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Seed Burial Physical Environment Explains Departures from Regional
Hydrothermal Model of Giant Ragweed (Ambrosia trifida) Seedling Emergence

in U.S. Midwest

Adam S. Davis, Sharon Clay, John Cardina, Anita Dille, Frank Forcella, John Lindquist, and Christy Sprague*

Robust predictions of weed seedling emergence from the soil seedbank are needed to aid weed management. A common
seed accession (Illinois) of giant ragweed was buried in replicate experimental gardens over 18 site years in Illinois,
Michigan, Kansas, Nebraska, Ohio, and South Dakota to examine the importance of site and climate variability by year on
seedling emergence. In a nonlinear mixed-effects modeling approach, we used a flexible sigmoidal function (Weibull) to
model giant ragweed cumulative seedling emergence in relation to hydrothermal time accumulated in each site-year. An
iterative search method across a range of base temperature (Tb) and base and ceiling soil matric potentials (yb and yc) for
accumulation of hydrothermal time identified optima (Tb 5 4.4 C, yb 5 22,500 kPa, yc 5 0 kPa) that resulted in a
parsimonious regional model. Deviations between the fits for individual site-years and the fixed effects regional model were
characterized by a negative relationship between random effects for the shape parameter lrc (natural log of the rate constant,
indicating the speed at which emergence progressed) and thermal time (base 10 C) during the seed burial period October
through March (r 5 20.51, P 5 0.03). One possible implication of this result is that cold winter temperatures are
required to break dormancy in giant ragweed seeds. By taking advantage of advances in statistical computing approaches,
development of robust regional models now is possible for explaining arable weed seedling emergence progress across wide
regions.
Nomenclature: Giant ragweed, Ambrosia trifida L.
Key words: Abiotic influences on seed dormancy,hydrothermal time, nonlinear mixed effects models, regional
environmental variation, seedling recruitment phenology.

Predicting weed emergence timing from the seedbank
plays a critical role in scheduling early season POST weed
management operations to achieve high efficacies by alerting
farmers to upcoming phonological benchmarks for weed
seedlings. For example, rotary hoeing is most effective when
performed at the ‘‘white thread stage’’ of seedling develop-
ment, after the weed seed germinates but before root
establishment (Mt. Pleasant et al. 1994). The white thread
stage is conceptualized easily for a single seedling, but this
characterization is much more difficult for a population with
variable phenology. Moreover, many POST herbicides have
little soil activity and will not control weeds that have not yet
emerged if applied too early. Conversely, if control techniques
are applied too late, early emerging weeds may be too large for
effective control (Carey and Kells 1995; Dalley et al. 2004). In
addition, if weeds are controlled too late, crop yield potential
already may have been reduced irreversibly even if the weeds
are controlled (Clay et al. 2006; Moriles et al. 2012;
Norsworthy and Oliveira 2004).

Models have been developed to predict temporal seedling
emergence patterns for several weed species (Forcella 1998;
Grundy and Mead 2000; Grundy et al. 2003; Hardegree and
Winstral 2006; Oryokot et al. 1997a,b; Roman et al. 2000;
Schutte et al. 2008). Seeds do not germinate if soil
temperatures are too low and the first weed-emergence

prediction models developed used only air or soil temperature
(thermal time). Thermal time in these studies was represented
as growing degree days (GDD), such that

GDD~
XTminzTmax

2
{Tb ½1�

where Tmin and Tmax are daily minimum and maximum
temperature, and Tb is a base temperature, below which
thermal time units are not accumulated, optimized for the
weed species of interest (Bewick et al. 1988). For example,
WeedCast (Archer et al. 2006) uses a Tb of 4.4 C for summer
annual weed species including common cocklebur (Xanthium
strumarium L.), wild buckwheat (Polygonum convolulus L.),
and giant ragweed, whereas the Tb reported for yellow foxtail
[Setaria pumila (Poir.) Roemer & Schultes], barnyardgrass
[Echinochloa crus-galli (L.) Beauv.], and common sunflower
(Helianthus annuus L.) is 10 C. These data imply that giant
ragweed and common cocklebur would emerge earlier in the
growing season than common sunflower and barnyardgrass.

A more complex approach that often improves emergence
predictions incorporates daily time-step models of soil water
potential (y) along with soil temperature (Baskin and Baskin
1987; Gummerson 1986). Seeds cannot imbibe water from
soils that are too dry and germination is delayed until enough
water is present. The y can be measured directly using a
psychrometer or other sensors. Environmental simulation
models, such as the soil temperature and moisture model
(STM2) (Spokas and Forcella 2009), that calculate y from
rainfall and inherent soil characteristics to adjust values based
on infiltration estimates, clay, and organic matter content,
have also been developed. In this second approach, the y data
are then integrated with soil temperature into a single
measurement designated as ‘‘hydrothermal time’’ (hHT) in
which thermal time is only accumulated if soil matric
potential is within a predetermined range. This method has
been used successfully to model seedling emergence of many
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broadleaf and grass species at various locations worldwide
(Forcella 1998; Forcella et al. 2000; Gardarin et al. 2010;
Grundy 2003; Grundy et al. 2003; Gummerson 1986; Masin
et al. 2010; Oryokot et al. 1997a; Roman et al. 2000; Spokas
and Forcella 2009).

Weed seedling emergence models have often been
challenged by spatiotemporal variability. For example,
Grundy et al. (2003) reported that a single generic model
could not predict emergence of common chickweed [Stellaria
media (L.) Vill.] from different origins under different
climatic conditions even though the seeds were planted in a
common substrate. Giant ragweed seeds from Illinois, Iowa,
and Michigan that were sown in a common garden gave rise
to seedlings that differed in their patterns of emergence
(Johnson et al. 2007), likely because of preexisting and
differential dormancy states of the harvested seeds. Popula-
tions of giant ragweed from Ohio (eastern U.S. Corn Belt)
appear to have adapted to glyphosate-based management
systems in corn and soybean by delayed emergence. Early- and
late-emerging biotypes had emergence lag periods of 60 and
600 degree days, respectively (Schutte et al. 2008). Differing
degrees of seed dormancy among biotypes has been proposed
as one possible explanation for differential emergence timing
among these populations (Schutte et al. 2012). However, the
models developed by Schutte et al. (2008) for seedling
responses to soil hHT of each biotype did not encompass
possible effects of soil hHT on seed dormancy.

We propose that two impediments to the development of
unified models of spatiotemporally diverse seedling emergence
data have been (1) the lack of appropriate statistical methods
and (2) inattention to differential abiotic influences on seed
dormancy. Previous modeling attempts have relied on least
squares nonlinear regression modeling techniques in which all
model parameters were treated as fixed effects (Grundy et al.
2003; Ratkowski 1983). The recent development of nonlinear
mixed effects modeling approaches (Pinheiro and Bates 2004)
offers unprecedented flexibility in describing the nonlinear
behavior of large groups of related, but variable, sets of
observations. In this approach, a single biological process
model (e.g., sigmoidal emergence response function based on
accumulation of soil hydrothermal time) is fit to all site-years,
estimating both fixed effects (across site-years) and random
effects (within site-years) for model parameters. Benefits of
such an approach include the following: 1) linking all
observations to a common model, with a single prior
distribution for the fitted model that permits linked inferences
to be made; 2) improved inference space, since random effects
in the model are treated as draws from a larger, unobserved,
pool of phenomena; and 3) potential for iterative improve-
ment of the basic process model, as unexplained environ-
mental variation discovered in the random effects may guide
further model refinement (Luschei and Jackson 2005).

Although seed dormancy is a well-known influence on the
timing and extent of seedling emergence (Benech-Arnold et al.
2000), most models for summer annual weeds implicitly
assume that overwintering relieves all traces of dormancy
possessed by seeds in the soil. This assumption likely is true
in many situations, but may be inaccurate in others. For
instance, models for seedling emergence of large crabgrass
[Digitaria sanguinalis (L.) Scop.] were improved when
hypothetical seed dormancy was broken by altering the
models to include several cycles of diurnal soil temperature
fluctuations . 6 C prior to the start of seed germination

(Forcella et al. 2000). Inclusion of dormancy relief functions
in emergence models of summer annual weeds is expected to
be especially useful when comparing field-based data over
wide geographic areas that probably experienced highly
variable overwinter soil microclimates.

Here we report the results of a field study of giant ragweed
seedling emergence over 18 site-years in eight locations in the
north central region of the United States. Our objective was to
quantify the seedling emergence dynamics over a wide enough
range of environmental conditions to develop a robust
statistical model identifying critical abiotic drivers explaining
variation in this process at a regional scale.

Materials and Methods

Seed Accessions and Site Information. Giant ragweed seeds
were collected from Urbana, IL, in autumn just after seed
maturity. In 2005, seeds were collected from a riparian
population situated in a riverbank field margin (‘‘riparian’’
accession), whereas in 2006 and 2007, seeds were collected
from giant ragweed populations occurring within a maize field
located at the University of Illinois Crop Sciences Research
and Education Center (‘‘arable’’ accession). Mature plants
were air-dried in a sheltered area for 2 wk, after which any
dehisced seeds were collected and cleaned to remove chaff and
light seed. Seed lots were assessed for initial viability using
tetrazolium staining methods (AOSA 2000). Clean seed was
distributed to participants and planted at field locations at
Savoy, IL (40.05uN; 88.24uW); East Lansing (42.71uN;
84.47uW) and St. Charles (43.31uN; 84.13uW), MI;
Manhattan, KS (39.19uN; 96.6uW); Ithaca, NE (41.17uN,
96.41uW); Wooster, OH (40.78uN, 81.92uW); and Aurora,
SD (44.29uN; 96.65uW).

Specific experimental design and other site information are
presented in Wortman et al. (2012). Briefly, at each location,
in four replicate plots, 100 seeds were placed into 12 by 12–
cm wire mesh baskets filled with 2 cm of topsoil from the plot
area and buried so that the soil surface in the baskets was
flush with the surrounding soil surface. Seeds were sown in
mid-October of the year of collection to allow for natural
overwinter cold treatment. Eighteen site-years of data were
obtained for giant ragweed emergence (3 yr from IL, MI (two
locations), and KS [2006 to 2008] and 2 yr from NE, OH,
and SD [2007, 2008]). Weekly destructive seedling emer-
gence counts were performed. Monitoring began in late
February, before emergence occurred at any location, and
continued through late August, well after emergence had
ended (Figure 1).

Soil Microclimate Conditions. Hourly air temperatures and
rainfall, along with other meteorological data, were collected
at weather stations within 10 km of each study site. STM2

(Spokas and Forcella 2009) was then used to model soil T and
y at 2 cm based on solar radiation, soil properties (sand, silt,
clay, organic matter contents), latitude, longitude, and
elevation of the field site, along with daily minimum and
maximum air temperatures and daily precipitation to simulate
microclimate conditions.

Calculating hHT. We modeled various time series of daily
accumulation of hHT corresponding to selected combinations
of Tb, yb (below which soil was considered too dry to
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accumulate thermal time), and yc (above which soil was
considered too wet to accumulate thermal time) chosen to
bracket the range of those found in the literature on giant
ragweed seedling emergence (Archer et al. 2006; Schutte et al.
2008). Values of Tb included 1, 2, 4.4, and 5 C, values of yb

included 220,000, 210,000, 25,000, 22,500, 21,000,
2100, and 233 kPa, and values of yc included 240, 233,
210, 21, and 0 kPa. Note that hHT calculated with yb 5
220,000 kPa and yc 5 0 was equivalent to thermal time
(unmodified by soil moisture constraints), since soil y did not
drop below this value for any of the modeled site-years.
Although not previously used in hHT calculations associated
with seedling emergence, yc was included in this study to
determine whether soil conditions could be too wet (i.e.,
anoxic) to permit giant ragweed seedling emergence. For each
site-year, January 1 was treated as hHT 5 0 (with the
exception of KS-2006, when giant ragweed seeds were buried
in the soil on March 1, and treated as hHT 5 0 for this site-
year). We accumulated hHT as

hHT ~
Xn

i~1

hHi hTi ½2�

where i 5 day of year at a particular location, n 5 final
observation day of year at a particular location, hH 5 soil
matric potential in relation to yb, and hT 5 soil temperature.
When yc . y . yb, hH 5 1, or else hH 5 0 when y , yb or
y . yc; hT is calculated according to equation 1.

Statistical Modeling. Our approach to modeling the seedling
germination dynamics of giant ragweed in response to hHT

was accomplished in several steps: 1) finding optimal base
values for incrementing hHT with respect to a saturated
statistical model, 2) performing model simplification at the
optimal base values for hHT, and 3) analyzing associations
among random effects for the most parsimonious hHT model
and environmental variation across site-years.

At the core of our statistical modeling approach to
quantifying regional seedling germination dynamics of giant
ragweed was a nonlinear mixed effects modeling framework,
fit by maximum likelihood methods (Pinheiro and Bates
2004). The saturated model containing fixed and random
effects for all parameters of the Weibull equation (Ratkowski

1983), a flexible mathematical function used to describe
cumulative data series, was formulated such that

yi* b1izb1ið Þ{ b2izb2ið Þ � e {e b3izb3ið Þ
� �

hHTi
b4izb4ið Þ

� �� �
zei

b1*N 0,yð Þ, ei*N 0,s2
� �

y~

s11 0 0 0

0 s22 0 0

0 0 s33 0

0 0 0 s44

2
666664

3
777775

½3�

where i 5 experimental unit; y 5 cumulative percent
emergence at a cumulative hHT value; b1 and b1 represent
the fixed and random effects, respectively, for Asym, the upper
horizontal asymptote (theoretical maximum for Y normalized
to 100%); b2 and b2 represent the fixed and random effects,
respectively, for Drop, the vertical distance between the upper
and lower horizontal asymptotes; b3 and b3 represent the fixed
and random effects, respectively, for lrc, the natural log of the
rate of increase; b4 and b4 represent the fixed and random
effects, respectively, for pwr, a curve shape parameter; and ei

represents the error term (Ratkowski 1983). This mixed
effects model contains eight parameters to be estimated; in
comparison, a fixed-effects-only approach in which individual
models were fit to each site-year of data would result in an
overparameterized model, with 4 3 18 5 72 parameters to be
estimated. We chose a diagonal covariance structure for the
random error terms because a general positive-definite Log-
Cholesky covariance structure (including all factorial combi-
nations of random effects associations) did not converge for
these data (Pinheiro and Bates 2004).

The search for optimal base values for the saturated hHT

model and subsequent model simplification were implement-
ed using a maximum likelihood model selection approach in
the nlme package of R version 12.13.0 (R Development Core
Team, Vienna, Austria. Support from the data for competing
models was evaluated on the minimization of maximum
likelihood criteria including Akaike information criterion
(AIC) and Bayesian information criterion (BIC), and through

Figure 1. Cumulative giant ragweed seedling emergence, by day of year, for 18
site-years across the north central Corn Belt of the United States. Site-year codes
are as follows: 1 to 3 5 Savoy, IL, 2006 to 2008; 4 to 6 5 Manhattan, KS, 2006
to 2008; 7 to 9 5 East Lansing, MI, 2006 to 2008; 10 to 12 5 St. Charles, MI,
2006 to 2008; 13 and 14 5 Mead, NE, 2007 to 2008; 15 and 16 5 Wooster,
OH, 2007 to 2008; 17 and 18 5 Aurora, SD, 2007 to 2008.

Figure 2. Goodness of fit of saturated seedling emergence model to variation in
base temperature (Tb: 1, 2, 4.4, and 5 C) and soil matric potential (y) threshold
values for a) hydrothermal time (threshold value of yb) and b) modified
hydrothermal time (threshold value of yc) models. Modified hydrothermal time
models (those including both a base and ceiling soil matric potential threshold) all
used a yb of 22,500 kPa. AIC 5 Akaike’s information criterion.

Davis et al.: Giant ragweed recruitment N 417



Akaike weights (the probability that a given model was the
best among the pool of candidate models) (Burnham and
Anderson 2002). Simple and partial correlations between
fitted random effects for parameters of the most parsimonious
hHT seedling emergence model and environmental variables
(soil T, soil GDD10, soil y and rainfall) during overwinter
seed burial (October through March) and during seedling
emergence (period from first recorded seedling emergence to
cessation of emergence) were implemented in the corpcor
package of R version 12.13.0.

Results and Discussion

Base Values for hHT Model. The search for optimal base
values for the hHT model of giant ragweed seedling emergence
values identified clear optima for each soil property threshold.
In approaching these optima, variation in y appeared to have
more influence than variation in Tb (Figure 2). Based on
minimization of AIC, the best fit of the saturated model to the
data occurred when hHT was accumulated with Tb 5 4.4 C
and yb 5 22,500 kPa (Figure 2a). Placing a restriction on yc

did not improve model performance (Figure 2b). The special
condition of overly wet soils inhibiting giant ragweed seedling
emergence was therefore removed from further consideration
during model selection.

Our optimal Tb value of 4.4 C corresponds to the empirical
optimum found by Archer et al. (2006). This was
considerably warmer than the Tb value of 2 C used by
Schutte et al. (2008), which was extrapolated from the
literature. The issue of optimal Tb will be discussed further in
‘‘Environmental Variation Unexplained by hHT.’’

Lack of effect of saturated soils (with high y values) on giant
ragweed seedling emergence may not be surprising given that

it is a riparian-adapted species. More interesting is the very
low optimum yb at which hHT for giant ragweed seedling
emergence continued to accumulate. This was well below the
soil matric potential representing the permanent wilting
point for plants, y 5 21,500 kPa. Giant ragweed seeds are
apparently able to imbibe and retain sufficient water over the
pregermination burial period, even under very dry conditions,
to drive the seedling emergence process. Since our emergence
counting process was destructive, we did not follow the impact
of dry soil on seedling survival to reproductive maturity.

Model Selection. Although seedling emergence progress
varied widely among site-years when viewed by day of year
(Figure 1), we were able to construct a unifying hHT model to
describe giant ragweed seedling emergence using a nonlinear
mixed effects modeling approach. Maximum-likelihood
selection among seven nested candidate models, derived from
the saturated model, indicated strong support for model 5
(Table 1). Akaike weights for model 5 indicated a 62%
probability that this was the most parsimonious model among
the pool of candidate models. The fixed-effects structure of
this model consisted of fixed intercepts for b1 (Asym) and b2

(Drop) and categorical fixed effects of accession for b3 (lrc) and
b4 (pwr) (Table 2). The random effects structure of this
model contained terms only for b2 (Drop) and b3 (lrc).
Parameter estimates for model 5 are given in Table 2. Given
that this model is able to make predictions for all site-years of
data, while lowering prediction error in comparison to other
hHT models considered or the day-of-year emergence model,
we consider model 5 to represent a robust model for
predicting giant ragweed seedling emergence for the north
central Corn Belt.

Table 1. Maximum likelihood selection among best nonlinear mixed effects models of giant ragweed cumulative seedling emergence following a Weibull response
function to hydrothermal time (base temperature 5 4.4 C, base soil water potential 5 22,500 kPa).

Model Fixed effectsa Random effects dfb AIC BIC LL wi

1 Asym + Drop + lrc + pwr , 1 Asym + Drop + lrc + pw r, 1 9 1,718 1,749 2851 2.8 3 1025

2 Asym + Drop + lrc + pwr , 1 lrc , 1 6 1,750 1,771 2869 3.2 3 10212

3 Asym + Drop + lrc + pwr , 1 Drop + lrc , 1 8 1,717 1,744 2850 4.6 3 1025

4 Asym , 1, Drop + lrc + pwr , accession Drop + lrc , 1 11 1,699 1,736 2839 0.38
5 Asym + Drop , 1, lrc+pwr,accession Drop + lrc , 1 10 1,698 1,732 2838 0.62
6 Asym + Drop + pwr , 1, lrc , accession Drop + lrc , 1 9 1,716 1,747 2849 7.7 3 1025

7 Asym + Drop , 1, lrc + pwr , accession lrc , 1 8 1,721 1,749 2853 6.3 3 1026

a Weibull function parameters treated as fixed effects: Asym, upper horizontal asymptote; Drop, vertical difference between upper and lower horizontal asymptotes; lrc,
ln(rate constant); pwr, shape parameter. The symbol , 1 indicates that fixed effects refer to model intercepts only, whereas the symbol , accession indicates that a fixed
effect quantifies differences between factor levels.

b Model selection criteria abbreviations: df, degrees of freedom; AIC, Akaike’s information criterion; BIC, Bayesian information criterion; LL, log likelihood; wi,
Akaike weights. For AIC and BIC, smaller values indicate more parsimonious models, whereas for LL, larger values indicate more parsimonious models. Akaike weights
range from 0 to 1, sum to 1 for a group of candidate models, and indicate the probability that a given model represents the most parsimonious model (shown in bold)
within the group.

Table 2. Summary of random and fixed effects for the most parsimonious nonlinear mixed effects model of giant ragweed cumulative seedling emergence following a
Weibull response function to hydrothermal time (base temperature: 4.4 C, base soil water potential 5 22,500 kPa).

Fixed effectsa Coefficient SE df t-value P-value Random effects SD

Asym 99.8 1.0 206 96.1 0.0001 Drop 11.4
Drop 105.7 3.8 206 28.1 0.0001 lrc 1.2
lrc (arable) 212.7 0.8 206 216.3 0.0001 residual 7.3
lrc (riparian) 26.2 1.9 206 23.2 0.0016
pwr (arable) 2.0 0.11 206 18.0 0.0001
pwr (riparian) 1.38 0.36 206 3.9 0.0001

a Explanation of fixed effects parameters: Asym, upper horizontal asymptote; Drop, vertical difference between upper and lower horizontal asymptotes; lrc, ln(rate
constant); pwr, shape parameter. The parameters Asym and Drop are modeled only as intercepts, whereas the parameters lrc and pwr are modeled with respect to the factor
‘‘accession’’ (with the arable accession of giant ragweed represented by the intercept, and the riparian accession of giant ragweed represented as a shift to the intercept).
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Giant ragweed seed accession had a significant effect on
both lrc and pwr (Table 2). Effects of accession on pwr, a shape
parameter, indicate that the seedling emergence curves had
a different shape for the riparian and arable seed accessions.
In contrast, accession effects on lrc (natural log of the rate
constant) have a more precise biological meaning, since the
rate constant (c) describes the speed at which the emergence
process is unfolding (larger values of c corresponding to a
faster process). Back-transforming from the parameter
estimates, criparian 5 2.0 3 1023 and carable 5 3.1 3 1026.
The rate constant is larger for the riparian accession,

indicating that the seedling emergence process proceeds more
rapidly for this accession.

Visual inspection of the fitted nlme model (Figure 3) shows
that the germination dynamics are consistent with the
quantitative inference that seedling emergence proceeds more
swiftly in the riparian accession (site-years 1, 4, 7, 10) than
in the arable accession (site-years 2, 3, 5, 6, 8, 9, 11 to 18).
This corroborates other reports that giant ragweed seedling
emergence phenology varies with provenance (Johnson et al.
2007), with naturally occurring successional populations in
riparian areas emerging in an earlier, narrower germination

Figure 3. Fixed (solid grey lines) and random (site-year; dashed black lines and empty circles) effects for nonlinear mixed effects Weibull model of giant ragweed
seedling emergence for 18 site-years across the north central Corn Belt of the United States. Site-year codes are as follows: 1 to 3 5 Savoy, IL, 2006 to 2008; 4 to 6 5
Manhattan, KS, 2006 to 2008; 7 to 9 5 East Lansing, MI, 2006 to 2008; 10 to 12 5 St. Charles, MI, 2006 to 2008; 13 and 14 5 Mead, NE, 2007 tpk 2008; 15 and 16
5 Wooster, OH, 2007 to 2008; 17 and 18 5 Aurora, SD, 2007 to 2008. The riparian accession of giant ragweed was used in site-years 1,4, 7, and 10; all other site years
used the arable accession. Base values for accumulating hydrothermal time were base temperature 5 4.4 C and base soil water potential 5 22,500 kPa.

Davis et al.: Giant ragweed recruitment N 419



window, and populations from upland disturbed areas
emerging over an extended time period (Schutte et al.
2012). The extended germination biotype of giant rag-
weed occurring in arable fields presumably was selected
by agricultural soil disturbance and weed management
operations, resulting in a bet-hedging seedling emergence
strategy to avoid local extinction due to early-season
agricultural management. We did not observe biphasic
seedling emergence from any of the three giant ragweed
populations in our study, in contrast to the observations of
Schutte et al. (2012), who documented this emergence
behavior in several seed accessions among 14 different
successional and arable populations in Ohio.

Environmental Variation Unexplained by hHT. We exam-
ined the relationship between fitted random effects for model
parameters and environmental variables (air temperature,
GDD1, GDD2, GDD4.4, GDD10, and rainfall) during seed
burial and during seedling emergence. Random departures
from the fixed model for lrc were most strongly associated
with GDD10 during overwinter seed burial (GDD10_Oct–Mar)
and rainfall during the seedling emergence period (gppt). There
were negative correlations between random effects for lrc and
both GDD10_Oct–Mar (r 5 20.51, P 5 0.03), and gppt (r 5
20.52, P 5 0.03) (Figure 4). Although these quantitative
associations were similar, partial correlation analysis indicated
that they were not an artifact of any correlation between
GDD10_Oct–Mar and gppt [pcorrlrc*GDD10_Oct–Mar (gppt) 5
20.48, P 5 0.04; pcorrlrc*gppt(GDD10_Oct–Mar) 5 20.48,
P 5 0.04]. Significant associations did not exist between
random effects for lrc and thermal time accumulated with
lower base temperatures (Tb 5 1, 2, or 4.4 C).

Based on the negative relationship between random effects
for lrc and gppt, we can surmise that either we did not fully
capture the effects of soil moisture variation during seedling
emergence with the hHT model, or that precipitation during
the seedling emergence period may have influenced emergence
phenology in other ways. For example, more rainy days
during the seedling emergence period may have resulted in
greater cloud cover and less incident solar radiation at the soil
surface to stimulate seedling emergence.

The negative relationship between random effects for lrc
and GDD10_Oct–Mar has implications for both giant ragweed

seed biology and future seedling emergence modeling efforts.
First, it indicates that warm soils during the overwinter seed
burial period had a cumulative effect on giant ragweed
germination status, slowing the seedling emergence process,
which supports the conclusions of Schutte et al (2012) that
giant ragweed seed dormancy loss occurs in response to cold,
moist conditions overwinter. More specifically, Ballard et al.
(1996) observed in laboratory settings that seed dormancy of
giant ragweed was not lost when stratified at 8 C but was
within 60 d at 4 C. These observations find additional
support from controlled environment studies showing that
seed incubation environment temperature in certain species is
linked to the kinetics of dormancy loss and base temperature
of subsequent seedling emergence (Steadman and Pritchard
2004). That this finding is echoed in our observational field
study indicates that future models of giant ragweed (and
perhaps other species as well) seedling emergence should
incorporate a process model for the pregermination soil burial
period. To build such a model will require controlled
environment studies, resembling those of Steadman and
Pritchard (2004), to develop dose-response curves linking
cumulative thermal time in the seed burial environment and
Tb for seedling emergence.
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