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ABSTRACT 

CATHODE INTERFACE ENGINEERING FOR HIGH PERFORMANCE 

PLANAR PEROVSKITE SOLAR CELLS 

MD NAZMUL HASAN 

2017 

Organic-inorganic hybrid perovskite solar cells (PSCs) have already improved their 

power conversion efficiency (PCE) from 3.9% to ~22.1% at present. This demonstrated 

that PSCs can be a promising alternative to conventional silicon solar cells. PSCs have 

been marked as one of the most favorable next-generation solar cells due to their high 

extinction coefficient, broad light absorption range and ambipolar charge transport 

properties, low production cost, and simple fabrication processing. Various device 

architectures have been designed and investigated for constructing high performance PSCs 

consisting of different electron transport layers (ETL) and hole transport layers (HTL). In 

general, PSCs are fabricated in two structures: mesoporous scaffold n-i-p and planar 

heterojunction p-i-n PSCs. Although mesoscopic PSCs have obtained an impressive PCE, 

it requires high temperature process (> 450oC) for forming compact TiO2 and mesoporous 

TiO2 that hinders their applications that require mechanical flexibility. On the other hand, 

planar p-i-n PSCs have drawn attention due to low temperature processing, mechanical 

flexible devices.  

The goal of this work is to introduce a non-conjugated polymer material 

Polyvinylpyrrolidone (PVP) as cathode buffer layer (CBL) and understand interfacial 

engineering in planar p-i-n PSCs. PVP was used for the first time as a CBL in PSCs. The 

ETL and HTL are highly responsible to increase carrier separation, improve charge 
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collection and reduce recombination. Additionally, the buffer layer between ETL and metal 

cathode (like Ca, Al, Ag) electrode in PSCs plays a crucial role in energy-level alignment, 

trap state passivation and PSCs film morphology.  

 A comparative study on PSCs without and with CBL was investigated where 

rhodamine as CBL was considered for control device. The thickness of PVP CBL was 

analyzed by changing spin speed from 1000 rpm to 5000 rpm at an interval of 2000 rpm. 

The optimal spin speed was found at 3000 rpm, which achieved an average efficiency of 

15.30%. The concentrations of PVP dissolved in isopropanol was optimized from 0.5 

mg/ml to 2.0 mg/ml. There was simultaneous enhancement of short circuit current density 

(Jsc), open circuit voltage (Voc), fill factor (FF),  and overall power conversion efficiency 

(PCE) due to incorporation of PVP. The best device achieved a PCE of 16.35%. Various 

device characterizations such as atomic force microscopy (AFM), scanning electron 

microscopy (SEM) etc. were performed to interpret the enhancement of device 

performance. 
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Chapter 1. Introduction 

1.1 Background 

In order to generate electricity for homes, schools, businesses and factories, 

different energy resources are needed. Energy sources such as solar, hydro, wind, fossil 

fuels etc. are highly preferable to make life easier and comfortable. The need of energy 

supply is increasing with the rapid growth of world population. As reported by international 

energy agency (IEA) data analysis, fossil fuels such as oil, coal and natural gasses are main 

energy sources of producing energy in the world. They cover almost 66% of the energy 

market. Recent days, the world’s total energy consumption has been doubled [1]. Figure 

1.1 shows fuel energy consumed in million tons of oil equivalent (Mtoe) in 1973 and 2015.  

 

Figure 1. 1 World energy consumption in 2015[1] 

Although fossil fuels have lots of advantages, they have serious issues including 

environmental pollution and greenhouse gas (CO2, SO2, NO, poly-aromatic, etc.) emission. 

It is believed that CO2 and ozone gas are highly responsible for global warming and 

dramatic change of weather [1]. In the last two decades, the total CO2 increased by 43%, 
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which is expected to rise from 30.2 billion metric tons in 2008 to 35.2 billion metric tons 

in 2020 [2]. Therefore, it is urgent to use alternate sources of energy such as geothermal, 

heat, biomass, wind, hydro, tidal waves and solar as future energy generation sources [3] 

[4]. 

In order to avoid environmental hazards, at least 67 countries are targeting to have 

a renewable energy target (RET) policy. The European Union and United States baseline 

target is 20% by 2020, while the Danish government proposed 30% for 2025. Canada has 

9 provincial RETs, but no national target so far [5]. The world’s primary renewable energy 

are produced from wind, hydro, biomass and agricultural waste. Among them, 

photovoltaics (PV) are one of the fastest and greenest energy technologies. The total energy 

consumption in the world is around 5.6×1020 J annually where the sun delivers 1.7 ×1017 

W to the earth. If it is fully utilized with 100% efficiency, then it should take around 55 

minutes (5.6×1020 Joule/ 1.7 ×1017 W = 55 minutes) to fulfill the requirement. The energy 

provided by the sun to the earth should be equal to the world’s annual energy consumption 

[6]. 

Harvesting solar energy can pave a way to clean energy production for the next 

generation. Figure 1.2 shows solar cell trends over the last few decades certified by the 

National Renewable Energy Laboratory (NREL) [7].    
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Figure 1. 2 Solar cell trends over last few decades (compiled by National Renewable 

Energy Laboratory) [7] 

The most commercialized solar cells (SCs) are based on Si inorganic. Bell 

laboratory, first built and demonstrated silicon PV cells in 1954, which was made from 

single p-n junction Si. Since then, SCs have been classified in three different categories. 

Single/mono crystalline and poly crystalline silicon (c-Si) are considered as first generation 

solar cells. Amorphous silicon (a-Si), microcrystalline silicon, copper indium gallium 

selenide (CIGS), and cadmium telluride (CdTe) are considered as second generation solar 

cells due to use of thin film technologies. The third generation solar cell includes polymer, 

oligomers, dye synthesized solar cells (DSSCs), and organic/inorganic hybrid perovskite 

solar cells (PSCs) which are still under continuous research for further improvement and 

stability.  

Although Si solar cells cover almost 95% of the market over the exiting SCs, it has 

still some limitations to think alternatively for different solar systems. Most of the cases, 
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a-Si, and CIGS or CdTe solar cells have the issue of light induced degradation. The Indium 

and tellurium have the chance of scarcity for mass scale production. These limitations have 

been eliminated by replacing c-Si solar cell technologies. However, they have the poor 

light absorption capability due to the use of a few hundred microns thick c-Si film for 

sufficient light absorption and also suffer from high series resistance which affects the 

device fill factor and overall performance. High temperature and high vacuum process are 

also other reason for c-Si technology to make the device costly.  

Organic SCs are not like inorganic Si solar cells. Organic photovoltaics (OPVs) 

added a new dimension to meet the limitations from first and second generation SCs. They 

introduced a way of first solution process SCs with materials diversity and large scale 

manufacturing. In addition, they have light weight, low material consumption semi-

transparency, less toxicity and device flexibility. However, OPVs have some limitations of 

low efficiency and organic materials poor stability. Researcher started to develop organic 

–inorganic hybrid solar cells to overcome these limitations and to utilize the properties of 

both materials.Dye sensitized Solar cells (DSSC) are also attractive sources of green 

energy. It is simple in fabrication using conventional roll-printing techniques, high 

efficiency, semi-transparent and semi-flexible. But the use of expensive platinum or 

ruthenium and liquid electrolyte presents a serious challenge to making suitable cells for 

use in all weather. 

Recently, a new type of SC called ‘Perovskite’ has surpassed the efficiency limit of 

OPVs and DSSCs. The structure of an organic-inorganic perovskite has a basic recipe of 

ABX3, where A and B are cations and X is a halide atom. New growth methods of 

fabrications, smooth perovskite film morphology, novel device design and innovations in 
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material combination lead the perovskite PCE significantly higher compared to the other 

solution processed SCs. Methylammonium lead triiodide (MAPbI3, CH3NH3PbI3) is the 

most widely used single halide perovskite composition where methylammonium iodide 

(CH3NH3I or MAI) is the organic part which facilitates self-assembly and lead iodide (PbI2) 

is the inorganic salt which provides an extended network by covalent or ionic interaction 

that allows for the precise crystalline structure formation. Figure 1.3 displays the increasing 

trend in efficiency of perovskite solar cells the last ten years. 
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Figure 1. 3 Perovskite efficiency trend in last ten years 

PSCs facilitates long-range am-bipolar carrier diffusion length, low exciton 

binding energy and high absorption coefficient for excellent photovoltaic characteristics.  

1.2 Previous work 

Alexandre-Edmund Becquerel, a French physicist first demonstrated the 

photovoltaic phenomenon in 1839. In his experiment, silver bromide (AgBr) or silver 

chloride (AgCl) was placed  in an acetic solution and illuminated light between two 
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platinum metal electrodes generated voltage and current [4]. In 1883, by depositing a thin 

gold layer on the top of selenium semiconductor, Fitts et al. first showed solid state solar 

cell [8] . In 1954 Bell Laboratory introduced first crystalline Si solar cell with an efficiency 

of 6% [9]. Since then, recent technology of PV research boosted the PCE of polycrystalline 

silicon solar cell to 20.3% and single crystalline solar cell to 24.7% [10].  

In 1976, amorphous Si solar cell was developed with a thickness of 1 micron and 

PCE of 2.4% [11].  This type of solar cell had the degradation problem due continuous 

light illumination.  The leading technologies tried to think differently instead of Si solar 

cell. In 1981, Kodak made the PCE of 10% from CdTe solar cells [12] and some companies 

started to commercialize that type of inorganic thin film solar cells. Additionally CIGS 

solar cell exceeded the 10% efficiency in the year of 1983-1984 but were not commercially 

available till 1998.    

In 1986, Tang et al. reported 1% efficiency of bilayer heterojunction organic solar 

cell with the concept of donor-acceptor [13, 14]. They spin coated bilayer structure of 

donor-acceptor material on the top of each other. However, the bilayer polymer solar cell 

efficiency was low because of low excitons diffusion length and donor-acceptor   

interfacial area [15]. Therefore, in 1995, Yu et al. reported a concept of bulk 

heterojunction polymer solar cells where donor and acceptor materials intermixed to 

forming large interfacial area for excitons dissociation and charge transport  [16]. In 2001, 

Shaheen et al. reported around 2.5% PCE using that concept [17]. It increased excitons 

dissociation but could not cover the wide range of solar spectrum. In order to overcome 

this limitation, tandem solar cell concept was introduced. In 2012, Dou et al. achieved the 

efficiency of 8.62% [18] and in 2013 You et al. reported the efficiency of 10.6% using 
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that tandem structure of organic solar cells [19].   

In 1987, Moser et al. introduced the concept of DSSCs. He demonstrated slightly 

enhancement of photocurrent due to dye sensitized halogenated silver plates (Ag) [20]. In 

1991, O’Regan and Grätzel fabricated DSSCs with PCE of 7.9% in simulated solar light 

and PCE of 12% in diffused sunlight  [21]. Although it’s highest efficiency was developed 

around 12.3 % [22] , it was limited commercially due to use of expensive platinum or 

ruthenium counter electrode and also presence of liquid electrolyte which hindered to 

make suitable cell for all weather.  

In 2009, Miyasaka et al. first introduced perovskite solar cell with PCE of 3.8% 

[23-25]. Unlike dyes, these perovskite have higher absorption in a thin film of 500nm 

[26]. They used methylammonium lead iodide (CH3NH3PbI3) acting as an absorber layer 

where iodide/triiodide acting as redox couple. The liquid electrolyte dissolved perovskite 

film within a minute and became unstable.  

In 2012, Park et al. was able to fabricate high efficiency PSCs using hole conductor 

[2, 2 (7, 7)- tetrakis-(N, N dipmethoxyphenylamine) 9, 9 (-spirobifluorene)] (spiro-

OMeTAD) that was substituted in liquid electrolyte and obtained PCE of 9.7% [27, 28]. 

Later on, some research group used mesoporous titanium dioxide (TiO2) as an ETL. [29]. 

However, n-i-p structure based PSCs fabricated with a mesoporous TiO2 as an ETL 

requires high temperature processing (> 400 oC) [30]. Some researcher used three types of 

layers of TiO2 as an ETL that causes high resistance in the interface and reduces the device 

performances.   

In 2013, Liu et al. reported PCE of 15% for planar PSCs with different technique 

[24]. They fabricated PSCs using thermal evaporation process which requires very high 
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vacuum and high energy to evaporate perovskite material. These limitation hindered mass 

production of PSCs. 

In 2014  You et al. reported ITO based glass substrate p-i-n structure perovskite 

solar cells with PCE of 11.5% using a p-type poly (3,4-ethylenedioxythiophene): poly 

(styrenesulfonate)  (PEDOT:PSS) layer as HTL and PCE of  9.2% using  polyethylene 

terephthalate as HTL on the top of the ITO substrate [31, 32].  

However planar p-i-n structure based OPVs or PSCs are preferred due to low 

temperature solution process, less hysteresis and easier to fabricate in than n-i-p structure. 

The electrical properties of semiconductor devices depends on charge injection and 

extraction at the metal-organic semiconductor interfaces [33, 34]. To minimize contact 

barrier, suppress charge recombination, control metals work function and surface energy, 

better interface between ETL and Ag, is highly required which matches with the LUMO 

level organic semiconductor. In 2006, Li et al. reported metal oxide CBL between polymer 

bled and Al [35]. Azimi showed comparable study with using ZnO CBL to improve device 

performance [36].  

Few studies have been revealed using non-conjugated insulating polymer as a CBL. 

In OPVs, Zhang et al. first reported to insert a thin layer of a non-conjugated polymer, poly 

(ethylene oxide) (PEO) as CBL [37]. They found dramatic improvement of Voc due to 

increase built in potential at the interface and enhancement of FF, Jsc as well. Poly [(9,9-

bis(3′-(N,N-dimethylamino) propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN), 

poly (ethylene glycol) (PEG), poly (dimethylsiloxane)-block-poly (methyl methacrylate) 

(PDMS-b-PMMA) and poly (4-hydroxystyrene) (PHS), all were used as optimized CBL 
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between the active layer of polymer blend and metal electrode (Ag or Al) [38-41]. Most of 

the cases they reported about enhancement of Voc due to creating build in potential at the 

interface which controls metal electrode work function (WF), increase of Jsc due to  produce 

interface dipole which increases charge transport and suppresses carrier recombination, 

improvement of FF due to have less series resistance at the interface. However, all the 

study has been done on OPVs not in PSCs.  

Zhang reported perovskite solar cell with PCE 12.01% and 11.28% by inserting 

two non-conjugated interfacial layer individually, ethoxylated polyethylenimine (PEIE) 

and poly [3-(6-trimethylammoniumhexyl) thiophene] (P3TMAHT), between the PCBM 

and Ag electrode which reduced the metal electrode work function and increased charge 

collection [42]. DMAPA-C60 based on an amine functionalized fullerene derivative was 

also used as CBL in perovskite which had PCE of 9.4% [36].  In 2014, Xue et al. reported 

PCE of 15% from 12.4% of control devices by using new amino-functionalized polymer, 

PN4N as a CBL [43]. A solution-processed perylene–diimide (PDINO) was also used as a 

cathode buffer material that achieved PCE of 14%, reported J. Min et al. in 2015[44]. All 

the cases they have less efficiency compared to this work. 

The optical properties of Polyvinylpyrrolidone (PVP) was reported by Thi et al. 

[45]. Later on, in 2016 Yunlong Guo reported PVP doped PSCs with PCE of 11.13% of 

best device condition [46]. In order to get high fill factor it was reported the common use 

of LiF and bathocuproine (BCP) as deposited on the top of the ETL [47, 48]. But, thermal 

vapor deposition was required which hindered the large scale PSCs production and made 

the fabrication complex. 
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In this work, a low cost, solution processed, non-conjugated PVP was reported, for 

the first time, as a material for CBL in perovskite solar cells between PC60BM and Ag 

electrode with a PCE of more than 16%.  

1.3. Motivation 

There is a need for developing low cost, solution processed and high performance 

PSCs considering CBLs engineering. 

1.4 Objectives 

The goal of this thesis was to use a conjugated polymer material as a CBL for PSCs 

with PCE more than 16% by controlling the CBL thickness and materials concentration 

and optimizing perovskite film formation.   

To achieve the objective, the following tasks were performed: 

1. Fabricate perovskite solar cell at different concentration of CBL material and layer 

thickness.  

2. Study absorption of perovskite films fabricated at different CBL thickness using UV-

VIS spectroscope. 

3. Characterize the morphology and crystal structure of the perovskite films using atomic 

force microscope (AFM), XRD and Scanning Electron Microscope (SEM). 

4. Measure transient photo current (TPC) and transient photo voltage (TPV) for charge 

transport time and carrier life time. 

5. Fabricate and test PCE and external quantum efficiency (EQE) of perovskite solar cells 

with optimized perovskite crystal structure and morphology. 
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Chapter 2. Theory 

2.1 Photovoltaics (PV): photon in and electron out 

Photovoltaics is defined as a term which generates voltage and current in the 

presence of sunlight. More precisely, the conversion of light into electricity is called 

photovoltaics. The Sunlight is considered as radiation of photons or ‘Packets’ of energy at 

different wavelength. Photons cannot create electric carriers they can just excite the 

existing carriers. Interaction between an electromagnetic wave (or photons) and material is 

required to have a successful PV cell.   

 Photovoltaic effect is closely related to the photoelectric effect light matter 

interaction. Due to the incident light of different energy on a semiconductor material or PV 

cells, there will be emission of electron of corresponding wavelength of light.  

 

Figure 2. 1 Photovoltaic effect (Photon In, Electron in) [49] 

If the velocity is c, the wavelength is λ and the frequency is ν of light, according to 

quantum theory of light, the energy of photon, E, is given by 
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 E = hν = hc/λ (2.1) 

Where h= 6.626068 × 10-34 m2Kgs-1 is called planks constant. 

When photons incident on a semiconductor material the electron’s from the ground 

state are excited to the higher energy states. In order to take place this phenomenon, the 

photon energy must have to be higher than the forbidden energy gap of that specific 

semiconductor material. It is so called absorption of photons. In photovoltaic devices, due 

to absorption process, a built in electric field is produced. However, excited electrons are 

extracted to the external circuit before they relax back to the ground state.  

2.2 Photovoltaic material preference 

The PV technology mostly use semiconductor materials for photovoltaic 

application due to their bandgap and availability of materials. Semiconductors have the 

conductivity in between an insulator and a conductor. According to the purity 

semiconductor can be classified as two types, one is intrinsic semiconductors which is 

highly pure with equal charges both negative and positive and another is extrinsic 

semiconductor which contains very minute quantities of impurities. The process of adding 

impurities is called ‘Doping’. As intrinsic semiconductors are highly pure, it has high 

resistivity and less conductivity. To make it conductive it needs to be doped by some 

external impurities. Depending on the doping, there are two types of extrinsic 

semiconductors   namely P-type and N-type semiconductor. In case of Si, a pentavalent 

dopant such as phosphorous are known as donor impurities since they donate one extra 

electron to the crystal structure hence it becomes N-type semiconductor. On the other hand 

a trivalent dopant such as boron that creates hole to the crystal structure and acts as P-type 

semiconductor.  
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2.3 P-N junction and solar cell  

The p-n junction is nothing but a combination of p-type and n-type semiconductor. 

The modern PV cells are made of either crystalline Silicon or thin film semiconducting 

materials. The band gaps of semiconductors are generally in the range of 0.5-3 eV. Figure 

2.2 shows absorption of light by the valence electron. Under light illumination, the valence 

electrons are excited to the conduction band and considered as a free electron and a free 

hole remains in the valence band.  

 

Figure 2. 2 Absorption mechanism and electron excitation from valence band to 

conduction band [49] 

Silicon solar cell also works as the same principle of a p-n junction diode. Basically 

when the light falls in the junction, the photo absorber (p or n type depending on the 

structure) produces free charge of electron and hole which are collected through the 

respective electrodes in the presence of electric field. In practice the Si solar cell are not 

made in such a simple way of connecting p-type and n-type material but rather by diffusing 

a p-type dopant into one side of an n-type wafer or vice versa. Normally group III elements 

boron (B), aluminum (Al), gallium (Ga)) are used to dope for making p-type semiconductor 
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and group V elements phosphorous (P) and arsenic (As) are used to dope for making n-

type semiconductor. Energy bandgap is a very important requirement for solar cell 

application. Crystalline Si has an energy band gap of 1.1 eV for corresponding wavelength 

of 1127 nm, so it can absorb all the wavelengths shorter than 1127 nm. There are some 

thermalization loss in photon absorbing interaction in semiconductor materials. For ideal 

case, 1.5 eV is considered an ideal energy band gap for solar cell application as it eliminates 

and keeps balance in both absorption and thermalization losses. Gallium Arsenide (GaAs) 

has an energy bandgap of 1.42 eV which provides excellent photovoltaic performance.   

In p-type semiconductor, holes are the majority carriers and electrons are the 

minority carriers.  

For p-type semiconductor, hole concentration (p) is written as  

 

 p =NA (2.2) 

and electron concentration (n) can be found as 

 

 n = ni
2 / NA (2.3) 

For n-type semiconductor, electron concentration (n) is written as  

 n  ND (2.4) 

 

and Hole concentration (p) can be found as  

 p = ni
2 / ND (2.5) 

Where ni is the intrinsic carrier density, NA and ND are density of acceptors and donors. 

Figure 2.3 shows energy band diagram of a p-n junction with the formation of space charge 

region (SCR). When incident light falls on the junction, the electrons excites from ground 

state to the excited state. Typically there are large number of free electrons in the n-side 

and very small number of electrons in the p-side. In case of holes it is vice versa. Due to 
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concentration gradient, there is diffusion of electrons from n-side to p-side and holes from 

p-side to n-side semiconductor material. The diffused electrons and holes recombine with 

each other near the junction and form a space charge region. In this region there exists both 

negative and positive charge carriers which are bound. This is also called the depletion 

region.   

 

 

Figure 2. 3 Band diagram and carrier flow of p-n junction solar cell 

The depletion region acts like a parallel plate capacitor which develops an electric 

field in the junction. The direction of electric field is from n-side to p-side. The built in 

electric field in the SCR region causes the flow of electrons and hole in the opposite 

direction. The conduction band and valence band are aligned according to the fermi energy 

levels of n-type and p-type semiconductor.  The diffusion current density depends on the 

electron and hole concentration diffused from both sides and diffusion coefficient of n-type 

and p-type semiconductor materials.  
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If Jn,diff, is the diffusion current density for electrons and Jp,diff, is the diffusion 

current density for holes, it can be written as below  

 Jn,diff  = 𝑞𝐷𝑛
𝑑𝑛(𝑥)

𝑑𝑥
 (2.6) 

 

 Jp,diff  = −𝑞𝐷𝑝
𝑑𝑛(𝑥)

𝑑𝑥
 (2.7) 

where, Dn and Dp are diffusion coefficient of electrons and holes, n, p, and q are electron 

concentration, hole concentration and electron charge, respectively. The electric field Vbi 

in the SCR region carries the electrons and holes towards the cathode and anode. Thus, 

there is a depletion width, W in the p-n junction. It can be defined as follows.   

𝑊 = √
2𝜀𝑉𝑏𝑖

𝑞
(

1

𝑁𝐴
+  

1

𝑁𝐷
)           (2.8) 

where, ε is the dielectric permittivity of the semiconductor. The free electrons and holes 

will be diffused before recombination. Diffusion length is the average distance where the 

minority carriers can diffuse. The diffusion length for holes in n-type and for electrons in 

p-type is written as  

 Lp = √D𝑝τ𝑝 (2.9) 

where τ𝑛 and  τ𝑝 are recombination lifetimes of electron and hole in p side and n side 

and Dn ,Dp have been defined in equations (2.6) and (2.7). 

 Ln== √D𝑛τ𝑛 (2.10) 
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2.4 Electrical model of solar cell   

A solar cell can be considered as an equivalent electrical circuit model. Figure 2.4 

shows an electrical circuit model connected with current source, diode, series resistance 

(Rs) and shunt resistance (Rsh).  The series resistance arises due to bulk resistance of 

semiconductor materials, bulk resistances of metallic contacts, interconnects etc  and shunt 

resistance arises from the recombination of holes and electrons, foreign impurities and 

crystal defects.  

 

Figure 2. 4 Equivalent electrical model of solar cell and voltage-current characteristics 

for series (Rs) and shunt resistance (Rsh) [49] 

The right side of the figure shows how the series and shunt resistances affect the 

I-V curve fill factor and the overall device performance. In ideal cases, Rs should be zero 

and Rsh should be infinite for high performances solar cell applications. 

2.5 Solar cell performance determining parameters  

2.5.1 Open circuit voltage  

When there is no load connected with the external circuit, there will be no 

current flow, it is so called open circuit, and the voltage at that terminal is called open 

circuit voltage. It depends on photo-generated current density JPH and is given by  
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𝑉𝑂𝐶 =  
𝑘𝑇

𝑞
[ (

𝐽𝑃𝐻

𝐽𝑂
) + 1]                                                       (2.11) 

For organic solar cell, the difference between the highest occupied molecular 

orbital (HOMO) of donor electron and lowest unoccupied molecular orbital of acceptor 

electron is the open circuit voltage. For perovskite solar cell, figure 2.5 shows the 

measurement of Voc and it can be written as  

 

 

Figure 2. 5 perovskite energy band diagram for determining Voc  

2.5.2 Short circuit Current   

When the voltage across the solar cell is zero, the current from the solar cell is 

termed as short circuit current, Isc. For certain device area it is called short circuit current 

density (Jsc= Isc/A). It also depends on light absorption, reflection, incident number of 

photons, light spectrum and charge collection probability of a solar cell. From figure 2.4, 

due to the external load connected with the solar cell, there is a voltage drop across the load 

that makes the diode forward bias. The direction of illuminated photo-current (JPH) will be 

the opposite of diode current. 

 VOC =  
1

𝑞
[𝐸𝐹𝑛 − 𝐸𝐹𝑝] (2.12) 
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In dark condition, solar cells works like a diode. So the diode current equation is 

given by 

 JD(V) = Jo (e
qV/kT-1) (2.13) 

where,  q is the electron charge, k is the Boltzmann constant and V is the voltage drop 

across the load at room temperature, T. The net current is written as 

 J = JSC  - Jo(e
qv/kT-1) (2.14) 

where Jsc is the short circuit current when the voltage is zero. The short circuit current is 

shown in figure 2.6.  

 

Figure 2. 6 I-V and P-V characteristics curve of a solar cell [49] 

2.5.3 Fill Factor 

The Voc and Jsc are the maximum operating point of the solar cell. The fill factor 

(or FF) is the parameter that determines the maximum power from the solar cell. 

Mathematically, it is a ratio between the maximum power from the solar cell, Pmax and the 
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product of Voc and Jsc. Normally, it measures the squareness of the IV curve where the 

higher voltage has larger FF because the rounded portion of the IV curve takes up less area. 

The shaded area of figure 2.6 indicated the measuring fill factor  

 

2.5.4 Power conversion efficiency (PCE) 

The ratio of output energy to the input incident solar energy is defined is the 

power conversion efficiency. It depends on the incident of the light spectrum, intensity 

and other performance determining parameters of the solar cells. So, it determines the 

fraction of incident power which is converted to electricity and written as  

  

The efficiency of the solar cell is written as below 

   Efficiency (η) =   
𝑃𝑚𝑎𝑥

𝑃𝑖𝑛 
 =  

𝑉𝑂𝐶 × 𝐼𝑆𝐶×𝐹𝐹

𝑉𝑚𝑎𝑥 × 𝐼𝑚𝑎𝑥
                 (2.17) 

2.5.5 External Quantum Efficiency (EQE) 

The ratio of the number of electrons collected to the number of incident photons 

of a given solar cell is called the external quantum efficiency (EQE). It also depends on 

the intensity of incident light, solar spectrum, charge mobility and optical properties like 

absorption and reflection. It is written as  

   EQE =   
Total number of electrons collected

Total number of incident photons
                 (2.18) 

 Jsc can also be written as 

 FF =  
𝑃𝑚𝑎𝑥

𝑉𝑂𝐶 × 𝐼𝑆𝐶
 =  

𝑉𝑚𝑎𝑥 ×𝐼𝑚𝑎𝑥

𝑉𝑂𝐶 × 𝐼𝑆𝐶
 (2.15) 

 Pmax =  𝐹𝐹 × 𝑉𝑂𝐶  × 𝐼𝑆𝐶 (2.16) 
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Jsc = q ∫ 𝐸𝑄𝐸 (𝐸)×∅ (𝐸)𝑑𝐸 

                   (2.19) 

2.5.6 Internal Quantum Efficiency (IQE) 

It is the ratio of number of charge collected to the number of photons absorbed in 

a given solar cell. It is expressed below  

   IQE =   
Number of electrons collected

Number of incident photons absorbed
                 (2.20) 

2.6 Structure and properties of perovskite  

In 1839, Russian mineralogist L. A Perovski first found a material called calcium 

titanate (CaTiO3) and discovered the crystal structure of ABX3 [50] which became known 

as perovskite structure.  

2.6.1 Molecular structure  

The molecular structure of perovskite is ABX3 where A and B are the cations and X 

symbolizes the halide group as anions. There are lots of application of perovskite materials 

in transistor, light emitting diode, electronic devices and other energy transfer systems [51] 

[52] [53-55]. Most commonly used perovskite structure is shown in figure 2.7 where  

CH3NH3I (MAI) and lead (Pb) are cations and Iodine (I) is the halogenated atom which is  

anion. Perovskite absorber layer is the combination of MAI and PbI2 where 

methylammonium iodide (CH3NH3I or MAI) is the organic part which facilitates self-

assembly and lead iodide (PbI2) is the inorganic salt which provides an extended network 

by covalent or ionic interaction that allows for precise crystalline structure formation. The 

electronic and optical properties are determined by the ratio of halide ions. 
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Figure 2. 7 Molecular arrangement of perovskite (ABX3) [49] 

2.6.2 Band gap tuning   

The bandgap of perovskite can be tuned by the halide ions. The crystal orientation also 

changes according to their band gap position. The band gap can vary from 2.3 eV – 1.5 eV. 

Kulbak et al. showed the band of MAPbBr3 perovskite absorber is around 2.32 eV where 

the bandgap of MAPbI3 is around 1.5 eV [56]. This change of energy gap of perovskite 

absorber can be observed by cyclic voltammetry (CV), UV-Visible spectroscopy and EQE 

measurement tools.   

2.7 Working principle of perovskite solar cell 

2.7.1 Planar p-i-n structure   

The elementary working assumption of PSC is when the sun light falls, the active 

perovskite absorber creates excitons which is the bound of both electrons and holes. 

According to the device structure, the active perovskite absorber is normally inserted 

between ETL and HTL. So the excitons are separated through ETL and HTL to the 

corresponding electrodes.  In 2013, Samuel et al. demonstrated that excitons have weakly 

bound both free charges (electron and hole) that coexists within perovskite material [57]. 

The PSCs are grown on the fluorine doped tin oxide (FTO) or Indium doped tin oxide 
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(ITO) and the light is illuminated from the conductive glass side because the top electron 

is not transparent. A p-i-n structure based PSC is shown in figure 2.8. P-type hole transport 

layer, PEDOT: PSS is used bellow the perovskite and electron transport material PCBM is 

used on the top of the perovskite and metal electrode is connected through a buffer layer. 

The respective energy band diagram of p-i-n architecture perovskite solar cell is shown on 

the right side of figure 2.8. So the overall device structure is ITO/HTL/perovskite/ ETL/Ag 

which is also known as inverted structure of PSCs.  

 

 

Figure 2. 8 Planar p-i-n PSCs (a) device structure (b) energy band diagram. 
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2.7.1 Planar n-i-p structure   

The planar n-i-p structure PSC is totally opposite of planar p-i-n PSC. There are 

several electron transport layers commonly used including titanium dioxide (TiO2), copper 

thiocyanate (CuSCN), zinc oxide (ZnO) nanorod, and PCBM and the hole transport layers 

are used including polymer, spiro-MeOTAD, and PEDOT: PSS. The planar n-i-p structure 

perovskite solar cell and its energy band diagram are shown in figure 2.9. Mostly used TiO2 

used ETL is deposited on FTO and spiro-MeOTAD is used to cap the active perovskite 

layer. So the overall device structure is FTO/ETL/perovskite/ HTL/Ag which is also known 

as regular structure of PSC. 
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Figure 2. 9 Mesoscopic scaffold n-i-p PSCs (a) device structure (b) energy band diagram. 

2.8 Electrode buffer layer and charge transport materials  

2.8.1 Electron transfer and buffer layer 

 There are some metal oxides that can be used as electron transport material and 

buffer layer as well.  

a) TiOx: Mostly used TiOx has promising electronic band structure, photoelectric 

properties and chemically stable to be preferred for electron transfer materials. In solar 

cell application, two different crystal structure rutile and anatase are used. Anatase 

structure is used widely in DSSC due to its better photocatalytic activity. The 

conduction band of TiOx is around -4.4 eV which matches with the fullerene derivatives 

(-4.0 eV~ -4.3 eV). X. Bao et al. reported about compact TiOx which has good 

transparency and acts as antireflective in some range of wavelength [58]. Yella et al. 

reported rutile TiOx nanoparticle structure for perovskite solar cell by using thermal 

annealing aqueous TiCl4 solution which control the size of TiOx nanoparticles [59]. 

Besides TiOx nano-sheet, TiOx nano-rods, nanofibers have also been used in solar cell 

as an electron transport layer [30, 60, 61].  

b) ZnO: The band gap of transparent ZnO is 3.7 eV and has better optoelectronic 

properties and high electron mobility. Like TiOx, ZnO is also n-type metal oxides. The 

highest occupied molecular orbital (HOMO) is -7.6 eV and lowest unoccupied 

molecular orbital (LUMO) is -4.4 eV respectively [62]. ZnO has been widely used in 

organic and perovskite solar cell as ETL. ZnO nanorod film is used as ETL and scaffold 

for the deposition of perovskite material. If ZnO compact film is used in the top of ITO, 
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it acts as hole blocking layer that prevents recombination process of electrons and 

holes. 

c) Graphene: As a two dimensional material structure, graphene offers very high electric 

conductivity and mobility. Due to excellent conductivity, graphene has been used 

widely in photovoltaic, supercapacitor, electrodes, etc. [63-65]. Both graphene and 

TiOx are formed as combine graphene/TiOx nanoparticles which significantly increases 

the electrical conductivity. Compared to the LUMO level, both graphene and TiOx are 

similar. Wang stated novel low temperature processed graphene/TiOx as ETL layer for 

solar cell application [66]. 

 

Figure 2. 10 Energy level diagram of HELs (left) and EELs (right) used in perovskite 

light absorbers [67] 

d) Fullerene derivatives: Fullerene derivatives are one of the best choice for p-i-n structure 

based PSCs as a good ETL due the large electron affinity of C60. Basically, C60, phenyl-

C61-butyric acid methyl ester (PC61BM), and phenyl-C71-butyric acid methyl ester 

(PC71BM) all are used as transport layer (ETL). Some researchers have used PC71BM 

as ETL. Jeng reported PSC devices with three different fullerene derivative: C60, 
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PC61BM and indene-C60 bisadduct (ICBA) but they found that PC61BM as ETL based 

devices showed higher performance compared to C60.  

2.8.2 Hole transfer and buffer layer 

a)  Spiro-OMeTAD: Most commonly used hole transfer material named 2, 2’, 7, 7’-

tetrakis (N.N-di-p-methoxyphenylamine)-9-9’-23 spirobifluorene or simply spiro-

OMeTAD was first used in DSSC by replacing organic electrolyte. The HOMO level 

of spiro-OMeTAD is -5.22 eV which is more preferable for PSCs. Spiro-OMeTAD 

was first used in perovskite by Kim [68, 69].  

b) PEDOT: PSS: It is a polythiophene based conjugated polymer mixture of two 

ionomers. PSS are part of sulfonyl group that carries negative charges and the other 

component PEDOT is a conjugated polymer that carries positive charges. PEDOT: PSS 

is water-soluble and highly conductive polymer. Zhou et al. first reported PEDOT: PSS 

based solar cell as electrode and achieved PCE 0.7% [70]. Later on it was optimized 

the thickness of PEDOT: PSS layer and obtained better PCE. Now, PEDOT: PSS is 

widely used in PSC as HTL.  

c) P-type low band gap polymer: The conjugated polymers whose energy band gap is 

lower than 2 eV is considered as low bandgap polymer. Typically, conjugated polymer 

has π-delocalized structure in its backbone from where charges can easily transfer 

through the entire backbone and gives higher carrier mobility [71, 72]. Low band gap 

conjugated polymers are widely used in organic light emitting diode and PSCs even as 

buffer layer.  

d) MoO3: As a metal oxide, MoO3 can also be used as HTL in PSC. In 1990, Tokito et al. 

reported MoO3 as HTL in organic photovoltaics [73]. Several transition metal oxide 
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such as V2O5, MoO3, RuO2 have been reported by scholar [73]. The improvement of 

hole injection  has been observed when using the above metal oxide as HTL in organic 

light emitting diode [74]. Transition metal oxides have been used widely because of its 

high work function, decent transparency and semiconducting properties [75]. The 

LUMO and HOMO level of MoO3 has -2.3 eV and -5.3 eV, which is well-matched to 

the HOMO level of perovskite which is -5.3 eV.  Liu reported MoO3 as CBL in OPV 

[76].  

2.9 Device characterization technique 

2.9.1 UV-vis spectroscopy 

Ultraviolet-visible or shortly UV-Vis spectroscopy is typically an absorption 

spectroscopy or reflectance spectroscopy that investigates the light absorption or 

transmission in the range of ultraviolet, visible and near infrared of electromagnetic 

spectrum. Figure 2.11 shows the light absorption and transmission mechanism of UV-Vis 

spectroscopy. When the light falls on a material or liquid solution or thin film, it may be 

reflected or absorbed and transmitted by the material or liquid solution or the thin film. The 

light will be absorbed if the electron goes to excited state from its ground state. The UV-

Vis spectroscopy consists of deuterium arc lamp and tungsten lamp as light source that can 

generate 280 – 1100 nm wavelength of light, a monochromator and a detector which detects 

the materials properties. The thickness of absorbing material determines the amount of 

light that will be absorbed. It is also used to determine absorption coefficient, refractive 

index and dielectric constant of a material. 
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Figure 2. 11 Schematic principle of UV-Vis spectroscopy 

According to the Beers Lambert law, the principle of UV-Vis absorption spectroscopy is 

written as.   

   Absorbance (A) = -10𝐿𝑜𝑔10(
𝐼

𝐼𝑜
) = ϵbc (2.21) 

where I0 is the intensity of light before passing the sample with thickness d, I is the 

intensity of light after passing the sample. ϵ, b, c are molar extinction coefficient, path 

length of the sample holder and concentration of the dissolved molecule. 

2.9.2 X-ray diffraction 

X-ray diffraction (XRD) is a measurement technique for measuring the atomic and 

molecular structure of perovskite specimen. It can also investigate composition of sample, 

phase, lattice spacing, residual strain, Bravais lattice symmetry, relative crystallinity and 

lattice orientation in the measured sample. The XRD instrument basically consists of four 

parts (1) X-ray source, (2) goniometer, (3) sample holder, and (4) detector. X-ray source is 

a monochromatic X-ray beam itself. The goniometer is used to position the crystal at 

selected orientations. The sample and detector are rotated to adjust the proper angle of X-
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rays diffracted by the sample and detected. Figure 2.10 demonstrates the working principle 

of XRD measurement. The measurement can be taken in-plane or out of plane. In-plane 

XRD measurement technique is developed for measuring diffraction intensities from lattice 

planes perpendicular to the surface of a sample and out of plane measurement technique is 

almost parallel to the sample. Out of plane measurement is chosen for perovskite thin film 

samples. 

 

Figure 2. 12 Schematic diagram of XRD 

Bragg’s law explains the diffraction principle of XRD. Diffraction occurs when the 

incident X-ray beam is comparable to atomic spacing and it is scattered by the atoms of 

crystalline system and causes constructive interference.  
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Figure 2. 13 Braggs law of diffraction 

According to the Bragg’s law of diffraction, when the path difference between the 

two angles of incident X-rays and the rays reflected back at different planes is equal to 

integral (n) multiple of wavelength (λ) then the interference will be constructive otherwise 

it will cause destructive interference. So for constructive interference it can be written as  

       2dsinθ = nλ                              (2.22) 

where, 2dsinθ is the path difference, d is the spacing between the crystal layer, λ is the 

wavelength of the X-ray, n is the integer number, θ is the incident angle and reflected angle. 

For a cubic lattice, lattice constant, d, is written as  

d=
1

√h2+k2+l2
                                                      (2.23) 

Where, h. k and l are lattice parameters. 

2.9.3 Atomic force microscope (AFM) 

It is very important for the device to measure its local, electrical and magnetic 

properties, such as height, friction, surface potential and magnetism. Scanning probe 
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microscope (SPM) is the better choice to deal with this measurement. The atomic force 

microscope (AFM) is a form of SPMs which has resolution more than 1000 times higher 

than the optical diffraction limit. It determines the force between a probe and the sample. 

Atomic force microscope (AFM) is a type of high resolution scanning probe microscope. 

 AFM consists of four basic components: (1) cantilever with a sharp tip is used to 

scan the sample surface. It is typically made of silicon or silicon nitride in the range of 

nanometer with curvature tip radius. (2) A photodiode which determines the deflection of 

cantilever. An array of position sensitive photo detector (PSPD) is used to detect the 

deflection. The reflected laser beam is detected by a PSPD which is segmented into four 

quadrants. (3) Laser and (4) a scanner which scans the specimen surface. Figure 2.14 shows 

the schematic of an atomic force microscope and its working direction. As AFM is concern 

about the force in the cantilever tip, it leads to deflection according to Hooke’s law. The 

AFM measurement includes mechanical contact force, Vander Walls force, magnetic force, 

capillaries force and so on.  
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Figure 2. 14 Schematic of an atomic force microscope [49] 

AFM measurement can be taken in 3 different modes: (i) tapping or intermittent 

AC mode, (ii) contact mode and (iii) non-contact AC mode. These modes determine the 

surface topographical information of the sample, specially domain formation, surface 

roughness, surface orientation and height of the particles. When the tip goes close to the 

sample, attraction force is generated as shown in figure 2.15. The attraction force increases 

with the decrease of distance between the tip and the sample. After certain distance, the 

attraction force becomes zero. The separation approaches to a couple of angstroms. Beyond 

this distance, another force becomes active that is called repulsive force. In this condition, 

the cantilever bends and the cantilever drives the tip to take it away from the sample rather 

than driving the tip closer to sample atoms.  
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Figure 2. 15 Different modes of AFM with respect to force  

Tapping mode is used to find the phase images of the sample and provides 

information about materials composition, adhesion and viscoelastic properties of 

specimen. Contact mode is used to measure the current sensing by dragging the tip through 

the surface of the test specimen.  The outlines of the surface are measured from the 

deflection of the cantilever which requires necessary feedback signal to keep it at a constant 

position. Non-contact mode is used to measure soft samples like biological samples or 

organic thin films. During measurement, cantilever does not contact with the sample 

surface. The cantilever vibrates its resonant frequency or just little above, where the 

amplitude of vibration is basically a few nanometers (<10 nm) down to a few pico-meters.  

2.9.4 Kelvin probe force microscope (KPFM) 

In 1898, Lord Kelvin first developed a technique for the measurement of surface 

potentials [77]. According to his name it is called kelvin probe force microscopy (KPFM). 

It is also familiar as surface potential microscopy (SPM) that works on non-contact mode 

of Atomic Force Microscopy (AFM). It determines the local surface potential of a sample 
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with high spatial resolution. Non-contact basically minimizes the electrostatic interaction 

between tip and sample. The work function of surfaces can be measured at atomic or 

molecular scales with KPFM by either amplitude modulation or frequency modulation 

technique. This measurement is considered like a parallel plate capacitor where contact 

potential difference (CPD) is generated. The measured sample acts as one of the plate and 

probe i.e., tip with known work function acts as another plate of the capacitor. The 

capacitance changes with the vibrating of the probe or tip at frequency, w, and results in 

alternating current in the plates. A dc-voltage is applied either the tip or the sample to 

minimize this current to zero. This voltage is the contact potential difference (CPD) of the 

two materials. This contact potential difference can be measured by applying an external 

dc bias in opposite direction of CPD where external dc bias nullifies the contact potential 

difference. 

Mathematically, the contact potential difference, VCPD between AFM tip and 

sample is expressed as [78] 

VCPD=
∅𝑡− ∅𝑠

−𝑒
                                                      (2.24) 
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Where 𝜙𝑡 and 𝜙𝑠 are work functions of AFM tip and sample respectively. Figure 2.16 

shows the block diagram of kelvin probe microscope where it uses two lock in amplifiers.  

 

Figure 2. 16 Block diagram of Kelvin probe force microscopy (KPFM) [79]  

Lock-in-amplifier number 1 vibrates the AFM cantilever at mechanical resonance 

frequency. Lock-in-amplifier number 2, applies a DC and AC electrical bias to the 

conductive AFM tip that induces an electrostatic force (Fc) between tip and sample. It can 

be written as  

𝐹𝑐 =
1

2
 (𝑉𝑡𝑖𝑝 − 𝜙𝐶𝑃𝐷)

2 𝑑𝐶

𝑑𝑍
                                                      (2.25) 

Vtip= Vdc + Vac sin (ωelect)                                                      (2.26) 

Where, ωelec is the frequency of AC bias applied to the tip and Vdc is the dc bias applied to 

the tip, C is the capacitance and ϕCPD is the contact potential difference between the tip and 

sample. 
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2.9.4 Scanning electron microscope (SEM) 

Scanning electron microscope (SEM) produces the images of a sample by scanning 

its surface with a focused electron beam. The electron beam interacts with atoms in the 

measured sample and produces various signals such as secondary electrons, backscattered 

electrons, diffracted backscattered electrons, photons, visible light and heat. The secondary 

electrons and backscattered electrons have information about the test specimens surface 

morphology and topography. Figure 2.17 shows the schematic of scanning electron 

microscope which describes the working principle. 

 

Figure 2. 17 Schematic of Scanning electron microscope [49] 

The electron beam is created from an electron gun which is cathode and then it is 

accelerated by anode. The diameter of accelerated electron beam is then confined by the 



38 
 

magnetic condenser lenses. Scanning coil creates a magnetic field that confines the electron 

beam backward and forward. The electron beam is further highly confined by objective 

lens on the sample to scan the surfaces. The primary electrons hit the sample surface which 

emits secondary electrons which is detected and viewed as a photographic image in the 

computer. As wavelength of an electron beam in an SEM is much lower than wavelength 

of visible light, SEM can achieve resolution better than 1 nanometer. 

2.9.5 Transient photo voltage and photo current spectroscopy  

Transient photo voltage (TPV) and photo current (TPC) are a measurement technique to 

study the time-dependent extraction of charges (charge carrier lifetime and charge transport 

time) generated by photovoltaic effect in semiconductor devices. The device efficiency 

will reduce if recombination takes place. So it is important to sweep out charges to the 

electrodes to reduce recombination loss at earliest convenience. The transient 

measurements depends upon the resistor capacitor (RC) time constant of the device which 

is observed in oscilloscope. In TPV measurement the solar cell device is connected at open 

circuit condition (i.e. using high impedance of oscilloscope 1MΩ) with a small short-lived 

laser pulse under light illumination and steady state conditions. The intensity of light 

illumination can be varied. The lifetime of the charge carrier in the device is calculated 

using mono exponential fitting that depends on RC time constant of solar device. Figure 2. 

18 shows the schematic of TPV where its decay curve obtained through 1MΩ resistance of 

oscilloscope. The voltage decay in TPV is written as  

ΔV = ΔVo × exp(
−𝑡

𝜏
)                                                      (2.27) 

Where τ is the charge carrier life time. 
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Figure 2. 18 Transient photovoltage measurement [80] 

In TPC measurement the solar cell device is connected at short circuit condition (i.e. using 

low impedance of oscilloscope 50 Ω) with a small short-lived laser pulse under steady state 

conditions.  

 

Figure 2. 19 Transient photocurrent measurement [80] 
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 The charge transport time of the solar device is calculated using mono exponential 

fitting that depends on RC time constant of that solar device. Figure 2. 19 shows the 

schematic of TPC where its decay curve obtained through 50 Ω resistance of oscilloscope. 

The voltage decay in TPC is written as  

ΔI = ΔIo × exp(
−𝑡

𝜏
)                                                      (2.28) 

The value of ΔIo is found using   Δ𝐼𝑂 =  
ΔVo

𝑅
 

where τ is the charge transport time of solar device. 
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Chapter 3. Experimental Procedures 

3.1 Materials:   

Methylammonium iodide (CH3NH3I) was purchased from Dyesol. PbI2 (99%) was 

ordered from Acros organics. Anhydrous dimethyl sulfoxide (DMSO) (> 99.9%) and γ-

butyrolactone (>99%) were obtained from Sigma Aldrich. Clevios™ P VP AI 4083 

PEDOT: PSS was received from Heraeus. PC60BM and Rhodamine were purchased from 

Nano-C and Sigma Aldrich, respectively. Polyvinylpyrrolidone (PVP) powder with 

molecular weight of 40,000 was ordered from Alfa Aesar (USA).  

Table 3. 1 Materials used for fabrication of perovskite solar cell 

Layer Material 

Anode Indium tin oxide (ITO) 

Hole transport layer (HTL) PEDOT:PSS 

Active layer Perovsktie (CH3NH3PbI3) 

Electron transport layer (ETL) PC60BM 

Cathode buffer layer (CBL) Polyvinylpyrrolidone or Rhodamine 

Cathode Silver (Ag) 

3.2 Substrate cleaning:   

Indium tin oxide (ITO) substrates were used to fabricate perovskite solar cell. 

Before fabrication it was required to clean the substrate properly. Transparent and 

conductive indium tin oxide (ITO) coated glass substrates were numbered and positioned 

in a Teflon sample holder. The sample holder was dipped in a beaker with soap (Sodium 

dodecyl sulfate) mixed DI water and ultrasonically cleaned for 20 minutes. Figure 3.1 

shows a photograph of ultra-sonicator (FS30H) used for ITO substrate cleaning. After that 
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the substrates were cleaned sequentially with deionized water, acetone and isopropanol 

solvents for 20 minutes each.  

 

Figure 3. 1 Photograph of Ultra-sonicator used for cleaning substrates 

3.3 Device fabrication 

The planar p-i-n structure based perovskite solar cells were fabricated using indium 

tin oxide (ITO) as bottom electrode, PEDOT:PSS as hole transport layer (HTL), light 

absorbing perovskite layer, PC60BM as electron transport layer (ETL), 

Polyvinylpyrrolidone or Rhodamine as thin CBL and silver (Ag) as top metal electrode 

[81]. After cleaning the substrates by ultra-sonicator with sequential steps followed, 

substrates were dried out in a flow of nitrogen gas and positioned into RF surface plasma 

cleaner (PDC-32G). Plasma cleaner was placed into low vacuum (10-2 Torr) and was 

purged with oxygen gas after 5 minutes. Then the RF coils were given medium power to 

generate a purple colored oxygen plasma. After 25 minutes of oxygen plasma cleaning the 

chamber was vented with air to remove the plasma cleaned samples. Figure 3.2 shows a 

photograph of plasma cleaner used for surface treatment of substrate.   
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Figure 3. 2 Photograph of plasma cleaner for cleaning substrate. 

The plasma treated substrates were placed in the spin coater for PEDOT: PSS layer. 

The spin coating speed was 4500 rpm for 1 minute and immediately transferred on hot plat 

for annealing in air at 150 ºC for 10 minutes. After cooling down, the samples were then 

transferred inside a N2 filled glove box for perovskite layer. A 581 mg of PbI2 (1.26 M) 

and 209 mg of CH3NH3I (1.3 M) were mixed together in 1 ml of γ-butyrolactone: DMSO 

in 7:3 volume ratio and stirred overnight at 70oC. Perovskite solution of 750 L was spin 

coated for two step rpm, first at 750 rpm for 20 sec and then 4000 rpm for 60 sec. After 40 

sec of total spinning time, 160 µl toluene was dropped. The films were then crystallized by 

thermal annealing at 80 ºC for 20 minutes for perovskite crystallization. Figure 3.3 shows 

spin coating procedures of different layers. 
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Figure 3. 3 Fabrication procedure of procedure of different layers 

PC60BM solution was prepared in dissolving chlorobenzene (20 mg/ml) and then 

spin coated on top of the perovskite layer at 2000 rpm for 40 sec and then kept for 5 minutes 

inside the glove box for solvent drying at ambient temperature. Polyvinylpyrrolidone 

(PVP) was dissolved in isopropyl alcohol at different concentration (0.5, 1.0, 1.5 and 2.0 

mg/ml) and then spin coated (1000, 3000, 5000 rpm) as CBL on the top of PC60BM layer. 

Few PC60BM coated films were spin coated using Rhodamine (0.5 mg/ml in isopropyl 

alcohol) as CBL at 3000 rpm for 40 sec. Finally Ag (80 nm) electrode was then deposited 

using thermal evaporation in high vacuum of 2×10-6 mbar. The area of shadow mask 0.16 

cm2 was considered for solar cell active area.                 

3.4 Optoelectronic characterization 

3.3.1 Current density vs voltage (J-V) measurements  

J-V measurements were accomplished using Agilent 4155C semiconductor 

parameter analyzer and xenon lamp (Newport 67005) with AM 1.5 filter as solar simulator. 

A calibrated silicon photo detector provided by National Renewable Energy Laboratory 
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(NREL) (Hamamatsu S1133-14) was used as reference cell to calibrate the light source to 

maintain the intensity of 100 mWcm-2. The distance between the xenon arc lamp and the 

silicon detector was maintained to give A.M 1.5 illumination on the sample surface.  After 

that, the photo detector was substituted by a perovskite solar cell at same position. Data 

was picked up from semiconductor parameter analyzer. Voltage was varied from 0 to1.1 

V with an interval of 10 mV. Figures 3.4 and 3.5 show the setup for I-V measurements. 

 

Figure 3. 4 Schematic of current density-voltage measurement system. 

 

                     
 

Figure 3. 5 Photograph of an experimental arrangement for I-V measurement set up 
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3.3.2 External quantum efficiency (EQE) measurement 

Figure 3.6 show an experimental set up for EQE measurement. EQE measurement 

was carried out using a Newport EQE measurement kit with a 7412 Oriel Cornerstone 260 

¼ m monochromator in ambient temperature and air. Xenon arc lamp, a light source 

(Newport 67005) was delivered through a Newport mono-chromator and the wavelengths 

of the incident light were varied from 280 to 1000 nm at 5 nm steps by using Newport 

utility software. Distance between focusing lenses and reference photodetector 

(Hamamatsu S1133-14) was maintained to focus the monochromatic light onto the 

reference photodetector. Output voltage from reference photodetector was measured in 

Agilent 4155C. Reference photodetector was then substituted by the sample under test at 

the same position. Output voltage from the sample was measured in Agilent 4155C. EQE 

of measured cells were calculated by comparing these output voltages. Figure 3.7 is the 

pictorial view of the Newport EQE measurement system. 

 
 

Figure 3. 6 Schematic of external quantum efficiency measurement system. 
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Figure 3. 7 Photograph of experimental setup for IPCE measurement 

3.4. Nano morphology characterization 

3.4.1 Atomic force microscopy and Kelvin probe force microscopy 

For topography images, Atomic force microscopy (AFM) was operated in tapping 

mode using Agilent 5500 SPM (scanning probe microscope). Silicon tip (Budget Sensors, 

Multi75 Eg) coated with Cr/Pt was used whose had some specialty including spring 

constant ~1-4 N/m and tip radius of ~1Ao and resonance frequency ~75 KHz. In order to 

get required resolution of resonance frequency, an off-resonance of 100-200 Hz was 

applied to the cantilever. Without or with different interfacial layer coated Perovskite 

samples were observed for topographic image and surface potential respectively. Figure 

3.8 shows the photograph of AFM (also KPFM) instrument (Agilent Nano-scope 5500 

SPM). Gwyddion software was used to investigate the AFM images. 
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Figure 3. 8 Photograph of atomic force microscope 

 

For surface potential measurement, first resonance (f1) frequency of 67 kHz was 

fed into the first lock-in amplifier (LIA1) used for topographic and phase imaging. The 

second frequency (f2) of 5 kHz was fed into the second lock-in amplifier (LIA2) used for 

KPFM measurement. An electrostatic force was created between the tip and sample by 

providing a 5 KHz oscillation to the tip. A certain dc offset was applied to the tip to nullify 

the electrostatic interaction. To achieve amplitude of 0.2 V of dc off set, the drive 

percentage of LIA2 was reached around 15%. This dc bias recorded at each point provided 

the local CPD or surface potential. SP vs. z spectroscopy was maintained to avoid the 

topography interference with surface potential measurement. 

3.4.2 Ultraviolet-visible spectroscopy  

UV-Vis absorption of different layer coated films were taken using Agilent 8453 

spectrophotometer with chem station software. Figure 3.9 shows the photograph of 
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ultraviolet-visible spectroscopy. Before measuring the absorption, ITO coated blank 

substrate was measured to remove the noise due to air and ITO glass. Then the absorption 

measurement was followed according to the condition of the sample.   

                     
 

Figure 3. 9 Photograph of HP Agilent 8453 UV-Visible spectrometer 

 

3.4.3 X-ray diffraction 

Figure 3.10 shows a photograph of X-ray diffractometer (Rigaku smart lab 

operation system). First of all X-ray was ramped up to 40kV tube voltage and 20 mA tube 

current to generate X-ray of 1.54 Ao. Thin film measurement was then performed using a 

general (medium resolution PB/PSA) out of plane measurement.  Optical alignment, 

sample alignment and general measurement were performed by inserting the parameters 

for scan with a step of 0.01 degree.    
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Figure 3. 10 Photograph of X-ray diffractometer (Rigaku) 

3.4.4 Scanning electron microscope (SEM) 

 SEM images were taken in a Hitachi S-3400N SEM instrument shown in figure 

3.11. The surface morphology perovskite film, PC60BM and with or without CBL coated 

perovskite films were observed using SEM with an accelerating voltage of 10 kV with 

working distance of ~10 mm and a magnification of 10 K. A thin layer of conducting gold 

(10 nm thickness) were deposited on each film and then mounted on top of a circular 

sample holder under a vacuum environment inside the SEM chamber.  

 

Figure 3. 11 Photograph of Hitachi S-3400N SEM 
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3.4.5 Transient photovoltage / photocurrent spectroscopy 

 The dye laser (Model 1011, repetition rate ~ 4 Hz, pulse duration < 1 ns) coupled 

with the nitrogen laser (OBB’s Model OL-4300, crisp pulse at 337 nanometers) was used 

to generate pulses at specific wavelength to create a short transient decay in the cell. Figure 

3.12 shows the experimental photograph of transient photo voltage and photo current 

measurement. A splitter was used to transmit the laser on the solar cell and photodiode 

simultaneously. The generated signals from the cell and photodiode were recorded in 

oscilloscope (Agilent MSO-X-4154A, 1.5 GHz, 5 Gsa/sec). The transient photocurrent 

decay was measured at short circuit condition using 50 Ω resistance of the oscilloscope. 

On the other hand, the Transient photo-voltage decay was measured at open circuit 

condition under light illumination and steady state condition using 1 MΩ resistance of the 

oscilloscope. For finding the charge transport time and charge carrier life time of the 

perovskite solar device, the achieved decays were fitted with mono exponentially decaying 

function. 

 

Figure 3. 12 TPC and TPV experimental set up 
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Chapter 4. Results and Analysis 

4.1 UV-visible spectrum and external quantum efficiency (EQE)  

Perovskite solar cell’s active light absorbing layer is sandwiched between the 

electron transport layer (ETL) and hole transport layer (HTL). It was noticed that the 

enhancement of efficiency by using CBL in between the ETL and the metal electrode, Ag.  

So it was fabricated with the device structure like glass/ITO/PEDOT: PSS 

(HTL)/perovskite/PCBM (ETL)/CBL/Ag. Figure 4.1 (a) shows the UV-visible absorption 

spectra of CBL deposited on the top of glass/ITO/PEDOT: PSS /perovskite/PCBM. It was 

observed that CBL coated using PVP, provided broader absorption near 400-800 nm 

compared to CBL coated using Rhodamine and without CBL.  
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Figure 4. 1 UV-visible absorbance spectra of PCBM films with CBL (PVP and 

Rhodamine) and without CBL (PCBM only).  
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4.2 XRD measurement of perovskite solar cell  
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Figure 4. 2 XRD spectra (a) Perovskite only (b) Perovskite /PCBM layer (c) Perovskite 

/PCBM/PVP layer (d) Perovskite /PCBM/Rhodamine layer 

 Figure 4.2 shows XRD spectra of different film placed on the upper surface of the 

perovskite layer. The peak intensity at 14o and 28o were occurring for 110 and 220 planes 

which ensured the complete crystallization of perovskite phase. Figure 4.2 (b), (c), (d) 

showed no difference of peaks if PCBM and other CBL were deposited on the top of 

perovskite film. All the cases, it concluded the formation of orthorhombic crystal structure 

of perovskite with high crystallinity.  

4.3 J-V characteristics of perovskite solar cell  

Figure 4.3 shows the current density-voltage (J-V) characteristics of PSCs with 

reverse and forward scan. The J-V characteristics were performed at same condition with 

same scan rate for all the cells. PSCs were fabricated with three different spin coating speed 
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(1000 rpm, 3000 rpm and 5000 rpm) using PVP as CBL in p-i-n planar structure. The 

thickness of CBL played a vital role for improving device performance. The slower spin 

coating speed makes comparatively thicker film than higher spin coating speed. The thicker 

film attributed to less charge transport and provided less short circuit current density. 
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Figure 4. 3 Current density-voltage characteristics of PSCs with PVP as CBL (a) reverse 

scan (b) forward scan. 

 When the spin coating speed of PVP buffer layer was 5000 rpm, Jsc and Voc started 

to decrease due to non-uniform layer distribution and created less dipole moment in the 

interface. Table 4.1 shows the performance determining parameters of PSCs. PVP as CBL 

based PSCs showed higher PCE of 16.35% (reverse scan) while the spin speed of PVP 

layer was 3000 rpm. As PVP is non-conjugated polymer, the optimum thinness were 

achieved by changing the rpm speed of spin coater. There were different PCE’s for reverse 

and forward scan due to the presence of hysteresis effect of perovskite materials.   

Table 4. 1 Performance determining parameters of Perovskite solar cell 

Conditions  Jsc 

(mA/cm2) 

Voc 

(V) 
FF 

PCE 

(%) 

With PVP  

(1000 rpm) 

Reverse -18.54 0.98 0.74 13.51 

Forward -18.23 0.98 0.64 11.42 
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With PVP  

(3000 rpm) 

Reverse -22.03 0.95 0.78 16.35 

Forward -21.57 0.94 0.70 14.10 

With PVP  

(5000 rpm) 

Reverse -19.32 0.96 0.80 14.96 

Forward 18.91 0.95 0.67 12.10 

 

Figure 4.4 also shows the J-V characteristics of PSCs in both reverse and forward 

scan with different concentrations (0.5-2.0 mg/ml) of PVP material dissolved in 

isopropanol (IPA). Starting from 0.5 mg/ml IPA, the Jsc and FF increased with the increase 

of PVP concentration. After 1 mg/ml then it started to decrease and the concentration was 

optimized. The higher concentrations of PVP hinders charge transport and creates 

recombination which reduces the short circuit current density and fill factor. Table 4.2 also 

shows different parameters of PSCs with different concentrations of PVP as CBL material.  
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Figure 4. 4 J-V characteristics of PSCs (a) reverse scan (b) forward scan with different 

concentration of PVP 

Table 4. 2 Performance determining parameter of solar cell 

Concentration Scan  
Jsc  

(mA/cm2) 

Voc 

(V) 
FF 

PCE 

(%) 

PVP  

(0.5 mg/ml) 

Reverse -19.87 0.98 0.74 14.35 

Forward -19.58 0.98 0.62 11.89 
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PVP  

(1.0 mg/ml) 

Reverse -22.03 0.95 0.78 16.35 

Forward -21.57 0.94 0.70 14.10 

PVP  

(1.5 mg/ml) 

Reverse -19.38 1.00 0.76 14.92 

Forward -18.98 0.99 0.65 12.35 

PVP  

(2.0 mg/ml) 

Reverse -18.28 0.99 0.68 12.37 

Forward 17.90 0.98 0.59 10.44 

 

Figure 4.5 shows the J-V characteristics of best devices with optimized PVP 

concentration and layer thickness compared to another CBL (Rhodamine) and without 

CBL. The best PSC achieved PCE of 16.35% efficiency which is the highest reported 

efficiency using non-conjugated polymer materials used in perovskite solar cell so far. The 

comparative device parameters have been listed in Table 4.3.  

Figure 4.5 (b) shows the plot of EQE of a complete PSC fabricated with or without 

any CBL. It was also confirmed from the figure that PVP as CBL based perovskite solar 

cell had average of 80% EQE compared to another CBL (Rhodamine) and without CBL. 

In the range of 650nm-750nm, the EQE difference was highly noticeable and also 

confirmed by the short circuit current density (Jsc) obtained from the J-V characteristics. 

The Jsc obtained from EQE integration over AM 1.5 solar simulator spectrum was almost 

identical to the experimentally obtained J-V characteristics. 
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Figure 4. 5 (a) J-V characteristics of PSCs with optimized (best) conditions with (PVP 

and Rhodamine) and without CBL. (b) External quantum efficiency (EQE) of different 

CBLs (PVP and Rhodamine) and without CBL (PCBM only) 

Table 4. 3 perovskite solar cell parameters 

Condition 

Jsc  

(mA/cm2) 

Voc 

 (V) FF 

PCE  

(%) 

PVP -22.03 0.95 0.78 16.35 

Rhodamine -17.97 0.90 0.77 12.45 

Without CBL -17.21 0.90 0.58 8.97 
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Figure 4.6 shows the reproducibility of PSCs parameters. Simultaneous enhancement of 

Jsc, Voc, FF and PCEs observed when at least 10 devices were made with or without CBL. 
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Figure 4. 6 Reproducibility of PSCs parameters (a) short circuit current density, Jsc (b) 

open circuit voltage, Voc (c) fill factor, FF and (d) efficiency, PCE 

4.4 Nano morphology characterization  

Figure 4.7 shows the atomic force microscopy (AFM) and scanning electron 

microscopy (SEM) images of perovskite film. AFM image showed the crystal formation 
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in the 5µm ×5µm area and SEM image showed the surface morphology with complete 

coverage.    

    

Figure 4. 7 (a) Atomic force microscopy (AFM) topography and (b) scanning electron 

microscopy (SEM) image of perovskite film 

Figure 4.8 shows the kelvin probe force microscope (KPFM) images of PCBM, 

PCBM/PVP and PCBM/Rhodamine films. The topography of PCBM film (without CBL) 

showed RMS value of 75.93 nm, while the roughness decreased with incorporation of 

interfacial materials. The lowest RMS achieved was about 23.36 nm for PVP as CBL. 

Lower roughness and smooth surface enhances the charge transport, hence increase Jsc. 

The surface potential images explained the enhancement of Voc. The film without CBL 

provided a more negative value whereas PVP as CBL values increased positively which 

might be the reason for the enhancement of Voc. There might be another reason why Voc 

increase is due to the formation of dipole in between the PCBM and Ag.   

(a) Perovskite film (b)  Perovskite film 
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Figure 4. 8 Topographic images of (a) PCBM (c) Rhodamine (e) PVP films and surface 

potential images of (b) PCBM (d) Rhodamine (f) PVP films 

 

(a) (b) 
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(e) (f) 



61 
 

 Figure 4.9 shows the surface potential (SP) distribution of PCBM films coated on 

the top of perovskite with and without CBL. SP increased with incorporation of PVP as 

CBL due to the reduction of surface defects of PCBM film. The increase in surface 

potential led to higher Voc for PVP layered PSC compared to without CBL. 
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Figure 4. 9 Surface potential distribution of PCBM with and without CBL 

Figure 4.10 (a) shows the SEM image of PCBM film where there was noticed some 

pinholes present in the surface morphology. On the other figure 4.10 (b) showed surface 

morphology with complete coverage and no pinholes when PVP was used as CBL. The 

pinhole free and smooth film improves the charge transport and overall device 

performances. 
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Figure 4. 10 SEM images of (a) /Perovskite/PCBM film (b) /Perovskite/PCBM/PVP film 

(c) /Perovskite/PCBM/Rhodamine film 

4.5 Transient photocurrent and photo voltage measurement 

Figure 4.11 shows the transient photocurrent measurement. The device without 

CBL provided charge transport time of 0.985 S while it reduced to 0.636 S when PVP 

was used as CBL. The device made using rhodamine also provided charge transport time 

of 0.835 S compared to without CBL which confirmed the enhancement of FF. The faster 

the charge transport time, the better is the device performances. 

(a) /Perovskite/PCBM film 
 

(b) /Perovskite/PCBM/PVP film 

 

(c) 

/Perovskite/PCBM/Rhodamine film 

 



63 
 

0.0 1.0x10
-6

2.0x10
-6

3.0x10
-6

4.0x10
-6

5.0x10
-6

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

n
s
ie

n
t 
P

h
o
to

-c
u
rr

e
n
t

Charge transport time (s)

 Without CBL

 PVP

 Rhodamine

(a)

 

Figure 4. 11 Transient photo current measurement of different device made from without 

and with CBL (PVP and Rhodamine) 
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Figure 4. 12 Transient photo current measurement of different device made from without 

and with CBL (PVP and Rhodamine) 

Figure 4.12 shows the transient photo-voltage measurement. The device without 

CBL provided charge carrier lifetime of 0.939 µS while it increased to 1.192 µS when PVP 
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was used as CBL. A high carrier lifetime suppresses the charge carrier recombination and 

increases the device performances. The parameters from transient measurement are given 

in the Table 4.4.  

Table 4. 4 Charge transport time and carrier life time 

Condition Charge transport 

time 

Carrier lifetime  

Without CBL 0.985 (µS) 0.939 (µS) 

PVP 0.636 (µS) 1.192 (µS) 

Rhodamine 0.835 (µS) 1.078 (µS) 
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Chapter 5. Summary and Conclusions 

5.1 Summary 

Alternative sources such as thermal, wind, hydro, etc. are getting priority of energy 

to fulfill the energy demands. But they are not available all the time and requires huge 

installation cost. To keep the environment free from the pollution, solar energy is highly 

recommended with lower cost. Starting from the first generation of Si solar cell, it has been 

reached to 24% efficiency. Also, thin film PV devices made from inorganic III-V 

semiconductor is also overcoming the demand of energy with producing PCE about 44.6%. 

However, the producers are always in necessity of low cost, solution process and highly 

efficient solar cells. Unlike inorganic Si solar cells, OPVs, DSSCs and next generation 

PSCs have been widely examined due to lower cost and higher efficiency. 

The principle of SCs comes from photovoltaic effect. When a photon incidents on 

a semiconductor material, an electron from the ground state is excited to the higher energy 

states. In order to take place this phenomenon, the photon energy must be higher than the 

forbidden energy gap of that specific semiconductor material. It is the so called absorption 

of photons. In photovoltaic devices, due to absorption process, a built in electric field is 

produced. However, excited electrons are extracted to the external circuit before they relax 

back to the ground state. Basically a p-type semiconductor and n-type semiconductor is 

being formed a junction where p-type is made from doping by Boron (B) or Aluminum 

(Al) and n-type is made from doping by Phosphorous (P) or Arsenic (As).  The efficiency 

of a solar cell is considered the most performance determining parameters which depends 

on short circuit current density, Jsc and open circuit voltage, Voc and fill factor, FF.   
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The molecular structure of perovskite is ABX3, where A and B are the cations and 

X symbolizes the halide group as an anion. Most commonly used perovskite absorber layer 

is the combination of MAI and PbI2 where methylammonium iodide (CH3NH3I or MAI) is 

the organic part which facilitates self-assembly and lead iodide (PbI2) is the inorganic salt 

which provides an extended network by covalent or ionic interaction that allows for precise 

crystalline structure formation. The electronic and optical properties are determined by the 

ratio of halide ions. 

Although the device structure was retrieved from dye DSSCs, Miyasaka first 

fabricated PSC in 2009 with PCE of 3.8%. However, it was not stable for longer time due 

to the liquid electrolyte which damage perovskite film very quick. After that, a long term 

stable perovskite solar cell was reported with PCE of 9.7% by Park et al. in 2012. Saliba 

et al. reported the world’s highest efficiency of PSCs in 2016 with PCE of 22.1%. 

Numerous device architectures have been designed and investigated for constructing PSCs 

consisting of different ETLs and HTLs with respective metal electrodes (Ca, Al, Ag etc.). 

For fabricating PSCs, different fabrication and deposition technique have been investigated 

including two step dip coating, two step spin coating, single step spin coating, stamping, 

thermal evaporation, vapor assisted solution processing, vacuum pump method and so on. 

It is highly important to consider energy band diagram (LUMO and HOMO level) to 

facilitate faster charge transport and longer carrier life time. The buffer layer between ETL 

and metal electrode plays an important role in this regard.  

Perovskite films were fabricated as explained before in experimental procedure 

sections. For the first time, PVP was used as a CBL in case of PSCs. The prepared films 

with and without CBL were then characterized using UV-vis spectroscope, XRD, AFM, 
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KPFM and SEM. J-V characteristics were measured using semiconductor parameter 

analyzer (Agilent 4155C) combined with a xenon lamp (Newport 67005) as solar simulator 

(AM 1.5). EQE was measured using a Newport kit with a 7412 Oriel Cornerstone 260 ¼m 

mono-chromator in ambient temperature. The CBLs (PVP or rhodamine) were deposited 

on the top of PCBM using spin coating technique.  The final devices achieved PCE more 

than 14%. The CBL shows a significant part in device performance by enhancing the FF 

and short circuit current density. The optimum film thickness and CBL material’s 

concentration are required for high performance perovskite solar cell. 

5.2 Conclusions 

Finally, the use of non-conjugated polymer PVP as CBL achieved an efficiency of 

16.35%, which was significantly higher than the 12.45% using Rhodamine and 8.97% 

without CBL. There were simultaneous enhancements in Jsc, FF, Voc and overall PCE due 

to use of PVP as CBL. The highest device achieved a PCE of 16.35%, which has been the 

highest reported efficiency in perovskite solar cell using non-conjugated polymer 

materials. The enhancement in device performance might be caused by the smoother films, 

lower surface potential and formation of dipole between the ETL and Ag electrode.  

Therefore, PVP can be used as effective CBL material in the planar p-i-n device structure 

to achieve low cost, solution processible and high efficiency perovskite solar cells.  

5.3 Future work 

Future work should consider a detailed understanding of the effect of nanoscale grain 

boundaries of CBL in perovskite solar cell with increasing the concentration more than 

2mg/ml IPA as well as check the stability to obtain efficiency greater than 20%. 
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