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Abstract
Central Asia has been rapidly changing in multiple ways over the past few decades. Increases in
temperature and likely decreases in precipitation in Central Asia as the result of global climate change
are making one of the most arid regions in the world even more susceptible to large-scale droughts.
Global climate oscillations, such as the El Niño–Southern Oscillation, have previously been linked to
observed weather patterns in Central Asia. However, until now it has been unclear how the different
climate oscillations act simultaneously to affect the weather and subsequently the vegetated land
surface in Central Asia. We fit well-established land surface phenology models to two versions of
MODIS data to identify the land surface phenology of Central Asia between 2001 and 2016. We then
combine five climate oscillation indices into one regression model and identify the relative
importance of each of these indices on precipitation, temperature, and land surface phenology, to
learn where each climate index has the strongest influence. Our analyses illustrate that the North
Atlantic Oscillation, the East Atlantic/West Russia pattern, and the Atlantic Multi-Decadal Oscillation
predominantly influence temperature in the northern part of Central Asia. We also show that the
Scandinavia index and the Multivariate ENSO index both reveal significant impacts on the
precipitation in this region. Thus, we conclude that the land surface phenology across Central Asia is
affected by several climate modes, both those that are strongly linked to far northern weather patterns
and those that are forced by southern weather patterns, making this region a ‘climate change hotspot’
with strong spatial variations in weather patterns. We also show that regional climate patterns play a
significant role in Central Asia, indicating that global climate patterns alone might not be sufficient to
project weather patterns and subsequent land surface changes in this region.

Introduction

Central Asia is one of the most arid regions in the
world with a large fraction of the population relying
directly on agriculture and pastoralism, making these
people especially vulnerable to drought (Reyer et al
2017). The land surface of Central Asia has experienced
tremendous changes over the last three decades both
as a result of human impacts and due to a changing
and variable climate. The predominant human driven
change was the fundamental transformation of agricul-
tural systems across large swaths of the land surface as a
result of the collapse of the Soviet Union between 1991
and 2000 (de Beurs et al 2015, Lioubimtseva et al 2015,

de Beurs and Henebry 2004), followed by a period of
recovery (Lioubimtseva et al 2015, Lioubimtseva et al
2013). The area is still affected by land degradation
as a result of abandonment in some areas (Tüshaus
et al 2014), as well as a result of salinization in other
regions (Sommer et al 2013). Climate models are
predicting increases in temperature and decreases in
summer precipitation in the western part of Central
Asia (Lioubimtseva 2015, Lioubimtseva et al2015) with
slight increases in winter precipitation in the eastern,
more mountainous regions (Lioubimtseva et al 2015,
Hu et al 2016). In fact, increases in temperature and
decreases inprecipitation are already evident, especially
in the western part of Central Asia (Lioubimtseva et al
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2015, Hu et al 2016), making the region increasingly
prone to droughts (Barlow et al 2016). For example, the
hot summer of 2010 provides an example of a ‘mega-
heatwave,’ occurrences which are predicted to increase
by a factor of 5–10 (Barriopedro et al 2011). This par-
ticular heat event at least partly resulted from a strong
deficit of January to July precipitation, and the result-
ing lack of water availability exacerbated the strength
of the heat wave (Barriopedro et al 2011). While the
major heat dome was located north of Central Asia,
Kazakhstan was affected by increased temperatures,
breaking summer heat records.

We have defined land surface phenology as the
spatio-temporal pattern of the vegetated land surface
as observed by synoptic sensors (de Beurs and Hene-
bry 2004, de Beurs and Henebry 2005, Henebry and
de Beurs 2013). We have previously shown that land
surface phenology metrics can be used to demonstrate
the effect of large scale institutional changes (de Beurs
and Henebry 2004), as well as changes resulting from
climate impacts (e.g. de Beurs and Henebry 2010). In
Central Asia, land surface phenology has been linked
with climate and winter, spring and summer precip-
itation have been shown to be strong drivers of the
land surface phenology (Kariyeva et al 2012, Kariyeva
and van Leeuwen 2011). Temperature was shown to
affect spring and peak vegetation timing, and higher
temperatures were linked to a decrease in vegetation
productivity (Kariyeva et al 2012). Temperature was
also found to be a main driver for mountainous veg-
etation variability as well as vegetation variability on
irrigated lands (Dubovyk et al 2016). Some have argued
that the relative importance of climatic variables and
land management practices should be analyzed in more
detail (Dubovyk et al 2016).

Large scale climate oscillations have been demon-
strated to correlate directly with both temperature and
precipitation, which, in turn, influence land surface
properties such as land surface phenology (Hurrell
1995, Barlow et al 2002, Syed et al 2006, Deser et al
2012). We have previously shown that fluctuations in
land surface phenology in the northern hemisphere can
be linked significantly to the Northern Atlantic Oscil-
lation as well as the Arctic Oscillation (de Beurs and
Henebry 2010, de Beurs and Henebry 2008). In addi-
tion, we earlier demonstrated that the North Atlantic
Oscillation (NAO) significantly impacts the land sur-
face in the northern portions of Central Asia (Wright
et al 2014), being at least partly responsible for the 2010
heat wave that significantly affected agricultural pro-
duction. Some have argued that this heat wave and the
coinciding major flooding that occurred in Pakistan
were meteorologically connected (Lau and Kim 2012).

Several studies have identified significant effects
from a diverse set of climate oscillation patterns on
precipitation and temperature in Central Asia. For
example, some have speculated that the prolonged La
Niña between 1998 and 2001 resulted in extraordi-
nary droughts in the region during those years (Barlow

et al 2002), and that both NAO and the El Niño–
Southern Oscillation (ENSO) play a significant role
in winter precipitation in the southern parts of Central
Asia (Syed et al 2006). As a result, it is perhaps not
surprising that (Chen et al 2016) identified a signifi-
cant correlation between El Niño (NINO4) and burned
areas in the grasslands of Central Asia. Others indi-
cate that the warm phase of the Atlantic Multidecadal
Oscillation (AMO) can significantly affect the Indian
monsoon rainfall, which affects the southern part of
Central Asia (Li et al 2008). Yet others found that the
Scandinavian (SCAND) and East Atlantic/West Rus-
sia (EAWR) patterns reveal the most significant effect
on regional precipitation in the southeastern part of
Central Asia (Bothe et al 2012).

Here our goal is to understand how the differ-
ent climate oscillations act simultaneously to affect
the weather and subsequently the land surface phenol-
ogy. We first determine the correlation between large
scale climate oscillations and a set of climate variables.
Instead of analyzing one or two of the most prevalent
indices as presented in the literature, we simultane-
ously analyze five climate oscillations that have been
shown to affect the region. We use correlation-adjusted
correlation (CAR) scores to determine the relative
importance of each of the indices on the landscape
(Zuber and Strimmer 2011). We also link the most
significant climate oscillations directly with land sur-
face phenology metrics focused on growing season
productivity using CAR scores. Collection 6 of the
MODIS data was released in the fall of 2015. Some
papers have highlighted significant sensor degrada-
tion in collection 5 and notable differences between
time series in collections 5 (V005) and 6 (V006)
(Wang et al 2012, Zheng and Zhu 2017, Lyapustin
et al 2014). In this paper we evaluate the land surface
phenology for these two collections, and we investi-
gate how well the land surface phenology results from
the two collections correlate with large scale climate
indices. As described above, global climate oscillations
have previously been linked to observed weather pat-
terns in Central Asia. However, until now it has been
unclear how the different climate oscillations interact to
affect precipitation and temperature and subsequently
the vegetated land surface in Central Asia.

Study region

We identify Central Asia as the region including
five countries: Kazakhstan, Kyrgyzstan, Tajikistan,
Turkmenistan, and Uzbekistan. The total area is
approximately 4millionkm2 withclimate ranging from
cold drylands and dryland forests in the north to dry,
hot deserts in the south. The annual average rainfall
in the region ranges from 100 mm in central Kaza-
khstan around the Caspian Sea to about 550 mm in
the montane areas of Tajikistan. The population den-
sity in Central Asia ranges from virtually no people per
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km2 in desert areas to as many as 12 000 people per
km2 in the Ferghana Valley of Uzbekistan (Dobson
et al 2000). The total population in 2015 was about
68.5 million, with the majority of people in Uzbek-
istan (31 million), which also has the highest average
population density (69 km−2), followed by Tajikistan
(60 km−2). Kazakhstan has the lowest average popula-
tion density of 6.3 km−2.

Data

Climate oscillation data
We analyze the effect of five different climate oscilla-
tion patterns that have been identified as impacting the
land surface in Central Asia. The SCAND pattern, also
identified as Eurasia-1, has been shown to significantly
affect spring temperatures over central Eurasia (Barn-
ston and Livezey 1987). The East Atlantic/West Russia
pattern (EAWR) is also identified as the Eurasia-2 pat-
tern (Barnston and Livezey 1987). The positive phase
of EAWR is associated with below average temper-
atures in Western Russia. Besides these two climate
patterns that are specifically linked to Eurasia, we
also investigate the Atlantic Multi-Decadal Oscilla-
tion (AMO, Schlesinger and Ramankutty (1994), the
North Atlantic Oscillation NAO Hurrel (1995), and
the El Niño-Southern Oscillation (ENSO). We use
the Multivariate ENSO Index (MEI, Wolter and Tim-
lin 1998) to track the ENSO dynamics. The AMO is
variability expressed in sea surface temperatures in
the North Atlantic Ocean. AMO is a multi-decadal
oscillation that has been predominantly in a positive
phase since the late 1990s (Schlesinger and Ramankutty
1994).

The NAO, EAWR, and SCAND indices were
obtained from the National Weather Service Cli-
mate Prediction Center (Climate Prediction Center
2018). AMO was obtained from NOAA’s Earth System
Research Laboratory (Earth System Research Labo-
ratory 2018a). The MEI is based on six variables
observed over the Pacific Ocean. This time series was
also downloaded from NOAA’s Earth System Research
Laboratory (2018b). Each climate index, except MEI,
was provided as a monthly index, which we summa-
rized into seasonal indices by calculating the average
for winter (DJF), spring (MAM) and summer (JJA).
MEI was provided as a bimonthly index (e.g. DEC-
JAN), which we summarized in similar seasons as the
other indices. We are not presenting the results for the
fall season, because we are interested in the potential
predictive capability of the climate indices on the peak
of the growing season, which for this area occurs in
the late spring or summer. An overview of the spring
indices (MAM) since 2001 can be found in figure 1.
Table 1 provides the Spearman correlation between
these individual indices. A significant negative cor-
relation is revealed between spring AMO, NAO and
EAWR indices. There is a significant positive correla-

tion between NAO and EAWR. Since for each index we
provide the correlation of three different seasons (DJF,
MAM and JJA), table 1 also reveals the autocorrelation
between the different seasons. For example, the auto-
correlation between EAWR in winter (DJF) and spring
(MAM) is 0.40, and we find a significant autocorre-
lation of 0.48 between spring and summer. The slow
moving AMO index reveals the most consistent sea-
sonal autocorrelation, with significant autocorrelations
betweenAMO inwinter and spring (0.50) and in spring
and summer (0.58). The MEI also reveals a significant
correlation between winter and spring (0.74).

Gridded precipitation and temperature data (2001–
2016)
We obtained high-resolution gridded temperature and
precipitation data from the Climatic Research Unit
(CRU TS v.4.01), which covers all global land areas
monthly at 0.5◦ resolution (Harris et al 2014, Harris
and Jones 2017). While we only present results based
on mean temperature (tmp) and mean precipitation
(pre), we also tested our analyses for the minimum and
maximum temperatures (tmn and tmx). We summa-
rized all the monthly data into seasonal averages for
precipitation and temperature maintaining the same
seasons as described for the climate indices.

MODIS Nadir BRDF-adjusted reflectance (NBAR)
and land surface temperature Data
We used the MODIS MCD43C4 NBAR collection 5
and collection 6 (V005/V006) products to determine
the Normalized Difference Vegetation Index (NDVI)
for each eight-day period between 2001 and 2016.
This dataset is produced at 0.05◦ spatial resolution.
The MCD43C4 product is a nadir BRDF (bidirectional
reflectance distribution function)-adjusted reflectance
product that we have used in several previous studies
to determine the land surface phenology (de Beurs and
Henebry 2008, de Beurs et al 2015). Each eight-day
observation is based on 16 d of data that are used to
create the BRDF model (Schaaf et al 2002, Liu et al
2016). Besides the optical data, we also use MODIS
Land Surface Temperature data (MOD11C2). This
dataset is also delivered at the 0.05◦ spatial resolution
and eight-day time step. For each year and time step,
we first calculated the growing degree-days as follows,
where we set the growing degree-days to zero if the
average between the day and night temperature is less
than 0 ◦C:

GDD =
Tempday + Tempnight

2
> 0. (1)

In a subsequent step, we summed the number of grow-
ing degree-days for each composite by year to create an
annual accumulated growing degree-day product:

AGDD𝑡 = AGDD𝑡−1 + GDDt (2)

where, for t = 1, the AGDDt = GDDt .
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Figure 1. Climate oscillation indices (MAM) between 2001 and 2016. Note that the y-axes are not standardized across graphs for
clarity of the patterns.

Table 1. Spearman correlation between the climate oscillation indices. Bold indicates p< 0.10, ∗ indicates p< 0.05.

NAO EAWR AMO SCAND MEI

DJF MAM JJA DJF MAM JJA DJF MAM JJA DJF MAM JJA DJF MAM

NAO MAM −0.01 1.00
JJA −0.29 −0.32 1.00

EAWR DJF 0.17 −0.01 0.47 1.00
MAM −0.32 0.46 0.32 0.40 1.00
JJA 0.24 0.18 −0.26 0.11 0.48 1.00

AMO DJF 0.01 0.29 0.20 0.36 −0.08 −0.55∗ 1.00
MAM −0.08 −0.51∗ 0.16 0.19 −0.55∗ −0.58∗ 0.50 1.00
JJA 0.03 −0.59∗ −0.09 −0.11 −0.61∗ −0.31 0.00 0.58∗ 1.00

SCAND DJF −0.36 −0.59∗ 0.10 −0.43 −0.31 −0.08 −0.59∗ 0.11 0.40 1.00
MAM −0.27 0.06 0.36 0.29 0.26 −0.29 0.39 0.12 0.13 −0.22 1.00
JJA −0.24 −0.17 0.15 −0.02 −0.13 −0.11 0.09 0.09 −0.24 0.19 −0.19 1.00

MEI DJF 0.06 −0.15 0.33 0.23 −0.16 −0.51∗ 0.40 0.49 0.32 −0.20 0.41 −0.41 1.00
MAM 0.47 −0.05 0.00 −0.05 −0.40 −0.37 0.20 0.14 0.30 −0.27 0.15 −0.46 0.74∗ 1.00
JJA 0.53∗ 0.30 −0.18 −0.10 0.18 0.44 −0.34 −0.68∗ −0.15 −0.16 −0.09 −0.23 −0.23 0.23
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Methods

Land surface phenology
We used AGDD and NDVI to create annual land sur-
face phenology models by fitting a simple quadratic
model for each pixel as follows:

NDVI = 𝛼 + 𝛽AGDD − 𝛾AGDD2

where 𝛼, 𝛽 and 𝛾 are the quadratic parameters fit. To
find the best fitting model, we started with the longest
possible duration, which in this case consists of 468 day
observations. In subsequent steps, we decreased the
number of observations included, e.g. from 46 to 45,
to 44, and so forth. In addition, we shifted the shorter
candidate models within the available time period, e.g.
there are two possible candidates for a model with
length 45 (1–45 and 2–46). We repeated this proce-
dure of shrinking the model duration, and shifting the
candidate models along the available period until we
found a model with an adjusted coefficient of determi-
nation (R2

adj) larger than our predefined threshold of

0.90 (figure 2). If no model with an R2
adj was found

for a particular pixel, the model with the highest R2
adj

and a minimum length of ten observations (80 d) was
selected. We repeated this procedure at each pixel for
each year. Once we had a well-fitting model at each
pixel for each year, we used the fitted parameter coef-
ficients to calculate 1) the number of accumulated
growing degree-days necessary to reach the peak of the
growing season (figure 2), which we labeled ‘thermal
time to peak’ (TTP) and 2) the NDVI value at the
peak of the growing season, which we labeled ‘peak
height’ (PH). The peak height typically fluctuates with
droughts, e.g. higher temperatures and/or lower pre-
cipitation amounts. In a year with lower amounts
of precipitation, the peak height tends to be lower,
because the growing season is less productive. The peak
height can also change as a result of anthropogenic
change. For example, crop changes or changes in irri-
gation patterns can have an effect on the peak height.
Population increases leading to urban expansion and
increases in the impervious surface can also affect peak
height. The final result consisted of 16 separate maps
of TTP and PH across the study region, one for each
year from 2001–2016.

Spearman rank correlation
Spearman rank correlation allows for correlations that
are not linear and is relatively robust against outliers
(Lehmann and D’Abrera 1998). We used the Spearman
rank correlation to test a variety of different relation-
ships.

1. Wecalculated theSpearmancorrelationbetween the
mean spring and summer temperatures and precip-
itation and each of the winter, spring, and summer
climate indices (e.g. NAO/JJA).

2. We linked the PH with each of three seasons for
each of five climate oscillation indices, resulting in a
series of 15maps forPH,one for each season/climate
oscillation combination (e.g. DJF/NAO), for each
MODIS version (V005/V006).

For each final map, we calculated the percentage of
pixels with a significant correlation (p< 0.10).

Multiple linear regression
Finally, we used as independent variables in a multi-
ple linear regression model, every climate oscillation
index that showed a significant correlation with PH
in at least 10% of the Central Asian land surface. To
determine the best fitting model, we tested all combina-
tions of regression models, e.g. ranging from a model
incorporating every independent variable, to models
incorporating just one independent variable. We then
ranked themodels according to their R2

adj and, for each

pixel, we selected the model with the highest R2
adj.

For each pixel and variable, we also determined
the CAR score, which is a criterion for variable
ranking in linear regression based on the Mahalanobis-
decorrelation (Zuber and Strimmer 2011). The method
to determine the CAR score uses the marginal corre-
lations adjusted for the correlation among explanatory
variables, which is useful in this case because some
climate indices are correlated (table 1). CAR scores
have been effective both in small and large sam-
ple cases and can also be used when the number of
variables is much larger than the number of observa-
tions (Bocinsky and Kohler 2014). Since we applied
these multiple linear regression models by pixel, each
model was based on just 16 observations (2001 through
2016) and up to seven climate indices (e.g. including
those from different seasons) as explanatory variables.
CAR scores may ultimately be viewed as a varia-
tion of the partial correlation coefficients specifically
tuned for multivariate situations with correlated vari-
ables (Zuber and Strimmer 2011). We present maps
of CAR scores for each climate oscillation index that
revealed significant correlations across at least 10%
of the land surface.

Results and discussion

We evaluate the results of the land surface phenology
model for Central Asia by analyzing the R2

adj, which
summarizes the fit for the quadratic model. We masked
approximately 12% of the pixels for the models from
both collection 5 (11.5%) and collection 6 (12.4%),
where the pixels were open water or where the annual
variability in NDVI was so low that we were unable
to find a well-fitting model. The combined mask for
both collections covered 13.45% (541 575 km2) of the
study area. After masking the regions with no model,
which are mainly found in the driest deserts, we found
that for both collections, 75% (2 613 757 km2) of the
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Figure 2. Average R2
adj for the land surface phenology models based on MODIS C006 (top) and the average peak height for the

land surface phenology models based on MODIS C005 (middle). The bottom figure reveals the z-score for the difference between the
peak height based on V005 and V006. High positive z-scores indicate significantly higher peak height values in collection 6. Higher
differences are found in the forested regions just outside of our study region and in the montane areas of Kyrgyzstan and Tajikistan.
Grey areas are a result of failing land surface phenology models. These areas are mainly located over the driest deserts. Water is masked
with data based on the year 2000.

study area revealed an average model fit with an R2
adj

of at least 0.90, and 99.7% (3 474 554 km2) of the study
area had an average R2

adj of at least 0.80. These results
indicate that the quadratic models fit the observed land
surface phenology very well (figure 2). Note that the
differences in model fits between V005 and V006 were
so small that we only present figures for V006.

The average PH over the 16 years (figure 2) reveals
anexpectednorth-southpatternoverCentralAsia,with
higher NDVI at the peak of the growing season for the
northern wheat growing regions of Kazakhstan, gradu-
ally declining toward the more arid areas. The riparian
irrigated areas around theSyrDarya and theAmuDarya
in southern Kazakhstan and northwestern Uzbekistan
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Figure 2. Continued.

also reveal moderate NDVI values, as do the highland
pastures and croplands of Kyrgyzstan and Tajikistan.
Higher PH values are also found in the crop growing
region of southern Turkmenistan at the Afghanistan
border. The results are almost identical between V005
and V006 for most of our study regionwith the Z-scores
close to 0, except for the forested regions just north of
Kazakhstan, where a significantly higher PH is found
for V006, with Z-scores above 2 (figure 2).

Univariate climate oscillation impacts on
precipitation and temperature

Tables 2 and 3 report the percentage of land area sig-
nificantly affected by any of the five climate indices. We
analyzed the effect of each of these climate indices indi-
vidually, e.g. without considering the impact of any
other index. We first present the correlation results
for spring temperature and precipitation with winter
and spring climate indices. AMO, EAWR and NAO
each exert significant influence on spring temperature
over more than 10% of the study area, with the most
widespread effects (>48%) being a negative correlation
between temperature and the spring EAWR and spring
NAO indices (table 2). Both SCAND and MEI asso-
ciate with precipitation effects across a broad area: the
winter MEI and spring SCAND indices are each pos-
itively correlated with spring precipitation for nearly
half of the study area, and spring MEI is positively
correlated with more than a quarter of the land area
(table 2).Thegeneral pattern in the summer reveals that
AMO, EAWR, and NAO primarily affect temperature,

whereas SCAND and MEI primarily affect precipita-
tion (table 3).However, springSCANDhas a significant
negative influence on summer temperatures in more
than half of the land surface, perhaps linked to the pre-
cipitation response in the spring. For example, when
spring SCAND is highly positive, spring precipitation
is above average (significant positive correlation for
49% of the land surface, table 2), and summer temper-
ature is below average (significant negative correlation
for 50% of the land surface). While there is a strong
correlation between winter and spring MEI and spring
precipitation, the relation between these indices and
summer precipitation is much weaker.

Univariate climate oscillation impact on land
surface phenology

Since we are evaluating five different climate oscillation
indices (AMO, EAWR, NAO, SCAND, MEI), during
three different seasons (DJF, MAM, JJA) and two dif-
ferent collections (5 and 6), there are 30 (5× 3× 2)
different mapping combinations. For each of the
combinations, we investigate whether the correlation
between the climate index and phenological metric is
significant (p< 0.10). Table 4 reports the total percent-
age of land area with a significant correlation between
the peak height of the growing season as measured
by NDVI and the climate oscillation index during any
season.

Table 4 reveals very similar patterns in the correla-
tions between V005 and V006. Both collections reveal
the largest percentageof significant correlationbetween
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Table 2. (a) Percentage of land area and (b) land area in 1000 km2

exhibiting Spearman correlation between seasonal (winter or spring)
climate oscillation index and either spring temperature or spring
precipitation. Numbers in bold indicate correlation is significant at
p<0.10 across at least 10% of the study area.

(a) Area % SPRING DJF MAM

– + – +

AMO Temperature 0 <1 0 18
Precipitation 0 14 3 3

EAWR Temperature 0 0 48 0
Precipitation <1 1 0 5

NAO Temperature 0 29 49 0
Precipitation 2 0 0 12

SCAND Temperature 0 <1 0 0
Precipitation 17 0 0 49

MEI Temperature <1 0 <1 0
Precipitation <1 49 1 28

(b) Area 1000 km2 SPRING DJF MAM

− + − +

AMO Temperature 0 2 0 707
Precipitation 0 566 119 102

EAWR Temperature 0 0 1940 0
Precipitation 9 50 0 212

NAO Temperature 0 1146 1979 0
Precipitation 95 0 0 490

SCAND Temperature 0 030 0 0
Precipitation 683 0 0 1977

MEI Temperature 33 0 26 0
Precipitation 37 1963 58 1112

Table 3. (a) Percentage of land area and (b) land area in 1000 km2

exhibiting Spearman correlation between seasonal (winter or spring
or summer) climate oscillation index and either temperature or
precipitation in summer. Numbers in bold indicate correlation is
significant at p< 0.10 across at least 10% of the study area.

(a) Area % SUMMER DJF MAM JJA

– + – + – +

AMO Temperature 0 0 0 2 0 19
Precipitation <1 12 <1 3 <1 2

EAWR Temperature 15 0 81 0 <1 0
Precipitation 0 4 <1 <1 1 <1

NAO Temperature 0 56 0 0 89 0
Precipitation 1 <1 <1 2 <1 6

SCAND Temperature <1 0 50 0 <1 0
Precipitation 8 0 3 19 14 0

MEI Temperature 4 0 0 0 0 0
Precipitation 0 17 <1 6 1 0

(b) Area 1000 km2 SUMMER DJF MAM JJA

− + − + − +

AMO Temperature 0 0 0 100 0 784
Precipitation 15 486 4 102 37 95

EAWR Temperature 594 0 3266 0 0 0
Precipitation 0 154 17 13 46 24

NAO Temperature 0 2239 0 0 3586 0
Precipitation 56 37 6 63 26 230

SCAND Temperature 15 0 2026 0 17 0
Precipitation 308 0 132 765 581 0

MEI Temperature 147 0 0 0 0 0
Precipitation 0 670 28 256 58 0

Table 4. (a) Percentage of land area and (b) land area in 1000 km2

exhibiting Spearman correlation between seasonal (winter or spring
or summer) climate oscillation index and the peak height from either
MODIS collection 5 or 6. Numbers in bold indicate correlation is
significant at p<0.10 across at least 10% of the study area. Data with
ill-fitting models were masked and data were constrained to only the
pixels in the Central Asia countries in the study area.

(a) Area % DJF MAM JJA

– + – + – +

AMO V005 <1 18 1 4 10 2
V006 <1 18 1 5 10 2

EAWR V005 1 14 3 8 6 1
V006 2 10 4 5 7 <1

NAO V005 1 7 <1 7 <1 14
V006 <1 9 <1 8 1 10

SCAND V005 28 <1 <1 28 15 2
V006 26 <1 <1 25 16 2

MEI V005 <1 36 <1 26 1 3
V006 <1 35 <1 29 1 4

Area 1000 km2 DJF MAM JJA

− + − + − +

AMO V005 5 638 52 153 351 70
V006 6 630 52 165 334 76

EAWR V005 37 489 93 261 226 41
V006 75 350 144 183 258 30

NAO V005 42 248 18 235 24 478
V006 35 301 14 286 51 342

SCAND V005 964 6 15 973 537 70
V006 921 7 19 878 551 60

MEI V005 12 1265 25 922 39 122
V006 11 1227 23 1004 38 136

the winter and spring MEI and the peak of the growing
season, followed by winter and spring SCAND indices.
The next most important climate index was the winter
AMO index, which reveals a significant positive corre-
lation with the NDVI peak height in 18% of the land
area (V005). Most other combinations reveal smaller
areas with significant correlations (<10%), with the
exception of the slightly larger percentages of signifi-
cant correlations between winter EAWR and the peak
height (14%, 10%), and summer NAO and the peak
height (14%) in V005.

Multivariate climate oscillation impacts on
weather and land surface phenology

Figure 3 provides the R2
adj for the multiple regression

model between all significant climate indices (table 4)
and the peak height of the growing season (V006).
Most of the significant correlations can be found in
the central portion of Kazakhstan with other signifi-
cant models in the southern parts of Central Asia. Note
that the northern wheat growing region of Kazakhstan
shows no significant multi-regression model with the
climate indices (areas in white on figure 3). We expect
that this results from the direct human influence on
cultivation and fallow periods, which directly affects
the NDVI peak height. As a result of the relatively
short study period (16 years), other fluctuations such as
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Figure 3. The R2
adj for the models with peak height as the response variable and the climate oscillation indices as the independent

variables reveals that the climate oscillation variables explain more than 40% of the variability in the peak height for much of the area
of Central Asia. White regions are areas where the p-value of the best fitting model is greater than 0.05, indicating that no significant
model was found combining any of the climate indices as explanatory variables. Dark grey areas were excluded from the analysis due
to extreme aridity/lack of vegetation signal.

Figure 4. Impact of the AMO index on the summer and spring temperature, as well as the summer and spring precipitation. Most of
AMO’s influence on the NDVI peak height is visible in the southwestern part of Central Asia, mainly driven by AMO’s influence on
summer precipitation.

human impacts can significantly impact the land sur-
face phenology and, consequently, impact the strength
of the correlation (deBeurs andHenebry 2004, deBeurs
and Ioffe 2014). (Kariyeva et al 2012) also demon-
strated that the relationship between temperature and
precipitation variables with land surface phenology is
less clear in areas dominated by irrigated agriculture.

Interestingly, for our short time period of 16 years, we
find stronger correlations between the climate indices
and the land surface phenology in the irrigated regions
than in the northern, rain-fed croplands. We suspect
that lower correlations are visible in these northern
croplands as a result of the prevalence of hard fal-
low periods, where there are no crops on the land,
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Figure 5. Impact of the EAWR index on the spring and summer temperature, as well as the NDVI peak height. It is interesting to
note that while EAWR significantly impacts the land surface phenology just northwest of Kazakhstan, EAWR is less important for the
temperature in that area.

that change the final correlations (de Beurs and Ioffe
2014). Figures 4 through 8 present the CAR scores or
importance results for each climate oscillation index.
Note that these figures correspond to the highlighted
results in tables 2–4. For example, in figure 4 we are
revealing the effect of the AMO index. For MODIS
V006, AMO is most significant in the winter (DJF;
18%, table 4). In addition, we find a significant cor-
relation between spring AMO and spring temperature
(18%, table 2), as well as winter AMO and spring pre-
cipitation (14%, table 2), summer AMO and summer
temperature (19%, table 3) and winter AMO and sum-
mer precipitation (12%, table 3). Figure 4 reveals where
each of these effects are important. Grey areas indi-
cate no significant relationship with a particular index.
Note that while AMO affects both temperature and
precipitation in both the spring and the summer, these
effects translate to relatively small impacts on the NDVI
peak height. The EAWR index predominantly affects
temperature and most effects are visible in the east-
ern part of our study region, as well as just north of
our actual study region (figure 5). The EAWR dipole
pattern consists of two anomalous atmospheric cen-
ters, with one located over the Caspian Sea (Kazmin
and Zatsepin 2007). Characteristics of the EAWR have
been found to resemble the North-Sea Caspian Pat-
tern (Kutiel and Benaroch 2002, Oguz et al 2006),
which has been found to correlate with summer tem-
peratures in many areas of Europe, including regions
as far southeast as our study region. Significant nega-
tive correlation was found in the area corresponding
closely with our identified region of importance just
northwest of Kazakhstan (Brunetti and Kutiel 2011).
Others have found that the combination of the NAO
and EAWR is effective in explaining climate-induced
variability in the Black Sea region (Krichak et al 2002,
Oguz et al 2006). We found that NAO and EAWR

predominantly influence temperature, and while their
regions of importance overlap, their strongest zones
of importance are not co-located. (Krichak et al 2002)
found that the combination of these two indices had a
strong influence on precipitation just west of our study
region, in the Mediterranean.

NAO in both winter and summer affects both
spring and summer temperatures, with the most visible
effects on the land surface phenology in the northern
part of our study area (figure 6). The winter NAO has
a particularly strong impact on the spring temperature
in the northeastern part of the study area, which is also
reflected clearly in the correlation between the NDVI
peak height and the summer NAO. Phenology in the far
northern latitudes is strongly affected by the NAO, and
these effects are visible in the northern parts of Central
Asia as well (de Beurs and Henebry 2008, Stöckli and
Vidale 2004, Li et al 2016).

The SCAND index and the MEI reveal strong
impacts onboth spring and summer precipitation, with
a significant impact on the NDVI peak height in central
Kazakhstan and farther south (figures 7 and 8). Note
that the MEI influences the land surface phenology
in central Kazakhstan and that the strongest influence
of SCAND is just south of that region (figure 7 and
8). We also found that SCAND and MEI significantly
influence the land surface phenology in Uzbekistan
and Turkmenistan (Kariyeva and van Leeuwen 2012),
although again the spatial location where these indices
are most importance is slightly offset for these indices.
Figure 7 and 8 demonstrate that both indices are pri-
marily affecting precipitation. Two of the most severe
regional droughts were during strong La Niña condi-
tions in 1999–2001 and 2007/08 (Barlow et al 2016),
likely driving our strong correlation patterns. How-
ever, fewpapershave analyzed the effect of these climate
indiceson smallerdrought episodes (Barlow et al2016).
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Figure 6. Impact of the NAO index on the spring and summer temperature, as well as the spring precipitation and the NDVI peak
height. The impact on the peak height is mainly visible in the northeastern part of Kazakhstan, corresponding with a significant impact
of the winter NAO index on the spring temperature in this region.

Figure 7. Impact of the SCAND index on the summer temperature, and spring and summer precipitation, as well as the peak height of
the growing season. The peak height of the growing season reveals a significant impact in the southern third of Kazakhstan, co-located
with the impact of spring SCAND on spring precipitation and summer and spring SCAND on summer precipitation.
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Figure 8. Winter MEI reveals strong importance on the spring and summer precipitation in Kyrgyzstan and Tajikistan with a
subsequent effect on the land surface phenology in those countries as well. Spring MEI is very important for spring precipitation in
central Kazakhstan, which is also reflected in the peak height results. Summer precipitation over montane Central Asia is linked to
winter MEI.

Summer precipitation over montane Central Asia is
linked to winter MEI (figure 8), which may be par-
ticularly relevant to regional hydrological assessments
(Chen et al 2017, Chevallier et al 2014).

Thus, we find that while each of these indices has
beenmentioned in the literature ashaving an important
impact on the weather of Central Asia, their impacts are
often not co-located. Instead, NAO, EAWR, and AMO
predominantly influence temperature in the northern
part of Central Asia. When analyzed simultaneously,
it is clear that NAO and EAWR reveal a more domi-
nant impact on the weather and, subsequently, on the
land surface phenology than AMO, which has a much
slower tempo. While NAO has a strong influence in the
northeasternpart of the study region,EAWRinfluences
the northwestern part. This pattern is an interesting
result, especially considering that these two indices
reveal a significant positive correlation. SCAND and
MEI are not significantly correlated, but both reveal a
significant impact on the precipitation in this region.
Again, these impacts are not spatially co-located, with
the MEI impacting the land surface phenology in
the central part of the study region and SCAND
having a greater effect slightly farther south.

Conclusions

Central Asia has been changing in multiple ways over
the past few decades (de Beurs et al 2015, Groisman
et al 2017). While human influences play a significant
role in large swaths of Central Asia (e.g. de Beurs et al
2015, de Beurs and Henebry 2004, Kariyeva and
van Leeuwen 2011, Kariyeva and van Leeuwen 2012,
Lioubimtseva et al 2015, Lioubimtseva et al 2005),
in this paper we have focused our attention on the
effect of multiple climate oscillations on the weather

and land surface phenology of the region. Others
have focused on the discrimination between weather
changes and human impacts (e.g. Kariyeva et al 2012,
Dubovyk et al 2016), but those studies did not iden-
tify the effect of large scale climate oscillations and
regional climate patterns. Combiningfive climate oscil-
lation indices into one regression model and then
identifying the relative importance of each of these
indices on precipitation and temperature and, subse-
quently, land surface phenology allowed us to identify
where each of the climate indices displays its strongest
influence. Our analysis demonstrates that the land
surface phenology across Central Asia is affected by
several climate modes, both those that are strongly
linked to far northern weather patterns and those that
are forced by southern weather patterns, making this
region a ‘climate change hotspot’ (Bothe et al 2012)
with strong spatial variations in weather patterns. We
found that SCAND and EAWR, both regional cli-
mate patterns, played a significant role in Central Asia
indicating that global climate patterns might not be suf-
ficient to predict weather patterns and subsequent land
surface changes in these regions (Chen et al 2016).
These findings may also explain, in part, why both
the CMIP3 and CMIP5 model cohorts exhibited large
inter-model spread in montane Central Asia and why
the CMIP5 models did not significantly improve pre-
cipitation estimates in this sensitive region (Flato et al
2013). Climate projections over mountainous terrain
remain difficult (Flato et al 2013), particularly in
Central Asia (Hijioka et al 2014, Reyer et al 2017).
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