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INTRODUCTION

With the advent of gas turbines amd jet engines, the rotating
disks are generally recuired to operate under high spseds and elevated
teaperatures frequently exceeding the yleld strength of the materisls
currently évailable and resulting in plastic flow, The stress distribue
tion in rotating disks under these conditions cinnot be properly estimated
on the basis of the theory of elasticity. In addition to this, the cresp
defornations of rotating disks with time must also be determlned in oxrderx
to meintain adecuate clearances betwesn turbine blades and shrouds.

The problem of cresp deformations 2nd stress distributions in
rotating disks operating at high temperature has been under active
consideration for many years. Although a great many theoretical investi-
gations of rotating disks have been repoxted in the technical litsraturs,
most of these consider only elastic defo:'matiom and stresses, Only a
very few deal with the theoretical calculation of creep stresses in
rotating disks that operats for long periods at elevated temperatures.

Severel investigators, among them such as Bailcyl, Sodorbrrgi,

13. W, Bailey, "The Utilization of Creep Test Data in Engineering

Design," Proc. Institution of Mechanical wl, 131, 131-349,
Insub:tc of Mechanical Engineers: London, November, 1935.

2c, R, Soderberg, "The Interpretation of Creep Tests for Michine
Design,” Trans. ASME, vol. %38, 733-743, The American Society of Mechanical

Engineers: New York, 1936, .



Popov3, Millengson and nn-onﬂ and Johnlon5, propcaed formulas for cal-
culating stresa distributions in rotating disks under cresp conditions,
Thay considered the creep 2s a function of distortion strain energy.
These formilations are fundamentally alike znd are essentially extensions
of the theory of plastic flow in crystalline mlt-ria1|.6 However, {t was
found that these methods of calculating stress distributions and creep
deformations in rotating disks gave cresp deformations much too low, on
the unsafe side for design, compared to the avérage test values,

This paper presents an analysis of creep in rotating disks that
operate at elevated temperatures. Thie analysis of creep i® based on
the maxi{mum shear theory instead of the distortion energy theoxry or the
Mises criterion. The results show a considerable simplification in the
gnalysis and good agresment with the: average test data of rotating

dilk#7. Only hollow disks ars discusgsed in this paper.

3%, p. Popov, "Stresses in Turbine Disks a2t High Temperatures,®
Journal of the Franklin Institute, vol. 243, 365-389, Franklin Institute:
Philadelphia, Pennsylvania, 1947,

“M, B, Millenson and S, S, Manson, "Determination of Stresses in
Gas=Turbine Disks Subjected to Plastic Flow and Creep," Report,
lo. 906, National Advisory Committes for Aeronautics: Washington, D. C.,
1948,

A, E. Johnson, "Turbine Disks for Jet Propulsion Units," Alrcraft
Engineering, pp. 265-272, Adrcraft Engineering: Emgland, August, 1936,

6a. Nadai, Plasticlty, Enginesring Socleties Monographs, Mciraw-
Hills New York, 1931,

Ty, M, Wahl, G, O. Sankey, M., J. Manjoine, and E, Shoemaker,
"Creep Tests of Rotating Disks at Elevated Temperature and Comparison
with Theory," Irans. ASME, wvol, 76, 225-23%, The American Society of
HMechanical Engineers: New York, 1954,



NOMENCLATURE

The following nomenclature is used in the paper:

ri, r

radial cross-sectional area of disk

radlal cross=sectional arsa of disk from ry tor

constants

thickness of disk at radii », r;, 1,
moment of insrtia of disk

moment of inertia of disk from ry to
material cresp number

rodius to any point of disk

inner and outer radii of hollow disk
témperature

time

ridial deformation of disk at radius
radial deformation rates at radii r,
stress ratio

effective creep rate

principal creep rates

r

L3 |

radisl, tangential, axlial creep rates of disk

principal creep strains

radial, tangential, axial creep strains of disk

tangential craep strains of disk at radii ry, x4

density of disk

effective stress =



principal stresses

radiel, tangential, axiasl atresses of disk
radial stresses of disk at radii ry and z/
sverage tangéntial stress of disk

tangential stresses of disk at radii rqy and xg

flow function
angular velocity

Poissonts ratio



ANALYSIE OF CREEP

Creep is fresuently defined as the continuaus deformational
responies to constant stress of materisl over 2 long time at 3 moderately
high temperatures. This definition, however, is too narrow to cover all
aspects of the phenomenon of creep bescause of its complicated nature,

The complexity of the phenomenon of creep is not only due to the inter-
zction of the constituent phases of material during the deformation, but
8lso due to the difference in the responses of those phases to changes of
parameters of the test, that is, the changes of stress, time, and temper-
ature, The general creep-strain-time relations with stress and with

tenperature &re shown schematically in Figure 1,

S -
B n
il -
(7p] w
& $
o Q
i~ (o]
O o
S1
Time (a) Time (b)

Figursar],_,,r}i_ariatwn of Creep Curves (a) with Stress (

and (b) with Temperature {1-3> T, > TP o

P— - % o



In this paper, the phases of metallograzphical transformations at
hich temperatures will nat be considered, The stress =nalysis presented
applies only to materials found stable for high temperaturs servica,
Furthermore, the analysls is primarily confined to creep deformations and

stresses that occur during the steady state as shown in Figure 2,

Fracture

Tertiary Creep
y ot
i

f
Primary Creep

-

Initial Elastic and , Plastic Deformation

Secondary Creep

Creep Strain

Time

Figure 2. Creep Strain — Time Relation

.

In making the anslysis of creep deformations for the rotating
disks at eleveted temperatures under steady-state conditions, the
following postulates are madet ¥

l. The directions of tha principal strains coincide with those

8 4
A. Nadai, Theory of Flow and Fracture of Solids, Monographs
AoGraw=-Hills Ncw,York, 1950, .



2.

3.

of the principal stresses st all times,
The density or the wolume of the material remains unchanged.
The principal shsar #trains are proportional to the principal

shaar &tresses.

Besides these postulates for creep, five additional assumptions

are introduced:

|

2,

3.

4.

S.

The relatively smsll elastic deformations for the disks may

be neglected in comparison with large deformations due to
creep.

The axlal strese may b& neglected and the radiasl and tangantial
stresses are uniform across the thickness of the disk.

All variables of material properties and operating conditions
are symmetrical about tha axis of rotation.

The yleld condition follows the maximum shear theory in which
the maximum shearing stress ;- the determining factor affecting
the creep of the material.

For the steady state of creep, the simplest and most widely

used power creep law 18 satisfactory.



GENERAL EQUATIONE FOR CREEP RATES AND DEFORMATIONS

For predicting th2 creep rates, evidently the time must be
considered as & new additional independent variable. This is true for
all metals at sufficiently high temperatures. For 2 given material,
the creep rate at which the creep deformation chamnges with respect to
the time at & constant stress increases very rapidly with imcreasing
temperatures. The similar situstion occurs for a given materinsl at &
constant temperzture with incressing stresses. The cresp rate, there-
fore, may be considered 2s a function of stress, time, and temperature,

Then we may furtheér assume that

€ = F (3) £(t) g (1) (1)

on the basis of creep test resul ts,
From the assumption 5, however, the function of stress may be

expressed in the following form
F(3)= ks®

where K and n are constants,

Because of the complexity of the creep problem, the temperature
gradients in the disks will not be discussed here.

Therefore, from the preceding discussion, Ecustion (1) of the
creep rate may b# rewritten as

€ = K3M#g(t)g (T (2)

L



It s realized that Equation (2) of the creep rate does not

always hold true'}’ 10, 11, 12, however, in many cases creép dats

obtained under essentiaslly constant stress may be represented with
sufficient aspproximation for engineering work in this manner. HNo
attempt is made here to justify the use of this equation for all materi-
als, It is used here because it results in rather simple expressions
for stress in certaln cases.

Accordimg to the assumptions of stationary or steady plastie

flow, the principal strain ratas é. ,éz s é3 are given in the followlng

i’c.u'mb'y]'3
dz‘d
6‘ =§ [d,"——z-—3]
A3+ 3,
62_=‘§ [dz""‘;z_d_] (3)
b = [ 05—

PR, W, Bailey, "Creep Relationships and Their Application to
Pipes, Tubes, and Cylindrical Parts Under Internal Pressure," Proc.

mmmuuamm%u vol. 164, 425, Institute of
Mechanical Engineers: London, 1.

1°A. E. Johnson, 'Crnp Under Complex Stress Systems at Elevatad
Temperatures,™ Proc. Institution of Mechanical Engineexs, vol. 164, 433,
Institute of Mechanical Engineers:s London, 1951,

g, ¥, G. 0Odquist, "Recent Advances in Theories of Creep of
Engineering Materials,” Applied Mechanics Reviews, vol. 7, 317, The
American Society of Mechanical Engineers: New York, 1934,

1%. p. Sherby and J, E. Dom, "in Analysis of the Phenomenon

of High Temperature Creep," _f_?, W
Analysis, vol, XII, No. 1, pp. 139-153, Society for Experimental Stress
Analysiss Cambridge, Massachusetts, 1954,

13yadat, Theory of Flow and Eracture of Solids, op. cit.
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in which & is & guantity to be determined.

Assuming that the principal stresses ars in the order d, »d, > d;,

from the maximum shear theory, {t can be expressad as

6|-63=d

where & is the yield stress in tension snd is also called the effective
stress.

Then, from Equation (1), we may have the effective cresp rate

e = E = 63

A S, +0
?[d.-dz—z_:‘]"f’[df :

z

or in the simpler fomrm

i.‘: :—2—?[6.-63] “;’éd (4)

Setting the right hand terms of Eguations (2) =nd (4) ecual to

each other, and solving for the undetermined cuantity $ , one has

$ - -g.r;é“‘lf(t) 9 (T)

$ = kg™ t(y 9 (M (5)
where k is ecual to % K snd is a constant which can be determined from
the cresp tests,

Substituting Ecustion (5) into Equations (3), the general

equations for the creep strain rates under steady state conditions are
obtained as folloWsl



& 290, -d, -d

wa” | ———] ¢ (8 g (D
o S s B |

I e el PR OIPRC)
g 293 - 9 - I3,

A e T £t g (1)

(6)

11
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CREEP ANALYSIS IN ROTATING HOLLOW DISKS

The following rotating-hollow-disk cases are anslyzed by using
the maximum-shear theory with the flow rule associated with the distortionm
energy theory or the iises criterion, It iz considered that the disk
has a2 central hole with diameter slightly greataxr than ite thickness, and
that the axial stresses vanish throughout the disk.

Case I, Constant thickness and constant temperature disk under

Eteady state conditions.

Case II. Variable thicknesd and conttant temperature disk under

steady state conditlions,

Under steady state conditicns, thé principal creep strains are

#oual to steady or minimum cresp rates multiplied by time, or may be

written as followe:

€, = [ € dt (7)
€ -
6.3 2 J 63 dt
Now if we let w be the rate of stesdy change with time of the

radial deformation, then the radial deformation during the steady state

1s soual to the radial deformmation rate multiplied by time, that is

w-—!fidt

From this it follows that the tamgential and the radial creep

strains are
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t s
€, = _So (":‘ ) at
t o .
and (PO L (%‘% ) dt , Tespectively,

But by comparing these with Ecuations (7), we m2y #xpress the

steady creep rates for the tangential and the radial directions as

m
"
H |€=

and 62 =

gl

, respectively.

In our case of the thin rotating disk, thes axial stress vanishes,
that is, O3 = O , So by writing Ecuations (6) with only the two

principal stresses, ane obtains

' . n 208, - 3.
¢, =% k3" [ S57] £(y g (1)
S, - & o
; w n 20, - 9O,
52=%.;=k<5 [——-53-———] £ (t) ¢ (T)

From the assumption 2 in the plastic flow thaory, the condition

of incompressibility of the materlal furnishes ths following relationss

ar 3 .'ezfészo (9)

Einca the effective stress & 1s based on the mawimum shear
theory snd in the case of tha rotsting disk, we considered 3,>93.>9S, =0,

in which 0,= 9, 6. d; and O, = O3, the minimum principal stress

134161 W " ARARY
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S5 is zero snd hence S may be taken as G,, in Equations (8).
Morgover, let us assume é, = ét , f-'z = €. and €3 = €z , Then we
find the principsl strain rates under steady state conditions as

£ollows:

€ = -“;’: = k [" zot]f(t)g(T)

(10)

[+
'&.

b=t -k [t ]ewem

1

éZ: o (E.t* ('r,)

Case I. Constant Thickness and Constant Temperature

Hollow Disk Under Steady-State Condfitions

blow we conslder a constant thickness disk, Figure 3, of outside
radius T, Bnd inside radius Ty subjected to a constant temperatures under

eteady-state condi tions,
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Q

-
b —a—

NN

N
\\

X\\\\

%
i

]
T
d
+
i

= NN

= maz T

By employing the maximum shear theory or the Tresca criterion,

Ecuations (19) can be written 3s followss

=213 (1-%3)¢(®) o)
Y LN (x=2) £(t) 9 (1) (11)
€, =~ (€ +€.)

Where the stress ratio x = Sr/g,

From the first two of Equations (11), we may form & function
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$ (r) which is expressed in terms of the stress ratio x, That is

$(r) = 2 =~4? + X 221 (12)

.'gt dr 2 -x

where x at a particular point is approximately known from the stresses

already determined, This enuation may be rearranged, thus one has
é'i = m dy
W r

which, after integrating between rqy and r and then dividing both sides

of the mquation by r, gives

e

SN e e, f—.—iﬂ dr (13)
b 4

where wy is the radial deformation rate at radius ry.
Using the first of Ecuations (1I) and Eouation (13), and solving

for Sy, one finds

-
t {k ] (t) 3 (TT] u (!) (14)
whare L] J:ii-'d' i w ﬁ
RALE [ J (15)
r (1 --g- )

For a rotating disk of constant thickness, it can be sl'wwn]'4

143, Timoshenko and J. N, Goodiers of Elasticity,
Engineering Socleties Monographs, pp. 69-73, McGraw-Hill: New York, 1951,
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that the ecustion of ecuilibrium for an element is givien by
.3.; (rd,) -S4+ pwir? = 0 (16)

wWhich must hold whether stresses aré elastic or plastic,

Now integrating Equation (16) between the ry and ry, one obtains

r
jr: dtd’ = % (’03 - ’13} + rodro » riéri
(17)
in which S r, and © r, sre the radial stresses st radil r, and ry,
respectively.
Thén, substitutimg the value of o t obtained by Ecuztion (14)

into Ecuation (17), one has

w = .
[mm] = [ roéro - Tiéri t '.gf' (r°3 - ria)] / (r: ¥(r)dr

(18)
which can be used in Eguation (14) to give the following ecuation
o T i o i
A = 0 : W ¥(x) (19
t jr"
d
r ¥ (z) dr

Integrating Ecustion (16) between the limits ry and r, thus

r
Ay = %( Iri S dr -% (r° ~‘-~'r,_3) + ’1dr1;l (20)
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Both Equations (19) and (20) are the general expressions for the
stress compongnts of the rotating disk with constant thickness.

Supposing that the boundary conditions of the rotating disk are
taken into consideration, these are the cases:

Case (1)1 driz 0 &nd é’o 59

Since & load giving a stress O Yo acts at the outside radius of
the disk, while no load scte on the inside radlus of the disk, Equation

(19) becomes

= 3
Sy = [ (zq - 7) o | ¥ (1) (21)

j"’ % (2)dr
3

in which © tay 18 the average tangentlal stress or the first approxi-

mation for tangential stress, i.e, ( 3 t}l’ over the cross section of the

disk,
. 2
4 - Lo 3 3 3
tav ‘(‘10% :1) [ 3 (ro - % )t To To ] (22)
and Equation (20) furnishas
T 2
Pw 3
fe) - - [ "1 t 3 i

In order to find the first approximetion for the stress ratio
(x), for use in Equations (12), (15), and (21) we sssume O . ét.v in
Ecmaation (23) #nd integrate, This gives the first approximation for the
radial stress ( S,),. Then
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01 9w2 (13-1‘13) (rg = 7y)

3
?nz (2,3 = r%) ¢ 3r°¢r°

(24)

(x), = i [G-xp-

S tav

Case (i1): O rg ¥ 0 and Oro= 0

Since there is a stress dri acting at the inside radius of the
disk, while no force acting on the outside radius of the disk, Eguation
(19) becomes again

dt - ((ro"ri) dtav]

% (r) (21)

To
sri % (r) dr

In this & tav is the average tangential stress over the cross section

Otay = [ "‘éf ’*(”o:3 -n% - 1y © ri] (29)

To - 7§
snd Equation (20) remains

(@)

r:

-

4
[ S \dtdr —% (x° - r13) + ridri (20)
l'i i

In order to find the first approximation for the stress ratio
():)1 for use in Esuation (12), (15), and (21) we assume O £ " dtav

in Ecuation (20) and integrete. This givas the first approximation for

the radial stress (Sp);. Then



[% ta.ria.) Ty 3 1'1] (ro-ri) }

- 1 {(,_, ¥
3 i 3 _
% (rga-ri y > tiéri

(26)

Caze (114): © 0 and S, = 0

23 [

Since there are no forces actinmg at the inside and the outside

radil. of the disk, Ecuation (19) becomes again

o) S

dt = [ ro r’-) tav] 2 (r) (21)
To
Li % (z) ér

In this <‘.’>t” is the average tangemtial stress over the cross section

Stay = = | el (r° = 7% | (27)

!‘o" !‘1 3

and Equation (20) furnishes again

r 2
r v 3
i
In order to find the first approximation for the stress ratio
(x); for use im Ecuation (12), (15), snd (21) we essume Iy = O wa
in Ecuation (23) and integrate. This gives the first approximation for

the radial stress (<51.)1+ Then
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(x), . .(_6..22&_ = 4 [(r -1q) - (r3.:13) (r°~r")l (29)
<>tav o (!oa - 113)

With stress distribution known, the creep deformations at steady

state conditions may be obtained by integrating Equations (11). Thus,

one has

t
€, = kS (1-d {g (1) £ (8) at
t
e, = &k ©° (x--%) (q (1) £ (t) dt (29)
; ©
fl = "(et v Er)

For Case (1)t

If we take O t and ¢ t to be the stress and creep deformation

at the inside radius of tha disk at time t, then

t
6‘1 = K <bt'1‘ Ig (T) £ (t) dt

and we can write for the creep defogmations at any radius r and time ¢

(o}
tp = €y b )® 1-3
t
€ s €y (o) (x-d (30)

t

€, = ~(€,+ €3



a2

For Case (11)s
1f we take © t, and € t, to be the stress and creep deformation

at the outside radius of the disk at time t, then
n t
o ® % ® fg(r)f(t)dt
(+] to o

and we can write for the creep deformstions at any radius x ind time t

5]
Et = Gto (‘_d__f;)n (1”%)

n
n

ol {x b
o)

€
r t 2) (31)
A ¥

For Case (114):

Either Ecuation (30) or (31) can be used to calculate the creep

deformations of the disk.

Cese IXI. WVariable Thickness and Constant Temperature

Hollow Disk Under Eteady-Ttate Conditions

We consider a variable thickness disk, Figure 4, of outside
radius r, snd inside radius vy subjected to a constant temperature under

steady state conditions based on the maximum-shear theory,
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Figure 4. Variable - Thicknesg Rotating Hollow Disk

-

Let the disk thickness h bea a function of r
h = f (1) (32)

The known enuilibrium ecuation for a variable thicknes: disk is

& (rd)-nS tnpwr’=0 (33

Now, integrating Equation (33) between the r; and r,, one has
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To To .
{ hd, dr = pw? g hrldr + ho"odrg - hirléri (24)
r T
i i
where h, and hy are the thicknesses at the autside and the inside radii
of the disk respectively.
Then, substituting the value of S/ ¢ from Ecuation (14) into
Ecuation (34), one obtains
= r

['E'%‘Q‘]n : [P"2 g,: hr’dr + R Opp = M¥1 © !‘i] /{:: el

(35)

which can be used in Equation (14), It gives the following ecuation

To
) v f i he2dz + hoty Oy =1y Sy ]
' S ¥ (x) (%)
f ®h () ar
rl ~¢

Integrating Equation (33) between the limits ry and r, then

r T 2
= %.‘;”ri A 3a dr-PVQ[ri ar - Mu Sy

(37)
Both Equation (36) and (37) are the general expressions for the
s tresses of the rotating disk with variable thickness,
Now, lat O, __ be the aversgé tangential stress scross the
radial cross sectional area A of the disk, and

T
o

I- f hrldr
Ty



#auals the moment of inertia of cross section about the axis of the

disk + Then

& [
S, = % f h S, dr (38)
tav ry t

If the boundary conditione of the rotatimg disk are taken into

consideration, three cases may be distinguished as follows:

Case (1)t S _ = 0 and Sy % O
°

Under this boundary condition, Equation (36) becomes

3 R .Fl.‘ 3 - 4 (1‘)
s (39)
f h & (r) dr
Iy
where :
1 2. E:
= [pwI + hr O
étav A [ 00 !‘OJ (40)
and Ecuation (37) furnishes
S Xt
r:-}-\—;[f ,hétdr-P&r] (41)
Ty
r
where If{ hrdr
1

eguale the moment of inertia of the cross section of th# disk up to a

radius r, about the &xis of thes disk.

In order to find the first spproximation for the atress ratio (x);

for use in Esuations (12), (15), snd (39) we assume © 4 = © tav 10



Eouatien (41) and integrate. This gives the first approximation fof

the radisl stress ( O . )). Then

(S, 4)
FRINE ¥ A
(x)i G = .%; [ Ar - eﬂ:E 1A } (42)

gl + hyr, d’o

in which

T
L |

This sauala the radial crozs~sectional area of the disk from the radius
ry tor,
Case (11)1 <, % 0 and d’o =0

Under this boundary condition, E-uation (36) become=s sgain

t:
o
soht(r) dr
1

where
-} [Pz.l - hi”i dri] . (43)
and Equation (37) remaina
T
dr:%[grhddrop&[ v by O ] (37)

In order to find the first a proximation for the stress ratio (x)l

for ume in Equations (12), (15), and (3%) we wesume S, = S, in
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Ecvation (37) and integrote, This gives the first approximetion for

the radial stress ( 61')1’ Then

(3),.
(x)) = g - (w1 - hyxy ) A
Seay ML M L] (e
(pw’l - hy7y Sg,)
Case (ii1)s O o - 8 and <Sr° 0
Under this boundary condition, Eouation (36) becomes again
Sy . A Ctay  ¥(2)
Ty (39)
[ h ¥(r) dr
i |

where

“tav: 3 oo™ ] (45)

and Equation (37) furnishes again
Sy P S ewl,] (a1)
r hr ri

In order to find the first approximation for the stresa rétio
(x); for use in Ecuations (12), (15}, and (39) we assume dy = d e
in Ecuation (41) and intsgrate. This gives the first approximation for

the radial stress ( 3 r)j. Then

( d!‘)l o I _A
pagtd - b (4 - 22 (46)



With stress distribution known, the cresp deformations at
steady state conditions may ba obtained by the very same method used

for disks of constant thickness,
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NUMERICAL EXAMPLE OF A ROTATING HOLLOW DISK

Let us consider & rotieting hollow disk of outside radius
T, = 10 inches, and inside radius vy = 1 inch at a rotating speed of
12,000 rpm and of variable thickness at constaent tsmperature. The
value of the stress exponent n is taken @aual to 6 ., The boundary

radial stresses O z, and S ,, are assumed to be negligible. Ve will

i
determine the strass distribution and relative creep rotes in this disk
under steady creep conditions,

Bafore determining the atress distribution and relative deforma-
tiont in this rotating disk, we may usa the same data to calculate the

olastic stresses in the disk so that the result will be directly compar-

able.
Elastic Streases

Based on the theory of mlasticity, the radlal and tangential
gtresses in the case of a rotating hollow disk of variable thickness are

agiven as follows:

. = &=

3 hr

d =3--d-$+pw2r2 (2)

=

If the thickness of the dlsk varies accordimg to the egquation

h = Crt (b)

in which C is a constant and m any number, we may find that

-



e:
“'iau'”;f)" r®" 3. o el (o)
m ¥ B

where o and 3 are the roots of the cuadratic ecuation
x2-nx + zm-1= 0 (a)

and Cy and Cy are integration constants.

Let m = = 0,5 and 2 = 0.3, then we find, by using Eguation (d)
A = 0,8512 and (3 = - 1,3312

Since the disk ig operated at 3 speed N 12,000 rpm, then we have

w = %N = 1256.64 radians/second, Taking ©C = 2%%% = 0,000733

lb-v-uc"’/in“ and substituting these values of m, 2 , W, and B 1in

Ecuation (c), we find
2 0.8%512 -1.3%12
F = -601.5 Cr o t Cr t Cor (e)

and the radial stress, from Equ:tion (&) is

- - i 0. 5 -—die
dx-ﬁ; 3 _(:_;673 [ 601,56 Cr2*3 + Cyr "t ., Cor 1 3512]

Since the boundsry stresses are negligible, then we have

(6’)’1%20’ (dr)r=r1=0

from which we find that

C, = 26,961.47C Cy" = - 26,359,91C
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Substituting in Equations (a),

3, =g [-601.%6 2% + 2,961.47 221 26, 359.91 gleesi2 ]

1.5

4, = ro°5 [-15'33.90 r "7+ 22,949.60 1-0'1488f35,617_51 r"2'3512]

+ 1157.51 12

Calculations for radial and tangential stresses in this disk are carried
out in Table I and Table II, respectively, where several values of r are

taken, as shown in the first column, znd the corresponding stresses are

to be found im the last column.

Creep Stresses

Based on the creep analysis which has been presented im this
papar, the creep stresses and deformations of this rotating disk can be

determined by the method doveloped in Case (111) for disks of variasbla

thickness,

From Ecuation (45), we have

2
Spav = 4 Low’ 1] (a)
¥o To
Since A < f hdr, and I = hr?dr, then we may rewrite Ecuation (a)
ri 1‘1
as follows:

el 2 T
- tav Yo [ ' I ° helar ] (v)
hdr ry
!’. s



TABLE 1. CALCULATION OF RADIAL STRESSES IN ROTATING HOLLOW DISK
OF VARIABLE THICKNESS FOR ELASTIC CONDITION
(1) (2) (3) (4) (5) (6) (7 (8) (9)
L) L] ] ] ] > §
o to o L g : 5 &
L (5 ] [ -] . - (% e
= a g . > Pt
- 5 X 3 2 O S
L 2 X 2.
& ) e
1 1.0600 1.000 1.000 1,000 601.56 26961.47 26359.91 0
1.5 1,225 2. 756 1.412 0.578 1657.90 38069.60 15236.03 17290
2 1.414 54656 1,804 0.392 3402.42 48638.49 103233.08 24680
- 4 N,
8 1,732 15,588 2.547 0.241 9377.12 68670,86 6352,74 30570
4 2:000 32,000 3.254 0,154 19249.92 87732.62 4059.43 32210
5 24236 55,900 3.935 0.114 33%27.20 106093.38 300%.03 31060
6 24449 88.164 4.596 G.089 53035.94 123914.92 2346 .03 Zraal
7 2.646 129.654 5,240 0.072 T77994.66 141278.10 1897.91 23200
8 2.828 180.992 5.871 0.060 108877.55 156290.79 1581.59 16910
9 3.000 243,000 6.490 0.051 146179.08 174979.94 1344,.36 9150
10 3.162 316.200 7.099 0.045 190213.27 191399.47 1186.20 0

(A%



GALOULATION OF TANG NTIAL STRESSES IN ROTATING ROLLOW DISK
OF VARTAGLE THTCKNESS FOR ELASTIC CONDITION

TABLE IT,

(11)

(10)

{13)

(12)

(9)

(7) ()

(s)

(1) (2 (3} (& (9

(ot)e(21)
i

(TtE(2)

(6)+(8)e(s)~

(9 pFis®sett

{s W‘Ltm

(v peo9*6p6z2 :

(€ }x06°€0ST

X
.

4
alse* 2>~
sy o~

81

A

366486
_ 203,02
16204,22 160,28 11575100 =~

1503,90
7814,26
Zoos0s
81,000 40605,30 16546466
100,000 47553,32
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Substituting h = C® in Eruation (b), we may find that

-~ [ r:l*3 -:'."3]
ét s Pw me+3 2 i (¢)
av me+l u*ll
['o a1
From Ecuation (46), we have
I
<d:r)l = h,[étavA: 6tav "F] (d)

T r
) . 2 < B 2
Since Ay = (3‘1 hdr, I, = I 1”1 hr“dr and Q& tav [ Pw I ] s then
we may rewrite Ecuation (d) as followst

(ér)x‘:%;[d“' g:l hd:-(,wz (1‘

v

Substituting h = Cxr™ in Equation (&), we may find that

hr2dr ] (e)
Ty

+1 +
(- [pdg U onth &

- 1,m + 3 m +3 w i
b yew | (0
If the same data used for elastic condition are substituted in Ecuation
(c), then we have

= =
& 33760 psl



and

( d'h:;‘; [ 67520 (ri- 1) - 463,107 (:5/2~ 1) (9)

Calculation for these stresses ( 691 and ( 61.)1 are carried out in
Table II1. With the first approximation of the stress vatios (x)l
known, the P (z) zanm be found by using Equation (12) and is entered
in Table IV. Using Egquation (18) fer ¥ (), the valuss of ( <5t)2
and ( S 1_) o P8Y be calculated from Ecustion (39) and (41) respectively,
Thus the second spproximation of the stress ratios (x), are obtained in
the last column of this table. These stresses in the disk are the
second approximation of the stresses and are close to the final ones
indicated by this method. To obtaln & closer solution, another complete
cycle of calculations af the stresses was repeated in Table V., Calcu=-
lations are similar to those of the a«;oml approximition. The final
values of ( <$'=)3 and ( dr)a obtained in Table V are the third
approximation of the stresses,

With stress distribution known, the relative creep rates may be
calculsted by using Enuations (30), The tangential creep rate at the
Linside radius ry will be considered as a2 unity, This differs from the
sctual creep rates only by @ constant which could be easily determined
in & practicsl problem. The results of these calculations are carrlad
out in Table VI,

The results of caleculations of slastlc and crasp stresses are

shown in Figure 2 and Figure & respectively. For the purposes of



TABLE III,

ROTATING HOLLOW DISK OF VARIABLE THICKNESS

(5)

CALCULATION OF FIRST APPROXIMATION FOR STRESSES IN

(10)

(11)

(1) (2 (3) (4) (6) (7) (8) (9)
MR % .2 2 B OTC32. B
' - ' 8 - . - S
- t o ~ O N -~
» Q ~ () ~
- - ~ ~ ~ - ~ O
- . < P g s
s
1 1.000 ¢} 1.000 0 0 o 0 33760 o 0
1.5 1.22% 0.225 2,756 1.756 15192 813 14379 33760 11740 0.348
2 1.414 0.414 5,657 4,657 27953 2157 25796 33760 18240 0. 540
3% 1,732 0.732 15.588 14.588 49425 67% 42669 33760 24640  0.730
4 2,000 1.000 32,000 31.000 67520 14356 83164 33760 26580 0.787
5 2.23%% 1.23% 55,9500 54,900 83455 25425 58030 33760 25950 0.769
6 2.449 1.449 88.164 87.164 97836 40366 57470 33760 23470 0.69%
7 2.646 1.646 129.644 128.644 111138 89576 51562 33760 19490 0.577
2] 2.828 1.828 180,992 179,992 123427 833358 40072 3370 14170 0,420
9 3,000 2.000 243,000 242,000 135040 112070 22970 33760 7660 0.227
10 3.162 2.162 316.228 315.228 145978 145978 0 33760 0 0



TABLE IV. CALCULATION OF SECOND APPROXIMATION FOR STRESSES IH
ROTATING HOLLOW DISK OF VARIABLE THICKNESS

L —

(15)  (16) (39) (18)  (19) (20)  (21) (22) (23)

(12)

(13) (14)

DN ‘e‘ e (¢ ] ~ ~3 w ~ (5] ~~ —
~ —~ - N o ” ﬁ g“& 02 O" h s @ 8’\ 8"
™ 7] > - » N ~ A §¢‘ S’ ¥ 5
o ~r v ~ NS ] ?* ~ O N~
ST b)) —~ -9 § = (WY ~u_ —~N
L " ” N R ~ ~ o ) j2
o’ I~ = ot ~ - S’ ~ N E
¢ | —~ (-] ~3 [+ JE o
4 P " ~ ~ (s
o =] B
(=]
~0.,500 =0,5000 0 1.000 1,000 1.000 0 0 0 39500 0 0

~0.184 <0,1227 <0,1557 0.8% 0.940 0.767 0.442 17459 16646 37200 13600 0,367
0.055 0.0275 =0,1793 0.836 0.911 0.644 0.794 31363 29206 36000 2070C 0.37%
0,32 0.1207 ~0.1054 9Q0.B99 0.882 0.509 1.370 54115 47359 34800 27300 0.784
0.473 ®.1183 0.0141 1.014 0.865 0,433 1.841 72720 58364 34200 29200 O.B54
0.437 0.0874 0.1170 1l.124 0.845 0.378 2,247 88757 63332 33400 28300 0.847
0.299 0.0498 0.1856 1.204 0.821 0.335 2,603 102819 62453 32400 25300 0.787
0.108 0.0134 0.2182 1.244 0.793 0.300 2,920 115340 55764 31300 21100 0.674

~0.101 -0.0126 042196 1.246 0,763 0.270 3.205 126598 43243 30100 15300 0.508

-0.308 -0,0342 0.1962 1.216 0,731 0,244 3.462 136749 24679 28900 8230 0.285

«0,570 -0.0500 0.1541 1.166 0,699 0.221 3.695 145972 0 27600 0 0

23,695

R e L S S e e ——

b 4
*A 3¢,y / j ° hy(x) dr = 4.324 (33760)/3.695 = 39800
4

LE



TABLE V. CALCULATION OF THIRD APPROXIMATION FOR STRESSES IN
FOTATING HOLLOW DISK OF VARIABLE THICKNESS
= =
(20 (29 (%) ()  (®) () (2 () (:2) () (20) (39)
2 2 s 2 Bedx §OF ¥-E. B
= X < ° - b L * T 2 -
a o hl!’ S ~— L
H 2] B
=
<0.%0 -0,5000 0 1,000 1.,0000 1.000 0 0 0 37600 o} 0
-0.162 -0.,1080 =0,1520 0.859 0.9425 0,769 0.442 16638 15825 33500 12900 0.363
0.10% 0.0525 =0.1659 0.847 0.9169 0.648 0.79% 29964 27807 34500 19700 0.571
0.467 0.1557 ~0.0618 0.940 0.8953 0.517 1.479 55674 48918 33700 28200 0.827
0.618 0.1545 0.0933 1,098 0.8845 0,442 1.958 73705 59349 33300 29700 0.892
0.602 0.1204 00,2308 1.260 0.8711 0,390 2,374 89364 63932 32800 28600 0.872
*
0.473 0.0788 0.3304 1,392 0.8522 0,348 2.743 103258 62830 32100 25700 0.801
0.262 0.0374 0.3885 1.475 0.8262 0,312 3,073 11577 56103 31100 21200 0.682
0.011 0.0014 0.4079 1.502 00,7948 0.281 3.37C 126857 42%04 29900 15400 0,515
-0.251 -=0.0279 0.3946 1.484 0.7595 0.253 3.637 136908 24838 28600 8280 0.290
=0,510 <~0.0530 0.3557 1.427 0.7231 0.229 3.878 145980 0 27200 0 o)

r .
#a &, /] °h %(r)dr = 4.324 (33760)/3.878 = 37643
ry



TABLE VI.

CALCULATION OF RELATIVE CREEP RATES BASED ON THE THIRD APPROXIMATION
OF THE STRESSES IN ROTATING HOLLOW DISK OF VARIABLE THICKNESS

o]

=

a 0 9 ™

10

-0, ¢5300
=0.137
0.071
0.337
0.392
0.372
0.301
0.182

0.015
=0.210
«0.500

1.000
0.944

0.918
0.896
0.886
0.872
0.854
0.827

0.793
0.761
0.723

1.0000
Q. 7077

0.5986
0.,5174
0.4837
0.4397
0.3879
0.3199

0.2525
0.1942
0.1428

0.268
0.248
0.233
0,211

0.187
0.166
0.143

-0, 500
-0 487

~0.472
~0. 474
-0,458
0,412
~0.3850
-0, 265
-=0191
~0.12%
-0.072

6e
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comparing the elastic and creep strxress distributions, Figure 7 is
drawn., It is observed that the successive approxim:tions rapidly
approich the desired solution and the steady stress distribution under
creep conditions is cuite different from that appearing in purely
elastic conditions. The maximum tangantial stress is approximately
65 percent of the slastic stress and the maximum radial stress is
approximstely 90 percent for the case considered,

The relative creap rates of this disk calculsted by using the

third approximation of the stresses are shown in Figure 8,
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SUMMARY AND CONCLUEIONS

For many years, the problem of creep design has been under
active consideration. Analysis of creep problems i& usually based on
the results avallable from long-time creep tests, This is the field
in which the major efforts have been made by those who are interested
in the problem, and a conmiderable amount of materlial is svailable for
study. Unfortunataly, only o mmall portion of this material has been
ecoumulated agalnat a background of rational research, Many of ths
tests were run with a definite purpose from a very limited point of
view, so that no attempts were made to bring cut clearly the influence
of stress, strain, time, and temperature on the creep, These data,
navertheless, are all that we have to work with, and it appears
necessary to make more creep tast data aveilable,

All long-time creep test results have one feiature in common &n
which the creep deformation procesds at a very rapid rate at first
or primary stage approaching a practically constant rate of deforms-
tion at a later stage and then th: creep rate gradually increases until
fracture tskes place (ese Figure 2). There has been a genersl tendency
to ignore the initisl period of rapid creep rate and to treat the
problem #s one of constant creep rate., It is evident that this procedure
may not be satizfactory for all cases where the stressee are influenced
by the plastic deformations. This is nearly always the cise in practi-
cal problems,

In the problems which are discussed in this plper, the effect af



temperature on creep rate has been left out. In many practicel cases,
the temperature of the disk may increase from the outside radius
toward the center, This means that for the same stress, the creep
rate shall incresse with increase in radius, In order to take the
affact of such temperature variations on the stress distribution in
the disk into consideration, the temperaturs in the creep riate-stress-
time=temperature relation for a given material can be no longer treated
as a constant and may be furthar expressed as a function of the radius
of the disk,

Recent sxperimuntal investigations on the effect of high stress
on the creep rate at elevated temperature on pure aluminum and its

alloys!®

revéaled that the pawer function stress-creéep—~rate relation
is valid for metals only at relatively low stresses, it does not fit
over the high stress range. It is, thersfore, nugqu.istecl that the
exponential stress-creep-rate relation may be substituted when the
analysis of creep deformation is carried out at high stresses.

The method of snalysis of creep deformation in rotating disks

presentad in this paper iz basad on the maximum shesr theory also

known as Treéscs interior ind tha flow rule dssEsciatiead with Mises

15y, Laks, C. D. Wiseman, O. D, Sherby, and J. E, Dorn, "Effect
of Stress on Creep at High Temperatures," lﬁﬂfm of Mechanics,
vol., 24, No, 2, pp. 207-213, The American Society of Mechanical
Engineers: New York, June, 1957,



criterion in plasticity theory. In view Of Druckert 16 strong theoret-
icel arguments against the application of a flow rule other than the

one properly associated with the yleld condition, it would be more
likely in the purely mathamatical basls to use the thaory of plasticity
based on tha Tresca's yleld condition and its sssociated flow rule,
rather than to combine & yield condition with an often used flow rule.

At present, however, the method widch has been presented in this paper
appears to give the best over-all agresment with available test rnultan
and therefore it may be used as 1 guide to determine the cresp stresses
in design problams.

Although some progress has been made during recent years in
developing some of the basic laws for creep &t high temperature, yet
much remiins to ba done in ordar to achieve 2 complete understanding
of the phenomenon of creep. The proaf of the existence of a steady
state is of great lmportance, however, not only because it will make
the tedious calculation unnecessary, but also baciuse it permits a more

exact determination of the stresses which eventually wlll be reached.

165, ¢, Drucker, "A More Fundamental Approach to Plastic Stress-

Strain Rela.ions," Proc. The First Netional Congress of Applied Mechanics,
Chicago, 1351, pp. 487-491, J, W, Edwards: Ann Arbor, Michigan, 19352,

1?A. M. Wahl, "Anslysis of Creep in Rotating Disks Based on the
Tresca Criterion amd Associated Flow Rule," Journal of Applied Mechanics,
vol. 23, No. 2, pp, 231-238, The American Society of Mechanical
Englineerst Hew York, Juna, 1956, &
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