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ABSTRACT 

FLEXURAL ANALYSIS 3D PRINTED MEMBERS 

YAZEN HINDIEH 

2018 

Flexural analysis of a beam is the determination of the bending capacity of the beam 

when it is undergoing a load causing the beam to bend. 3D printed plastic beams have not 

been characterized and analyzed yet. However, this research characterizes 3D-printed 

PLA beams and provides projects for future researchers. The literature describes several 

fields that utilizes 3D-printing. In this research, we introduce an innovative approach to 

investigate the flexural properties of a 3D printed composite beam, made of PLA and 

locally available soil. The flexural testing will determine the behavior and mechanical 

properties of the 3D printed beams. The flexural properties of the beams were analyzed 

by following ASTM D790, Standard Test Methods for Flexural Properties of 

Unreinforced and Reinforced Plastic and Electrical Insulation Material. Then design 

enhancements were done to improve the beams’ flexural capacity and overall strength. In 

this research, it was discovered that incorporating sand in the beam reduces the flexural 

capacity of the beams. Also, that the flexural behavior of the PLA beams is similar to 

non-reinforced timber beams.  
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Introduction 

The objective of this research is to provide projects for Oglala Lakota College (OLD) 

students, and design and characterize 3D printed beams. A broader impact of this 

research is to help protect the environment by utilizing non-biodegradable materials in 

landfills and maybe a start to researching the usage of 3D printed plastic beams in 

structures. In addition, to making it more feasible for people in the poorer neighborhoods 

to afford better housing. PLA is a cost-effective product that allows for a more affordable 

building material needing less workers and cheaper materials. According to a statistical 

study by Paul Jargowsky, 13.8 million families in “the bigger” cities of the United States 

only live in high-poverty neighborhoods. Most people living in high poverty 

neighborhoods have lower incomes and as a consequence live in poor conditions. Poor 

housing is a problem in the U.S., however many of these lower income families cannot 

afford better homes. Also, an average American 185 pound of plastic waste a year, and 

that creates an environmental problem since only 10% of that is recycled (Semuels, 

2015). To try and help find a solution to these two problems, this research utilizes a 

thermoplastic, polylactic acid (PLA), and locally-available soil to build structural beams. 

These beams will be used as the model system to investigate flexural strength and 

deformation of the 3D printed members. Flexural strength will be tested to determine the 

behavior and mechanical properties of the composite beams. The beams consisted of 3D 

printed PLA hollow boxes and fine-grain soil, more specifically Unimin sand. The 

samples will then be to tested for flexural properties by following ASTM D790, Standard 

Test Methods for Flexural Properties of Unreinforced and Reinforced Plastic and 

Electrical Insulation Material. Five samples of each design were printed to ensure quality 
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control. The design followed a cyclic design method; first an initial design was completed 

and tested, second stage is to reduce the data to mechanical properties, and finally 

improve the design in relation to behavior of the tested beam. 

From this research it was concluded that, the hollow beams without Unimin sand have 

higher flexural capacity than ones with Unimin sand.; since Unimin sand causes 

interlayer adhesion failure. Beams without Unimin sand behaved like timber beams; 

where they underwent a brittle flexural failure. Brittle failures are not preferred in 

engineering since it does not provide any warning time for the public. The usage of Fiber 

Reinforced Plastic (FRP) can be advantageous in regards to the interlayer adhesion 

failure and brittle failure.   

Literature Review 

2.1 History of 3D Printing 

3D printing is a series of two-dimensional printing in layers used to build 3D object 

that is designed using computer-aided design programs, like SolidWorks and Auto-

Cad. This paper will address the history of flexural analysis, and the usage of PLA 

and fine grain soil to create 3D printed beams.  

3D printing was first designed and engineered in 1986 by Chuck Hull, it was known 

as Fused Deposition Modeling (FDM) (Gross, 2014).  

“3D printing is a process for making a component by depositing a first layer of a 

powder material in a confined region and then depositing a binder material to 

selected regions of the layer of powder material to produce a layer of bonded 

powder material at the selected regions. Such steps are repeated a selected number 
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of times to produce successive layers of selected regions of bonded powder 

material so as to form the desired component” (Sachs, 1994) 

Using Hull’s 3D MIT professors Cima and Sachs patented the first machine termed 

“3D printer” in 1993 and it was developed to print plastic, metal and ceramic parts 

(Cima, 1994). 3D printed members are designed using a computer aided design 

(CAD) program, e.g., AutoCad, SolidWorks, AutoDesk and others (Gross, 2014).  

It was not until after 3D printers were available to the public that 3D printing truly 

advanced.  

2.2 Applications of 3D Printing  

First 3D printing started as a use for artists and designers to preview their design prior 

to production. 3D printing has vital advantages in terms of cost effectiveness, 

efficiency (less time), accuracy, and how it can be used in almost every field of work 

(Panda, 2017). According to Verntola’s research, 3D printing was a breakthrough in 

the medical field. Robotic prosthetics were designed that are to fit the needs of the 

patients for only $300 (Ventola, 2014). This research show that these prosthetic 

robotic hands can be accurately sized, have an independent thumb movement, and 

weight less than most externally powered prostheses (Gretsch, 2015). 

2.3 3D Printing in Civil Engineering 

3D printing has been used in the geotechnical engineering field, and the structural 

engineering field. In the geotechnical field, natural and synthetic, 3D printed, fibers 

were studied for use as soil reinforcement. Fibers were 0.2-4% of the weight of the 

soil. The results showed an increase in strength and stiffness when using these fibers 
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due to their mechanical properties (Hejazi, 2012). In the structural field, 3D printing 

of concrete structures used large scale 3D printers and ultra-high-performance 

concrete, using an FDM like technique.  

2.4 Beams  

Beams are structural members that are normally horizontally oriented. Beams 

primarily withstands bending loads, that is why they are used to support roofs, and 

floor slabs. In engineering terminology bending loads are defined as flexural loads. 

Flexural loads are externally applied loads that cause beams to bend. Beams are made 

of many different materials like only steel, reinforced concrete, prestressed concrete, 

timber, and reinforced timber. Those materials are chosen based on efficiency, load 

carrying capacity, aesthetics, and most importantly feasibility (cost). Beams are 

designed and analyzed based on their flexural strength and capacity.  

2.5  Polylactic Acid (PLA)   

PLA is a plastic acquired in 1932 by Carothers. PLA is manufactured by fermentation 

and chemical synthesis (Lee, 2014). Plastics are non-biodegradable, for that their 

disposal is an environmental problem. Utilizing plastics as a building material would 

decrease the amount of plastic waste around the world. Currently, PLA is used in 

packaging and a many medical applications one of which is 3D printed casts 

(Dodziuk, 2016). The reason behind the versatile use of PLA is that it is a 

thermoplastic that is easily 3D printed, having properties similar to Polyethylene.  
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2.6 Three-Point Flexural Test. 

Flexural strength can be defined as the resistance of a member to bending. Bending of 

a member using three-point flexure testing can be obtained by applying a point load at 

the center of the beam causing bending moments throughout member, with the 

highest bending moment at the center of the beam; as illustrated in Figure 3.3.1. 

Force-displacement data are usually obtained from the three-point flexural test. After 

that, the flexural properties of the member can be determined through a flexural 

stress-strain diagram which would lead to shear strength, flexural modulus and other 

important mechanical properties.  

Stress-strain graphs include the stress values on the y-axis and the strain values on the 

x-axis. Flexural stress is controlled by the bending moment, moment of inertia and 

the distance to the neutral axis. Strain can be defined as the ratio of displacement to 

the original length. Flexural modulus is the ratio of stress to strain in the elastic region 

of the stress-strain graph. Figure 2.6.1 is added to display the important regions and 

vital points in a stress-strain diagram. Keep in mind, Figure 2.6.1 is an idealized 

tensile stress-strain diagram.  
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Figure 2.6.1. This figure displays the important regions and vital points in an idealized 

tensile-stress-strain diagram with defined engineering properties points provided. 

(Quora.com) 

The points illustrated on Figure 2.6.1 represent the key points on a stress-strain diagram. 

Point A is the elastic limit (end of the elastic region), the slope of the straight line before 

point A can be used to identify the value of modulus of elasticity. Point B is the is the 

yield point, which a point where the sample tested goes from the elastic region into a 

plastic region. Point D is the ultimate stress and point E is the failure point. Failure point 

is defined differently among scholars, some scholar consider a failure when the stress 

capacity decreases by a certain percentage and some scholars consider rupture as the 

failure point.  
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Materials and Methods  

The beams outer shell was made of PLA and the interior of the beams was packed 

Unimin sand. PLA was chosen since its properties make it an ideal thermoplastic to use 

with the present 3D printer’s limitations of heat insulation and production. To 3D print 

PLA the nozzle should be at 190-200 oC. and the plate at 60 oC (Yao, 2017). Table 3.1 

shows the PLA’s mechanical properties 

Table 3.1 Mechanical properties of PLA (Makeitfrom, 2015).  

 

 

 

The reasoning behind adding a soil was to reduce the stress acting on the PLA by 

increasing the moment of inertia of the beam, given that the flexural stress, σf, and 

moment of inertia, I, are inversely proportional to one another (equation 3.1).  

�� = ��
� 							                                                                                                   Equation  3.1 

Additionally, the soil within the beam would help distribute the force “equally” along the 

beam, Figure 3.1.  

Elongation 6% 

Flexural Modulus   4 GPa 

Flexural Strength  80 MPa  

Tensile strength 50 MPa 
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Figure 3.1. This figure (x-z axes) represents the sand changing the orientation of the 

point load (F) to a horizontal distributed load along all the walls (y-z axes too) of the box 

beam.  

The soil used in this research was Unimin sand. Unimin sand is a cohesionless soil and 

have a uniform grain size (0.15 mm). The usage of different types of soil may affect the 

behavior of the composite beams. The following are the steps followed to perform the 

flexural analysis of the composite beams: 
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Figure 3.2. Design cycle.  

3.1 Sample Identification 

The research included three different beam designs and are identified in Table 3.1.1. 

Table 3.1.1 Design samples abbreviations. 

Design number and Name Abbreviation 

Design 1: Cap on Top CT beam 

Design 2: Cap on the Bottom CB beam 

Design 3: Beam with a filling hole 

                 and No Cap 
NC beam 

 

3.2 Initial Design 

The initial design of the composite beam was a hollow box that is enclosing Unimin sand 

by a cap on top, top of the z-axis. The beams was assembled using Solidworks, Figure 

3.2.1.   
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Figure 3.2.1. Assembled CT beam to show perfect cap-to-box fit. 

The beam was designed in two parts on SolidWorks and then SolidWorks was used to 

assemble them together to ensure the dimensions of the two parts match with tolerance, 

first part was the box and the second part was the cap. They were designed to fit together 

with tolerance, refer to Figure 3.2.2 and 3.2.3 to see the two parts and how their 

dimensions fit with tolerance. The reason behind designing and printing the parts 

separately is to allow the sand to be placed inside the hollow box and packed correctly 

before the box was put together.  
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Figure 3.2.2. Dimensions of the boxes for both CT and CB beams (mm). 

 

Figure 3.2.3. Dimensions of the cap for both CT and CB beams (mm). 

177.8 ± 0.25  

184.1 ± 0.25  

57.2 ± 0.25  
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After that, the box was printed using the 3D printer, Flash Forge Creator Pro©, and PLA 

filament as the printing material. To be able to print PLA the temperature of the nozzle 

had to be 210oC and the platform (plate) had to be 110 oC. The plate and nozzle’s 

locations are shown in Figure 3.2.4. Keep in mind, the temperature of the room where the 

3D printer is printing must be at 23 oC ± 2oC for the printer to print correctly. The 

reasoning behind these requirements are summarized in Table 3.2.1. 

 

Figure 3.2.4. The nozzle’s and plate’s locations in a creator pro 3D printer photo by 

author.  
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Table 3.2.1. Ideal temperatures of the nozzle, plate and room where the 3D printer is 

located and the reasoning behind it 

Object Temperature (oC) Reason 

Nozzle 210 

Facilitates PLA 

filament to melt and 

pass through the 

nozzle without 

hardening inside of 

the nozzle. 

Plate 110 

To cool the filament 

enough to harden. 

Note that filament has 

to harden enough to 

cause interlayer 

adhesion. 

Room 21oC – 25oC 

To prevent warping of 

the sample being 

printed. 

 

In the beginning of the research, 90% of the print samples warped during the initial 

printing stage since the printers’ location were underneath the cooling vent. After 

relocating the printers, there was no warping during printing. The samples were printed 

by having the nozzle excrete 4 mm thick strands, also in this research filament thickness 
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was not investigated for that the beams were printed at a 100% fill. After taking these 

steps into consideration the beam was printed and assembled, Figure 3.1.5 shows how the 

cap and the hollow box combined after printing.  

 

Figure 3.2.5. The first assembled CT beam. 

3.3 Three-Point Flexural Test. 

Flexural strength was defined earlier as the resistance of a member to bending. To do the 

three-point flexural test, a load is applied at the center of the beam causing a moment 

envelope along the beam. Figure 3.3.1 represent how a 3-point flexural test is proceeded, 

the shear and bending moment envelopes caused by the point load, P.  

z 

y 
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Figure 3.3.1. 3-point flexure test. This illustration was adopted from Kopeliovich, 2017, 

and modified to present the shear and moment caused by the point load. 
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The apparatus used to perform the 3-point flexural test was MTS hydraulic actuator 

which can provide loads up to 50 kN. MTS can be used as flexure testing apparatus, as 

shown in Figure 3.3.2. The beam was simply supported and tested by applying a point 

load at the center of the beam. As the beam is being tested the data from the MTS 

hydraulic actuator was recording simultaneously, providing us with force versus 

displacement data.  

 

Figure 3.3.2. 3 point flexural testing apparatus setup.  
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3.4 Analyzing the Data 

To perform flexural analysis and obtain the flexural properties of the beams the force-

displacement data were translated to stress-strain data. To obtain the stress-strain data the 

ASTM D790, Standard Test Methods for Flexural Properties of Unreinforced and 

Reinforced Plastic and Electrical Insulation Material, was followed.  

1) The bending moment was obtained using Equation 3.2 

� = 	

�                                                                                         Equation 3.2 

Where;  

M = the bending moment 

P = the applied load 

L = the span length between the two supports 

2) The flexural stress was estimated for both beams with and without sand. To 

determine the flexural stress of the hollow beam (no sand) Equations 3.3 was 

used and to determine the flexural stress of the full beam (with sand) Equation 

3.4 was used.  

�� = 	
�

�                                                                                       Equation 3.3 

Where;  

��	= is the flexural stress [Force/Area] 

d= is the depth of the beam in the z-direction [Length] 

I= is the moment of inertia of the beam [Length4] 
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�� = �	

����                                                                                    Equation 3.4 

3) The flexural strain was calculated using Equation 3.5 

�� = ���

�                                                                                       Equation 3.5 

Where; 

�� = flexural strain. [length / length or %] 

D= deflection at the center of the beam [length]. 

4) Flexural stress-strain graphs were then obtained using Excel, having the 

flexural stress on the y-axis and the flexural strain on the x-axis. 

5) The modulus of elasticity in bending was estimated by taking the slope of the 

linear region in the elastic region of the stress-strain graph.  

6) Comparing all the similar samples together and estimating the standard 

deviation using Equation 3.6  

� = �(∑������)
���                                                                       Equation 3.6 

Where;  

S = the standard deviation 

x = value of a single observation 

X = mean value of the set of observation  

n = number of observations  
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3.5 Quality Control 

For quality control five samples were printed for every design in this experiment. Since 

the printer is programmed for extreme accuracy, the samples dimensions matched within 

0.01 in. Also the mechanical properties of the beams were almost identical. The 

difference between the mechanical properties could have been caused by human error.  

Research Results and Discussion 

To determine the flexural properties of the composite beams. The research was divided 

into the following continuous cycle.  

4.1 Mechanical Properties Analysis 

The initial design of the CT beam, Figure 3.2.1, was not ideal during testing. Due to the 

sand’s reaction, Figure 3.1, the walls started to bulge causing the cap to sink in during the 

3-point test which made the walls to act like slender cantilever columns, resulting in a 

low force resistance. Figure 4.1.1 is a force-displacement graph that illustrates the 

maximum force resisted was 2.6 KN which before failure. 
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Figure 4.1.1. Force vs. displacement data for beams CT.  

Further analysis was performed to determine the flexural properties of the initial beams. 

First, Force-displacement data were used to acquire the stress-strain data, Figure 4.1.2.  
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Figure 4.1.2. Flexural stress-strain data for the CT beams.  

From the stress strain diagram flexural modulus, flexural strength and strain were 

determined and tabulated in Table 4.1.1.  

Table 4.1.1. Flexural properties of the CT beams with sand including standard deviation 

(n=5).  

Modulus of Elasticity (MPa) 77.0 ± 0 

Maximum Force (KN) 2.56 ± 0.0019 

Maximum Bending moment (kN-mm) 86.3 ± 36 

Maximum Flexural stress (MPa) 3.97 ± 0.002 

Maximum Flexural strain 0.097 ± 2.3 E-5 
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The second set of samples were the CB beams, which were the CT beams rotated 180 

degrees about the z-axis, to eliminated the chances of the cap sinking into the beam and 

that caused the flexural strength to increase, Figure 4.1.3.  

 

Figure 4.1.3. Force-displacement data for the CB beams.  

By changing the beam’s orientation the beam gained 160% more force resistance 

capacity to where it increased from 2.6 kN to 6.5 kN and the effective displacement 

increased from 6 mm to 8 mm. Effective displacement is the displacement at the center of 

beam until failure occurs. Failure of the sample in this research is identified to be at a 
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point where the force has dropped significantly and all at once. Additionally, the 

mechanical properties of the CB beams were acquired by obtaining the stress-strain data, 

Figure 4.1.4. 

 

Figure 4.1.4. Stress-strain data for the CB beams.  

From the stress-strain diagram, Figure 4.1.4, the mechanical properties of the CB beams 

were obtained and tabulated in Table 4.1.2. 
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Table 4.1.2. Flexural properties of the CB beams with sand including standard deviation 

(n=5).  

Modulus of Elasticity (MPa) 182 ± 0 

Maximum Force (KN) 6.50 ± 0.19 

Maximum Bending moment (kN-mm) 216 ± 6.4 

Maximum Flexural stress (MPa) 9.94 ± 0.0003 

Maximum Flexural strain 0.13 ± 1.2E-4 

 

To verify if the sand was the factor causing the bulging of the wall, a beam without sand 

was tested and analyzed. The results of the test are summarized in Figure 4.1.5-6 and 

Table 4.1.3.  

 

Figure 4.1.5. Force-displacement data for the CT beam with no sand. Point A, first set of 
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strands fracture, Point B is the second set of strands fracture, and Point C is the third set 

of strands fracture.  

The force-displacement graph (Figure 4.1.5) shows the results of the CT beam with no 

sand. This verifies that the sand was causing the walls to bulge and act as a cantilever-

slender wall. Without the wall bulging the maximum force resisted was 6.28 kN which is 

140% increase in force resistance capacity and the displacement almost doubled. Points 

A-C on Figure 4.1.5 represent points where PLA strands were fracturing but the test was 

continued until the beam reached failure, the observed failure modes are explained in 

section 4.2. The mechanical properties were analyzed to see if they were also affected by 

the presence of sand within the beam.  
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Figure 4.1.6. Stress-strain data for the beam with no sand.  

From the stress-strain diagram the mechanical properties of this beam were obtained and 

tabulated in Table 4.1.3 

Table 4.1.3. Flexural properties of the beam with no sand including standard deviation 

(n=5).  

Modulus of Elasticity (MPa) 324 ± 0 

Maximum Force (KN) 6.28 ± 0.002 

Maximum Bending moment (kN-mm) 206 ± 4.2 

Maximum Flexural stress (MPa) 22.6 + 0.0019 

Maximum Flexural strain 0.15 ± 0.02 
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The reasons behind the significant difference in the stress value was because the effective 

area of the beam has decreased significantly and stress is inversely proportional to the 

effective area. Additionally, the increase of force resistance capacity caused the stress to 

increase even more.  

Due to the overall improvement of the second set of samples and the proof that the sand 

contributed in failing the beam. A new design was done which excludes the cap entirely. 

The second design was a beam with thicker walls than the initial beam design and with a 

filling hole on top instead of a cap, Figure 4.1.7. Having a filling hole eliminates any 

chances of the walls acting as cantilever columns which would increase both stability and 

resistance of the beam.  
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Figure 4.1.7. Top view of the new design beams’ (NC beam) dimensions (mm). 

The filling hole is located at the center of the beam and has 0.5 in diameter. Having a 

filling hole decreased the sand filling and packing efficiency. The Unimin sand was 
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packed by vibration, and due to its grain size, packing by vibration was sufficient. The 

design improvement provided us with vital information that may lead to further 

investigation in future researches regarding the PLA interlayer adhesion resistance to the 

shear forces.  

Figure 4.1.8, represents the force-displacement data of the new design and how the force 

resistance capacity have increased in comparison to CT and CB beams.  

 

Figure 4.1.8. Force-displacement data of the NC beam with sand.  

The maximum force resisted by the NC beam is 7.15 kN which is a 10% increase from 

the CB beam force resistance, but there was a decrease in displacement. From the force-

displacement data the following stress-strain graph was obtained, Figure 4.1.9.  
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Figure 4.1.9. Stress-strain data of the NC beam with sand.  

From the stress strain data the mechanical properties in table 4.1.4 were acquired:  

Table 4.1.4. Mechanical properties of the NC beams with sand including standard 

deviation (n=5). 

Modulus of Elasticity (MPa) 151 ± 0 

Maximum Force (kN) 7.11 ± 0.027 

Maximum Bending moment (kN-mm) 237 ± 0.91 

Maximum Flexural stress (MPa) 8.68 ± 0.013 

Maximum Flexural strain 0.102 ± 0.01 
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After obtaining the mechanical properties for the beam, the beam was investigated to 

check if it is more efficient without sand included. Figures 4.1.10-11 and table 4.1.5 

summarize the mechanical properties of the beam with no sand.  

  

Figure 4.1.10. Force-displacement data for the NC beam with no sand included.  

The force-displacement data shows that the NC beam can withhold more load when sand 

is excluded, where the force resistance increased by 34%. Additionally, the displacement 

increased by 50%. After that, stress-strain data were obtained and summarized in Figure 

4.1.11 and Table 4.1.5  
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Figure 4.1.11. Stress-strain data for the NC beam with no sand included.  

Table 4.1.5. Mechanical properties of the NC beam without sand including standard 

deviation (n=5). 

Modulus of Elasticity (MPa) 406 ± 0 

Maximum Force (kN) 9.58 ± 0.031 

Maximum Bending moment (kN-mm) 319 ± 0.95 

Maximum Flexural stress (MPa) 29.4 ± 0.041 

Maximum Flexural strain 0.157 ± 0.003 
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From the data presented it can be concluded that, eliminating the cap and making the 

walls thicker would increase the beam’s capacity of withstanding bending and loading.  

To assess the accuracy of the 3D printer, the mechanical properties of similar samples 

were compared. Figure 4.3.1 and Table 4.3.1 illustrate a force-displacement data 

comparison between two NC beams. 

 

Figure 4.1.12. Comparison of two different samples of the same design.  
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Table 4.3.1. Comparison of maximum force and displacement of the two samples.  

 

The reason behind the slight difference of the two samples could have been aging of the 

samples. Due to the minimal knowledge of the aging process, it was not taken into 

consideration when the samples were printed and for that the time and date of the printing 

process were not noted. Human and machine errors could have affected that as well.  

4.2 Failure Modes 

Flexural failure is caused by the tension load acting on the bottom side of the beam, 

causing flexural-cracks to form which eventually causes the beam to fail. Flexural cracks 

are shown in Figure 4.2.1. 

 

Figure 4.2.1. Schematic of cracks caused by flexural loading (Zhang, D.)  

To identify the stress occurring during the three-point testing for this research, a sample 

of clayey soil at optimum moisture content was placed and packed in the box beam then 

tested. This allowed us to identify the failure mechanism of the beam samples.  

Sample 2.3 2..4 % Difference 

Maximum force (N) 7150 7110 0.56% 

Displacement at failure (mm) 5.3 5.6 5% 

Flexural Cracks 
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Figure 4.2.2. Flexural cracks on the extracted clay sample. 

Point A in Figure 4.2.2 represent flexural cracks developing along bottom side of the 

beam. Point B represent the PLA strand failure causing a layer to shear and move 

horizontally due to the weak interlayer adhesion and that is why the flexural cracks do no 

go past the horizontal line that is represented as B. This shows why the beams have 

higher capacity when soil is not added in the beam.  

 

Figure 4.2.3. Interlayer adhesion failure. A failed CB beam on the left and a failed NC 

beam on the right. 

Figure 4.2.3 represents two different samples that had an interlayer adhesion failure in the 

presence of sand. Note that, in Figure 4.2.3 the cracks were exaggerated for the readers to 

A 
B 
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be able to see them, during testing the layers move horizontally which causes the 

interlayer adhesion failure. 

  

Figure 4.2.4. Interlayer adhesion failure of the CT beam with sand.  

From Figure 4.2.4 one can conclude that during the interlayer adhesion failure the beam’s 

force resistance decreases, as shown in point A, then gains back some capacity, point B, 

and the cycle continued until the beam completely fails. 

When the sand was not added in the beam, the beam had a brittle flexural failure. Brittle 

failure can be defined as a sudden complete failure, Figure 4.2.5 displays the beam 

immediately before the beam failed.  
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Figure 4.2.5. Beam orientation right before failure. 

Figure 4.2.5 a screenshot of a video obtained during testing showing different crack along 

the beam. Due to the brittle failure of the beam, a protective glass door was in the way 

which caused the ambiguity of the picture. Shortly after this picture was taken the beam 

completely collapsed, Figure 4.2.6. Additionally, The failure observed in this scenario is 

similar to unreinforced timber beam flexural failure. 
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Figure 4.2.6. Beam after the brittle failure. Timber beam picture was adopted and 

modified from (www.hb.bgu.tum.de)  

The brittle failure can also be represented by the by the stress-strain graph of the beam 

with no sand. Figure 4.2.7 is a perfect illustration of the brittle failure where at point A 

you can conclude that there excessive cracks developing and a point B a sudden failure 

occurring.  
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Figure 4.2.7. Flexural failure representation of the NC beam with no sand. Point A 

represents excessive cracking and point B represent brittle failure. 

4.3 Design Comparisons 

After ensuring quality control the mechanical properties and force resistance the 

following bar charts are used to compare between all the beams. 
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Figure 4.3.2 illustrate how interlayer adhesion failure caused by the sand affects the force 

resistance capacity of the beam, since the beams without sand had higher load resistance 

capacity than the beam with sand. After comparing the force resistance capacity, the 

flexural stress capacities were compared. It is concluded that beams with no sand have a 

higher stress capacity that those with sand. Although the beams without sand can carry 

more load and withhold more stress they are not as safe as the beams with sand due to the 

brittle failure mode of the beams without sand.  
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Given to the linear relationship between the applied force and bending moment it is of no 

surprise that the maximum bending moment of the beams follow the same trend as the 

force resistance capacity. The modulus of elasticity, is higher for the beams with no sand 

than those with sand.  

Finally, failure modes of beams are different. When filling the beam with sand, an 

interlayer adhesion failure occurs. Whereas, when the beam is not filled with sand, a 

brittle failure occurs.  
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Conclusion 

Due to the poverty level in the world and the rising plastic waste. Utilizing plastics as 

structural members would solve two problems, since it is affordable and would 

dramatically decrease the plastic waste. In this research, composite beams made of plastic 

and fine soil were designed, tested and analyzed to see if the design would be sufficient 

and safe as a structural beam. Beam is controlled by flexural properties due to the 

orientation of the load on the member.  To perform flexural testing and analysis of the 

beams, ASTM D790 was followed. In this research, three beam designs were developed 

and tested where the newer designs were improvements of the previous designs. Design 

improvement were developed in order to address the undesired failure modes like the 

interlayer adhesion failure. After testing and comparing the flexural properties of the 

beams, we can conclude that beams without the fine soil have a higher flexural capacity 

than the beams with the fine soil, which caused the vertical point load to transition into a 

horizontal load within the soil causing the interlayer adhesion failure. Additional research 

is necessary before it is implemented as a real structural member.  
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Future Recommendations and OLC projects 

The following are recommendations for future research: 

1) Investigation of aging effects on 3D printed beams, we came to realization that 

aging of the samples after printing affect the mechanical properties of the 

samples. How aging of the 3D printed PLA samples came into realization is when 

comparing two CT beam samples both with no sand with only difference being 

the time between printing and testing of the two samples. One of the samples was 

printed and tested within 24 after printing was completed, and the other sample 

that was printed 14 days prior to testing. The two samples’ force-displacement 

data and stress strain data were compared and are provided in Figure 6.1. Note 

that the 24 hour sample data was given an offset of 1.5 mm.  
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Figure 6.1. Force-displacement comparison between two CT beams one that aged 

for 14 days and the other CT beam only aged for 24 hours before testing.  

 

Figure 6.1 illustrates how aging plays a major factor in increasing load resisting 

capacity and the elasticity of the beam. Where the maximum force of the 14 day 

sample is 294% higher than the maximum force of the 24 hour sample. Also the 

displacement increased by 220%. Figure 6.2, shows how aging increased the 

stress by 275%. 
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Figure 6.2. Stress-strain data comparison between two CT beams one that aged 

for 14 days and the other CT beam only aged for 24 hours before testing.  

Since aging of the samples was not included in the objectives of this research it 

was not further investigated due to time restrictions. Also no research has been 

performed on aging of 3D printed samples. For that, it is recommended for future 

research.   

2) Using material that would prevent interlayer adhesion failure. For example, Fiber-

Reinforced Plastic (FRP) can be used as a reinforcement which would prevent the 

interlayer adhesion failure and will increase the capacity of the designed beams. 
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FRP comes in many forms, the form that would work with these beams would the 

ones that wrap around the beam.  

3) Improving the design of the beam, by adding a third wall within the beam similar 

to a concrete block, Figure 6.3. Adding a third wall may increase the flexural 

capacity of the beam.  

 

Figure 6.3. This figure represents what was meant by “the third wall” in concrete 

block.  

4) The beams can be analyzed and tested based on scale. To see if size difference 

would increase or decrease the flexural capacity.  

5) Testing columns made of the same material, to see if this composite would be 

sufficient to build an entire structure.  

6) The composite can be also analyzed using different types of soil and recycled 

plastics.  

7) Investigating the fill percentage effect on the beam.  

 

Third Wall 
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Appendix A: Equations 
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