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ABSTRACT 

GENETIC INTERFERENCE AND RECEPTOR BIOLOGY OF NEGLECTED 

INFLUENZA VIRUSES 

RUNXIA LIU 

2017 

	
Influenza B virus (IBV) is an important pathogen that infects humans and causes seasonal 

influenza epidemics. By using next-generation sequencing (NGS) approach, we analyzed 

total mRNAs extracted from A549 cells infected with B/Brisbane/60/2008, and identified 

four defective genomes in IBV with two from the polymerase basic subunit 1 (PB1) 

segment and the other two from the matrix (M) segment. Each of them can potently 

inhibit the replication of IBV. One derived from PB1 segment was able to interfere 

modestly with influenza A virus (IAV) replication. The productions of the four defective 

RNAs are not dependent on the cell types. The important initial insights into IBV 

defective genomes can be further explored toward better understanding of the replication, 

pathogenesis, and evolution of IBV. 

 

The second study demonstrated that influenza D virus (IDV) is more efficient in 

recognizing both human Neu5,9Ac2 and non-human Neu5Gc9Ac receptors than influenza 

C virus (ICV). ICV prefers human Neu5,9Ac2 over non-human Neu5Gc9Ac. The results 

reveal that IDV and ICV diverge in communicating with both O-acetyl group at the C9 

position and acetyl/glycolyl groups at the C5 position in terminal 9-carbon SAs. Our 

findings provide evidence that IDV has acquired the unique ability to infect and transmit 
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among agricultural animals that are enriched in Neu5Gc9Ac, in addition to pose a 

zoonotic risk to humans only expressing Neu5,9Ac2. 

 

Characterization of a contemporary human ICV is needed. C/Victoria/2/2012 (C/Vic) 

isolated in 2012 was used in this study. Phylogenetic studies demonstrated that C/Vic is a 

reassortant virus composed of segments derived from multiple ICV lineages or strains, 

which evolved independently. We identified two mutations in the 170-loop of the HEF 

protein around the receptor binding pocket as a possible antigenic determinant 

responsible for the discrepant hemagglutinin inhibition results. C/Vic replicates more 

efficiently at the cool temperature, which should be further investigated toward 

elucidating the molecular determinants of temperature-dependent growth. The study on 

this contemporary ICV shall aid in the further investigation of biology, evolution, and 

pathogenesis of ICV. 
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Chapter 1. Introduction and Literature Review 

1.1 Classification of Influenza viruses 

Influenza viruses are members of Orthomyxoviridae family. Influenza viruses contain a 

segmented genome of single-stranded negative-sense RNA. They are a group of 

respiratory pathogens that has diversified through evolution into three types: A, B, and C. 

This classification is based on their distinct antigenic properties residing in two viral 

structural proteins: nucleoprotein (NP) and matrix (M) protein (1980; W. R. Dowdle et al., 

1974). Recently, a new type of influenza virus with bovine as a primary reservoir, 

provisionally designated influenza type D, has been described (B. M. Hause et al., 2014; 

B. M. Hause et al., 2013). The major difference between influenza A/B viruses (IAV/IBV) 

and influenza C virus (ICV) is that IAV/IBV possess eight segments while ICV contains 

seven segments in viral particles. IAV and IBV contain two spike proteins: 

Hemagglutinin (HA) and Neuraminidase (NA), while ICV possesses only one 

glycoprotein, named Hemagglutinin-Esterase-Fusion (HEF) protein, which combines 

both the functions of HA (receptor binding, membrane fusion) and NA (receptor 

destroying).  
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Table 1.1. Overview of four types of influenza viruses. 

 

Among these influenza viruses, IAV is of most veterinary importance. Various strains of 

subtypes of IAV can infect and cause severe diseases in several agricultural animal 

species, as well as human populations (J. K. Taubenberger and J. C. Kash, 2010). IAVs 

are divided into subtypes based on two surface proteins: the hemagglutinin (HA) and the 

neuraminidase (NA). There are 18 different hemagglutinin subtypes and 11 different 

neuraminidase subtypes (N. M. Bouvier and P. Palese, 2008; S. Tong et al., 2013; Y. Wu 

et al., 2014).  

 

IBV and ICV are thought to be human pathogens, despite IBV or ICV can be isolated 

from swine or seals (A. D. Osterhaus et al., 2000; Z. Ran et al., 2015). IBV infection of 

humans can result in clinical diseases similar to IAV, ranging from mild to severe 

respiratory illness (A. S. Monto, 2008; W. Paul Glezen et al., 2013). IBV can cause high 

mortality in seasonal influenza epidemics particularly in children (A. Gutierrez-Pizarraya 
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et al., 2012; P. Wu et al., 2012). Two antigenic and genetic lineages (Victoria and 

Yamagata lineages) co-circulated since the 1980s (I. G. Barr et al., 2010; J. A. McCullers 

et al., 2004; P. A. Rota et al., 1990).  

 

ICV usually causes mild upper respiratory diseases in humans. It has the ability in 

causing severe lower respiratory illness in infants (S. Katagiri et al., 1983; Y. Matsuzaki 

et al., 2006; H. Moriuchi et al., 1991). ICV were divided into six discrete lineages by 

antigenic and phylogenetic analysis, represented by C/ Taylor/1233/47, 

C/Yamagata/26/81, C/Kanagawa/1/76, C/Aichi/1/81, C/Sao Paulo/378/82 and 

C/Mississippi/80 (Y. Matsuzaki et al., 2003; Y. Muraki et al., 1996; K. Sugawara et al., 

1993). ICV is distributed worldwide and and multiple genetic lineages co-circulate 

globally (D. A. Buonagurio et al., 1986; A. C. Dykes et al., 1980; Y. Furuse et al., 2016; 

Y. Matsuzaki et al., 2000; Y. Matsuzaki et al., 2016; H. Nishimura et al., 1987). 

 

1.2 Structure of influenza viruses 

 

Influenza virus is enveloped, spherical. The out layer is a lipid membrane that is taken 

from the host plasma membrane when influenza virus budding from infected cells. 

Influenza A viruses possess eight segments that encodes for eleven proteins. Two “Spike” 

proteins hemagglutinin (HA) and neuraminidase (NA) are embedded into the lipid 

membrane of influenza A and B viruses. HA and NA determine the subtype of influenza 

A virus. There are 18 different hemagglutinin subtypes and 11 different neuraminidase 

subtypes (N. M. Bouvier and P. Palese, 2008; S. Tong et al., 2013; Y. Wu et al., 2014). 
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HA and NA are important proteins that induce host immune system to produce 

internalization antibodies against the glycoprotein to prevent influenza virus infection. In 

infected cells, HA gene express a single polypeptide chain HA0 with a length of 

approximately 560 amino acids. HA0 is cleaved into two subunits, HA1 and HA2, which 

linked with each other by disulphide bonds. Cleavage of HA0 into HA1 and HA2 is 

essential for viral envelope and endosome membrane fusion during virus infection. In 

influenza A and B virus the receptor-destroying activity is performed by the NA protein, 

which hydrolyzes the glycosidic bond between sialic acid and galactosyl residues, help 

newly made viral particle release from the plasma membrane. 

 

 

 

 

Figure 1.1. Diagrammatic illustration of the influenza A virion (T. Horimoto and Y. Kawaoka, 

2005) 
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Ribonucleoproteins (vRNPs) complex is the core of influenza viruses. vRNPs are made 

up of viral genome RNAs wrapped up around multiple copies of nucleoprotein (NP). At 

the terminal ends of each viral segment is the three polymerase proteins (PB1, PB2 and 

PA) complex. A very small amount of nuclear export protein (NEP) are made up of 

vRNPs. M1 protein is underneath the viral lipid membrane, forms a matrix holding the 

viral vRNPs (D. P. Nayak et al., 2009; D. P. Nayak et al., 2004). 

 

M2 is another protein that is inserted in the lipid membrane of influenza virions. M2 is a 

type III transmembrane protein that forms tetramers in the membrane (D. P. Nayak et al., 

2009; C. Schroeder et al., 2005). M2 acts as an ion channel, which will be open during 

viral and endosomal membranes fusion. Opening the M2 ion channel acidifies the viral 

core and help the virion release vRNP into cytosol. In influenza A virus, alternative 

splicing of the M mRNA produces AM2 which forms a proton channel in the lipid membrane. 

The expression of IBV M2 protein is produced from the primary RNA transcript of M 

segment through a coupled termination and reinitiation mechanism via a UAAUG 

pentanucleotide motif near M1 stop codon (C. M. Horvath et al., 1990a). ICV M2 protein 

is a cleaved translation product of the full-length, colinear mRNA derived from influenza 

C virus RNA segment (A. Pekosz and R. A. Lamb, 1998). 

 

The polymerase basic protein 1-F2 (PB1-F2) of influenza A virus is expressed from a 

second open reading frame (+1) of the PB1 gene (W. Chen et al., 2001; R. A. Lamb and 

M. Takeda, 2001). PB1-F2 localizes at inner and outer mitochondrial membranes. PB1-
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F2 has been shown to play a role in mitochondrial morphology, cell apoptosis and up-

regulate polymerase activity (J. S. Gibbs et al., 2003; H. Yamada et al., 2004; D. Zamarin et 

al., 2005). 

 

There are some differences between type C influenza virus and type A and B viruses. 

Genome of ICV has 7 segments, whereas genome of IAV and IBV has 8 segments. In 

ICV, a hemagglutinin-esterase-fusion (HEF) protein has receptor binding, receptor 

destroying (acetylesterase), and membrane fusion activities, whereas in IAV and IBV, 

separate HA and NA proteins perform these functions in a cooperative fashion. Another 

difference is that ICV uses Neu5,9Ac2 (N-acetyl-9-O-acetylneuraminic acid), while IAV 

and IBV utilizes Neu5AC (N-acetylneuraminic acid) for viral entry (G. Herrler et al., 

1988). Both neuraminic acid derivatives are the terminal sugars in carbohydrate chains 

attached to glycolipids or glycoproteins located at the cellular surface. Subtypes of 

influenza A virus HA discriminate between an α2-6 and α2-3 linkage to the second 

galactosyl residue, a property that (partially) explains species specificity. For example, 

human IAV prefer bind to α2-6 linkage, avian IAV recognize α2-3 linkage, and swine 

IAV can binds to both α2-6 and α2-3 linkages. This explains swine is a mixing vessel of 

human and avian influenza virus. ICV’s HEF recognizes Neu5,9Ac2 independent of its 

linkage to the next sugar. HEF in ICV has also esterase activity that cleaves acetyl from 

the C9 position (G. Herrler et al., 1985). In influenza A and B virus the receptor-

destroying activity is performed by the NA protein, which hydrolyzes the glycosidic bond 

between sialic acid and galactosyl residues.  

 

1.3 Replication cycle of influenza viruses 
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The life cycle of influenza virus can be divided into five stages: receptor-mediated 

endocytosis; release viral ribonucleoprotein (vRNP) complexes; vRNA replication and 

transcription, protein synthesis; transport of viral proteins and vRNA to plasma 

membrane; virus assembly and release. 

 

 

 

Figure 1.2. A schematic diagram of the influenza virus life cycle (G. Neumann et al., 

2009). 

 

The entry of influenza virus into cells begins with HA (IAV or IBV) or HEF (ICV) 

protein recognize its receptor sialic acid. HA1 and HEF1 contain receptor binding 

domain, while HA2 and HEF2 contain fusion peptide. After HA or HEF bindings to its 
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receptor, virus enter the host cells by receptor-mediated endocytosis and travel to late 

endosome. The PH is around 5.5 at late endosome. The low PH triggers HA2 or HEF2 go 

through conformational change and expose their fusion peptide. The fusion peptide insert 

itself into endosome membrane and mediate viral and endosome membrane fusion. 

Fusion is followed by release of viral core into cytosol where the M1 proteins are 

disassemble and vRNPs are released. The low PH also opens M2 proton channel. 

Opening M2 ion channel acidifies the viral core and weakens the interaction of M1 layer 

with vRNPs. 

 

The vRNPs then import into nucleus where replication and transcription take place. 

vRNPs contains PB2, PB1, PA (or P3) and NP proteins. The nuclear localization 

signals (NLS) of these proteins bind to the cellular import proteins then import vRNPs 

into nucleus. The replication and transcription of vRNA are by RNA dependent RNA 

polymerase (RdRp). RdRp is made up of three polymerase proteins: PB2, PB1 and PA 

(or P3). During replication, the negative sensed vRNA are transcribed into 

complementaty RNA (cRNA) which serves as a template to synthesize more vRNAs. 

Meanwhile, vRNA are transcribed into messenger RNA (mRNA). mRNA is exported 

into cytoplasm for translation. Newly synthesized polymerase, NP and NS1 are imported 

back into nucleus to help with vRNA replication and transcription. 

 

Late in replication cycle, the M1 and NS2 proteins bind to newly synthesized vRNPs and 

help vRNP export from nucleus. The attachment of vRNPs to M1 proteins traiggers viral 

budding from host cells. Budding occurs at apical side of polarized epithelial cells. HA, 
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NA and M2 proteins are export on the membrane of infected cells. At the last step, NA 

cleaves sialic acid residues from glycoproteins and glycolipids to help progeny viral 

particle release from infected cells. 

 

1.4 Defective interfering (DI) RNAs of influenza A virus 

Defective interfering (DI) genomes are produced during the replication of almost all 

viruses. DI genomes are truncated at highly variable positions, with either central or a 

terminal deletion depending on the virus species (N. J. Dimmock and A. J. Easton, 2014, 

2015). Early studies showed DI viruses were produced by high multiplicity-of-infection 

(MOI) passages and contained a mixture of heterologous DI genome sequences (S. D. 

Duhaut and N. J. Dimmock, 1998; P. A. Jennings et al., 1983). The underlying 

mechanism for DI RNA formation has not been fully understood yet. However, there is 

evidence indicating that a viral RNA polymerase slippage-based faulty replication 

process is a likely mechanism (N. J. Dimmock and A. J. Easton, 2014). DI viruses 

contain the truncated DI genome with the capacity to interfere with infectious virus 

production. DI genomes has been detected in patients infected with different viruses, 

indicating DIs may play a role in transmission and pathogenesis (D. Li et al., 2011; T. T. 

Yuan et al., 1998). 
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Figure 1.3. The production mechanism of defective interfering RNA in influenza A virus. 

 

The existence of DI genomes in IBV has been reported in 1954 (P. Von Magnus, 1954) 

and DI genomes are well known in IAV. So far, there are over 50 different species of DI 

RNAs have been reported during IAV replication (N. J. Dimmock and A. J. Easton, 2015; 

S. Noble and N. J. Dimmock, 1995). These DI RNAs are small in size and viral RNA 

(vRNA) sensed. They possess similar or identical terminal sequences to their parental 

segments but lack a major internal region. DI genomes inhibit with IAV replication by 

competition with the parental full-length segments in replication, transcription, and 

genome packaging (T. Odagiri and M. Tashiro, 1997). There is evidence showed that the 

panhandle structure and the packaging signals are related in the segment-specific 

inhibition in viral replication (A. Baum et al., 2010; T. Frensing et al., 2014; J. M. 

Ngunjiri et al., 2013; M. Perez-Cidoncha et al., 2014). The DI genomes can be produced 

by any segment, but almost all DI RNAs originated from the three largest polymerase 

segments (N. J. Dimmock and A. J. Easton, 2014, 2015). DI RNAs compete with their 

parental full-length segments at two steps. First, when DI genomes are produced in the 
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nucleus, they engage the polymerase complexes so less full-length RNAs would be 

synthesized. Second, DI genomes can compete their parental segments and be packaged 

into budding virions to produce DI particles. DI particles are non-infectious. Their 

replication needs co-infection with wildtype helper viruses. In addition, IAV-derived DI 

genomes can potentially induce innate immune response (A. Baum et al., 2010; T. 

Frensing et al., 2014; J. M. Ngunjiri et al., 2013; M. Perez-Cidoncha et al., 2014) and 

protect cells or animals from infections of IAV, IBV, and other respiratory virues (N. J. 

Dimmock et al., 2008; A. J. Easton et al., 2011; P. D. Scott et al., 2011).  

 

 

 

Figure 1.4. Defective interfering RNAs interfere with wild-type influenza virus 

replication. The competition of DI genomes with the parental full-length segments in 

replication and transcription by engaging polymerase in nucleus; in packaging by out 

competing their corresponding full-length segment.  
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1.5 Current advances on influenza D virus (IDV) 

 

IDV is a new genus of the family Orthomyxoviridae, initially isolated from a 15-week 

old swine with influenza-like symptoms from Oklahoma in 2011 (B. M. Hause et al., 

2013). This virus possesses seven RNA segments and shows 50% protein sequence 

identity to ICV, similar to the level of divergence between IAV and IBV. Evolutional 

analysis showed IDV and ICV were diverged about 300 to 1200 years ago (Z. Sheng et 

al., 2014). ICV is the genetically closest to IDV, but had no cross reactivity to ICV 

antibodies and failed to undergo reassortment with ICV. Next generation sequencing 

(NGS) analysis revealed a novel M1 splicing strategy differed from that of ICV. Crystal 

structure of its HEF reveals an open receptor-binding cavity of HEF compared to that of 

ICV, which explains the observed broad cell tropism of IDV (H. Song et al., 2016). 

Subsequently, IDV was detected and isolated in cattle from United States, Europe 

(France, Italy) and Asia (China, Japan) (C. Chiapponi et al., 2016; E. A. Collin et al., 

2015; M. F. Ducatez et al., 2015; E. Foni et al., 2017; B. M. Hause et al., 2014; W. M. 

Jiang et al., 2014; S. Murakami et al., 2016). Besides swine and cattle, IDV was also 

detected in small ruminants (sheep and goats) and horses from recent study (M. Quast et 

al., 2015). Cattle have been proposed as the reservoirs for IDV (B. M. Hause et al., 2014) 

and two distinct genetic and antigenic IDV lineages were co-circulating in cattle in 

United States. IAV and IBV are more closely related to each other than to ICV and IDV. 

ICV is genetically closest to IDV, with only 50% amino acids homology between each 

other (B. M. Hause et al., 2013). 
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1.5.1 Epidemiology and pathogenesis of influenza D virus 

 

Influenza viruses can cause epidemics and pandemics by causing severe respiratory 

disease spreading rapidly among all age groups. IAV can infect a wide variety of animals, 

including human, horses, pigs, ferrets and birds (J. K. Taubenberger and J. C. Kash, 

2010). Both IAV and IBV can cause substantial morbidity and mortality during seasonal 

epidemics. IAV have caused several pandemics so far, such as Spanish influenza (H1N1), 

outbreaks of avian H5N1 viruses in Hong Kong and the most recent H1N1 influenza 

virus pandemic in 2009 (G. Neumann and Y. Kawaoka, 2015). IBV doesn’t have the 

potential to cause serious pandemics due to the lack of an animal reservoir. ICV co-

circulating with IAV and IBV cause local epidemics (A. Anton et al., 2011; Y. Matsuzaki 

et al., 2007). ICV have been isolated from pigs, dogs and human (Y. J. Guo et al., 1983; J. 

C. Manuguerra and C. Hannoun, 1992). Genetic reassorting among ICV occurs 

frequently in nature and most of the circulating ICV are newly emerged reassortants (Y. 

Matsuzaki et al., 2003). Co-circulation of ICV belonging to different genetic and 

antigenic lineages in a small community has been documented (Y. Matsuzaki et al., 1994). 

ICV usually cause upper tract infection with mild clinical symptoms, such as rhinorrhea, 

cough and fever (E. Greenbaum et al., 1998). Severe lower respiratory infections to 

infants and young children caused by ICV have also been reported (S. Gouarin et al., 

2008). ICV co-circulate with IAV and IBV and it is hard to distinguish the clinical 

differentiation among different types of influenza virus infection (Y. Matsuzaki et al., 

2007). ICV can cause natural infection in pigs and transmit from pigs to pigs by direct 
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contact. Pigs inoculated with ICV had mild respiratory clinical signs, consisting of 

breathing difficulty and nasal secretion increase (Y. J. Guo et al., 1983). 

 

IDV has been widely geographic distributed since the first IDV was reported and isolated 

from pig exhibiting severe influenza-like illness in Oklahoma in 2011(B. M. Hause et al., 

2013). Detection and isolation of IDVs have been reported in diseased calves in United 

Stated, China, Japan, France and Italy (C. Chiapponi et al., 2016; E. A. Collin et al., 2015; 

M. F. Ducatez et al., 2015; E. Foni et al., 2017; B. M. Hause et al., 2014; W. M. Jiang et 

al., 2014; T. F. Ng et al., 2015). Bovine has been proposed as the natural reservoir for 

IDV. Phylogenetic analysis of IDV genome sequence revealed two distinct genetic and 

antigenic lineages represented by D/swine/Oklahoma/1334/2011 (D/OK) and 

D/bovine/Oklahoma/660/2013 (D/660), which co-circulating and frequently reassort with 

each another (E. A. Collin et al., 2015). 

 

Serological investigation showed that 9.5% of surveyed swine possessed antibodies 

specific to IDV indicating that this previously unidentified virus circulates in U.S. swine 

(B. M. Hause et al., 2013). A recent study showed 0.6% swine sera samples collected in 

2009 in Italy were positive to IDV while this number increased to 11.7% in 2015 (E. Foni 

et al., 2017). It indicated IDV are circulating in Italy swine herds. Interestingly, 36.8% 

nasal swabs from pigs in Guangzhou, China were tested positive to IDV (S. L. Zhai et al., 

2017). It suggested IDV could transmit in pigs in South China. Seroprevalence of IDV 

was investigated in small ruminants, horses and poultry. 5.2% of sheep sera and 8.8% of 

goat sera were tested positive to IDV, demonstrated sheep and goat are likely susceptible 
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to IDV infection (M. Quast et al., 2015). Horse serum has also been detected with 

positive antibodies against IDV (unpublished data). No IDV antibodies have been 

detected in poultry including chicken and turkey so far (M. Quast et al., 2015). The 

prevalence of IDV in cattle especially in calves is higher. Cattle sera collected in 2003-

2004 from 40 selected farms in Nebraska, United States were tested positive for IDV (J. 

Luo et al., 2017). In 2013, 18% of bovine sera from six states in U.S. were tested positive 

to IDV using real time reverse transcription PCR and HI assay (B. M. Hause et al., 2014). 

Over 90% of newborn calf sera collected in 2014 had high levels of maternal antibodies 

against IDV in Nebraska cattle population (J. Luo et al., 2017). It seems calves under six-

month old are more permissive for IDV infection and transmission. This study showed 

IDV has been existing as early as 2003 and has been circulating in Nebraska cattle herds. 

A nationwide distribution of IDV in cattle herds in Japan has been reported. An average 

30% sera collected from 2010 to 2015 were positive in cattle, but the positivity rates 

varied among regions (T. Horimoto et al., 2016). More animal species (bufflo, dairy 

cattle, yellow cattle) has been reported positive to IDV in South China (S. L. Zhai et al., 

2017). In human, serological studies found 1.3% of human sera were positive to IDV and 

titers are low (20-40, range) (B. M. Hause et al., 2013). Similar results were obtained 

from recent serological survey in Eastern South Dakota. 1.1 % of human sera were cross 

react to IDV (unpublished data). Interestingly, the positive samples were from individuals 

exposed and non-exposed to livestock. This indicated IDV transmission may occur 

without exposed to virus and virus infected animals. In contrast with those observations, 

another study reported 91% seropositive among 35 cattle-exposed workers and 18% 

seropositive for non-cattle-exposed individuals (S. K. White et al., 2016). This indicates 
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that IDV has the potential transmission from cattle, the natural viral reservoir to human, 

causing zoonotic risk among human population. However, ICV antibody cross-activity 

with IDV could be a part reason that cause the high sera-positivity rate in this study. 

 

 

 

 

Figure 1.5. Transmission model of influenza D virus. IDV utilizes bovine as natural 

reservoir and is transmitted from bovine to swine as indicated by the solid line. 

Antibodies specific for IDV were detected from small ruminants (Sheep and goat), horses 

and human. Since no influenza D virus has been isolated from these species, the potential 

transmission of IDV from bovine to small ruminants, horses and human are indicated by 

dotted line. 

 

Animals infected with IDV usually exhibit no clinical signs or mild clinical respiratory 

symptoms. In some cases, IDV could cause severe pneumonia in calves which may be 
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involved with secondary bacterial infection (E. A. Collin et al., 2015). From experimental 

IDV infection in cattle, virus was detected in both upper and lower respiratory tracts. IDV 

was efficiently transmitted in contacted cattle but not from cattle to ferret. IDV infected 

cattle exhibited mild respiratory symptoms and tracheal inflammation (L. Ferguson et al., 

2016). 

 

IDV can readily infect and transmit by direct contact with both ferrets and pigs (B. M. 

Hause et al., 2013). Infection was limited to the upper respiratory tract (nasal swabs, in 

nasal turbinates) and no virus was detected in trachea and lung tissue. Since ferrets are 

the best surrogate animal model for human with influenza infection (J. A. Belser et al., 

2009), IDV infection could pose a potential threat to human health. In addition, IDV can 

infect guinea pigs and transmit by direct contact (C. Sreenivasan et al., 2015). Virus was 

detected in both upper and lower (lung) respiratory tracts but no clinical symptoms were 

observed. Interestingly, IDV infection can alter the structural integrity of the respiratory 

epithelium and as a result trigger a significant increase in neutrophils in the trachea of 

infected animals. Virus replication dynamics and transmission in in guinea pigs are in a 

good agreement with those findings obtained in native animals. 

 

Ng et al detected IDV in calves with acute respiratory disease frequently but not in 

clinically healthy animals (T. F. Ng et al., 2015). Additionally, the common pathogens, 

bovine viral diarrhea virus (BVDV), bovine coronavirus (BoCV), bovine herpesvirus 1 

(BHV-1) and bovine respiratory syncytial virus (BRSV), associated with bovine 

respirotary disease were not detected in IDV infected sick calves. This pathological effect 
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seems to suggest an etiological role of IDV in bovine respiratory disease complex (RDC). 

Frequent isolations or detections of IDVs from diseased cattle in Northern America (US 

and Mexico), Asia, and Europe with RDC apparently support this assumption. It is worth 

mentioning that in addition to swine and cattle, small ruminants (sheep and goats) and 

equine are probably additional hosts for IDV. 

 

Taken together, IDV has the potential to infect humans, which is currently supported by 

experimental infections of both human surrogate models (ferret and guinea pig) as well as 

by serologic evidence of exposure to IDV among persons with occupational contact with 

cattle. The widespread distribution of IDV in agricultural animals (in goat, sheep, horses) 

and its interspecies movement pose a potential threat to human and agricultural health 

across the globe. Currently, there is no vaccine to protect animals from IDV infection. 

IDVs have antigenically evolved into multiple lineages. So the IDV vaccine research 

effort in the future needs to take such antigenic drift phenomena into consideration 

toward a universal vaccine targeting multiple animal species. Routine diagnosis of IDV 

infection in agricultural animals can be achieved by the standard reverse transcription 

polymerase chain reaction (RT-PCR) and hemagglutination inhibition assay (HI).  

 

1.5.2 Biology of influenza D virus 

 

IAV and IBV contain eight RNA segments with two spike proteins Hemagglutinin (HA) 

and neuraminidase (NA) on the surface utilizing 5-N-acetylneuraminic acid (Neu5Ac) as 

their primary receptor for virus entry. ICV and IDV possess seven RNA segments lacking 
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NA. The only glycoprotein Hemagglutinin-esterase-fusion (HEF) protein combines the 

functions of HA (receptor binding and membrane fusion activity) and NA (receptor 

destroying). However, the esterase cleaves the O-deacetylation of the N-acetyl-9-O-

acetylneuraminic acid but not α-ketosidic linkage between the sialic (N-acetylneuraminic) 

acid and an adjacent sugar residue (J. N. Varghese and P. M. Colman, 1991).  Both ICV 

and IDV utilize 5-N-acetyl-9-O-acetylneuraminic acid (Neu5, 9Ac2) as their receptor (H. 

Song et al., 2016). 

 

In cell culture, IDV demonstrates a much broader cell tropism than ICV. In vitro cellular 

tropism study shows IDV can infect several cell lines such as swine testicle (ST), Madin-

Darby canine kidney (MDCK), Green African monkey kidney (Marc-145), human rectal 

tumor (HRT-18G) and human lung adenocarcinoma (A549) cells, while ICV replicates 

only in ST and HRT cells (B. M. Hause et al., 2013).  IDV infected swine testicle (ST) 

cells shows typical influenza virus cytopathic effects (CPE) (B. M. Hause et al., 2014; B. 

M. Hause et al., 2013). Structural modeling of HEF proteins of IDV showed a variable 

receptor binding site compared to ICV (B. M. Hause et al., 2013).  It possesses an 

identical binding site for 9-O-acetyl group but a smaller 5-N-acetyl group binding pocket. 

This indicated ICD utilize the same receptor 9-O-acetylated sialic acids as ICV. Two 

variable amino acids in the 9-O-acetyl group binding site could influence binding 

efficiency and affinity to its receptor which may related to the observed broader celluar 

tropism of IDV. Structurally, despite the fact that the hemagglutinin-esterase-fusion 

glycoprotein (HEF) of both IDV and ICV possesses an extremely similar structural fold 

in communicating with the cellular receptor, IDV’s HEF has an open receptor-binding 
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cavity that may accommodate diverse extended glycan moieties constituting the cellular 

receptor (H. Song et al., 2016). This structural flexibility may explain why the IDV has a 

broad cell tropism.  

 

 

 

Figure 1.6. An open channel in IDV HEF receptor-binding domain. In ICV, the positively 

charged Lysine (K235) and negatively charged Aspartate (D269) forms a salt bridge, 

pulling 230-helix and 270-loop together (A and B). While in IDV, the amino acids at 

equivalent position can’t form salt bridge, leaving an open cavity (C).  

 

IDV has a wide range of temperature for its replication. IDV also differs from ICV in that 

its replication is permissive at 37 °C. ICV replicated well at optimal temperature 33°C 

while IDV replicate efficiently at both 33 °C and 37°C. Further analysis showed 

differences in the fusion domain of HEF proteins between ICV and IDV (Z. Sheng et al., 

2014). The variable residues located at N- and C- terminal regions of fusion domain 1 

and fusion domain 3. Since temperature affect fusion activity of HEF protein (E. 

Takashita et al., 2012), the variable fusion domains of the two viruses could contribute to 

the different replication temperature. 
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A recent study showed IDV is most stable in high temperature and low pH (J. Yu et al., 

2017). After being treated at 53°C for 120 minutes, IDV still retained infectivity while 

other influenza viruses have lost infectivity completely. After being treated at pH 3.0 for 

30min, IDV lost approximately 20% of its infectivity while other influenza viruses 

completely lost their infectivity. Chimeric IAV with HA and NA proteins replaced by 

HEF protein of IDV can tolerant higher temperature and low pH. HEF glycoprotein plays 

an important role in IDV thermal and acid stability. 

 

1.5.3 Genomics and Evolution of Influenza D virus 

 

IDV, like ICV, contains seven segments with negative polarity. Its overall amino acid 

sequence shares approximately 50% identity with that of ICV (B. M. Hause et al., 2013). 

It is most closely related to ICV with seven RNA segments, rather than to IAV and IBV 

containing eight segments. However, the distance between IDV and ICV is similar to the 

differences between IAV and IBV for the most of genomic segments (Z. Sheng et al., 

2014). 

 

Sequence identity was compared between D/OK and human ICV, ranging from 69-72% 

for Polymerase basic protein 1(PB1) to 29-33% for (nonstructural protein) NS segment, 

with about 50% overall identity (B. M. Hause et al., 2013). PB1 is the most highly 

conserved polymerase protein among influenza virus genus. Identity of PB1 amino acids 

sequence is 69%-72% between the two viruses and 39%-41% between D/OK and 
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IAV/IBV. PB2 and P3 protein sequences homology between D/OK and human ICV are 

53% and 50%, respectively, which are lower than PB1 alignment. The Pka of polymerase 

acidic (PA) proteins of IAV/IBV is approximately 5.2. Polymerase protein 3 (P3) of ICV 

has a Pka of 7.2. The predicted Pka of D/OK P3 is 6.2, which is between those of 

IAV/IBV and ICV. 

 

Hemagglutinin (HA) is the major glycoprotein of IAV/IBV, and hemagglutinin-esterase-

fusion (HEF) protein of ICV is homologous to HA. The amino acids pairwise identity is 

49% among IAV HA subtypes (S. Tong et al., 2012) and approximately 25-30% between 

IAV and IBV (B. M. Hause et al., 2013). The amino acid sequence of the D/OK HEF has 

53% identity to ICV, similar to the observed homology among IAV HA subtypes. ICV 

and D/OK possess seven and six predicted N-linked glycosylation sites in their HEF 

proteins, respectively (Z. Sheng et al., 2014). D/OK lack one predicted N-linked 

glycosylation at receptor binding domain, implying different strategies for IDV to escape 

antibody-mediated neutralization.  

 

NP and M proteins are highly conserved among the members of each genus of influenza 

virus, which share 85% homology (B. M. Hause et al., 2013). The homologies of NP and 

M proteins are only 20-30% between different types of influenza viruses (M. Yamashita 

et al., 1988). The homology of D/OK and ICV NP proteins is 38-41%. The amino acids 

sequence of D/OK precursor protein P42 has 38% identity with its counterpart of ICV. 

The non-structural proteins NS1 of D/OK and human ICV have only 29-33% identity, 

similar to 22% homology between IAV and IBV NS1 proteins. 



	

	

23	

 

A major difference among influenza viruses occurs in the matrix (M) segment with 

regard to the expression of M1 and M2 proteins (P. Palese and M. Shaw, 2007). IDV 

utilizes a novel coding strategy for expression of M1 and M2 proteins, differs from all 

other influenza virus types. ICV and IDV utilize similar splicing strategies to produce M1 

protein. The unspliced mRNA translate a precursor protein P42 which is proteolytically 

cleaved into the M1’and CM2 and proteins. M1 proteins of both ICV and IDV are 

translated from splicing events. In ICV, the splicing introduces a termination codon to 

M1 transcript. While in IDV, it adds a second exon encoding four residues to the primary 

M1 transcript (B. M. Hause et al., 2014).  

 

The 3' and 5'-terminal ends of noncoding (NC) regions of each segment were highly 

conserved in D/OK. The conserved terminal sequences show partial and inverted 

complementarity which enables single-strand RNAs to form “panhandle” structures (U. 

Desselberger et al., 1980). “Panhandle” structures are required for mRNA synthesis and 

vRNA packaging (M. T. Hsu et al., 1987). The 3' and 5'-terminal sequences are similar to 

those of ICV with only one nucleotide change at position 5 (“A” in D/OK and “U” in 

ICV) from 3’terminal. 

 

Bovine IDVs and D/OK, the two representative strains of IDV lineages, had greater than 

96% identity in all segments (B. M. Hause et al., 2014). PB1 (98.9 to 99.1% identity) and 

NS (98.8 to 99.2% identity) segments have highest homology, while HEF (96.7 to 99.0% 
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identity) and P42 (96.9 to 99.2% identity) are most diverged. The 5’ and 3’ noncoding 

regions for each segment are quite conserved between of bovine and swine IDVs. 

Phylogenetic analysis showed bovine and swine IDVs clustered together and most 

closely related to ICV. This indicates IDV diverged from ICV after they diverged from 

IAV and IBV (B. M. Hause et al., 2014). Evolution evidence showed the divergence time 

of IDV and ICV from the most recent common ancestor ranges from 334 years for PB1 to 

1299 years for HE (Z. Sheng et al., 2014).  

 

1.5.4 Hemagglutinin-esterase-fusion protein of influenza D virus 

 

Hemagglutinin-esterase-fusion(HEF) protein is the only glycoprotein on the surface of 

ICV and IDV. It contains the receptor binding domain (R), esterase domain(E) and 

fusion(F) domain.  Crystal structure of IDV HEF revealed E1, E' and E2 subdomains of 

esterase domain and F1, F2 and F3 subdomains in fusion domain. The overall HEF 

structures and the individual subdomains are quite similar between IDV and ICV. R 

domains show 46.3% sequence identity. Both structural modeling and crystal structure of 

HEFs of IDV and ICV reveal a broader receptor-binding site (B. M. Hause et al., 2013; H. 

Song et al., 2016). Crystal structure of IDV HEF further reveals an open cavity formed by 

230-helix and 270-loop at the receptor-binding site. While in ICV, a salt bridge forming 

by K235 and D269 between the two secondary structures causes a closed cavity. In IDV 

HEF, the two amino acids are replaced by T239 and A273, which cannot form salt bridge 

interaction. Other residues that form the bottom of the receptor-binding site are similar 

between the two species. 
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Glycan array showed that the HEF protein of IDV binds to both 5-N-Ac and 5-N-Gc 

sialic acids carrying 9-O-acetyl group. This result indicates that the open cavity of 

receptor-binding site residing in the HEF protein can tolerate different modifications at 

the C5 position (H. Song et al., 2016). It is consistent with the observed broader cellular 

tropism of IDV (H. Song et al., 2016). Crystal structure study recently revealed that the 

major interaction between HEF and the receptor analogue is derived from 9-O-Ac sialic 

acid. A hydrogen bond is formed between the interaction of acetyl carbonyl oxygen of 9-

O-Ac sialic acid and the hydroxyl group of Y231 which is Y227 in ICV. Two hydrogen 

bonds are absent in IDV due to the conserved residue Y127 in IAV and IBV changed to 

F127, which is same with IBV (H. Song et al., 2016; Q. Wang et al., 2007). However, 

two hydrogen bonds formed between carbonyl group of C4 and T171 ensures that the 9-

O-acetyl group has similar orientation with binding to ICV. Additional hydrogen bonds 

formed between receptor analogue and IDV HEF are one from 5-N-acetyl group with 

A172 and two from the carboxyl group of C1 with S173. 

 

Esterase domains are most conserved. The E1, E' and E2 subdomains share 66.7%,  

68.8% and 56.6% sequence identity between ICV and IDV (H. Song et al., 2016). Both 

HEF proteins form conserved sialate-9-O-acetylesterase catalytic triad with 

S71/H369/D365 for ICV and S73/H375/D372 for IDV. The conserved receptor-

destroying pocket indicated IDV utilizes 9-O-acetyl sialic acid as the cellular receptor for 

virus entry (B. M. Hause et al., 2013). It is reported that esterase domains of HEF 

proteins are conserved in some Nidovirus, such as bovine coronavirus (BCoV), porcine 
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torovirus (PToV) and bovine torovirus (BToV) as well (M. A. Langereis et al., 2009; H. 

Song et al., 2016). 

 

1.6 Summary 

 

Influenza viruses pose a constant threat to human and animal health. Among four types of 

influenza viruses, IAV and IBV infect humans and can cause severe respiratory diseases 

in annual influenza epidemics, which can result up to 20,000 deaths in U.S. alone.  ICV is 

a ubiquitous childhood pathogen typically causing mild respiratory symptoms, in rare 

cases causing severe respiratory disease in infants (S. Katagiri et al., 1983; Y. Matsuzaki 

et al., 2006). IDV with bovines as a primary reservoir and amplification host can 

periodically spillover to humans and other agriculture animals such as swine. Better 

understanding of the replication mechanism, pathogenesis, and antigenic evolution of 

influenza viruses will help develop effective vaccines and control strategies against this 

important group of respiratory pathogens of humans and animals. 
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Chapter 2. Identification and Characterization of Viral Defective RNA Genomes 

in Influenza B Virus 

Abstract 

Influenza B virus (IBV) is an important pathogen that infects humans and causes seasonal 

influenza epidemics. To date, little is known about defective genomes of IBV and their 

roles in viral replication. In this study, by using next-generation sequencing (NGS) 

approach, we analyzed total mRNAs extracted from A549 cells infected with 

B/Brisbane/60/2008 virus (Victoria lineage), and identified four defective genomes in 

IBV with two (PB1∆A and PB1∆B) from the polymerase basic subunit 1 (PB1) segment 

and the other two (M∆A and M∆B) from the matrix (M) segment. These defective 

genomes retained the terminal sequences of the relevant segments but contained 

significant deletions in the central regions with each having the potential for encoding a 

novel polypeptide. Significantly, each of them can potently inhibit the replication of 

B/Yamanashi/166/98 (Yamagata lineage). Furthermore, PB1∆A was able to interfere 

modestly with influenza A virus (IAV) replication. Finally, we presented evidence that 

the productions of the four defective RNAs are not dependent on the cell types. In 

summary, our study provides important initial insights into IBV defective genomes, 

which can be further explored toward better understanding of the replication, 

pathogenesis, and evolution of IBV. 

 

2.1 Introduction 
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Influenza viruses are classified as types A, B, and C according to their distinct 

antigenic properties residing in two major structural proteins (matrix 1 and nucleoprotein) 

(P. Palese and M. Shaw, 2007). Recently, a new type of influenza virus with bovine as a 

primary reservoir, designated influenza type D, has been described (B. M. Hause et al., 

2014; B. M. Hause et al., 2013). Influenza B virus (IBV) is a clinically important 

pathogen. It has been well established that IBVs infect humans, and cause seasonal 

influenza epidemics along with IAV H3N2 and H1N1 strains (N. J. Cox and K. Subbarao, 

2000; J. A. McCullers et al., 1999a; J. A. McCullers et al., 2004; A. S. Monto, 2008). 

Similar to IAV, IBV can result in a spectrum of clinical diseases in humans, ranging from 

mild to severe respiratory illness requiring hospitalization and medical treatment (A. S. 

Monto, 2008; W. Paul Glezen et al., 2013). IBV-associated mortality has been frequently 

observed in seasonal influenza epidemics particularly in children and adolescents (A. 

Gutierrez-Pizarraya et al., 2012; P. Wu et al., 2012). The burden of respiratory diseases 

caused by IBV, coupled with the increasing strong links between IBV and fatal infections 

in humans (J. A. McCullers and F. G. Hayden, 2012; C. D. Paddock et al., 2012), calls 

for an urgent need for more basic and clinical investigations of IBV. 

  

 Humans are thought to be the primary host and reservoir of IBV, although 

sporadic infection episodes of IBVs have been described in seals and pigs (A. D. 

Osterhaus et al., 2000; Z. Ran et al., 2015). In contrast, IAV circulates in various 

mammals including humans, swine, and migratory or domestic waterfowl (P. Palese and 

M. Shaw, 2007). IBV evolves at an estimated rate of 2x10-3 nucleotide substitutions per 

site per year for both hemagglutinin (HA) and neuraminidase (NA) segments (N. 
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Nakagawa et al., 2009; R. Nerome et al., 1998; J. Shen et al., 2009). This evolutionary 

rate is approximately 2-3 times slower than those observed in IAVs. Despite the 

relatively slow evolutionary rate, new antigenic variants of IBV emerge, largely driven 

by genetic reassortments of co-circulating IBV strains (J. H. Lin et al., 2007; J. A. 

McCullers et al., 2004; J. A. McCullers et al., 1999b).  IBV has evolved into two 

antigenically and genetically distinct lineages, Yamagata and Victoria (W. P. Glezen, 

2014; D. Vijaykrishna et al., 2015). The antigenic diversity of IBVs has posed a 

significant challenge for the selection of an appropriate strain for annual vaccine 

production. 

 

Similar to IAV, IBV contains eight negative-sense, single-stranded RNA 

segments.  Despite similarities in the coding strategy and viral protein expression, there 

are some notable differences between these two viruses.  The most striking difference lies 

in the neuraminidase (NA) segment (P. Palese and M. Shaw, 2007).  This segment in 

IAV is monocistronic, only encoding the NA protein, while the NA segment of IBV is 

bicistronic, expressing two integral membrane proteins, NA and NB.  The open reading 

frame of NB protein starts four nucleotides before the initiating AUG codon that directs 

the NA protein synthesis. Another difference is in the polymerase basic 1 (PB1) segment. 

In IBV, the PB1 segment only encodes the PB1 protein, whereas in some strains of IAV, 

it codes for PB1 and a small accessory protein PB1-F2 (R. Hai et al., 2010). Recent 

studies have also provided evidence that IAV’s PB1 has the capacity to synthesize PB1-

N40 by using alternative translation initiation strategy (H. M. Wise et al., 2009). Another 

major difference between IAV and IBV occurs in the matrix (M) segment with regard to 
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the expression of M1 and M2 proteins (P. Palese and M. Shaw, 2007).  The M2 protein of 

IAV is translated from a spliced mRNA originating from the primary M segment-derived 

RNA transcript (R A Lamb et al., 1981), while the expression of IBV M2 protein is 

produced from the primary RNA transcript of M segment through a coupled termination 

and reinitiation mechanism, also called translational stop-start, around the sequence 

encoding M1 stop codon via a UAAUG pentanucleotide motif (C. M. Horvath et al., 

1990). Moreover, in a marked contrast to the nonspliced IBV M segment, the IAV M 

segment can undergo three different splicing events (R A Lamb et al., 1981) and more 

than 90% of M segment-derived mRNAs are spliced transcripts (N. C. Robb and E. 

Fodor, 2012). These spliced transcripts in the M and NS segments of IAV were recently 

speculated for important roles in viral replication, host range, and pathogenesis (Julia 

Dubois et al., 2014).  

 

In addition to spliced transcripts, the replication and transcription of IAV 

segments give rise to more than 50 different defective interfering (DI) RNAs (A. R. 

Davis et al., 1980; A. R. Davis and D. P. Nayak, 1979; J. Michael Janda et al., 1979; D. P. 

Nayak et al., 1982; S. Noble and N. J. Dimmock, 1995). A DI RNA is a smaller (ranging 

from 200-700 nucleotides in size) viral RNA (vRNA) with similar or identical terminal 

sequences to its parental segment and a large internal deletion. The competition of DI 

genomes with the parental full-length segments in replication, transcription, and genome 

packaging results in a segment-specific inhibition of IAV replication (T. Odagiri and M. 

Tashiro, 1997).  The underlying mechanism for DI RNA formation has not been fully 

understood yet. However, there is evidence indicating that a viral RNA polymerase 
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slippage-based faulty replication process is a likely mechanism (N. J. Dimmock and A. J. 

Easton, 2014). Despite the observations that DI genomes can originate from any segment, 

the general consensus is that the three polymerase segments of IAV are the primary 

donors of DI RNAs (N. J. Dimmock and A. J. Easton, 2014, 2015).  DI vRNAs can be 

packaged into budding virions from the surface of infected cells in a way to out compete 

their parental segments, leading to the formation of DI particles. DI particles containing 

incomplete genomes are unable to replicate, unless the missing viral protein(s) is supplied 

by coinfection with replication-competent viruses. In addition to directly interfering with 

wild-type IAV replication, some DI genomes are potent inducers of the innate immune 

response (A. Baum et al., 2010; T. Frensing et al., 2014; J. M. Ngunjiri et al., 2013; M. 

Perez-Cidoncha et al., 2014). Recent emerging data consistently indicate that the IAV-

derived DI genomes can protect MDCK cells or mice from infections of IAV, IBV, and 

other respiratory viral pathogens such as respiratory syncytial virus (N. J. Dimmock et al., 

2008; A. J. Easton et al., 2011; P. D. Scott et al., 2011). Furthermore, IAV DI particles 

were identified in the respiratory tract of infected chickens and humans (W. J. Bean et al., 

1985; T. M. Chambers and R. G. Webster, 1987; K. Saira et al., 2013), suggesting a 

potential role in viral transmission and pathogenesis. 

 

Despite significant progress on the characterization of the DI genomes in IAV and 

harnessing them for broad-spectrum antivirals, and an early description of DI genome 

phenomena in IBV (P. Von Magnus, 1954), little is known about the molecular nature of 

IBV DI genomes and their roles in viral replication. The investigation of DI genomes of 

IBV will improve our understanding of IBV pathogenesis and host immune response, 
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which may inform alternative strategies for vaccine design. A high-resolution analysis of 

dynamic changes in viral gene transcription following IBV infection has not been 

reported. In this study, we investigated the viral gene expression dynamics of IBV in 

IBV-infected human lung epithelial A549 cells using next-generation sequencing (NGS) 

approach. Specifically, we identified four defective RNAs of IBV. Among them, two 

defective RNAs (PB1∆A and PB1∆B) were derived from the polymerase segment 1 

(PB1). The other two defective RNAs (M∆A and M∆B) were derived from the M 

segment. Interestingly, the majority of the defective transcripts were from the M segment 

with M∆A being the most abundant, which is substantially different from IAVs in which 

most DI transcripts are generated from the three polymerase segments. Furthermore, we 

showed that these four defective vRNAs strongly inhibited IBV replication and, to a 

lesser degree, IAV replication. Production of these four defective vRNAs appeared to be 

independent of cell types used for cultivation of IBV. Our findings provide new insights 

into IBV-specific defective genomes and further characterization of these small vRNAs 

may help to better understand the biology and evolution of human IBV.  

 

2.2 Materials and Methods 

2.2.1 Cells and virus.  

Human lung alveolar carcinoma epithelial cell line A549 (ATCC® CCL-185) 

cells, Madin-Darby canine kidney (MDCK) cells (ATCC® CCL-34), and human Calu-3 

(ATCC ® HTB-55™) maintained in Dulbecco's minimum essential medium (DMEM) 

supplemented with 10% (v/v) fetal bovine serum (FBS, PAA Laboratories Inc., 

Dartmouth, MA, USA) and 100 U/ml penicillin-streptomycin (Life Technologies, 
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Carlsbad, CA, USA). Influenza B/Brisbane/60/2008 virus was provided by Drs. Ruben 

Donis and Xiyan Xu (Center of Disease Control and Prevention, USA). The virus was 

propagated using MDCK cells at an MOI of 0.1. The cells in a T75 tissue culture flask 

were allowed to reach only 60% to 70% confluency at the time of infection. The virus 

inoculum was suspended in 2 ml DMEM and incubated at 37°C in 5% CO2 for 1 h. 

Following infection, fresh DMEM with 0.5 µg/ml tolylsulfonyl phenylalanyl 

chloromethyl ketone (TPCK)-treated trypsin (Sigma, Saint Louis, MO, USA) was added 

for further incubation at 37°C in 5% CO2 for 3 days. After 3 days, the supernatant was 

harvested and spun at 500 × g for 10 min at 4°C to remove the cellular debris followed by 

TCID50 determination in MDCK cells. DMEM supplemented with 200 U/ml penicillin-

streptomycin (Life Technologies, Carlsbad, CA, USA) and 1 µg/ml TPCK-treated trypsin 

(Sigma, Saint Louis, MO, USA) was used as the virus growth medium. 

 

2.2.2 Viral growth kinetics in A549 cells 

A549 cells were inoculated with influenza B/Brisbane/60/2008 virus at an MOI of 

1.0. After 1 h-incubation at 37°C in 5% CO2, the viral inoculum was removed from the 

cells. Cells were washed 3 times with PBS and then fresh virus growth medium were 

added. At 0, 6, 12, and 24 hpi respectively, supernatant samples were collected and used 

for the determination of viral TCID50 in MDCK cells. Four independent experiments 

were performed with each conducted in duplicate. 

 

2.2.3 Cell proliferation assay 
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A549 Cells (15000 cells/well) were seeded onto 96 well plates overnight. Cells 

were then infected with influenza B/Brisbane/60/2008 at an MOI of 1.0.  After 1-h 

incubation, the cells were washed with PBS 3 times, and then replaced with fresh virus 

growth medium. At 6, 12, and 24 hpi, respectively, CellTiter 96 Aqueous One Solution 

(Promega, Madison, WI, USA) containing tetrazolium compound [3-(4,5-dimethyl-2-yl)-

5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] was 

added to make MTS final concentration at 317µg/ml. After 1-hour incubation with MTS, 

the absorbance was detected at 490 nm using a Synergy 2 microplate reader (Biotek, 

Winooski, VT, USA). Two independent experiments were performed with each run in 

triplicate. To estimate the cell numbers according to absorbance values measured for 

A549 cells, the corrected absorbance values at 490nm versus cell number (from 5000 to 

35000 with 5000 increments) were used to plot a regression equation with an R squared 

of 0.992. Cell numbers at different time points (6, 12, 24 hpi) for control cells and virus-

infected cells were calculated according to this equation. 

  

2.2.4 Next-generation sequencing  

A549 cells were infected with influenza B/Brisbane/60/2008 at an MOI of 1.0. 

Total cellular RNA was isolated from mock-infected cells (0 hpi) and infected cells at, 6, 

12, and 24 hpi, respectively, with TRIZOL followed by RNA purification with ethanol. 

RNA quality was tested using a Bioanalyzer 2100 (Agilent, Palo Alto, CA) and then 

processed for cDNA library construction by using a cDNA library prep kit (Illumina Inc., 

San Diego, CA) according to the manufacturer’s instruction. cDNA library construction 

and all other procedures were conducted in Genomics Core Research Facility (GCRF) at 

the University of Nebraska-Lincoln (UNL). Briefly, mRNAs were purified from the total 
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RNA using oligo(dT) magnetic beads followed by fragmentation. The resultant mRNAs 

were reverse transcribed to cDNAs that were subjected to an end repair process followed 

by ligation to the adapters. After separation in agarose gel through electrophoresis, cDNA 

fragments with a size of about 200 bp were excised, extracted, and amplified by PCR 

using two primers that match the ends of adaptors. PCR-enriched samples were then 

sequenced by an Illumina Genome Analyzer IIx (GA IIx) sequencer in the GCRF at UNL. 

Two biological replicates were sequenced for each time point (0, 6, 12 and 24 hpi). The 

eight samples were barcoded and sequenced in one lane. Each of the eight samples has 

approximately 5-7 million 100-nucleotide single-end reads. All sequencing results passed 

quality control. The raw reads of the eight samples were submitted to NCBI SRA 

database under Biosample ID: SRS1328599. 

 

2.2.5 Transcriptome read processing 

The raw read quality was checked using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The 5 nucleotides at the 3' 

end of each read, whose sequencing qualities were low, were removed using 

fastx_trimmer (http://hannonlab.cshl.edu/fastx_toolkit/index.html). GSNAP was then 

used to map raw reads to human (version: GRCh37.p13) and Influenza B virus genomes 

(T. D. Wu and S. Nacu, 2010). Samtools was used to index bam files and remove PCR 

duplicates (H. Li et al., 2009).  HTSeq was used to count the number of reads mapped to 

human genes defined by the Ensemble genome database and viral genes (S. Anders et al., 

2015). The percentage of viral RNA was calculated by the equation viral mRNA 

reads/total mRNA reads. 
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2.2.6 RT-PCR amplification and sequencing of defective RNA genomes 

A549 cells were infected with B/Brisbane/60/2008 virus at an MOI of 1.0. Total 

cellular RNAs were isolated from mock-infected cells and infected cells at 24 hpi, 

respectively, with TRIZOL followed by subsequent RNA purification with ethanol. The 

extracted RNAs were subjected to segment-specific RT-PCRs for the amplification of 

defective RNA molecules. Following electrophoresis in 1% agarose gel, amplified RT-

PCR products were excised and sequenced by a commercial operator 

(http://www.genscript.com/) and contigs were then assembled using IBV PB1, M, and 

NS segment sequences. The GenBank accession numbers of these defective RNA 

sequences are KX092351 for PB1∆A, KX092352 for PB1∆B, KX092353 for M∆A, and 

KX092354 for M∆B. Inclusion of NS segment in RT-PCR amplification served as a 

positive control because of a well-known splicing event originated from the NS segment. 

The validation primers are shown in Table 2.1. Briefly, cDNA samples specific to PB1 or 

M segments were reverse transcribed from total RNA with forward primers BPB1-1For 

and BM-For (Table 2.1) that target only negative-sense vRNAs. The method to reverse 

transcribe negative-sense vRNAs was described by Kawakami E (E. Kawakami et al., 

2011). Each RT-PCR product was sequenced with the same set of primers for its PCR. 

 

To determine whether or not the observed defective genomes could be produced 

from the segment-derived mRNA in the absence of active viral replication, human 

embryonic kidney cells HEK293T (ATCC ® CRL-3216) were transfected, respectively, 

with PB1, M, and NS segments of influenza B/Yamanashi/166/98 reverse genetics 
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system (E. Hoffmann et al., 2002). At 48 h post-transfection, total RNAs were extracted 

and then treated with DNase to remove residual DNA. Following the inactivation of 

DNase by phenol/chloroform extraction and ethanol precipitation, the treated RNAs were 

used in subsequent RT-PCR reactions with the above primers and experimental 

conditions. DNA plasmids, containing PB1 or M or NS segment, harbors bidirectional 

promoters (Pol I and II), which allow for the synthesis of both mRNAs (RNA polymerase 

II) and negative-sense vRNAs (RNA polymerase I). The amplified products were 

separated through electrophoresis in 1% agarose gel.  

 

Table 2.1. Validation Primers used in IBV defective genome RT-PCR. 

 

Target 
Expected 

Size (bp) 

Forward primer (5’-3’)  Reverse primer (5’-3’) 

Name Sequence       Positions   

 

Name Sequence  Positions 

PB1∆A 286 BPB1-

1For 

  

ATGAAT

ATAAATC

CTTATTT

TCTCTTC

ATAGAT

GTGCCC

G 

22-61 BPB1-

Rev 

CCAATAACC

CCATAAACA

TCTTCGAAGC

TTATATGTAC

CC 

 

2269-2308 

PB1∆B 190 BPB1

∆B_L

1 

GGAACA

GGAACA

GGCTAC

ACA 

118-138 BPB1∆

B-R1 

GTGAGCCAT

TGCTTTCTCA

A 

2237-2256 
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M∆A 206 BM-

For 

 

CTTTCTT

AAAATG

TCGCTGT

TTGGAG

ACACAA

TTGC 

15-50 BM-Rev GCATAGTAA

GAAATACAG

TAAAATTGA

ATTTAATGC 

1094-1129 

M∆B 163 BM∆

B_L1 

GTTGGTT

TGGTGG

GAAAGA

A 

113-132 BM-Rev GCATAGTAA

GAAATACAG

TAAAATTGA

ATTTAATGC 

1094-1129 

NS2 410 BNS2-

For 

GCAGAA

GCAGAG

GATTTGT

TTAGTCA

CTGGCA

AAC 

2-36 BNS-

Rev 

CAAGAGGAT

TTTTATTTTA

AATTCACAA

GCACTG 

1060-1093 

 

 

2.2.7 Quantitative measurement of relative abundances of defective genomes to their 

parental full-length segments.   

To measure the ratios of M∆A to full-length M segment and of PB1∆A to full-

length PB1 segment, A549 cells were infected with 1.0 MOI of IBV and both clarified 

supernatants and cell lysates were collected at 6, 12, and 24 hpi. Viral RNAs from 

supernatant and total cellular RNAs from cell lysates were then extracted using Trizol 

Reagent (Invitrogen, CA, USA) according to the manufacturer’s protocol. RNA 

concentration and purity were determined by NanoDrop 1000 spectrometer (Thermo 

Scientific) and 200 ng RNA was used for reverse transcription with vRNA-specific 
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primers using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems, 

Foster City, CA). Droplets were made and analyzed on the Bio-Rad QX200 Droplet 

Digital PCR (ddPCR) system according to the Droplet Digital PCR applications guide. 

The ddPCR reaction consisted of 10 ul 2x Supermix for Probes (Bio-Rad), 900 nM 

primers, 25 nM probes and 8 ul cDNA into a final volume of 20ul. The primers and 

probes were specifically designed to query both the truncated (via targeting junction 

regions) and full-length genomes (Table 2.2). No-template controls (NTC) were included 

in every run. Three separate experiments were performed with each assaying sample in 

triplicate.  

 

Table 2.2. Primers and probes used for ddPCR. 

Target genes Primers/probes 

name 

Primers/probes sequence (5’-3’) 

PB1∆A 

qPB1A-For GCTATGTTGACCCACTGGCTTC 

qPB1A -Rev GGCAGCAATTTCAACAACATTC 

qPB1A -Probe 6FAM-TGCACTGTTATGGGAATAA-MGBNFQ 

PB1 

qPB1-FL-For CCACCTTTGTCGGCTCCAT 

qPB1-FL-Rev AACGGCACTGAACACAACAATAA 

qPB1-FL-Probe VIC-ATCATTCAACCTAAAAGAG-MGBNFQ 

M∆A 

qMA-For GCAGAAAGCCCCTCAATTATTATGT   

qMA-Rev GACAGAAGATGGAGAAGGCAAAG 

qMA-Probe 6FAM-TCATTCAATACCTCAGTTCT-MGBNFQ 

 qM-FL-For TATGAGCCCTGTGTGAATGTGAT 

M qM-FL-Rev GCAAGTAAAACTAGGAACGCTCTGT 

 qM-FL-Probe VIC-CTTGTTTCTCGCATAAAG-MGBNFQ 
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2.2.8 Inhibition of IBV and IAV replication by defective RNAs. 

293T and MDCK cells were co-cultured at approximately 70 % confluence in 12-

well plates and transfected with each of indicated defective RNA plasmids (0.25 µg each) 

in the context of pCAGEN vector (pCAG, positive-sense mRNA production) or 

pHW2000 vector (pHW, both positive- and negative-sense RNA production), together 

with an 8-plasmid IBV RGS system (0.25 µg each plasmid). Transfection system was 

prepared in Trans-LT1 (Mirus) and Opti-MEM I medium according to the manufacturer’s 

instructions. Culture supernatants were collected at 72 hpi and titrated in MDCK cells to 

determine end-point titers (TCID50/ml). The dose-dependent effects of PB1∆A and M∆A 

in interference with IBV replication were investigated under similar experimental 

conditions by decreasing the amount of the defective genome plasmid used for 

transfection while maintaining the same concentration of the corresponding parental 

segment. Three relative ratios of the defective RNA and its parental segment plasmids: 1x, 

1:1 (0.25 to 0.25 µg); 0.2x, 1:5 (0.25 to 1.25 µg); and 0.1x, 1:10 (0.25 to 2.5 µg), were 

used together with seven other IBV RGS plasmids (0.25 µg each plasmid) in the 

transfection/infection experiment. Three separate experiments were performed with each 

conducted in triplicate.  

 

A similar approach was used to investigate whether expression of IBV-derived 

PB1∆A and M∆A defective genomes could interfere with IAV replication. Co-culture of 

HEF293T and MDCK cells was transfected with an 8-plasmid IAV A/WSN/33 RGS 

(0.25 µg each plasmid) in the absence or presence of different amounts of PB1∆A and 

M∆A. The amount of defective RNA plasmids used was 0.25 µg, 1.25 µg and 2.5 µg, 
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which resulted in three different dose groups (based on the relative ratios of the defective 

RNAs and its parental segment plasmids): 1x, 1:1 (0.25 to 0.25 µg); 5x, 5:1 (1.25 to 0.25 

µg); and 10x, 10:1 (2.5 to 0.25 µg). Culture supernatants were collected at 24 h post-

transfection and viral TCID50/ml were measured at 6, 12, and 24 h following infection of 

the MDCK cell line, respectively. DNA amount in each transfection reaction here and 

above was made equivalent by adding pHW empty vector. Three separate experiments 

were performed with each conducted in triplicate.  

 

2.3 Results 

2.3.1 Analysis of viral gene transcription by Next-Generation Sequencing (NGS)   

To investigate IBV mRNA transcription profile and the host response to IBV 

infection, we infected human lung epithelial A549 cells in duplicate with human IBV 

strain (B/Brisbane/60/2008, Victoria lineage) at a multiplicity of infection (MOI) of 1.0. 

IBV growth kinetics in A549 cells showed that the viral replication was detected at 6 

hours post infection (hpi) at an appreciable level (101.5 TCID50/ml) and increased in a 

time-dependent manner over a 24-hour period (Fig. 2.1A). At 24 hpi, approximately 98% 

of cells expressed IBV-specific antigens as determined by flow cytometry-based assay 

(data not shown), suggesting nearly complete infection was achieved. IBV-infected cells 

and uninfected controls exhibited similar cell proliferation profiles at 6 and 12 hpi, but a 

statistical significant difference in cell proliferation was observed at 24 hpi (Fig. 2.1B), 

indicating virus replication exerted a time-dependent effect on the cell proliferation.  
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Figure 2.1. Viral replication kinetics and proliferation dynamics of IBV infected 

A549 cells. (A) Viral titer in A549 cells infected with B/Brisbane/60/2008 virus. 

Supernatant samples of A549 cells infected by 1.0 MOI of IBV were collected at 0, 6, 12, 

and 24 hpi. The TCID50 of each sample was evaluated in MDCK cells. Mean TCID50 

(±standard deviations) from 3 independent experiments in duplicate are shown. (B) A549 

cell growth in the first 24 h of infection. MTS assay in 96-well plate format was 

performed at 0, 6, 12, and 24 hpi. The bars represent mean cell numbers (+standard 

deviations) from 3 independent experiments in triplicate. A '*' indicates a significant 

difference using student’s t-test (P<0.05). 
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Total mRNAs were isolated from infected cells at 0, 6, 12, and 24 hpi and the 

corresponding cDNA libraries were sequenced using Illumina-based NGS technology. 

The NGS reads were then aligned to the eight segments of IBV as well as the human 

genome. To measure similarities of gene expression profiles at all time points, we 

calculated Pearson correlation coefficients (Pcc) distance for all pairs of samples and 

constructed an Unweighted Pair Group Method with Arithmetic mean (UPGMA) 

dendrogram (Fig. 2.2A). The dendrogram showed that the replicate samples of all time 

points clustered together first, suggesting the variations of expression profiles between 

repeats are lower than those displayed between time points. The Pcc distance of gene 

expression profiles between mock cell and other time points increased over time, 

suggesting cellular response to IBV infection was significantly changed. In addition, 

principle component analysis was used to further calculate the variations between gene 

expression profiles (Fig. 2.2B). The analysis showed that there was little variation 

between repeats of the same time point, suggesting a high reproducibility of the 

experiments. The gene expression profiles of 6, 12, and 24 hpi showed gradual 

divergence from that of mock cell samples along principal component 1 (PC1). The 6 and 

12 hpi profiles were also different from 0 hpi along PC2 while the profiles of 24 hpi have 

PC2 scores similar to 0 hpi, implying the expression of some genes was altered at 6 and 

12 hpi and then gradually returned to basal levels at 24 hpi.  

 

For each sample, we obtained on average over 6 million 100-nucleotide (nt) reads 

mapping to either IBV or human genome. At 6 hpi, around 2.5% of the total reads 
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mapped to the viral genomic segments, while at 12 hpi, this proportion increased to 24%. 

At 24 hpi, nearly 30% of the total mapped reads were derived from IBV segments (Fig. 

2.2C). The observed increase in viral reads over time correlated well with a step-wise 

increase in viral titers as shown in the viral replication kinetics experiment (Fig. 2.1A). 

During infection, M segment-derived viral transcripts were predominant as measured by 

Reads Per Kilobase of transcript per Million mapped reads (RPKM) at 12 and 24 hpi (Fig. 

2.2D), followed by those of HA, NP, NA, and NS segments. The viral transcripts of the 

polymerase segments (PA, PB1, and PB2) were detected with the lowest abundance. 

Intriguingly, the expression of M segment-related transcripts continued to increase to 24 

hpi, which was in a marked contrast to viral transcripts of all other seven segments. For 

the latter, the numbers of segment-specific viral transcripts either reached a plateau at 12 

hpi with negligible increase for PA, PB1, PB2, and NS segments; or slight decrease for 

HA, NP, and NA segments at 24 hpi, respectively.  
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Figure 2.2. Analysis of viral gene transcription by NGS. (A) Hierarchical clustering of 

expression profiles. The UPGMA tree was rerooted using RNA-seq read from the two 

control samples as root. The divergence of expression profiles at 0, 6, 12, and 24 hpi is 

shown in the UPGMA dendrogram. Two repeats (indicated with superscript 'a' and 'b') at 

each time point are shown separately. (B) Principal components analysis of host gene 

expression profile divergence. IBV-induced expression differences are shown using the 

first two components (PC1 and PC2) of Principal components analysis. The two repeats 

at each time point are partially (6 hpi) or almost completely (0, 12, and 24 hpi) 

overlapping with each other for both PC1 and PC2. Two repeats (indicated with 

superscript 'a' and 'b') are shown separately. (C) The percentage of viral reads in the NGS 

samples. Genome-wide total gene expression was quantified using RNA-seq. Two total 

RNA samples at each time point were extracted from A549 cells infected with 1.0 MOI 
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of IBV. Percentage of viral genome reads was shown, which represents the ratio of the 

reads of IBV genome to total reads of genomes of Homo sapiens and IBV. (D) 

Expression level changes of the eight IBV segments over time. The expression level was 

displayed using reads per kilobases per million reads (RPKM).  

 

2.3.2 Identification of defective RNA genomes from M and PB1 segments 

 Closer examination of the position-dependent read coverage across IBV genome 

showed that M segment and, to a lesser extent, PB1 segment had a large proportion of 

reads mapping to the 5' and 3' ends of segments, with a significant reduction in the 

number of reads mapping to the central regions (Fig. 2.3).  
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Figure 2.3. Positional sequencing depth of IBV gene segments over time. Panels A-H 

show positional sequencing depth for segments PB2, PB1, PA, HA, NP, NA, M, and NS, 

respectively. The sequencing depth for each segment is shown as RNA-seq read counts at 

each position (5'→3'). Two replicates from each time point (0, 6, 12 and 24 hpi) are 

shown separately. 

 

The overrepresentation of sequencing reads in the 5' and 3' ends of the segments 

suggested the presence of internal deletions in transcripts of these genes. This observation 

prompted us to search for junction reads that were mapped to two discontinuous regions 

of each segment toward better understanding of the origin of these RNA molecules. 

Analysis of NS segment-associated junction reads was included in this study because NS 

segment is known to utilize a splicing mechanism to produce NS2 mRNA. To remove 

sequencing noises, we only focused on junction sites that were supported by more than 

200 reads. In the NS segment, we observed a splicing junction site between genomic 

positions 80 and 763 (nts 45-80 joined to 763-1071) with sequencing coverage of more 

than 1000 reads, matching the previously reported splicing donor and acceptor sites for 

the NS2 transcript (D. J. Briedis and R. A. Lamb, 1982) (Fig. 2.4A). Further analysis 

showed that this splicing event utilized a consensus dinucleotide motif GT/AG: GT 

present at the extreme 5' (donor) and AG at the extreme 3' (acceptor) ends of the intron. 

In addition, we identified two splicing-like junction sites in the PB1 segment that joined 

genomic positions 116 with 2118, and 240 with 2190, respectively, which resulted in the 

production of two previously uncharacterized small transcripts, PB1∆A and PB1∆B (Fig. 

2.4B). Moreover, two splicing-like junction sites in the M segment that joined genomic 
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positions 95 with 1005, and 199 with 1054, respectively, were also observed (Fig. 2.4C). 

Further analysis indicated that none of the junction sites observed in PB1 and M 

segments conformed to the canonical splicing donor and acceptor dinucleotide motif 

GT/AG that are present in the splicing sites of human and influenza viral genes (N. Sheth 

et al., 2006). Follow-up Reverse transcription polymerase chain reaction (RT-PCR) and 

Sanger sequencing experiments confirmed the presence of NS2, PB1∆A, PB1∆B, M∆A, 

and M∆B mRNAs in virus-infected A549 cells (Fig. 2.4D). Specifically, with primers 

corresponding to terminal sequences of the segment (Table 2.1), we amplified nearly full-

length PB1∆A and M∆A with the identical junction site sequences as determined in 

RNA-Seq (Figs. 2.4B-C).  For PB1∆B and M∆B, following the initial failure in PCR 

amplification with these terminal primers (Table 2.1), the revised PCRs with forward 

primer sequences (Table 2.1) specific to the junction regions of PB1∆B and M∆B 

successfully amplified PB1∆B and M∆B (Fig. 2.4D). The junction site position for M∆B 

determined by RT-PCR coupled with Sanger sequencing was identical to that measured 

in RNA-Seq experiment. We have only noted one discordance in the junction site 

position for PB1∆B determined between NGS and conventional RT-PCR and Sanger 

sequencing methods. In RNA-Seq, the junction site position for PB1∆B was 240/2190, 

while RT-PCR and Sanger sequencing determined the junction sites for PB1∆B to be 

240/2189, which was chosen for cloning of PB1∆B plasmids that were used in functional 

studies below. 

 

Based on the well-documented literature on IAV DI RNAs (A. R. Davis et al., 

1980; A. R. Davis and D. P. Nayak, 1979; N. J. Dimmock and A. J. Easton, 2015; J. 
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Michael Janda et al., 1979; D. P. Nayak et al., 1982; N. Sheth et al., 2006) plus that none 

of the detected junction sites for the four small transcripts is consistent with the GT/AG 

splicing motif, we speculated that these small transcripts were not derived from mRNA 

splicing, instead, they are likely to be viral RNA polymerase-dependent products. To test 

the hypothesis, we transfected each of the three segments (PB1, M, and NS) to HEK293T 

cells separately using a vector containing a CMV promoter, and extracted total RNAs 

from transfected cells. We then used RT-PCR to detect PB1∆A and M∆A with same sets 

of PCR primers and PCR conditions we used to detect them in virus-infected cells (Fig. 

2.4D). The NS2 transcript was detected, indicating that the NS2 splicing event occurred 

independent of viral replication, a bona fide splicing-derived transcript (Fig. 2.4E).  In a 

marked contrast, neither of the two transcripts (PB1∆A and M∆A) was detected, 

indicating that their synthesis needs active viral replication. These data support the 

speculation that these PB1 segment- and M segment-specific small transcripts are 

produced by viral RNA polymerase-driven transcription.  
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Figure 2.4. Alternative splicing or junction sites and defective RNA genomes. (A) NS 

segment splicing. Diagram showing the known splicing site in IBV NS segment that 

generates NS2 mRNA. (B) PB1 segment-derived defective RNAs. Schematic diagram 
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shows the two newly identified defective RNAs from PB1 segment termed as PB1∆A, 

and PB1∆B. (C) M segment-derived defective RNAs. Schematic diagram displays the 

two newly identified defective RNAs in the M segment termed as M∆A and M∆B. The 

initiation, junction, and termination positions (5'→3') of an mRNA’s ORF are labeled 

with position numbers above. An mRNA’s two junction sequences are shown under 

ORFs. (D) Detection of PB1∆A, M∆A, PB1∆B, M∆B and NS2 RNAs in IBV infected 

A549 cells. Segment-specific primers were used to amplify full-length PB1∆A, M∆A, 

and NS2 by RT-PCR. Junction-specific primers (forward) and segmental primers (reverse) 

were used to amplify partial PB1∆B and M∆B transcripts. The cDNA was generated 

from total mRNA extracted from IBV-infected A549 cells. (E) Absence of PB1∆A and 

M∆A RNAs in HEK293T cells transfected with plasmid DNA encoding IBV PB1 and M 

segment. Segment-specific primers were used to amplify PB1∆A and M∆A by RT-PCR. 

NS2-specific RT-PCR was performed as a splicing control. The cDNA was generated 

from total mRNA extracted from transfected HEK293T cells with IBV PB1, M, or NS 

segments. 

 

2.3.3 Abundances of Defective RNAs  

We then used the RNA-Seq data to determine the transcription dynamics of 

defective RNAs in influenza B virus-infected A549 cells (Fig. 2.5A). We estimated the 

relative transcription levels of defective RNAs by calculating the number of junction 

reads per million mapped reads. The analysis showed that the levels of PB1∆A and 

PB1∆B were very low at 6 hpi, and reached peak levels at 24 hpi. Similar to PB1∆A and 

PB1∆B, M∆A and M∆B levels reached the highest at 24 hpi (Fig. 2.5A). Interestingly, 
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the transcription level of M∆A was over 100-fold higher than M∆B. The positional read 

coverage at the M∆A junction sites was about 70-fold higher than that in the central 

region of M segment, which is largely from M1 and M2 transcripts. This suggested that 

the transcription level of M∆A was significantly higher than these of M1 and M2.  

 

We next developed vRNA-sense reverse transcription (E. Kawakami et al., 2011) 

coupled with two-color probe Droplet Digital PCR (ddPCR) assay that enabled us to 

measure the relative abundance of the observed defective vRNAs to their parental 

segments in both intracellular and extracellular (virus particles) environments. Such an 

assay also allowed us to detect transcripts derived only from vRNA-sense, not from 

mRNA and cRNA forms. We selected M∆A and PB1∆A as focused defective species 

here and during the rest of the study. As shown in Figs. 2.5B and 2.5C, our quantitative 

data showed that M∆A (Fig. 2.5B) tended to be much more abundant relative to its 

parental segment than PB1∆A (Fig. 2.5C) in both infected cells and virus particles at 

different time points following viral infection. M∆A was nearly 200-fold and 300-fold 

more abundant than the full-length M segment in infected cells and purified virus 

particles at 24 hpi, respectively (Fig. 2.5B). In marked contrast, PB1∆A only exhibited 

about 1.25 to 1.75-fold increase in copy numbers over the full-length PB1 in both 

infected cells and virus particles at this time point (Fig. 2.5C). Significantly, our 

quantitative analysis on abundance of IBV defective vRNA transcripts correlated well 

with our RNA-Seq analysis of the mRNA profile (Figs. 2.2D and 2.5A). The results of 

these experiments provided evidence for the existence and the abundance of the negative-

sense defective genomes, which are correlated with the level of virus replication.  
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Figure 2.5. Transcription profiles of defective RNAs and their relative abundances.  

(A) Transcription profiles of defective mRNAs. RNA-seq junction reads for the four 

defective RNAs (M∆A, M∆B, PB1∆A, and PB1∆B) and NS2 are shown as junction reads 

per million total reads at indicated time points following IBV infection of A549 cells. (B) 

Ratio of M∆A vRNAs relative to full-length M vRNAs. (C) Ratio of PB1∆A vRNAs 

relative to full-length PB1 vRNAs.  Ratios of M∆A to full-length M segment and of 

PB1∆A to full-length PB1 segment were measured respectively by ddPCR. Both clarified 

supernatants and cell lysates of A549 cells infected with 1.0 MOI of IBV were collected 

at 6, 12, and 24 hpi. Total RNAs were then extracted and 200 ng RNA was used for 
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reverse transcription with vRNA-specific primers. ddPCRs were conducted with primers 

and probe specific to amplify defective RNAs (the junction regions) and full-length 

segments. No-template controls (NTC) were included in every run. The ratios of 

defective genomes to their corresponding full-length segments were normalized and 

shown as mean±SEM (standard error of the mean) from three separate experiments with 

each assaying sample in triplicate.   

 

It should be noted that we have also investigated whether the viral inoculum 

contained these defective vRNAs. Using the same vRNA-sense RT-PCR coupled with 

the Sanger sequencing method, we found that viral inoculum contained PB1∆A and M∆A, 

which is in good agreement with the above data, showing that PB1∆A and M∆A vRNAs 

can be packaged into budding viral particles. These results demonstrated that defective 

vRNAs such as M∆A and PB1∆A required active IBV replication. The presence of both 

M∆A and PB1∆A in viral particles suggested that these short forms were incorporated 

into budding virions during viral morphogenesis.  

 

2.3.4 Inhibition of IBV and IAV replication by defective vRNAs 

It is known that vRNA-sense DI genomes of IAV are required to inhibit virus 

replication (Y. Boergeling et al., 2015; T. Odagiri and M. Tashiro, 1997). To determine 

whether the four defective genomes (M∆A, M∆B, PB1∆A, and PB1∆B) were able to 

interfere with the replication of IBV, we placed each individual defective sequence into 

the pHW2000 (pHW) vector with bidirectional promoters (Pol I and II) that allow both 

RNA polymerase I transcription of vRNAs and RNA polymerase II-driven transcription 
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of mRNAs. As such, we generated a set of control plasmids in the pCAGEN (pCAG) 

vector that just contains a pol II promoter (chicken ß-actin) so only mRNAs are 

transcribed. To test the effects of vRNA-sense defective genome transcription on virus 

replication, we employed a transfection-based reverse genetics system (RGS) to generate 

B/Yamanashi/166/98 virus (E. Hoffmann et al., 2002) in the presence or absence of 

defective genomes (1x, 1:1 ratio of defective genome and the corresponding parental 

segment plasmids), viral infectivity was then determined to measure the defective RNAs’ 

effects. As shown in Fig. 2.6B, IBV replication was completely inhibited in the presence 

of either defective genome derived from the pHW vector, as robust virus replication was 

only detected in the empty vector control (mock).  In contrast to the halted replications by 

the pHW series, the replication levels were not much affected by the pCAG series (Fig. 

2.6). The only noticeable inhibition by the pCAG series was approximately 1-log 

reduction in the pCAG-PB1∆A (Fig. 2.6A).  This moderate inhibition by the 

transcriptions of PB1∆A mRNA may indicate a role of a novel polypeptide from this 

specific defective transcript in viral replication, which should be investigated in future 

study. Overall, our activity data suggested that the presence of each of the four defective 

transcripts in vRNA form, but not in mRNA form, is sufficient to inhibit IBV viral 

replication.  

 

To further investigate the dose-dependent effects of the defective vRNA-induced 

interference with IBV replication, we decreased the amount of the pHW-vectored 

plasmids used for transfection while maintaining the same concentration of the 

corresponding parental segment. Three relative ratios of the plasmids carrying defective 
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genome sequences to the plasmids carrying parental segment sequences (1x, 1:1; 0.2x, 

1:5; and 0.1x, 1:10) were used together with seven other IBV RGS plasmids in the 

transfection/infection experiment. Dose-dependent suppression of IBV replication by 

PB1∆A or M∆A was nicely demonstrated in Figs. 2.6C and 2.6D. Specifically, PB1∆A or 

M∆A, when used in equal amount as its parent segment plasmid (1x group), completely 

inhibited IBV replication (Figs. 2.6C and 2.6D), which was similar to our previous data 

(Fig. 2.6B). Reducing the amount of DI plasmid by 80% relative to the corresponding 

full-length segment plasmid (0.2x group) resulted in a moderate reduction (around 1.0 -

log) of viral infectivity when compared to controls (pHW vector and mock transfections). 

Furthermore, there was no detectable reduction in viral infectivity observed in 0.1x group 

where the PB1∆A (Fig. 2.6C) or M∆A DI (Fig. 2.6D) plasmid for transfection was 

further reduced by 90% relative to the full-length segment plasmid.  

 

 

 

Figure 2.6. Inhibition of IBV replication by defective RNAs. Co-culture of HEK293T 

and MDCK cells were transfected with each of indicated defective genome plasmids 

(0.25 µg each) in the context of (A) pCAG vector (positive-sense mRNA production) or 

(B) pHW vector (both positive and negative-sense RNA production), together with an 8-
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plasmid IBV RGS system (0.25 µg each plasmid). Culture supernatants collected at 24 

hpi were titrated in MDCK cells to determine end-point titers (TCID50/ml). The dose-

dependent effects of PB1∆A and M∆A genomes in interference with IBV replication 

(Panels C and D) were investigated under similar experimental conditions by decreasing 

the amount of the defective genome plasmid used for transfection while maintaining the 

same concentration of the corresponding parental segment. Three relative ratios of the 

defective genome and parental segment plasmids: 1x, 1:1 (0.25 to 0.25 µg); 0.2x, 1:5 

(0.25 to 1.25 µg); and 0.1x, 1:10 (0.25 to 2.5 µg), were used together with seven other 

IBV RGS plasmids (0.25 µg each plasmid) in the transfection/infection experiment. The 

data are showed as mean±SEM (standard error of the mean) from three separate 

experiments in triplicate each. One-way ANOVA is used to calculate significance with 

one star indicating p<0.05 and two stars indicating P<0.01, respectively.    

  

Next, we investigated whether expression of IBV-derived PB1∆A and M∆A 

defective genomes could interfere with IAV replication using a similar approach as 

described above. For determining viral infectivity, indicator of defective RNAs’ effects, 

we measured viral TCID50/ml at 6, 12, and 24 h following infection of the MDCK cell 

line, respectively. Similarly, three different dose groups (based on the relative ratios of 

the defective genome and its parental segment plasmids) were used in this experiment, 

which were 1x, 1:1 (0.25 to 0.25 µg); 5x, 5:1 (1.25 to 0.25 µg); and 10x, 10:1 (2.5 to 0.25 

µg). As demonstrated in Fig. 2.7, IAV replication was not overall substantially inhibited 

by either M∆A or PB1∆A when used in the same amount of plasmid DNA as the 

corresponding full-length M or PB1 segment (1x group).  Interestingly, significant 
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inhibitions of IAV replication were achieved when PB1∆A plasmid was used 5 (5x group) 

or 10 times (10x group) higher than its parental PB1 segment (Fig. 2.7A). For example, 

in 10x group, no detectable viruses were found in the presence of PB1∆A at 6, 12 and 24 

hpi. In the 5x group, introduction of PB1∆A resulted in a complete inhibition of IAV 

replication at 6 hpi followed by nearly 3-log and around 1-log reductions relative to mock 

vector control at 12 and 24 hpi, respectively (Fig. 2.7A). In a marked contrast, increasing 

the quantity of transfected M∆A plasmid showed no significant inhibitory activity against 

IAV (i.e., 5x and 10x group) over the course of this experiment (Fig. 2.7B).  

 

 

 

Figure 2.7. Inhibition of IAV replication by defective RNAs. Co-culture of HEF293T 

and MDCK cells was transfected with an 8-plasmid A/WSN/33 RGS in the absence or 

presence of different amounts of PB1∆A (Panel A) and M∆A (Panel B). Note 1x: 0.25 µg 

defective RNA plasmid and 0.25 µg of each of RGS plasmids, 5x: 1.25 µg defective 

RNA plasmid and 0.25 µg of each of RGS plasmids, and 10x: 2.5 µg defective RNA 

plasmid and 0.25 µg of each of RGS plasmids. DNA amount in each transfection reaction 

was made equivalent by adding pHW empty vector. Culture supernatants collected at 6, 
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12, and 24 hpi were titrated for determining viral infectivity (TCID50/ml) in MDCK cells. 

The data are showed as mean±SEM (standard error of the mean) from three separate 

experiments in triplicate each. One-way ANOVA is used to calculate significance with 

one star indicating p<0.05 and two stars indicating P<0.01, respectively.    

 

In summary, the above experimental data demonstrated that all four defective 

genomes (PB1∆A, PB1∆B, M∆A and M∆B) identified from our NGS data potently 

inhibited IBV replication. Further investigation of PB1∆A and M∆A showed that PB1∆A, 

not M∆A, was able to interfere with IAV replication but the degree of inhibition was less 

pronounced when compared to that observed for IBV.       

 

2.3.5 Cell type-independent phenomenon of IBV defective genomes production.  

Finally, we were interested in determining whether the cell type played a decisive 

role in the production of the observed PB1∆A, PB1∆B, M∆A, and M∆B defective 

genomes (Fig. 2.8). In addition to the A549 cell line, we included Madin Darby Canine 

Kidney (MDCK) and human epithelial lung Calu-3 due to the following considerations. 

Firstly, MDCK cell line has been a constant source to study DI genomes of IAV. 

Secondly, Calu-3 is another relevant epithelia cell line to investigate the biology of 

influenza viruses. Total RNAs were extracted from viral supernatants collected at 24 hpi 

with 1.0 MOI of influenza B/Brisbane/60/2008, which was then followed by defective 

genome-specific RT-PCR amplification. After the agarose gel electrophoresis of RT-PCR 

products, the DNA bands of correct sizes were excised, purified and sequenced toward 

the identification of junction sites. As demonstrated in Fig. 2.8, all four defective 
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genomes with the expected correct junction site were produced in the three tested cell 

lines, which suggested a cell type-independent mechanism for IBV defective genomes 

production. 

 

 

 

 

Figure 2.8. Cell type-independent production of IBV defective genomes. A549, Calu-

3, and MDCK cells were infected, respectively, with 1.0 MOI of B/Brisbane/60/2008. 

Total RNAs were extracted from viral supernatants collected at 24 hpi, which was then 

followed by defective genome-specific RT-PCR amplification. After the agarose gel 

electrophoresis of RT-PCR products, the DNA bands of correct sizes were excised, 

purified and sequenced through the Sanger method toward the identification of junction 

sites. The data shown are representative of three independent experiments. 

 

2.4 Discussion 

DI genomes have been well described in natural IAV infections (A. R. Davis et al., 

1980; A. R. Davis and D. P. Nayak, 1979; N. J. Dimmock and A. J. Easton, 2014, 2015; 

N. J. Dimmock et al., 2008; J. Michael Janda et al., 1979; D. P. Nayak et al., 1982; K. 

Saira et al., 2013). Despite earlier studies showing that DI genomes can arise from any of 

the eight segments during viral replication, it is generally agreed upon that the three 
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largest polymerase segments (PA, PB1, and PB2) are the primary donors generating these 

DI RNAs in cell cultures as well as in infected animals (N. J. Dimmock and A. J. Easton, 

2014, 2015; K. Saira et al., 2013). The transmission of DI genomes has occurred between 

human patients infected with influenza A (H1N1) pdm09 virus (K. Saira et al., 2013). 

Because the position of the internal deletion is highly variable in the segment, a 

heterogeneous population of segment-specific DI genomes has been frequently observed 

in IAV-infected cells and animals (N. J. Dimmock et al., 2008; K. Saira et al., 2013). To 

date, more than 50 different species of DI RNAs have been described in IAV-infected 

cells (N. J. Dimmock and A. J. Easton, 2015; S. Noble and N. J. Dimmock, 1995). 

Although IBV DI phenomena has been reported in 1954 (P. Von Magnus, 1954), and the 

presence of substantial amount of putative IBV DIs in addition to IAV DIs in live 

attenuated influenza vaccine has been described recently (P. S. Gould et al., 2017), their 

roles in moderating viral replication and establishing host protective immunity is not 

clear.    

 

Here we demonstrated that IBV, like IAV, is capable of producing defective 

genomes during viral replication. Specifically, by NGS coupled with RT-PCR and 

traditional Sanger sequencing, we have confirmed the presence of four defective genomes 

in A549 human lung epithilial cells that had been infected with B/Brisbane/60/2008. The 

stringent threshold (i.e., above 200 junction reads) employed in our sequence analysis 

may result in the detection of a relatively low number of defective genomes in IBV-

infected A549 cells. An alternative explanation is our experimental conditions where no 

continuous virus passage or high infectious dose was employed (only 1 MOI used in this 
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study). Regardless of a precise cause, our data indicated that both PB1 and M segments 

likely serve as a major source for the production of defective RNAs upon IBV infection.  

 

Each of the identified four defective genomes (PB1∆A, PB1∆B, M∆A, and M∆B), 

when transcribed into vRNA-sense, was able to potently inhibited the replication of IBV. 

The interfering activities of the defective genomes we had seen are similar to these of the 

well-characterized IAV DI genomes. Therefore, we propose that the four defective 

genomes should be categorized as DI genomes. Despite their unknown mechanism of 

action, by analogy with IAV, one can envision that the defective vRNAs inhibit the 

growth of IBV by competing with their corresponding full-length segment for the 

engagement of the viral polymerase complex during replication of vRNA into cRNA as 

well as for the final packaging into budding virus particles. Interestingly, only PB1∆A 

had the ability to exert a moderate and dose-dependent interference effect, which was 

much less pronounced than that seen in the interference of cognate IBV replication (Figs. 

2.6 and 2.7). Because PB1 is the most conserved vRNA segment between IAV and IBV, 

we speculate that the PB1 segment shares more similar features such as the panhandle 

structure (vRNA promoter for viral RNA polymerase complex formed by the 5’ and 3’ 

termini of each segment) and the packaging signal sequence (containing the 5’ and 3’ 

non-coding regions and the terminal coding sequences of each segment) than the M 

segment between IAV and IBV. Previous studies have shown that the panhandle structure 

and the packaging sequence play a decisive role in DI-mediated interference in viral 

replication (A. Baum et al., 2010; T. Frensing et al., 2014; J. M. Ngunjiri et al., 2013; M. 

Perez-Cidoncha et al., 2014).  The sequence and structural differences between IBV PB1 
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and M segments, probably subtle, warrant further investigation toward addressing the 

mechanism by which DI RNA from IBV PB1, not M segment, interfere with IAV 

replication. 

 

Presence of the highly abundant M∆A (i.e., 200-fold and 300-fold higher than the 

parental M segment, Fig. 2.5B) in both virus-infected cell and virus particles raised 

several interesting questions. First, the observed high abundance of M∆A in virus 

particles provides evidence that the majority of influenza B virions lacks the full-length 

parental M segment and are thus incapable of conducting autonomous replication. 

Overproduction of IBV M segment-derived DI genome may represent a major source that 

derives high particle-to-PFU (plaque formation unit) ratio as normally seen in animal 

viruses such as influenza A virus. Second, the presence of a predominant M segment-

derived defective genome during active IBV replication may further discriminate IBV 

from IAV in defective genome production and M segment-centered expression strategy. 

Numerous studies of IAV have shown that the three polymerase segments, not the M 

segment, are the major forces driving the generation of DI genomes (A. R. Davis et al., 

1980; Philip A. Jennings et al., 1983; S. Noble and N. J. Dimmock, 1995; K. Saira et al., 

2013). Moreover, the M2 protein of IAV is translated from M2 mRNA, which is 

generated via alternative splicing (R A Lamb et al., 1981). However, IBV’s M segment 

depends on a translational stop-start strategy to synthesize BM2 protein (C. M. Horvath 

et al., 1990). To our knowledge, no splicing event has been previously observed in IBV 

M segment. Intriguingly, the M segment in IAV is favored for splicing because three 

independent splicing events have been identified, while its counterpart in IBV is largely 
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selected for producing defective genomes. Further dissection of this notable difference 

may help us better appreciate the differences between these two closely related influenza 

viruses in biology and evolution. Third, why does IBV replication give rise to such 

abundant M∆A species? It can be assumed that M∆A is a perfect vRNA template that can 

be recognized and replicated efficiently by the viral RNA polymerase complex. This 

situation, if true, may consume substantial energy and resources, which, the viral 

replication machinery could otherwise save for manufacturing more infectious viral 

particles for subsequent infection. Alternatively, it can be proposed that M∆A abundance 

is intentionally required for efficient IBV replication and transmission. For example, it 

may behave as an accessory factor to facilitate viral replication or help IBV-infected cells 

recover from apoptosis or damage. Paradoxically, this model should reconcile the 

prevailing dogma that DI is a negative regulator of viral replication by competing out its 

full-length segment.  An emerging role for DI such as antiviral innate immune response 

inducer should be also taken into consideration to address the potential opposing effects 

of DI in modulation of IBV replication in vitro and in vivo (A. Baum et al., 2010; T. 

Frensing et al., 2014; J. M. Ngunjiri et al., 2013; M. Perez-Cidoncha et al., 2014). 

Furthermore, excessive production of the defective genomes such as M∆A may allow 

IBV to employ it as a decoy molecule in misleading the anti-IBV innate response to help 

IBV evade immune recognition toward efficient replication and transmission in humans, 

which shall be invested in further studies.  

 

Our studies also demonstrated that all four defective genomes initially found in 

infected A549 cells were also present in two other cell types, MDCK and Calu-3. This 
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result indicated that cell type might not have a direct role in IBV-specific defective 

genomes diversity.  Despite decades of research, the molecular mechanism underlying DI 

RNA formation has not been fully elucidated. Current studies suggest that a viral RNA 

polymerase slippage-based faulty replication process is a likely mechanism (N. J. 

Dimmock and A. J. Easton, 2014). Heterologous populations of DI present in IAV and 

various species of segment-derived DIs in terms of the junction sites support this model. 

Our observation of over-abundant M∆A in IBV, however, may challenge this model. It 

will be interesting to address whether defective RNA production especially M∆A, is a 

specific mechanism or due to the viral RNA polymerase slippage-based faulty replication 

that often occurs randomly.  In summary, we identified four DI genomes specific to IBV 

replication, with M segment-derived M∆A being the most abundant. The negative-sense 

defective vRNAs potently inhibit the replication of B/Yamanashi/166/98. PB1∆A was 

able to modestly interfere with IAV replication. In addition, the productions of the four 

DIs are independent of cell types. Further characterization of these DI genomes should 

advance our understanding of the biology and evolution of IBV.  
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Chapter 3. Influenza D virus diverges from its related influenza C virus in the 

recognition of 9-O-acetylated N-acetyl- or N-glycolyl- neuraminic acid-containing 

glycan receptors 

 

ABSTRACT 

Novel influenza D virus (IDV) utilizes cattle as a primary reservoir with 

periodically spillover to other mammalian hosts including pigs and horses. Viral 

attachment to terminal sialic acids (SAs) of sialoglycans exposed on the cell surface is a 

determinant of tissue tropism and host range. Using the hemagglutination assay, we 

demonstrated that IDV, like its related influenza C virus (ICV), utilized 9-O-acetylated 

N-acetylneuraminic acid (Neu5,9Ac2) for attachment to Turkey red blood cells (RBCs) 

and 9-O-acetylation group was a critical SA receptor determinant of IDV. Furthermore, 

with the sialylated glycan microarray (SGM), we found that IDV also interacted with 9-

O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac) equally well, while ICV preferred 

Neu5,9Ac2 over Neu5Gc9Ac. Finally, the glycan array data were supported by functional 

studies showing that both Neu5,9Ac2 and Neu5Gc9Ac receptor analogs exhibited a dose-

dependent inhibition of IDV replication as well as its ability to agglutinate RBCs. Similar 

results were obtained for ICV but the inhibition levels were much less pronounced with 

relatively more inhibition of ICV replication and attachment to RBCs by Neu5,9Ac2 than 

Neu5Gc9Ac. Neu5Gc9Ac is different from Neu5,9Ac2 only by an additional oxygen 

atom at the C5 position. The results of our experiments reveal that IDV and ICV diverge 

in communicating with both O-acetyl group at the C9 position and acetyl/glycolyl groups 

at the C5 position in terminal 9-carbon SAs. These findings will provide a framework for 
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further investigation towards better understanding of how newly found multiple-species-

infecting IDV exploits natural 9-O-acetylated SA variations to expand its host range. 

 

IMPORTANCE 

Influenza D virus (IDV) utilizes cattle as a primary reservoir. Recently increased IDV 

outbreaks in pigs and serological evidence of IDV infection in humans have raised a 

concern about the potential of IDV adapting to humans. Viral attachment to terminal 

sialic acids on the cell surface serves as a first determinant of tissue tropism and host 

range. Our studies demonstrate that IDV is more efficient in recognizing both human 

Neu5,9Ac2 and non-human Neu5Gc9Ac receptors than ICV, a ubiquitous human 

pathogen. ICV seems to strongly prefer human Neu5,9Ac2 over non-human Neu5Gc9Ac. 

Humans cannot make Neu5Gc9Ac due to frame-shift mutations occurring in the CMP-

Neu5Ac hydroxylase (CMAH) that synthesizes Neu5GC, the substrate of the 

Neu5Gc9Ac. Our findings provide evidence that IDV has acquired the unique ability to 

infect and transmit among agricultural animals that are enriched in Neu5Gc9Ac, in 

addition to pose a zoonotic risk to humans only expressing Neu5,9Ac2.  

 

3.1 Introduction 

 

The Orthomyxoviridae family has three influenza genera, A, B, and C, which are 

classified according to antigenic differences in their nucleoprotein (NP) and matrix (M) 

proteins. The fourth genus of influenza, named influenza D, has been recently described 

(https://www.cdc.gov/flu/about/viruses/types.htm). Influenza D (IDV) represents a novel 
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type of virus, which is more closely related to influenza C (ICV) than influenza A (IAV) 

or influenza B (IBV) (B. M. Hause et al., 2013). IDV is unique among four influenza 

types in that it utilizes bovine as a primary reservoir and amplification host with 

periodically spillover to other mammalian hosts (M. F. Ducatez et al., 2015; L. Ferguson 

et al., 2015; E. Foni et al., 2017; B. M. Hause et al., 2014; B. M. Hause et al., 2013; M. 

Quast et al., 2015; E. Salem et al., 2017; S. K. White et al., 2016; S. L. Zhai et al., 2017). 

Since its first isolation from a pig with influenza-like symptoms in Oklahoma of the 

United States in 2011, IDVs have been found in cattle and swine populations in North 

America and Eurasia (M. F. Ducatez et al., 2015; L. Ferguson et al., 2015; E. Foni et al., 

2017; B. M. Hause et al., 2014; B. M. Hause et al., 2013; W. M. Jiang et al., 2014; M. 

Quast et al., 2015; E. Salem et al., 2017; S. K. White et al., 2016; S. L. Zhai et al., 2017). 

Susceptibility to infection by this novel virus has also been demonstrated in sheep, goats, 

horses, camelids, guinea pigs, and ferrets (M. F. Ducatez et al., 2015; L. Ferguson et al., 

2015; E. Foni et al., 2017; B. M. Hause et al., 2014; B. M. Hause et al., 2013; W. M. 

Jiang et al., 2014; M. Quast et al., 2015; E. Salem et al., 2017; C. Sreenivasan et al., 2015; 

S. K. White et al., 2016; S. L. Zhai et al., 2017). Of public health importance, serological 

evidence of IDV infections in humans has been demonstrated (B. M. Hause et al., 2013; 

S. K. White et al., 2016), and increased IDV outbreaks in pigs have been recently 

observed in China and Italy respectively (E. Foni et al., 2017; S. L. Zhai et al., 2017). 

 

To date, IDVs have evolved into two genetic and antigenic lineages, namely 

D/OK and D/660, represented by well-characterized swine IDV (sIDV) D/OK 

(D/swine/Oklahoma/1334/2011) and bovine IDV (bIDV) D/660 



	

	

93	

(D/bovine/Oklahoma/660/2013) isolates (E. A. Collin et al., 2015). The recognition of 

terminal Sialic acids (SAs) of sialoglycans exposed on the cell surface is a first and 

critical step of the influenza virus lifecycle. Using a fluorescent dye labeled recombinant 

Hemagglutinin-Esterase-Fusion (HEF) protein of sIDV D/OK, a recent study found that 

sIDV HEF protein interacted with both α2,3 and α2,6-linked 9-O-acetylated SAs (H. 

Song et al., 2016), suggesting that sIDV likely utilizes them as its receptors for virus 

entry. Furthermore, this study resolved the sIDV HEF crystal structure, and showed that 

sIDV differed from its related ICV in that its HEF protein possessed an open receptor-

binding cavity (H. Song et al., 2016), which may allow IDV to accommodate more 

diverse glycan moieties containing a 9-O-acetly group and as a result increase its tissue 

and species tropisms. ICV utilizes 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) 

with either α2,3 or α2,6 linkage as a functional receptor (P. B. Rosenthal et al., 1998). 

ICV has been thought to have a narrow tissue tropism and a limited host range (Y. 

Matsuzaki et al., 2016).  

 

Despite the progress, little is known about the functional relevance of identified 9-

O-acetylated Neu5Ac (Neu5,9Ac2) and Neu5Gc (Neu5Gc9Ac) (H. Song et al., 2016), 

putative candidate receptors of IDV, in the context of viral infection.  Receptor biology of 

the bovine D/660 lineage has remained uncharacterized. As such, further investigation 

into the receptor biology of IDV and biological relevance of various SA forms carrying a 

9-O-acetyl group in IDV infection is needed because it will offer novel insights into how 

influenza viruses such as IDV originating from a novel bovine reservoir frequently spill 

over and transmit to new hosts including pigs and humans. 
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3.2 Materials and methods 

3.2.1 Viruses and cells 

Madin-Darby Canine Kidney (MDCK) cells (ATCC) were maintained in Dulbecco’s 

modified Eagle’s medium (DMEM) containing 10% fetal bovine serum (FBS) at 37 °C 

with 5 % CO2. IAV (H1N1 A/WSN/1933 virus), IBV (B/Brisbane/60/2008), ICV 

(C/Johannesburg/1/66), IDVs (D/swine/Oklahoma/1334/2011 and 

D/bovine/Oklahoma/660/2013), used for the Hemagglutiniation or the cell-based 

inhibition assay, were propagated in MDCK cells with DMEM containing 1ug/ml Tosyl 

phenylalanyl chloromethyl ketone (TPCK)-trypsin (Sigma-Aldrich). ICV 

(C/Johannesburg/1/66) and bIDV (D/bovine/Oklahoma/660/2013) used for the glycan 

array were propagated in 9 day-old embryonated specific-pathogen-free (SPF) chicken 

eggs.  

 

3.2.2 Sialic acids removal assay 

1 ml 5% Turkey red blood cells (RBCs) (Lampire) were treated with 200 milliunits (mU) 

Neuraminidase from Clostridium perfringens (Sigma-Aldrich) at 37 °C for 1 hour (h). 

After 1 h treatment, RBCs were washed with PBS for 3 times and then diluted to a final 1% 

concentration in PBS for the hemagglutination (HA) assay. 25 µl of each virus with four 

HA units were mixed with same amount of Neuraminidase-treated RBCs, followed by 1 

h incubation at 4 °C before observing results. Non-treated RBCs were used as control. 

 

3.2.3 Hemagglutination (HA) assay-based competitive inhibition assay 
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Bovine submaxillary mucin (BSM) (Sigma-Aldrich), synthetic 5-N-acetyl-9-O-acetyl 

neuraminic acid (Neu5,9Ac2) and 5-N-acetyl-4-O-acetyl neuraminic acid (Neu4,5Ac2) 

(Applied Biotech, Austria) were added to different types of viruses containing four HA 

units each. Mixtures were incubated for 30 min at room temperature. 25 µl of Turkey 

RBCs were added to the mixtures followed by reading results after 30 min incubation at 

room temperature.  

 

3.2.4 9-O acetylated group removal assay 

20 ug pure, synthetic Neu5,9Ac2 (Applied Biotech) were treated with 5 mU sialate-9-O-

acetylesterase (9-O-SE) (Applied Biotech) at 37 °C for 3 h. Four HA units of different 

types of viruses were incubated with 9-O-SE treated or non-treated Neu5,9Ac2 for 30 min 

at room temperature. Then 25ul of Turkey RBCs were added and results were observed 

after 30 min incubation at room temperature. All HA assays were performed in three 

independent assays with each in triplicate. 

 

3.2.5 Cell-based inhibition assay by receptor analogs (Digital Droplet PCR) 

25 µl IDV and ICV containing 100 TCID50 were respectively pretreated with an equal 

volume of Neu5,9Ac2, Neu5Gc9Ac and Neu5Ac  receptor analogs at 20, 80 and 320 

ng/µl concentrations for 30 min at 4 °C. MDCK cells in 96-well plates were washed once 

with PBS and then infected with virus-receptor analogue mixtures for 1h. Cells were 

washed three times and further incubated in DMEM containing 1 µg/ml TPCK-trypsin 

for 6 h. After 6 h post infection (hpi), supernatants were removed and cells in each well 

were lysed with 200 µl Trizol (Life Technologies). Total RNAs were extracted according 
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to manufacturer’s instructions, which were then followed by reverse transcription 

reactions with oligo(dT) primer and High-Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems). NP segment-derived mRNA molecules of ICV and IDV were 

selected as our target for determining the effects of various receptor analogs on viral 

replication, while the mRNA of TATA-Box binding protein (TBP) of canine was used as 

the reference gene for PCR data normalization. The detailed information for primers and 

probes is provided in Table 3.5. The ddPCR reaction consisted of 10 µl 2x Supermix for 

Probes (Bio-Rad), 900 nM primers, 25 nM probes and 8 µl undiluted cDNA into a final 

volume of 20 µl. All samples were tested in three independent experiments with each 

assayed in triplicate. Non- template controls (NTC) were included in every run. Viral 

mRNA copies were normalized with TBP references and results were reported as NP 

mRNA copies per million TBP. 
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Table 3.5. Primers and probes used for digital droplet PCR. 

 

Target genes Primers/probes name Primers/probes sequence 

IDV NP 

qD660NP-For 5’-TGCCGATTGGTGGAGTCAA-3’ 

qD660NP-Rev 5’-TTTCAGTGCCATTCCCAATCT-3’ 

qD660NP-Probe 5'-6FAM-AGCTGGGAAATGTAGTGC-MGBNFQ-3’ 

ICV NP 

qJHBNP-For 5’-TGAAGCCTACATTGCCATTTGT-3’ 

qJHBNP-Rev 5’-GCCATTTTCCAGGATCAACATT-3’ 

qJHBNP-Probe 5'-6FAM-AGGAAGTGGGCCTTAA-MGBNFQ-3’ 

Canine TBP 

Canine-TBP-For 5’-AGGATGATCAAACCCAGAATTGTT-3’    

Canine-TBP-Rev 5’-GCCCTTTAGAATAGGGTAGATGTTTTC-3’ 

Canine-TBP-Probe 5’-VIC-TTGTACTAACAGGTGCTAAAG-MGBNFQ-3’ 

 

 

3.2.6 Virus labeling and sialylated glycan microarray (SGM) 
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IDV and ICV were propagated in 9 day-old embryonated SPF chicken eggs. Allantonic 

fluid were harvest at 3 dpi followed by a brief centrifugation at 2,000 x g for 20 min at 

4°C. The clarified supernatant was layered over a 20% sucrose cushion in PBS buffer and 

then ultracentrifuged at 100,000 x g for 2h at 4 °C in a SW28 rotor (Beckman Coulter). 

Pellets were resuspended in PBS and further purified over a 30–60% cold sucrose 

gradient at 28,000 rpm for 4h at 4 °C in an SW 28 rotor. Fractions (1.0 ml) were collected 

from the top and all fractions showing greater or equal to 6 log 2 HA units were pooled 

together, followed by a final ultracentrifugation through a 20 % sucrose cushion (w/v) in 

PBS at 100, 000 g for 2h at 4 °C. The pellets were resuspended in CMS buffer (0.15M 

NaCl, 0.25mM CaCl2, 0.8 mM MgCl2, PH 7.4) and diluted to a solution containing 1.0 x 

105 HAU (HA unit)/ml.  

 

We employed the standard protocol to generate dye-labeled IDV and ICV virions as 

described previously (X. Song et al., 2011). In brief, 10 µl of 1.0 M sodium bicarbonate 

(pH 9.0) was added into 100 µl purified viruses containing ~1.0 × 104 HA units) followed 

by addition of Alexa Fluor-488 succinimidyl ester (Molecular Probes) in a ratio of 0.005 

µg Alexa per HAU. This ration was determined by the HA titration experiment to give 

maximal labeling without loss of binding activity. After stirring for 1 h at room 

temperature in the dark, the labeling reaction mixtures were dialyzed (Slide-A-Lyzer 

Mini Dialysis Units 7000 MWCO, Pierce) in CaMgS (0.25 mM CaCl2, 0.8 mM MgCl2 in 

borate buffered saline, pH 7.2) at 4°C overnight. After functional evaluation (HA 

activity), labeled viruses were ready for glycan receptor binding experiment.  
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To determine the glycan-binding specificities of labeled IDV and ICV, a glycan screen 

array was performed at the Consortium for Functional Glycomics. The printed glycan 

array consists of 77 sialylated glycans incorporating 16 modified sialic acids in α2–3 and 

α2–6 linkages to different underlying structures (X. Song et al., 2011). Briefly, 

fluorescently labeled virus was incubated on a glycan microarray slide under a coverslip 

at 4°C for 1 h, washed to remove unbound virus, and scanned using a ProScan Array 

(Perkin-Elmer Life sciences) equipped with multiple lasers. The data were processed 

using the manufacturer's software as described previously, which provided raw values in 

relative fluorescence units (RFU) from each spot in an Excel spreadsheet. The intensity 

of binding to each of the 77 glycans on the array was graphed and shown as values 

representing means ± S.D.s of six replicate samples. 

 

3.3 Results 

3.3.1 9-O-acetylation group is a critical sialic acid receptor determinant of IDV.  

We first employed the traditional hemagglutination (HA) assay-based competitive 

inhibition approach to determine the glycan receptor of IDV. To determine whether sialic 

acids serve as a component of the receptor for IDV, we treated Turkey RBCs with 

neuraminidase from Clostridium perfringens. As summarized in Table 3.1, pretreatment 

with neuraminidase resulted in a complete loss of RBC agglutination mediated by IDV as 

well as by IAV A/WSN/1933 (H1N1) or IBV (B/Brisbane/60/2008) or ICV 

(C/Johannesburg/1/66) (4 HA units used for each virus per reaction). This result indicated 

that sialic acids are involved in IDV-mediated RBC agglutination.  
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Table 3.1. The effects of Neuraminidase (NA) treatment on viral ability in 

agglutination of Turkey red blood cells.   

 

Virus Untreated RBCs NA-treated RBCs 

IAV A/WSN/1933 (H1N1) -a +b 

IBV B/Brisbane/60/2008 - + 

ICV C/Johannesburg/1/66 - + 

IDV D/bovine/Oklahoma/660/2013 - + 

 

a indicates evident hemagglutination (no inhibitory effect) in the wells. 

b denotes non-hemagglutination (inhibitory effect) in the wells. 

 

Agglutination of RBCs by IDV was also inhibited in the presence of a range of 

concentration of bovine submaxillary mucin (BSM) (from 6.25 to 400 ng), which is rich 

in 9-O-acetylayed Neu5Ac (Neu5,9Ac2) and Neu5Gc (Neu5Gc9Ac) (Table 3.2) (M. A. 

Langereis et al., 2015). Intriguingly, the level and pattern of inhibition of IDV-mediated 

RBC agglutination by BSM were similar to that observed in ICV that is known to utilize 

Neu5,9Ac2-containing glycan as a receptor for viral entry (P. B. Rosenthal et al., 1998), 

thereby suggesting that IDV likely utilizes Neu5,9Ac2 molecule as a receptor for 

attachment.  
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Table 3.2. The effects of bovine submaxillary mucin (BSM) treatment on viral 

ability in agglutination of Turkey red blood cells.   

 

 

a viruses used in this experiment were IAV IAV A/WSN/1933 (H1N1), IBV 

(B/Brisbane/60/2008), ICV (C/Johannesburg/1/66), and IDV 

(D/bovine/Oklahoma/660/2013) (4 HA units used for each virus per reaction). 

b indicates evident hemagglutination (no inhibitory effect) in the wells. 

c denotes non-hemagglutination (inhibitory effect) in the wells. 

Virus                  BSM (ng)   

 PBS 6.25 25 100 400 

IAV -b - - - - 

IBV - - - - - 

ICV - -  +c + + 

IDV - - + + + 

DMEM - - - - - 
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To further confirm these results, we performed the HA assay involving a synthetic 

Neu5,9Ac2. For a control, Neu4,5Ac2 was used, which has O-acetyl group in the C4, not 

C9 position. RBC agglutination by IDV and ICV was not inhibited by Neu4,5Ac2 (up to 

102 µg/per well, the maximum concentration used). In contrast, agglutination started to 

be completely lost for IDV at the presence of 1.6 µg Neu5,9Ac2 per well and for ICV at 

6.4 µg Neu5,9Ac2 per well (Table 3.3). This result further demonstrated that Neu5,9Ac2 

is a sialic acid receptor of IDV. It is interesting to note that the minimal concentration to 

abolish ICV-mediated RBC agglutination was 4 times higher than that needed for IDV.  

 

Table 3.3. The effects of synthetic Neu5,9Ac2 and Neu4.5Ac2 receptor analogs on 

viral ability in agglutination of Turkey red blood cells.   

 

Virusa Neu5,9Ac2 (ng/ul) 

 PBS 5 20 80 320 1280 

IAV -b - - - - - 

IBV - - - - - - 

ICV - - -  +c + + 

IDV - - + + + + 

DMEM - - - - - - 
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Virusa Neu4,5Ac2 (ng/ul) 

 PBS 5 20 80 320 1280 

IAV -b - - - - - 

IBV - - - - - - 

ICV - - - - - - 

IDV - - - - - - 

DMEM - - - - - - 

 

a viruses used in this experiment were IAV IAV A/WSN/1933 (H1N1), IBV 

(B/Brisbane/60/2008), ICV (C/Johannesburg/1/66), and IDV 

(D/bovine/Oklahoma/660/2013) (4 HA units used for each virus per reaction). 

b indicates evident hemagglutination (no inhibitory effect) in the wells. 

c denotes non-hemagglutination (inhibitory effect) in the wells. 

 

Finally, pretreatment of the synthetic Neu5,9Ac2 with recombinant sialate-9-O-

acetylesterase (9-O-SE) (e.g., removes 9-O-acetylated group) abolished its inhibitory 

effect of IDV- or ICV- mediated RBC agglutination, whereas binding and agglutination 

of RBCs by IAV were not affected (Table 3.4). In summary, the results of our qualitative 

HA-based experiments suggest that IDV uses Neu5,9Ac2 as a receptor for infection.  
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Table 3.4. The effects of synthetic Neu5,9Ac2 receptor analog and recombinant 

sialate-9-O-acetylesterase (9-O-SE) pretreated Neu5,9Ac2 on viral ability in 

agglutination of Turkey red blood cells.   

 

a viruses used in this experiment were IAV IAV A/WSN/1933 (H1N1), ICV 

(C/Johannesburg/1/66), and IDV (D/bovine/Oklahoma/660/2013) (4 HA units used for 

each virus per reaction).  

b indicates evident hemagglutination (no inhibitory effect) in the wells. c denotes non-

hemagglutination (inhibitory effect) in the wells. 

 

3.3.2 Receptor binding characteristics of labeled IDV and ICV on a sialylated glycan 

microarray (SGM). 

 In parallel, we utilized sialylated glycan microarray technology to examine the specific 

glycans that serve as potential receptors for IDV and ICV. The SGM provided by the 

Consortium for Functional Glycomics consists of 77 sialylated glycans incorporating 16 

modified sialic acids in α2,3 and α2,6 linkages to different underlying structures (X. Song 

et al., 2011). Under an identical condition, we found that IDV preferred to bind glycans 

Virus PBS Neu5,9Ac2 Neu5,9Ac2 with 

9-O-SE 

9-O-SE 

with PBS 

IAV -b - - - 

ICV -  +c - - 

IDV - + - - 
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terminated in either Neu5,9Ac2 (IDs#38 and 52) or Neu5Gc9Ac (IDs#39 and 53) (Fig. 

3.1A). Other forms of glycans failed to achieve significant interactions with IDV, 

indicating a specific binding directed largely by the 9-O-acetyl group. Binding of IDV to 

9-O-acetylated glycans was not dependent on the specific linkage (α2,3 or α2,6) (IDs#39 

Vs. 53 and 38 Vs. 52) (Fig. 3.1C). ICV array did not give clear data (low signal/noise 

ratio). Nevertheless, only #38 glycan terminated with Neu5,9Ac2 (α2,6 linkage) showed 

consistent interactions with ICV (Fig. 3.1B) in our repeated SGM experiments. 

Neu5,9Ac2 has been shown previously as a receptor determinant of ICV infection (G. N. 

Rogers et al., 1986). In summary, the glycan array-based data are consistent with the 

observations of the HA-based experiments, thereby further demonstrating that IDV 

utilize 9-O-acetylated SAs-containing glycans as receptors for viral entry and infection.  
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Figure 3.1. Identification of 9-O-acetylated sialic acid receptors of influenza D virus. 

Glycan binding analyses as measured by relative fluorescence intensity (RFU) are 

presented for labeled IDV (A) and ICV (B) respectively. The structures of the sialylated 

glycans showing a significant interaction with IDV are listed in (C) with a “*” sign 

indicating a glycan that binds to both IDV and ICV. In brief, Alexa488 fluorescence-

labeled purified IDV or ICV was incubated at 4°C for 1 h on the printed glycan array that 

consists of 77 sialylated glycans incorporating 16 modified sialic acids in α2,3 and α2,6 

linkages to different underlying structures. Following washing six times to remove 

unbound viruses, the slides were scanned using a ProScan Array (Perkin-Elmer Life 

sciences) equipped with four lasers covering an excitation range from 488 to 637 nm. For 

Alexa488 fluorescence, 495 nm (excitation) and 510 nm (emission) were used. The data 

were processed using the manufacturer's software, which provided raw values in relative 

fluorescence units (RFU) from each spot in an Excel spreadsheet. The intensity of 
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binding to each of the 77 glycans on the array was graphed and shown as values 

representing means ± S.D.s of the four replicates. Note that an equal amount of purified 

IDV or ICV (500 HA units) was used for the glycan array analysis. The data presented in 

this figure are representative of two independent glycan microarray experiments 

performed in the four replicates. 

 

3.3.3 Functional studies of the roles of Neu5,9Ac2- or Neu5Gc9Ac-containing glycans 

in IDV and ICV infection. To determine the functional relevance of these receptor 

candidates, we first tested four synthetic glycans and examined their ability to disrupt the 

agglutination of Turkey RBCs by IDV and ICV in hemagglutination inhibition format 

where we replaced antibody with receptor analog with four hemagglutination (HA) unit-

working concentration used for each virus per reaction. These four glycans are Neu5Ac-

α2-3LNnT-beta-Propyl N3, Neu5Gc-α2-3LNnT-beta-Propyl N3, Neu5Ac9Ac-α2-

3LNnT-beta-Propyl N3, and Neu5Gc9Ac-α2-3LNnT-beta-Propyl N3. As shown in Fig. 

3.2A, the presence of both Neu5,9Ac2 and Neu5Gc9Ac at a concentration of 20 ng/ul and 

above resulted in a complete loss of RBC agglutination by IDV. In contrast, neither 

Neu5Ac nor Neu5Gc affected IDV-mediated RBC agglutination, thereby confirming our 

glycan array data. Interestingly, we noticed that ICV needed 4 and 16 times higher 

concentrations of Neu5,9Ac2 and Neu5Gc9Ac, respectively, than IDV for completely 

losing RBC agglutination. This result suggests that IDV binds both 9-O-acetylated SAs 

with an affinity higher than ICV, and ICV prefers Neu5,9Ac2 over Neu5Gc9Ac.  
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In parallel, four synthetic glycans were examined for their ability to inhibit the replication 

of ICV (Fig. 3.2B) and IDV (Fig. 3.2C) in a MDCK cell-based multiple round replication 

assay format. After pretreatment for 30 min at 4 ºC, MDCK cells were infected with 100 

TCID50 of IDV or ICV, followed by additional 6h incubation. Extracted cellular RNAs 

were subjected to reverse transcription with oligo (dT) followed by Bio-Rad QX200 

Droplet Digital ddPCR (targeting NP mRNA). Copy numbers of NP-specific mRNA in 

each reaction were normalized to internal reference gene encoding TATA box binding 

protein (TBP) to derive relative copy number of viral NP mRNA. The detailed 

information for primers and probes is provided in Table 3.5. As shown in Fig. 3.2C, both 

Neu5,9Ac2 and Neu5Gc9Ac exhibited a dose-dependent inhibition of IDV replication. 

For example, IDV infectivity was reduced approximately by 50% with Neu5,9Ac2 and by 

40% with Neu5Gc9Ac at 64 ng/µl, respectively, whereas the infectivity was reduced by 

90% with either treatment at 1024 ng/µl. Similarly, a dose-dependent inhibition of ICV 

was observed by the above receptor analogs but the inhibition levels were less 

pronounced (Fig. 3.2B). ICV replication was inhibited significantly more by Neu5,9Ac2 

than Neu5Gc9Ac (Fig. 3.2B). The results from cell-based and HA-based inhibition assays 

were in good agreement with each other, thereby further validating our findings from 

glycan array experiments. In summary, our data suggest that IDV binds both Neu5,9Ac2 

and Neu5Gc9Ac equally well, while ICV prefers Neu5,9Ac2 over Neu5Gc9AC. Our 

results also indicate that IDV is more efficient in recognizing Neu5,9Ac2 and 

Neu5Gc9Ac receptors than ICV.  
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Figure 3.2. Inhibition of viral hemagglutination and infection by receptor analogs. 

(A) A loss of Turkey RBC agglutination by ICV or IDV at the presence of synthetic 

receptor analog. Indicated receptor analogs at various concentrations (1.25, 5, 20, 80, 320 

ng/ul) were added to IDV or ICV containing four HA units each. Mixtures were 

incubated for 30 min at room temperature. 25 µl of Turkey RBCs were then added to the 

mixtures followed by reading results after 30 min incubation at room temperature. 

Normal medium DMEM was used as a negative control. Note that “+” sign indicates no 

hemagglutination, while “-” denotes evident hemagglutination. The data presented in 

panel A are representative of four independent experiments performed in duplicate. 

Inhibition of ICV (B) and IDV (C) replication in an MDCK-based replication assay by 

receptor analogs as determined by Digital Droplet PCR. 25 µl IDV and ICV containing 

100 TCID50 were respectively pretreated with an equal volume of Neu5,9AC2 or 

Neu5Gc9Ac or Neu5Ac receptor analogs at 20, 80 and 320 ng/µl concentrations for 30 

min at 4 °C. MDCK cells in 96-well plates were washed once with PBS and then infected 

with virus-receptor mixtures for 1h. Cells were washed three times and further incubated 

in DMEM containing 1 µg/ml TPCK-trypsin for 6 h. After 6 h post infection (hpi), 

supernatants were removed and cells in each well were lysed with 200 µl Trizol. Total 

RNAs were extracted according to manufacturer’s instructions, which were then followed 

by reverse transcription reactions with oligo(dT) primer and High-Capacity cDNA 

Reverse Transcription Kit. NP segment-derived mRNA molecules of ICV and IDV were 

selected as our target for determining the effects of various receptor analogs on viral 

replication, while the mRNA of TATA-Box binding protein (TBP) of canine was used as 

the reference gene for PCR data normalization. The detailed information for primers and 
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probes is provided in Table 3.5. The ddPCR reaction consisted of 10 µl 2x Supermix for 

Probes (Bio-Rad), 900 nM primers, 25 nM probes and 8 µl undiluted cDNA into a final 

volume of 20 µl. Non- template controls (NTC) were included in every run. Viral mRNA 

copies were normalized with TBP references and results were reported as NP mRNA 

copies per million TBP. Receptor analog-mediated inhibitory effects were shown for ICV 

in panel B and for IDV in panel C as values representing means ± S.D.s of three 

independent experiments performed in triplicate. 

	
3.4 Discussion 

Neu5Gc and Neu5Gc9Ac are generally abundant in many agricultural animals 

such as cattle and swine (A. N. Samraj et al., 2015), but are absent in humans and ferrets 

due to frame-shift mutations of CMAH that converts Neu5Ac to Neu5Gc (A. Irie et al., 

1998; P. S. Ng et al., 2014), the substrate of the Neu5Gc9Ac. The efficient usage of either 

Neu5,9Ac2 or Neu5Gc9Ac as a receptor likely gives IDV an ecological niche to infect 

multiple agricultural animals with abundant expression of Neu5Gc9Ac as well as humans 

only expressing Neu5,9Ac2. The zoonotic risk to humans by IDV is further supported by 

our previous study showing that humans-like ferrets are susceptible to IDV infection (C. 

Sreenivasan et al., 2015). It should be noted that despite the genetic inability to 

synthesize Neu5Gc and its derivative Neu5Gc9Ac, humans still possess the cellular 9-O-

acetylation machinery for the synthesis of 9-O-acetylated sialic acids. In this regard, 

humans can take Neu5Gc from dietary sources, convert it into Neu5Gc9Ac, and express 

it on the cell surfaces of various cell types (M. Bardor et al., 2005). It has been shown 

previously that Neu5Gc and possible its 9-O-acetylated form (Neu5Gc9Ac) can 

accumulate in human cancer cells with an unknown mechanism (S. Inoue et al., 2010). In 
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light of the fact that exogenous expression non-human Neu5Gc can make humans 

vulnerable to pathogens utilizing Neu5GC as a receptor for infection (E. Byres et al., 

2008), it will be interesting to address in the near future whether humans or ferrets 

expressing exogenous Neu5Gc9Ac under certain conditions are more susceptible to IDV 

infection. 

 

Humans are thought to be the primary host and reservoir of ICV, although this 

virus has been identified in other hosts probably after reverse zoonotic transmission from 

humans (Y. Matsuzaki et al., 2016). Our observation that ICV preferentially uses 

Neu5,9Ac2 over Neu5Gc9Ac appears to support this theory. First, as discussed above, the 

evolutionary loss of CMAH gene for conversion of Neu5Ac to Neu5Gc may make 

humans exclusively and abundantly express Neu5Ac and Neu5,9Ac2 (A. Irie et al., 1998). 

As such humans become a perfect host for ICV that selectively prefers Neu5,9Ac2 for 

viral attachment and infection. Second, agricultural animals such as cattle and pigs that 

are rich in Neu5Gc can express high levels of Neu5Gc9Ac (A. N. Samraj et al., 2015). 

Because a significant portion of Neu5Ac has been converted to Neu5Gc in these animals, 

the number of Neu5Ac molecule available for Neu5,9Ac2 synthesis are substantially 

reduced. Reduced expression of the Neu5,9Ac2 receptor may render agricultural animals 

become less susceptible to ICV infection when compared to humans. In case that these 

animals would be infected by ICV after reverse zoonotic transmission from humans, it is 

questionable that ICV transmission can be sustained among them.  On the other hand, 

IDV differs from ICV in that it effectively engages with no clear preference both 

Neu5,9Ac2 and Neu5Gc9Ac receptors. One can envision that the differential expression 
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levels of these two 9-O-acetylayed sialic acids in animals and humans may not 

substantially affect IDV replication and spread. And therefore, this unique receptor 

binding property should enable IDV effectively infect and transmit among different 

mammalian hosts including humans.  

 

9-O-acetylated derivatives (Neu5,9Ac2 and Neu5Gc9Ac) and their precursors 

(Neu5Ac and Neu5Gc) are most common sialic acids in nature (X. Song et al., 2011). 

Neu5Gc9Ac is different from Neu5,9Ac2 only by an additional oxygen atom at the C5 

position (X. Song et al., 2011). The differential usage of these two nearly identical 9-O-

acetylated SAs between IDV and ICV implies that two seven-segmented influenza 

viruses diverge in communicating with both O-acetyl group at the C9 position and 

acetyl/glycolyl groups at the C5 position in terminal 9-carbon sialic acids. We interpret 

our experimental data presented here that IDV in general may have high binding affinity 

and broad specificity, while ICV may have lower binding affinity and narrow selectivity 

for 9-O-acetylated SAs. Such qualitative and quantitative differences in the virus-glycan 

receptor interaction that may ultimately discriminate IDV from its related ICV in 

infectious landscape and ecology, which clearly warrant further investigation.   
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Chapter 4. Genesis, antigenic evolution, and temperature-dependent replication of a 

recent human influenza C virus clinical isolate 

 

Abstract: Unlike influenza A and B viruses that infect humans and cause severe diseases 

in seasonal epidemics, influenza C virus (ICV) is a ubiquitous childhood pathogen 

typically causing mild respiratory symptoms. ICV infections are rarely diagnosed and 

less research has been performed on it despite the virus being capable of causing severe 

disease in infants. Here we report on the isolation of a human ICV from a child with 

acute respiratory disease, provisionally designated C/Victoria/2/2012 (C/Vic). The full-

length genome sequence and phylogenetic analysis revealed that the hemagglutinin-

esterase-fusion (HEF) gene of C/Vic was derived from C/Sao Paulo lineage, PB2, PB1, 

M and NS of C/Vic were classified into C/Yamagata-related lineage, while P3 and NP 

were divided into C/Mississippi-related lineage. Furthermore, antigenic analysis using the 

HI assay found that 1947 C/Taylor virus (C/Taylor lineage) was antigenically more 

divergent from1966 C/Johannesburg (C/Aichi lineage) than from 2012 C/Vic. Structure 

modeling of the HEF protein identified two mutations in the 170-loop of the HEF protein 

around the receptor binding pocket as a possible antigenic determinant responsible for the 

discrepant HI results. Finally, C/Vic was found to replicate more efficiently at the cool 

temperature found in the nasal cavity (33 °C) than at the core body temperature (37 °C) 

in a panel of epithelial cell lines from human, swine and canine. Taken together, results 

of our studies reveal novel insights into the genetic and antigenic evolution of ICV and 

provide a framework for further investigation of the molecular determinants of 

temperature-dependent growth and antigenic property. 
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4.1 Introduction 

 

The Orthomyxoviridae family has four genera of influenza viruses, influenza A, influenza 

B, influenza C, and influenza D. Among them, influenza A, B, and C are known to cause 

moderate to severe respiratory diseases in humans. Specifically, human infections by 

influenza A (IAV) and B (IBV) viruses can lead to severe respiratory diseases, while 

influenza C virus (ICV) usually causes mild upper respiratory diseases in humans, 

although it has the ability in causing severe lower respiratory illness in children less than 

2 years of age (S. Katagiri et al., 1983; Y. Matsuzaki et al., 2006; H. Moriuchi et al., 

1991). ICV is distributed worldwide (A. C. Dykes et al., 1980; Y. Matsuzaki et al., 2016; 

H. Nishimura et al., 1987) and multiple genetic lineages co-circulate globally (D. A. 

Buonagurio et al., 1986; Y. Furuse et al., 2016; Y. Matsuzaki et al., 2000; Y. Matsuzaki 

et al., 1994). In addition to three genera of influenza viruses that all infect humans, a new 

group of influenza viruses with cattle as a primary reservoir has been recently described 

and these new viruses are classified into influenza D genus due to its distinctness from 

other influenza genera (E. A. Collin et al., 2015; B. M. Hause et al., 2014; B. M. Hause et 

al., 2013; Z. Sheng et al., 2014). Influenza D viruses (IDV) are thought to primarily infect 

and cause respiratory diseases in cattle and to some extent in pigs. Nevertheless, IDV-

specific antibodies had been found in humans, especially those who had a previous 

history of contact with cattle.  
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Among human influenza viruses, ICV infections are rarely diagnosed and less research 

has been performed on it despite the virus having the ability to cause severe diseases in 

newborn infants. Previous analyses of the hemagglutinin-esterase-fusion (HEF) gene, 

encoding the antigenic determinants of viruses, have divided ICVs into six genetic and 

antigenic lineages, designated C/Taylor, C/Mississippi, C/Aichi, C/Yamagata, 

C/Kanagawa, and C/Sao Paulo (S. Hachinohe et al., 1989; Y. Matsuzaki et al., 2003; Y. 

Matsuzaki et al., 1994; Y. Muraki et al., 1996; K. Sugawara et al., 1988; K. Sugawara et 

al., 1993). ICV is thought to evolve relatively slow compared to IAV or IBV to a lesser 

extent (P. Chakraverty, 1974; Y. Furuse et al., 2016; H. Kawamura et al., 1986; Y. 

Muraki et al., 1996). However, frequent reassortments among ICVs have always occurred 

in nature and most of the circulating ICV are generated due to various reassortantments 

involving multiple ICV lineages (Y. Matsuzaki et al., 2003). Co-circulation of several 

ICV lineages in humans has been well documented (Y. Matsuzaki et al., 1994). Genetic 

diversity and the associated antigenic drift caused by reassortment play an important role 

in driving ICV’s periodical recurrence in humans. To date, the majority of published 

research on human ICV utilized historic reference virus strains isolated between the 

1950s and 1960s. As such, more studies of currently circulating strains of ICV are 

critically needed in order to better understand the epidemiology, genetic and antigenic 

evolution, and biology of this group of human influenza viruses, which can pose a 

significant risk to worldwide infant population.    

 

Here we described the isolation of a contemporary influenza C virus - C/Victoria/2/2012 

(C/Vic) - from a diseased child with acute respiratory symptoms in 2012. Phylogenetic 
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analysis indicated that viral HEF gene was derived from C/Sao Paulo lineage, which is 

consistent with the finding that the dominant antigenic group is C/Sao Paulo lineage from 

2006 to 2016 (Y. Matsuzaki et al., 2014; T. Odagiri et al., 2015; S. Tanaka et al., 2015; T. 

Yano et al., 2014). PB2, PB1, M and NS of C/Vic were classified into C/Yamagata-

related lineage, while P3 and NP were divided into C/Mississippi-related lineage. 

Furthermore, antigenic analysis using the HI assay found 1947 C/Taylor virus (C/Taylor 

lineage) was antigenically more divergent from1966 C/Johannesburg (C/Aichi lineage) 

than from C/Vic. Structure modeling of the HEF protein identified two mutations in the 

170-loop of the HEF protein around the receptor binding pocket as a possible antigenic 

determinant responsible for the discrepant HI results. Growth kinetics studies conducted 

at both cool (33 °C) and core body (37 °C) temperature demonstrated a temperature-

dependent replication property for this contemporary ICV isolate. Information obtained 

through this study shall provide novel insights into genesis, antigenic evolution and 

replication biology of human influenza C virus. 

 

4.2 Materials and Methods 

4.2.1 Cell and virus cultures  

Madin-Darby canine kidney (MDCK), human lung adenocarcinoma A549 (A549), 

human lung adenocarcinoma Calu-3 (Calu-3), Swine Testicle (ST), Swine tracheal and 

bronchial epithelial cell line-MK1-OSU (MK1-OSU) and SD-PJEC cells, a subclone of 

the IPEC-J2 cell line, originally derived from newborn piglet jejunum, were grown in 

Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS) at 

37 °C with 5% CO2. The infectious culture medium is serum-free DMEM containing a 
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final concentration of 0.0005% trypsin (Sigma-Aldrich, St Louis, USA). Virus cultures 

were incubated at 33 °C for up to 7 days or development of cytopathic effect (CPE).  

 

4.2.2 Genome sequencing and phylogenetic analysis 

Viral RNA was isolated using a MagMAX™ Viral RNA Isolation kit. Full genome 

amplification was performed as previously described except that the primers were 

modified to match the non-coding regions of ICV: “ICV3’”, 5’- 

ACGCGTGATCGCATAAGCAG-3’ and “ICV5’”, 5’-

ACGCGTGATCAGCAGTAGCAAG-3’. Amplicons were used for library preparation 

using the NEBNext® Fast DNA Library Prep Set for Ion Torrent™.  Libraries were 

sequenced using an Ion Torrent Personal Genome Machine with manufacturer’s reagents 

and protocols. Contigs were assembled with C/Ann Arbor/1/50 (accession numbers 

NC_006306-NC_006312) as templates, which were analyzed by the SeqMan NGen 

module from DNAStar. Nucleotide sequences were edited and compiled using the 

Lasergene 8 software package (DNASTAR, Inc.). The genome sequence of C/Vic was 

submitted to GenBank under accession numbers KM504277-KM504283. 

The genome sequences of C/Vic were determined in our laboratory. The sequences of 

other ICV and IDV strains were obtained from GenBank. To fully understand the 

evolutionary history of ICVs, the six strains (C/Taylor, C/Mississippi, C/Aichi, 

C/Yamagata, C/Kanagawa, and C/Sao Paulo) represented the six genetic and antigenic 

lineages were included in the phylogenetic analysis of each RNA segment. Reference 

viruses included historic ICVs such as C/Ann Arbor/1/50 and C/Taylor/1233/1947, as 

well as contemporary viruses. Identical sequences were removed and only the ones with 
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the earliest isolation time were used. Incomplete sequences were removed. The complete 

coding regions of each segment was used to construct phylogenetic trees. 

 

Sequences of each segment were aligned at the amino acid level using Muscle (ref), and 

the aligned sequences were translated back to generate alignments of nucleotide 

sequences, which were used for phylogenetic tree construction using MEGA6 (ref). The 

best substitution model for each segment was estimated using MEGA6. The best models 

predicted were T92+G for NS and GTR+G+I for the other six segments. The 

phylogenetic trees were generated using Maximum-likelihood method in MEGA6 with 

1000 bootstrap replicates to estimate the confidence of the tree topologies. The trees were 

rooted using the ancestor branches of IDV strains. 

 

4.2.3 Hemagglutination inhibition assay  

Antibody cross-reactivity was determined using a panel of reference viruses and antisera 

in hemagglutination inhibition (HI) assays. Chicken antiserum against C/ Taylor/1233/47 

(C/Taylor lineage) and C/Taylor/1233/47 virus were provided by NIAID biodefense and 

Emerging Infections Research Resources Repository (BEI Resources). Antiserum against 

C/Victoria/2/2012 (C/Sao Paulo lineage) was generated in rabbits, while 

C/Johannesburg/1/66 virus (C/Aichi lineage) was provided by Peter Palese at Mt. Sinai 

Medical School, New York. All sera were heat inactivated at 56°C for 30 min prior to use. 

HI assays were performed following standard procedures. In brief, sera were treated with 

a receptor-destroying enzyme for 24 h at 37°C and then adsorbed with a 20% suspension 

of turkey erythrocytes in phosphate-buffered saline (PBS) for 30 min at room temperature. 
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Virus suspensions containing 4 to 8 HA units of the virus were incubated for 1 h with 

serial 2-fold dilutions of antiserum, and the HI titer was determined as the reciprocal of 

the highest dilution that showed complete inhibition of hemagglutination using 0.5% 

washed turkey erythrocytes (Lampire biological laboratories, Pipersville, PA). All viruses 

were assayed in triplicate. Mean HI titers and standard deviations were calculated from 

triplicate data. Heterologous mean HI titers were normalized to mean homologous HI 

titers (mean heterologous titers/mean homologous titers). Relative HI titers were reported 

to account for differences in homologous HI titers between C/Taylor and 

C/Victoria/2/2012. 

 

4.2.4 Temperature-dependent virus replication kinetics 

MDCK, ST, and MK1-OSU cells were infected with C/Vic at a multiplicity of infection 

(MOI) of 0.01 while A549, Calu-3, and SD-PJEC cells were infected with an MOI of 1.0. 

The virus was allowed to adsorb to cells incubated at 33 °C or 37 °C for 1 hour (h). The 

inoculum was then removed and the cells were washed twice with PBS. Cells were 

maintained with DMEM containing tosyl phenylalanyl chloromethyl ketone (TPCK) 

treated trypsin (1 µg/ml TPCK-Trypsin for MK1-OSU and MDCK, 0.1 µg/ml TPCK-

Trypsin for SD-PJEC, A549, Calu-3 and ST). Cells culture supernatants were collected 

every 24 hours. Virus titration was performed on MDCK cells. Results were obtained 

from two independent experiments. 

 

4.2.5 Structure modeling and sequence alignment 
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The viral HEF sequences (C/Vic and C/Taylor) were modeled with Modeller (N. Eswar 

et al., 2007). The structure of C/Johannesburg/1/66 (C/JHB/1/66) was used as template 

(sequence identity: 95-96%). Sequences were aligned with Muscle (R. C. Edgar, 2004). 

Domain boundaries and the trimeric interface were determined according to those of 

C/JHB/1/66 (P. B. Rosenthal et al., 1998). Variant residues of the HEF protein among 

three viruses were colored pink.  

 

4.3 Results and Discussion 

4.3.1 Virus isolation and full-length genome analysis 

In 2012, a nasopharyngeal swab from child patient exhibiting clinical symptoms of acute 

respiratory infection was submitted for virus isolation to Victorian Infectious Diseases 

Reference Laboratory, Melbourne, Australia. After cultivation in MDCK cells at 33 °C 

together with RT-PCR diagnosis and sequence confirmation, human influenza C virus 

was isolated from the patient-derived nasopharyngeal swab sample, provisionally 

designated C/Victoria/2/2012. The virus cultured in MDCK cells was then sequenced on 

an Ion Torrent Personal Genome Machine and De novo genome assembly was employed 

to compile viral full-length genome. The full-length sequences of all segments were 

determined and used for phylogenetic analysis.  

 

4.3.2 Phylogenetic analysis  

To determine the evolutionary pathway of C/Vic, we performed phylogenetic analysis on 

all seven segments of C/Vic and reference ICVs. Nucleotide sequences of the complete 

coding region for the seven RNA segments were used for phylogenetic tree construction 
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(Fig. 4.1). Reference viruses including historic ICVs such as C/Taylor/1947 and C/Ann 

Arbor/50, as well as the recent isolates including C/Yamagata/16/2014 and C/Eastern-

India/1202/2011 were used in our analysis (T. Roy Mukherjee et al., 2013). We included 

all influenza D virus (IDV) strains isolated from 2011 to 2016 to better represent the 

evolutionary history of both influenza genotypes. The trees were rooted using the 

ancestor branches of IDV strains. 

 

Previous studies of the HEF segment, the primary determinant of host range and target of 

virus-neutralizing antibodies, have classified ICVs into six genetic and antigenic lineages, 

designated C/Taylor, C/Mississippi, C/Aichi, C/Yamagata, C/Kanagawa, and C/Sao 

Paulo. As shown in Fig. 4.1, the HEF-based tree recaptured the currently defined lineage 

classification for ICVs, thereby validating our analytical approach. Phylogenetic analysis 

of the HEF gene placed C/Vic in C/Sao Paulo lineage, which also includes most recent 

ICV isolates from 2006 to 2015. C/Vic is closely clustered together with 

C/Yamagata/33/2014 from Japan and two strains C/Biliran/1/2013 and C/Leyte/2/2011 

from Philippines. Interestingly several recent ICV isolates, including C/Yamagata/7/2012 

and C/Miyagi/2/2014, belonged to C/Kanagawa lineage. This result supports the notion 

that multiple ICV lineages have co-circulated in global human populations in recent years. 

As shown in Fig. 4.1, in contrast to a HEF-based tree, the topologies of internal branches 

of the phylogenetic trees of other segments have low statistical supports, which may be 

due to their high sequence similarities. This prevented us from drawing any precise 

lineage classification of ICVs. Yoko Matsuzaki et al divided the genetic lineages of the 

internal genes into two major lineages, the C/Mississippi-related lineage and the 
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C/Yamagata-related lineage (Y. Matsuzaki et al., 2016). From this aspect, PB2, PB1, M 

and NS of C/Vic were classified into C/Yamagata-related lineage, while P3 and NP were 

divided into C/Mississippi-related lineage. A close examination of the PB2 tree revealed 

that C/Vic formed a subgroup with C/pig/Beijing/115/81, a porcine ICV isolated from 

pigs with influenza-like symptoms in China in 1981. A similar finding was also observed 

in the M gene-derived tree in that C/Vic was closely related to C/pig/Beijing/115/81. 

These results indicated the potential that recent ICV strains including C/Vic may replicate 

and transmit among pigs. Analysis of PB1 gene-derive tree demonstrated that C/Vic were 

closely related to C/Miyagi/5/2014 and C/Tokyo/4/2014. Similar to HEF segment, C/Vic 

NS segment was closely clustered together with C/Tokyo/4/2014, C/Biliran/1/2013 and 

C/Leyte/2/2011.  These results suggested that these viruses were circulating in Australia, 

Philippines and Japan from 2011 to 2014. Phylogenetic analysis of the P3 and NP genes 

form a subgroup with historical ICV isolates including C/Mississippi/80, C/Nara/82 and 

C/Greece/1/79, were classified into C/Mississippi-related lineage. Taken together, the 

results of our phylogenetic studies demonstrated that C/Vic is a reassortant virus 

composed of segments derived from multiple ICV lineages or strains, which evolved 

independently. 

 

The trees were rooted using the ancestor branches of influenza D virus strains.  Our 

previous study showed IDVs isolated in United States were classified into two distinct 

cocirculating lineages represented by D/swine/Oklahoma/1334/2011 (D/OK) and 

D/bovine/Oklahoma/660/2013 (D/660) (E. A. Collin et al., 2015). However, the recently 

reported D/bovine/Ibaraki/7768/2016 was not clustered into either lineage except M 
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segment (S. Murakami et al., 2016). We included all IDV isolates in our phylogenetic 

trees to better understand the evolution between ICVs and IDVs. The phylogenetic 

analysis showed two distinct lineages of IDVs in PB2 and PB1, M and NS segments. In 

P3, HEF and NP gene-derived trees, D/France/2986/2012 and D/Ibaraki/7768/2016 were 

not fell into either lineage. Interestingly, several American isolates such as 

D/bovine/Minnesota/628/2013, D/bovine/Kansas/13-21/2012 and D/bovine/Texas/3-

13/2011 in P3-derived tree and three isolates from Shandong, China in NP-derived tree 

were not clustered into any lineage either. The results demonstrated that more than two 

lineages of IDVs are co-circulating all over the world and frequently reassorted with one 

another. 
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Figure 4.1.  Phylogenetic trees of the seven genomic segments of influenza C virus. 

Sequences of each segment of human influenza C viruses were aligned and then used for 

phylogenetic tree construction through the MEGA7 program. The best substitution model 

for each segment was estimated using MEGA7. The phylogenetic trees were generated 

using Maximum-likelihood method of MEGA7 with 1000 bootstrap replicates to verify 

the topology. The trees were rooted using the ancestor branches of influenza D virus 

strains. C/Victoria/2/2012 strain is marked as diamond (◆). 
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4.3.3 Antigenic evolution 

To investigate the antigenic property of C/Vic, HI assays were performed using 

polyclonal antiserum generated against 1947 C/Taylor (C/Taylor lineage) and 2012 C/Vic 

(C/Sao Paulo lineage). Historical 1966 C/Johannesburg (C/JHB) (C/Aichi lineage) virus 

was also included together with 1947 C/Taylor and 2012 C/Vic in this antigenic study. 

Homologous HI titers for C/Taylor and C/Vic were 5120 and 1280, respectively. 

Heterologous mean HI titers against C/Taylor and C/Vic antisera were normalized to 

homologous C/Taylor and C/Vic titers. Interestingly, the three lineage viruses spanning 

over 60 years showed equivalent cross-reactivity with C/Vic antisera with relative HI 

titers 1.0 (Fig. 4.2). In contrast, cross-reactivity profile with C/Taylor antisera 

discriminated three viruses clearly. Specifically, C/Taylor virus reacted most strongly 

with homologous C/Taylor antisera (relative HI titer 1.0) followed by C/Vic (relative HI 

titer 0.5) and by C/JHB (relative HI titer 0.25) (Fig. 4.2). These data suggested that 1947 

C/Taylor was more antigenically related to 2012 C/Vic than to 1966 C/JHB. The 

observed antigenic variations were in good agreement with HEF phylogeny of these ICV 

strains (Fig. 4.1). 
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Figure 4.2. Relative mean hemagglutination inhibition titers for 3 influenza C 

viruses from triplicate data. Relative mean HI titers were calculated by normalizing 

mean heterologous HI titers to mean homologous HI titers (mean heterologous HI 

titer/mean homologous HI titer).  

 

4.3.4 Structure-basis of antigenic variation   

To identify critical residues of the HEF protein among these three ICVs contributing 

most to the observed antigenic drift (i.e., HA titer change), pairwise comparisons of viral 

HEF structures were pursued. The resolved crystal structure of C/JHB HEF (PDB ID: 

1FLC) was chosen as a model template to model the HEF structures of the C/Vic and 

C/Taylor strains. We focused on four secondary elements (the 170-loop, 230-helix, 270-

loop, and 290-loop) constituting the HEF receptor-binding pocket (RBP) for our 

investigation (Fig. 4.3A). Structure modeling showed that three ICVs exhibited two 
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amino acid substitutions in the 170-loop proximal to the RBP of the HEF, which likely 

have a decisive role in the degree of antigenic distance observed among three ICV strains 

(Fig. 4.3). Specifically, the more antigenically similar virus pair C/Vic-C/JHB or C/Vic-

C/Taylor only had one mutation in the 170-loop. K172G or T170V substitution occurred 

between C/Vic and C/JHB (Fig. 4.3B) or C/Vic and C/Taylor (Fig. 4.3C) (listed in an 

arrangement as the C/Vic amino acid residue, HEF position, and C/JHB or C/Taylor 

amino acid), respectively. In contrast, the more antigenically divergent virus pair 

C/Taylor-C/JHB (Fig. 4.3D) acquired these two mutations V170T and K172G of the 170-

loop. These structure-based analyses seemed to indicate a link between the level of 

antigenic variation among three strains of ICV and the number of the amino acid changes 

in the proximity of the HEF receptor-binding pocket. In addition, multiple amino acid 

substitutions were also identified among three viruses in various regions of the HEF 

including HEF1, HEF2, and the trimeric interface. Considering that all those mutations 

were distant from the RBP of the HEF protein, we speculate that these amino changes 

may not modulate directly antigenicity of influenza C viruses. 
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Figure 4.3. Structure-basis of antigenic variation. (A) Cartoon view of modeled HEF1 

domain of C/Vic (colored Wheat), while HEF2 was colored light blue. Salic acids in 

receptor binding pocket (RBP) and esterase active site (EAS) were colored cyan. Four 

secondary elements (the 170-loop, 230-helix, 270-loop, and 290-loop) constituting the 

HEF receptor-binding pocket were indicated with different colors. (B) (C) (D) HEF1 

residues different among three virus pairs were mapped onto the modeled HEF1 domain 

of C/Vic. Note the critical amino acid changes in the 170-loop of the HEF protein around 

the receptor-binding pocket were highlighted by bold and underlined words. 

 

RBP

290 Loop

170 Loop

230 Helix

270 Loop

EAS

180

RBP

Trimer
interface

EAS

C/Vic - C/JHB

H165Q
A166V

K172G

D125N
Q323E

K358Q

D362E

D382E

E389K

H165Q

K148Q

I278L

T62S T62S

E194N

A166V

C/Taylor - C/JHB

E74A

V170T

N190K

K172G

K193E

I195K
E194N

T267S

L310P

H326Y

E389K

E194N
I195K

K193E
RBP

Trimer 
interface

180

EAS

C/Vic– C/Taylor

T62S

D125N

K148Q

H165Q
A166V

T170V

K190N

E193K
K195I

S267T I278L

P310L

Q323E
Y326H

K358Q

D362E

D382E

H165Q
A166V

E193K

K195I

RBP

Trimer
interface

180

EAS

A B

C D



	

	

138	

4.3.5 Temperature-dependent replication  

To investigate whether the replication robustness of this recent ICV C/Vic isolate is 

dependent on temperature and its in vitro cellular tropism, we determined the growth 

kinetics of C/Vic in a panel of human, swine, and canine cell lines at the cool temperature 

(33 °C) as well as at the core body temperature (37 °C). Among cell lines, MDCK cell 

line is commonly used for animal and human influenza virus replication, while two 

human lung epithelial cell lines A549 and Calu-3 are often employed to study the 

replication of human influenza viruses. Including two swine cell lines, ST and MK1-OSU, 

allowed us to determine whether human C/Vic was capable of replicating in swine cells, 

especially in swine airway epithelial cells (MK1-OSU). An influenza C virus has been 

previously isolated from diseased pigs and our phylogenetic analysis showed that C/Vic 

is more closely related to this porcine ICV isolate C/pig/Beijing/115/81 in the two 

internal genes (PB2 and M) than its human counterparts (Fig. 4.1).  

 

As demonstrated in Fig. 4.4, C/Vic replicated more robustly at the cool temperature 

(33 °C) than at the core body temperature (37 °C) in tested cell lines. This result was in 

good agreement with those previously reported for other ICVs. Interestingly, the two 

human airway cells lines A549 and Calu-3 showed dramatic differences in their ability to 

support C/Vic replication. C/Vic reached its peak titer of 4.2 log10TCID50/ml at 33 °C and 

3.7 log10TCID50/ml at 37 °C in Calu-3, respectively, while the virus only reached to 1.0 

log10TCID50/ml in A549 at both 33 °C and 37 °C. The observation that these two very 

similar human lung-derived cell lines behaved differently in support of C/Vic replication 

is interesting. We speculate that A549 cells may lack the cellular protein(s) that is critical 
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for the efficient replication of C/Vic. Alternatively, we can hypothesize that A549 cells 

may produce the novel cellular inhibitor(s) that suppresses the replication of C/Vic. 

Future experiments are needed to address these hypotheses. Furthermore, C/Vic was 

found to replicate well in the swine cell lines ST and MK1-OSU at 33 °C. ICV was 

previously isolated from pigs (Y. J. Guo et al., 1983) and shown to transmit between 

human and swine (H. Kimura et al., 1997). A novel influenza D virus distantly related to 

human ICV was also isolated in swine in 2011 (B. M. Hause et al., 2013). These data 

seemed to suggest that C/Vic has the potential to replicate in pigs. In contrast to ST and 

MK1-OSU, the third swine cell line, SD-PJEC, minimally supported C/Vic replication as 

the virus was not detected at 37 °C and titers reached only 1.0 log10TCID50/ml at 33 °C at 

72 and 96 hours post infection. Likewise, SD-PJEC also poorly supported human IBV 

replication (Z. Sun et al., 2012). It is worth mentioning that SD-PJEC is very susceptible 

to IAV infection. As such, this primary cell line can be useful to further elucidate 

restriction factors that affect the replication of ICV and IBV, which will be a focus of our 

future investigation. 
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Figure 4.4.  Growth kinetics of C/Victoria/2/2012 in different cell lines at 33 °C and 

37 °C. MDCK, ST, MK1-OSU and SD-PJEC cells were infected with C/Victoria/2/2012 

at an MOI of 0.01, while A549 and Calu-3 cells were infected with C/Victoria/2/2012 at 

an MOI of 1.0. Viral titers were determined in MDCK cells. The results presented are the 

mean values from three replicates with error bars indicated by SEM. 

 

In summary, we have determined the genesis of a contemporary human C/Vic virus and 

characterized its evolutionary pathway. We also showed that C/Vic isolate replicated 
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more robustly at 33 °C than at 37 °C, which should be further investigated toward 

elucidating the molecular determinants of temperature-dependent growth. Finally, 

structural modeling work presented here has pinpointed two critical residues in the 170-

loop of the HEF protein that are likely responsible for the observed antigenic differences 

among three ICV strains. The information described on this contemporary ICV here, as a 

whole shall aid in the further investigation of biology, evolution, and pathogenesis of 

ICV. 
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