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Summary

� Weeds reduce yield in soybeans (Glycine max) through incompletely defined mechanisms.

The effects of weeds on the soybean transcriptome were evaluated in field conditions during

four separate growing seasons.
� RNASeq data were collected from six biological samples of soybeans growing with or with-

out weeds. Weed species and the methods to maintain weed-free controls varied between

years to mitigate treatment effects, and to allow detection of general soybean weed

responses.
� Soybean plants were not visibly nutrient- or water-stressed. We identified 55 consistently

downregulated genes in weedy plots. Many of the downregulated genes were heat shock

genes. Fourteen genes were consistently upregulated. Several transcription factors including a

PHYTOCHROME INTERACTING FACTOR 3-like gene (PIF3) were included among the up-

regulated genes. Gene set enrichment analysis indicated roles for increased oxidative stress

and jasmonic acid signaling responses during weed stress.
� The relationship of this weed-induced PIF3 gene to genes involved in shade avoidance

responses in Arabidopsis provide evidence that this gene may be important in the response of

soybean to weeds. These results suggest that the weed-induced PIF3 gene will be a target for

manipulating weed tolerance in soybean.

Introduction

Weeds have long been known to reduce crop yields (Zimdahl,
2004). However, the mechanisms through which weeds cause
these losses are unresolved. Although weeds undoubtedly com-
pete with crops for water, nutrients and light when these
resources are limiting, in modern agricultural conditions these
resources are generally abundant. Weeds reduce crop yields most
when they are present early in the growing season, and can reduce
yields even if they are removed several weeks after crops emerge.
Such observations led to the concept of a critical weed-free period
(CWFP) – the generally narrow portion of the growing season
where weed presence has a significant impact on end of season
yield. CWFPs often occur before weeds have any significant
impact on soil nutrient or moisture status (Kropff et al., 1993).
In soybean this occurs between the vegetative second-leaf (V2)
and V4 stages of growth (Van Acker et al., 1993). This CWFP
generally occurs too early in the growing season for the weed to
be directly competing with crops for resources. These data sug-
gest that weeds primarily reduce yield via mechanisms other than
direct competition for soil resources. Thus, researchers have
hypothesized that exposure to weeds during early growth may

alter crop developmental trajectories such that yield is reduced
(Afifi & Swanton, 2012).

This hypothesis is supported by research that indicates weeds
can reduce crop growth and yields when present during the
CWFP even if crop and weed roots are physically separated
(Green-Tracewicz et al., 2011, 2012). These results imply that
weeds produce a signal that alters crop development without
requiring direct physical contact between the weed and crop
plants. Chlorophyll absorbs red light strongly but reflects far-red
light. Consequently, light microenvironments proximal to plants
are depleted in red light (c. 660 nm), but have far-red light (c.
730 nm) content similar to that of ambient light. This reduced
ratio of red: far red (R : FR) light is detected by plants via phyto-
chrome photoreceptors. Reduced R : FR has been shown to
induce developmental responses such as decreased root-to-shoot
ratios, increased specific leaf area, reduced photosynthetic capac-
ity and early flowering, which are often referred to collectively as
‘shade avoidance syndrome’ (reviewed in Franklin, 2008; Casal,
2012). Shade avoidance syndrome has been proposed as a major
cause of early developmental changes associated with some weed-
induced yield losses (Rajcan & Swanton, 2001; Afifi & Swanton,
2012).
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Recent studies in Arabidopsis (Arabidopsis thaliana) and corn
(Zea mays) have identified numerous genes that are differentially
regulated during plant–plant interactions (Horvath et al., 2006;
Masclaux et al., 2012; Moriles et al., 2012). In corn, expression
of genes involved in photosynthesis, auxin signaling and
responses to pathogens were downregulated in response to weed
presence compared with plants grown in weed-free conditions
(Horvath et al., 2006; Moriles et al., 2012). The downregulation
of some of these genes could be observed as early as V2, and even
if weeds were removed at this time, gene expression never fully
reverted to match expression patterns of plants growing weed-
free.

To date, gene expression changes that occur in soybean (Gly-
cine max) grown with weeds during the CWFP have not been
characterized. Therefore, the objective of this study was to char-
acterize soybean growth, gene expression and yield as influenced
by weed presence or absence during the CWFP. With this work,
we test the hypothesis that transcriptome responses of soybeans
to weed pressure are the result of direct competition for resources.
If weeds were directly competing for resources, we would expect
to find differences in expression of genes involved in resource
gathering or use. Instead, however, we identified a small number
of genes suggesting alterations in light quality perception and
hormone signaling which are more indicative of altered develop-
mental responses in crops grown with weeds during the CWFP.

Materials and Methods

Plant material

A commercially available, commonly planted late group I soy-
bean (Glycine max Willd.) (cv AG1631) was planted at the
Aurora, SD, USA farm in east-central South Dakota in 2008–
2011, between 12 and 22 May depending on the year (Table 1).
The soil at this location is loess over glacial outwash, and the soil
series is Brandt silty clay loam (Clay et al., 2009). The crop was
grown under natural rainfall conditions. Accumulated growing
degree days (GDD) from planting until tissue collection date
(V3 of soybean growth) ranged from 426 to 608 GDD (base
10°C) (Table 1). Rainfall from planting to collection ranged
from 10 to 24 cm. Plot sizes were 39 6 m with four rows. Row
spacing was either 76 cm or 18 cm in the case of one replicate
each in 2010 and 2011.

Treatments consisted of control (weed-free), weedy, and weed
removal early during the CWFP, and were arranged in a random-
ized complete block design with four replications. During 2008
and 2009, a naturally occurring weed population consisting pri-
marily of velvetleaf (Abutilon thoephrasti) and wild buckwheat
(Polygonum convolvulus) was the weed competition source. At the
V3 soybean growth stage in 2008 and 2009, weed densities were
300 m�2 and 48 m�2, respectively. During 2010 flax was seeded
as a weed proxy at a half normal rate used for production
(23 kg ha�1) on 19 May (1 d after soybean planting), and reached
a density of 600 plants m�2 by the soybean V3 stage. During
2011 naturally occurring velvetleaf and weedy common sun-
flower (Helianthus annuus) populations served as the source of
weed competition, with average densities of 160 m�2. Weeds
were controlled in weed-free treatments in 2008 with applica-
tions of s-metolachlor (Dual II Magnum; Syngenta Crop
Protection LLC, Greensboro, NC, USA) (1.9 l ha�1) on 22 May
and fluazifop-P (Fusilade DX; Syngenta Crop Protection)
(584 ml ha�1) on 26 June. In 2009, weeds were controlled by
application of sethoxydim (Poast; BASF Ag Products, Research
Triangle Park, NC, USA) (1.8 l ha�1) on 26 June. Glyphosate
(Roundup Weather Max; Monsanto Co., St Louis, MO, USA)
was used at 1.2 l ha�1 in 2010 for midseason weed control. In
2011, Roundup Weather Max, Dual II Magnum, Poast and
imazethapyr (Pursuit; BASF Ag Products, Research Triangle
Park, NC, USA) were used at manufacturers suggested rates and
times. Differences in weed types and herbicides were used to
intentionally dilute the effects of these variables.

The day after sampling at V3, weeds were removed from four
plots of the eight weedy plots (designated as WRV3 for weeds
removed at V3) using herbicide application, followed by hand-
weeding (starting c. 2 wk after application) for the rest of the sea-
son. Weeds remained until the end of the season in the remainder
of the plots (weedy).

Soybean height was measured from the soil concentration to
the top emerging trifoliate at V3 and at canopy closure (deter-
mined visually, when leaves from neighboring rows touched).
Soybean leaf area was measured destructively using a LiCor LI-
3100C area meter with all trifoliates of four plants per plot
clipped for measurement. Soybean plants were harvested in
October from 33 m of row by a plot combine at physiological
maturity and yield was estimated after threshing pods and clean-
ing seeds as metric tonnes per hectare (MT ha�1) from each plot.

Table 1 Soybean (Glycine max) planting dates, sampling dates and growing conditions for each study year

Year Weed species Herbicide Plant date
Sampling date V3
stage of growth

Precip to
V3 (cm)

Growing degree
days at time
of sampling
(V3)

Air temperature
at collection
V3 (°C)

2008 Velvetleaf and buckwheat S-metolachlor and
fluazifop-P

22 May 23 June 12.4 426 23.9

2009 Velvetleaf and buckwheat sethoxydim 12 May 25 June 9.9 562 27.2
2010 Flax Glyphosate 18 May 22 June 19.4 576 25.6
2011 Velvetleaf and sunflower S-metolachlor,

sethoxydim, and
imazethapyr

12 May 29 June 24.2 608 26.1
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Data (leaf area, plant height and yield) were averaged within
treatment and Student’s t-tests were used to determine significant
differences (P < 0.05) between treatments for plant height and
leaf area at V3. ANOVA was used to determine significant differ-
ences (P < 0.05) among treatments for plant height and leaf area,
and yield response variables at sampling dates. In order to detect
changes associated with both development and nutrient status,
we collected newly emerged unfolded trifoliate < 2 cm in length,
along with the associated meristem from at least eight plants per
plot between 11:00 and 13:00 h at the soybean V3 (three fully
expanded trifoliate leaflets) growth stage. Tissue was placed
immediately in liquid nitrogen for storage.

In order to examine the expression of genes under more con-
trolled conditions, soybean plants were grown in 8-l pots with
potting soil (sunshine mix) in the glasshouse under 16 h photo-
period at 20–25°C. To examine the requirement of direct com-
petition for resources or soil-transmitted signals between the
soybean plant and the weed (winter canola in this case), a single
soybean plant was placed in the center of each pot (control), or
with 5–6 canola plants grown either in conetainers that pro-
truded through the pot with separate drainage (no root-to-root
contact) or that were planted between the conetainers (with root-
to-root contact). Canola seeds were planted c. 8 cm away and sur-
rounding the central soybean plant at the same time and emerged
within a day before or after the soybean emergence. Conetainers
were present in the control pots as well. When plants were at the

V3 stage of growth, the top emerging trifoliates were harvested
into liquid nitrogen. Two biological replicates with each replicate
consisting of 3–4 pooled individuals from each treatment were
harvested for quantitative reverse transcription (qRT)-PCR
analysis as described later. Photos of plants growing in field and
glasshouse are shown to provide a visual representation of the
growth conditions for the reader (Fig. 1).

RNA cDNA Library construction

RNA extraction was performed by grinding c. 0.1 g of frozen tis-
sue in liquid nitrogen to a fine powder, and adding 1 ml Trizol
reagent (Ambion). Chloroform: Isoamyl (24:1) was added to the
Trizol/tissue mixture, centrifuged, and RNA was extracted from
the resulting supernatant using an RNeasy Plant Mini kit
(Qiagen). Quality control was assessed using a nanodrop (ND-
1000 Spectrophotometer; ThermoScientific, Waltham, MA,
USA) for quantitation and assurance of minimal carbohydrate
and protein contamination, and then on a bioanalyzer (Agilent
2100 Bioanalyzer; Agilent Technologies, Santa Clara, CA, USA)
using the RNA setting for size determination and assessment of
integrity.

cDNA libraries were created following the Illumina TruSeq
RNA Sample Preparation kit (Illumina, San Diego, CA, USA),
which is briefly summarized here. Four thousand nanograms of
total RNA was purified and mRNA was extracted, followed by

Weedy Weed-free

NWC WC Control
Fig. 1 Photos of soybean (Glycine max) plants growing under field or glasshouse weedy or weed-free conditions. Upper panels, a representative set of
photos of field-grown soybean plants at the V3 stage of growth growing under weedy (left panel) and weed-free (right panel) conditions. Lower panels, a
representative set of photos of plants with surrounding canola as the weed either in with no direct root-to-root contact between the soybean and the
weeds (NWC), with direct root-to-root contact between the soybean and the weeds (WC) or growing alone (control). Also included is a view of the
bottom of the pot demonstrating that the conetainers used to separate the root systems of the canola and soybean fully pass through the pot and thus
prevent any soil-borne signaling or competition for resources.
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first and second strand cDNA synthesis, and fragmentation. End
repair and adenylation of 30 ends preceded adapter ligation and
PCR amplification. Library quality was assessed using an Agilent
Bioanalyzer, and quantified for pooling by qRT-PCR using the
PhiX Control Kit v2 according to manufacturer specifications.
Libraries were paired-end sequenced over four lanes (with other
unrelated samples) on an Illumina HiSeq2000 for 100 base reads
per end. However, the second paired read files were generally
poor in quality, and resulted in reduced mapping of the
sequences to the reference genome. Consequently, we chose to
use only the first read files from each fragment (see later).

Transcriptome analysis

Illumina sequences were analyzed using the Tuxedo suite of pro-
grams (Trapnell et al., 2012) in the iPlant infrastructure (Goff
et al., 2011). Briefly, single-end reads were mapped to the soy-
bean genome (Glycine max (Soybean) (Ensembl 14)) using the
Tophat-SE program in the iPlant discovery environment with an
anchor weight of 8, 0 mismatch, 70–50 000 base intron length,
0.15 minimum isoform fraction, maximum 20 alignments, two
mismatches for independently mapped reads, and minimum read
length per segment of 20. The Cufflinks program was used to
produce the fragments per kb per million reads (FPKM) data for
the individual genes and Cuffdiff was used for statistical analyses
using default settings. Gene set and subnetwork enrichment
analyses were run on the data set using Pathway Studio 9.0 (Nik-
itin et al., 2003), on default settings with gene functions based on
top Arabidopsis hits using the BlastX program (E > 10�5). Over-
represented sequences present in the promoters of genes that were
consistently up- or downregulated in response to weed stress were
identified using the program ELEMENT 2.0 (Mockler et al.,
2007) with 2000 bases of promoter sequence indicated for the
gene clusters. Two thousand bases 50 to the start of transcription
as designated by soybean gene models in phytozome 9.0 were
analyzed using the MEME program (Bailey & Elkan, 1994) to
identify over-represented sequences in the putative promoters of
genes consistently up- and downregulated in response to weed
stress. Gene set and subnetwork enrichment analysis were accom-
plished using Pathway Studio 8.0. Raw data and metadata have
been deposited in the Gene Expression Omnibus (accession
number GSE59875).

Gene expression analysis by qRT-PCR

Primers were designed to specifically amplify 12 upregulated
genes and 16 downregulated genes based on sequences in
Phytozome 9.0. Internal control genes, Glyma12g02790 (encod-
ing CYCLOPHILIN3), Glyma03g25200 (unknown) and
Glyma01g40950.2 (encoding a phosphoacetylglucosamine
mutase-like isoform X4 protein) were chosen from the RNAseq
data as having changed little across the samples tested and having
passed the PCR analysis as reasonable control genes. Where pos-
sible, primers were designed such that at least one spanned an
intron junction. Primer and amplicons sequences for these genes
can be found in Supporting Information Table S1.

qRT-PCR for the PIF3a gene was performed on RNA
extracted from leaf material (as described earlier) of plants at the
V3 stage of growth. Treatments were control, weedy and weeds
removed at V3 from 2008 samples. Four biological replicates
were analyzed for control and weedy plants and three biological
replicates were examined from plants where weeds had been
removed at V3. Additionally, all of these primers were used to
assess transcript accumulation in two biological replicates from
glasshouse grown samples at the V3 stage of development that
were either grown with direct root-to-root contact or when roots
of the soybean plants were isolated from the weeds grown in the
same pot. The 2� DDC

T values from three technical replicates
from each biological replicate were determined using an average
of all three control genes to normalize expression between sam-
ples.

Results

Weed presence altered growth and yield of soybean

Weed responses of soybean under field conditions can be variable
(Van Acker et al., 1993), and thus it was important to confirm
that exposure to weeds effectively altered soybean growth during
all 4 yr. Plant height at V3 was similar in weedy and weed-free
treatments (Table 2a). Leaf area was reduced by 50% V3 in
2010, and 18% in 2011 (P < 0.05), with similar downward
trends in 2008 and 2009 (P = 0.11) (2009 had only moderate
weed pressure compared with other years) (Table 2a). Plants
competing with weeds at canopy closure were shorter than weed-
free plants, and even if weeds were removed at V3 the plants did
not grow as tall as controls (Table 2b). Leaf area at canopy clo-
sure was reduced from 6% (2010) to 35% (2011) compared with
the weed-free control plants although the weeds had been
removed at V3 (Table 2b). If weeds remained until canopy clo-
sure, leaf area was reduced from 43% (2011) to 70% (2010)
compared with weed-free soybean. Soybean yield was not
reduced (ranging from 3% in 2010–2011, 8% in 2008, to 24%
in 2009) in 3 of the 4 yr when weeds were removed at V3 com-
pared with weed-free treatments. However, soybean yield was
reduced from 24% (2011) to 80% (2008) when subjected to sea-
son-long weed pressure compared with weed-free soybean yield.
Soil nitrogen and moisture were measured in 2008 and showed
no significant difference between weedy and weed-free plots,
even though these measurements were taken at the end of the
growing season (Table 2a).

RNAseq identifies differentially expressed genes

RNAseq produced between 10 and 49 million reads per library,
with all libraries having > 85% reads unambiguously mapping to
the soybean genome (Table 3). Approximately 30 500 transcripts
were identified and quantified to annotated soybean genes. No
genes were significantly differentially expressed (q < 0.05) when
data were averaged over all 4 yr of the study (Table S2). However,
when biological replicates were examined within years (2010 and
2011; note, no replication of samples were collected in 2008 or
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2009), 751 and 2339 genes were identified as significantly differ-
entially expressed, respectively. Among the genes identified with
differential expression for either 2010 or 2011 data, 145 were sig-
nificant in both years and had the same expression trends. Of
these, 69 had the same expression trend over all 4 yr with 55
downregulated in response to weeds and 14 upregulated
(Table 4). The list of consistently downregulated genes was
dominated by heat shock response genes, although several
transcription factors (such as MYB113-like and a zinc finger
C-x8-C-x5-C-x3-H type family protein) and JAZ1, a negative
regulator of jasmonate (JA) signaling, were notable. Two tran-
scription factors involved in phytochrome signaling (one encoded
by a PIF3-like gene and another by a B-BOX DOMAIN
PROTEIN 19-like gene) were present in the consistently

upregulated gene list. A majority of the upregulated genes are
known to play a role in various oxidative stress responses.

In order to confirm the differential expression of the most
likely regulator of the weed-induced responses (see Discussion on
PIF gene expression later), we examined the expression of this
weed-induced PIF3 gene in field-grown plants by qRT-PCR
(Fig. 2). In three biological replicates from 2008 samples, this
weed-induced PIF3 gene (PIF3a) was clearly upregulated when
weeds were present, but the expression of the weed-induced
PIF3a did not remain high if weeds were removed at V3. Addi-
tionally, not only was the PIF3a gene upregulated by weeds con-
sistently under field conditions, but it was also upregulated under
glasshouse conditions – even when soybean plants were grown
using the indirect competition method that prevented any

Table 2 (a) Soybean (Glycine max) plant height and leaf area measured at V3 during 2008, 2009, 2010 and 2011 in weedy and control (weed-free) plots,
and soil % moisture and total nitrogen (N; NO3-N + NH4-N) at harvest in 2008; (b) data collected at soybean canopy closure for plant height, leaf area and
yield in weedy or control (weed-free) plots or in plots where weeds were present up to V3 stage of growth and then removed (WRV3) for all four years

V3
Plant height
(cm)

Plant height
(cm)

Leaf area
(cm2)

Leaf area
(cm2)

Weed density
(plants m�2)

% Soil moisture
(0–15 cm)

% Soil moisture
(0–15 cm)

Soil N lg g�1

(0–15 cm)
Soil N lg g�1

(0–15 cm)
Year Control Weedy Control Weedy Control Weedy Control Weedy

2008 11a 11a 47a 41a 300 22.47a 22.32a 20.56a 28.20a

2009 52a 48a 207a 163a 48
2010 25a 27a 159a 87b 600
2011 22a 22a 135a 110b 160

CC
Plant height
(cm)

Plant height
(cm)

Plant height
(cm)

Leaf area
(cm2)

Leaf area
(cm2)

Leaf area
(cm2)

Yield
(MT ha�1)

Yield
(MT ha�1) Yield (MT ha�1)

Year Control Weedy WRV3 Control Weedy WRV3 Control Weedy WRV3

2008 54a 59a 48b 1510a 512b 1235a 2.4a 0.5c 2.2b

2009 80a 75ab 68b 901a 475b 676b 3.3a 1.7a 2.5a

2010 89a 70b 76b 1417a 438b 1330a 3.1a 1.1b 3.0a

2011 83a 78b 76b 1438a 819b 953b 2.9a 2.2b 2.8a

Different letters indicate differences between treatments in given years at P < 0.05.

Table 3 Mapping of single-end reads to the soybean (Glycine max) genome

Sample Number of reads Accepted hits

Reads that
unambiguously
mapped

Percentage
unmapped

Percentage
unambiguously
mapped

2008_control 12 438 478 11 369 532 9848 797 9.40 86.62
2008_weedy 12 847 367 11 957 941 10 359 450 7.44 86.63
2009_control 12 905 636 11 785 766 10 519 237 9.50 89.25
2009_weedy 11 977 124 10 791 081 9442 660 10.99 87.50
2010_control 27 034 933 25 868 028 23 013 035 4.51 88.96
2010_control 35 948 748 34 501 608 30 725 584 4.19 89.06
2010_weedy 22 387 036 21 551 910 19 245 697 3.87 89.30
2010_weedy 22 797 221 21 936 845 19 788 511 3.92 90.21
2011_control 26 588 285 25 571 618 22 708 463 3.98 88.80
2011_control 20 398 664 19 592 086 17 284 582 4.12 88.22
2011_weedy 52 312 036 48 664 381 42 767 628 7.50 87.88
2011_weedy 43 991 009 40 689 221 35 657 448 8.11 87.63

Number of reads, number of reads following trimming of the libraries for quality (PHRED value > 20 with at least 70 bases in size). Accepted hits, number
of reads that mapped to the soybean genome. Reads that unambiguously mapped, reads that mapped to a single location in the soybean genome.
Percentages of unmapped and unambiguously mapped soybean sequences are also indicated (relative to number of reads).

New Phytologist (2015) 207: 196–210 No claim to original US government works

New Phytologist� 2015 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist200



Table 4 List of soybean (Glycine max) genes that were differentially expressed during 2010 and 2011 and which have the same pattern of expression in
2008 and 2009

Locus ID Putative function

Average log2 fold ratios by year

2008 2009 2010 2011

Glyma14g11420 17.6 kDa class II heat shock protein �0.93 �2.81 �1.78 �1.90
Glyma04g05720 17.6 kDa class II heat shock protein �0.89 �2.50 �1.58 �1.21
Glyma14g11430 17.6 kDa class II heat shock protein �0.77 �3.05 �1.63 �1.70
Glyma06g05740 17.6 kDa class II heat shock protein �0.26 �2.18 �1.48 �1.16
Glyma20g01930 17.6 kDa class II heat shock protein �0.21 �1.64 �1.34 �1.36
Glyma03g03270 Arginase/deacetylase superfamily protein �0.31 �1.58 �0.65 �1.34
Glyma18g52150 BCL-2-associated athanogene 5 �0.14 �0.06 �0.85 �1.01
Glyma04g06610 Casein lytic proteinase B4 �0.23 �1.06 �1.04 �0.87
Glyma19g41760 Chaperone DnaJ-domain superfamily protein �0.08 �0.54 �1.40 �0.61
Glyma02g18090 Concanavalin A-like lectin protein kinase family protein �0.28 �1.51 �0.61 �2.10
Glyma06g44300 DNAJ heat shock family protein �0.15 �0.24 �0.73 �0.69
Glyma03g37650 DNAJ heat shock family protein �0.04 �0.81 �0.71 �0.72
Glyma19g40260 DNAJ heat shock family protein �0.03 �0.63 �0.68 �0.69
Glyma18g43430 DNAJ heat shock N-terminal domain-containing protein �0.19 �0.74 �1.38 �1.17
Glyma07g18550 DNAJ heat shock N-terminal domain-containing protein �0.13 �0.92 �1.08 �0.92
Glyma11g17930 DNAJ homologue 2 �0.22 �0.35 �0.57 �1.00
Glyma02g47820 emp24/gp25L/p24 family/GOLD family protein �0.36 �0.62 �0.31 �0.62
Glyma03g17870 Fes1A �0.30 �0.61 �1.05 �1.09
Glyma05g28260 FKBP-type peptidyl-prolyl cis-trans

isomerase family protein
�0.32 �1.30 �1.46 �1.78

Glyma09g36250 FKBP-type peptidyl-prolyl cis-trans
isomerase family protein

�0.21 �0.26 �0.52 �0.53

Glyma08g11240 FKBP-type peptidyl-prolyl cis-trans
isomerase family protein

�0.09 �1.17 �1.24 �1.30

Glyma18g10760 Heat shock protein 21 �0.24 �2.17 �1.14 �1.06
Glyma11g37450 Heat shock protein 21 �0.13 �1.10 �1.39 �0.89
Glyma05g36600 Heat shock protein 70 (Hsp 70) family protein �0.01 �0.64 �0.83 �1.03
Glyma17g08020 Heat shock protein 70B �0.18 �2.82 �1.30 �1.25
Glyma02g36700 Heat shock protein 70B �0.03 �3.21 �1.52 �1.19
Glyma08g03690 Heat shock protein 81-2 �0.03 �0.17 �0.92 �0.58
Glyma16g29750 Heat shock protein 90.1 �0.51 �1.73 �1.69 �2.50
Glyma09g24410 Heat shock protein 90.1 �0.35 �0.88 �1.75 �1.78
Glyma17g34540 Heat shock transcription factor A2 �0.75 �1.82 �1.35 �0.89
Glyma01g44910 Heat-shock protein 70T-2 �0.16 �1.06 �1.20 �0.88
Glyma19g36460 Homolog of mamallian P58IPK �0.09 �1.07 �0.87 �0.84
Glyma07g32030 HSP20-like chaperones superfamily protein �0.83 �2.58 �1.18 �1.24
Glyma08g07340 HSP20-like chaperones superfamily protein �0.52 �2.53 �1.28 �1.47
Glyma19g01440 HSP20-like chaperones superfamily protein �0.49 �2.77 �1.73 �1.23
Glyma08g07330 HSP20-like chaperones superfamily protein �0.46 �0.34 �0.74 �1.53
Glyma08g07350 HSP20-like chaperones superfamily protein �0.43 �2.79 �1.25 �1.41
Glyma07g32070 HSP20-like chaperones superfamily protein �0.28 �1.11 �1.16 �1.48
Glyma13g24490 HSP20-like chaperones superfamily protein �0.20 �1.29 �1.47 �1.53
Glyma06g16490 HSP20-like chaperones superfamily protein �0.03 �0.10 �0.88 �1.02
Glyma04g04230 HXXXD-type acyl-transferase family protein �0.10 �1.83 �1.08 �1.57
Glyma11g04130 Jasmonate-zim-domain protein 1 �0.06 �0.99 �0.85 �0.92
Glyma12g01580 Mitochondrion-localized small heat shock protein 23.6 �0.36 �1.62 �1.61 �1.33
Glyma09g37010 Myb domain protein 113 �0.98 �0.80 �1.75 �1.06
Glyma03g38150 NAD(P)-binding Rossmann-fold superfamily protein �0.83 �0.98 �0.88 �0.90
Glyma01g24950 NAD(P)-linked oxidoreductase superfamily protein �0.01 �0.07 �0.55 �0.29
Glyma18g36840 PPPDE putative thiol peptidase family protein �0.11 �0.29 �0.87 �0.62
Glyma11g11670 Prohibitin 2 �0.25 �0.58 �0.10 �0.51
Glyma04g12320 Ribosomal L5P family protein �0.13 �0.21 �0.06 �0.30
Glyma12g28990 SecE/sec61-gamma protein transport protein 0.00 �0.76 �0.70 �0.78
Glyma17g03520 Secretion-associated RAS super family 2 �0.27 �0.98 �1.02 �1.05
Glyma01g05170 UDP-galactose transporter 3 �0.05 �1.00 �0.79 �0.74
Glyma12g30590 Zinc finger C-x8-C-x5-C-x3-H type family protein �0.33 �0.47 �0.70 �0.33
Glyma10g15160 Unannotated �0.16 �0.93 �0.68 �0.36
Glyma02g04600 Unannotated �0.13 �0.07 �0.34 �0.37
Glyma11g07930 B-BOX DOMAIN PROTEIN 19 (BBX19) 0.37 0.38 0.42 0.39
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transmission of soil-born signals or direct competition for soil
nutrients (Fig. 3). Similar significant upregulation was observed
for nine of the 12 tested upregulated genes even without root-to-
root contact between the soybean plants and the adjacent weeds.
Only two of the 16 tested genes identified as downregulated by
RNAseq analysis (one, Glyma03g03270 encoding an arginase/de-
acetylase superfamily protein, and the other Glyma09g37010
encoding the MYB domain protein 113 protein) showed consis-
tent downregulation under glasshouse conditions as measured by
qRT-PCR. Both of these genes were only significantly downregu-
lated when soybeans were grown in direct root-to-root contact
between the soybean plants and the adjacent weeds.

Gene set enrichment analysis (GSEA) and subnetwork
enrichment analysis (SNEA) identify processes and signals
affected by weed stress

In order to produce a more complete assessment of the physio-
logical and signaling processes affected by weed stress, GSEA and

SNEA were run on data from each year (Table S3). GSEA identi-
fied 112 ontologies as significantly over-represented (P < 0.005)
when only genes that were upregulated on average were used in
the analysis and only 48 significantly over-represented ontologies
were identified when only downregulated genes were analyzed.
Eight of the top 10 ontologies for genes that are upregulated dur-
ing weed stress are associated with oxidative stress or oxygen pro-
duction (Table 5). Likewise, although the top ontology was
‘response to heat’, of the top 10 ontologies from downregulated
genes, six are associated with protein synthesis. SNEA identified
eight significant (P < 0.005) ontologies associated with genes that
were upregulated by weed stress and seven associated with down-
regulated genes. The top 10 ontologies associated with genes that
are upregulated during weed stress complement the GSEA in that
several signals such as neighbors of CO2, gluconeogenesis and
neighbors of HY5 could be related to over-representation of
genes with ontologies associated with photosynthesis. Addition-
ally, in concurrence with functional analyses of the significant
and consistent differentially expressed genes, five of the top 10
ontologies play a role in JA signaling or heat shock signaling.

Analysis of promoters identifies common elements

The top five over-represented sequences in the promoters for each
group (up in weedy and down in weedy soybeans) are reported in
Table 6. A search for similarities to known transcription factor
binding sites using the PLANT CARE database (Lescot et al.,
2002) identified two transcription factor binding sites involved
in directing expression in vascular tissues, and one involved in
anthocyanin signaling among the genes upregulated by weed
stress. No homologies to known transcription factor binding sites
were identified among the sequences over-represented in the pro-
moters of the downregulated genes. An investigation of

Table 4 (Continued)

Locus ID Putative function

Average log2 fold ratios by year

2008 2009 2010 2011

Glyma07g01680 GDSL-like Lipase/Acylhydrolase
superfamily protein

0.46 0.78 0.64 0.63

Glyma06g16080 Gibberellin 20-oxidase 3 0.35 0.62 0.72 0.97
Glyma05g09920 Gibberellin 2-oxidase 8 0.28 1.39 1.25 1.34
Glyma11g04000 HXXXD-type acyl-transferase

family protein
0.13 1.76 0.66 1.06

Glyma09g02210 Leucine-rich repeat protein
kinase family protein

0.30 1.84 0.98 0.97

Glyma19g43940 Li-tolerant lipase 1 0.95 2.44 0.61 2.82
Glyma15g10870 lupeol synthase 2 1.18 0.99 1.32 0.83
Glyma19g40980 phytochrome interacting factor 3 (PIF3) 0.66 0.80 0.61 0.48
Glyma11g10460 proline-rich protein 4 0.72 1.43 1.10 1.59
Glyma15g13430 Pyridoxal phosphate (PLP)-dependent

transferases superfamily
1.10 0.65 0.72 1.01

Glyma06g08190 UDP-N-acetylglucosamine
(UAA) transporter family

0.27 0.49 0.68 0.67

Glyma20g35980 YELLOW STRIPE like 1 0.14 1.28 0.59 0.85
Glyma01g32370 unannotated 0.60 1.11 1.03 0.73

Relative expression pattern (log2 fold ratio: weedy� control) is indicated with green highlighting downregulated genes and orange highlighting
upregulated genes.
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over-represented promoter motifs was also completed (Table 6)
using the program ELEMENT (Mockler et al., 2007). The most
over-represented sequences in the promoters of genes downregu-
lated by weed stress were similar to heat shock binding sites, and
G-Box ABRE-like sequences. An AC-rich vascular specific regula-
tory element was among the top five most significant sequences
identified by ELEMENT; however, none of the P-values were
highly significant among the genes upregulated by weed stress as
determined by the ELEMENT program.

Discussion

We examined the transcriptomic changes associated with weed
presence during the CWFP in soybeans. Although the CWFP is
variable and dependent on planting density, weed density and
other growing conditions in soybean (Hock et al., 2006), our
data on year-end yield loss following weed removal is indicative
of the weed impact at the time of sampling. However, our goal
was not to establish a CWFP for soybean, but rather to examine
the transcriptome changes associated with weed presence during
the early CWFP under field conditions. Because false discovery
rates are dependent on the amount of variation in expression of
the entire dataset, it is desirable to reduce the concentration of
environmental variation to maximize the number of significantly
differentially expressed genes. However, field conditions among
years resulted in high concentrations of expression variation in
many genes and thus necessitated an alternative approach. A rea-
sonable number of significantly differentially expressed genes
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Fig. 3 � DDC
T of selected genes in soybean (Glycine max) when grown under glasshouse conditions with no root-to-root contact (NWC) with the

surrounding weeds, or when in direct root-to-root contact with the surrounding weeds (WC) or as a single plant in a pot (control, normalized to zero).
Error bars represent range of 2� DDC

T from the two replicates.

Table 5 Top 10 ontologies from soybean (Glycine max) gene set enrich-
ment analysis (GSEA) or subnetwork analyses (SNEA) associated with
genes upregulated by weeds (top) or downregulated by weed (bottom) as
indicated using the Pathway Studio 9.0 program

Top 10 ontologies associated with genes upregulated by weeds
GSEA SNEA

Oxidation–reduction process Lignification
Extracellular region Neighbors of HY5
Chloroplast thylakoid membrane Binding partners of ISP
Endomembrane system Gluconeogenesis
Oxygen binding Respiratory chain
Iron ion binding Fatty acid elongation
Monooxygenase activity Flavonol metabolism
Photosynthesis Anthesis
DNA binding transcription factor activity Neighbors of sulfur
Response to salicylic acid stimulus Neighbors of CO2

Top 10 ontologies associated with genes downregulated by weeds
GSEA SNEA

Response to heat Neighbors of tunicamycin
Structural constituent of ribosome Neighbors of COI1
Ribosome Neighbors of HSF
Translation Neighbors of heat shock
Cytosolic ribosome Targets of COI1
Cytosolic large ribosomal subunit Respiratory chain
Cell wall Neighbors of radicicol
Cytosolic small ribosomal subunit Ripening
Response to hydrogen peroxide Chloroplast division
Response to chitin Binding partners of JAZ10
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were identified within these 2 yr of replication (2010 and 2011),
indicating that reducing variation between years resulted in suffi-
ciently consistent gene expression to identify genes that were
responsive to weeds under the given conditions at the time of
sampling. However, we expected that many responses to weeds
could be modified by any given environmental condition. By
only recognizing genes that had consistent expression over four
growing seasons, we are assured that these genes are responding
to the only variable that was constant (weed presence vs weed-free
conditions). Thus, differences in the methods used to control the
weeds, differences in weed species and weed density, and differ-
ences in weather and soil conditions between years are expected
to result in high concentrations of noise, but should not result in
consistent gene expression differences across samples. The only
consistent difference between samples was the presence or
absence of weeds. Thus, the limited number of genes that we
identified as weed-responsive is the result of a robust and highly
selective screen for such genes. Indeed, at least for most of the

upregulated genes, glasshouse experiments where weeds were not
controlled by herbicide treatment further indicate that the
method of weed control had little impact on weed-induced gene
expression. This work suggests that responses to weeds occur by
the V3 stage of soybean growth. However, additional experi-
ments examining the response of soybeans to weeds at earlier and
later stages of growth and following weed removal to examine
legacy effects of weed presence are of interest.

Consistent gene expression responses to weeds were bol-
stered by the fact that expression of nearly every upregulated
gene tested in glasshouse experiments was differentially
expressed in response to weed pressure under controlled envi-
ronmental conditions. However, the limited confirmation
under glasshouse conditions of downregulated genes was unex-
pected. It is unclear if this indicates a high concentration of
false positives in the RNAseq data for downregulated genes, or
if glasshouse conditions altered the response of soybeans to
weeds. In general, RNAseq data generally correlate well with
qRT-PCR (see Glaus et al., 2012), and more replicates were
done in the field than in the glasshouse. This implies that the
differences between field and glasshouse are real. Thus, these
observations, combined with the fact that many of the upregu-
lated genes could be induced under glasshouse conditions –
even when no direct competition for nutrients or allelopathic
impacts was possible, strongly suggest that many of the upreg-
ulated genes are controlled by light quality signals.

Mechanisms underlying yield loss due to weeds

Shade avoidance responses are manifest in most crops and in a
large variety of wild species, including the genetic model plant
arabidopsis (Ballar�e, 1999; Franklin, 2008; Galstyan et al., 2011;
Casal, 2012; Gommers et al., 2013). Several transcriptomics
studies have been done on the shade avoidance responses of
model plants such as Arabidopsis which have identified key com-
ponents of the signaling processes. Recent studies have identified
numerous genes that are differentially regulated in Arabidopsis
during intraspecies plant–plant interactions (Masclaux et al.,
2012). Although shade avoidance responses enable wild plants to
escape from shade originating from neighboring plants in dense
vegetation, these are a wasteful investment for crops because the
energy used in stems comes at the expense of yield (Robson et al.,
1996, 2010; Boccalandro et al., 2003) and combined with the
reduced root investments (e.g. Kasperbauer, 1987; Morelli &
Ruberti, 2002; Green-Tracewicz et al., 2011) will stimulate
lodging and increase drought sensitivity (Page et al., 2011). Fur-
thermore, these responses lead to a more open crop canopy,
which results in greater light penetration through the canopy,
potentially facilitating weed growth (Weiner et al., 2010).
Finally, shade avoidance responses in a variety of species are
accompanied by suppression of defenses against herbivorous
insects and pathogens (Ballar�e et al., 2012; Cerrudo et al., 2012;
De Wit et al., 2013). Therefore, total yield potential is typically
reduced by shade avoidance responses.

Although our study did not include an analysis of branching
that would have provided better evidence for a classic shade

Table 6 Over-represented motifs in the promoters of soybean (Glycine
max) genes that are upregulated or downregulated in soybeans in
response to weeds as identified using the programs MEME and ELEMENT

Upregulated genes MEME
Putative function Motif e-value

RNFG2O phloem-specific
gene expression

GTGTGTCCC 3.10E+00

Unknown-found in
Arabidopsis SAS

CACCACAACNCC 1.20E+02

ARELIKEGHPGDFR2
Anthocyanin signaling

GTGGGAGGGGG 9.90E+03

Unknown ATGGCTTCAAG 6.20E+04
ACIIPVPAL2 CACATACACAC 1.20E+05

Upregulated genes ELEMENT Motif P-value

Unknown AAGTGATC 0.001274
Unknown GAGTACTA 0.002809
ACIIPVPAL2 ACACACAC 0.135118
ACIIPVPAL2 CACACACA 0.160082
ACIIPVPAL2 ACACACA 0.197529

Downregulated genes MEME Motif e-value

Unknown CCCACCTC 6.50E+03
Unknown CACTCTCnTACC 7.30E+03
Unknown TGACGTGG 1.50E+04
Unknown GCACGCGTTGTC 3.00E+04
Unknown TGGNCTCTGGTA 4.80E+04

Downregulated genes ELEMENT Motif P-value

HSF TCCAGAA 7.25E-08
HSF TCTAGAA 5.52E-07
ABA responsive element ACGTGTAT 5.54E-07
Unknown TCCAGA 4.01E-06
Unknown TCCAGAAA 4.37E-06

Putative motif function, motif sequence and significance values generated
by each program are shown. Top five over-represented promoter motifs
using MEME and ELEMENT. Upregulated or downregulated refers to the
expression in soybeans from the weedy plots.
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avoidance response, soybean growing in the presence of weeds
exhibited reduced leaf area which is indicative of reduced branch-
ing commonly observed in shade avoidance responses in this spe-
cies (Green-Tracewicz et al., 2011), and reduced yield commonly
associated with weed stress (Table 2). However, the fact that the
weed-stressed plants were not taller than controls and were in
some cases significantly shorter (Table 2b, 2010 and 2011) might
seem inconsistent with a classic shade avoidance response. Soy-
bean does not always show increased length as part of their shade
avoidance response. On the one hand, Pausch et al. (1991) stud-
ied responses of soybean seedlings to low red : far-red light ratios
(R : FR) and found no increased stem length after 4 wk of
growth. This was consistent under both glasshouse and growth
chamber conditions. On the other, Green-Tracewicz et al. (2011,
2012) showed a clear stimulation of plant height by reduced R :
FR ratios in all vegetative stages of soybean development, whereas
this effect was lost upon transition to the reproductive phase.
Data from this field study were confirmed under controlled
growth chamber conditions (Green-Tracewicz et al., 2012). The
principal difference between the Pausch et al. (1991) study and
the two studies by Green-Tracewicz et al. (2011, 2012) is that the
latter lower R : FR in the light reflected from below through non-
interfering weeds, whereas Pausch et al. (1991) used filters to
lower R : FR of the incoming light from above. It remains to be
studied whether uniform low R : FR conditions (Pausch et al.,
1991) have a different impact on vegetative soybean plant height
than does a local R : FR decrease (Green-Tracewicz et al., 2011,
2012). Soybean carries the genes encoding phytochrome photo-
receptors (including PhyB) needed to detect R : FR (Wu et al.,
2013), which is consistent with the R : FR-driven changes in
branching (Green-Tracewicz et al., 2011, 2012) and FR-induced
changes in gene expression of etiolated soybean seedlings (Li
et al., 2011).

GSEA specifically identified ‘shade avoidance’ as an over-rep-
resented ontology (P = 0.003) among upregulated genes (Table
S3). Very few genes that were significantly up- or downregulated
in response to weeds were identified as differentially expressed in
a microarray analysis of Arabidopsis seedlings exhibiting shade
avoidance syndrome (Devlin et al., 2003). Indeed, only genes
encoding CYCLING DOF FACTOR 3 (Glyma17g10920/
AT3G47500) and GIBBERELLIN 20-OXIDASE 3
(Glyma06g16080/AT5G07200) were upregulated in both data-
sets (using similar criteria for significance of P < 0.05 all years)
and a gene encoding a NAD(P)-linked oxidoreductase superfam-
ily protein (Glyma01g24950/AT2G37770) and PLASMA MEM-
BRANE INTRINSIC PROTEIN 2 (Glyma16g27140/
AT2G37170) were significantly downregulated in both systems.
In a more recent publication (Leivar et al., 2012), 1216 Arabid-
opsis genes were found to be differentially expressed in simulated
shade (R : FR ratio of 6.48) following 24 h of treatment. A com-
parison of this dataset indicated that eight genes had sequence
similarity to our list of consistently differentially expressed tran-
scripts (in at least three of the 4 yr) from soybean. Included in
this comparison were genes encoding PIF3, HSP81-2, LTL1 (LI-
TOLERANT LIPASE 1), a haloacid dehalogenase-like hydrolase
encoding gene, the eukaryotic translation initiation factor SUI1,

a nodulin MtN21 family protein, BIP2, and a gene of unknown
function. However, only two genes (HSP81-2 and BIP2) had the
same expression trend (downregulation in response to weeds).
Additionally, in a study on Arabidopsis petioles responding to
increased FR light (Cerrudo et al., 2012; De Wit et al., 2013), 14
genes were commonly differentially expressed with five genes
(AT3G30180, BR6OX2; AT1G07570, APK1; AT4G23060, Q-
DOMAIN 22; AT1G01950, ARK2; AT5G65380, a MATE
efflux family gene) showing similar patterns of upregulated
expression. Thus, although shade avoidance responses resulting
from altered light quality are likely occurring in response to weed
presence, there may be other signals generated by weeds that
could evoke plant responses. For example, allelopathic com-
pounds produced by weeds could influence gene expression in
the crop. Likewise, volatile signals produced by the weeds may be
sensed by the soybean and could induce changes in gene expres-
sion or even modify the shade avoidance response (for a review of
volatile plant–plant signaling, see Kegge & Pierik, 2010). Addi-
tional experiments controlling for these factors are needed to
determine what effect, if any, these factors may have on the
changes in gene expression observed in our field-grown samples.
Finally, most microarray studies on shade avoidance have
addressed responses to low R : FR conditions. However, the soy-
bean interactions with weeds occur at high density with fully
grown plants that not only affect the R : FR, but also induce
reduction of blue light amounts and reduced light intensity.
These additional light signals are sensed through other photore-
ceptors (such as cryptochromes) and can regulate shade avoidance
responses through partially similar pathways compared with low
R : FR (Keller et al., 2011; Keuskamp et al., 2011). So far, it is
not well understood what the relative contributions of these dif-
ferent pathways are in determining the shade avoidance transcrip-
tome during competition with neighbors. We must also
acknowledge that we only examined a single variety, and there
are indications that different soybean varieties may respond dif-
ferentially to R : FR light ratios (Cober et al., 1996). Thus, addi-
tional observations to examine the response of other soybean
varieties are needed to confirm the generality of our observations.

Our results are highly correlated with the response of Arabid-
opsis to intraspecific competition (Geisler et al., 2012). As in Ara-
bidopsis we also observed upregulation of photosynthesis
processes in soybean as indicated in our GSEA and SNEA results.
We also observed a similar depression of defense response genes,
particularly those involved in JA signaling (Table 5). It has been
hypothesized that resource redirection to photosynthesis under
competition comes at the expense of defense pathways and that
this also might lead to reduced yield (Geisler et al., 2012). The
observed over-representation of ontologies associated with photo-
synthetic processes is the opposite of what we observed in earlier
studies on maize under weed stress (Moriles et al., 2012). Indeed,
classic shade avoidance responses were not observed in maize in
response to weed pressure in several related studies (Horvath
et al., 2006; Moriles et al., 2012), suggesting that maize may have
fundamentally different responses to weeds than soybeans. The
commonalities observed in both intraspecific competition in Ara-
bidopsis and interspecific completion in soybeans suggests hat
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perhaps that broadleaved (or perhaps C3) plants activate common
signaling response pathways when under weed stress. The com-
monalities in expression observed between Arabidopsis respond-
ing to itself and soybean responding to different weed species
give support to the possibility that the signaling mechanisms
implicated by our study may also be important signaling mecha-
nisms involved in planting density responses observed in soybean.
However, these hypotheses need testing.

Transcriptional regulators involved in shade avoidance

R : FR light signals are perceived and transduced by the photore-
ceptor phytochrome. In the model plant Arabidopsis, there are
several phytochrome receptors (PHYA, PHYB, PHYC, PHYD
and PHYE; Franklin, 2008). These various receptors have par-
tially overlapping roles in the shade avoidance syndrome, circa-
dian regulation, seed germination, and seasonal developmental
changes such as bud dormancy and flowering. Numerous addi-
tional components of the various signaling pathways altered by
phytochrome have been identified such as phytochrome interact-
ing factors (PIFs; Leivar & Quail, 2011; Hornitschek et al.,
2012; Li et al., 2012a,b), several other basic helix-loop-
helix (bHLH) transcription regulators (Sessa et al., 2005;
Roig-Villanova et al., 2007; Galstyan et al., 2011) and several
homeodomain-leucine zipper (HD-Zip) class-II subfamily tran-
scription factors (Steindler et al., 1999; Ruberti et al., 2011).
These transcription factors also interact with other hormonal sig-
naling networks including auxin, brassinosteroids, jasmonic acid
(JA) and gibberellic acid (GA) (reviewed in Ruberti et al., 2011;
Casal, 2012; Gommers et al., 2013).

In our study, one PIF3-like gene was consistently upregulated
in response to weed presence. PIF3 is a basic helix-loop-helix
transcription factor (Ni et al., 1998) that is regulated diurnally
primarily through post transcriptional mechanisms (Soy et al.,
2012). White light reduces PIF3 gene expression (Yamashino
et al., 2003) and abscisic acid (ABA) induces PIF3 in Arabidopsis,
whereas JA and salicylic acid (SA) have no effect (Li et al., 2012a,
b). In Arabidopsis, PIF3 binds to G-box motifs and interacts with
PHYB to regulate gene expression (Mart�ınez-Garc�ıa et al., 2000).
PIFs 4, 5 and 7 appear to play the most significant role in the
shade avoidance response of Arabidopsis (Keller et al., 2011;

Li et al., 2012a; Casal, 2013), however, the weed-induced PIF3
may be playing a functionally equivalent role in soybean in our
study, albeit without affecting height, targeting instead other
shade avoidance components such as branching. A phylogenetic
analysis of various PIF genes (using Clustal W) from soybean and
Arabidopsis indicates that the weed-induced PIF3-like gene from
soybean cluster scloser to PIF1, PIF4 and PIF7 from Arabidopsis
than to Arabidopsis PIF3 (PIF3a in Fig. 3), although the branch
point is unsupported. Other phylogenetic analyses (i.e. using the
Clustal Omega program) place these two weed-induced genes as
outliers. From this perspective, the observation of weed-induced
PIF3 expression was somewhat expected. However, PIFs are not
usually transcriptionally regulated by low R : FR conditions, but
rather regulated at the protein concentration through phosphory-
lation and degradation. This may suggest that PIFs could be reg-
ulated differently in soybean than in Arabidopsis, or that other
signals exist that do lead to enhanced expression (e.g. Zhong
et al., 2012).

The phylogenetic analysis also indicates that there are six
different PIF3 genes in soybean. Two additional genes cluster
with the weed-induced PIF3a gene. One, (designated as PIF3e)
showed very little change in expression in response to weeds.
The other is a likely paralog of the weed-induced PIF3a gene
(denoted as PIF3b in Figs 3, 4), and was upregulated in 2009,
2010 and 2011 samples, but was slightly downregulated rela-
tive to the control in 2008 (Table S2). This PIF3b gene also
was significantly upregulated in response to weeds either with
or without root-to-root contact between the weeds and the
soybean plants under glasshouse conditions (Fig. 3). Thus, it is
likely that this paralogous gene may have a similar role to
PIF3a during weed-induced stress responses. Other PIF3-like
genes in soybean were not all induced – indeed, two
(Glyma10g28290 and Glyma20g22280) showed consistent if
not significant downregulation (Table S2). Because of the
importance of PIFs in phytochrome responses, we hypothesize
that weed presence causes a shift in the expression of these
four genes that results in differential expression of downstream
targets. and altered growth and yield of soybean under weed
pressure. This hypothesis could be tested by engineering vari-
ant soybean types with these genes silenced. If such plants were
unresponsive to neighboring weeds compared with unaltered
soybean, the link between these specific genes and weed-
induced shade avoidance responses would be demonstrated.

In addition to the gene encoding PIF3-like transcription fac-
tors, we observed upregulation of a transcription factor encoding
gene similar to B-BOX DOMAIN PROTEIN 19 (BBX19). This
transcription factor has been associated with regulation of circa-
dian responses (Kumagai et al., 2008) and anthocyanin biosyn-
thesis (TAIR). BBX19 has also been associated with the shade
avoidance syndrome and is upregulated in Arabidopsis growing
under a canopy (Crocco et al., 2011). Thus, consistent upregula-
tion of this gene in response to weed pressure was expected.
However, BBX19 is a negative regulator of the R : FR response in
Arabidopsis (Kumagai et al., 2008). Thus the fact that it is upreg-
ulated following extended growth under low R : FR light regimes
may suggest that induction of this gene is part of a negative
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Fig. 4 Phylogenetic tree of the soybean (Glycine max) and Arabidopsis PIF
gene family.
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feedback loop that allows more normal growth in response to
weed pressure. Other well-known negative regulators of low R :
FR-induced shade avoidance in Arabidopsis include HFR1 and
PAR1 and -2 (Sessa et al., 2005; Roig-Villanova et al., 2007), but
these were not significantly induced in response to weed competi-
tion in our study. Altering the expression of BBX19 to see exactly
what role it has in soybean growth and yield when weeds are pres-
ent during the CWFP would provide additional information
about the precise role of this gene in weed-induced shade avoid-
ance.

MYB113 is another transcription factor associated with antho-
cyanin biosynthesis that was consistently differentially expressed
in response to weed pressure. MYB113 is upregulated in response
to various stresses (Ambawat et al., 2013) and mutations in this
gene negatively affect the accumulation of anthocyanins in Ara-
bidopsis (Gonzalez et al., 2007). The fact that it is downregulated
in response to weeds is consistent with the shade response because
anthocyanins are needed to protect the plant from high light con-
ditions. Consequently, it seems likely that downregulation of this
gene may simply be a response by soybean to denser canopies
associated with weed infestations.

The downregulation of a gene related to Arabidopsis HEAT
SHOCK TRANSCRIPTION FACTOR A2 (HSTFA2) was also
observed in our study. This transcription factor is involved in
positive regulation of numerous heat shock genes (Nishizawa-
Yokoi et al., 2009). One other observation that suggests
functional cross-talk between many of these weed-responsive
transcription factors is the observation that BBX18, which antag-
onizes the heat shock response, is induced by heat stress (Wang
et al., 2013). HSTFA2 is also upregulated in response to oxidative
stress (Nishizawa et al., 2006). Thus, the fact that it is downregu-
lated in our study was unexpected because GSEA indicated that
various ontologies associated with oxidative stress were over-rep-
resented among genes that are upregulated by weed stress. How-
ever, the coordinate downregulation of numerous heat shock
genes is consistent with a downregulation of protein production
as noted by over-representation of ontologies such as structural
constituents of ribosome, translation, endoplasmic reticulum
lumen, among others noted as repressed in the GSEA. Recently
there were several reports linking the high-temperature response
to PIF4 function in Arabidopsis (Karayekov et al., 2013; Prove-
niers & Van Zanten, 2013). However, in Arabidopsis, PIF4 is
positively associated with heat shock induction. Thus, the down-
regulation of these heat shock genes in response to weed stress
was not expected. The functional significance of this observation
is a mystery. However, of the 1216 genes identified in Arabidop-
sis as differentially expressed in response to 24 h simulated shade,
15 were heat shock genes, nine of which were downregulated
(Leivar et al., 2012).

Hormone responses associated with weed stress

Among the hormones identified by GSEA as associated with the
weed response, the most significant associated with upregulated
genes were SA, followed by GA, JA, karrikin, brassinosteroids,
auxin, ethylene, phytochrome, ABA and cytokinin, in that order.

Many of the hormones associated with genes that were upregulat-
ed by weed stress have been previously associated with the shade
avoidance syndrome. GA and brassinosteroids, (Chory & Li,
1997) have long been associated with increased shoot growth and
etiolation responses commonly associated with the shade avoid-
ance syndrome. Likewise, recent studies on shade-induced elon-
gation growth have identified a major involvement of auxin in
this process (e.g. Carabelli et al., 2007; Tao et al., 2010;
Keuskamp et al., 2011). Plants exhibiting the shade avoidance
syndrome also show less branching, which corroborates the
importance of auxins in the shade avoidance syndrome (Morelli
& Ruberti, 2000; Green-Tracewicz et al., 2011). In tobacco, the
shade avoidance syndrome was shown to be inhibited in mutants
that have reduced response to ethylene, and this response was
dependent on the plants’ ability to respond to GA (Pierik et al.,
2004). Although both hormones are also involved in shade avoid-
ance regulation in Arabidopsis, ethylene action does not seem to
rely on GA in this species (Pierik et al., 2009). Despite the GSEA
association of GA with genes upregulated by weed stress, we
identified only two genes that regulate GA concentrations as sig-
nificantly upregulated with the same expression trend in all four
years. Expectedly, one was a GA20ox3-like gene. GA20ox genes
encode proteins that play a role in production of active GA and
have been shown to be low R : FR-inducible in Arabidopsis
(Hisamatsu et al., 2005). The anticipated enhanced endogenous
GA concentrations might lead to degradation of growth-inhibit-
ing DELLA proteins to facilitate shade avoidance growth (Djako-
vic-Petrovic et al., 2007). However, the other consistently
upregulated gene was a GA2-ox8-like gene known to be involved
in GA catabolism (Hedden & Phillips, 2000). This observation
suggests that there may be a negative feedback response active in
controlling the concentrations of GA production in response to
weed stress.

The strong response of genes associated with SA among genes
upregulated by weed stress was notable. SA is generally involved
in plant responses to pathogens and acts by inducing biosynthesis
of defense chemicals such as phytoalexins and reactive oxygen
species (ROS), primarily hydrogen peroxide (H2O2; Torres,
2010). Consistent with this association, GSEA also identified
numerous ontologies associated with oxidative stress as being sig-
nificant among genes upregulated by weed-induced stress. Earlier
transcriptomics studies on weed responses of corn to weed stress
found the opposite response to oxidative stress responses follow-
ing season-long weed stress (Horvath et al., 2006). However,
studies on shade avoidance in maize seedlings indicated that
H2O2 production was stimulated by weed presence (Afifi &
Swanton, 2012). It will be interesting to examine the expression
of these weed-responsive genes to see how early they are induced
and whether their expression pattern continues if weeds are
removed during or after the CWFP. Previous work on other
plant systems has also found an association with plant defense
responses and shade avoidance signaling (reviewed in Ballar�e,
2014), but these studies unanimously showed downregulation of
defense concurrent with the shade avoidance syndrome. This
observation suggests that, as in the case with antagonistic interac-
tions between SA and JA (Spoel & Dong, 2008), weed stress may
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enhance soybean resistance to disease, while making it more
vulnerable to insect attack. However, a recent study of Arabidop-
sis responses to low R : FR showed that both the SA- and JA-
mediated defense routes are inhibited by low R : FR at both the
transcriptome and functional defense concentrations (De Wit
et al., 2013). Also, Masclaux et al. (2012) identified an induction
of defense-related transcripts by competition and showed that
feeding by Spodoptera littoralis larvae was reduced by competition
at high and low planting density in Arabidopsis. Thus, it appears
that even though low R : FR conditions downregulate defenses,
the complex environment of plant competition – involving a
variety of other signals – may change and sometimes even over-
rule these patterns.

In conclusion, we have identified consistent changes in gene
expression, such as induction of the soybean PIF3-like gene,
that implicate phytochrome signaling as being involved in early
season weed responses of soybean. These changes in gene
expression occur concordantly with the CWFP, and functional
analyses of similar genes in Arabidopsis are consistent with the
role of the soybean PIF3 genes in a shade avoidance response
that could alter growth and development in ways leading to
reduced soybean yields. Based on gene set enrichment analysis
and the probable function of the consistently differentially
expressed genes, we hypothesize that weeds induce a shade
avoidance response in soybean very early in the growing cycle,
before direct competition for resources would occur. This
response is likely to be mediated through reduced R : FR light
ratios and the resultant signal transduction and altered gene
expression. Reduced R : FR resulting from weed presence could
be responsible for the observed weed-induced PIF3 gene(s)
expression. However, additional studies that examine the nature
of the signal and quantitation of classic shade avoidance
responses such as reduced branching are needed to confirm this
hypothesis. Given that many of the deleterious responses of soy-
beans to weeds, such as reduced yield and increased lodging,
could be explained by the developmental changes induced by a
shade avoidance response such as early flowering, elongated
stems and reduced leaf area, reducing expression of these weed-
induced PIF3 genes could reduce the response of soybeans to
weeds. Indeed, over 30 yr ago, manipulating the shade avoid-
ance response was suggested as a means to improve weed toler-
ance in crops (Smith, 1992). However, if weeds remain later in
the season, direct competition for resources may also play a sig-
nificant role in weed-induced yield losses. Additional work will
be required to determine the relative effect of competition for
resources (if any) and altered plant development (shade
avoidance responses) have on yield losses in soybean, and if the
weed-induced PIF3 genes play any significant role in these
processes.
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