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ABSTRACT 

 

NONLINEAR STOCHASTIC FILTERING FOR ONLINE STATE OF CHARGE AND 

REMAINING USEFUL LIFE ESTIMATION OF LITHIUM-ION BATTERY 

SURESH DARAVATH 

2018 

Battery state monitoring is one of the key techniques in Battery Management System 

(BMS). Accurate estimation can help to improve the system performance and to prolong 

the battery lifetime. The main challenges for the state online estimation of Li-ion batteries 

are the flat characteristic of open circuit voltage (OCV) with the function of the state of 

charge. Hence, the focus of this thesis study is to estimation of the state of charge (SOC) 

of Li-ion with high accuracy, more robustness. 

A 2nd order RC equivalent circuit model is adapted to battery model for simulation, 

mathematical model analysis, and dynamics characteristic of battery study. Model 

parameters are identified with MATLAB battery model simulation. Although with more 

lumped RC loaders, the model is more accurate, high computation with a higher 

nonlinear function of output will be. So, a discrete state space model for the battery is 

developed.  

For a complex battery model with strong nonlinearity, Sequential Monte Carlo (SMC) 

method can be utilized to perform the on-line SOC estimation. An SMC integrates the 

Bayesian learning methods with sequential importance sampling. SMC approximate the 

posterior density function by a set of particles with associated weights, which is 

developed in MATLAB environment to estimate on-line SOC. A comparison is presented 

with Kalman Filtering and Extended Kalman Filtering to validated estimation results with 
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SMC. Finally, the comparison results provide that SMC method is more accurate and 

robust then KF and EKF.  

Accurately prediction of Remaining Useful Life of Li-ion batteries is necessary to 

reliable system operation and monitoring the BMS. An empirical model for capacity 

degradation has been developed based on experimentally obtained capacity fade data. A 

nonlinear, non-Gaussian state space model is developed for empirical model. The 

obtained empirical model used in Sequential Monte Carlo (SMC) framework is to update 

the on-line state and model parameters to make a prediction of remaining useful life of a 

Li-ion battery at various lifecycle.   
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1. Introduction 
 

1.1 Thesis Motivation  

The motivation for the thesis is ambitious by the world’s need to reduce the carbon 

emission and use to sustainable and highly reliable of renewable energy sources. 

Importance consideration for the spacecrafts, electric vehicles, and satellites are energy 

storage and Battery Management System are considered to this research.  

A Comprehensive Literature of previous research work on the estimation of the State of 

Charge and Remaining Useful Life of Li-ion batteries has been revealed that a further 

investigation of on this topic is needed.   

Although previous research work has proposed numerous estimation methods for SOC, 

most of them are a simple model with Simple algorithms are proposed with offline 

technique. However, the accuracy of these methods is relatively low. The Alternative, 

more precise adaptive algorithms are highly depending on the adopted dynamic battery 

model and computationally intensive onboard systems. Therefore, an accurate and fast 

Online SOC estimation method is needed.  

Another important for Li-ion batteries is predicting the remaining useful life (RUL) have 

become increasingly important. Prognostics and Health Management (PHM) has as one 

of the keys enables to improve system safety, increase system operations reliability, 

system life cycle cost, and prevent catastrophic failure.   
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1.2 Thesis Objectives and Scope  

The aim of the thesis is to model a second order equivalent circuit model and to 

understand the dynamic system of the model to online SOC estimation Li-ion battery.  

The research objectives can be stated as follows: 

The first specific objective is to model the Li-ion battery using Equivalent circuit method 

(ECM) with Thevien 2nd order RC- model is treated as a non-linear dynamic system, with 

discrete time state-space model. A nonlinear state-space model in presence of Non-

Gaussian process and measurement noise. The Particle Filter general frameworks utilize 

the nonlinear system to assist the online estimation of the state of charge of a Li-ion 

battery. 

The second specific objective is to implement an online particle filter based framework 

for Remaining Useful Life of Li-ion battery in nonlinear, non-Gaussian systems. Firstly, 

a new empirical model for capacity degradation was developed based on experimentally 

obtained capacity fade data. The obtained empirical model used in Sequential Monte 

Carlo framework to make a prediction of remaining useful life of a Li-ion battery at 

various lifecycle.     
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1.3 Organization of the Thesis  

This thesis divided into 5 chapters.  

Chapter 1: Thesis motivation, Research statement, and Objectives and Scope are 

discussed. 

Chapter 2: A literature review of working principle of Li-ion battery, nonlinear filtering, 

battery modeling techniques, battery performance online assessment, and remaining 

useful life of Li-ion battery is described. 

Chapter 3: A 2nd order RC Equivalent circuit model is developed, Identified the model 

parameters with pulse discharge current, implemented state space model, SOC estimation 

approach with particle filtering, particle filtering flow chart for SOC estimation, and 

simulation results and case study for the estimated SOC are described.  

Chapter 4: Li-ion battery capacity degradation model, remaining useful life online 

assessment, implemented state space model for empirical data-driven, experimental 

results and discussion are presented. 

Chapter 5:  Particle filtering algorithm for estimation SOC and two case study are 

described two demonstrations of the proposed model.  Conclusion based performance and 

complexity analysis are presented and recommendation for future research works are also 

provided.   
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2. Literature Review 

2.1 Mathematical Definitions of SOC, SOH, and RUL  

• State of charge (SOC)  

The SOC of the battery is defined as the ratio of remaining charge capacity 𝑄(𝑡) at any 

given time 𝑡 to its total usable capacity 𝑄𝑡𝑜𝑡𝑎𝑙  when fully charged, and it is represented 

by  

                                                       𝑆𝑂𝐶(𝑡) =
𝑄(𝑡)

𝑄𝑡𝑜𝑡𝑎𝑙 
                                                      (2.1) 

Accurate SOC estimation can maximize the performance of the battery and protect the 

battery to prevent overcharge and over discharge. In an electric vehicle, the parameter is 

the state of charge (SOC) as it shows the current battery capacity as a percentage of 

maximum capacity. As such it provides a measure of the amount of electric energy stored 

in a battery. It is analogous to fuel gauge on a conventional internal combustion engine 

vehicle [1]. The SOC is a dimensionless number between 0 and 1 representing a 

percentage. It is worth noting that a zero SOC does not mean that the battery full empty, 

only that the battery cannot be discharged anymore without causing permanent damage 

(irreversible chemical reaction) to it [2]. 

• State of Health (SOH) 

The mathematical definition of SOH is not easy and differs for different applications one 

of the commonly adopted equations is defined as [3]:  

                                                       𝑆𝑂𝐻(𝑡) =
𝑄𝑡𝑜𝑡𝑎𝑙 (𝑡)

𝑄𝑛𝑒𝑤
                                                  (2.2) 



5 
 

Where 𝑄𝑛𝑒𝑤 is the capacity of new battery, and 𝑄𝑡𝑜𝑡𝑎𝑙 (𝑡) is the instantaneous total 

capacity at any given time 𝑡, it starts to decline as a function of time when the battery is 

aged or being in use. The estimation of 𝑄𝑡𝑜𝑡𝑎𝑙  over time is not simple, as there are many 

parameters involved in comprehensive algorithms. The State of Health (SOH) indicates a 

condition in the battery life between the beginning of life and End of Life in percentage. 

The beginning of the life of a battery is defined as the point in time when battery life 

beings. The end of life of a battery is reached when the battery cannot perform according 

to its predefined minimum requirements.  

• Remaining Useful Life  

Estimation for the system RUL, which is inherently entangled with the probability of 

failure time instants.  This probability can be obtained from long-term predictions, when 

the empirical knowledge about critical conditions for the system is included in the form 

of thresholds for main fault indicators, also referred to as the hazard zones [4]. Defining 

the critical pdf with lower and upper bounds for the fault indicator (𝐻𝑙𝑏 and 𝐻𝑢𝑏, 

respectively). The hazard zone specifies the probability of failure for a fixed value of the 

fault indicator, and the weights {𝑤𝑡+𝑘
(𝑖)
}𝑖=1,…,𝑁 represents the predicted probability for the 

set of predicted paths, then it is possible to compute the probability of failure at any 

future time instant (namely the RUL) by applying the law of total probabilities, as shown 

in Equation (2.3). Once the RUL is computed, combining the weights of predicted 

trajectories with the hazard zone specifications, it is well known how to obtain prognosis 

confidence intervals, as well as the RUL expectation. 

                         𝑝̂𝑇𝑇𝐹(𝑡𝑡𝑓) = ∑ 𝑃𝑟𝑁
𝑖=1 (𝑓𝑎𝑖𝑙𝑢𝑟𝑒|𝑋 = 𝑥̂𝑡𝑡𝑓

(𝑖) , 𝐻𝑙𝑏 , 𝐻𝑢𝑏) ∙ 𝑤𝑡𝑡𝑓
(𝑖)

                  (2.3)   
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Equation (2.3) provides a solution for the RUL estimation problem that is suitable for on-

line applications. As it depends on the predicted trajectory weights, though, it is subject 

to uncertainty and it may be sensitive to modelling errors. Moreover, uncertainty inherent 

to RUL expectations increases as the prediction horizon grows 

2.2 General Operational Principle of Li-ion Battery  

 

A rechargeable battery converts chemical energy into electrical energy and vice versa. 

The battery cell voltage is calculated by the energy of chemical reaction taking place 

inside the cell. The basic setup of a battery consists of three main parts: the positive 

electrode, the separator, and the negative electrode. The positive and negative electrode 

are referred to as the cathode and anode, as shown in Figure 2.1. The battery is connected 

to an external load using current collector plates. In case of Li-ion cells, a copper 

collector is used for the positive electrode [5]. 

 

Figure 2. 1: Electrochemical functionality of a battery during charging (a), Discharging (b) [5]. 

The anode is the electrode capable of supplying electrons to the load. The anode 

composite material defines the name of the Li-ion battery and is usually made up of a 

mixture of carbon, while the electrolyte can be made of liquid, polymer, or solid 
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materials. In case of solid or polymer material, the electrolyte will also act also as a 

separator. 

The separator is a porous membrane allowing the transfer of Li-ions only, thus serving as 

a barrier between electrodes. It prevents the occurrent of short-circuiting and thermal 

runaway while at the same time offering negligible resistance. The cathode is the 

electrode usually made of metal oxides (ex. LiCoO2 or LiMn2O4) as shown in Figure 2.2. 

 

Figure 2. 2: Schematic representation of Li-ion battery discharging [6]. 

Under the presence of a load current, (Reduction-oxidation) redox reaction occurs. 

Oxidation reaction takes place at the anode where the trapped lithium particle starts to 

deintercalated or diffuse towards the electrolyte-solid interface splitting Li-ion into ions 

and electrons move through the solution due to the potential difference while the 

electrons moves through the current collector because the electrolyte solution acts as an 

electronic insulator [2]. Reduction reaction takes place at the cathode where the traveling 

Li-ion from the anode starts to intercalate and react with the electrode happens without a 

change in the electrode crystal structure “Intercalation” mechanism. The whole 

phenomenon of intercalation and deintercalation is reversible as Li-ions pass back and 

forth between the electrodes during charging and discharging [7]. In theory, this 
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phenomenon could go on infinitely. Unfortunately, due to cell material degradation and 

other irreversible chemical reactions, the cell capacity and power degrade with the 

number of cycle and usage [8]. 

2.3 Nonlinear Stochastic Filtering  

Let a system or signal process 𝑥𝑡 is a Markov process and observation  𝑦𝑡 is given by [9]    

                                               𝑑𝑦𝑡 = ℎ( 𝑥𝑡)𝑑𝑡 + 𝑑 𝑊𝑡                                       (2.4) 

Generally, ℎ(∙) is bounded measurement function. Assume that for each t, 𝑥𝑡 and 

(𝑊𝑢 −𝑊𝑣), 𝑢, 𝑣 ≥ 𝑡 are independent, which allows for the feedback case. The objective 

is to calculate in recursive form to estimates of  𝑥𝑡. To do this it is necessary to compute 

the condition of  𝑥𝑡 given   

                                                          𝑦𝑦 = 𝜎{𝑦𝑠, 𝑠 ≤ 𝑡}                                                 (2.5) 

Nonlinear filtering is a distinguished from the other approaches by its probabilistic 

nature. It is a field that combines aspects of stochastic analysis, information theory, and 

statistical inferences. Its generalization to nonlinear systems and nonlinear observations 

are collectively referred to as nonlinear filtering. To put it clear, nonlinear filtering is an 

extension of the Bayesian framework to the estimation, prediction, and interpolation of 

nonlinear stochastic dynamics. Its output is the distribution of the estimated process (the 

signal) given the data (the observations) available. This distribution is commonly known 

as the posterior distribution of the estimated process. It is a theoretically optimal 

algorithm in that it provides the best estimate of the quality of interest, more precisely, it 

minimizes the mean square error of the estimator. 
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Nonlinear filters can be classified according to the validity of the estimates within the 

state space or according to the approximated approach they use for the Bayesian 

recursive relation (BRR) solution. Firstly, we focus on the validity of the estimates. There 

are local filters and global filters. 

The local filters usually come out of an approximation of the system to allow the 

Bayesian recursive relation solution for such approximated model. Estimates provided by 

the local filters are valid within a small neighborhood of a point in the state space. There 

are two basic approaches to the Bayesian recursive relation solution providing local 

estimates, the standard local filters, and the new generation derivative-free filters. The 

analytical approach is based on an approximation of the nonlinear functions in the system 

and measurement equations by the Taylor series expansion, 1st and 2nd order. They are 

represented by the extended Kalman filter [10] and its various modifications, e.g. the 

second order filter [11], the iteration filter etc. The numerical approach is based on 

Stirling's polynomial interpolation of the nonlinear functions or on the unscented 

transformation. The approach is represented by the unscented Kalman filter [12] or by the 

divided difference filters [13]. 

The global filters aim for the solution of the Bayesian recursive relation even for 

nonlinear or non-Gaussian systems by an analytical or a numerical approach. They 

usually approximate the conditional probability density function of the state and provide 

an estimate which is valid in almost whole state space. This global validity of Noticeably 

higher computational demands pays the estimate. The analytical approach is based on an 

approximation of the conditional pdf by e.g. a mixture of Gaussian distributions (the 

Gaussian sum filter [14-17]. The numerical approach solves the BRR numerically. It is 
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represented by the point-mass methods [18-20] which approximate the state space by a 

set of isolated grid points and evaluate the conditional probability density function in the 

grid points only or by the sequential Monte Carlo methods [21-22] which approximate 

the conditional probability density function by a set of weighted samples.  

2.3.1 Monte Carlo Approach   

Consider computation of the following integral 

                                   𝐼(𝑓) = ∫ 𝑓(𝑥)𝑝(𝑥)𝑑𝑥                                                                 (2.6)    

where 𝑥 ∈ 𝜒 denotes random variable described by the probability density 

function 𝑝(𝑥), 𝑓(𝑥) is an arbitrary vector function 𝑓: 𝜒 → ℝ𝑛 integral with respect to 

𝑝(𝑥). The integral (2.6) represents computation of the mean of the function 𝑓(𝑥). 

Note that the integral 

                                              𝐼(𝑓) = ∫ 𝑓(𝑥)
𝐷̇

                                                             (2.7) 

which is an essential part of many scientific problems, is a special case of the integral 

(2.6) considering the probability density function 𝑝(𝑥) to be uniform on 𝐷. 

Also, note that the pdf 𝑝(𝑥) is sometimes known up to a normalization constant only. In 

such case the relation (2.6) is replaced by the following form 

                                             𝐼(𝑓) =
∫𝑓(𝑥)𝑝(𝑥)𝑑𝑥

∫𝑝(𝑥)𝑑𝑥
                                                      (2.8)          

If the pdf is known exactly, the integral in the denominator of (2.8) equals to one. 

Further, the (2.8) form of the integral 𝐼(𝑓) will be used. If it is possible to obtain a large 

number of samples drawn from the pdf, it is not difficult to approximate the usually 

intractable integral (2.6). Approximation of the integral in this case is easy to compute 

because it was given by evaluating the function 𝑓(𝑥) at the samples and averaging the 

results. The procedure represents the main idea of the MC approach. Unfortunately, it is 
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not usually possible to draw the samples from the probability density function 𝑝(𝑥), and 

thus it is necessary to obtain the samples by another way. 

Firstly, consider that it is possible to draw the samples from the probability density 

function 𝑝(𝑥) directly than the Monte Carlo approach can be specified as follows: 

2.3.1 Perfect Sampling in Monte Carlo Approach 

Simulate N independent identical distribution random samples, also named particles 

{𝑋(𝑖): 𝑖 = 1,2,3, … ,𝑁} according to 𝑝(𝑥). Then the 𝑝(𝑥) can be approximated by the 

empirical 𝑃𝑁(𝑥) 

                                    𝑃𝑁(𝑥) = ∑ 𝛿(𝑥 − 𝑥(𝑖))𝑁
𝑖=1                                                           (2.9) 

Where 𝛿(𝑥) represents Dirac function that has the fundamental property at  

∫ 𝑓(𝑥)𝛿(𝑥 − 𝑎)𝑑𝑥 = 𝑓(𝑎)
∞

−∞
 and 𝛿(𝑥 − 𝑎) = 0 for 𝑥 ≠ 𝑎 the estimation of 𝐼(𝑓)  given 

as  

                   𝐼𝑛(𝑓) =
∫𝑓(𝑥)𝑃𝑁(𝑥)𝑑𝑥

∫𝑃𝑁(𝑥)𝑑𝑥
=

1

𝑁
∑ 𝑓(𝑥(𝑖))𝑁
𝑖=1
1

𝑁
∑ 1𝑁
𝑖=1

=
1

𝑁
∑ 𝑓(𝑥(𝑖))𝑁
𝑖=1                         (2.10) 

The estimation is unbiased and if the variance 𝑣𝑎𝑟{𝑓(𝑥)} is finite, the variance of 𝐼𝑛(𝑓) 

is given as   

                                            𝑣𝑎𝑟{𝐼𝑁(𝑓)} =
𝑣𝑎𝑟{𝑓(𝑥)}

𝑁
                                                 (2.11) 

from the strong law of large number  

                                                 𝐼𝑁(𝑓)
𝑁→∞
→   𝐼(𝑓)                                                         (2.12)   

and  𝑣𝑎𝑟{𝑓(𝑥)} < ∞, then  

                                   √𝑁[𝐼𝑁(𝑓) − 𝐼(𝑓)] ⇒ 𝑁(𝑓(𝑥): 0, 𝑣𝑎𝑟{𝑓(𝑥)})                          (2.13) 

where 
𝑁→∞
→    means the almost sure convergence, the symbol ⇒ denotes convergence in 

distribution. The advantage of the Monte Carlo method is clear. From the set of random 
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samples {𝑋(𝑖): 𝑖 = 1,2,3, … ,𝑁} one can estimate any quantity 𝐼(𝑓) and the rate of 

convergence of this estimate is independent of the dimension of the integral. Note that 

any deterministic numerical integration method has a rate of convergence that decreases 

as the dimension of integrand increases. 

In the case when the perfect Monte Carlo sampling cannot be utilized because either it 

difficult to draw the samples from p(x) or the pdf is known up to a normalization constant 

only, an alternative solution must be used. In the next subsection, such an alternative, the 

Importance Sampling technique, will be described. 

2.3.2 Importance Sampling in Monte Carlo Approach 

The importance sampling method [22] is based on so called importance sampling 

probability density function denoted as 𝜋(𝑥) which can be arbitrarily chosen provided 

that the support of 𝜋(𝑥) includes the support of 𝑝(𝑥). Now, the integral (2.6) can be 

computed as 

                             𝐼(𝑓) =
∫𝑓(𝑥)𝑝(𝑥)𝑑𝑥

∫𝑝(𝑥)𝑑𝑥
=
∫𝑓(𝑥)

𝑝(𝑥)

𝜋(𝑥)
𝜋(𝑥)𝑑𝑥

∫
𝑝(𝑥)

𝜋(𝑥)
𝜋(𝑥)𝑑𝑥

=
∫𝑓(𝑥)𝑤(𝑥)𝜋(𝑥)𝑑𝑥

𝑤(𝑥)𝜋(𝑥)𝑑𝑥
                  (2.14)       

where 𝑤(𝑥) =
𝑝(𝑥)

𝜋(𝑥)
 will be called importance weight. Now, assume that N samples 

{𝑋(𝑖): 𝑖 = 1,2,3, … ,𝑁} are drawn from the sampling distribution 𝜋(𝑥). Then the integral 

𝐼(𝑓) can be estimated as 

                            𝐼𝑁(𝑓)  =
1

𝑁
∑ 𝑓(𝑥(𝑖)𝑤(𝑥(𝑖)))𝑁
𝑖=1
1

𝑁
∑ 𝑤(𝑥(𝑗))𝑁
𝑗=1

= ∑ 𝑓(𝑥(𝑖)𝑤(𝑥(𝑖)))𝑁
𝑖=1                           (2.15)  

Where the normalized weight  𝑤̅(𝑥(𝑖))are given as 

                                                  𝑤̅(𝑥(𝑖)) =
𝑤(𝑥(𝑖))

∑ 𝑤(𝑥(𝑗))𝑁
𝑗=1

                                                (2.16) 

Considering N finite, the estimate 𝐼𝑁(𝑓) is biased as is given by a ratio of two estimates. 
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but under the assumptions 

                                     𝐸𝑝(𝑥)[𝑤̅(𝑥)] = 𝑐
−1 ∫

𝑝(𝑥)

𝜋(𝑥)
𝑝(𝑥)𝑑𝑥 < ∞                                  (2.17)    

                              𝐸𝑝(𝑥)[𝑓(𝑥)
2𝑤̅(𝑥)] = 𝑐−1 ∫

𝑓(𝑥)2𝑝(𝑥)

𝜋(𝑥)
𝑝(𝑥)𝑑𝑥 < ∞                        (2.18)  

Where 𝑐 = ∫𝑝(𝑥)𝑑𝑥, the strong law substantial number can be applied it hold as  

                                                  𝐼𝑁(𝑓)
𝑁→∞
→   𝐼(𝑓)                                                         (2.19) 

2.3.2 Sequential Monte Carlo Methods  

The main idea of the Monte Carlo (MC) method is to approximate an arbitrary pdf by a 

set of independent and identically distributed (𝑖. 𝑖. 𝑑. ) random samples. The 

approximation is consequently used in the computation of an integral (e.g. mean value). 

The SMC method uses the MC method in a sequential framework, i.e. after obtaining 

new information, the approximation is repeated. 

As it is not usually possible to draw samples from the pdf directly (e.g. the pdf is 

unknown or drawing samples from the pdf are too complex), is necessary to utilize an 

alternative. The most common alternatives are the importance sampling [23], the 

accept/reject technique [24], and Markov Chain Monte Carlo (MCMC) [25]. 

So far, we have considered a vector random variable x only. However, the filtering 

problem is based on vector random processes treatment, where a vector random process 

is defined by a set of vector random variables which will be indexed with time instants 𝑘. 

One of the processes describes the evolution of the state kx and the information about the 

state is obtained from the second process describing the measurement 𝑧𝑘. Thus, the state 

segment  𝑥𝑘  is given by the conditional  𝑝(𝑥𝑘|𝑧𝑘). 
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Therefore, the integral in (2.3) will be considered in the following form 

                         𝐼(𝑓𝑘) = 𝐸𝑝(𝑥𝑘|𝑧𝑘)
[𝑓𝑘(𝑥

𝑘)] =
∫𝑓𝑘(𝑥

𝑘)
𝑝(𝑥𝑘|𝑧𝑘)

𝜋(𝑥𝑘|𝑧𝑘)
𝜋(𝑥𝑘|𝑧𝑘)𝑑𝑥𝑘

∫
𝑝(𝑥𝑘|𝑧𝑘)

𝜋(𝑥𝑘|𝑧𝑘)
𝜋(𝑥𝑘|𝑧𝑘)𝑑𝑥𝑘

                (2.20)   

It represents the conditional mean of 𝑓𝑘(𝑥
𝑘) with respect to the conditional probability 

density function  𝑝(𝑥𝑘|𝑧𝑘). However, the conditional 𝑝(𝑥𝑘|𝑧𝑘) is not known and its 

obtaining is the goal of the filtering problem. Fortunately, it can be expressed by the 

Bayesian relations and is known up to a normalization constant as 

                                 𝑝(𝑥𝑘|𝑧𝑘) ∝ 𝑝(𝑥0)∏ 𝑝(𝑧𝑗|𝑥𝑗)𝑝(𝑥𝑗|𝑥𝑗−1)
𝑘
𝑗=1                              (2.21)  

Calculation of the integral  𝐼(𝑓𝑘) involves generating samples {𝑥𝑘(𝑖), 𝑖 = 1,2,3, . . , 𝑁} 

from the sampling 𝜋(𝑥𝑘|𝑧𝑘) and computing corresponding weights {𝑤̅(𝑥𝑘(𝑖)), 𝑖 =

1,2,3, … ,𝑁}  

                                 𝑤̅(𝑥𝑘(𝑖)) ∝
𝑝(𝑥𝑘(𝑖)|𝑧𝑘)

𝜋(𝑥𝑘(𝑖)|𝑧𝑘)
∝
𝑝(𝑥0

𝑖 ∏ 𝑝(𝑧𝑗|𝑥𝑗
(𝑖)
)𝑝(𝑥𝑗

𝑖|𝑥𝑗−1
(𝑖)
))𝑘

𝑗=1

𝜋(𝑥𝑘(𝑖)|𝑧𝑘)
                   (2.22)   

The samples and the weights constitute an approximation of the conditional 𝑝(𝑥𝑘|𝑧𝑘). 

This approximation can be used either to calculate the integral (2.17) or as a suitable 

representation of the conditional 𝑝(𝑥𝑘|𝑧𝑘). Note that the filtering  𝑝(𝑥𝑘|𝑧
𝑘) is a marginal 

of 𝑝(𝑥𝑘|𝑧𝑘) and is approximated by the samples {𝑥𝑘(𝑖), 𝑖 = 1,2,3, … ,𝑁} and by the 

weights {𝑤̅(𝑥𝑘(𝑖)), 𝑖 = 1,2,3, … ,𝑁} , where 𝑤̅(𝑥𝑘
(𝑖)
) = 𝑤̅(𝑥𝑘(𝑖)). 

As the current time, instant increases, usage of the introduced importance sampling 

method leads to rising computational complexity because the importance weights m 

computed over the whole state trajectory at each time instant. A straightforward solution 

is to set up a sequential scheme for the importance sampling method. The main idea of 

the sequential scheme is to draw samples of the current state 𝑥𝑘 only and to attach the 
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samples to the past generated trajectories as 𝑥(𝑖) = {𝑥𝑘−1(𝑖), 𝑥𝑘
(𝑖)
}. Precondition of this 

sequential manner is splitting of the posterior probability density function as follows 

                                    𝑝(𝑥𝑘|𝑧𝑘) = 𝑝(𝑥𝑘|𝑥
𝑘−1, 𝑧𝑘)𝑝(𝑥𝑘−1|𝑧𝑘−1)                              (2.23) 

After applying the procedure k times, the following form of the conditional pdf can be 

found 

                                   𝑝(𝑥𝑘|𝑧𝑘) = 𝑝(𝑥0)∏ 𝑝(𝑥𝑗|𝑥𝑗−1,𝑧𝑗)
𝑘
𝑗=1                                      (2.24)  

Note that 𝑝(𝑥𝑘|𝑥𝑘−1,𝑧𝑘) ∝ 𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥𝑘−1) because  

𝑝(𝑥𝑘 , 𝑧𝑘|𝑥𝑘−1) = 𝑝(𝑥𝑘|𝑥𝑘−1,𝑧𝑘)𝑝(𝑧𝑘|𝑥𝑘−1) = 𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥𝑘−1)    

and consequently  

                                          𝑝(𝑥𝑘|𝑥𝑘−1, 𝑧𝑘) =
𝑝(𝑧𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥𝑘−1)

𝑝(𝑧𝑘|𝑥𝑘−1)
                                 (2.25) 

Then the following relation  

                                   𝑝(𝑥𝑘|𝑧𝑘) ∝ 𝑝(𝑥0)∏ 𝑝(𝑧𝑗|𝑥𝑗)𝑝(𝑥𝑗|𝑥𝑗−1)
𝑘
𝑗=1                           (2.26) 

which is equal to (2.18), holds. The sampling 𝜋(𝑥𝑘|𝑧𝑘) can be written similarly to the 

conditional in (2.25) as 

                                𝜋(𝑥𝑘|𝑧𝑘) = 𝜋(𝑥0)∏ 𝜋(𝑥𝑗|𝑥𝑗−1, 𝑧𝑗)
𝑘
𝑗=1                                       (2.27)    

As we want to draw samples for the current state 𝑥𝑘 only, the sampling pdf 𝜋(𝑥𝑘|𝑧𝑘) will 

be replaced by a product of the sampling pdf's 𝜋(𝑥𝑘|𝑥𝑘−1, 𝑧𝑘). Now, the relation for 

computing the weights (2.19) can be written as 

                            𝑤̅(𝑥𝑘(𝑖)) ∝
𝑝(𝑥𝑘(𝑖)|𝑧𝑘)

𝜋(𝑥𝑘(𝑖)|𝑧𝑘)
∝
𝑝(𝑥0

𝑖 ∏ 𝑝(𝑧𝑗|𝑥𝑗
(𝑖)
)𝑝(𝑥𝑗

𝑖|𝑥𝑗−1
(𝑖)
))𝑘

𝑗=1

𝜋(𝑥0
(𝑖)
)∏ 𝜋(𝑥

𝑗
(𝑖)
|𝑥
𝑗−1
(𝑖)
,𝑧𝑗)

𝑘
𝑗=1

                      (2.28)    

The importance weight can be consequently evaluated recursively as 
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                                   𝑤̅(𝑥𝑘(𝑖)) ∝ 𝑤̅(𝑥𝑘−1(𝑖))
𝑝(𝑧𝑘|𝑥𝑘

(𝑖)
)𝑝(𝑥𝑘

(𝑖)
|𝑥𝑘−1
(𝑖)

)

𝜋(𝑥𝑘
(𝑖)
|𝑥𝑘−1
(𝑖)

,𝑧𝑘)
                             (2.29) 

The sampling  𝜋(𝑥𝑘
(𝑖)
|𝑥𝑘−1
(𝑖)
, 𝑧𝑘) together with the relation (2.29) for weights evaluation 

make up the sequential MC method which is an essence of the particle filters. The 

particle filters mostly differ in choice of the sampling pdf. That the simplest choice of the 

sampling 𝜋(𝑥𝑘|𝑥𝑘−1
(𝑖)
, 𝑧𝑘) is the transition 𝑝(𝑥𝑘|𝑥𝑘−1). 

The problem encountered when running the sequential MC method is that after a few 

times step the weight of a sample is close to one and the weight of the other samples are 

zero. That means that in this case, the sequential MC method is rather inefficient because 

only one sample cannot effectively represent the empirical distribution. This problem can 

be resolved by introducing a resampling step that transforms a set of weighted samples 

into a set of unweighted samples. Each sample 𝑥𝑘
(𝑖)

 in the original set is transformed into 

𝑁𝑖 samples of the same value in the resampled set where the quantity Ni is proportional to 

the weight 𝑤̅(𝑥𝑘
(𝑖)
).  

2.4 Battery Modeling Techniques  

Battery modeling is an important and challenging consideration in battery management 

systems. To fully understand the operation of a battery different approaches must be 

taken, as the problems cover many fields of science. The choice between these model is a 

trade-off between model complexity, starting from parameterization effort. To help solve 

these problems several model types are created, amongst which the most common are:  

• Electrochemical models  

• Physical models  
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• Equivalent circuit models  

Each of the presented models gives different perspective into an explanation of the 

behavior of the battery from their respective field of science. Such separation is created 

so that knowledge from just one of the areas is sufficient to understand the processes 

taking place inside the battery.  

2.4.1 Electrochemical Models  

Electrochemical models are focus mostly on the chemical reactions taking place inside 

the battery captured using partial differential equations (PDE). This type of battery model 

finds its use in construction and design of internal electrochemical dynamics of the cell 

allowing trade-off analysis and high accuracy. A well-known early model with a high 

accuracy of 2% was originally developed by Doyle, Fuller, and Newman [26,27]. Since 

electrochemical models use particle differential equations with typically numerous 

unknown parameters, they are significantly more complicated and computationally 

expensive than others, making their use in a real-time application for battery management 

systems (BMS) almost impractical. Moreover, many parameters of the battery are very 

hard to describe using these models, such as internal resistance, which makes them not 

feasible to represent the dynamically changing key variables describing the battery 

behavior. For real-time applications, the electrochemical model reduction is mandatory. 

Several approaches for electrochemical model reduction have been proposed in the 

literature. It was observed that much of the computational complexity involved in 

electrochemical models comes from solving PDFs for Li-ion concentration in the solid 

particles of the electrodes. A common strategy is to make approximation and 

simplifications for this calculation [28]. However, the dynamic properties of the battery 
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can be accomplished by analyzing the consistency of the substances taking part in the 

electrochemical reaction caused by connection of electrodes to an external circuit.  

2.4.2 Physical Models  

This model represents the operation of the battery through mathematical and physical 

equations. Two main methods used for the creation of those models can be distinguished, 

which are the finite number and the computational fluid dynamics technology. These 

methods allow deep understanding of the fluid and mass flow as well as heat transfer 

which are important for the operation of the battery. However, high computational power 

is required due to many complex calculations. Moreover, the process requires a lot of 

time which deems the model unusable for the purposes of the project presented in this 

paper 

2.4.3 Equivalent Circuit Models  

Equivalent circuit based-models uses simple elements such as resistors and capacitors to 

model the charging and discharging behavior of Li-ion batteries. This model is simple to 

implement, computationally efficient and simple for implementing parameter and model 

identification. Therefore, equivalent circuit model can easily have implemented in real-

time onboard system microcontroller. However, the model has little or no physical 

meaning which makes them restrictive for the state of health estimation [29].        

The Equivalent circuit model approach in battery management system has been 

extensively researched [30]. This choice is due to the early population of BMS for 

portable electronics, where the approximation of battery model with an equivalent circuit 

model is adequate. The equivalent circuit models represent the electrochemical 

parameters and the behavior of the system through the creation of simplified, equivalent 
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circuit consisting of electrical elements. The simplicity of these models can vary greatly 

depending on the required level of precision. These models are easily adjustable to 

specific requirements while maintaining the lowest possible level of complexity. A 

disadvantage of equivalent circuit models is that these models are unable to measure 

underlying physical behavior like power fading, capacity fading, and aging effect. The 

main advantage is the ability to be implemented in a real-time application with an 

acceptable range of performance. Equivalent circuit model is chosen for the modeling of 

Li-ion battery, due to its ability to follow the dynamically changing variables with 

reasonable computational power requirement. 

2.4.3.1 Simple Battery Model  

A simple battery model consists of only linear, passive elements, created using open-

circuit voltage ideal battery and constant internal resistance, the model in Figure 2.3 is a 

Simple battery model  

 

Figure 2. 3: Simple battery model [25]. 

Here, ESR is the internal series resistance, V0 is the terminal voltage of the battery, and E0 

is open circuit voltage. The model is mostly used in systems where the battery doesn’t 

have too high of an influence on the circuit. It is incapable of describing the battery 

behavior due to the lack of the relation of internal resistance in different states of charge 

(SOC). 
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2.4.3.2 Advanced Simple Battery Model  

An advanced simple battery model is an improved version of the simple battery model 

through the addition of the dependence of internal resistance on the SOC. The 

configuration of this model is the same as the simple battery model, presented in Figure 

2.3. The relation between the internal resistance and the SOC is represented by the 

equation:  

                                                               𝐸𝑆𝑅 =
𝑅0

𝑆𝑂𝐶
                                                     (2.30)  

Here, R0 is the resistance of the fully charged battery, SOC is the state of charge of the 

battery, and k is capacity coefficient.  

2.4.3.4 The 1st Order RC Model   

The OCV-R-RC model is simplest equivalent circuit model and is selected to 

approximate the electrical performance of the battery as shown in Figure 2.4. It consists 

of three parts (1) open circuit voltage OCV, (2) Internal Resistances representing the 

ohmic resistances and (3) capacity. 

 

Figure 2. 4: Schematic diagram for R-RC model [25]. 

The model can capture the battery dynamic and can  be easily implemented in the real-

time application [30]. The R-RC model can be represented as follows  
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                                 [
𝑉1,𝑘+1
𝑍𝑘+1

] = [
1 −

∆𝑡

𝑅1𝐶1
0

0 1
] [
𝑉1,𝑘
𝑍𝑘
] + [

∆𝑡

𝐶1

−
𝜂𝑡∆𝑡

𝑄

] [𝑖𝑘]                                (2.31) 

                                                  𝑦𝑘 = 𝑂𝐶𝑉(𝑍𝑘) − 𝑅𝑖𝑘 − 𝑉1,𝑘                                              (2.32)   

Where 𝑍𝑘 is the state of charge, 𝑂𝐶𝑉 is the open circuit voltage, 𝑄 is the battery nominal 

voltage capacity, 𝑅 is the battery ohmic resistance, 𝑅1𝐶1 are 𝑅𝐶 pair and they represents 

the polarization time constant, 𝑉1,𝑘is a state represents the voltage across the capacitor. 

The state of systems is 𝑍𝑘, 𝑉1,𝑘.  the model has one output 𝑦𝑘, which is terminal voltage, 

the current 𝑖𝑘 is input.  

2.4.3.5 The 2nd Order RC Model  

The OCV-R-RC-RC model is shown in Figure 2.5, [30]. The model is able to imitate fast 

and slow time constants for the voltage recovery of the battery. 

 

Figure 2. 5: Schematic diagram for R-RC-RC battery model [25] 

This model can accurately capture the battery dynamics and it can be easily implemented 

in real-time applications. the model can be represented as follows  

                [

𝑉1,𝑘+1
𝑉2,𝑘+1
𝑍𝑘+1

] =

[
 
 
 1 −

∆𝑡

𝑅1𝐶1
0 0

0 1 −
∆𝑡

𝑅2𝐶2
0

0 0 1]
 
 
 
[

𝑉1,𝑘
𝑉2,𝑘
𝑍𝑘

] +

[
 
 
 
 

∆𝑡

𝐶1
∆𝑡

𝐶2

−
𝜂𝑡∆𝑡

𝑄 ]
 
 
 
 

[𝑖𝑘]                               (2.33) 
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                                          𝑦𝑘 = 𝑂𝐶𝑉(𝑍𝑘) − 𝑅𝑖𝑘 − 𝑉1,𝑘 − 𝑉2,𝑘                                          (2.34) 

Where 𝑅1𝐶1 is the fast polarization time constants, 𝑅2𝐶2  represent the slow polarization 

time constant, 𝑉1,𝑘 is a state variable and represent the voltage across the first capacitor, 

𝑉2,𝑘 is a state variable and represent the voltage across the second capacitor. The state 

variable of the systems is 𝑍𝑘, 𝑉1,𝑘, 𝑉2,𝑘. The model has one output 𝑦𝑘, which is the 

terminal voltage, the current 𝑖𝑘 is the input. The parameters vectors to be optimized for 

this model is 𝜃=[𝑅0, 𝑅1, 𝑅2, 𝐶1,𝐶2].  Model identification required significant computing 

time and power. However, these added parameters increase the model accuracy in real 

time application.  

2.5 Battery Performance Online Assessment  

 

Battery performance online assessment is a measure of battery life, which can quantify 

the in several ways. As the number of charge and discharge cycle until the end of useful 

life. The performance which depends on the state of charge, state of health, capacity, C-

rate, and temperature. In which SOC and capacity are more important for battery 

performance assessment. Which describes the following two sections.   

2.5.1 State of Charge (SOC) Estimates  

 

The state of charge estimation is an important function of Battery Management System 

(BMS), and it is defined as the ratio of remaining charge capacity 𝑄(𝑡) at any given time 

𝑡 to its total usable capacity 𝑄𝑡𝑜𝑡𝑎𝑙  when fully charged, and it is represented by  

                                                        𝑆𝑂𝐶(𝑡) =
𝑄(𝑡)

𝑄𝑡𝑜𝑡𝑎𝑙 
                                                   (2.35) 
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Accurate SOC estimation can maximize the performance of the battery and protect the 

battery to prevent overcharge and over discharge. However, it is difficult to measure SOC 

directly and it is typically estimated from direct measurement variables. Some approaches 

have been tested and initiate to provide a precise estimation of battery SOC, but these 

methods are prolonged, costly, and interrupt main battery performance. It is impossible to 

make intuitive SOC value measurements. Although SOC value exhibits a monotonous 

relationship with the battery open circuit voltage (OCV), the SOC value is very sensitive 

to the change of battery voltage, and even small voltage changes will translate to 

significant 

changes in the SOC value. Overall, it is a significant challenge to obtain an accurate 

value of SOC. For this reason, estimation of the SOC value is a preferred approach. 

In literature has been proposed many methods for SOC estimation, such as the Coulomb 

counting method (ampere-hour (Ah) integration method) [31-33], the open circuit voltage 

method [33,34], the BP (back-prorogation) neural network algorithm [35], neural 

network model methods (NN) [36], support vector regression methods(SVR) [37] and 

Fuzzy logic methods [38] but they are all computationally expensive and needs a lot of 

data for training. 

Kalman filtering algorithm [39,40], Extended Kalman filtering, Unscented Kalman filter 

(UKF) [41-44], the strong tracking cubature Kalman filter (STCKF) [45], based on the 

Gaussian distribution noise, have been widely used for SOC estimation. Several other 

powerful yet challenging methods utilized to estimate SOC are open circuit voltage 

method (OCV) [46]. 
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The Kalman filter (KF) is an autoregressive optimal data processing algorithm proposed 

by Kalman in 1960 [47]. Its core idea is to make the best estimate of the minimum 

variance in the system state. The KF algorithm overcomes the error accumulation effect 

of the coulomb counting method that occurs with increased time. The KF algorithm does 

not depend on an accurate initial SOC value but can improve the SOC value accuracy. 

However, the accuracy of this method depends on the establishment of a battery 

equivalent model, and some physical properties of the battery model are nonlinear. The 

EKF algorithm [48,49] and the UKF algorithm are improved KF algorithms. The EKF 

algorithm implements recursive filtering by linearizing nonlinear functions [50], and the 

UKF algorithm applies nonlinear system equations to the standard Kalman filter system 

by means of unscented transformation (UT). UT is a mathematical function used to 

estimate the result of applying a given nonlinear transformation to a probability 

distribution that is characterized by a finite set of statistics. Compared with the EKF 

algorithm, the UKF algorithm exhibit higher accuracy and has a wider application range, 

making it well-suited for solving nonlinear problems [51]. 

The Particle Filtering (PF) or Sequential Monte Carlo method is a random sampling-

based filtering method used to solve non-linear non-Gaussian problems [52,53]. The 

rationale of this method is to use a series of weighted random sample sets (particles) in 

the state space to approximate the posterior probability density function of the system 

states. PF based estimator can be utilized for SOC estimation dealing with both the 

Gaussian and non- Gaussian distributed noise models. PF utilizes the particles (weighted 

random samples) to approximate the posterior distribution sampled by Monte-Carlo 

Methods. In these this thesis for SOC estimation SMC for PF algorithm is introduced.   
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2.5.2 Capacity Estimates 

Online capacity estimation, which is a direct fading indicator for assessing the state of 

health (SOH) of a battery and remaining useful life of the battery. The method for the 

online capacity estimation of a single battery cell is presented. The stored charge Q (t) in 

a battery cell referred to the total capacity 𝑐𝑚𝑎𝑥 is defined as the state of charge. 

                                                 SOC= 
𝑄(𝑡)

𝐶𝑚𝑎𝑥
                                                       (2.36) 

Therefore, SOC = 1 when the battery cell is fully charged and SOC = 0 when the battery 

cell is completely discharged. During charging/discharging [54], between times 𝑡𝑘  

and 𝑡𝑘+1, the stored charge is altered from 𝑄𝑘 to 

                                     𝑄𝑘+1 = 𝑄𝑘 − ∆𝑄𝑘,𝑘+1 = 𝑄𝑘 − ∫ 𝐼(𝑡)𝑑𝑡
𝑡𝑘+1
𝑡𝑘

                           (2.37)  

Where, 𝐼 is the positive current during discharging and stored capacity changes to 

𝑄𝑘 to 𝑄𝑘+1, at same manner SOC changes to 𝑆𝑂𝐶𝑘 to 𝑆𝑂𝐶𝑘+1 and the total capacity of 

the battery calculated with 

                                                    𝐶𝑚𝑎𝑥 = 𝐶𝑘,𝑘+1 =
𝑄𝑘−𝑄𝑘+1

𝑆𝑂𝐶𝑘−𝑆𝑂𝐶𝑘+1
                                  (2.38) 

                                                        =
∫ 𝐼(𝑡)𝑑𝑡
𝑡𝑘+1
𝑡𝑘

𝑆𝑂𝐶(𝑡𝑘)−𝑆𝑂𝐶(𝑡𝑘+1)
                                               (2.39) 

Gradual deterioration of battery performance is caused by irreversible chemical reactions 

and leads to capacity fading and degradation, and which effects on Remaining useful life 

(RUL) of Li-ion battery. it noticed that RUL prediction is important to lifetime cycle, 

reliability, and prevent the catastrophic failure.  
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2.6 Remaining Useful Life Prediction  

 

Li-ion batteries have been widely used in many fields, like electric vehicles, spacecraft, 

marine systems, aircrafts, satellites, consumer electronics, etc., due to their high-power 

density, low weight, keep a long lifetime, low self-discharge rate, no memory effect, and 

other advantages [55,56]. The demand for Li-ion batteries proves the necessity to 

evaluate their reliability. Failure of Li-ion batteries could lead to performance 

degradation, operational impairment, and even catastrophic failure [57-59]. To illustrate, 

in 2006, the National Aeronautics and Space Administration’s Mars Global Surveyor 

stopped working due to the failure of batteries [60]. In 2013, all Boeing 787 Dreamliner’s 

were indefinitely grounded due to battery failures that occurred on two planes [61]. 

Therefore, monitoring the degradation process, evaluating the state of health and 

predicting the remaining useful life (RUL) have become increasingly important for Li-ion 

batteries. Prognostics and Health Management (PHM) has as one of the keys enables to 

improve system safety, increase system operations reliability, and mission availability, 

predicting unnecessary maintenance actions, and reduce system life-cycle costs [62,63]. 

As a very important step of PHM, the RUL prediction based on the condition monitoring 

(CM) information plays a significant role in maintenance strategy selection, inspection 

optimization, and spare parts provision [64]. 

The probability of failure at any future time instant (namely the RUL) by applying the 

law of total probabilities, as shown in Equation (2.40). Once the RUL is computed, 

combining the weights of predicted trajectories with the hazard zone specifications [65], 

it is well known how to obtain prognosis confidence intervals, as well as the RUL 

expectation. 
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                     𝑝̂𝑇𝑇𝐹(𝑡𝑡𝑓) = ∑ 𝑃𝑟𝑁
𝑖=1 (𝑓𝑎𝑖𝑙𝑢𝑟𝑒|𝑋 = 𝑥̂𝑡𝑡𝑓

(𝑖)
, 𝐻𝑙𝑏 , 𝐻𝑢𝑏) ∙ 𝑤𝑡𝑡𝑓

(𝑖)
                    (2.40)               

If the RUL can be predicted accurately, predictive maintenance of the system or 

equipment can be implemented. Preventive maintenance before degradation is helpful to 

reduce failure rates and maintenance costs. Therefore, RUL prognostics has become a 

focus of researchers globally. RUL prognostics methodologies can be divided into the 

mechanism analysis method and the data-driven method [66]. The degradation of Li-ion 

batteries is a nonlinear and time-varying dynamic electrochemical process. Though 

mechanism analysis is clear in physical significance and concepts, it involves a lot of 

parameters and complex calculations for accurate modeling. In consequence, it is not 

suitable for real-time monitoring, which severely limits general applicability of the 

mechanism model. Instead, mechanism analysis is used more in theoretical research and 

battery designation than in practical engineering [67]. 

Data-driven techniques extract features from performance data such as current, voltage, 

capacity and impedance, and thus they are less complex than the Physics of failure-based 

approaches. The current research about the RUL prediction of Li-ion batteries focuses 

mainly on data-driven approaches. 

The data-driven method of modeling batteries does not require an accurate mechanism of 

the system. Data-driven methods use the battery state of health data, which can be 

measured through advanced sensor technology. These methods extract effective feature 

information and construct the degradation model to predict RUL. These methods are able 

to describe degradation-inherent relationships and trends based on data [68]. Therefore, 

data-driven methods have become the focus of RUL prediction in the world [69]. Data-
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driven RUL prediction methods can be divided into three groups based on the artificial 

intelligence, filtering techniques, and stochastic process degradation, respectively. 

 

2.7 Summary  
 

Battery modeling is for behavior dynamic characteristic and the state of charge estimation 

are a very important aspect that can improve the performance of the system and improve 

the reliability of the system in Battery management systems. The literature review 

provides different battery modeling techniques were presented and ECM are selected 

between them because of model complexity, accuracy, and parameterization.  For 

estimating SOC with ECM is very computational, time complexity but it’s very accurate 

to estimate because of a SOC a nonlinear behavior of the battery with open circuit 

voltage, so nonlinear filtering for Sequential Monte Carlo method which based on Monte 

Carlo methods are discussed. Remaining useful life prediction based on data-driven 

techniques for an empirical model are discussed. 
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3. Online State of Charge Estimation 

 

The Particle filter was developed based on state-space equations of the system and its 

accuracy is highly dependent on the accuracy of the system model. Thus, a battery 

model must be constructed to estimate the SOC using Particle filter-based framework. 

There are two basic requirements on a battery model for SOC estimation. Firstly, it can 

well simulate the dynamic behaviors of the battery. Secondly, the state-space equations 

can be easily derived according to the model. In Section 3.3 explains 2nd order ECM 

model that well meets the above two requirements are the equivalent circuit model 

(ECM) with lumped parameters. 

3.1 Battery Modelling with Second Order Equivalent Circuit Model  

Battery equivalent circuit model is commonly used for model-based state estimation 

design as shown in Figure 3.1. The dynamic cell behavior is described by an impedance 

model which includes an ohmic resistance R0 with a two set of resistors R1 and the 

capacitor C1, resistor R2 and the capacitor C2 in parallel in the circuit. In this model, the 

circuit elements are both functions of SOC and consumed life. For example, if the 

consumed life is expressed in terms of the number of full charges or discharge cycle N, 

and expressed in remaining capacity Qc (see Figure. 3.1) a circuit element is the function 

of SOC and Qc. The state space model is obtained based on circuit and takes the voltage 

across the 2nd RC ladder as 𝑉𝑜𝑐(𝑆𝑂𝐶). Defined the state vector variable as SOC, U1, and 

U2.  
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Figure 3. 1: Schematic representation of 2-RC ECM model [44]. 

The hidden port of the model consists of cell capacity 𝑄𝑐, represented by a capacitor, self-

discharge resistor 𝑅𝑠𝑑, and controlled current source SOC. The loss of charge when the 

battery is in open circuit condition is typically negligible for most commercial Li-ion 

batteries, and  𝑅𝑠𝑑 can be safely ignored and assume that  𝑅𝑠𝑑→∞. Because cell capacity 

fades as aging, it can be used as a direct measure of consumed life. As a result, 

assessment consists of two steps: first, the terminal voltage 𝑉𝐵𝑎𝑡𝑡 and terminal current 

𝑖𝐵𝑎𝑡𝑡 are used to estimate the circuit components of the terminal port of Figure 3.1,𝑉𝑜𝑐, 

R0, R1, R2, C1, and C2; and second, the parameters of the terminal port are used to 

estimate the component of the hidden port 𝑆𝑂𝐶, 𝑄𝑐.  

SOC is usually defined by equation  

                             𝑠𝑜𝑐𝑘 = 𝑠𝑜𝑐𝑘−1 − (
𝜂∆𝑡

𝑄𝑐
) 𝑖𝑏𝑎𝑡,𝑘 ⟹ 𝑆𝑂𝐶̇ =

𝑖𝑏𝑎𝑡

𝑄𝑐
                                   (3.1)                    

Where 𝑠𝑜𝑐𝑘  and 𝑠𝑜𝑐𝑘−1 represents SOC value at times k and 𝑘 − 1, respectively; 𝑖𝑏𝑎𝑡,𝑘 

represents the value of the current at time k; 𝑄𝑐 indicates the rated capacity of the battery. 

𝑆𝑂𝐶̇ , is the derivative of SOC.  
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According to Kirchhoff's law, the following equations are obtained from the second-order 

RC equivalent circuit model: 

                                        
𝑈1

𝑅1
+ 𝐶1

𝑑𝑈1

𝑑𝑡
= 𝑖𝑏𝑎𝑡  ⇒ 𝑈1̇ =

𝑖𝑏𝑎𝑡

𝐶1
−

𝑈1

𝑅1𝐶1
                                  (3.2)                                                     

                                        
𝑈2

𝑅2
+ 𝐶2

𝑑𝑈2

𝑑𝑡
= 𝑖𝑏𝑎𝑡 ⇒ 𝑈2̇ =

𝑖𝑏𝑎𝑡

𝐶2
−

𝑈2

𝑅2𝐶2
                                   (3.3) 

                             𝑉𝐵𝑎𝑡𝑡 = 𝑉𝑜𝑐(𝑆𝑂𝐶) − 𝑈1 − 𝑈2 + 𝑅0𝑖𝑏𝑎𝑡                                (3.4) 

𝑈1 And 𝑈2 denote the terminal voltage of 𝐶1 and 𝐶1 respectively; 𝑈1̇, 𝑈2̇ are the derivatives 

of 𝑈1  𝑈2 and respectively; 𝑉𝐵𝑎𝑡𝑡 and 𝑖𝑏𝑎𝑡 represent the value of the terminal voltage and 

current, respectively. 𝑉𝑜𝑐(𝑆𝑂𝐶) Indicates the open circuit voltage of the battery (under the 

same environmental conditions, the open-circuit voltage value and the 𝑆𝑂𝐶 value are 

monotonous.) 

3.2 Experimental and Identification of Model Parameters 

A battery test experiment and the battery performance data identify the model 

parameters. The test profile is generally as follows: (1) the battery is firstly charged to the 

fully charged state with 0.1C standard charging method at the room temperature, and then 

it is left in open circuit condition for 5 hours; (2) the battery terminal voltage is measured 

and the measured voltage is regarded as the equilibrium potential because the battery is 

assumed to reach the steady state; (3) the battery is discharged with a constant current of 

0.1C by 10% of SOC, and then left in open circuit condition for 2 hours; and (4) steps (2) 

and (3) are repeatedly performed until the battery reaches fully discharge state.  In this 

model, a typical pulse discharging current point is employed, and the corresponding 

voltage profile is in Figure 3.2, where the battery discharge with 5A current. The second 

order system model of the battery is used for 𝑆𝑂𝐶 and capacity estimation, some 

parameter in the model must be identified in advance, including open circuit voltage 
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𝑉𝑜𝑐(𝑆𝑂𝐶) and the value of {R0, R1, R2, C1, C2} with the off-line method. Under the same 

temperature conditions. 

 

Figure 3. 2: Pulse discharge process with 5A current [46]. 

(1) Identification parameter R0: For the 2nd order RC model shown in Figure 3.2, once 

the discharging current executed or stopped, the terminal voltage will drop immediately. 

Notice that the voltage U1 and U2 of the capacitors C1 and C2 would not be suddenly 

changed at the moment of starting discharging. Then, ohmic resistance R0 could be found 

from numerous of the terminal voltage at the moment of starting discharging. Therefore, 

the ohmic resistance R0 can be calculated by:   

                                                    𝑅0 =
|𝑉𝑇(𝑡𝑏)−𝑉𝑇(𝑡𝑎)|+|𝑉𝑇(𝑡𝑑)−𝑉𝑇(𝑡𝑐)|

2|𝐼𝑇|
                              (3.5) 

(2) Identify parameters R0, R1, R2, C1, and C2: The identification of the parameters R0, 

R1, R2, C1, and C2 is divided into two steps. The first step is to identify the time constant 

𝜏1 ≅ 𝑅1𝐶1 and𝜏1 ≅ 𝑅1𝐶1 . Based on the identified time constant, the details identification 

of the R0, R1, R2, C1, and C2 is introduced at another step. In addition, the response of the 
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1st order RC circuit with resistance R, capacitance C, and a constant current I is critical 

for identification, which is given by:   

                                          𝑈(𝑡) = 𝑈(𝑡0)𝑒
−
𝑡−𝑡0
𝜏 + 𝐼𝑅(1 − 𝑒−

𝑡−𝑡0
𝜏 )                                       (3.6) 

Where 𝜏 = 𝑅𝐶 is the initial time constant. 

Step 1. Identify the time constant 𝜏1 and 𝜏2  during the relaxation process c-d-e:  note that 

the current equal zero during the relaxation process. Then according to Equation 𝑈(𝑡), 

the voltage U1 and U2 can be calculated by:    

                                                          𝑈1(𝑡) = 𝑈1(𝑡𝑐)𝑒
−
𝑡−𝑡𝑐
𝜏1                                            (3.7) 

                                                            𝑈2(𝑡) = 𝑈2(𝑡𝑐)𝑒
−
𝑡−𝑡𝑐
𝜏1                                          (3.8)   

From the output equation i.e., terminal voltage is: 

                                  𝑉𝐵𝑎𝑡𝑡(𝑡) = 𝑉𝑜𝑐(𝑆𝑂𝐶) − 𝑈1(𝑡𝑐)𝑒
−
𝑡−𝑡𝑐
𝜏1 − 𝑈2(𝑡𝑐)𝑒

−
𝑡−𝑡𝑐
𝜏1                  (3.9)  

Which is rewrite as:  

                                               𝑉𝐵𝑎𝑡𝑡(𝑡) = 𝛼1 − 𝛼2𝑒
−
𝑡−𝑡𝑐
𝛽1 − 𝛼3𝑒

−
𝑡−𝑡𝑐
𝛽2                            (3.10) 

Here, 𝛼1, 𝛼2, 𝛼3, 𝛽1, 𝛽2 are the unknown coefficients. Obviously, we see 𝛼1 = 𝑈𝑇(∞) that 

are measured at the end of the relaxation process, i.e., the point e by using the MATLAB 

function “Custom Equation” in the curve fitting toolbox, the optimal coefficients 

𝛼2, 𝛼3, 𝛽1, 𝛽2  can be obtained. Therefore, the time constants 𝜏1, 𝜏2 and the voltage 𝑈1(𝑡𝑐), 

𝑈2(𝑡𝑐) are identified. 
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Step 2: Identify parameters R1, R2, C1, and C2 during the discharging process a-b-c: Note 

that the point 𝑎 is the end of the previous relaxation process. Then, 𝑈1(𝑡𝑎) =

0 and𝑈2(𝑡𝑎) = 0. It follows from Equation (3.6) that:  

                                                      𝑈1(𝑡) = 𝐼𝑇𝑅1(1 − 𝑒
− 
𝑡−𝑡𝑎
𝜏1 )                                     (3.11)                           

                                                        𝑈2(𝑡) = 𝐼𝑇𝑅2(1 − 𝑒
− 
𝑡−𝑡𝑎
𝜏2 )                                   (3.12) 

Hence, the resistance R1, R2 are determined by the following equations: 

           𝑅1 =
𝑈1(𝑡𝑐)

𝐼𝑇(1−𝑒
− 
𝑡−𝑡𝑎
𝜏1 )

                                          (3.13)   

                                                                𝑅2 =
𝑈2(𝑡𝑐)

𝐼𝑇(1−𝑒
− 
𝑡−𝑡𝑎
𝜏2 )

                                          (3.14) 

Where, 𝜏1, 𝜏2, 𝑈1(𝑡𝑐) and 𝑈2(𝑡𝑐) have been calculated at the above step 1. Since 𝜏1 =

𝑅1𝐶1,  𝜏2 = 𝑅2𝐶2, we can get, 𝐶1 =
 𝜏1

𝑅1
, 𝐶2 =

 𝜏2

𝑅2
 .  Therefore, the parameter identification 

is completed and shown Table 3.1.  

Table 3.1: Identified parameters 

𝑅0 𝑅1 𝑅2 𝐶1 𝐶2 

0.0717 Ω 0.0310 Ω 0.0277 Ω 8437 𝜇F 91,401 𝜇F 

 

(3) Identify the non-linear function 𝑉𝑜𝑐(𝑆𝑂𝐶): The curve fitting method is used to 

identify the  

Nonlinear function 𝑉𝑜𝑐(𝑆𝑂𝐶). here, relatively accurate discharging experiments are 

carried out to reduce the fitting error of the curve fitting method, in which the discharging 
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current pulse is set to be 5 A. The lasting time of the discharging current pulse is 380 s, 

which is utilized to achieve the 10% decline of SOC. Moreover, the battery is rest for 

about 30 minutes after a discharging period to ensure the end of the relaxation process. In 

order to accurately fit the measurement data, the sixth-order polynomial equation is 

employed as the nonlinear relationship between the OCV and SOC, which is given by:  

         𝑉𝑜𝑐(𝑆𝑂𝐶) =  14.795(𝑆𝑂𝐶)
6 − 36.612(𝑆𝑂𝐶)5 + 29.235(𝑆𝑂𝐶)4 − 6.281(𝑆𝑂𝐶)3 −

                       1.647(𝑆𝑂𝐶)2 + 1.286(𝑆𝑂𝐶) + 3.404                                                   (3.15) 

Finally, the validation of the above polynomial equation shown in Figure 3.3.  

 

Figure 3. 3: Measured and fitted open circuit voltage (OCV) vs. state of charge. 

 

3.3 State Space Model for 2nd Order ECM 

State-space models are a very popular class of time series models presented in section 

2.2. Formally, two stochastic processes define a state-space model  {𝑋𝑛}𝑛≥0 and {𝑌𝑛}𝑛≥0.  
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The differential equations of the second-order RC equivalent circuit model shown 

in Figure 3.1 can be derived as Equation 3.1,3.2, 3.3, 3.4 

                    

{
 
 

 
 𝑆𝑂𝐶̇ =

𝑖(𝑘)

𝑄𝑐

𝑈1̇ =
𝑖𝑏𝑎𝑡

𝐶1
−

𝑈1

𝑅1𝐶1

𝑈2̇ =
𝑖𝑏𝑎𝑡

𝐶2
−

𝑈2

𝑅2𝐶2

                                                 (3.16)        

                                                   𝑉𝐵𝑎𝑡𝑡 = 𝑉𝑜𝑐(𝑆𝑂𝐶) − 𝑈1 − 𝑈2 + 𝑅0𝑖𝑏𝑎𝑡                   (3.17) 

𝑈1 And 𝑈2 denote the terminal voltage of 𝐶1 and 𝐶1 respectively; 𝑈1̇, 𝑈2̇ are the derivatives 

of 𝑈1  𝑈2 and respectively; 𝑉𝐵𝑎𝑡𝑡 and 𝑖𝑏𝑎𝑡 represent the value of the terminal voltage and 

current at current time 𝑘, respectively. 𝑉𝑜𝑐(𝑆𝑂𝐶) Indicates the open circuit voltage of the 

battery, which is varied with the change of SOC value.                                                                                                 

So, the discrete state space equation of the battery 2nd order ECM discretized by the 

system is: 

                          (

𝑆𝑂𝐶𝑘
𝑈1,𝑘
𝑈2,𝑘

) =

[
 
 
 
1 0 0

0 1 −
∆𝑡

𝐶1𝑅1
0

0 0 1 −
∆𝑡

𝐶2𝑅2]
 
 
 
(

𝑆𝑂𝐶𝑘−1
𝑈1,𝑘−1
𝑈2,𝑘−1

) +

[
 
 
 
 −

∆𝑡

𝑄𝑐
∆𝑡

𝐶1
∆𝑡

𝐶2 ]
 
 
 
 

𝑖𝑏𝑎𝑡,𝑘      (3.18) 

Where k is the discrete-time index, ∆𝑡 is the sample time and 𝑄𝑐 the discharge capacity of 

the battery. Thereby, the cell terminal voltage is observed as the value, obtain the 

observed equation:  

                                            𝑉𝐵𝑎𝑡𝑡,𝑘 = 𝑉𝑜𝑐(𝑆𝑂𝐶𝑘) − 𝑅0𝑖𝑏𝑎𝑡,𝑘 − 𝑈1,𝑘 − 𝑈2,𝑘                (3.19) 

By selecting the 𝑥 = [𝑆𝑂𝐶, 𝑈1,𝑈2]
𝑇as the state vector, and considering the current 𝑖𝑏𝑎𝑡 

and voltage 𝑉𝐵𝑎𝑡𝑡 as the input and output variable respectively, the discrete time state 
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equation of the 2nd RC ECM model can be; State variable 𝑥𝑘 = [𝑆𝑂𝐶𝑘, 𝑈1,𝑘, 𝑈2,𝑘]
𝑇where, 

𝑆𝑂𝐶𝑘 is the state of charge, 𝑈1,𝑘 and 𝑈2,𝑘 are two terminal voltages of 𝑅1𝐶1 and 𝑅2𝐶2 

circuit in state space at time 𝑘. Considering the current 𝑖𝑏𝑎𝑡 is defined as the system input 

and the terminal voltage 𝑉𝐵𝑎𝑡𝑡,𝑘 is defined as the system output.  

3.4 SOC Estimation Approach with Particle Filtering  

For complex battery like ECM with strong non-linearity PF can be utilized to perform the 

SOC estimation. PF is class of Monte Carlo methods also known as Sequential Monte 

Carlo method that integrates the Bayesian filtering method with sequential importance 

sampling (SIS) and resampling.  

For non-linear system  

            𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1) + 𝜔𝑘−1   ↔   𝑝(𝑥𝑘|𝑥𝑘−1)                         (3.20) 

                                           𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘) + 𝜗𝑘               ↔  𝑝(𝑦𝑘|𝑥𝑘)                       (3.21) 

Where 𝑥𝑘 , stands for the immeasurable state vector at time step k, 𝑢𝑘(= 𝑖(𝑘)) stand for 

the input vector, and 𝑦𝑘(= 𝑉𝐵𝑎𝑡𝑡(𝑘)) is the measurement output. 𝜔𝑘−1 and 𝜗𝑘 are the 

processes and measurement non-Gaussian noise. 𝑓(∙) and 𝑔(∙) indicates the process and 

measurement function, respectively. Generally, 𝑓(∙) is linear while 𝑔(∙) is nonlinear 

function due to the nonlinear relationship between the OCV and 𝑆𝑂𝐶 which is presented 

Equation (3.15). 

From a Bayesian perspective, the estimating SOC state is to recursively calculate some 

degree of belief in the state 𝑥𝑘 at time 𝑘, taking different values, given the data 𝑦1:𝑘 up to 

time 𝑘. Thus, it is required to construct the pdf of 𝑝(𝑥𝑘|𝑦1:𝑘). It is assumed that the initial 
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pdf of 𝑝(𝑥0|𝑦0) = 𝑝(𝑥0) of the state vector, which is also known as the prior distribution, 

is available (𝑦0 being the set of no measurements). Then, in principle, the 𝑝(𝑥𝑘|𝑦1:𝑘) may 

be obtained, recursively, into two stages: prediction and update. 

Suppose that the required pdf 𝑝(𝑥𝑘−1|𝑦1:𝑘−1) at time 𝑘 − 1 is available. The prediction 

stage involves using the system model (3.20) to obtain the prior of the state at time 𝑘 via 

the Chapman-Kolmogorov equation  

                            𝑝(𝑥𝑘|𝑦1:𝑘−1) = ∫𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘−1|𝑦1:𝑘−1)𝑑𝑥𝑘−1                       (3.22)   

Note that in (3.22), use has been made of the fact that 𝑝(𝑥𝑘|𝑥𝑘−1, 𝑦1:𝑘−1) = 𝑝(𝑥𝑘|𝑥𝑘−1) 

as (3.20) describes a Markov process of order one. The probabilistic model of the state 

evolution 𝑝(𝑥𝑘|𝑥𝑘−1) is defined by the system equation (3.20) and known input current 

of 𝑢𝑘−1. At time step 𝑘, a measurement 𝑦𝑘 becomes available, and this may be used to 

update the prior distribution via Bayes’ rule 

  𝑝(𝑥𝑘|𝑦1:𝑘) =
𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑦1:𝑘−1)

𝑝(𝑦𝑘|𝑦1:𝑘−1)
                            (3.23) 

Where the normalizing constant 

                                           𝑝(𝑦𝑘|𝑦1:𝑘−1) = ∫𝑝(𝑦|𝑥𝑘)𝑝(𝑥𝑘|𝑦1:𝑘−1)𝑑𝑥𝑘                    (3.24) 

Depends on likelihood function 𝑝(𝑦𝑘|𝑥𝑘) defined by the measurement model (3.21). in 

the update state (3.23), the measurement 𝑦𝑘 is used to modify the prior density to obtain 

the required posterior density of the current state.  

The recurrence relations (3.22) and (3.23) form the basis for the optimal Bayesian 

solution. This recursive propagation of the posterior density is only a conceptual solution 
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in that in general, it cannot be determined analytically. Solutions do exist in Particle 

filtering approximation the optimal Bayesian solution.  

The Sequential Monte Carlo approach is known variously as bootstrap filtering, the 

condensation algorithm, particle filtering, and interactive particle approximation. The 

sequential importance sampling algorithm is an MC method that forms the basis of SMC. 

It is a technique for implementing a recursive Bayesian filter by MC simulations. The key 

idea is to represents the required posterior density function by a set of random samples 

(particles) with associated weight and to compute estimates based on these samples and 

weights. As the number of samples becomes very large, this MC characteristic becomes 

available an equivalent representation to the useful functional description of the posterior 

pdf, and the SIS filter approaches optimal Bayesian estimate.  

In order to develop the detail algorithm, let {𝑥0:𝑘
(𝑖)
, 𝑤𝑘

𝑖 }
𝑖=1

𝑁

 denotes a random measure that 

characterizes the posterior 𝑝(𝑥0:𝑘|𝑦1:𝑘), where {𝑥0:𝑘
𝑖 , 𝑖 = 0,1,2, … ,𝑁𝑠} is set of particles 

with associated weights {𝑤𝑘
𝑖 , 𝑖 = 0,1,2, … ,𝑁𝑠} and 𝑥0:𝑘 = {𝑥𝑗 , 𝑗 = 0,1,2,… , 𝑘} is the set 

of particles for all states up to time 𝑘. The weights are normalized such that ∑ 𝑤𝑘
𝑖 = 1𝑁

𝑖 . 

Then the posterior density at 𝑘 can be approximated as  

          𝑝(𝑥0:𝑘|𝑦1:𝑘) ≈ ∑ 𝑤𝑘
𝑖𝑁𝑠

𝑖=1 𝛿(𝑥0:𝑘 − 𝑥0:𝑘
𝑖 )                          (3.25) 

therefore, have a discrete weighted approximation to the true posterior, 𝑝(𝑥0:𝑘|𝑦1:𝑘). The 

weights are chosen using the principle of importance sampling. This principle relies on 

the follows. Suppose 𝑝(𝑥) ∝ 𝜋(𝑥) is a probability density from which it is difficult to 

draw sample but for which 𝜋(𝑥) can be evaluated. In addition, let 𝑥𝑖 ∼ 𝑞(𝑥), 𝑖 =
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1,2,3, … ,𝑁𝑠 be samples that are easily generated from the proposal 𝑞(∙) Called an 

importance density. Then a weighted approximation to the density 𝑝(. ) Is given by 

        𝑝(𝑥) ≈ ∑ 𝑤𝑖
𝑁𝑠
𝑖=1 𝛿(𝑥 − 𝑥𝑖)                                   (3.26)  

Where,   

         𝑤𝑖 ∝
𝜋(𝑥𝑖)

𝑞(𝑥𝑖)
                                               (3.27)                                    

is the normalized weight of the 𝑖𝑡ℎ particle.   

Therefore, if the particles 𝑥0:𝑘
𝑖  were drawn from an importance density 𝑞(𝑥0:𝑘|𝑦1:𝑘), then 

the weights in (3.25) are defined by  

      𝑤𝑘
𝑖 ∝

𝑝(𝑥0:𝑘
𝑖 |𝑦1:𝑘)

𝑞(𝑥0:𝑘
𝑖 |𝑦1:𝑘)

                                          (3.28)                   

Returning to the sequential case, at each iteration, one could have particles constituting 

an approximation to 𝑝(𝑥0:𝑘−1|𝑦1:𝑘−1) and want to approximate 𝑝(𝑥0:𝑘|𝑦1:𝑘) with the new 

set of particles. 

If the importance density is chosen to factor such that  

  𝑞(𝑥0:𝑘|𝑦1:𝑘) = 𝑞(𝑥𝑘|𝑥0:𝑘−1, 𝑧1:𝑘)𝑞(𝑥0:𝑘−1|𝑦1:𝑘−1)               (3.29) 

Then one can obtain sample particles 𝑥0:𝑘
𝑖 ~𝑞(𝑥0:𝑘|𝑦1:𝑘) by augmenting each of the 

existing sample particles 𝑥0:𝑘−1
𝑖 ~𝑞(𝑥0:𝑘−1|𝑦1:𝑘−1) with the new states 

𝑥𝑘
𝑖~𝑞(𝑥𝑘|𝑥0:𝑘−1, 𝑧1:𝑘−1). To derive the weight update equation, 𝑝(𝑥0:𝑘|𝑦1:𝑘) is first 

expressed in term of 𝑝(𝑥0:𝑘−1|𝑦1:𝑘−1), 𝑝(𝑦𝑘|𝑥𝑘), and 𝑝(𝑥𝑘|𝑦𝑘−1). Note that (3.23) can be 

derived by integrating (3.30) 
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𝑝(𝑥0:𝑘|𝑦1:𝑘) ∝ 𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥0:𝑘−1|𝑧1:𝑘−1) 

By substituting (3.29) and (3.30) into (3.28)  

𝑤𝑘
𝑖 ∝

𝑝(𝑦𝑘|𝑥𝑘
𝑖 )𝑝(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖 )𝑝(𝑥0:𝑘

𝑖 |𝑦1:𝑘−1)

𝑞(𝑥0:𝑘
𝑖 |𝑥0:𝑘−1

𝑖 , 𝑦1:𝑘)𝑞(𝑥0:𝑘−1
𝑖 |𝑦1:𝑘−1)

 

          = 𝑤𝑘−1
𝑖 𝑝(𝑦𝑘|𝑥𝑘

𝑖 )𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 )

𝑞(𝑥0:𝑘
𝑖 |𝑥0:𝑘−1

𝑖 ,𝑦1:𝑘)
                                    (3.30) 

 Furthermore, if 𝑞(𝑥𝑘|𝑥0:𝑘−1, 𝑦1:𝑘) = 𝑞(𝑥𝑘|𝑥𝑘−1, 𝑦𝑘), then the importance density 

becomes only dependent on 𝑥𝑘−1 and 𝑦𝑘. This is particularly useful in the common case 

when only a filtered estimate of 𝑝(𝑥𝑘|𝑦1:𝑘) is required at each time step. In such 

scenarios, only 𝑥𝑘
𝑖  need to be stored; therefore, one can discard the path 𝑥0:𝑘−1

𝑖  and 

history of measurement 𝑦0:𝑘−1
𝑖 . The modified weight is then  

       𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖 𝑝(𝑦𝑘|𝑥𝑘
𝑖 )𝑝(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖 )

𝑞(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 ,𝑦𝑘)
                                 (3.31) 

and the posterior filtered density 𝑝(𝑥𝑘|𝑦1:𝑘) can be approximated as  

  𝑝(𝑥𝑘|𝑦1:𝑘) ≈ ∑ 𝑤𝑘
𝑖𝑁𝑠

𝑖=1 𝛿(𝑥𝑘 − 𝑥𝑘
𝑖 )                             (3.32)                                     

Where the weights are defined in (3.31). it can be shown that as 𝑁𝑠 → ∞, the 

approximation (3.32) approaches the true posterior density 𝑝(𝑥𝑘|𝑦1:𝑘).  

However, a widespread problem with the SIS particle filtering is the degeneracy 

phenomenon, where after a few iterations, all but one particle will have negligible weight. 

This degeneracy implies that a large computation to the approximation to 𝑝(𝑥𝑘|𝑦1:𝑘) is 

almost zero. A suitable measure of degeneracy of the algorithm is the effective sample 

size 𝑁𝑒𝑓𝑓 introduced and defined as  
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 𝑁𝑒𝑓𝑓 =
𝑁𝑠

1+𝑣𝑎𝑟(𝑤𝑘
∗𝑖)

                                            (3.33) 

Where 𝑤𝑘
∗𝑖 = 𝑝(𝑥𝑘

𝑖 |𝑦1:𝑘)/𝑞(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 , 𝑦𝑘) is referred to as the true weight. This cannot be 

evaluated exactly, but an estimate 𝑁̂𝑒𝑓𝑓  of 𝑁𝑒𝑓𝑓 can be obtained by  

    𝑁̂𝑒𝑓𝑓 =
1

∑ (𝑤𝑘
𝑖 )2

𝑁𝑠
𝑖=1

                                           (3.34) 

Where, 𝑤𝑘
𝑖  is the normalized weight obtained using (3.30). notice that  𝑁𝑒𝑓𝑓 ≤ 𝑁𝑠, and 

small 𝑁𝑒𝑓𝑓 indicates severe degeneracy. Clearly, the degeneracy problem is an 

undesirable effect in particle filters. The basic force approaches to reducing its effect is to 

use large 𝑁𝑠. This is often impractical; therefore, it relies on resampling method.  

The basic idea of resampling use is to eliminate particle that has small weight and to 

concentrate on the particle with large weighs. The resampling set involves generating a 

new set particle {𝑥𝑘
∗(𝑖)
}
𝑖=1

𝑁𝑠
  by resampling (with replacement) 𝑁𝑠 times from approximate 

discrete representation of 𝑝(𝑥𝑘|𝑦1:𝑘) given by (3.32). the resulting sample is in fact as 

independent identical distribution. sample from the discrete distribution (3.32); therefore, 

the weights are now reset to 𝑤𝑘
𝑖 =

1

𝑁𝑠
. It is possible to implement this resampling 

procedure operations by sample particles of 𝑁𝑠 order uniforms using an algorithm based 

on order statistics.       
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3.5 Flow Chart of Particle Filtering to Estimate SOC  
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Figure 3. 4: Flow chart of particle filtering for SOC estimation. 

Particle Initialization, 𝑖 =100 

𝑥𝑘 = [𝑆𝑂𝐶𝑘, 𝑈1(𝑘), 𝑈2(𝑘)]  
At k=0 𝑥0

𝑖 = 𝑝(𝑥0) 

 

Particle Generation (state prediction) 

𝑥𝑘+1 = [𝑆𝑂𝐶𝑘
𝑖 , 𝑈1

𝑖(𝑘), 𝑈2
𝑖(𝑘)] 

𝑥𝑘+1 = 𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 ) 

 

Weight Calculation 

Measurement value  

𝑦𝑘 = [𝑆𝑂𝐶𝑘+1
𝑖 , 𝑈1

𝑖(𝑘 + 1), 𝑈2
𝑖(𝑘 + 1)] 

𝑤𝑘
𝑖 = 𝑤𝑘−1

𝑖 𝑝(𝑦𝑘|𝑥𝑘−1
𝑖 ) 

  

Normalize the weight  

𝑤𝑘
𝑖 =

𝑤𝑘
𝑖

∑ 𝑤𝑘
𝑖𝑁

𝑖=1

 

 

Resample if: 

𝑁𝑒𝑓𝑓 =
1
∑ (𝑤𝑘

𝑖)
2𝑁

𝑖=1
⁄  

𝑁𝑒𝑓𝑓 < 𝑁 

Calculate the state output  

𝑥̂𝑘 =∑𝑤̃𝑘
𝑖 𝑥̃𝑘
𝑖

𝑁

𝑖=1

 

𝑥̂𝑘 = 𝑆𝑂𝐶𝑘 

Start  
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3.6 Particle Filtering Algorithm  

The particles drawn from the distribution 𝑝(𝑥𝑘|𝑦0:𝑘) would represent samples ideally. 

However, it is often impossible to sample directly from the true posterior density. It is 

necessary for researchers to find an alternative easy-to-sample proposal distribution 

𝑞(𝑥𝑘|𝑦0:𝑘). Sequential importance sampling (SIS) and resampling form the bases of the 

standard PF algorithm. The standard PF is described as follows.  

(1) Initialization 

Set 𝑘 = 0 and draw particles 𝑥0
𝑖~𝑝(𝑥0), 𝑖 = 1,2, … ,𝑁.  

(2) Importance sampling and weights calculation  

For 𝑖 = 1,2, … , 𝑁, drawn 𝑥𝑘
𝑖~𝑞(𝑥𝑘

𝑖 |𝑥0:𝑘−1
𝑖 , 𝑦0:𝑘). In standard SMC, define 

𝑞(𝑥𝑘
𝑖 |𝑥0:𝑘−1

𝑖 , 𝑦0:𝑘) = 𝑝(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 ). Assign the particle weight according to  

 𝑤𝑘
𝑖 = 𝑤𝑘−1

𝑖 𝑝(𝑦𝑘|𝑥𝑘−1
𝑖 ) = 𝑤𝑘−1

𝑖 𝑝(𝑦|𝑥𝑘
𝑖 )𝑝(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖 )

𝑞(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 ,𝑦𝑘)
                    (3.35)                     

Normalize weights 

   𝑤𝑘
𝑖 =

𝑤𝑘
𝑖

∑ 𝑤𝑘
𝑖𝑁

𝑖=1
⁄                                          (3.36)   

(3) Re-sampling 

If the effective sample size Neff is below the given threshold Nth, do the re-sampling 

procedure. Generally, let Nth = 
2

3
𝑁 

𝑁𝑒𝑓𝑓 ≈
1
∑ (𝑤𝑘

𝑖 )
2𝑁

𝑖=1
⁄                                        (3.37) 

Draw N particles from the current particle set 𝑥𝑘
𝑖̃  and replace the current set with the new 

one 

          𝑤̃𝑘
𝑖 = 1 𝑁⁄                                                (3.38) 
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(3.22) State prediction Calculate the state by the equation 

    𝑥̂𝑘 = ∑ 𝑤̃𝑘
𝑖 𝑥̃𝑘
𝑖𝑁

𝑖=1                                            (3.39)  

If 𝑘 ≤ 𝑇 (T is the number of the measurements), let 𝑘 = 𝑘 + 1, turn to step 2; else, end 

the prediction. 

3.7 SOC Estimation Approach with Extended Kalman Filtering  

The Extended Kalman Filter is a method for system state estimation in real time. In this 

application, to estimate the SOC during discharge, the EKF can be constructed in the 

following steps.  

State space representation (3.18) and (3.19) can be shortly expressed in (3.20) and (3.21) 

for non-linear systems: 

                                                   𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1) + 𝜔𝑘−1                                      (3.22)  

                                                      𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘) + 𝜗𝑘                                              (3.23)  

𝜔𝑘−1~(0, 𝑄𝑘 = 𝑑𝑖𝑎𝑔(𝑄𝑆𝑂𝐶𝑘 , 𝑄𝑈1,𝑘 , 𝑄𝑈2,𝑘)),   𝜗𝑘 = (0, 𝑅𝑘) 

Where 𝑥𝑘 , stands for the immeasurable state vector at time step k, 𝑢𝑘(=𝑖(𝑘)) stand for 

the input vector, and 𝑦𝑘(= 𝑉𝐵𝑎𝑡𝑡(𝑘)) is the measurement output. 𝜔𝑘−1 and 𝜗𝑘 are the 

processes and measurement Gaussian noise with covariance matrix 𝑄𝑘 =

𝑑𝑖𝑎𝑔(𝑄𝑆𝑂𝐶𝑘 , 𝑄𝑈1,𝑘 , 𝑄𝑈2,𝑘) and 𝑅𝑘. 𝑓(∙) and 𝑔(∙) indicates the process and measurement 

function, respectively. Generally, 𝑓(∙) is linear while 𝑔(∙) is nonlinear function due to the 

nonlinear relationship between the OCV and 𝑆𝑂𝐶 which is presented equation (3.15). as 

for the 𝑄𝑘, the 𝑄𝑆𝑂𝐶𝑘 , 𝑄𝑈1,𝑘 , 𝑄𝑈2,𝑘 are the covariance of the SOC and dynamic voltages 𝑈1 

and 𝑈2 respectively.  
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Compute the particle derivative matrices: 

                                              𝐴𝑘−1 = 
𝜕𝑓

𝜕𝑥
|
𝑥̂𝑘−1, 𝑢𝑘−1

,  𝐻𝑘 =
𝜕ℎ

𝜕𝑥
|
𝑥̂𝑘|𝑘−1 

                             (3.24)               

The initialization can be given by: 

For k=0, set  

                                                          𝑥̂0
+ = 𝐸[𝑥0] = 𝑥0                                                (3.25) 

                                         𝑃̂0
+ = 𝐸[(𝑥0 − 𝑥̂0

+)(𝑥0 − 𝑥̂0
+)𝑇] = 𝑃𝑥0                                (3.26) 

Where, 𝑃0
+ is the prediction error covariance matrix. 

For k = 1, 2,… the following steps are performed  

Step 1: Perform the time update of the state estimate and estimation error covariance: 

                        State estimation time update:  𝑥𝑘
− = 𝑓(𝑥𝑘−1, 𝑢𝑘−1)               (3.27)  

 

               Error covariance matrix time update: 𝑃𝑘
− = 𝐴𝑘𝑃𝑘−1𝐴𝑘

𝑇 +𝑤𝑘𝑄𝑘−1𝑤𝑘
𝑇     (3.28) 

Step 2: Compute the Kalman gain matrix: 

                   Kalman gain matrix:  𝐺𝑎𝑖𝑛𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑣𝑘𝑅𝑘𝑣𝑘
𝑇)−1          (3.29)  

Step 3: Measurement update: 

          State estimation measurement update: 𝑥𝑘 = 𝑥𝑘
− + 𝐺𝑎𝑖𝑛𝑘(𝑦𝑘 − 𝑔(𝑥𝑘 , 0)) (3.30)  

 

                Error covariance measurement update: 𝑃𝑘 = (1 − 𝐺𝑎𝑖𝑛𝑘𝐻𝑘)𝑃𝑘
−        (3.31)  

The process of the EKF algorithm is summarized in Figure 3.5. the iterative process 

between time update and measurement update starts after the initialization. In this way, 

SOC can be obtained based on the information of battery terminal voltage, 𝑉𝐵𝑎𝑡𝑡 , and 

input vectors, 𝑖𝑏𝑎𝑡.  
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3.8 Extended Kalman Filter Flow Chart  

 

Figure 3. 5: Flow chart of Extended Kalman Filter for SOC estimation. 

3.9 Simulation Results with Comparison and Case Study  

To get the pulse discharge curve of Li-ion battery a constant 5A current discharge was 

used at 250 C in Figure 3.2. based on battery 2nd order RC ECM model parameters are 

estimated shown in Table 4.1 and parameters are assumed as constants from the equation 

(3.15) OCV is the function of SOC were used to estimate SOC.  

Initialization  

𝑥0 = [𝑠𝑜𝑐0 𝑈1,0 𝑈2,0] 

𝑃0 = [0 0 0 ] 

Time Update (“Predict”) 

1. State prediction (A head) 

𝑥𝑘
− = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 0) 

2. Project the error covariance a head 

𝑃𝑘
− = 𝐴𝑘𝑃𝑘−1𝐴𝑘

𝑇 +𝑤𝑘𝑄𝑘−1𝑤𝑘
𝑇 

 

Measurement Update (“Correct”) 

1. Compute the Kalman Gain 

𝐺𝑎𝑖𝑛𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑣𝑘𝑅𝑘𝑣𝑘
𝑇)−1 

2. Update estimate with measurement of 𝑦𝑘 

𝑥𝑘 = 𝑥𝑘
− + 𝐺𝑎𝑖𝑛𝑘(𝑦𝑘 − 𝑔(𝑥𝑘 , 0)) 

3. Update the error covariance 

𝑃𝑘 = (1 − 𝐺𝑎𝑖𝑛𝑘𝐻𝑘)𝑃𝑘
− 

 

Estimated state  

𝑥𝑘 = 𝑠𝑜𝑐 

Electric Load 

Li-ion 

Battery 

𝑢𝑘−1 = 𝐼𝑡  

𝑦𝑘 = 𝑉𝐵𝑎𝑡𝑡 
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Simulation and estimation results are performed in MATLAB 2016 environment. SOC 

estimation using PF algorithm in Figure 3.4. During the simulation, 100 particles were 

chosen however it was observed that PF algorithm with several simulations it showed the 

almost same SOC estimated error with 500 particles at the cost of high computational 

time. So, which implies that increasing the particles which leads to increase in the PF 

computational time. The red solid line represents the estimated result of SOC from PF 

algorithm. According to Equation (3.1), the ground truth or actual SOC values was 

obtained by integrating the discharge current per second. In particle filtering, initializing 

the state is very important to get a significant result. So, the initial SOC is chosen 

uniformly at 0.80 to 0.90 percentage of SOC. At 150 sections the particles are converged 

significantly and estimate SOC almost close to the true value. The value of process and 

measurement non-gaussian noise are  𝜔𝑘 = 1𝑒 − 6 and 𝜗𝑘 = 1𝑒 − 4.  

 

Figure 3. 6: SOC estimation with particle filtering. 
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In terms of accuracy of SOC estimation, figure 3.6 shows the error in SOC estimation 

with PF method. The mean error of true state and PF state for SOC estimation is 2.65(%). 

This demonstrates the significance of the battery dynamic model.    

 

Figure 3. 7: SOC estimation error with particle filtering. 

To evaluate the performance of the proposed PF method based SOC estimation 

algorithm, a comparison with EKF and KF based estimation methods are made. The 

reason for the comparison is to how effective the proposed model and performance of Li-

ion battery for dynamic model.  

Estimated results are a comparison with extended Kalman filtering and Kalman filtering 

algorithms. These algorithms are faster the convergence and lower the accuracy in both 

EKF and KF. However, the EKF algorithm is nonlinear model observation and faster rate 

of convergence still not accurate to minimize the error of the SOC estimation in Figure 

3.5.   
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Figure 3. 8: SOC estimation with EKF and estimation error. 

 

Figure 3. 9: SOC estimation with KF and estimation error. 

The comparison results are evidence that PF algorithm is more accurate than EKF and KF 

algorithm to estimate SOC of Li-ion battery.  Figure 3.9, shows that comparison of three 

filtering algorithms and which evidence that PF algorithm is more accurately estimate 

SOC online with 2nd RC ECM model. The accuracy is depending on the complexity of 

the dynamic model of battery.       
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Figure 3. 10: SOC comparison results with PF, EKF, and KF. 

 

Figure 3. 11: Comparison of error significance with PF, EKF, KF. 
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Table 3.2: SOC estimation error 

Estimation method PF (%) EKF (%) KF (%) 

RMSE 5.239 9.429 10.720 

Std. RMSE 5.749 10.348 11.764 

Error Mean 2.654 4.340 5.103 

 

Case Study:  

Let, supposed to have a well know nonlinear system whose discrete time (∆𝑇 = 1𝑠) 

model followed by [70]  

                  𝑥(𝑘) =
1

2
𝑥(𝑘 − 1) +

25𝑥(𝑘−1)

1+𝑥2(𝑘−1)
+ 8 cos(1.2(𝑘 − 1)) + 𝑤(𝑘 − 1)           (3.40) 

                                                       𝑦(𝑘) =
1

20
𝑥2 + 𝑣(𝑘)                                             (3.41)  

Where 𝑤~𝒩(0, 𝑅𝑤𝑤), 𝑣~𝒩(0, 𝑅𝑣𝑣) are white gaussian noise. The initial condition is 

𝑥(0)~𝒩(0.1, 5) and the noise covariances are 𝑅𝑣𝑣 = 1 and 𝑅𝑤𝑤 = 10. 

This problem becomes a benchmark for many filtering algorithms. It is highly nonlinear. 

The case study uses particle filtering algorithm to demonstrate the results. Figure 3.11, 

represents the simulated state and simulated measurement from the nonlinear state space 

model  
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Figure 3. 12: Simulated state and measurement. 

 

Figure 3. 13: State estimated state comparison between EKF and BPF. 

This demonstrates a nonlinear system state estimate with PF. For doing so, 100 particles 

are initialized with 𝑥(0)~𝒩(0.1, 5). These simulation results are evidence that for a 

complex nonlinear dynamic system with particle filtering using non-gaussian distribution 

to estimate the state with very accurate and robustness. Figure 3.12, represents the root 

mean square error for the true state to estimated state with particle filtering and it gives 

the error of 4.75. this error shows that significant of the particle filtering algorithm.  
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4. Online Capacity and Remaining Useful Life Assessment 

4.1 Li-ion Battery Capacity Degradation Model 

The battery capacity data used in this thesis are provided by National Aeronautics and 

Space Administration (NASA) Ames Prognostics Center of Excellence [71], where 

18,650-sized rechargeable Li-ion batteries were tested. Li-ion batteries in batches were 

run through three different operational profiles: charge, discharge, and impedance, 

described as follows:  

Charge step: charging was conducted at a constant current (CC) level of 1.5 A until the 

charge voltage reached 4.2 V. Charging was continued in constant voltage (CV) mode 

until the charge current dropped to 20 mA.  

Discharge step: discharging was conducted in CC mode until the discharge voltage 

reached a predefined cutoff voltage. 

Impedance measurement: measurement was performed through an electrochemical 

impedance spectroscopy (EIS) frequency sweep from 0.1 Hz to 5 kHz. Repeated charge 

and discharge steps can induce the degradation of Li-ion batteries. Meanwhile, 

impedance measurements provide insights into internal battery parameters, which vary as 

degradation progresses. During an entire C-D cycle, charge and discharge steps may be 

continuous or discontinuous for the impedance measurement. The experiments were 

terminated when the battery capacity decreased by 30% of original capacity. 

Capacity is the amount of charge a battery holds in its fully charged state and can be 

described as integrating the current over time. 

  𝑄 = ∫ 𝐼𝑑𝑡 
𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 
𝑡𝑐ℎ𝑎𝑟𝑔𝑒 

                                         (4.1) 
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Where 𝑄 is the battery capacity, 𝐼 is the current flow of the battery, 𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 is the time 

at battery fully discharged state, and 𝑡𝑐ℎ𝑎𝑟𝑔𝑒 is the time at battery fully charged state. The 

capacity will gradually irreversible with the various aging process like SEI layer 

formation and failure processes like Electrode passivation and corrosion. Generally, for 

many applications, it is accepted that 80 % of rated capacity is the failure threshold and 

consider to be End of Life (EOL). Figure 4.1 shows the capacity degradation model with 

an exponential growth model is used to fit the degradation data. To obtain an accurate 

exponential model, the Matlab curve fitting toolbox is used to fit the degradation data and 

the data found that the regression process can be expressed as by an empirical model. 

                          𝑄 = 𝑎 exp(𝑏𝑘) + 𝑐 exp(𝑑𝑘)                           (4.2) 

Here, 𝑄 is the capacity of the battery, 𝑘 is the cycle number, and 𝑎, 𝑏, 𝑐, and 𝑑 are the 

model parameters. As long as the parameters are accurately estimated, the exponential 

model can successfully describe the degradation phenomenon of battery B5, B6, B7, and 

B8. The fitting model unveils the model parameter of the known batteries.  
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Figure 4. 1: (a), (b), (c), (d) are the battery degradation data with curve fitting. 

 

Figure 4. 2: Four batteries capacity degradation data with threshold limit. 

Table 4. 1: Identified model parameters 

Battery ID a b c d 

B5 1.979 -0.002719 -0.1697 -0.06942 

B6 1.338 -0.006239 0.7215 0.00001373 

B7 1.943 -0.002074 0.000000256 0.07184 

B8 1.852 -0.002914 0.0001881 0.04868 
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Table 4. 2: Goodness of fit statistic 

Battery ID SSE 𝑅2           Adjusted 𝑅2 RMSE 

B5 0.08368 0.986 0.9859 0.02259 

B6 0.2046 0.9807 0.9804 0.03521 

B7 0.09072 0.979 0.9786 0.02359 

B8 0.1177 0.9614 0.9605 0.03045 

 

The uncertainty of the battery capacity degradation is an exponential model due to repeated 

cycling up to acceptable threshold limit but, it can also arise from various sources such as 

ambient temperature, discharge current rate, depth of discharge, and age with time so, to predict 

the remaining useful life of the battery with SMC algorithm, the B5 battery labeled is chosen 

because of the goodness of fit in statistic.  

4.2 Remaining Useful Life Online Assessment Model  

PF is a novel class of nonlinear filters that combines Bayesian learning techniques with 

importance sampling to provide good state tracking performance while keeping the 

computational load tractable. The idea is to represent the system state as PDF that is 

approximated by a set of particles (points) representing sampled values from the 

unknown state space and set of associated weight denoting discrete probability masses. 

The particle is generated from a prior estimate of the state PDF, propagated through time 

using a nonlinear process model, and recursively updated from measurements through a 

measurement model. the main advantages of PF here is that model parameters can be 

included as part of a vector to be tracked, thus performing model identification in 

conjunction with state estimation. After the model has been tuned to reflect the dynamics 
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of the specific system being tracked it can be used to propagate the particle till the failure 

threshold to give the RUL.  

After determining the initial parameters values and collecting the capacity data, the 

parameters can be updated based on Bayes rule. In order to model the uncertainty, it is 

assumed that the parameters: a, b, c, and d along with the error in the regression model 

are subjected to a Gaussian distribution. 

4.3 State Space Model on Degradation for RUL Assessment  

The system transition and measurement function can be written as  

 𝑥𝑘 = [𝑎𝑘; 𝑏𝑘; 𝑐𝑘; 𝑑𝑘]                                       (4.3) 

 

{
 

 
𝑎𝑘 = 𝑎𝑘−1 +𝜔𝑎        𝜔𝑎~𝑁(0, 𝜎𝑎)

𝑏𝑘 = 𝑏𝑘−1 + 𝜔𝑏        𝜔𝑏~𝑁(0, 𝜎𝑏)

𝑐𝑘 = 𝑐𝑘−1 + 𝜔𝑐        𝜔𝑐~𝑁(0, 𝜎𝑐)

𝑑𝑘 = 𝑑𝑘−1 +𝜔𝑑         𝜔𝑑~𝑁(0, 𝜎𝑑)

                         (4.4)  

                  𝑄𝑘 = 𝑎𝑘 exp(𝑏𝑘𝑘) + 𝑐𝑘 exp(𝑑𝑘𝑘),    𝑛𝑘~(0, 𝜎𝑛)               (4.5) 

Here, 𝑄𝑘 is the capacity measurement at cycle 𝑘, 𝑁(0, 𝜎𝑛) is the Gaussian noise with zero 

mean and standard deviation 𝜎. Use the Sequential Monte Carlo in this simulation, the 

capacity can be estimated by  

       𝑄𝑘 = ∑ 𝑄𝑘
𝑖𝑁

𝑖=1 = ∑ [𝑎𝑘
𝑖 ⋅ exp(𝑏𝑘

𝑖 ⋅ 𝑘) + 𝑐𝑘
𝑖 ⋅ exp(𝑑𝑘

𝑖 ⋅ 𝑘)]𝑁
𝑖=1           (4.6) 

Then, the p-step prediction at cycle k can be written as  

  𝑄𝑘+𝑝 = ∑ 𝑄𝑘+𝑝
𝑖𝑁

𝑖=1                                            (4.7)  

                   𝑄𝑘+𝑝
𝑖 = 𝑎𝑘

𝑖 exp(𝑏𝑘
𝑖 (𝑘 + 𝑝)) + 𝑐𝑘

𝑖 exp(𝑑𝑘
𝑖 (𝑘 + 𝑝))            (4.8)  

The estimated pdf of the prediction is  
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       𝑃(𝑄𝑘+𝑝|𝑄0:𝑘) ≈ ∑ 𝜔𝑘
𝑖𝑁

𝑖=1 𝛿(𝑄𝑘+𝑝 − 𝑄𝑘+𝑝
𝑖 )                        (4.9) 

In this capacity degradation data from NASA, 0.73 is the threshold limit is chosen to see 

the actual failure cycle. So, the life distribution of the RUL prediction at cycle k can be 

solved by  

          0.73 = 𝑎𝑘
𝑖 exp(𝑏𝑘

𝑖 𝐿𝑘
𝑖 ) + 𝑐𝑘

𝑖 exp(𝑑𝑘
𝑖 𝐿𝑘
𝑖 )                         (4.10)      

   𝑃(𝐿𝑘|𝑄0:𝑘) ≈ ∑ 𝜔𝑘
𝑖 𝛿(𝑘 − 𝐿𝑘

𝑖 )𝑁
𝑖=1                               (4.11) 

Where, k is the actual failure cycle number.  

4.4 Experimental Results and Discussion  

In this section, a case studies are conducted to validate the proposed SMC approach. The 

data from NASA prognostic center is chosen the for-case studies. Where four batteries 

B5, B6, B7, and B8 are used to elicit the initial model parameter initialization for the 

different battery model including initializing the model parameters and their 

corresponding variance. In section 4.1, a curve fitting model is conducted to choose the 

best model fit for RUL and B5 battery is chosen for best goodness and statistical fit 

compared to the reaming batteries so, the model parameters are initialized using the 

average value through curve fitting based on the battery training samples. Nonlinear least 

square fitting is performed to initialize the parameters of models then the initial values of 

parameters a, b, c and d are -9.86e-7, 5.752e-2, 8.983e-1 and -8.34e-4, respectively. The 

battery simulations are performed in MATLAB R2016b environment. In the experiment, 

the first 50,100,150 cycle capacity measured data points are chosen randomly used to 

predict the RUL of battery B5 using SMC method. The actual end of life threshold limit 
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of the battery is chosen 80% of the capacity at the beginning of the life of the battery. The 

results are shown in Figures 4.3, 4.5, and 4.5. 

The root means square error (RMSE) gives the standard deviation of the model prediction 

error. A smaller the value indicates the better model performance. The formula for the 

RMSE is given as  

                                                     RMSE=√
1

𝑛
∑ (𝑄̂𝑘 − 𝑄𝑘)

2𝑛
𝑘=1                                    (4.12)      

The RUL prediction error (𝐸𝑅𝑈𝐿) is the absolute value of the difference between the 

number of real cycles till 80% of rated capacity in Equation (4.10) and the predicted 

number of cycles. The formula for the RUL prediction error is given as follows: 

 𝐸𝑅𝑈𝐿 = |𝑅𝑈𝐿𝑟𝑒𝑎𝑙 − 𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|                            (4.13)   

 

 

Figure 4. 3: SMC prediction results at 50 cycles for the battery of B5. 
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Figure 4. 4: SMC prediction results at 100 cycles for the battery of B5. 

 

Figure 4. 5: SMC prediction results at 150 cycles for the battery of B5. 
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Figures (4.3) - (4.5) shows that EOL prediction results for three different prediction 

cycles i.e., 50th cycle, 100th cycle, and 150th cycle respectively. For each prediction point, 

the mean value of EOL obtained from the RUL pdfs in Equation 4.11 (shown in green 

colors) and compared with actual EOL obtained from the normalized experimental B5 

battery capacity data. In the simulation work, 100 particles are considered in PF 

algorithm. A comparison table for the different prediction points are listed in Table 4.3.  

Table 4. 3: Comparison of EOL prediction for different cycle 

Prediction cycle Actual EOL (cycle) Predicted 

EOL(cycle) 

Prediction error 

(cycle) 

K=150 189 189.30 0.30 

K=100 189 187.17 1.83 

       K=50 189  185.27 3.78 

 

From Table 4.3, shows that as the point of prediction approaches the actual EOL, the 

prediction error reduces gradually. The standard deviation of the EOL prediction is 

shown in Table 4.4.  

Table 4. 4: Comparison of standard deviation EOL prediction at different cycle 

Prediction Cycle Standard Deviation (Cycle) 

K=150 7.14 

K=100 7.52 

K=50 8.28 
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5. Conclusion and Future Works 

5.1 Conclusion  

 

In this thesis, a method for Li-ion battery online SOC estimation using the algorithm of 

PF is proposed. An accurate 2nd RC ECM with parameters represented by the function of 

SOC for Li-ion battery is established in MATLAB. A state space model is developed for 

2nd RC ECM, that uses the PF algorithm to estimate online SOC. Using EKF and KF 

algorithm are also presented to estimate online SOC for comparisons and significance of 

battery model performance. From the simulation results, it demonstrated that PF provides 

an accurate estimation. In conclusion, the proposed method for battery 2nd RC ECM has 

superior performance on online SOC estimation for Li-ion battery. This approach uses a 

statistical characterization of battery profile to estimate the SOC of Li-ion battery.    

A new model for capacity degradation of Li-ion battery is proposed. This capacity 

degradation model is considered as an empirical model because of the capacity 

degradation is nonlinear so, it is quite capable of nonlinear and easily implemented in PF 

based framework to make effect RUL prediction for Li-ion batteries. The prediction 

results obtained so far have been quite satisfactory; however, there is still a lot of 

considerable room for improvement. The prediction of RUL has been obtained using PF 

algorithm based on capacity degradation estimation. Then the predicted RUL has been 

validated with measured RUL from the given threshold limit experimental data. All the 

test until the end of the life cycle has been carried out at the same discharge C-rate. The 

model accuracy can be still improved by incorporating the influence of various different 

parameters like C-rate, temperature, changes in DOD, and impedance etc.  
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5.2 Future Works  

 

In future works, ECM model can be developed with consideration of SOC, SOH, and 

Temperature to standard PF algorithm and Unscented Particle Filtering is the idea of a 

combination of PF and UKF. It utilizes new coming measurement in the prediction and 

the prediction accuracy.   

The RUL prediction work presented here is an initial investigation of Li-ion battery 

prognostic health management system. The battery capacity data is used to model the 

battery degradation trend as an empirical model. however, in future work the ECM 

battery dynamic can be important to implement for onboard BMS. An Unscented Particle 

Filtering can have to introduce in future work to estimate SOC and RUL of Li-ion battery 

because of PF resampling causes particle improvement in the application, choosing 

reasonable proposal distribution becomes a promising choosing to solve the have higher 

degeneracy problem.  
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Appendix  

MATLAB Codes SOC Estimation using PF  

 

% particle filtering for SOC estimation  
% using 2nd RC model battery  
% SURESH  
% M.S, THESIS,2017   
%% extract the data and determine the parameters  
close all; 
clear all; 

  
% Battery Specification  
i=5; % Discharge Current Amp  
Qc=5*3600; %Battery Capacity 5Ah 
dt=1.08; %discrete time interval  
time=1:3000; % length of discharge in sec 

  
%Identified parameter from 2nd RC ECM model  
R0=0.0717; 
R1=0.0310; 
R2=0.0277; 
C1=8437; 
C2=91401; 

  
% initial parameters for the 2nd RC ECM Model  
U1(1)=0.08387; 
U2(1)=0.0189; 
Voc(1)=4.175; 
SOC(1)=0.99; 
V_teri(1)=4.430; 
V_meas(1)=4.3749; 

  
L=3000;  % number of iterations  
s=rng; 
rng(s); 
% Noise  
W_k = 1e-6;    % Process Noise  
V_k = 1e-4;    % Measurement Noise  

  
for k=2:L 

     
    % State space model  
    % process equations (states) 
    SOC(k)=SOC(k-1)-i*dt/Qc+ sqrt(W_k)*randn;                % first 

State SOC, ****(IMP)if add noise the states are little discrete graphs       
    U1(k)=(1-(dt/(R1*C1)))*U1(k-1)+dt/C1+sqrt(W_k)*randn;    % Second 

state RC-terminal voltage  
    U2(k)=(1-(dt/(R2*C2)))*U2(k-1)+dt/C2+sqrt(W_k)*randn;    % third 

state, second RC-terminal voltage  
    % Open circuit voltage  
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    Voc(k)= 14.79*(SOC(k)).^6-36.612*(SOC(k)).^5+29.235*(SOC(k)).^4-

6.281*(SOC(k)).^3.... 
           -1.647*(SOC(k)).^2+1.286*(SOC(k))+3.404; 
    % Measurement Equation (Terminal Voltage)  
       V_teri(k)=Voc(k)*SOC(k)+R0*i-U1(k)-U2(k);  % true Terminal 

Voltage  

        
       V_meas(k)=V_teri(k)+sqrt(V_k)*randn;        %Measured terinal 

Voltage  

        
end 

  

  
figure 
subplot(2,1,1) 
plot(time,V_teri,'b'); 
hold on  
plot(time,V_meas,'g') 
grid, xlabel('Time [s]'), ylabel('Voltage [V]'), title('Simulated True 

Discharge Voltage'); 
legend('True Voltage','Measured Voltage') 
subplot(2,1,2) 
plot(time,SOC); 
grid, xlabel('Time [s]'), ylabel('SOC'), title('Simulated True SOC'); 
legend('True SOC') 

  

  
%% %% 
%--------------Particle Filtering--------------- 
n_part = 100;  % Number of Particles  

  
% intial State particle  
Zp = 0.08387; 
Zn=0.0189; 

  
%Noise filter  
W_k = 1e-6;    % 8and 5  
V_k = 1e-5;      %4 
w_1 = W_k; 
w_2 =V_k ;  
Rnn = 1e-5;  %actual 2 

  
%Resampling 
N_t = n_part; 

  
%Particle initialization 
particle = zeros(n_part,3);  % it creats three zero coloms with 1000*3 

matrics 
particle_pred =  zeros(n_part,3); % it creats three zero coloms with 

1000*3 matrics 
particle(:,1) = ones(n_part,1)*Zp; % it creats three coloms one with 

mutiple of Zp other two are zero 1000*3 
particle(:,2) = ones(n_part,1)*Zn; % it creats three coloms second with 

mutiple of Zp other two are zero 1000*3 
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particle(:,3) = unifrnd(0.80,0.90, n_part, 1); %soc it creats three 

coloms thrid uniform no 0.8 to 0.99 with mutiple of Zp other two are 

zero 1000*3 
weight = ones(n_part,1)/n_part;   % it creats one colom with 1/1000 i.e 

1000*1 matrcis 

  
%Estimators 
x1_est_mmse = zeros(L,1); %it creats zero of 1500 rows i.e L so 1500*1 

fro state one  
x1_est_mmse(1) = mean(particle(:,1)); % it can calculate mean of Zp for 

all 1000*0.2/1000=0.2 L of length  
x2_est_mmse = zeros(L,1); % it creats zero of 1500 rows for state two 

i.e 1500*1 for state two  
x2_est_mmse(1) = mean(particle(:,2)); %it creats mean of Zp for all 

1000*0.2/1000 for L length  
x3_est_mmse = zeros(L,1); %it creats zero of 1500 rows i.e L so 1500*1 

for state three  
x3_est_mmse(1) = mean(particle(:,3)); % it can calculate mean of 0.8 to 

0.9 for all then we have 0.85 for  L of length 

  
v_model = zeros(n_part,1); % it creats zero coloms with 1000*1 matrics  

  
for k=2:L 

     
    for t=1:n_part  
        % Measured voltage pattern to the previous particle (k-1) 
        v_model(t)=(Voc(k))*particle(t,3)+(R0*i)-particle(t,1)-

particle(t,2); 

         
        %Importance sampling (prediccion from k-1 to k) 
        r1 = sqrt(w_1)*randn; 
        r2 = sqrt(w_2)*randn; 
        particle_pred(t,1) = particle(t,1)+ r1;   % added to i*dt/C1 
        particle_pred(t,2) = particle(t,2)+ r1;    %added to i*dt/C2 
        particle_pred(t,3) = particle(t,3) - i*dt/Qc + r2;  

%%v_model(t)*i*dt 
         if particle_pred(t,3)<0 
            particle_pred(t,3) = 0; 
         end 

          
         %Weight update (value measuremnt in k) 
          v_model(t)=(Voc(k))*particle_pred(t,3)+(R0*i)-

particle_pred(t,1)-particle_pred(t,2); 

          
         innov = V_meas(k) - v_model(t); % innovation  
         weight(t) = exp( -log(sqrt(2*pi*Rnn)) -(( innov )^2)/(2*Rnn) 

); 
    end 
    if sum(weight)==0 
        %Display (Weight) 
        disp(innov); 
        disp('Error'); 
        disp(k); 
        disp(t); 
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    end 
    % Normalizes Weight  
     weight = weight/sum(weight); 
     N_eff = 1/( sum(weight.^2) ); 

      
     if N_eff < N_t 
          %Resampling 
        cdf = cumsum(weight); 
         %Systematic resampling 
         sam = rand/n_part; 
         for t=1:n_part 
             samInd = sam + (t-1)/n_part; 
             ind = find( samInd<=cdf ,1); 
            particle(t,:) = particle_pred(ind,:); 

          

         end 

          
     else 
        for t=1:n_part 
            particle(t,:) = particle_pred(t,:); 
        end 

         

  
     end 
     x1_est_mmse(k) = mean(particle(:,1)); 
     x2_est_mmse(k) = mean(particle(:,2)); 
     x3_est_mmse(k) = mean(particle(:,3)); 

      
     error = SOC'- x3_est_mmse; 
     rmse_pf(k)=sqrt(sum(((SOC'- x3_est_mmse).^2))/L); 

      

  
end 

  
mean_rmse_pf = mean(rmse_pf); 
std_rmse_pf = std(rmse_pf); 
mean_error=mean(error); 

  
fprintf('mean rmse pf: %f \n',mean_rmse_pf); 
fprintf('std rmse pf: %f \n',std_rmse_pf); 
fprintf('% of Error: %f \n',mean_error); 

  

  
figure, plot(time,x3_est_mmse,'r') 
hold on 
plot(time, SOC,'g') 
grid, xlabel('Time [s]'), ylabel('SOC'), title('Particle-Filtered SOC 

'); 
legend('PF Estimate','Ground Truth'); 

  
figure 
subplot(2,1,1) 
plot(time,SOC); 
hold on 
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plot(time,x3_est_mmse,'g'); 
grid, xlabel('Time [s]'), ylabel('State'), title('SOC Estimation'); 
legend('True State','BPF Estimate'); 

  

  
subplot(2,1,2) 
error = SOC'- x3_est_mmse; 
plot(time,error); 
ylim([-4e-2,4e-2]); 
grid, xlabel('Time [s]'), ylabel('Error'); 
title('SOC Estimation Error'); 

  

 

SOC Estimation with EKF method  

 
 
close all; 
clear all; 

  
%Extended Kalman filtering for SOC estimation  
% Using a 2nd RC ECM model  
% Suresh 
% M.S, Thesis 2017 
%% extract the data and determine the parameters  

  
% Battery Specification  
i=5; % Discharge Current Amp  
Qc=5*3600; %Battery Capacity 5Ah 
dt=1.08; %discrete time interval  
time=1:3000; % length of discharge in sec 

  
%Identified parameter from 2nd RC ECM model  
R0=0.0717; 
R1=0.0310; 
R2=0.0277; 
C1=8437; 
C2=91401; 

  
% initial parameters for the 2nd RC ECM Model  
U1(1)=0.08387; 
U2(1)=0.0189; 
Voc(1)=4.175; 
SOC(1)=0.99; 
V_teri(1)=4.430; 
V_meas(1)=4.3749; 

  
L=3000;  % number of iterations  
s=rng; 
rng(s); 

  
% Noise  
W_k = 1e-6;    % Process Noise  
V_k = 1e-4;    % Measurement Noise  

  



75 
 

for k=2:L 

     
    % State space model  
    % process equations (states ) 
    SOC(k)=SOC(k-1)-i*dt/Qc+ sqrt(W_k)*randn;                % first 

State SOC, ****(IMP)if add noise the states are little discrete graphs       
    U1(k)=(1-(dt/(R1*C1)))*U1(k-1)+i*dt/C1+sqrt(W_k)*randn;    % Second 

state RC-terminal voltage  
    U2(k)=(1-(dt/(R2*C2)))*U2(k-1)+i*dt/C2+sqrt(W_k)*randn;    % third 

state, second RC-terminal voltage  
     %Open circuit voltage  
    Voc(k)= 14.79*(SOC(k)).^6-36.612*(SOC(k)).^5+29.235*(SOC(k)).^4-

6.281*(SOC(k)).^3.... 
           -1.647*(SOC(k)).^2+1.286*(SOC(k))+3.404; 
    % Measurement Equation (Terminal Voltage)  
       V_teri(k)=Voc(k)*SOC(k)+R0*i-U1(k)-U2(k);  % true Terminal 

Voltage  

        
      V_meas(k)=V_teri(k)+sqrt(V_k)*randn;        %Measured terinal 

Voltage  

        
end 

  

  
%figure 
%subplot(2,1,1) 
%plot(time,V_teri,'b'); 
%hold on  
%plot(time,V_meas,'g') 
%grid, xlabel('Time [s]'), ylabel('Voltage [V]'), title('Simulated True 

Discharge Voltage'); 
%legend('True Voltage','Measured Voltage') 
%subplot(2,1,2) 
%plot(time,SOC); 
%grid, xlabel('Time [s]'), ylabel('SOC'), title('Simulated True SOC'); 
%legend('True SOC') 

  

  
%% EKF based ground vehicle navigation  

  
F=[1-i*dt/Qc 0 0; 0 (1-(dt/(R1*C1)))+i*dt/C1 0; 0 0 (1-

(dt/(R2*C2)))+i*dt/C2];  
%E=[i*dt/Qc; (i*dt)/C1; (i*dt)/C2] 
%D=F+E; %state space model 
Q=diag([1e-5 1e-6 1e-6]);  %process noise covariance 
R=1e-4;  % measure noise covariance  

  
x=[0.97; 0.08387; 0.0189 ]; % intial state  
xhatplus=x; %intial state estimate  
Pplus=diag([0 0 0]); % intial estimation error covariance  

  
% intialize arrays  
xArr=x; 
xhatArr=xhatplus; 
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for k=2:L 

     
    % system simulation  
    x=F*x+ sqrt(Q)*randn(3,1); 
    y=Voc(k-1)*x(1)+R0*i-x(2)-x(3)+sqrt(R)*randn; %v(k) 

     
    % EKF time update  
    Pminus=F*Pplus*F'+Q; 
    xhatminus=F*xhatplus; 

     
    %EKF measurment update  
    H=zeros(1,3); 
    SOChat=xhatminus(1); 
    U1hat=xhatminus(2); 
    U2hat=xhatminus(3); 
    temp=Voc(1)*SOChat+R0*i-U1hat-U2hat; 
    H(1,1)=88.74*(SOChat).^5-183.06*(SOChat).^4+116.94*(SOChat).^3-

18.843*(SOChat).^2.... 
           -3.294*(SOChat)+1.286;   %i/Qc; 
    H(1,2)=-U1hat; %(i/C1)-(U1(k)/(R1*C1)); 
    H(1,3)=-U2hat; %(i/C2)-(U2(k)/(R2*C2)); 

     
    K=Pminus*H'*inv(H*Pminus*H'+R); 
    yhat=Voc(k-1)*SOChat+R0*i-U1hat-U2hat; %v(k) 
    xhatplus=xhatminus+K*(y-yhat); 
    Pplus= Pminus-K*H*Pminus; %(eye(3)-K*H)*Pminus or (1-K*H)*Pminus;  

     
    xArr=[xArr x]; 
    xhatArr=[xhatArr xhatplus]; 

     
end  

  
% figures  
figure  
subplot(2,1,1) 
plot(time,xArr(1,:),'r') 
hold on 
plot(time, SOC,'g') 
grid, xlabel('Time [s]'), ylabel('SOC'), title('EKF SOC '); 
legend('EKF Estimate','Ground Truth'); 

  
subplot(2,1,2) 
error=SOC-xArr(1,:); 
plot(time, error) 
ylim([-2.5e-1,2.5e-1]); 
grid, xlabel('Time [s]'), ylabel('Error'); 
title('SOC Estimation Error'); 

  
% Compute experimental Standard Deviation of Estimation Error  
Eststd=std(xArr(1,:)-xhatArr(1,:)); 
fprintf('Std of EKF: %f \n',Eststd); 
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MATLAB Code for SOC Comparison Results for PF, EKF, and KF  

close all; 
clear all; 

  
% load the data  
load('matlab_originalsoc.mat'); 
load('matlab_PFsoc.mat'); 
load('matlab_EKFxhat.mat'); 
load('matlab_KFxArr.mat', 'xArr'); 
%load('matlab_Xhatplus.mat'); 

  

  
t=1:3000; 

  
figure 
plot(t,SOC,'g'); 
grid on; 
hold on; 
plot(t,x3_est_mmse,'r'); 
plot(t,xhatArr(1,:),'k') 
plot(t, xArr(1,:),'b') 
xlabel('Time [s]'), ylabel('SOC'), title('Comparision of SOC '); 
legend('Ground Truth','PF Estimate', 'EKF Estimate','KF Estimate'); 

  
error_1=(SOC-x3_est_mmse'); 
error_2=(SOC-xhatArr(1,:)); 
error_3=(SOC-xArr(1,:)); 

  
figure  
plot(t,error_1,'r'); 
grid on; 
hold on; 
plot(t,error_2,'k'); 
plot(t,error_3,'b'); 
xlabel('Time [s]'), ylabel('SOC Error'), title('Comparision of SOC 

Error'); 
legend('PF Estimate Error', 'EKF Estimate Error','KF Estimate Error'); 

  
for t=1:3000 

     
   rmse_pf(t)=sqrt(sum(((SOC-x3_est_mmse').^2))/t); 
   rmse_ekf(t)=sqrt(sum(((SOC- xhatArr(1,:)).^2))/t); 
   rmse_kf(t)=sqrt(sum(((SOC- xArr(1,:)).^2))/t); 

  
   mean_rmse_pf = mean(rmse_pf); 
   std_rmse_pf = std(rmse_pf); 

  
   fprintf('rmse mean of PF: %f \n',mean_rmse_pf); 
   fprintf('rmse std of PF: %f \n',std_rmse_pf); 

  
   mean_rmse_ekf = mean(rmse_ekf); 
   std_rmse_ekf = std(rmse_ekf); 
   fprintf('rmse mean of ekfF: %f \n',mean_rmse_ekf); 
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   fprintf('rmse std of ekfF: %f \n',std_rmse_ekf); 

  
   mean_rmse_kf = mean(rmse_kf); 
   std_rmse_kf = std(rmse_kf); 
   fprintf(' rmse mean of kF: %f \n',mean_rmse_kf); 
   fprintf('rmse std of kF: %f \n',std_rmse_kf); 
end  

  
PFstd=std(error_1); 
EKFstd=std(error_2); 
KFstd=std(error_3); 

  
fprintf('std of PF: %f \n',PFstd); 
fprintf('std of EKF: %f \n',EKFstd); 
fprintf('std of KF: %f \n',KFstd); 

 

 

MATLAB code: Remaining Useful Life Estimation (RUL) using PF framework  

 
clear all 
close all 
% RUL Estimation using NASA data Prognostic center  
% Suresh Daravath  
% M.S. thesis SMC  

  
%% PF model 
%Load the data set. 
load(['C:\Users\Suresh\Desktop\RUL\nasa prognastic model source 

code\NASA progostic center data\BatteryAgingARC-FY08Q4\B0005.mat']); 
load(['C:\Users\Suresh\Desktop\RUL\nasa prognastic model source 

code\NASA progostic center data\BatteryAgingARC-FY08Q4\B0007.mat']); 

  
theta=[-9.86e-7,5.752e-2,8.983e-1,-8.34e-4]'; 
first_batt = (-9.86e-7) * exp(5.752e-2 * (1:200)) + (8.983e-1) ... 
* exp((-8.340e-4) * (1:200)) + 0.005*randn(1,200); 
second_batt = (-9.86e-7) * exp(5.752e-2 * (1:200)) + (8.983e-1) ... 
* exp((-8.340e-4) * (1:200)) + 0.005*randn(1,200); 

  
%PF 
theta_set=repmat(theta,1,100); 
theta_set(1,1:100) = theta(1) + theta(1)/10 * (0.5-rand(100,1)); 
theta_set(2,1:100) = theta(2) + theta(2)/10 * (0.5-rand(100,1)); 
theta_set(3,1:100) = theta(3) + theta(3)/10 * (0.5-rand(100,1)); 
theta_set(4,1:100) = theta(4) + theta(4)/10 * (0.5-rand(100,1)); 
weights = 0.01 * ones(1,100); 
tic 
for j = 1:100 
choose_par(j,:) = theta_set(1,j) * exp(theta_set(2,j) * ... 
(1:250)) + theta_set(3,j) * exp(theta_set(4,j)*(1:250)); 
RULs(j) = find(choose_par(j,:) <= 0.8*(second_batt(1)),1); 
end 
toc 

  
tic 
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sigma = 0.1; 
for i = 1:200 
if i ==50 
weights_50 = weights; 
end 
if i == 100 
weights_100 = weights; 
end 
if i == 150 
weights_150 = weights; 
end 
% Get the likelihood 
likelihood = 1/(sigma*sqrt(2*pi)) * exp(-1/2 * ... 
((second_batt(i)) - (theta_set(1,:) .* exp(theta_set(2,:)... 
* i) + theta_set(3,:) .* exp(theta_set(4,:) * i))).^2 /... 
sigma^2); 

  
% Update the weights 
weights = weights .* likelihood; 
weights = weights / sum(weights); 
end 
toc 
[RULs, ind] = sort(RULs); 
weights_50s = weights_50(ind); 
weights_100s = weights_100(ind); 
weights_150s = weights_150(ind); 
figure 
xlabel('k, Cycle index (cycle)') 
ylabel('Capacity (Ah)') 
axis square 
hold on 
grid on 
plot(RULs', weights_150s + 0.8*second_batt(1),'g', 'linewidth', 2) 
%plot(RULs', weights_100s + 0.8*second_batt(1),'r', 'linewidth', 2) 
%plot(RULs', weights_50s + 0.8*second_batt(1),'r', 'linewidth', 2) 

  
plot(1:length(second_batt), second_batt,'r','linewidth',1.5) %% 
plot(1:length(second_batt), second_batt,'ko','linewidth',1.5) %% si 

  
Life_RUL=mean(RULs') 
s_deviation=std(RULs') 

  
EOL=RULs'; 
norm=normpdf(RULs',Life_RUL,s_deviation); 
plot(EOL,norm) 
legend(' RUL at k=150', 'observations','PF prediction') 
plot([1,200],second_batt(1)*0.8*[1,1],'b','linewidth',1.5) 
text(25,second_batt(1)*0.81,'RUL failure threshold') 
axis([0 200 0.65, 0.91]) 
line([150 150],[0.65 0.91]); 
set(gca,'YLim',[0.65 0.91]) 
%title('PF tracking four states, five percent particle variation') 
xlabel('k, Cycle index (cycle)') 
ylabel('Q, Capacity (Ah)') 
axis square 
box on 



80 
 

err_early = sum(weights_50s.*RULs)-190 
err_late = sum(weights_100s.*RULs)-190 
err_final = sum(weights_150s.*RULs)-190 
sig_early = sqrt(sum(weights_50s.*(RULs - (err_early + 190)).^2) ) 
sig_late = sqrt(sum(weights_100s.*(RULs - (err_late + 190)).^2) ) 
sig_final = sqrt(sum(weights_150s.*(RULs - (err_final + 190)).^2) ) 
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