates MLST    #1 

MLST    

#2 Phylo 

Virulence related 
genes in genome 

Total    

genes    

Unique    

genes    

ABR    RDAR    Biofilm    

LB-SE    

Hypoth

genes    

C4RME9 ST -1850 ST-Unk A gad, IpfA 4408 77 0 3 1, 3 1207 

C4MME2 ST-2713 ST-654 A IpfA,  gad 4774 60 1 3 2, 1 1264 

C1RMW4 ST-201 ST-294 B1 iss, gad, IpfA 4530 26 0 1 1, 0 1266 

C1SBM3 ST-201 ST-294 B1 IpfA, gad, astA 4677 78 0 3 0, 0 1156 

C1SBM6 ST-388 ST-339 B1 gad, IpfA 4953 110 0 2 3, 1 1407 

C1SBM20 ST-164 ST-303 B1 astA, iss, gad, 

IpfA 

4774 67 0 3 1, 1 1277 

C3SBM18 ST-937 ST-363 B1 IpfA, gad 4424 68 0 3 1, 2 697 

C3SRN1 ST-111 ST-Unk B1 IpfA,gad,iss 4529 109 2 0 0, 1 1234 

C4RME2 ST-906 ST- unk B1 IpfA, gad, iss 4601 26 0 1 1, 0 1095 

C4RMW9 ST-162 ST-Unk B1 gad, IpfA, iss 4710 56 3 3 0, 1 1317 

C2MRN1 ST-6645 ST- Unk E IpfA, gad, air, 

eilA 

5764 45 1 0 1, 2 1515 

C2RRS10 ST-392 ST-Unk E iss, gad, IpfA, 

ironN 

5298 10 0 3 2, 1 1637 

C2MMW2 ST-392 ST-Unk E iss, gad, IpfA, 

ironN 

5274 3 0 3 0, 0 1612 

C2SME6 ST-753 ST-Unk E gad, iss, air, eilA 4780 8 3 0 2, 2 1387 

C4MME1 ST-753 ST-Unk E iss, air, eilA 4821 22 1 1 2, 1 855 

C2SMW2 ST-6645 ST-Unk E gad, eilA, air 5644 7 1 0 0, 0 1932 

C4SMW1 ST-6645 ST-Unk E gad, eilA, IpfA, 

celB 

5679 13 1 1 0, 1 1944 

SBM_Man1 ST-Unk* ST- Unk E air, gad, astA, 

eilA 

4999 78 1 3 0, 1 1409 

SBM_Man4 ST-Unk* ST- Unk  E air, gad, astA, 

eilA 

5143 31 1 3 1, 1 1065 

C1MME1 ST-95 ST-1 B2 iss, gad, vat, 

cdtB 

5171 306 1 0 0, 0 1578 

*The sequence type is identical 
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was present in only in B2 isolate, ipfA (long polar fimbriae) was present in 14 isolates (all 

B1 and A isolates and 4 E isolates), astA (EAST-1 heat stable toxin) was present four 

isolates 2 B1 and 2 E phlogroup, eilA (Salmonella hilA homolog) was present in 7 

isolates (all 7 were of phylogroup E), air (enteroaggregative immunoglobulin repeat 

protein) was present in 6 isolates (all 6 are phylogroup E), ironN (enterobactin 

siderophore receptor protein) was present in only 2 isolates (both are of E phylogroups), 

celB (endonuclease colicin E2) was present in one phylogroup E isolate. The presence 

more virulence related genes in phylogroup E isolates suggested that phylogroup E 

isolates may have the potential to be more pathogenic in comparison with A and B1.  

 

3.6. Phenotypic microarray or BIOLOG Assay 

The results of phenotypic microarray assay for nutrient utilization of 20 isolates and 3 

reference strains were very different from their genotypes. The utilization C, N, P and S 

were different from strain to strain even though they are genotypically similar. The 

nutrient utilization pattern of Clade I and 933D strains was very similar to other isolates, 

however the K-12 strain was very different (Fig. 5). Phylogroup E, B1 and A did not 

show any distinct pattern in their nutrient utilization. Some of them are similar with 

Clade-I and 933D whereas some strains of phylogroup B1 and E did not show any 

similarity in their nutrient utilization pattern. This result suggested that isolates with 

similar genotypes might have different gene functionality. The utilization of sulfur and 

phosphorous was maximum compared to carbon and nitrogen sources (Fig. 6). However 

one isolate showed about 40% P and S utilization but more than 60% carbon utilization,  
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Fig. 7. 5 Heat map of substrate utilization profiles evaluated using BIOLOG 

Pheneplates 1 – 4. Red represents high similarity and blue is less similarity.  

 

which is very different from other isolates. Our results also showed that many of the C, 

N, P and S sources were utilized by more than 20 isolates where as some of the sources 

were not being utilized by any of the isolates. Out of 190 C sources 59 sources were 

utilized by more than 20 isolates and 21 sources were not utilized by any of the isolates, 

out of 95 nitrogen sources 15 sources were utilized by more than 20 isolates and 7 

sources were not utilized by any of the isolates. For phosphorus out of 59 sources 47 

nutrient sources were utilized by more than 20 isolates and only one source was not in 

use by any of the isolates. In case of sulfur as nutrient source only 19 sources were 
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utilized by more than 20 isolates and all other nutrient sources were utilized my at least 

one of the isolates. 

 

 

Fig. 7. 6 Nutrient utilization pattern of 23 isolates as determined using BIOLOG 

Pheneplates 1 – 4. 

 

4. Discussion 

In this study we sequenced and analyzed 20 soil isolates from a pasture together with 3 

reference genomes. The phylogenetic analysis of using the core genes of 20 genomes 

with three reference strains revealed an interesting pattern of clustering of isolates. 

Comparison of 20 E. coli from the pasture soil including bovine feces and environmental 

isolates (NandaKafle et al., 2017) revealed that 3,362 genes were conserved in all 

isolates, and the pan-genome contained a reservoir of about 10,000 gene pool (Table. 1) 

However, when reference strains were included the gene pool went up to 11,500. In a 

previous pan-genome study of 17 pathogenic and commensal E. coli isolates the core 
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genome was found to be 2,200 whereas the pan-genome was consist of more than 13,000 

genes (Rasko et al., 2008). In a genome comparison study of 61 E. coli strains showed 

that the predicted pangenome was comprising of about 16,000 genes and the core genome 

was about 1000 genes, which is one fifth of the typical E. coli genome. Many of the 

accessory genes making more than 90% of the pangemone are four fifth of the typical 

genome and are often found to be co localized in the genomic islands (Lukjancenko et al., 

2010).  

This result suggests that the pathogenic and commensal E. coli genomic diversity 

represent an open pan-genome model. The size of the pan-genome is greatly depends on 

the existing balance between gain and loss activities. When the bacteria are in very 

diverse environment together in a group gaining of genes are common and the genome 

size is strongly related to the selfish genes that is parasitic and constitute the mobilome 

(den Bakker et al., 2010;Rouli et al., 2015). The E phylogroup isolates had a larger 

pangenome pool compared to phylogroup B1 and A together suggesting that E isolates 

may harbor more virulent genes. The virulence gene analysis of all isolates showed that E 

isolates have more virulence related genes compared A and B1 (Table. 2). Phylogenetic 

analysis based on core genome sequence alignment, the isolates clustered differently 

from the pangenome tree. The pangenome tree portrayed two separate clusters of one 

with E phylogroups and one with A and B1. Phylogroup B2 and 933D and CladeI isolates 

were outlier (Fig. 3). This result indicates that pan-genome phylogeny delineate the 

phylogroup distribution more clearly than core. We also noticed that the B1 and A 

phylogroups are less diverse compare to E phylogroups as there was less than 75% 

similarity among the strains even though they clustered together. The diversity within the 
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species of E. coli due to the accessory gene content may allow them to adapt in various 

environments. 

The survival of E. coli in low nutrient and highly competitive conditions depends on its 

ability to efficiently utilize diverse nutrients (van Elsas et al., 2011). The carbon 

utilization pattern of E. coli K12 demonstrated that this organism has a physiological 

adaptation to use mixed carbon and energy substrate rather than single substrates as used 

in BIOLOG plates (Ihssen and Egli, 2005). This could be a strategy of E. coli to maintain 

population under nutrient limiting conditions by scavenging trace amount of nutrients 

(Ihssen and Egli, 2005;Franchini and Egli, 2006). Most of the nutrient profiling studies to 

investigate metabolic flexibility of E. coli have conducted with pathogenic and 

commensal strains and mainly focused on carbon utilization (Durso et al., 2004;Ihssen 

and Egli, 2005;Franz et al., 2011;Xavier et al., 2014). The physiology of E. coli that 

survives in soil remains poorly understood; there is a need to investigate ecological 

characteristics of E. coli in soil. Assessment of nutrient utilization profile using the 

BIOLOG system can provide some insight into the nutrient flexibility of this organism. 

The nutrient utilization profile of environmental persistence E. coli was found to be 

highly versatile with the ability to use at 15 °C, 34%, 32%, 78% and 46% of C, N, P, and 

S respectively and it also maintained the same fitness with a better utilization of these 

substrates at 37°C, suggesting no trade-off in thermal tolerance of cold adapted 

environmental isolates (Brennan et al., 2013). Overall in this study, all isolates from 

different sources of diverse phylogroups were found to be highly versatile, with the 

ability of 20 strains (except 933D, K12 and one soil isolate) to use more than 40% of 

carbon substrates. The nitrogen utilization pattern was very diverse among the isolates 



 

 

181

whereas the P and S utilization was more than 80% by all the isolates except two soil 

isolates (Fig. 6). Based on the nutrient utilization profile E. coli isolates clustered very 

differently from their genotype, Clade I and 933D reference strains cluster together with 

other isolates whereas K12 showed a very different pattern of nutrient utilization (Fig.5). 

Our results was supported by the previous studies showing environmental E. coli strains 

that were different from enteric strains genotypically, behaved very similar 

phenotypically (Luo et al., 2011). A study on pan and core metabolism was performed on 

29 E. coli strains species (Vieira et al., 2011) which resulted a 1545 pan-metabolism 

reaction including 885 core. It was detected that the proportion of core gene and the 

nature of pan-genome did not reflect the pan-metabolism distribution. The carbon 

utilization of K-12, 933D and a pasture isolate were less than 40% but all other isolates 

oxidized more substrate. Indicating that 933D and K-12 were metabolically less diverse 

based on their carbon utilization. However 933D utilized 5% more carbon substrate 

compare to K-12 which contradict the previous report explaining commensal strains 

oxidize more substrate compare to E. coli O157:H7 strain (Durso et al., 2004). However, 

to depict the correlation between genomic and phenotypic microarray based data based 

on the presence and absence of genes is not reasonable as the phenotypic diversity of cell 

is also affected by mechanisms as for example regulatory and signal transduction systems 

and membrane transporter whose functionality could not be directly detected by 

Phenotypic microarray (PM) system or genome annotation. Further implementation of 

transcriptome, proteome and metabolomics data is necessary to understand the genotype 

and phenotypic relatedness of organisms. 
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The sequence types (ST) for all isolates were determined based on two MLST schemes. 

As per MLST #1 all isolates were assigned as some STs but two were unknown, this 

suggests that these two isolates from E phylogroups may be new STs not listed in the 

collection of strains of MLST#1 scheme. Only 7 isolates were assigned with STs based 

on MLST # 2 scheme (Table. 2) indicating that this scheme has not been listed enough 

isolates (Clermont et al., 2015). Interestingly, the phylogroup B2 strain was assigned as 

ST-95 based on MLST # 1, and ST1 as per MLST#2. These STs matches with the E. coli 

reference (ECOR) strain S88 belongs to phylogroupB2 (Clermont et al., 2015). This 

strain also harbor virulence related genes iss, gad, vat and cdt. It has also been reported 

that E. coli O18:K1:H7 with sequence type ST95 and phylogroup B2 was found to be the 

cause of neonatal sepsis in Barcelona (Sáez-López et al., 2017). These results indicate 

that potential pathogenic strains can be found in the soil environment without any fecal 

contamination. Our results also showed that phylogroup E had higher numbers of 

virulence related genes compared to phylogroup B1 and A, indicating E isolates could be 

potential pathogens. Because of many of the initial phylogenetic studies are based on 

initial rapid determination scheme proposed by Clermont et al. (2000), which only allow 

to distinguish only among the four mail phylogroups (A, B1, B2, and D). So fewer 

number of phylogroup E strains may have been reported previously. Phylogroup E 

isolates were part of   phylogroup D before the Clermont modified multiplex PCR 

method (Clermont et al., 2013). It has been reported that pathogenic strains causing extra-

intestinal diseases mainly belong to phylogroup B2 and D (Picard et al., 

1999;Chakraborty et al., 2015), so it is possible that phylogroup E isolates have the 

potential to be pathogens.  
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In conclusion, E. coli isolates from pasture soil and bovine feces belong to various 

phylogroups were very diverse in their genotype and phenotype. The pangenome 

analyses of isolates distribute the phylogroups more precisely than the core genomes. We 

found isolates of phylogroup E that may represent some new sequence types. Some of the 

E phylogroup isolates may be potential pathogens present in the environment. The isolate 

belong to phylogroup B2 we isolated from the bovine feces in pasture soil was a 

pathogenic strains with cdtB and vat virulene factors. These findings indicate a regular 

need of monitoring E. coli from the environmental sample without any fecal 

contamination to understand the changing pattern of their phylogroup distribution, 

nutrient utilization or and change in their virulence related genes. This may help us to 

understand the evolution of environmental E. coli and their population genetics. 
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Chapter 8: Conclusions 

 

This study was based on increasing evidence that E. coli not only occur but also grow and 

proliferate in soil and aquatic environments, outside of mammalian hosts.  Furthermore, 

several studies have suggested that strains that persist in the environment are genetically 

distinct from gut commensal.  The presence of E. coli in these secondary environments in 

the absence of any fecal contamination will likely confound the use of E. coli as a reliable 

fecal indicator. The overall goal of this project was to understand the genomic and 

phenotypic versatility of E. coli isolated from pasture soil and pond ecosystem.  

Several E. coli isolates were found from pasture soils that survived in the field throughout 

the year. These isolates were diverse from bovine isolates based on mutS and uidA 

phylogeny. The phylogroup distribution was also very different with predominantly B1 

phylogroup compared to the bovine isolates with phylogroup E and B1. Phenotypically 

these isolates were distinct from bovine isolates, with better winter survival and higher 

RDAR formation. These results indicate the presence of unique environmental strains in 

the pasture.  Some isolates seem to be with mixed character and may have the ability to 

survive well in pasture and bovine gut.  

E. coli isolates were collected from various sources in a pond environment. The 

distribution pattern of genotypic and phenotypic traits among isolates of various sample 

sources based on their niche preferences. Here, sediment, water and water plants isolates 

showed similarities in phylogroup distribution, occurrence of virulence genes and 

antibiotic resistance pattern, whereas snail and bovine fecal isolates were different.   
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What factors helped these environmental isolates to survive in the secondary environment 

was the next question; it was clearly found that the environmental strains formed high 

percentage of RDAR, resistant to protozoan grazing and also survive better in the long-

term winter survival experiment.  The results of antibiotic resistance and virulence genes 

study did not show any correlation to their survival in the secondary environment. The 

long-term survival of 25 representative strains with three reference strains; E. coli 

O157:H7, E. coli K-12 and Clade-I (TW-10509) was tested in soluble soil organic matter 

(SESOM) to find out if it supports the growth of E. coli. The results of this experiment 

showed a very different pattern of survival curve compared to LB (general lab media). 

Interestingly, the SESOM grown cells did not decline even after long-term stationary 

phase. Proteome study of SESOM and LB grown E. coli O157:H7 showed that very 

different stress related, central metabolism and membrane transporter proteins were 

expressed in two different media grown cells. This result suggested that cells maintained 

its population better in SESOM, could be well adapted in soil environment.  

E. coli is genotypically and phenotypically very diverse.  A comparative genome analysis 

of 20 representative isolates of phylogroup A, B1, B2 and E from pasture together with E. 

coli K12, E. coli O157:H7 and Clade-I (TW-10509) was performed. The result based on 

the core-genome phylogeny showed that phylogroup E isolates were very diverse within 

the group compared to phylogroup B1, Clade-I, isolates and B2 isolates were remained as 

outlier in the phylogenetic tree.  However, the pan-genome heatmap similarity based on 

the presence and absence of genes showed a very clear separation of phylogroup E and 

phylogroup B1 isolates indicating accessory genes play an important role in determining 

the distribution of phylogroup and niche partitioning.  It was also interesting to find that 
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phylogroup E isolates had a larger pangenome compare to A and B1 together.  The 

phenotypic diversity of these 20 isolates with three reference strains was determined by 

nutrient utilization profiling. The pattern of nutrient utilization was very different for 

each strain. However, the results of phenotypic microarray assay may not justify the 

physiology of E. coli nutrient utilization as it is based on the utilization of single 

substrate, whereas in nature it is always a mixed substrate condition. The genotypic 

diversity did not show any correlation with the phenotypic diversity. However, to depict 

the correlation between genomic and phenotypic microarray based data based on the 

presence and absence of genes is not reasonable as the phenotypic diversity of cell is also 

affected by mechanisms as for example regulatory and signal transduction systems and 

membrane transporter whose functionality could not be directly detected by Phenotypic 

microarray (PM) system or genome annotation. Further implementation of transcriptome, 

proteome and metabolomics data is necessary to understand the genotype and phenotypic 

relatedness of organisms. 

This study supports the idea that genetically distinct population of naturalized E. coli may 

exist which is different from the Escherichia clade. Environmental E. coli stains have 

developed various strategies to survive in the environment under low nutrient conditions. 

However, there are many more interesting questions to further investigate the ecology of 

naturalized or environmental E. coli; what mechanisms enable these bacteria to grow and 

survive in soil relatively better than non-naturalized E. coli? What are the functions of the 

unique genes present in those strains?  How these environmental strains avoid protozoan 

predation? Whether they have the ability to recolonize in gut environment?  What is the 

mutation rate of naturalized E. coli in soil and in laboratory media?  
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