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ABSTRACT 

CHRONIC RISK AND DISEASE MANAGEMENT MODEL USING STRUCTURED 

QUERY LANGUAGE AND PREDICTIVE ANALYSIS 

MAMATA OJHA 

2018 

 

Individuals with chronic conditions are the ones who use health care most 

frequently and more than 50% of top ten causes of death are chronic diseases in United 

States and these members always have health high risk scores. In the field of population 

health management, identifying high risk members is very important in terms of patient 

health care, disease management and cost management. Disease management program 

is very effective way of monitoring and preventing chronic disease and health related 

complications and risk management allows physicians and healthcare companies to 

reduce patient’s health risk, help identifying members for care/disease management 

along with help in managing financial risk.  

The main objective of this research is to introduce efficient and accurate risk 

assessment model maintaining the accuracy of risk scores compared to existing model 

and based on calculated risk scores identify the members for disease management 

programs using structured query language. For the experimental purpose we have used 

data and information from different sources like CMS, NCQA, existing models and 

Healthcare Insurance Industry. In this approach, base principle is used from chronic and 

disability payment system (CDPS), based on this model weight of chronic disease is 

defined to calculate risk of each patient. Also to be more focused, three chronic 
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diseases have been selected as a part of analysis. They are breast cancer, diabetes and 

congestive heart failure. Different sets of diagnosis, electronic medical records, and 

member pharmacy information are key source. Industry standard database system have 

been in taken in consideration while implementing the logic, which makes 

implementation of model more efficient since data is warehoused where model is built.  

We obtained experimental result from total 4761 relevant medical records taken 

from Molina Healthcare’s data warehouse. We tested proposed model using risk score 

data from State of Illinois using multiple linear regression method and implemented 

proposed logic in health plan data, based on which we calculated p-value and 

confidence level of our variables and also as second validation process we ran same 

data source through original risk model. In next step we showed that risk scores of 

members are highly contributing in member selection process for disease management 

program. To validate member selection criteria we used fast and frugal decision tree 

algorithm and confusion matrix result is used to measure the performance of member 

selection process for disease management program. The results show that the proposed 

model achieved overall risk assessment confidence level of 99%, with R-squared value 

of 98% and on disease management member identification we achieved 99% of 

sensitivity, 89% of accuracy and 74% of specificity. 

The experimental result from proposed model shows that if risk assessment 

model is taken one step further not only risk of member can be determined but it can 

help in disease management approach by identifying and prioritizing members for 

disease management. The resulting chronic risk and disease management method is 

very promising method for any patient, insurance companies, provider groups, claims 
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processing organizations and physician groups to more accurately and effectively 

manage their members in terms of member health risk and enrolling them under 

required care management programs. Methods and design used in this research 

contributes to business analytics approach, overall member risk and disease 

management approach using predictive analytics based on member’s medical diagnosis, 

pharmacy utilization and member demographics. 
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1 Introduction 

This is undeniable fact that people need medical help at some point of their life 

and we search for the best and curable care from professionals. As of 2012, about half 

of all adults (117 million people) had one or more chronic health conditions. One in 

four adults had two or more chronic health conditions [1] and United States spent 

17.9% of its GDP on healthcare in 2010, more than any other country in the world [33] 

and cost is expected to grow to 20%  of United States GDP by 2021 [2]. 

The long lasting illness such as diabetes, heart disease, obesity, cancer are 

chronic conditions. Chronic diseases are manageable and sometime preventable 

through treatment, early detection, good diet, exercise and frequent monitoring. Study 

has found that health education and health management programs are highly effective 

in prevention and control of chronic diseases [3]. Chronic conditions are the primary 

cause of death in United States and currently chronic diseases account for 75 to 85% of 

total healthcare cost [41] in developed countries [4]. If left undiagnosed and untreated 

chronic disease can be disabling and decreases patient’s quality of life. With simple life 

change, proper risk and disease management program many chronic diseases could be 

prevented and managed. Providers and health plans use data from sources like 

Electronic Medical Record (EMR) [41], Health Risk Assessment (HRA) [35], risk 

adjustment models and member hospital [35] and pharmacy [34] utilization for the 

purpose of population health management and cost management. Our study focuses on 

risk assessment part of risk adjustment model and shows how we used model to 

calculate risk score of selected members and further, shows how calculated risk scores 

contribute to identify members for disease management. 
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All risk adjustment solutions we have so far are from several years of research 

and tests based on healthcare data available. In this study member’s medical record, 

pharmacy utilization, demographic information, healthcare benefits and medical claims 

data is being used to calculate patient’s risk score [36] and based on risk score members 

have been identified for care management. We predicted risk score for our observation 

based on final individual risk score provided by the State of Illinois same membership 

and date for service. In next step we gathered disease/care management status for same 

population which is already identified by health plan’s nurse practitioners and medical 

director’s extensive research and study on each individual member’s medical record.  

Proposed model is implement in structured query language where risk score prediction 

is done in R using risk score provided by state and further we ran our observation 

through original selected risk adjustment model as second validation step. To identify 

contributing factor for disease management eligibility we ran data through fast and 

frugal decision tree algorithm. Our result shows that proposed chronic risk assessment 

model has achieved an overall confidence of 99% where 98% of the variables are 

contributing to the prediction and achieved 89% of accuracy with 99% of sensitivity 

and 74% of specificity on calculated risk scores while identifying members for disease 

management program eligibility. 

1.1       Risk Adjustment and Disease Management 

Risk adjustment model is primarily developed to adjust payments to private 

insurers by the government and it is very important tool for the reasons like (a) 

Identification of high-risk population, (b) Normalization of population to evaluate the 

provider effectiveness, performance and efficiency [37] in terms of managing 
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resources among different types of patient, (c) Pricing health plan or predicting future 

claims cost trends. [6]  

Here is simple example to justify need of risk adjustment: if government 

provides same premium for each individual then it might lead to risk selection. For 

example there are two individuals A and B, where A is healthy and B has chronic 

disease. In this case while enrolling, insurer can deny individual B because of health 

condition and expected medical cost that insurance company has to spend on individual 

while they are getting paid same premium for both. This is called risk selection and risk 

adjustment process helps in adjusting premiums to health insurance plan using the risk 

score calculated by risk assessment algorithm. The main goal of risk adjustment is to 

control incentives to providers and insurer from selectively enrolling healthier members 

and to make correct comparison among providers who considers health status of their 

members. In a standard risk assessment process, each individual is scored based on an 

algorithm that incorporates information on the individual’s age, health population 

group, diagnosis from illness and medication. [7] Risk adjustment rely on score 

calculated by risk assessment to finally calculate and normalize risk of patients [8] and 

health insurance companies. Higher the risk score more incentive insurer get from 

government and since risk score is directly related to members medical conditions , this 

helps sicker population from being left out of medical treatment. This way both patients 

get needed healthcare and insurers also get incentives for taking care of their members. 

In this study we have focused on risk assessment process which is crucial part 

of risk adjustment model. [38] The main objective of this study is to propose efficient 

and accurate risk assessment model maintaining the accuracy of risk scores compared 
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to existing model and to show how calculated risk scores can be used to identify 

members for disease management programs.  

Disease management is one of the approaches to educate patient on how they 

can work together with physicians to improve their health. The main concept behind 

disease management is how to reduce health care costs and improve health of 

population with chronic conditions by minimizing the effects of the disease through 

integrated care. It supports provider-patient relationship allowing individuals to manage 

their disease and prevent complications. Currently most of the chronic conditions are 

managed by some kind of disease management program [40] by healthcare providers or 

insurer. This is proactive method which includes all the members with chronic diseases, 

provides guidelines based on evidences and medical data, on timely basis monitors 

health status and provides feedback based on outcomes derived from medical record 

and observation. 

Disease management program is completely dependent on correct and complete 

data and excellent information technology [40], and without one of these, program can 

be not effective at all. In this study we have shown that how we can select appropriate 

and correct data for disease management program based on risk scores calculated by 

risk assessment model. Disease management is overseen by physicians or medical 

personnel or member of quality improvement committee and they make sure that 

patient is getting proper ongoing care and quality of care delivered. Strategy includes 

educating patients about appropriate self-care such as self-monitoring, keeping medical 

appointments, taking prescribed medications and maintaining healthy diets and 

exercising, improve provider adherence.  
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Main goal of disease management is to improve quality of care, avoidance of 

unnecessary hospitalization, reduce multiple emergency room visits, improve and 

monitor patient health and decrease overall healthcare cost. Disease and Health Risk 

Management programs are population-based, evidence-based systematic approaches to 

improving care and are available to all members with relevant diagnoses. Members are 

identified through algorithms based on medical and/or pharmacy claims, and laboratory 

results, as well as health risk appraisal results, referrals by providers and self-referral. 

[9]. This research shows that proposed model highly contributes on selecting correct 

patients for these programs to make disease management process effective.  

Risk score calculation and disease management member identification are two 

separate process which takes additional resource and time and our propose here is to 

show how we can incorporate risk score calculation and disease management member 

identification step as single process while maintaining the accuracy of outcome. Figure 

1 shows basic risk and disease management work flow diagram. This research is 

focused on first 3 steps of figure 1, which are: population identification, risk 

stratification and member selection for disease management program. 
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Figure 1 Basic Disease and Risk Management Work Flow Diagram 

In reviewing the literature, it is evident that there is need for the further research 

on risk adjustment and disease prevention method which is simple and require less 

resource and time and yield effective outcome. Most of the risk adjustment algorithms 

require high performance software’s and tools. The aim of this study is to develop 

reliable risk assessment and disease management member identifier system to help 

provider groups, insurers and patient. The proposed algorithm consists of four major 

Outcome Evaluation

Expert Clinicians/Patient-Self 
Evaluation

Program Monitor

Disease Management 

Risk Stratification

Population Identification
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steps: logic extraction from base model selection, application of statistical test to 

predict score based on extracted logic, new model implementation and result 

comparison.  Hence, specific objective of this study includes: 

 Develop an efficient and accurate risk assessment model. 

 Based on predicted risk score, identify patients for disease management 

program which helps clinical teams in terms of member selection criteria. 

 Develop the model in the same platform where data is warehoused and 

updated on timely manner, which makes proposed model more efficient. 

This thesis is organized according to the following chapters: chapter 1 defines 

risk adjustment, disease management and their need in population health management. 

Chapter 2 defines predictive modeling and its use in healthcare. Chapter 3 describes 

proposed risk assessment and disease management member identifier model for chronic 

population based on real time healthcare data from Health Insurance Company. Chapter 

4 evaluates experimental results of proposed model against algorithm tested in chapter 

3 and in chapter 5 conclusion is summarized. 

1.2       Confidentiality 

All the data that has been used to test different algorithms are actual information 

from patient’s medical record, claims data, pharmacy data, enrollment data and 

laboratory data. For privacy purpose and protecting patient’s health information all the 

demographic information of the patient is modified, thus abiding Health Insurance 

Portability and Accountability Act (HIPAA) [10]. For real time testing purpose this 

research is using data from Molina healthcare of Illinois and protected health 

information hasn’t been shared with any third party. 
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2 Healthcare and Predictive Modeling Background 

Predictive analytics is technology that learns from experience to forecast the 

future behavior of event or individual and predictive analytics provides an accurate 

estimation about the future outcome [11].  Figure 2 shows standard steps while 

implementing predictive modeling. In any modeling process defining problem is the 

first step. In our model we are trying to find out member’s health risk based on medical 

diagnosis, pharmacy drug intake, member age, member gender and their health 

coverage eligibility. To predict health risk out of all these components medical 

diagnosis is vital component. 

Next step is data selection and data exploration, for any model to work 

efficiently we need to select accurate, actionable and accessible data. We have selected 

data from real life world and to be more specific we have chosen three major chronic 

disease categories. Based on ICD9/10 standard diagnosis categorization we have 

filtered our data for the proposed model and assumption is these ICD codes are 

accurate, accuracy of diagnosis code is very important since these codes are used by all 

hospitals for insurance billing purposes [12]. 

Once we are decided on what type of data we will be using, next step in 

predictive modeling is to find and apply appropriate statistical model. We have divided 

our primary data set into two categories as training and test data set. And to build 

model we used final score that we have received from State of Illinois for specific 

period and divided them into test and training data set. We applied multiple linear 

regression as our testing model on training data, built the model and generated 

prediction model for test dataset. This is very important step as it validates predicted 
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scores against actual score and yields accuracy rate and study shows that if a patient’s 

chronic conditions and medical advices are predicted and recommended with high 

accuracy, we will expect the improvement of patient’s health conditions with reducing 

overall medical cost [13]. We used statistical functions outcome to decide input 

variable for testing dataset and deployed our training model logic in test observations.  

 

Define Problem

Data Selection

Data Exploration

Statistical Modeling 

Build Model

Validate Model

Deploy Model

Monitor Output

 

Figure 2 Standard Predictive Modeling Work Flow 
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2.1       Machine Learning and Classification Method 

Machine learning techniques are set of powerful algorithms capable of 

modeling complex and hidden relationship between variables in data [14]. Machine 

learning algorithms implement various techniques to solve real time problems, 

supervised machine learning algorithm is one of the most common approach. 

Supervised learning algorithm searches for pattern between training attributes and the 

target attributes. Supervised algorithms are trained on illustrations which are called 

labeled cases where the inputs are supplied with the desired result already known [15] 

Mathematically, 

Y= f(x) + C 

Here, 

F = relation between output and input variable, X = Input variable, Y= Output 

and C= Random Error 

The ultimate goal of supervised algorithm is to predict Y with maximum 

accuracy for given input value X. There can be multiple ways of implementing 

supervised learning, classification and regression are most common types. If given 

dataset has both input and output values then it is considered as classification problem 

and if the dataset has continuous numerical values without any target output label then 

its regression problem. 

Support vector method, decision trees, naïve Bayes are few of the most used 

classification algorithm and linear regression, logistic regression and polynomial 
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regression are some of commonly used regression algorithm. Classification is used to 

separate the information into classes and regression analysis can be utilized to show the 

connection between one or more free factors and dependent factors [15].  We have used 

linear regression to validate calculated risk scores [39] and fast and frugal decision trees 

classification algorithm to identification most effective variable for disease management 

member identifier. 

Linear regression is one of the most commonly used machine learning regression 

technique, it uses relationship between two variables and how change in one independent 

variable impacts other dependent variable. Independent variable is used to predict the 

value of a dependent variable.  Mathematically interpreting linear regression, 

yi = β0 + β1 ∗ 𝓍𝒾 + ℯ 

Where, β0 is the intercept, β1 is the slope of the line and e is error. 

When we have multiple independent variable then multiple linear regression is 

used. Analyzing the correlation and directionality of the data, fitting the line, and 

evaluating the validity and usefulness of the model are the different stages if multiple 

linear regression [16] and ordinary circumstances we do not know the value of error 

term so mathematically for n observations, 

yi = β0 + β1 ∗ 𝓍𝒾1 + β2 ∗ 𝓍𝒾2 + β3 ∗ 𝓍𝒾3 + ⋯ + βp ∗ 𝓍𝒾p   for i=1,2,3….n. 

Our predicted output is Y with multiple X input variable. In above equation 

β0, β1, β2, β3, βp are regression coefficients and β0 is called intercept, β1 is coefficient 

of  𝓍𝒾1 , β2 is coefficient of  𝓍𝒾2 and  βp is coefficient of  𝓍𝒾p − 1 .  

We built linear model by fitting our key variables and calculated p-value and 

confidence level of our variables that contributed in calculating risk scores. P-value is 
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probability value which helps to determine significance of result of any statistical test 

and helps rejection null hypothesis and confidence interval helps to estimate any data 

with a certain level of accuracy. In statistical tests if P-value >= 0.05 then result is 

considered to be not significant and if p-value<= 0.05 then result is considered to be 

significant on the testing model and confidence level between 95% and 99% is desired 

to calculate accuracy of data used in the model. 

Similarly, decision trees represent well known machine learning technique used 

to find predictive rules combining numeric and categorical attributes [17] and have 

been popularly used for finding interesting pattern in healthcare datasets [18]. We have 

used fast and frugal decision tree (FFDT) for disease management member validation, 

FFDT is a heuristic which works with minimum knowledge, time and computation. A 

fast and frugal tree is a classification tree [19] and the basic rule for classification are 

cues, fast and frugal tree establishes ranking and then starts checking one cue at a time 

for decision making process where one path leads to a terminal action and the other 

path either leads to a fast and frugal sub-tree or a default action [20]. This method is not 

only fast and frugal but can produce results that are surprisingly close to or even better 

than those obtained by more extensive analysis [19]. We can also implement FFDT as 

“if/else if/else” statements or as a decision list [20]. Below is syntax for simple if – else 

FFDT that our model has used to predict member for disease management 
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Condition A 

Action A Condition B 

Action B Condition C 

Action C Default

True

True

True

False

False

False

 

Figure 3 Fast and Frugal Decision Tree Condition Syntax 

 

We have utilized FFTrees R function to implement fast and frugal decision tree 

in our model to find most contributing factor in member selection process for disease 

management program and our model compares output against other statistical 

algorithms like SVM, LR, RF and CART and provides best fitted output in terms of 

accuracy, sensitivity and specificity. Using FFDT we showed that risk scores of 

members are highly contributing in member selection process for disease management 

program. 

  Accuracy is the proportion of true results including both positive and 

negative results in the observation.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
∗ 100 

 

 Sensitivity relates to the model’s ability to identify positive results. 

  



14 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100 

 

 Specificity relates to the model’s ability to identify negative results 

  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
∗ 100 

where TP (true positives) is the number of samples which are correctly detected 

as disease management eligible member by the algorithm, TN (true negatives) is the 

number of samples which are correctly detected as not eligible for disease management 

program by the algorithm, FN (false negatives) is the number of samples which are 

incorrectly detected as not eligible for disease management program by the algorithm 

while they have disease management program eligibility, and FP (false positives) is the 

number of samples that are incorrectly detected as disease management eligible 

member by the algorithm while they don’t have disease management program 

eligibility. 

 

2.2       Predictive Risk Analysis Using R and SQL 

Structured query language (SQL) is one of the most powerful data warehouse 

and also strong data manipulation language. We have extracted our clinical data from 

SQL.  Data warehouses of clinical information provide a very good foundation for 

learning health- care system which facilitates clinical research, quality improvement, 

and better information for decision making and for patient’s health improvement [21]. 
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For predictive analytics purpose we have used R studio and validated our logic 

using linear regression and decision tree functions available in R. Medical algorithms 

improve efficiency and accuracy for medical teams and help in decision making [22], 

there can be different type of medical algorithms varying from programming of medical 

devices to supervised learning algorithm implementation. In this study we have 

implemented multiple linear regression and fast and frugal decision tree predictive 

model to calculate risk scores and to identify members for disease management 

programs. Clinical risk prediction of patients with chronic diseases, is an important 

problem in health informatics [23] and enrolling risky ad sick members to care 

management program on time is also very crucial and our proposed model helps in 

both. To implement the model we have our medical dataset is warehoused in SQL 

server and analytical prediction is made through R package integrated in R studio and 

again data manipulation and further analytics is done in SQL server. 

All the analysis, data manipulation, selection, calculation and model 

implementation is done on SQL server and validation of logic is carried out in R. We 

have used multiple linear regression algorithm to test our accuracy, overall 

classification quality and R-squared values for risk assessment step and for disease 

management member identification step we evaluated our logic through fast and frugal 

decision tree algorithm and thus we calculated accuracy, sensitivity and specificity for 

our proposed model . 

3 Model Description 

Out of numerous available risk adjustment methods throughout healthcare 

industries, we have chosen CDPS+Rx model as our base risk adjusting algorithm as it 
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is used by most of the states. The basic logic behind this model is member 

demographic, healthcare benefit class, chronic disease diagnosis and prescription drugs 

used by the patients. 

Figure 4 shows the different phases of the proposed risk and disease 

management model. This model is implemented in 2 major steps: first step is risk 

assessment and second step is membership identification for disease management 

programs once risk score is calculated. 

First we have selected membership for calculating risk score based on three 

chronic conditions as mentioned in section 3.1 of this chapter. Second, based on base 

risk model we have extracted logic for proposed model. Then, we have divided data 

into training and test dataset dividing 7:3 ratio. We have total 4761 observations with 

21 variables each. In next step we predicted our model using multiple linear regression 

as a classification method and then applied prediction to test data set and calculated 

score in fifth and sixth step. Then we analyzed accuracy, coefficients for our variable 

and based on result we finally implemented our logic in SQL database and validated 

output against final risk scores provided by state for same observations. 

Once risk score is calculated for our observations we selected same data for our 

second step of implementation. We extracted inpatient hospital stays, emergency visits, 

preventive care visits and their disease management enrollment status if any for these 

observations and again divided data into training and test set into 7:3 ratios 

respectively. We used fast and frugal decision tree (FFDT) classification method to 

predict our model in training data and then applied prediction to test data set and 
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identified factors that are contributing in membership selection process for disease 

management. 

Calculate Result

Data Selection 

Logic  Extraction

Training Data Test Data

Classification

Predict Model Coefficient Analysis

Logic Implementation

Evaluation

 

Figure 4 Proposed Risk and Disease Management Model 

 

3.1       Data Selection 

For testing purpose this research is using medical and pharmacy data from 

Molina Healthcare of Illinois abiding PHI and HIPAA Law. We are using claims and 

pharmacy data occurred in between July 2015 to June 2016, this is Illinois State’s fiscal 

year 2016. For testing purpose three chronic disease categories have been chosen: 

diabetes, breast cancer and Congestive Heart Failure (CHF). 
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Table 1 Chronic Conditions and Total Test Observations 

Condition Observation 

Diabetes 2517 

CHF 2106 

Breast Cancer 138 

 

Identification of medical condition is the basis of all risk assessment and disease 

management prediction. The primary source of data is medical claims from physician 

groups. The more data we can get more accurate utilization and forecast one can do.  

Knowing data along with its limitation and potential is very critical. Industry gets data 

from different sources like 

Table 2 Test Data Source and Their Reliability 

Source Reliability 

Member Enrollment Data Med 

Claims/Encounter Records High 

Pharmacy Records High 

Laboratory Values High 

Self-Reported Low 

 

3.1.1    Congestive Heart Failure 

When heart stops pumping blood as well as it should such condition is called 

congestive heart failure. Heart failure develops over time as the heart's pumping action 

grows weaker. The condition can affect the right side of the heart only, or it can affect 

both sides of the heart. Most cases involve both sides of the heart. Right-side heart 

failure occurs if the heart can't pump enough blood to the lungs to pick up oxygen. 

Left-side heart failure occurs if the heart can't pump enough oxygen-rich blood to the 

rest of the body. Right-side heart failure may cause fluid to build up in the feet, ankles, 
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legs, liver, abdomen, and the veins in the neck. Right-side and left-side heart failure 

also may cause shortness of breath and fatigue. 

The leading causes of heart failure are diseases that damage the heart, coronary 

heart disease, high blood pressure, longstanding alcohol abuse, coronary artery disease 

and diabetes can be cause of congestive heart failure. With CHF, in some cases, the 

heart can't fill with enough blood. In other cases, the heart can't pump blood to the rest 

of the body with enough force. Some people have both problems. It is very common 

and serious condition, about 5.7 million people in United States have heart failure and 

both children and adult can have this condition. 

  Electrocardiogram, Chest X Ray, Doppler Ultrasound, B-type natriuretic 

peptide (BNP) blood test, nuclear heart scan, cardiac MRI are few of diagnostic test to 

detect CHF. [24] 
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Figure 5 Heart Disease Rate in USA, 2011-2013 

3.1.2  Breast Cancer 

Breast cancer is most common form of cancer in American women, according 

to World Health Organization 2012, statistics it was the second most frequently 

diagnosed cancer [25] [26]. In a lifetime average risk of developing breast cancer is 

12%. Death rate from breast cancer is lower in women aged less than 50 years and 

overall death rate has been decreasing since 1989. Early detection, increased awareness 

towards the disease and development in medical treatment technology are main cause 

of decrease in death rate.  The primary cause of Breast Cancer are either change or 

mutation in DNA, which is mostly inherited from parents or it can be caused by certain 

lifestyle style related risk factors. 



21 
 

Even though we have very high death rate due to breast cancer, effective way to 

prevent it from occurring has not been yet found. Regular checkups like 

mammography, breast ultrasound or magnetic resonance imaging every year between 

age of 45 to 54, every two years after age of 55 and consultation with doctor starting 

age of 40 can help early detection of breast cancer. Below table shows death estimation 

due to breast cancer for year. [27] 

Table 3 CDC Estimated Female Breast Cancer Cases and Deaths by Age, US, 

2017 

Age 

InSitu Cases Invasive Cases Deaths 

Number          % Number           % Number        % 

<40 1,610               3% 11,160            4% 990                 2% 

40-49 12,440            20% 36,920           15% 3,480              9% 

50-59 17,680           28% 58,620           23% 7,590              19% 

60-69 17,550           28% 68,070           27% 9,420              23% 

70-79 10,370           16% 47,860           19% 8,220              20% 

80+ 3,760             6% 30,080           12% 10,910            27% 

All ages 63,410 252,710 40,610 

 

 

Figure 6 Expected 2017- 2018 Breast Cancer Occurrence by Age Group 

 

3%
20%

28% 28%

16%
6%4%

15%
23% 27%

19%
12%

0%

10%

20%

30%

<40 40-49 50-59 60-69 70-79 80+

%
o

f 
o

cc
u

ra
n

ce
   

Age Group 

Expected Breast Cancer Occurance by Age Group , 
2017 -2018

In Situ Cases Invasive Cases



22 
 

From figure 5 we can see that chances of occurrence of breast cancer is more during 50s 

and trend continues till late 60s. 

3.1.3    Diabetes 

Diabetes is a condition when body starts to produce too much sugar in the 

blood. In this condition, body doesn’t properly process food to use as energy and most 

of the food person eats converted into glucose. Pancreas either doesn’t make enough 

insulin to help get glucose into blood or can’t use available insulin as it should, this 

causes sugars to build up in body and results in diabetes. 

Diabetes can be of different type, pre-diabetes, type 1 diabetes or type 2 

diabetes. Pre-diabetes is the condition when  blood sugar is high but not enough to 

result in type 2 diabetes , type 1 diabetes is condition when pancreases either produces 

very little insulin or no insulin at all and type 2 diabetes is chronic condition which 

affects the way body processes blood sugar level .  Type 2 diabetes accounts for 90% to 

95% of all diabetes cases [28] 

Frequent urination, obesity, sudden weight loss, sudden vision changes, 

numbness in hands or feet, feeling tired most of the times extreme hunger or thrust , 

dryness in skin and slow healing are most common symptoms in diabetic patient. Blood 

glucose test is most common way of detecting diabetes. 

According to national diabetes statistic report, an estimated 30.3 million people 

of all ages had diabetes in 2015 out of which 23.8% patients were not aware of having 

diabetes. Study shows older the age higher the rate of diabetes is.  1.5 million 

Americans are diagnosed with diabetes every year and it remains the seventh leading 

cause of death in United State. [29] 
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Table 4 Estimated Diabetes Adults aged ≥18 years, US, 2015 

 Characteristic 

Diagnosed diabetes No. 

in millions (95% CI)a 

Undiagnosed diabetes 

No. in millions (95% 

CI)a 

Total diabetes No. in 

millions (95% CI)a 

Total 23.0 (21.1–25.1) 7.2 (6.0–8.6) 30.2 (27.9–32.7) 

Age in years       

18–44 3.0 (2.6–3.6) 1.6 (1.1–2.3) 4.6 (3.8–5.5) 

45–64 10.7 (9.3–12.2) 3.6 (2.8–4.6) 14.3 (12.7–16.1) 

≥65 9.9 (9.0–11.0) 2.1 (1.4–3.0) 12.0 (10.7–13.4) 

Sex       

Women 11.7 (10.5–13.1) 3.1 (2.4–4.1) 14.9 (13.5–16.4) 

Men 11.3 (10.2–12.4) 4.0 (3.0–5.5) 15.3 (13.8–17.0) 

  Percentage Percentage Percentage 

  (95% CI)b (95% CI)b (95% CI)b 

Total 9.3 (8.5–10.1) 2.9 (2.4–3.5) 12.2 (11.3–13.2) 

Age in years       

18–44 Table 2.6 (2.2–3.1) 1.3 (0.9–2.0) 4.0 (3.3–4.8) 

45–64 12.7 (11.1–14.5) 4.3 (3.3–5.5) 17.0 (15.1–19.1) 

≥65 20.8 (18.8–23.0) 4.4 (3.1–6.3) 25.2 (22.5–28.1) 

Sex       

Women 9.2 (8.2–10.3) 2.5 (1.9–3.2) 11.7 (10.6–12.9) 

Men 9.4 (8.5–10.3)   12.7 (11.5–14.1) 

 

Where CI= Confidence interval, a =Numbers for subgroups may not add up to 

the total because of rounding. 

b =Data are crude, not age-adjusted, Data source: 2011–2014 National Health 

and Nutrition Examination Survey and 2015 U.S. Census Bureau data. 

3.2       Logic Extraction and Proposed Model 

Health risk adjustment is method of comparing populations and adjusting health 

plan payments using health status of members and these health status is collected 

through electronic medical record [41], medical and pharmacy claims.  The CDPS, is a 

risk adjustment system developed explicitly for states to use in adjusting capitated 
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payments for Medicaid enrollees, uses diagnosis codes to classify enrollees into 19 

different condition categories, 18 of which we used to designate someone as having a 

chronic or disabling condition. The CDPS uses the first three digits of each diagnosis 

code to classify people into 19 major diagnostic categories. [30] 

CDPS- Rx model uses linear regression to calculate risk scores based on 

inpatient, outpatient diagnosis for chronic conditions of member, member demographic, 

disabilities and drug prescription. This model excludes codes that are not well defined 

among clinicians and also excludes many diagnosis codes that are low cost and high 

frequency of occurrence since these kind of diagnosis do not contribute on patients 

chronic conditions. CDPS + RX model is one of the predictive model which helps 

stratifying member’s health risk and this algorithm is available in SAS programming 

language. CDPS+Rx model was developed by University of San Diego.  CDPS is a risk 

adjustment system for Medicaid which maps available less common but costly chronic 

diagnosis to 58 CDPS categories, these diagnosis are selected based on their occurrence 

disabled Medicaid beneficiaries and Medicaid Rx model is pharmaceutical based model 

using NDC codes to assign 45 therapeutic categories. Combined CDPS + Rx model 

uses 15 MRX categories. 

This algorithm has three main steps and below is detail explanation of these 

three steps. First defining diagnosis hierarchies, this step is built to classify ICD 

diagnosis codes into CDPS diagnostic categories. Base model stratifies each diagnostic 

categories into hierarchical levels of severity, as high, medium and low [30]. Level of 

severity denotes the level of healthcare a patient needs. Each diagnostic code is defined 

under diagnostic category and level of severity. When patient has more than one 
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diagnosis for same diagnostic group, diagnosis contributing to highest level is retained 

and lower levels are assigned weight zero.  

Second is grouping NDCs under 15 MRX categories. In this step algorithm uses 

NDC codes to define them into 15 different categories. It runs logic for categorizing 

NDCs, 15 NDC MRX categories and using labeled categories to specific conditions. 

Third step is to combine weights extracted from member eligibility, diagnosis 

and drug codes and build a combined diagnosis and pharmacy risk adjustment model 

by applying normalization factors. For our research purpose we have excluded 

normalized risk calculation step. We have only calculated individual risk scores for our 

observation which is also called risk assessment, excluding normalized risk calculation 

allows us to include all kind of membership including Medicare, as we are not 

calculating payment method. 

In our proposed model we took the diagnostic categories and NDC categories ad 

their respective weights described by existing model. Figure 4 shows proposed risk and 

disease management model. Proposed model is implemented in 2 major steps: first step 

is risk assessment and second step is membership identification for disease 

management programs once risk score is calculated. In our proposed model based on 

derived diagnostic and NDC categories we built our diagnosis and drug hierarchy in 

structured query language and once we validated risk score calculation variable using 

linear regression algorithm we used same sample of observation with added risk scores 

and utilization metrics to determine disease management logic. For testing purpose we 

have only included chronic disease mentioned in section 3.1 in the proposed model. 
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Proposed model is clearly new model which calculated risk score of individual 

patients along with providing disease management member eligibility flag. Also 

proposed model is built in data warehouse language which makes this model productive 

and efficient in terms of data preparation and model execution time. Detail on proposed 

model logic validation and model implementation is described in section 3.3 and 3.4 

respectively. 

 

3.3 Validation Using Predictive Analysis 

We have divided data into training data set and test data with ratio of 70% to 

30% respectively. 

RSDATA is our data file with 4761 observation for 3 major chronic conditions 

for state fiscal year 2016. After dividing data into training and testing set we have 3342 

observation on training data set and 1419 observations on testing dataset. 

Then we applied linear regression model to our training data set, in our case, 

RISK SCORE = DEMO + INTER + MEDI + MRX 

Based on our training data and extracted logic from base model we applied 

multiple linear regression equation as above. State Score is our predicted output based 

on variables, 

 DEMO: demographic score 

 INTER: Intercept score using healthcare benefit eligibility 

 MEDI: Diagnosis weight from medical claims 

 MRX: Diagnosis weight from pharmacy claims 
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Based on output from regression model we predicted our model in test data set 

and compared final score of training observations to predicted test observations. Once 

risk score is calculated on test data and accuracy is evaluated, then we took same 

sample combining with member utilization data and ran fast and frugal decision tree 

prediction model to identify most contributing variable to identify membership for 

disease management program. We ran fast and frugal decision tree algorithm on 

training data which is 70% of overall observation. We combined risk assessment 

outcome with member’s actual disease and case management status and their 

behavioral and clinical admits and visits information to run this validation. Our model 

not only ranked which factors are highly contributed on selecting members for disease 

management programs but also provided performance comparison against other 

classification model like SVM, CART, LR and RF. 

3.4        Model Implementation 

We have developed risk assessment model in structured query language based 

on logic extracted using basic concept of chronic illness and disability payment system 

and Rx. Implementing algorithm in same database system where data is warehoused 

makes any analysis and prediction efficient in terms of productivity. It saves time to 

import or export data or output, if any changes need to be done in the script while 

selecting data then that can be done without any hassle since everything is stored in 

same database, along with time this approach saves cost as you only need single 

platform to implement logic and view result. This is the main reason we have chosen 

SQL database. 
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The proposed model is implemented on windows 7 enterprise operating system 

using features of Microsoft SQL server 2016 and R studio as statistical validation tool. 

All experiments are implemented on a Dell laptop of Intel Core i5-5200U CPU @ 2.20 

GHz with 64 bit operating system and 8.00 GB RAM. 

Based on member’s plan eligibility and healthcare benefit eligibility we have 

defined demographic input 

We have prepared excel dataset with all the input dataset provided in base 

model, these dataset categorizes diagnosis hierarchy, drug classification based, weight 

based on specific category of assistance and imported in our SQL database for further 

use. Based on diagnosis weight, member demographic, member eligibility and 

institutional claim’s historical data we then selected members claims information. 

Based on hierarchy of diagnosis and demographic information we then allocated 

0 or 1 variable to each input variable. If members has specific diagnosis, fall under 

specific age and gender band then it is 1 else 0 , and have allocated true condition to 

each intercept variable since its based upon member’s plan eligibility and its true for all 

cases. 

Similarly, we selected pharmacy claims information from pharmacy data 

warehouse for the same observation. Now again using pivot function we filtered 

members who has positive value for at least one of diagnosis or pharmacy code based 

on our pharmacy grouper. Referring to base model we have created our database for 

weight related to each diagnosis and drugs. 

In the next step we extracted utilization metric like readmission rate, emergency 

visits, health behaviors such as smoking habit, alcohol consumption, and their current 
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case management, care-coordination or disease management flags and combined this 

data with our risk assessment model. 

After combining member’s calculated risk scores with their medical utilization 

data, we applied Fast and Frugal Decision Trees (FFDT) testing model to check what 

components should be used for selecting patients for disease management program. 

Based on FFDT outcome for our observations we flagged for disease management tier 

as: 

 Tier I: Member has over all high risk score which means member with risk 

category >1 and risk score >2.15, total inpatient admits and emergency visits > 2 and 

preventive visit > 1 

 Tier II: Medium risk score members with total inpatient and emergency visit 

<2 and preventive visit >1 

 Tier III: All other members  

For disease management purpose Tier I members will get priority over tier II 

since their medical conditions are deteriorating compared to I. So our chronic condition 

specification is dependent on having diagnosis for either one of these disease or more. 

Each of these disease has been described in section 3.1 of this chapter and these 

conditions have been categorized based on diagnosis categorized by ICD9/10 grouper 

model. 

Once patients are risk stratified and flagged for disease management programs 

these members will be sent to respective departments for further observations in terms 

of cost and health care. In any healthcare organization finance team can utilize provided 

information for cost management/forecasting as higher the risk score more will be 
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spending cost on that member. Operations team can utilize same information for 

provider management and education purpose and clinical team and physicians can 

utilize information for care/disease management purpose. Based on member’s risk 

scores and DM flag clinical team can outreach to selected patients, help patient manage 

necessary medical service and provide necessary medical education to the patients. This 

will greatly help clinical team in term of time for identifying membership since 

proposed risk and disease management model automatically prioritize members eligible 

for disease management and monitoring program and helped them focusing more on 

quality of care that needs to be provided. 

4 Experimental Results and Discussion 

4.1      Score Validation Using Linear Regression and Illinois States Risk Score 

We didn’t expect 100% matching of risk score against state individual score 

because there with time data cleaning occurs and we have pulled most recent and final 

data from Molina Inc.’s data warehouse. For validation purpose we ran our observation 

into proposed SQL based risk and disease management model and selected SAS base 

model. Though we had final individual scores from state using base model, we wanted 

to add one more step towards validation of our calculated risk scores so we ran original 

base Model in SAS. We assume that state risk adjustment model is equivalent to 

original base SAS model. 

First we tested for correlation between state score and medical and drug weights 

and found that they are linearly related. Weights from medical diagnosis and drug 

codes in addition to demographic and healthcare eligibility are the key contributor to 

generate risk scores in the training phase. The trained observations are then evaluated 
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with test data. Figure 7 shows calculation of scores based on training data and figure 8 

shows our scores based on predicted model from training set that we applied on test 

data. 

Applying multiple linear regression on test observation yield 99% of confidence 

with R-squared value of 98%, which means 98% of selected variables are contributing 

in calculation of risk score for proposed model and that only 2% of data are not close to 

fitted regression line. 

We received Probability-value (p-value) < 2.2e-16, which tells significantly our 

input variables are contributing to the proposed model. When is interpret our p-value 

we get < .00000000000000022, which is much smaller than the conventional value of 

0.05 which defines  significance of input variable in the model and our output shows 

that observations in our proposed model are highly significant. 

Table 5 Multiple Linear Regression Result on Test Observations 

Factors Yield 

P-Value < 2.2e-16 

Multiple R-squared 0.9887 

Adjusted R-squared 0.9886 
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Figure 7 Predicted Outcome on Training Observations 

 

Figure 8 Predicted Outcome on Test Observations 
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4.2       Fast and Frugal Decision Tree Output for DM Member Selection 

After implementing risk assessment model we extracted further medical 

utilization metric (UM) for the same observations along with their disease management 

status. Once we combine calculated risk scores and UM metric for our observations we 

divided data into training and test set as 7:3 ratio respectively and ran fast and frugal 

decision tree algorithm on R. 

 

Figure 9 FFDT Outcome on Training Observations 

 

Figure 9 shows that on training dataset we achieved accuracy of 89% with 

sensitivity of 99% and specificity 74% and discovered that risk score and risk category 

is highest contributing factor. Our result on training dataset shows that 89% of 

predicted value are true to actual value which is shown by accuracy, 99% of tested 

observations that are predicted as positive are actually positive observations which is 
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shown by sensitivity and 74% of observations that are actually negative are predicted as 

negative which is shown by specificity. 

Then we applied our prediction to test dataset, Figure 10 shows result from test 

data, our model yield 88% of accuracy which means 89% of predicted value are true to 

actual value, with 99% sensitivity which means 99% of tested observations that are 

predicted as positive are actually positive observations and 70% specificity which 

means 74% of observations that are actually negative are predicted as negative on test 

dataset. 

ROC curve for 1- specificity (proportion of false alarms) vs sensitivity shows 

performance comparison of FFDT and four other classification trees and our selection 

of FFDT for testing purpose is correct, Table 6 demonstrates the performance of each 

tree. We result shows that compared to models SVM, LR, CART, RF , our selected 

FFTrees algorithm is better in terms of performance. ROC curve is a plot of True 

Positive (TP) Rates against False Positive (FP) Rates where FP rate is the ratio of false 

positive results to all negative samples [31]. In figure 11, our training models show that 

risk scores and risk categories are highest contributing factors for identifying members 

for disease management program compared to inpatient visit, emergency visits and 

behavior habits like smoking. Both risk score and risk categories are notation for risk 

assessment scores calculated from proposed model and both have higher level of 

sensitivity, accuracy and specificity values.  
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Figure 10 FFDT Outcome on Test Observations 

 

Table 6 FFDT vs Other Classification Tree Output Comparison on Training and 

Test Observations 

OBSERVATION FFTrees LR CART RF SVM 

Train 89% 87% 87% 88% 87% 

Test 87% 84% 85% 85% 85% 
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Figure 11 Input Variable Contribution for DM Flag 

 

4.3       Result Comparison 

After implementing extracted logic in our proposed chronic risk and disease 

management model, we ran data against original base model and also compared our 

calculated scores against available scores from state. Table 7 shows execution time for 

proposed model in structured query language. Proposed model is 2 minutes slower than 

original model but this difference is considerable since we have added calculation for 

member identification for disease management programs too. Table 8 and figure 12 

shows average risk scores for proposed model, state scores and original model, our 

scores show that we the variance is minimal which aligns with achieved 99% of 

accuracy of proposed model. 
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Table 7 Execution Time Comparison on Each Model 

Model Execution Time (mm:ss) 

Proposed 27:34 

State NA 

SAS CDPS 25:11 

 

Table 8 Average Calculated Risk Score Using Each Model 

 Average Risk Score 

Model CHF Breast Cancer Diabetes 

Proposed 

Model 

3.76 5.97 2.31 

State 

Model 

3.66 5.89 2.27 

SAS CDPS 

Model 

3.67 5.70 2.29 

 

 

Figure 12 Risk Score Comparison Based on Each Model for 3 Chronic 

Conditions 

Figure 12 is graphical representation of table 8, which shows average risk 

scores for selected major three chronic conditions for test samples used in proposed 

model. Risk scores can vary from 0.067 to 39.679 based on member’s demographics, 

eligibility, health conditions and medications they are using. In our observation set our 

overall calculated lower bound risk score for selected chronic conditions of our total 
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observations is 0.45 and upper bound is 23.57. Figure 12 and table 8 shows average risk 

scores for the selected chronic conditions of the observation that were used to 

implement proposed model compared to state scores and original model, our calculated 

average risk scores aligns with state model and base model with marginal variance. 

Feature comparison of proposed model against original base model and state 

model is shown in table 9. Our chronic risk and disease management model provides 

member identification feature for eligible and required patients. We validated this flag 

against the disease management status for these member we currently have in system 

which have been identified by professional clinicians and expert physicians. Table 10 

and 11 show the confusion matrix for training and test observations that we have 

achieved from fast and frugal decision tree. Confusion matrix is a matrix representation 

of the classification result [32]. 

Table 9 Feature Comparison Base Model vs Proposed Model 

 Features 

Model Risk Score Disease 

Management 

Flag 

Proposed 

Model 

Y Y 

State Model Y N 

CDPS Base 

Model 

Y N 

 

Table 10 Confusion Matrix for Training Observations 

Result- Train Data 
Based on DM flag Identified by Expert Clinicians & 

Physicians 

TRUE FALSE 

Positive 2056 (TP) 328 (FP) 

Negative 26 (TN) 947 (FN) 
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Table 11 Confusion Matrix for Test Observations 

Result- Test Data 
Based on DM flag Identified by Expert Clinicians & 

Physicians 

TRUE FALSE 

Positive 871 (TP) 159 (FP) 

Negative 9 (TN) 365 (FN) 

 

We do have higher number of false positives in both test and train data set but 

our result from FFDT model shows that risk scores and risk categories are primary 

contributors for disease management programs. These 487( Train FP 328 + Test FP 

159) false positive members could be those un-identified or missed additional high risk 

members that needs to be considered for disease management programs and this 

supports in achieving one of the objectives of this research. 

5. Conclusion 

Population health management is very important and critical sector in healthcare 

industry, main focus of population health management is to identify sicker member, 

improve and monitor their clinical condition along with managing financial cost. One 

of the best ways to improve member health is by identifying chronic and non-chronic 

members and based on their health status categories members under certain care- 

coordination or disease management programs and assign case managers. This is done 

by nurse practitioner or physicians based on one’s experience and available medical 

data and sometime they might miss certain information as medical, pharmacy and 

member demographic information that comes in various source and in multiple 

segments. Hence, to support physicians and over all clinical team, need of risk scoring 

and disease management member identifier system arises. 
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Risk scoring of each members based on their demographic, medical and 

pharmacy helps provider groups, clinical teams and health insurance companies to find 

their risky members in terms of care and cost. In this paper, we proposed calculation of 

risk scores of patients in the same source where data is located and gets refreshed as 

soon as new information is received and based on calculated scores we flagged our 

members for disease management programs. This approach used structure query 

language to calculate patient’s risk score and to flag DM members. We used member’s 

medical record, pharmacy utilization, demographic information and medical claims 

data is being used to calculate patient’s risk score [36] based on existing risk 

adjustment model [7] and developed an efficient and new risk assessment model with 

additional feature for identifying members for disease management or for care-

coordination. With the help of designed model we not only can track our risky 

members on real time basis as soon as we receive their medical information but also at 

the same time we can suggest them to our clinical  teams for required care coordination 

programs or monitoring purpose. Since we are only using risk assessment part of risk 

adjustment model, we are able to consider all the population. Also looking at risk 

scores of all the members of certain provider we can verify that if corresponding 

provider is enrolling both healthy and sicker members or not and how risky our 

members are in terms of cost and health [37] [6]. For example if we select members of 

same age for a physician group and their calculated risk score comes out to be same on 

lower side of risk score or members have very minimal difference with risk score close 

to lower bound of risk table then we know that particular physician is accepting 
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members based on their good health conditions, this is called risk selection and 

proposed model helps us performing such analysis. 

To show that proposed method is efficient and accurate we validated our 

method using multiple linear regression algorithm and validate our calculated scores 

against available individual risk scores from State of Illinois for same members, as a 

second validation step we ran original base model. To identify contributing factors in 

selecting members for disease management we ran fast and frugal decision tree. The 

results show proposed chronic risk and disease management algorithm not only 

calculates health risk of patients but also confirms that risk score can be very important 

contributing factor for identifying members for disease management and monitoring 

purpose. Using the proposed model we achieved 99% of confidence level for risk 

assessment and achieved 89% of accuracy with 99% of sensitivity and 74% of 

specificity on calculated risk scores as highly contributing factors for identifying 

members for disease management programs.  

In summary, using proposed chronic risk and disease management system any 

healthcare providers or physician groups can track their member’s health risk status, 

based on risk scores identify members for specific care program and track their 

progress in terms of medical conditions, which ultimately helps member in term of 

managing their health. Future development of this application can be the following: 

 We have used one year worth of data for 3 major chronic conditions. There 

are total 4761 observations out of which 3342 are for training purpose. In future we can 

add more chronic conditions for multiple years so that we have wider range for risk 

scoring purpose. 
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 In this study we have excluded risk adjustment payment calculation step, in 

future payment calculation for both Medicaid and Medicare population can be added. 

 In future more risk adjustment algorithms should be studied and relevant 

logic should be extracted from each of them and then implement those logics in current 

algorithm to make it more efficient and to include all possible factors that can 

contribute in chronic risk and disease management process. 
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6. Appendix A:  Algorithms 

6.1        Data Selection 

--DROP TABLE #DIABETES 

SELECT DISTINCT MEMID, CAST('Diabetes' as varchar(25)) AS CONDITION 

INTO #DIABETES 

FROM QNXT_PLANDATA_IL.dbo.CLAIM C1 WITH (NOLOCK) 

INNER JOIN QNXT_PLANDATA_IL.dbo.CLAIMDETAIL AS CD  WITH (NOLOCK) 

 ON C1.CLAIMID = CD.CLAIMID 

LEFT JOIN QNXT_PLANDATA_IL.dbo.CLAIMDIAG AS DX1  WITH (NOLOCK) 

 ON CD.CLAIMID = DX1.CLAIMID AND DX1.DIAGTYPE IN ('PRIMARY','1', 

'Secondary','Admit' ) 

WHERE codeid IN  

 (SELECT code FROM [Illinois_Report_Details].[dbo].[ALL_DIAG_DEL]  

WITH (NOLOCK) 

  WHERE Value_Set_Name IN ('Diabetes'))    

        

AND CAST(startdate AS DATE) BETWEEN '2015-07-01' AND '2016-06-30' 

and ((C1.FORMTYPE = '1500'  and CD.location in ('21')) 

or (C1.FACILITYCODE+C1.BILLCLASSCODE IN ('11', '12', '18', '41', '42') 

AND C1.FORMTYPE LIKE 'U%'))  

GROUP BY MEMID 

HAVING count(distinct c1.MEMID+CAST(STARTDATE AS CHAR))>=1  

 

union  

 

SELECT DISTINCT MEMID,CAST('Diabetes' as varchar(25)) AS CONDITION 

FROM QNXT_PLANDATA_IL.dbo.CLAIM C1 WITH (NOLOCK) 

INNER JOIN QNXT_PLANDATA_IL.dbo.CLAIMDETAIL AS CD  WITH (NOLOCK) 

 ON C1.CLAIMID = CD.CLAIMID 

LEFT JOIN QNXT_PLANDATA_IL.dbo.CLAIMDIAG AS DX1  WITH (NOLOCK) 

 ON CD.CLAIMID = DX1.CLAIMID AND DX1.DIAGTYPE IN ('PRIMARY','1', 

'Secondary','Admit' ) 

WHERE codeid IN  

 (SELECT code FROM [Illinois_Report_Details].[dbo].[ALL_DIAG_DEL]  

WITH (NOLOCK) 

  WHERE Value_Set_Name IN ('Diabetes'))    

        

AND CAST(startdate AS DATE) BETWEEN '2015-07-01' AND '2016-06-30' 

and ((C1.FORMTYPE = '1500'  and CD.location in ('11','22','23')) 

or (C1.FACILITYCODE+C1.BILLCLASSCODE IN ('13', '14', '43', '83', '85', 

'71', '77') AND C1.FORMTYPE LIKE 'U%'))  

GROUP BY MEMID 

HAVING count(distinct c1.MEMID+CAST(STARTDATE AS CHAR))>=2 

 

--CHF            

--DROP TABLE #ChronicHeartFailure 

SELECT DISTINCT MEMID, CAST('Chronic Heart Failure' as varchar(25)) AS 

CONDITION 

INTO #ChronicHeartFailure 

FROM QNXT_PLANDATA_IL.dbo.CLAIM C1 WITH (NOLOCK) 

INNER JOIN QNXT_PLANDATA_IL.dbo.CLAIMDETAIL AS CD  WITH (NOLOCK) 

 ON C1.CLAIMID = CD.CLAIMID 

LEFT JOIN QNXT_PLANDATA_IL.dbo.CLAIMDIAG AS DX1  WITH (NOLOCK) 
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 ON CD.CLAIMID = DX1.CLAIMID AND DX1.DIAGTYPE IN ('PRIMARY','1', 

'Secondary','Admit' ) 

WHERE codeid IN  

 (SELECT code FROM [Illinois_Report_Details].[dbo].[ALL_DIAG_DEL]  

WITH (NOLOCK) 

  WHERE Value_Set_Name IN ('Chronic Heart Failure'))  

          

AND CAST(startdate AS DATE) BETWEEN '2015-07-01' AND '2016-06-30' 

GROUP BY MEMID 

HAVING count(distinct c1.MEMID+CAST(STARTDATE AS CHAR))>=1  

 

--BREAST CANCER 

--DROP TABLE #BreastCANCER 

SELECT DISTINCT MEMID, CAST('Breast Cancer' as varchar(25)) AS 

CONDITION 

INTO #BreastCANCER 

FROM QNXT_PLANDATA_IL.dbo.CLAIM C1 WITH (NOLOCK) 

INNER JOIN QNXT_PLANDATA_IL.dbo.CLAIMDETAIL  AS CD WITH (NOLOCK) 

 ON C1.CLAIMID = CD.CLAIMID 

LEFT JOIN QNXT_PLANDATA_IL.dbo.CLAIMDIAG  AS DX1 WITH (NOLOCK) 

 ON CD.CLAIMID = DX1.CLAIMID AND DX1.DIAGTYPE IN ('PRIMARY','1', 

'Secondary','Admit' ) 

JOIN [Illinois_Report_Details].[dbo].[ALL_DIAG_DEL]  WITH (NOLOCK) 

 ON  codeid = code 

WHERE  Value_Set_Name IN ( 'Breast Cancer')  

AND CAST(startdate AS DATE) BETWEEN '2015-07-01' AND '2016-06-30' 

and ((C1.FORMTYPE = '1500'  and CD.location in ('21')) 

or (C1.FACILITYCODE+C1.BILLCLASSCODE IN ('11', '12', '18', '41', '42')  

AND C1.FORMTYPE LIKE 'U%'))  

GROUP BY MEMID 

HAVING count(distinct c1.MEMID+CAST(STARTDATE AS CHAR)) >= 1 

 

UNION  

 

SELECT DISTINCT MEMID, CAST('Breast Cancer' as varchar(25)) AS 

CONDITION 

FROM QNXT_PLANDATA_IL.dbo.CLAIM C1 WITH (NOLOCK) 

INNER JOIN QNXT_PLANDATA_IL.dbo.CLAIMDETAIL AS CD WITH (NOLOCK) 

 ON C1.CLAIMID = CD.CLAIMID 

LEFT JOIN QNXT_PLANDATA_IL.dbo.CLAIMDIAG AS DX1  WITH (NOLOCK) 

 ON CD.CLAIMID = DX1.CLAIMID AND DX1.DIAGTYPE IN ('PRIMARY','1', 

'Secondary','Admit' ) 

JOIN [Illinois_Report_Details].[dbo].[ALL_DIAG_DEL]  WITH (NOLOCK) 

 ON  codeid = code 

WHERE  Value_Set_Name IN ( 'Breast Cancer')  

AND CAST(startdate AS DATE) BETWEEN '2015-07-01' AND '2016-06-30' 

and ((C1.FORMTYPE = '1500'  and CD.location in ('11','22','23')) 

or (C1.FACILITYCODE+C1.BILLCLASSCODE IN ('13', '14', '43', '83', '85', 

'71', '77') AND C1.FORMTYPE LIKE 'U%'))  

GROUP BY MEMID 

HAVING count(distinct c1.MEMID+CAST(STARTDATE AS CHAR)) >= 2 

 

 

DROP TABLE #ALL_Chronic_Conditions 

Select * INTO #ALL_Chronic_Conditions from #DIABETES 

UNION 

Select * from #ChronicHeartFailure 
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UNION 

Select * from #BreastCancer 

 

--INSERT MEMBER INTO MEMBER TABLE FOR RISK SCORING 

DROP TABLE MEMBER   

SELECT *  INTO MEMBER FROM #ALL_Chronic_Conditions 

 

--Data Selection criteria for member utilization data 

--Logic to Identify 6 month Inpatient Data 

SELECT memid, COUNT(DISTINCT memid+CAST(CAST(startdate AS DATE) AS 

CHAR)) AS IP_ADMIT_6M, SUM(servunits) AS BED_DAYS_6M 

FROM QNXT_PLANDATA_IL.dbo.CLAIM C1 WITH (NOLOCK) 

INNER JOIN QNXT_PLANDATA_IL.dbo.CLAIMDETAIL AS CD WITH (NOLOCK) 

ON C1.CLAIMID = CD.CLAIMID 

WHERE C1.status in ('PAID','QLTYREVIEW', 'PAY', 'PEND', 'PAYHOLD', 

'WAITPAY') 

AND CD.STATUS <> 'DENY' 

AND C1.FACILITYCODE+C1.BILLCLASSCODE IN ('11', '12', '18', '41', '42')  

AND C1.FORMTYPE LIKE 'U%'  

AND REVCODE IN ('0100', '0101', '0102', '0103', '0104',

 '0105', '0106',  

  '0107', '0108', '0109', '0110', '0111',

 '0112', '0113', '0114',  

  '0115', '0116', '0117', '0118', '0119',

 '0120', '0121', '0122',  

  '0123', '0124', '0125', '0126', '0127',

 '0128', '0129', '0130',  

  '0131', '0132', '0133', '0134', '0135',

 '0136', '0137', '0138',  

  '0139', '0140', '0141', '0142', '0143',

 '0144', '0145', '0146',  

  '0147', '0148', '0149', '0150', '0151',

 '0152', '0153', '0154',  

  '0155', '0156', '0157', '0158', '0159',

 '0160', '0161', '0162',  

  '0163', '0164', '0165', '0166', '0167',

 '0168', '0169', '0170',  

  '0171', '0172', '0173', '0174', '0175',

 '0176', '0177', '0178',  

  '0179', '0180', '0181', '0182', '0183',

 '0184', '0185', '0186',  

  '0187', '0188', '0189', '0190', '0191',

 '0192', '0193', '0194',  

  '0195', '0196', '0197', '0198', '0199',

 '0200', '0201', '0202',  

  '0203', '0204', '0205', '0206', '0207',

 '0208', '0209', '0210',  

  '0211', '0212', '0213', '0214', '0215',

 '0216', '0217', '0218', '0219')  

AND CAST(startdate AS DATE) >= dateadd(day,-180,getdate())  

GROUP BY  memid 

--Logic to Identify 6 month Ememrgency Visit Data 

SELECT memid 

, COUNT(DISTINCT case when REVCODE IN ('0450', '0451', '0452', 

'0456','0459','0981')   

 then memid+CAST(CAST(startdate AS DATE) AS CHAR) else null end) 

AS ED_VISIT_6M 
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FROM QNXT_PLANDATA_IL.dbo.CLAIM C1 WITH (NOLOCK) 

INNER JOIN QNXT_PLANDATA_IL.dbo.CLAIMDETAIL AS CD WITH (NOLOCK) 

 ON C1.CLAIMID = CD.CLAIMID 

WHERE C1.status in ('PAID','QLTYREVIEW', 'PAY', 'PEND', 'PAYHOLD', 

'WAITPAY') 

AND CD.STATUS <> 'DENY' 

AND ( 

  ( REVCODE IN ('0450', '0451', '0452', '0456','0459','0981')  

  OR (C1.FORMTYPE = '1500'  AND CD.location ='23') 

  ) 

 )         

AND CAST(startdate AS DATE) >= dateadd(day,-180,getdate())  

GROUP BY  memid) ED 

ON A.MEMID = ED.MEMID 

 

--Logic to Identify 6 month Preventive Visit Data 

SELECT memid, COUNT(DISTINCT memid+CAST(CAST(startdate AS DATE) AS 

CHAR)) AS PREVENTIVE_VISIT_6M 

FROM QNXT_PLANDATA_IL.dbo.CLAIM C1 

INNER JOIN QNXT_PLANDATA_IL.dbo.CLAIMDETAIL AS CD ON C1.CLAIMID = 

CD.CLAIMID 

WHERE C1.status in ('PAID','QLTYREVIEW', 'PAY', 'PEND', 'PAYHOLD', 

'WAITPAY') 

AND CD.STATUS <> 'DENY' 

AND ( servcode IN (SELECT DISTINCT CODE FROM 

[Illinois_Report_Details].[dbo].[IL_DIM_HEDIS_CODES]WHERE 

Value_Set_Name IN ('Ambulatory Visits', 'Other Ambulatory 

Visits')) 

OR billservcode IN (SELECT DISTINCT CODE FROM 

[Illinois_Report_Details].[dbo].[IL_DIM_HEDIS_CODES]WHERE 

Value_Set_Name IN ('Ambulatory Visits', 'Other Ambulatory 

Visits'))) 

--and CD.location = '11' 

AND CAST(startdate AS DATE) >= dateadd(day,-180,getdate())  

GROUP BY memid 

 

 

6.2        Logic Extraction 

* Age and sex variables; 

a_under1=(age <= 1); 

a_1_4=(1 < age < 5); 

a_5_14m=((5 <= age < 15) and male=1); 

a_5_14f=((5 <= age < 15) and male=0); 

a_15_24m=((15 <= age < 25) and male=1); 

a_15_24f=((15 <= age < 25) and male=0); 

a_25_44m=((25 <= age < 45) and male=1); 

a_25_44f=((25 <= age < 45) and male=0); 

a_45_64m=((45 <= age < 65) and male=1); 

a_45_64f=((45 <= age < 65) and male=0); 

a_65=(65 <= age); 

label a_under1="age<=1" 

a_1_4="1<age<5" 

a_5_14m="5<age<15 male" 

a_5_14f="5<age<15 female" 

a_15_24m="15<=age<25 male" 
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a_15_24f="15<=age<25 female" 

a_25_44m="25<=age<45 male" 

a_25_44f="25<=age<45 female" 

a_45_64m="45<=age<65 male" 

a_45_64f="45<=age<65 female" 

a_65="65<=age"; 

run; 

 

data step2(compress=yes); 

merge diagind(in=inind) 

who(in=inreg); 

by recipno; 

if inreg; 

array dind{*} 3 %names; 

retain %names; 

length i 3; 

drop i; 

do i=1 to dim(dind); 

if dind{i}=. then dind{i}=0; 

end; 

   

* Create hierarchy ; 

array vars1{*}  AIDSH INFH HIVM INFM INFL; 

array vars2{*}  CANVH CANH CANM CANL; 

array vars3{*}  CARVH CARM CARL CAREL; 

array vars4{*}  CERL; 

array vars5{*}  CNSH CNSM CNSL; 

array vars6{*}  DIA1H DIA1M DIA2M DIA2L ; 

array vars7{*}  DDM DDL; 

array vars8{*}  EYEL EYEVL; 

array vars9{*} GENEL; 

array vars10{*} GIH GIM GIL; 

array vars11{*} HEMEH HEMVH HEMM HEML; 

array vars12{*} METH METM METVL; 

array vars13{*} PRGCMP PRGINC; 

array vars14{*} PSYH PSYM PSYML PSYL; 

array vars15{*} SUBL SUBVL; 

array vars16{*} PULVH PULH PULM PULL; 

array vars17{*} RENEH RENVH RENM RENL; 

array vars18{*} SKCM SKCL SKCVL; 

array vars19{*} SKNH SKNL SKNVL; 

 

%macro varnum(num); 

do i=1 to dim(vars&num)-1; 

if vars&num(i)=1 then do j=i+1 to dim(vars&num); 

vars&num(j)=0;  end; 

end; drop j; 

%mend varnum; 

 

%do num=1 %to 19; 

%varnum(&num); 

%end; 

      

%if &aid=AA or &aid=AC %then %do;  

PULH=max(PULVH,PULH); PULVH=0; 

%end; 
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%if &aid=AA %then %do;  

ddl=max(DDM,DDL); ddm=0; 

%end; 

 

%if &aid=DC or &aid=AC %then %do;  

DIA2L=max(DIA1H,DIA1M,DIA2M,DIA2L); 

EYEVL=max(EYEL,EYEVL); 

array zerovars{*} DIA1H DIA1M DIA2M EYEL; 

do i=1 to dim(zerovars); zerovars{i}=0; end; 

%end; 

 

NOCDPS=sum(of %reglst)=0; 

 

* Create interaction variables for the Disabled; 

%if &aid=DA %then %do;  

array intvars(*) CCARVH CCARM CCNSH CPULVH CPULH CGIH CMETH CHIVM 

CINFM CHEMEH; 

do i=1 to dim(intvars); intvars{i}=0; end; 

%end; 

%else %if &aid=DC %then %do;  

array intvars(*) CCARVH CCARM CCNSH CPULVH CPULH CGIH CMETH CHIVM 

CINFM CHEMEH; 

array orgvars(*) CARVH CARM CNSH PULVH PULH GIH METH HIVM INFM HEMEH; 

do i=1 to dim(intvars); intvars{i}=orgvars{i}; end; 

%end; 

%if &aid=DA or &aid=DC %then %do;  

label CCARVH = 'Childrens CARVH' 

CCARM  = 'Childrens CARM' 

CCNSH  = 'Childrens CNSH' 

CPULVH = 'Childrens PULVH' 

CPULH  = 'Childrens PULH' 

CGIH   = 'Childrens GIH' 

CMETH  = 'Childrens METH' 

CHIVM  = 'Childrens HIVM' 

CINFM  = 'Childrens INFM' 

CHEMEH = 'Childrens HEMEH'; 

%end; 

 

* CDPS category labels; 

%include labfile; 

run; 

%mend cdps; 

 

%macro mrx; 

* Define diagnosis indicator variables; 

array dind{*} 3 %names None Other; 

retain %names None Other; 

 

if first.recipno  then do; 

    do i=1 to dim(dind); 

        dind{i}=0; 

    end; 

end; 

 

* Indicate the existence of a diagnosis in the group variable; 

 

    stage11=put(ndc,$sgrpfmt.); 
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    stage21=put(stage11,$snfmt.); 

    dind{stage21}=1; 

 

if last.recipno then do; 

output; 

end; 

keep recipno %names; 

run; 

 

data who; 

set inelig; 

run; 

 

data step2(compress=yes); 

merge diagind(in=inind) 

who(in=inreg); 

by recipno; 

if inreg; 

array dind{*} 3 %names; 

retain %names; 

length i 3; 

drop i; 

do i=1 to dim(dind); 

if dind{i}=. then dind{i}=0; 

end; 

 

* Create hierarchies; 

if mrx9=1 then do; mrx8=0; mrx7=0; end; 

if mrx8=1 then mrx7=0; 

      

* MRX category labels; 

%include labfile; 

run; 

%mend mrx; 

 

*Combining diagnosis and drug code 

if sum(of CARVH CARM)>0 then do; MRX1=0; MRX2=0; end; if MRX1=1 then 

do; CARL=0; CAREL=0; MRX2=0; end; 

if sum(of CARL CAREL)>0 then MRX2=0; 

if sum(of PSYH PSYM PSYML PSYL)>0 then MRX3=0;  

if sum(of DIA1H DIA1M DIA2M DIA2L)>0 then MRX4=0; 

if sum(of RENEH RENVH)>0 then MRX5=0; if MRX5=1 then do; RENM=0; 

RENL=0; end; 

if HEMEH=1 then MRX6=0; if MRX6=1 then do; HEMVH=0; HEMM=0; HEML=0; 

end; 

if sum(of AIDSH INFH)>0 then do; MRX9=0; MRX8=0; MRX7=0; end; if 

MRX9=1 then HIVM=0;  

if HIVM=1 then do; MRX8=0; MRX7=0; end; if sum(of MRX7 MRX8 MRX9)>0 

then do; INFM=0; INFL=0; end; 

if sum(of SKCM SKCL SKCVL)>0 then MRX10=0; 

if sum(of CANVH CANH CANM)>0 then MRX11=0; if MRX11=1 then CANL=0; 

if sum(of CNSH CNSM)>0 then do; MRX12=0; MRX13=0; MRX14=0; end; if 

MRX12=1 then do; CNSL=0; MRX13=0; MRX14=0; end; 

if CNSL=1 then do; MRX13=0; MRX14=0; end; if MRX14=1 then MRX13=0; 

if sum(of PULVH PULH PULM PULL)>0 then MRX15=0; 
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if aidcat='DC' then do; if MRX1=1 then CCARM=1; if MRX6=1 then 

CHEMEH=1; if MRX9=1 then do; CHIVM=0; CINFM=0; end; if sum(of 

MRX7 MRX8)=1 then do; CHIVM=1; CINFM=0; end; end; 

 

   

6.3        Validation Using Predictive Analysis 

#SCRIPT FOR MULTIPLE LINEAR REGRESSION AND SCORE PREDCITION IN TEST 

DATA USING TRAINING DATA AND STATE SCORE 

 

#Multiple Linear Regression 

#result<-lm(STATE_SCORE~DEMO+INTER+MEDI+MRX,RSDATA) 

#result 

#summary(result) 

 

#split dataset into "training" (70%) and "test" (30%) 

ind<-sample(2,nrow(RSDATA),replace=TRUE, prob=c(0.7,0.3)) 

trdata<-RSDATA[ind==1,] 

tsdata<-RSDATA[ind==2,] 

 

head(trdata) 

head(tsdata) 

 

#Multiple Linear Regression 

result<-lm(STATE_SCORE~DEMO+INTER+MEDI+MRX,trdata) 

result 

summary(result) 

coef(result) 

 

#prediction 

pred<-predict(result,tsdata) 

head(pred) 

head(tsdata) 

 

#Visualization Script 

# packages 

library(dplyr) 

library(ggplot2) 

library(choroplethr) 

library(choroplethrMaps) 

library(openintro) 

library(diseasemapping) 

library(ColorPalette) 

 

head(RSDATA) 

 

#density plot 

ggplot(data=RSDATA, aes(RSDATA$STATE_SCORE,fill=RSDATA$LABEL)) +  

geom_density(alpha=0.8, color='dark blue')+ 

ggtitle('STATE RISK SCORE')  

#facet_wrap(~RSDATA$LABEL)  

 

ggplot(data=RSDATA, aes(RSDATA$SCORE,fill=RSDATA$LABEL)) +  

  geom_density(alpha=0.8, color='dark blue')+ 

  ggtitle('PREDICTTED RISK SCORE')  
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--FFDT Prediction  

library(FFTrees) 

 

str(dm_data) 

 

#SPLIT DATASET 

set.seed(1234) 

ind<- sample(2, nrow(dm_data),replace=T, prob=c(0.7, 0.3)) 

train <- dm_data[ind==1,] 

test <- dm_data[ind==2,] 

 

 

#STOREING TREE MODEL IN TREE 

 

tree <- FFTrees(formula = CL_DM_FLAG ~ ., 

                data = train, 

                data.test = test, 

                main = "Disease Management Identifier Decision", 

                decision.labels = c("Not Qualified", "Qualified")  

                 

                )  

# to remove comparision with other model do.comp=FALSE 

 

plot(tree, data="train") 

plot(tree, data="test") 

 

inwords(tree) 

summary(tree) 

names(tree) 

#for area under curve for both training and test dataset  

tree$auc 

# to see comparative model  for all samples 

tree$decision 

cbind(train, tree$decision$train) 

 

# PLOT TREE 

plot(tree) 

plot(tree, what ='cues') 

plot(tree, stats= F) 

 

#tree for test data 

plot(tree, data="test") 

predict (tree, test) 

 

6.4        Model Implementation 

SELECT DISTINCT 

A.MEMID  

,A.MEDICAID_ID 

,CASE WHEN EK_LOB IN ('ICP','MMP') AND A.Age<18 THEN 'DC' 

   WHEN EK_LOB IN ('ICP','MMP') AND A.Age>=18 THEN 'DA' 
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   WHEN EK_LOB IN ('FHP','ACA') AND A.Age<18 THEN 'AC'  

   WHEN EK_LOB IN ('FHP','ACA') AND A.Age>=18 THEN 'AA'  

   END AS AID 

,CASE WHEN A.Age <= 1 THEN 'a_under1' 

  WHEN A.Age<5 THEN 'a_1_4' 

  WHEN A.Age<15 and [sex] = 'M' THEN 'a_5_14m' 

  WHEN A.Age<15 and [sex] = 'F' THEN 'a_5_14f' 

  WHEN A.Age<25 and [sex] = 'M' THEN 'a_15_24m' 

  WHEN A.Age<25 and [sex] = 'F' THEN 'a_15_24f' 

  WHEN A.Age<45 and [sex] = 'M' THEN 'a_25_44m' 

  WHEN A.Age<45 and [sex] = 'F' THEN 'a_25_44f' 

  WHEN A.Age<65 and [sex] = 'M' THEN 'a_45_64m' 

  WHEN A.Age<65 and [sex] = 'F' THEN 'a_45_64f' 

  WHEN 65 <= A.Age THEN 'a_65' 

  END AS Age_GENDER 

INTO #MBRSHIP 

FROM ILLINOIS_REPORT_DETAILS.DBO.IL_FT_MEMBERMONTHS A  

JOIN SFY2016_RS B ON A.MEMID=B.MEMID --2016 State Risk Score   

JOIN MEMBER C ON C.MEMID=B.MEMID --Selected 3 chronic Condition 

Membership 

 

SELECT DISTINCT 

C1.MEMID 

,AID 

,B.CATEGORY 

INTO #CDPSCLAIMS 

FROM QNXT_PLANDATA_IL.dbo.CLAIM C1 WITH (NOLOCK) 

  INNER JOIN QNXT_PLANDATA_IL.dbo.CLAIMDETAIL AS CD WITH (NOLOCK) 

   ON C1.CLAIMID = CD.CLAIMID 

  LEFT JOIN QNXT_PLANDATA_IL.dbo.CLAIMDIAG AS DX1 WITH (NOLOCK) 

   ON CD.CLAIMID = DX1.CLAIMID 

  LEFT OUTER JOIN QNXT_PLANDATA_IL.dbo.DIAGCODE AS ICD1 WITH (NOLOCK) 

   ON DX1.CODEID = ICD1.CODEID 

    AND cd.dosfrom between icd1.effdate and icd1.termdate 

  JOIN [Illinois_Report_Details].[dbo].[IL_DIM_REF_GROUPER_MASTER] b 

WITH (NOLOCK) 

              on REPLACE(dx1.codeid, '.','') = b.code 

            and b.model = 'CDPS6.2.2' 

  JOIN #MBRSHIP ON #MBRSHIP.MEMID = C1.MEMID 

 

WHERE CAST(startdate AS DATE) BETWEEN '2015-07-01' AND '2016-06-30' 

AND DIAGTYPE NOT IN ('PRV','Admit','Trauma') 

AND sequence <= 6 

AND (formtype like '%UB%' 

      or CD.location IN ('03','04','11', '12', '20','22', '23', '21', 

'50', '51','52','53', '54','55', '56', '57', '65', '71', '72')) 

ORDER BY 1 

 

SELECT  

a.[RecipientID] as medicaid_id 

,MEMID 

,AID 

, DiagCd 

INTO #HXCLAIMS1 

  FROM [DC01DSSDBPC10\SQL10].[ERR_IL].[hds].[MainClaims] A WITH 

(NOLOCK) 
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      JOIN [DC01DSSDBPC10\SQL10].[ERR_IL].[hds].[Institutional] B WITH 

(NOLOCK) 

            ON A.DCN = B.DCN 

            AND A.[ServiceLineNbr] = B.[ServiceLineNbr] 

            AND A.RecipientID = B.RecipientID 

            AND A.AdjudicatedDt = B.AdjudicatedDt 

      JOIN [DC01DSSDBPC10\SQL10].[ERR_IL].[hds].[Diagnosis] C WITH 

(NOLOCK) 

            ON A.DCN = C.DCN 

            AND A.[ServiceLineNbr] = C.[ServiceLineNbr] 

            AND A.RecipientID = C.RecipientID          

            AND A.AdjudicatedDt = C.AdjudicatedDt     

       JOIN #MBRSHIP ON #MBRSHIP.MEDICAID_ID = a.[RecipientID]    

  WHERE A.RejectionStatusCd = 'N' 

  AND [ServiceFromDt] BETWEEN '2015-07-01' AND '2016-06-30' 

  GROUP BY a.[RecipientID] 

      ,MEMID 

      ,AID 

      , DiagCd 

  

SELECT  

        a.[RecipientID] as medicaid_id 

       ,MEMID 

      ,AID 

      , DiagCd 

INTO #HXCLAIMS2 

  FROM [DC01DSSDBPC10\SQL10].[ERR_IL].[hds].[MainClaims] A WITH 

(NOLOCK) 

      JOIN [DC01DSSDBPC10\SQL10].[ERR_IL].[hds].[Diagnosis] C WITH 

(NOLOCK) 

            ON A.DCN = C.DCN 

            AND A.[ServiceLineNbr] = C.[ServiceLineNbr] 

            AND A.RecipientID = C.RecipientID          

            AND A.AdjudicatedDt = C.AdjudicatedDt 

      JOIN [DC01DSSDBPC10\SQL10].[ERR_IL].[hds].[NIPS] D WITH (NOLOCK) 

            ON A.DCN = D.DCN 

            AND A.[ServiceLineNbr] = D.[ServiceLineNbr]  

            AND A.RecipientID = D.RecipientID          

            AND A.AdjudicatedDt = D.AdjudicatedDt    

     JOIN #MBRSHIP ON #MBRSHIP.MEDICAID_ID = a.[RecipientID]                    

  WHERE A.RejectionStatusCd = 'N' 

  AND [ServiceFromDt] BETWEEN '2015-07-01' AND '2016-06-30' 

  AND [PlaceOfServiceCd] IN ('03','04','11', '12', '20','22', '23', 

'21', '50', '51','52','53', '54','55', '56', '57', '65', '71', 

'72', 'A', 'E', 'B', 'C', 'G')  

  GROUP BY a.[RecipientID] 

       ,MEMID 

       ,AID 

      , DiagCd 

 

SELECT DISTINCT 

        a.[RecipientID] as medicaid_id 

        ,MEMID 

        ,AID 

      , DiagCd       

  INTO #HXCLAIMS3      

  FROM [DC01DSSDBPC10\SQL10].[ERR_IL].[hds].[MMP_MainClaims] A 
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      JOIN [DC01DSSDBPC10\SQL10].[ERR_IL].[hds].[MMP_Institutional] B 

            ON A.DCN = B.DCN 

            AND A.[ServiceLineNbr] = B.[ServiceLineNbr] 

            AND A.RecipientID = B.RecipientID 

            AND A.AdjudicatedDt = B.AdjudicatedDt 

      JOIN [DC01DSSDBPC10\SQL10].[ERR_IL].[hds].[MMP_Diagnosis] C 

            ON A.DCN = C.DCN 

            AND A.[ServiceLineNbr] = C.[ServiceLineNbr] 

            AND A.RecipientID = C.RecipientID          

            AND A.AdjudicatedDt = C.AdjudicatedDt 

       JOIN #MBRSHIP ON #MBRSHIP.MEDICAID_ID = a.[RecipientID]               

  WHERE A.RejectionStatusCd = 'N' 

  AND [ServiceFromDt] BETWEEN '2015-07-01' AND '2016-06-30' 

  GROUP BY a.[RecipientID] 

      ,MEMID 

      ,AID 

      , DiagCd   

 

 SELECT DISTINCT 

        a.[RecipientID] as medicaid_id 

       ,MEMID 

       ,AID 

      , DiagCd           

INTO #HXCLAIMS4 

  FROM [DC01DSSDBPC10\SQL10].[ERR_IL].[hds].[MMP_MainClaims] A 

      JOIN [DC01DSSDBPC10\SQL10].[ERR_IL].[hds].[MMP_Diagnosis] C 

            ON A.DCN = C.DCN 

            AND A.[ServiceLineNbr] = C.[ServiceLineNbr] 

            AND A.RecipientID = C.RecipientID          

            AND A.AdjudicatedDt = C.AdjudicatedDt 

      JOIN [DC01DSSDBPC10\SQL10].[ERR_IL].[hds].[MMP_NIPS] D 

            ON A.DCN = D.DCN 

            AND A.[ServiceLineNbr] = D.[ServiceLineNbr] 

            AND A.RecipientID = D.RecipientID          

            AND A.AdjudicatedDt = D.AdjudicatedDt     

      JOIN #MBRSHIP ON #MBRSHIP.MEDICAID_ID = a.[RecipientID]                     

  WHERE A.RejectionStatusCd = 'N' 

  AND [ServiceFromDt] BETWEEN '2015-07-01' AND '2016-06-30' 

  AND [PlaceOfServiceCd] IN ('03','04','11', '12', '20','22', '23', 

'21', '50', '51','52','53', '54','55', '56', '57', '65', '71', 

'72', 'A', 'E', 'B', 'C', 'G')  

  GROUP BY a.[RecipientID] 

      ,MEMID 

      ,AID 

      , DiagCd   

 

 

SELECT * INTO #ALL_HXCLAIMS FROM #HXCLAIMS1 

UNION 

SELECT * FROM #HXCLAIMS2 

UNION 

SELECT * FROM #HXCLAIMS3 

UNION 

SELECT * FROM #HXCLAIMS4 

 

SELECT * FROM #ALL_HXCLAIMS 

WHERE MEMID IN   
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( 

 SELECT distinct A.MEMID FROM 

[Illinois_Report_Details].[dbo].MEMBER A 

 JOIN  

  SFY2016_RS B ON A.MEMID=B.MEMID  

) 

 

SELECT DISTINCT MEMID, AID, 'Intercept' as CATEGORY 

INTO #CDPSCLAIMS2 

FROM #MBRSHIP A 

UNION  

SELECT DISTINCT MEMID, AID, AGE_GENDER as CATEGORY 

FROM #MBRSHIP A 

UNION  

SELECT DISTINCT MEMID, AID, CATEGORY 

FROM #CDPSCLAIMS A 

UNION  

SELECT DISTINCT MEMID, AID, CATEGORY 

FROM #HXCLAIMS1 A 

LEFT JOIN [Illinois_Report_Details].[dbo].[IL_DIM_REF_GROUPER_MASTER] 

b 

        on DiagCd = b.code 

       and b.model = 'CDPS6.2.2' 

UNION 

SELECT DISTINCT MEMID, AID, CATEGORY 

FROM #HXCLAIMS2 A 

left JOIN [Illinois_Report_Details].[dbo].[IL_DIM_REF_GROUPER_MASTER] 

b 

        on DiagCd = b.code 

        and b.model = 'CDPS6.2.2' 

UNION  

SELECT DISTINCT MEMID, AID, CATEGORY 

FROM #HXCLAIMS3 A 

LEFT JOIN [Illinois_Report_Details].[dbo].[IL_DIM_REF_GROUPER_MASTER] 

b 

        on DiagCd = b.code 

        and b.model = 'CDPS6.2.2' 

UNION 

SELECT DISTINCT MEMID, AID, CATEGORY 

FROM #HXCLAIMS4 A 

LEFT JOIN [Illinois_Report_Details].[dbo].[IL_DIM_REF_GROUPER_MASTER] 

b 

        on DiagCd = b.code 

        and b.model = 'CDPS6.2.2' 

 

SELECT MEMID, AID, 

ISNULL(Intercept,0)Intercept,a_under1,a_1_4,a_5_14m,a_5_14f,a_15

_24m,a_15_24f,a_25_44m,a_25_44f,a_45_64m,a_45_64f,a_65,isnull([C

ARVH],0)[CARVH], isnull([CARM],0)[CARM], isnull([CARL],0)[CARL], 

isnull([CAREL],0)[CAREL],  

isnull([PSYH],0)[PSYH], isnull([PSYM],0)[PSYM], 

isnull([PSYML],0)[PSYML], isnull([PSYL],0)[PSYL], 

isnull([SKCM],0)[SKCM],  

isnull([SKCL],0)[SKCL], isnull([SKCVL],0)[SKCVL], 

isnull([CNSH],0)[CNSH], isnull([CNSM],0)[CNSM],  

isnull([CNSL],0)[CNSL], 
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isnull([PULVH],0)[PULVH], isnull([PULH],0)[PULH], 

isnull([PULM],0)[PULM], isnull([PULL],0)[PULL], 

isnull([GIH],0)[GIH],  

isnull([GIM],0)[GIM], isnull([GIL],0)[GIL], isnull([DIA1H],0)[DIA1H], 

isnull([DIA1M],0)[DIA1M], isnull([DIA2M],0)[DIA2M],  

isnull([DIA2L],0)[DIA2L], isnull([SKNH],0)[SKNH], 

isnull([SKNL],0)[SKNL], isnull([SKNVL],0)[SKNVL], 

isnull([RENEH],0)[RENEH], 

 isnull([RENVH],0)[RENVH], isnull([RENM],0)[RENM], 

isnull([RENL],0)[RENL], isnull([SUBL],0)[SUBL], 

isnull([SUBVL],0)[SUBVL],  

 isnull([CANVH],0)[CANVH], isnull([CANH],0)[CANH], 

isnull([CANM],0)[CANM], isnull([CANL],0)[CANL], 

isnull([HLTRNS],0)[HLTRNS],isnull([DDM],0)[DDM],  

 isnull([DDL],0)[DDL], isnull([GENEL],0)[GENEL], 

isnull([METH],0)[METH], isnull([METM],0)[METM], 

isnull([METVL],0)[METVL], 

  isnull([PRGCMP],0)[PRGCMP], isnull([PRGINC],0)[PRGINC], 

isnull([EYEL],0)[EYEL], isnull([EYEVL],0)[EYEVL], 

isnull([CERL],0)[CERL], 

   isnull([AIDSH],0)[AIDSH], isnull([INFH],0)[INFH], 

isnull([HIVM],0)[HIVM], isnull([INFM],0)[INFM], 

isnull([INFL],0)[INFL],  

   isnull([HEMEH],0)[HEMEH], isnull([HEMVH],0)[HEMVH], 

isnull([HEMM],0)[HEMM], isnull([HEML],0)[HEML] 

INTO #DIAGIND 

FROM 

(SELECT distinct memid,AID, CATEGORY FROM #CDPSCLAIMS2) AS s 

PIVOT(count(CATEGORY) FOR CATEGORY IN 

(Intercept,a_under1,a_1_4,a_5_14m,a_5_14f,a_15_24m,a_15_24f,a_25

_44m,a_25_44f,a_45_64m,a_45_64f,a_65,[CARVH],[CARM],[CARL],[CARE

L],[PSYH],[PSYM],[PSYML],[PSYL],[SKCM],[SKCL],[SKCVL],[CNSH],[CN

SM], 

[CNSL],[PULVH],[PULH],[PULM],[PULL],[GIH],[GIM],[GIL],[DIA1H],[DIA1M],

[DIA2M],[DIA2L],[SKNH],[SKNL],[SKNVL],[RENEH],[RENVH],[RENM], 

[RENL],[SUBL],[SUBVL],[CANVH],[CANH],[CANM],[CANL],[HLTRNS],[DDM],[DDL

],[GENEL],[METH],[METM],[METVL],[PRGCMP],[PRGINC],[EYEL],[EYEVL]

,[CERL], 

[AIDSH],[INFH],[HIVM],[INFM],[INFL],[HEMEH],[HEMVH],[HEMM],[HEML])  ) 

pvt 

 

update #Diagind set CARVH=1, PULVH=1 where HLTRNS=1  

update #Diagind set INFH=0,HIVM=0,INFM=0,INFL=0 where AIDSH=1  

update #Diagind set HIVM=0,INFM=0,INFL=0 where INFH=1  

update #Diagind set INFM=0,INFL=0 where HIVM=1  

update #Diagind set INFL=0 where INFM=1  

update #Diagind set CANH=0,CANM=0,CANL=0 where CANVH=1  

update #Diagind set CANM=0,CANL=0 where CANH=1  

update #Diagind set CANL=0 where CANM=1  

update #Diagind set CARM=0,CARL=0,CAREL=0 where CARVH=1  

update #Diagind set CARL=0,CAREL=0 where CARM=1  

update #Diagind set CAREL=0 where CARL=1  

update #Diagind set CNSM=0,CNSL=0 where CNSH=1  

update #Diagind set CNSL=0 where CNSM=1  

update #Diagind set DIA1M=0,DIA2M=0,DIA2L=0 where DIA1H=1  

update #Diagind set DIA2M=0,DIA2L=0 where DIA1M=1  

update #Diagind set DIA2L=0 where DIA2M=1  
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update #Diagind set DDL=0 where DDM=1  

update #Diagind set EYEVL=0 where EYEL=1  

update #Diagind set GIM=0,GIL=0 where GIH=1  

update #Diagind set GIL=0 where GIM=1  

update #Diagind set HEMVH=0,HEMM=0,HEML=0 where HEMEH=1  

update #Diagind set HEMM=0,HEML=0 where HEMVH=1  

update #Diagind set HEML=0 where HEMM=1  

update #Diagind set METM=0,METVL=0 where METH=1  

update #Diagind set METVL=0 where METM=1  

update #Diagind set PRGINC=0 where PRGCMP=1  

update #Diagind set PSYM=0,PSYML=0,PSYL=0 where PSYH=1  

update #Diagind set PSYML=0,PSYL=0 where PSYM=1  

update #Diagind set PSYL=0 where PSYML=1  

update #Diagind set SUBVL=0 where SUBL=1  

update #Diagind set PULH=0,PULM=0,PULL=0 where PULVH=1  

update #Diagind set PULM=0,PULL=0 where PULH=1  

update #Diagind set PULL=0 where PULM=1  

update #Diagind set RENVH=0,RENM=0,RENL=0 where RENEH=1  

update #Diagind set RENM=0,RENL=0 where RENVH=1  

update #Diagind set RENL=0 where RENM=1  

update #Diagind set SKCL=0,SKCVL=0 where SKCM=1  

update #Diagind set SKCVL=0 where SKCL=1  

update #Diagind set SKNL=0,SKNVL=0 where SKNH=1  

update #Diagind set SKNVL=0 where SKNL=1  

update #Diagind set PULH=1, PULVH=0  where  (AID='AA' or AID='AC' or 

AID='AG') and PULVH=1 ;  

update #Diagind set DDL=1, DDM=0  where  (AID='AA' or  AID='AG') and 

DDM=1 ;  

update #Diagind set DIA1H=0, DIA1M=0, DIA2M=0, EYEL=0  where  

(AID='DC' or  AID='AC'); 

 

SELECT DISTINCT * , 

CCARVH= case when AID='DC' then CARVH  else 0 end,  

CCARM= case when AID='DC' then CARM else 0 end,   

CCNSH= case when AID='DC' then CNSH else 0 end,  

CPULVH= case when AID='DC' then PULVH  else 0 end,  

CPULH= case when AID='DC' then PULH     else 0 end,  

CGIH= case when AID='DC' then GIH  else 0 end,  

CMETH= case when AID='DC' then METH else 0 end,  

CHIVM= case when AID='DC' then HIVM  else 0 end,  

CINFM= case when AID='DC' then INFM  else 0 end,  

CHEMEH=case when AID='DC' then HEMEH  else 0 end 

INTO #DIAGIND2 

FROM #DIAGIND 

 

SELECT DISTINCT  

A.MEMID 

,A.MEDICAID_ID 

,AID 

,CATEGORY 

INTO #RXCLAIMS 

FROM ILLINOIS_REPORT_DETAILS.DBO.IL_FT_RX_CLAIMS A  

JOIN [Illinois_Report_Details].[dbo].[IL_DIM_REF_GROUPER_MASTER] b 

            on A.NDC = B.CODE 

          and MODEL = 'MRX6.2.2R' 

JOIN #MBRSHIP ON #MBRSHIP.MEMID = A.MEMID 

WHERE DATEFILL BETWEEN '2015-07-01' AND '2016-06-30' 
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UNION  

 

SELECT DISTINCT 

MEMID 

,medicaid_id 

,AID 

,CATEGORY 

FROM [DC01DSSDBPC10\SQL10].[ERR_IL].[hds].[Pharmacy] a 

JOIN [Illinois_Report_Details].[dbo].[IL_DIM_REF_GROUPER_MASTER] b 

            on A.[NationalDrugCd] = B.CODE 

          and MODEL = 'MRX6.2.2R' 

JOIN #MBRSHIP ON #MBRSHIP.MEMID = A.[RecipientID] 

WHERE [ServiceFromDt] BETWEEN '2015-07-01' AND '2016-06-30' 

UNION  

SELECT DISTINCT 

MEMID 

,medicaid_id 

,AID 

,CATEGORY 

FROM [DC01DSSDBPC10\SQL10].[ERR_IL].hds.MMP_Pharmacy a 

JOIN [Illinois_Report_Details].[dbo].[IL_DIM_REF_GROUPER_MASTER] b 

            on A.[NationalDrugCd] = B.CODE 

          and MODEL = 'MRX6.2.2R' 

JOIN #MBRSHIP ON #MBRSHIP.MEMID = A.[RecipientID] 

WHERE [ServiceFromDt] BETWEEN '2015-07-01' AND '2016-06-30' 

 

SELECT memid,Aid, isnull([MRX1],0)MRX1, isnull([MRX2],0)MRX2, 

isnull([MRX3],0)MRX3, isnull([MRX4],0)MRX4, 

 isnull([MRX5],0)MRX5, isnull([MRX6],0)MRX6, isnull([MRX7],0)MRX7, 

isnull([MRX8],0)MRX8, isnull([MRX9],0)MRX9,  

 isnull([MRX10],0)MRX10, isnull([MRX11],0)MRX11, 

isnull([MRX12],0)MRX12, isnull([MRX13],0)MRX13, 

isnull([MRX14],0)MRX14, 

  isnull([MRX15],0)MRX15 

into  #Rx_Diagind 

FROM 

(SELECT distinct memid,Aid, CATEGORY FROM #RXCLAIMS) AS SourceTable 

PIVOT(count(CATEGORY) FOR CATEGORY IN 

([MRX1],[MRX2],[MRX3],[MRX4],[MRX5],[MRX6],[MRX7],[MRX8],[MRX9],

[MRX10], 

[MRX11],[MRX12],[MRX13],[MRX14],[MRX15] )  ) pvt 

 

update #Rx_Diagind set mrx8=0, mrx7=0  where mrx9=1 

update #Rx_Diagind set mrx7=0  where mrx8=1 

 

SELECT DISTINCT A.* 

,isnull([MRX1],0)MRX1, isnull([MRX2],0)MRX2, isnull([MRX3],0)MRX3, 

isnull([MRX4],0)MRX4, 

 isnull([MRX5],0)MRX5, isnull([MRX6],0)MRX6, isnull([MRX7],0)MRX7, 

isnull([MRX8],0)MRX8, isnull([MRX9],0)MRX9,  

 isnull([MRX10],0)MRX10, isnull([MRX11],0)MRX11, 

isnull([MRX12],0)MRX12, isnull([MRX13],0)MRX13, 

isnull([MRX14],0)MRX14, 

  isnull([MRX15],0)MRX15 

INTO #FINAL 

FROM #DIAGIND2 A  
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LEFT JOIN #RX_DIAGIND B ON A.MEMID = B.MEMID 

 

 update #FINAL set MRX1=0, MRX2=0 where CARVH >0 or CARM >0 

 update #FINAL set CARL=0, CAREL=0, MRX2=0 where MRX1=1 

 update #FINAL set MRX2= 0 where CARL>0 or CAREL>0 

 update #FINAL set MRX3=0 where PSYH  >0 or PSYM  >0 or PSYML>0 or 

PSYL>0 

 update #FINAL set MRX4=0 where DIA1H  >0 or DIA1M   >0 or DIA2M  >0 

or DIA2L>0 

 update #FINAL set MRX5=0 where RENEH >0 or  RENVH >0 

 update #FINAL set RENM=0, RENL=0 where MRX5=1 

 update #FINAL set  MRX6=0 where HEMEH=1 

 update #FINAL set HEMVH=0, HEMM=0, HEML=0 where MRX6=1 

 update #FINAL set MRX9=0, MRX8=0, MRX7=0 where AIDSH >0 or INFH >0 

 update #FINAL set HIVM=0 where MRX9=1 

 update #FINAL set MRX8=0, MRX7=0 where HIVM=1 

 update #FINAL set INFM=0, INFL=0 where MRX7   >0 or MRX8   >0 or 

MRX9>0 

 update #FINAL set MRX10=0 where SKCM  >0 or SKCL    >0 or SKCVL >0 

 update #FINAL set MRX11=0 where CANVH   >0 or CANH    >0 or CANM  >0 

 update #FINAL set CANL=0 where MRX11=1 

 update #FINAL set MRX12=0, MRX13=0, MRX14=0 where CNSH  >0 or CNSM >0 

 update #FINAL set CNSL=0, MRX13=0, MRX14=0 where MRX12=1 

 update #FINAL set MRX13=0, MRX14=0 where CNSL=1 

 update #FINAL set MRX13=0 where MRX14=1 

 update #FINAL set MRX15=0 where PULVH   >0 or PULH   >0 or PULM >0 or 

PULL >0 

 update #FINAL set CARM=1 where AID='DC' and MRX1=1 

 update #FINAL set HEMEH=1 where AID='DC' and MRX6=1 

 update #FINAL set HIVM=0, INFM=0 where AID='DC' and MRX9=1 

 update #FINAL set HIVM=1, INFM=0 where AID='DC' and ( MRX7 >0 or  

MRX8>0) 

 

SELECT MEMID, AID, CATEGORY, Value 

INTO #FINAL2 

FROM (SELECT MEMID, AID, 

Intercept,a_under1,a_1_4,a_5_14m,a_5_14f,a_15_24m,a_15_24f,a_25_

44m,a_25_44f,a_45_64m,a_45_64f,a_65,[CARVH],[CARM],[CARL],[CAREL

],[PSYH],[PSYM],[PSYML],[PSYL],[SKCM],[SKCL],[SKCVL],[CNSH],[CNS

M], 

[CNSL],[PULVH],[PULH],[PULM],[PULL],[GIH],[GIM],[GIL],[DIA1H],[DIA1M],

[DIA2M],[DIA2L],[SKNH],[SKNL],[SKNVL],[RENEH],[RENVH],[RENM], 

[RENL],[SUBL],[SUBVL],[CANVH],[CANH],[CANM],[CANL],[HLTRNS],[DDM],[DDL

],[GENEL],[METH],[METM],[METVL],[PRGCMP],[PRGINC],[EYEL],[EYEVL]

,[CERL], 

[AIDSH],[INFH],[HIVM],[INFM],[INFL],[HEMEH],[HEMVH],[HEMM],[HEML],CCAR

VH, CCARM,  CCNSH, CPULVH, CPULH, CGIH, CMETH, CHIVM, CINFM, 

CHEMEH,[MRX1],[MRX2],[MRX3],[MRX4],[MRX5],[MRX6],[MRX7],[MRX8],[

MRX9],[MRX10], 

[MRX11],[MRX12],[MRX13],[MRX14],[MRX15] FROM #FINAL) P 

UNPIVOT 

(VALUE FOR CATEGORY IN 

(Intercept,a_under1,a_1_4,a_5_14m,a_5_14f,a_15_24m,a_15_24f,a_25

_44m,a_25_44f,a_45_64m,a_45_64f,a_65,[CARVH],[CARM],[CARL],[CARE

L],[PSYH],[PSYM],[PSYML],[PSYL],[SKCM],[SKCL],[SKCVL],[CNSH],[CN

SM], 
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[CNSL],[PULVH],[PULH],[PULM],[PULL],[GIH],[GIM],[GIL],[DIA1H],[DIA1M],

[DIA2M],[DIA2L],[SKNH],[SKNL],[SKNVL],[RENEH],[RENVH],[RENM], 

[RENL],[SUBL],[SUBVL],[CANVH],[CANH],[CANM],[CANL],[HLTRNS],[DDM],[DDL

],[GENEL],[METH],[METM],[METVL],[PRGCMP],[PRGINC],[EYEL],[EYEVL]

,[CERL], 

[AIDSH],[INFH],[HIVM],[INFM],[INFL],[HEMEH],[HEMVH],[HEMM],[HEML],CCAR

VH, CCARM,  CCNSH, CPULVH, CPULH, CGIH, CMETH, CHIVM, CINFM, 

CHEMEH,[MRX1],[MRX2],[MRX3],[MRX4],[MRX5],[MRX6],[MRX7],[MRX8],[

MRX9],[MRX10], 

[MRX11],[MRX12],[MRX13],[MRX14],[MRX15]) ) UNPVT 

WHERE  

VALUE = 1 

 

DROP TABLE #IL_DIM_CDPS 

SELECT DISTINCT  

MEMID, #final2.AID, CATEGORY 

, [CDPS_Label] 

, ACUTE  

,GETDATE() AS INSERT_DATE 

INTO #IL_DIM_CDPS 

FROM #FINAL2 

LEFT JOIN ILLINOIS_REPORT_DETAILS.[dbo].[IL_DIM_REF_CDPS_WEIGHTS] B ON 

B.CDPS = #FINAL2.Category  

  AND B.AID = CASE WHEN #FINAL2.AID IN ('DA','DC') THEN 'DADC' 

ELSE #FINAL2.AID END 

  AND MODEL = 'PRO-RX'  

ORDER BY 1 

 

--Categories for regression testing  

DROP TABLE #MRX 

DROP TABLE #INTERCEPT 

DROP TABLE #DEMOGRAPHIC 

DROP TABLE #MEDICAL 

 

SELECT DIStinct MEMID, SUM(ACUTE) MRX INTO #MRX from #IL_DIM_CDPS 

WHERE category like '%MRX%' 

GROUP BY MEMID 

 

SELECT DIStinct MEMID, SUM(ACUTE)INTER INTO #INTERCEPT from 

#IL_DIM_CDPS 

WHERE category like '%intercept%' 

GROUP BY MEMID 

SELECT DIStinct MEMID, SUM(ACUTE) DEMO INTO #DEMOGRAPHIC from 

#IL_DIM_CDPS 

WHERE category like 'a_%' 

GROUP BY MEMID 

 

SELECT DIStinct MEMID, SUM(ACUTE) MEDI INTO #MEDICAL from #IL_DIM_CDPS 

WHERE (category not like '%MRX%' and category not like '%intercept%'  

and category not like 'a_%') 

GROUP BY MEMID 

 

--creating 3 sets of data (chf , diabetes and breast cancer) 

drop table #cdpsCAT 

select memid, cdps_label  

into #cdpsCAT 

from(  
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SELECT DISTINCT  

   MEMID, cdps_label, DENSE_RANK () OVER (PARTITION BY 

MEMID ORDER BY ACUTE DESC, CDPS_LABEL) AS RANKING  

   FROM #IL_DIM_CDPS 

 where (cdps_label like '%cancer%' OR cdps_label like 

'%Cardiovascular%' OR cdps_label like '%diabetes%') 

   )ab 

where ranking = 1 

 

--Final Risk Score  

DROP TABLE #Test_Data 

SELECT DISTINCT A.MEMID 

      ,[sex] GENDER 

      ,[ETHINICITY] 

      ,A.[AGE] 

   ,DEMO 

   ,INTER 

   ,ISNULL (MEDI,0.0) MEDI 

   ,ISNULL (MRX,0.0) MRX 

   ,E.CDPS_SCORE STATE_SCORE 

      ,C.[CDPS_NEW_RISK_SCORE] SCORE 

      ,CASE WHEN D.[CDPS_LABEL] LIKE '%diabetes%' THEN 'DIABETES' 

  WHEN D.[CDPS_LABEL] LIKE '%cardio%' THEN 'CHF'  

  WHEN D.[CDPS_LABEL] LIKE '%cancer%' THEN 'BREAST CANCER'  END 

AS 'LABEL' 

   ,CASE WHEN [SMOKER_6M]='Y' THEN 1 ELSE 0 END AS [SMOKER_6M] 

      ,[IP_ADMIT_6M] 

      ,[BED_DAYS_6M] 

      ,[IP_BH_ADMIT_6M] 

      ,[BED_DAYS_BH_6M] 

      ,[ED_VISIT_6M] 

      ,[PREVENTIVE_VISIT_6M] 

      ,[HOSPITAL_PAID_AMT_6M] 

      ,[HOSPITAL_ED_PAID_AMT_6M] 

      ,[RX_PAID_AMT_6M] 

INTO #Test_Data 

FROM IL_DIM_MEMBER A  

JOIN MEMBER B ON A.MEMID =B.MEMID 

JOIN  

 (SELECT DISTINCT  

   MEMID 

   , round(SUM(cast(ACUTE as real)),2) AS 

CDPS_NEW_RISK_SCORE 

   FROM #IL_DIM_CDPS 

   GROUP BY MEMID 

 )C ON C.MEMID=B.MEMID 

JOIN  

 #cdpsCAT D on D.MEMID = B.MEMID 

JOIN  

 sfy2016_rs E ON A.MEMID = E.MEMID 

JOIN  

 MEMBER F ON A.MEMID = F.MEMID 

LEFT JOIN  

 #MRX ON A.MEMID = #MRX.MEMID 

LEFT JOIN #INTERCEPT 

  ON A.MEMID = #INTERCEPT.MEMID 

LEFT JOIN #DEMOGRAPHIC 
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  ON A.MEMID = #DEMOGRAPHIC.MEMID 

LEFT JOIN #MEDICAL 

  ON A.MEMID = #MEDICAL.MEMID 

 

--Preparing  data for FFDT test  

DROP TABLE #DM_DATA 

SELECT  

A.AGE,  

CASE  

 WHEN GENDER='M' THEN 1 ELSE 0 END AS GENDER, 

A.SCORE, A.SMOKER_6M SM, 

CASE WHEN SCORE >5 THEN 3 --HIGH 

  WHEN SCORE BETWEEN 2 and 5  THEN 2 --MEDIUM 

  WHEN SCORE <2  THEN 1 --LOW 

  END AS RISK_CAT, 

CASE WHEN PROGRAM_RISK_LEVEL IS NULL THEN 0 ELSE 1 END CL_DM_FLAG,  

B.ED_VISIT_6M ED_VI, B.[IP_ADMIT_6M] IP_AD ,READMISSION_6M_AUTH RE_AD 

, B.PREVENTIVE_VISIT_6M PCP_VI 

INTO #DM_DATA 

FROM RS_F A JOIN il_DIM_member B 

ON A.MEMID=B.MEMID 

 

--Add predicted DM logic to Risk Score Algorithm 

 

Select  

     CASE WHEN RISK_CAT=3 and (ED_VISIT_6M >= 2 OR ([IP_ADMIT_6M] > 

1)) and PREVENTIVE_VISIT_6M >1 THEN 'Tier I'   

      WHEN RISK_CAT=2 and (ED_VISIT_6M < 2 OR ([IP_ADMIT_6M] < 2)) and 

PREVENTIVE_VISIT_6M >1 THEN 'Tier II'   

      ELSE 'Tier III' END AS DM_LEVEL, 

   A.* 

FROM #Test_Data A 

JOIN 

 #DM_DATA B ON A.MEMID =B.MEMID 
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