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ABSTRACT 

DEVELOPMENT OF COMPUTATIONAL TECHNIQUES FOR REGULATORY DNA 

MOTIF IDENTIFICATION BASED ON BIG BIOLOGICAL DATA 

JINYU YANG 

2017 

Accurate regulatory DNA motif (or motif) identification plays a fundamental role 

in the elucidation of transcriptional regulatory mechanisms in a cell and can strongly 

support the regulatory network construction for both prokaryotic and eukaryotic 

organisms. Next-generation sequencing techniques generate a huge amount of biological 

data for motif identification. Specifically, Chromatin Immunoprecipitation followed by 

high throughput DNA sequencing (ChIP-seq) enables researchers to identify motifs on a 

genome scale. Recently, technological improvements have allowed for DNA structural 

information to be obtained in a high-throughput manner, which can provide four DNA 

shape features. The DNA shape has been found as a complementary factor to genomic 

sequences in terms of transcription factor (TF)-DNA binding specificity prediction based 

on traditional machine learning models. Recent studies have demonstrated that deep 

learning (DL), especially the convolutional neural network (CNN), enables identification 

of motifs from DNA sequence directly. 

Although numerous algorithms and tools have been proposed and developed in 

this field, (1) the lack of intuitive and integrative web servers impedes the progress of 

making effective use of emerging algorithms and tools; (2) DNA shape has not been 
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integrated with DL; and (3) existing DL models still suffer high false positive and false 

negative issues in motif identification. 

This thesis focuses on developing an integrated web server for motif identification 

based on DNA sequences either from users or built-in databases. This web server allows 

further motif-related analysis and Cytoscape-like network interpretation and 

visualization. We then proposed a DL framework for both sequence and shape motif 

identification from ChIP-seq data using a binomial distribution strategy. This framework 

can accept as input the different combinations of DNA sequence and DNA shape. 

Finally, we developed a gated convolutional neural network (GCNN) for capturing motif 

dependencies among long DNA sequences. 

Results show that our developed web server enables providing comprehensive 

motif analysis functionalities compared with existing web servers. The DL framework 

can identify motifs using an optimized threshold and disclose the strong predictive power 

of DNA shape in TF-DNA binding specificity. The identified sequence and shape motifs 

can contribute to TF-DNA binding mechanism interpretation. Additionally, GCNN can 

improve TF-DNA binding specificity prediction than CNN on most of the datasets. 
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CHAPTER 1. Introduction 

1.1 Regulatory DNA motif 

Motifs are usually conserved short DNA sequences, which tend to be 8-20 base 

pairs (bp) long [1]. Typically, they are TF binding sites (TFBSs) and play significant roles 

in regulating transcription rates of nearby genes and further control their expression 

levels. Hence, de-novo motif prediction and related analysis (e.g., motif scan and motif 

comparison) provide a solid foundation for the inference of gene transcriptional 

regulatory mechanisms in both prokaryotic and eukaryotic organisms [2, 3]. Moreover, 

these techniques also substantially contribute to some system-level studies, such as 

regulon modeling and regulatory network construction [2, 4, 5]. With the rapidly growing 

availability of sequenced genomes and advanced biotechnologies, substantial 

computational techniques have been carried out to identify motifs from query DNA 

sequences. Nevertheless, the variations among motifs and their short length make their 

discovery a very challenging problem. 

1.2 Motif representation 

A motif represents a set of DNA segments with the same length, which are 

binding sites for the same TF. The segments of a motif can be aligned to form motif logo 

(Figure 1), where each of them is called an instance. Different instances of the same 

motif tend to be similar to each other on sequence level (Figure 2A) [6]. A representation 

model of a motif, to demonstrate the similarity of its instances, is expected to accurately 

capture the characteristics of protein-DNA binding activity of its corresponding TF [7]. 

The most straightforward model to denote the binding preference of a TF on each 

position along a motif is the consensus sequence (e.g., AGTCA or AGTCG for the motif 
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in Figure 2A), which is composed of the concatenation of the most frequent nucleotide on 

each position. It can be seen as the ancestor of the binding sites of the same TF, with an 

assumption that these sites evolved from it. Although the consensus presents the 

characteristics of a motif in each position in a simple and clear way, the variations in this 

motif are absent in this model. The degenerate consensus was proposed to fill this gap, 

using IUPAC (International Union of Pure and Applied Chemistry) wildcards to replace 

the exact nucleotides (A, G, C, and T). For example, W means both A and T in this 

position could be recognized by the TF of this motif (Figure 2B) [8].   

A more accurate and most commonly used model is the motif profile. A profile is 

built by aligning the available instances of a motif M and counting the frequency of each 

nucleotide at each position (𝑓𝑖,𝑗). These frequencies give rise to a typical matrix 

representation of a motif profile (𝑀𝑓 = {𝑓𝑖,𝑗}4×𝑙, Figure 2A), called a position weight 

matrix (PWM). An alternative way of constructing the PWM is using the probability 

distribution to replace frequencies (𝑀𝑝 = {𝑝𝑖,𝑗}4×𝑙). Specifically, these frequencies will 

be divided by the number of binding sites of this motif, and such a representation of the 

PWM in Figure 2A is shown in formula (1).   

𝑀𝑝 = {𝑝𝑖,𝑗} =



















00104.0

2.08.004.00

4.0006.00

4.02.0006.0

     (1) 

Taking the background frequencies of each nucleotide into consideration, the 

PWM in formula (1) can be further modified as 𝑀𝑔 = {𝑔𝑖,𝑗}, where 𝑔𝑖,𝑗 = log⁡(𝑓𝑖,𝑗/𝑏𝑖) 

and 𝑏𝑖  is the probability of the 𝑖th nucleotide of (A, G, C, T) appearing in the background 

https://en.wikipedia.org/wiki/International_Union_of_Pure_and_Applied_Chemistry
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sequences. Based on this version of PWM, we can calculate the Information Content (IC) 

to evaluate how conserved this motif is, i.e., formula (2). 

 𝐼(𝑀) = ∑ ∑ 𝑝𝑖,𝑗𝑙𝑜𝑔
𝑝𝑖,𝑗

𝑏𝑖

4
𝑖=1

𝑙
𝑗=1       (2) 

The matrix can also be used to evaluate how a given DNA segment s, with length 

𝑙, is consisted with motif 𝑀 by calculating the score:  

 𝑠𝑐𝑜𝑟𝑒(𝑠) = ∑ ∑ 𝑝𝑖,𝑗𝑙𝑜𝑔
𝑝𝑖,𝑗

𝑏𝑖

4
𝑖=1

𝑙
𝑗=1 × 𝛿𝑖,𝑗      (3) 

where 𝛿𝑖,𝑗 = 1, if the 𝑗th nucleotide of s is the 𝑖th nucleotide of (A, G, C, T), 𝛿𝑖,𝑗 = 0 

otherwise. A problem with this model is that the probability 𝑓𝑖,𝑗 could be zero for a small 

set of binding sites, giving rise to negative infinity in formulas (2&3). A common method 

to avoid this bias is adding a certain value (pseudocount) for each position of the motif 

[9]. Through system simulation and analysis, K. Nishida et al. found that the optimal 

pseudocount value is correlated with the entropy of a motif profile [10]. Specifically, the 

less conserved motif profiles prefer larger pseudocount value, and 0.8 is suggested in 

general.   

 As shown above, multiple approaches for modeling TF-DNA binding specificity 

have been developed. A systematic comparison of these approaches can provide 

substantially valuable information for further motif identification algorithm design. 

DREAM5 consortium organized a competition on motif representation models by 

applying 26 approaches to in vitro protein binding microarray data [11]. These 

approaches adopt various strategies, including but not limited to k-mers model, PWM, 

Hidden Markov Model, and dinucleotides. The k-mers and PWM are the two main 
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strategies, which show similar average performance on multiple data sets. However, they 

have substantial differences in terms of individual performance on a few data sets, 

indicating that motif identification is sensitive for model selection. Another interesting 

observation is that the IC of a motif may not fully represent its accuracy. It is obviously 

contrary to the basic principle of general motif identification tools, thus deeper 

investigation into this area is still needed to improve the motif representation models.  

These motif representation models are still not perfect with a common 

disadvantage that they ignore the correlation among different positions in a motif. For 

example, the motif in Figure 2C has the same PWM as the motif in Figure 2A, but the 

first two positions in this motif are correlated and dependent on each other. Hence, a high 

order Markov model is suggested to be integrated into PWM matrix [12]. Meanwhile, it 

is unsure whether a known PWM can fairly represent the whole population scenario, as 

the frequencies of nucleotides in each position are calculated only from the known 

binding sites of a TF. A motif profile built on partially identified binding sites of a TF 

may induce bias when it is used to interpret the global binding preference, especially 

when this profile is used to model the orthologous binding sites from various species. A 

more fundamental debate is: do the nucleotides with lower frequencies imply lower 

binding ability? At the time of this writing, there are still no clear answers to this 

question, and deeper thought about above concerns will bring potential ways to improve 

existing motif representation models. 

1.3 Motif signal detection techniques and performance evaluation 

The basic computational assumption of motif identification is that they are 

overrepresented as conserved patterns in given sequences. The scattered instances of a 
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motif are not perfectly identical but similar to each other. Once identified and well 

aligned, they will show significance in conservation compared to background sequences. 

Therefore, identifying and aligning these instances are the primary issues in motif 

identification.  

Motif identification methods mainly fall into two categories: word-based methods 

(i.e., consensus-based) and profile-based methods [8, 13]. Word-based methods usually 

enumerate and compare nucleotides starting from a consensus sequence with a fixed 

length and a tolerance of mutations. Theoretically, this strategy can identify optimal 

global solutions but suffers from high computational complexity when it is applied to 

large-scale input data or to-be-identified motifs which are relatively long or with a large 

number of mutations [13]. The profile-based methods usually start with some aligned 

patterns, either randomly chosen [14] or enumerated in a limited subset of input data [14], 

and refined based on some criteria on the whole data. These criteria are designed to 

evaluate the overrepresented significance of aligned profiles from the input sequences. 

Improvements are mostly conducted in a heuristic way, e.g. neighboring improvement 

(add or delete patterns to see if the profile goes better, similar to a hill-climbing method) 

or iterative statistical methods (Gibbs sampling or Expectation Maximization). The 

profile-based methods usually run faster than word-based methods and have better 

performance in predicting motifs with complex mutations. However, such methods tend 

to fail in detecting of multiple motifs, especially when the data size is large, as the 

iterative procedure they adopted often falls into local optimizations, which is difficult to 

escape [15]. 
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1.4 ChIP-seq 

The rapid development of high-throughput biotechnologies [16-25] has provided 

new insight and powerful support for regulatory mechanism analysis and genome-scale 

regulatory network elucidation. In particular, ChIP-seq provides massive protein-DNA 

interactive information and has been successfully applied to genome-wide analyses of TF 

binding, histone modification markers and polymerase binding [16, 26]. This technology 

can be summarized as follows: proteins are cross-linked to whole genome sequences [27, 

28]; then DNA strands are sheared and immunoprecipitated to obtain sequence segments 

[16]; finally, these segments will be sequenced into short reads [29, 30]. These reads 

could be mapped onto their reference genome, if available, using Bowtie [31], BWA 

[32], etc. Based on the mapping results, the motif-enriched genomic regions could be 

identified by peak-calling tools [33], such as SPP [34], MACS[35], CisGenome [36], 

FindPeaks [37], QuEST [38], and PeakRanger [39]. These regions will be served as 

potential binding sites for motif identification. 

1.5 DNA shape and shape motif 

Four distinct DNA shape features can be derived in a high-throughput manner 

directly from DNA sequences based on the Monte Carlo simulation, which are Minor 

Groove Width (MGW), Propeller Twist (ProT), Helix Twist (HelT), and Roll. These 

features can provide structural information of DNA sequences and have predictive power 

in TF-DNA binding specificity. Recent studies have highlighted the complementary role 

of DNA shape and sequences in quantitatively modeling the TF-DNA binding specificity 

and motif prediction both in vitro and in vivo across multiple experimental assays and 
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diverse TF families [40-44]. In most cases, DNA shape-augmented models consistently 

improve the binding specificity prediction than models based on sequences alone. 

Most recently, DNA shape features have been investigated individually using a 

two-step algorithm which is named ShapeMF [45]. This algorithm can be used to 

discovery de novo shape motifs based on shape-data, where shape motifs represent DNA 

shape patterns that can be recognized by TFs. The authors found that shape motifs are 

prevalent and recognized by many TFs, which is consistent with previous studies. 

Besides, some TFs enable to recognize shape motifs independently but without 

recognizing sequence motifs. This indicates that shape motif plays an important role in 

TF-DNA binding and makes a further influence in regulatory mechanisms. Rather than 

interpreting co-bound TFs use “tethering” mechanism only, ShapeMF revealed that some 

TFs extensively use shape-specific binding to form complexes with other TFs. Most 

importantly, the authors discovered that TFs with the same DNA binding domain have 

different shape motifs, which can interpret the phenomenon that such TFs recognize 

distinct binding regions in the human genome. 

1.6 DL 

Motivated by the hierarchical structure of animal’s visual system (from the retina 

to visual association cortex), DL has achieved the state-of-the-art in various machine 

learning fields, including visual object classification, natural language processing, and 

recommendation systems [46, 47]. Unlike traditional machine learning methods which 

need well-designed features, DL can learn feature representations automatically by 

classifying or fitting input data. Much of this interest is attributed to its multiple 

processing layers which can be used to learn representations of input data with multiple 
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levels of abstraction. Most importantly, DL can combine local features to form higher 

order features.  

As one of the most important methods in DL, CNN has been successfully applied 

to image classification. Generally, CNNs are composed of the convolutional layer, 

pooling layer, and fully-connected layer (Figure 3). The convolutional layer is used to 

capture local features in given images, pooling layer enables reducing feature size and 

number of parameters, and the fully-connected layer is used for classification. Compared 

to previous algorithms in image classification, CNN alleviates the need for careful and 

time-consuming feature extraction. 

1.7 Outline 

The rest of this thesis is organized as follows: Chapter 2 will discuss motif 

identification from the promoter and ChIP-seq data, along with the application of DL in 

motif identification; Chapter 3 will introduce several motif-related works of BMBL. In 

Chapter 4, I developed a web server, DMINDA 2.0, which can provide integrative motif 

analysis. In Chapter 5, I proposed a DL framework, DESSO, which can be used to 

identify motifs from ChIP-seq data. Chapter 6 will discuss the conclusion of this thesis. 
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CHAPTER 2. Motif identification 

2.1 Motif identification from promoter sequences 

Substantial efforts have been devoted to seeking a reliable and efficient way for 

motif identification over the past few decades. Since the 1980s, identifying motifs in 

provided promoters has been one of the most prevalent approaches and numerous tools 

have been developed [8, 13, 48-53], such as Align ACE, BioProspector, CONSENSUS, 

MDscan, MEME, and BOBRO (Figure 4) [12, 13, 51, 52, 54-63]. Some of these tools 

have been successfully applied to various organisms for regulatory network construction 

[2, 5]. The underlying mechanism is that the co-regulated genes should exhibit 

overrepresented common motifs in their promoter regions. Although considerable efforts 

have been made, one non-negligible limitation is the high false positive rates in 

predictions [8, 64-66]. Under the assumption that the motifs in promoters tend to evolve 

at a lower rate and therefore be more conserved than non-functional surrounding 

sequences, some phylogenetic footprinting-based algorithms have been developed to 

reduce the false positive rate, such as PhyloGibbs, Footprinter, PhyloCon and 

MicroFootprinter [54, 67-71]. The phylogenetic footprinting strategy was firstly proposed 

in 1988 [72, 73] and has significantly improved the state-of-the-art performance in this 

field. However, the majority of programs under phylogenetic footprinting did not make 

full use of the phylogenetic relationship of query promoter sequences from various 

genomes [61]. Due to this limitation, some promoters from highly divergent species 

could be included and the motif instances are not conserved enough to carry out motif 

prediction [74-76]. Most recently, Liu et al. developed two computational pipelines 

aiming to break this bottleneck [4, 77]. Specifically, they extracted phylogenetic 
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relationships from regulatory sequences using a combinatorial framework based on 216 

selected representative genomes to refine the orthologous promoter set. It is noteworthy 

that all the methods mentioned above could be potentially improved by integrating 

additional experimental data. 

2.2 Motif identification from ChIP-seq data 

Recent studies suggest that ChIP-seq can be effectively integrated into and benefit 

TFBS discovery tools [34, 38, 78-88]. It provides high-throughput motif signals and 

allows genome-scale discovery in a cell. More accurate binding regions (peaks) can be 

derived from ChIP-seq experiments, thus leading to more reliable prediction performance 

[8]. However, the peaks detected from ChIP-seq data can be up to a few hundred bps 

while the documented motifs are usually only as long as 8-20 bps [89]. Therefore, an ab 

initio motif discovery method is still indispensable to (i) identify the accurate binding 

sites from these ChIP-seq peaks, and (ii) build conserved motif profiles for further study 

in transcriptional regulation. Unfortunately, some widely used motif discovery tools, e.g. 

MEME and WEEDER [90], cannot be directly used on ChIP-seq peaks, since they are 

designed for co-regulated promoter sequences with limited size. Recently, some efforts 

have been made to rectify this problem by modifying traditional motif identification tools 

to adapt to the ChIP-seq data [83, 89, 91] or designing specific strategies for ChIP-seq-

based motif identification [88, 92]. The computational challenges of these tools include, 

but not limited to, (i) huge amounts of sequenced ChIP-seq reads can make motif 

identification a computationally infeasible problem [8]; (ii) failure to identify the motifs 

associated with cofactors of the ChIP-ed TF [88] or cis-regulatory modules (CRMs) [93]; 

(iii) lack of insight in integration of ChIP-seq datasets from multiple TFs [94]; (iv) the 
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traditional false positive issue in motif prediction, caused by the noise in ChIP-seq 

technology [89]; (v) lack of an efficient way to determine the correct lengths of motifs 

except exhaustively enumerating each length within an interval [58, 95, 96]; and (vi) 

weak support in elucidation of the mutual interactions among multiple motifs from larger 

ChIP-ed datasets [97-99], which is very important in disease diagnosis through gene 

regulatory network construction. 

2.3 DL in motif identification 

Recent publications demonstrate that DL has improved the state-of-the-art 

performance in motif identification [100-102]. For example, DeepBind has utilized CNN 

to predict TF-DNA binding specificity on various genomic data types and has achieved 

the best performance [100]. The motif detectors in the trained model were then used to 

identify motifs. Compared to traditional methods, DeepBind enables extracting more 

complex patterns owing to its multi-layer architecture (Figure 5).  

However, existing CNN models are limited by their ability to capture the long-

range dependencies among motifs. Inspired by the recurrent neural network (RNN), 

which enables capturing the unbounded context in natural language, the models 

combining CNN and RNN have achieved a significant improvement in identifying more 

complex motif patterns [103, 104]. The downside of RNN is its inability to parallelize 

over sequential inputs, resulting in substantial processing steps as the length of input 

increases. Alternatively, the GCNN has been proposed and performs competitively on 

benchmarks [105]. It allows parallelization by stacking convolutions but still has the 

capability of capturing long-range dependencies of inputs.  
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Although existing DL-based methods equipped with various network 

architectures have been successfully employed in sequence motif-related problems, the 

sequence motifs have not been adequately considered and comprehensively analyzed 

[100, 101, 104, 106]. Moreover, DL has not been organically integrated with DNA shape 

in shape motif identification. Therefore, a reliable and efficient DL framework for motif 

identification based on ChIP-seq data and DNA shape is expected to be developed to 

improve the state-of-the-art performance. 
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CHAPTER 3. Previous work 

3.1 BOBRO 

BOBRO (BOttleneck BROken) was proposed in 2011 for identifying motifs in 

prokaryotes [107]. The performance of BOBRO has been demonstrated on large-scale 

datasets and identifies motifs more efficiently and accurately (at publication) than the 

best available tools such as MEME [108]. This appealing performance is mainly achieved 

by (i) a two-stage alignment strategy for reliably assessing the possibility for each 

position in each promoter to be the start of a conserved motif (Figure 6A); (ii) a dynamic 

way for constructing an unweighted graph to represent a list of potential motifs and their 

pairwise sequence similarities (Figure 6B); (iii) a novel method for identifying all the 

significant cliques which typically corresponds to the core part of the conserved motif in 

this graph (Figure 6C); and (iv) a highly reliable way to recognize actual motif incidences 

from the accidental ones based on the concept of ‘motif closure’ (Figure 6D). 

3.2 BoBro 2.0 

BoBro 2.0 is an integrated toolkit for motif identification and analysis [12]. This 

toolkit can (i) reliably identify statistically significant motifs at a genome-scale; (ii) 

accurately scan for all motif instances of a query motif in specified genomic regions 

using a novel method for P-value estimation; (iii) provide highly reliable comparisons 

and clustering of identified motifs, which takes into consideration the weak signals from 

the flanking regions of the motifs; and (iv) analyze co-occurring motifs in the regulatory 

regions.  

We have carried out systematic comparisons between motif predictions using 

BoBro2.0 and the MEME package. The comparison results on Escherichia coli K12 
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genome and the human genome show that BoBro2.0 can identify the statistically 

significant motifs at a genome-scale more efficiently, identify motif instances more 

accurately and get more reliable motif clusters than MEME. In addition, BoBro2.0 

provides correlational analyses among the identified motifs to facilitate the inference of 

joint regulation relationships of TFs. 

3.3 DMINDA 

DMINDA (DNA motif identification and analyses) is an integrated web server for 

motif identification (Figure 7) [109]. Key features of this server include (i) a high-

performance web service for motif prediction and analyses, powered by a computer 

cluster with 150 computing nodes; (ii) identification and evaluation of conserved motifs 

at a genome scale (for prokaryotes) along with estimated statistical significance scores; 

(iii) an operon database DOOR, in support of prokaryotic motif identification in 

particular; (iv) accurate scan for all instances of a query motif in specified genomic 

sequences along with estimated statistical significance scores; (v) motif comparison and 

clustering for identified motifs, which takes into consideration the weakly conserved 

signals in the flanking regions of the motifs; and (vi) correlational analyses among the 

identified motifs to facilitate inference of joint regulatory relationships among TFs. 

3.4 MP3 

Motif prediction based on phylogenetic footprinting (MP3) is a new framework 

[110], aiming to develop new methods and strategies for (i) integrating the sequence-

similarity and functional association information, (ii) promoter scoring and pruning 

through motif voting by a set of complementary predicting tools, (iii) motif signal cross-

validation using a curve fitting way. Meanwhile, MP3 has been applied to the whole 
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genome of E. coli K12, which has plenty of documented TFBSs in RegulonDB [111]. Its 

performance was evaluated and compared with other seven existing tools. Specifically, 

the authors followed Tompa’s strategy [64], which uses various statistics defined at the 

nucleotide level and at the binding site level to access the correctness of the motif 

prediction. The comparison of statistics calculated on these tools shown that MP3 has 

significantly improved performance over other existing tools. 

Such remarkable performance mainly benefits from four components of MP3 

algorithms: reference promoter set (RPS) preparation from sequenced prokaryotic 

genomes, candidate binding region (CBR) detection by motif voting strategy and peak 

finding, candidate binding region clustering based on a graph model, and motif profiles 

identification through curve fitting (Figure 8). It is noteworthy that MP3 has the following 

unique features: (i) fully consideration of the operon structures; (ii) a new promoters 

collection method following a principle named as huge data source, small final set, which 

not only takes advantage of high throughput genomic data but also considers the 

computational efficiency; (iii) extracting phylogenetic information from regulatory 

sequences to refine the orthologous promoter set. Unlike in vertebrates, the lateral gene 

transfer and operon structure widely exist in prokaryotic genomes. Therefore, direct use 

of the species tree and the phylogenetic tree inferred from the targets genes isn’t the best 

choice for prokaryotic genomes [61]; (iv) pruning promoters to generate CBRs based on 

the weighting score on each nucleotide, which is generated by a voting strategy on six 

popular motif identification tools; and (v) a curve-fitting method to identify optimal motif 

profiles. Here, these strategies with above features are different with all previously used 

ones thus will facilitate the application of phylogenetic footprinting. 
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CHAPTER 4. DMINDA 2.0 

4.1 Introduction 

Despite a lot of algorithms and tools that have been proposed and developed in 

the past few decades, most mainly focused on motif identification without integrating 

associated motif analyses [112]. Several web servers are available in the public domain, 

including the MEME Suite, PATLOC, AIMIE, Melina II, MotifSampler, and STAMP 

[113-118]. However, phylogenetic footprinting-based algorithms have not been fully 

considered. The identification and visualization of the relationship among identified 

motifs (or corresponding genes) remain unexplored. Hence, integrated web servers 

enabling reliable identification, comprehensive analyses, and intuitive visualization of 

motifs are still needed. 

We have developed an updated version of the DMINDA motif analysis web 

server [109], DMINDA 2.0 [119], which is available at 

http://bmbl.sdstate.edu/DMINDA2 and will be updated on a regular basis. Besides de-

novo motif identification, motif scanning, motif comparison, and motif co-occurrence 

analysis, DMINDA 2.0 integrates two newly-published algorithms [4, 110], 2,125 

complete genome sequences, and visualization and interpretation functionalities. 

DMINDA 2.0 has several key features, namely, (i) identification of motifs at a genome 

scale (for prokaryotes) along with estimated statistical significance values [107]; (ii) 

accurate scan for all motif instances of a query motif in specified genomic regions, and 

comparison and correlational analyses among the identified motifs to facilitate the 

inference of joint regulatory relationships among TFs [120]; (iii) 53 eukaryotic genomes 

downloaded from the Ensembl and JGI databases as of 01/12/2016 (including human, 
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mouse, and all the plant genomes) and genome-scale operons for 2,072 prokaryotes with 

complete genomes retrieved from the DOOR2 operon database [121], in support of the 

above motif-based analysis; (iv) an integrative phylogenetic footprinting framework for 

de-novo motif identification in prokaryotic genomes based on a global orthologous gene 

mapping algorithm [110, 122]; and (v) bacterial regulon (co-regulated operons by the 

same TF) prediction based on a new motif analysis framework and a novel graph model 

[4], along with a Cytoscape-like network interpretation and visualization function. A 

systematic comparison between DMINDA 2.0 and other six webservers indicates that 

DMINDA 2.0 and the MEME Suite can provide the most comprehensive motif 

identification and analysis functionalities (Figure 9). 

4.2 Methods and results 

There are six motif analysis functions in DMINDA 2.0 (Figure 10): (i) motif 

finding; (ii) motif scanning; (iii) motif comparison; (iv) motif co-occurrence analysis; (v) 

motif prediction by MP3; and (vi) regulon prediction. 

The input data for (i) and (v) are DNA sequences in the FASTA format; motif 

alignments (or their PWMs) are required for (ii), (iii) and (iv); and species name along 

with operon/gene IDs are needed in (vi). These input data can be uploaded manually or 

selected from our underlying database by users. 

The outputs of each function are: (i) aligned motif instances along with their motif 

logos and related sequence details; (ii) query motif logo and identified motif instances; 

(iii) similarity score, heat-map, and clustering tree of query motifs; (iv) identified co-

occurrence motifs and their locational mapping to query genome sequences; (v) voting 

score curve and candidate binding regions along with same output in (i); and (vi) 
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identified regulons and their network visualization. All the outputs can be easily 

downloaded or converted for further computational analysis. The description of these six 

functions is shown below. 

(i) De novo motif finding identifies a set of statistically significant motifs (if any) 

in a set of provided promoters (Figure 11). The backend algorithm, BOBRO [107], has 

been demonstrated on genome-scale datasets and does so more efficiently and accurately 

than the best available tools such as MEME [113]. 

 (ii) Motif scanning scans for all motif instances of a query motif in given 

genomic sequences (Figure 12). The implemented tool, BBS (BoBro-based motif 

Scanning tool), has been shown to perform better than the MEME in accuracy on E. coli 

K12 and human genomes. 

(iii) Motif comparison compares the similarity among the query motifs, and 

clusters similar motifs into groups (Figure 13). The implemented tool, BBC (BoBro-

based motif Comparison and Clustering tool), identifies more accurate motif groups with 

a competitive sensitivity on synthetic datasets compared to MEME. 

(iv) Motif co-occurrence analysis identifies co-occurring motifs which may 

regulate the same set of genes, in given regulatory sequences (Figure 14). The 

implemented tool, BBA (BoBro-based motif correlation Analysis tool), enables 

statistically significant TF pairs to be identified among 12,561 pairs of E. coli K12, with 

some of them have been fully or partially proven in the published literature. 

The integration of the phylogenetic footprinting strategy and the systematic 

combination of motif-associated analyses have been integrated into a phylogenetic 
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footprinting framework for motif identification and bacterial regulon prediction in our 

server, respectively. 

(v) MP3 identifies novel motifs (if any) in prokaryotic genomes based on an 

integrative phylogenetic footprinting framework (Figure 15). Compared with seven 

prevalent programs on E. coli K12 genomes, MP3 consistently achieved distinct 

improvement in motif identification accuracy. It mainly benefits from a new reference 

promoter preparation strategy, a promoter refining and pruning method, and the 

integration of six widespread motif identification tools serving as a candidate TFBSs 

search engine (Figure 16D).  

(vi) Regulon prediction models and predicts regulons in given bacterial genomes 

(Figure 16A-C). Evaluated through documented regulons and co-expressed modules 

derived from E. coli, this method outperforms other algorithms across a wide variety of 

experiments. This remarkable performance is mainly achieved through the use of a novel 

computational framework and a graph model, integrating motif identification, motif 

comparison and clustering (i.e., functions (i), (iii), and (v)). To intuitively illustrate the 

predicted regulons, a Cytoscape-like visualization method was also implemented in 

support of further studies. 

4.3 Conclusion 

Motif identification and analyses provide a solid foundation to infer gene 

regulatory mechanism in a genome. Our previously published studies showed that, 

compared to the best available tools such as MEME, our implemented methods could 

identify and analyze statistically significant motifs equally, sometimes even better at a 

genome scale. We believe that our web server provides a highly useful and easy-to-use 
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platform for motif identification and analyses complementary to the existing web servers 

and tools, and benefits the genomic research community in general and prokaryotic 

genome researchers in particular. Until now, DMINDA 2.0 has been accessed about 

5,000 times and cited by two published papers. Furthermore, approximately 1,000 jobs 

have been submitted by users. 

Although DMINDA 2.0 enables motif identification from promoter sequences, it 

was limited in its ability to identify motif at a genome-scale based on ChIP-seq data. 

Existing ChIP-seq-based algorithms, however, suffer severe false positive and false 

negative issues, which is a big room to improve. 
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CHAPTER 5. DESSO 

5.1 Introduction 

Recent publications suggest that DL can also be extended in computational 

biology with unprecedented performance [123], particularly in motif identification [100, 

101, 106]. Much of this interest is attributed to the PWM-like motif detectors in 

convolution module and fully-connected network for extracting higher-level motifs in 

prediction module [124]. The basic idea is to train a DL model to classify a huge amount 

of TF-bound sequences and unbound sequences. Each motif detector in the first 

convolutional layer represents a pattern which contributes to classification performance.  

Although existing DL-based methods equipped with various network 

architectures have been successfully employed in sequence motif-related problems, the 

sequence motifs have not been fully considered and comprehensively analyzed [100, 101, 

104, 106]. Currently, activation maximization is the most widely used strategy in 

sequence motif identification based on trained models. This strategy either aligns 

sequence fragments having maximum activation in each sequence [100, 104] or aligns 

sequence fragments having activation which are larger than half of maximum activation 

of motif detector on a set of sequences [101, 106]. This strategy based on the assumption 

that sequence fragments enable activating a motif detector are more likely being motif 

instances of the corresponding sequence motif. Such method, however, results in both 

severe false positive and false negative issues. In addition, the fact that several motif 

detectors cooperatively describe a pattern complex has not been taken into account [125]. 

Factorbook provides us integrative motif analysis of ChIP-seq data from ENCODE [126], 
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but the MEME-ChIP used in this study for motif identification is limited by its 

computational capability.  

Here we introduce a DL framework, DESSO (DEep Sequence and Shape mOtif), 

which can be used to identify both sequence and shape motifs from ChIP-seq data.  

5.2 Dataset 

All 690 ChIP-seq datasets of uniform TFBS based on March 2012 ENCODE data 

freeze were downloaded from ENCODE Analysis Data at UCSC 

(https://genome.ucsc.edu/ENCODE/downloads.html). These datasets represent 161 

unique TFs (generic and sequence-specific factors) and cover 91 human cell types [127]. 

Each dataset contains ranked peaks (ranked by their signal scores) which are derived 

from the SPP peak caller [34] and de-noised by the Irreproducible Discovery Rate (IDR) 

[128] based on signal reproducibility among biological replicates. The peaks range in 

number from 101 to 92,358.  

We followed the same strategy of DeepBind [100] to split the peaks in each 

dataset into training data and test data. For each dataset, we define positive sequences as 

101 bps centered on each peak summit, each of which has a label of 1. To overcome 

overfitting in model training, for a dataset with less than 10,000 peaks, we repeatedly 

generate random peaks with replacement from training data until having 10,000 positive 

sequences. Rather than generate negative sequences using dinucleotide-preserving 

shuffling, we randomly pick the same number of 101bp sequence bins from the hg19 

human genome. These sequences are labeled as 0, which are deemed as unbounded 

sequences. The four normalized DNA shape feature (i.e., HelT, MGW, ProT, and Roll) 

https://genome.ucsc.edu/ENCODE/downloads.html
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vectors of each sequence above are generated by an easy-to-use R package, DNAshapeR 

[129]. 

DNase I Digital Genomic Footprinting (DNase-DGF) in a raw signal format 

derived from ENCODE/University of Washington were downloaded from UCSC 

(http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeUwDgf). They provide 

the footprint landscape of human genome for different cell lines using deep sequencing 

technique, based on the fact that unbound regions of regulatory factors in nucleosome-

depleted chromatin are more sensitive to cleavage of DNase I. We only considered 

DNase-DGF of cell line K562 and A549 whose reads were mapped to the hg19 human 

genome.  

5.3 Methods 

5.3.1 DESSO 

DESSO is a CNN-based framework for sequence and shape motif identification 

(Figure 17). Without loss of generality, here we use DNA sequence as an example to 

illustrate the sequence motif generation process. For each experiment, let 𝑀 be the 

sequences of 𝑚 top-ranked peaks, where each sequence is 101bp in size centered at each 

peak summit and 𝑚 = min⁡(500, 𝑡ℎ𝑒⁡𝑡𝑜𝑡𝑎𝑙⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑝𝑒𝑎𝑘𝑠). Define the activation 

score matrix 𝑀𝑖
′ as the activation values between a motif detector 𝑑𝑖 (each has length 𝐿) 

and 𝑀 by feeding 𝑀 into convolution and ReLU layer of its corresponding trained model, 

and 𝐴𝑖 the maximum score in 𝑀𝑖
′. A sequence segment (L bp) with the largest activation 

score in each sequence is defined as an activation segment, if its activation score is larger 

than an activation cutoff 𝐶. A motif instance set, denoted as Ω(𝑀, 𝜆), is all activation 

segments with 𝐶 = 𝜆 ∙ 𝐴𝑖 in 𝑀, where 𝜆 is a parameter ranging from 0 to 1. The value of 

http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeUwDgf
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𝜆 could be determined by a P-value strategy which is based on the assumption that the 

number of activation segment containing sequences using random selection with 

replacement in the human genome follows a binomial distribution. To estimate the 

“success” probability 𝑝 of each random selection, we divided the human genome into 

non-overlapping bins with length 101bp, then randomly selected 𝑛 = 500,000 bins as 

background sequence set 𝐻.  

Let 𝑋 be a random variable representing the number of activation segment 

containing bins with 𝐶 = 𝜆 ∙ 𝐴𝑖 in 𝐻, 𝑓(𝑥) = 𝑃(𝑋 = 𝑥) be the probability function, and 

𝐹(𝑡) = 𝑃(𝑋 ≥ 𝑡) be the cumulative distribution function. It is assumed that 𝑓(𝑥) can be 

approximated by a binomial distribution 𝑋~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝), where 𝑝 =
𝑋

𝑛
 is a maximum 

likelihood estimate. Therefore, the P-value of Ω(𝑀, 𝜆) is given by: 

𝐹(|Ω(𝑀, 𝜆)|) = 𝑃(𝑋 ≥ |Ω(𝑀, 𝜆)|)⁡⁡⁡⁡⁡(4) 

For each motif detector 𝑑𝑖, we can obtain the optimal motif instance 

Ω(𝑀, 𝜆)𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛0<𝜆<1𝐹(|Ω(𝑀, 𝜆)|) 

and the corresponding P-value. Only Ω(𝑀, 𝜆)𝑖 with P-value less than 1 × 10−4 and 

|Ω(𝑀, 𝜆)| > 2 ∗ 𝑥 were considered as true motif instances, based on the fact that motif 

should be more statistically significant and be observed more frequently in 𝑀. The 

derived motif instances were aligned as motif profiles and visualized using WebLogo 

2.8.2 [130]. Each identified motif was compared with Homo sapiens motifs in JASPAR 

[131], TRANSFAC [132] and HOCOMOCO [133] using TOMTOM [134] with 

significance threshold FDR < ⁡0.05. Shape motif generation follows almost the same 
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strategy as above, except that 𝑀 and 𝐻 should be replaced with corresponding DNA 

shape. 

5.3.2 GCNN 

The main feature of this proposed GCNN model is its “all-convolution” structure, 

including a convolutional layer, a recurrent convolution-gating block (CGB), and two 

fully connected layers (Figure 18). Concretely, the convolutional layer aims to detect 

motifs, the CGB captures long-term dependencies among identified motifs, and the fully 

connected layers account for binary classification. GCNN require as input the digit 

vectors, each DNA sequence is firstly transformed to a 𝑛 × 4 matrix 𝑀 in one-hot format 

with A = [1, 0, 0, 0], T = [0, 1, 0, 0], G = [0, 0, 1, 0], and C = [0, 0, 0, 1]. This input 

matrix 𝑀 is then fed into a one-dimensional convolutional layer with multiple kernels 𝐸, 

where 𝑘 indicates the number of kernels used. Each kernel is a 𝑙 × 4 weight matrix, 

which can be viewed as a motif detector. The core algorithm is summarized below. 

Step 1: Slide each kernel in 𝐸 along 𝑀 with step size 1 to obtain the matched score on 

each position: 𝐶 = 𝑅𝑒𝐿𝑈(𝑐𝑜𝑛𝑣𝐸(𝑀)). Here, 𝐶 is an (𝑛 − 𝑙 + 1) × 1 × 𝑘 matrix, where 

𝑅𝑒𝐿𝑈(𝑥) = max⁡(0, 𝑥) indicating rectified linear unit which is a widely-used activation 

function.  

Step 2: Downsample the input 𝐶 with pooling window size ℎ × 1 and step size ℎ: 𝑃 =

𝑝𝑜𝑜𝑙(𝐶). 𝑃 is a 𝑑 × 1 × 𝑘 matrix, where 𝑑 = ⌊
𝑛−𝑙+1

ℎ
⌋. 

Step 3: Reshape 𝑃 to a 𝑑 × 𝑘 × 1 matrix indicated by 𝑋. The hidden layers 𝐻𝑖 for 𝑖 =

0, … , 𝐿 can be obtained: 𝐻𝑖 = 𝑐𝑜𝑛𝑣𝑊(𝑋) ⊗ 𝜎(𝑐𝑜𝑛𝑣𝑉(𝑋)), where 𝐿 is number of the 
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hidden layers in CGB, 𝑊 and 𝑉 are two convolutional kernels, 𝜎 is the sigmoid function 

(𝜎(𝑥) =
1

1+𝑒−𝑥
), and ⊗ is used to calculate the element-wise product.  

Step 4: Feed the output of CGB into a fully connected layer. The prediction is then 

transformed by the sigmoid function, indicated by 𝑦 ∈ [0, 1]. 

5.4 Results 

5.4.1 DNA shape has strong predictive power in TF-DNA binding specificity prediction 

To predict TF-DNA binding specificity of each TF in different cell types, we 

constructed DESSO to distinguish bound and unbound regions by learning patterns which 

are embedded in these regions. This framework was applied to 690 in vivo ENCODE 

ChIP-seq datasets, each of which contains TF uniform peaks derived from a uniform 

processing pipeline [127]. For each dataset, the top 500 even-number peaks are served as 

test data, and the remaining peaks are used in model training, and all these peaks 

represent the positive class. As a binary classification problem, the corresponding 

negative class is also required for model training. Based on our observation, the 

performance of trained models is heavily dependent on the choice of negative sequences 

preparation. To make it more accurate and biologically meaningful, we randomly pick 

unbound regions in the genome as negative sequences, as opposed to using dinucleotide-

preserving shuffle strategy (Figure 19A).  

In addition to these DNA sequences, we also applied this framework to their four 

DNA shape features to evaluate the predictive power of DNA shape on TF-DNA binding 

specificity. In spite of essential role of DNA shape in TF-DNA recognition suggested by 

recent studies, it remains incompletely understood to what extent DNA sequence and 
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DNA shape can quantitatively contribute to this process. To investigate this, the DESSO 

was also applied to the combination of DNA sequence and DNA shape. All these models 

were evaluated on held-out test data using the area under the receiver operating 

characteristic curve (AUC) (Figure 19B). Results show that DNA shape has strong 

predictive power in TF-DNA binding specificity prediction, and this performance can 

even be more enhanced when all four shape features cooperate with each other. The 

models based on sequence alone achieve the best performance. Unlike previous work, 

incorporation of DNA shape cannot improve the predictive performance compared with 

using sequence alone. This may because DL enables extracting DNA shape features from 

sequences. 

5.4.2 Identification of sequence and shape motifs 

We next identified both sequence and shape motifs in each experiment using top 

500 peaks (if there are more than 500 peaks, otherwise, all peaks were used) by feeding 

these peaks into the trained model. Rather than choose motif instances using a subjective 

cutoff, we introduced a P-value strategy based on binomial distribution [135]. Only the 

significant motifs (P-value < 1 × 10−4) which are more enriched in these 500 sequences 

than random sequences were retained for further analysis. The retained motif with the 

lowest P-value was defined as a primary motif, and the others are defined as secondary 

motifs [126]. Redundant sequence motifs were merged based on their similarity score (>

0.9) from BBC [120]. 

Finally, a total of 82 unique primary sequence motifs were identified, 65 of which 

can be found in the JASPAR [131] or TRANSFAC [132]. We computed the DNaseI 

Digital Genomic Footprinting [136] and evolutionary conservation [137] of identified 
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motif instances (Figure 20A and 20B). To check the enrichment of the identified motifs 

in all ranked peaks of each experiment, we scanned motif occurrence using BBS [120] 

and computed enrichment score (ES) for each motif using GSEA (Gene Set Enrichment 

Analysis software) (Figure 20C) [138]. It showed that identified motifs are more enriched 

in top-ranked peaks, and primary motifs have dramatic left-skewed trend indicating their 

predominant role in the discovery of these peaks. The percentage of peaks covered by 

identified motifs achieved 0.85 in average for only primary motif and 0.91 for both 

primary and secondary motifs. This revealed the complementary role of secondary motifs 

in TF-DNA binding, which means secondary motifs may bound by some cofactors.  

We also identified 35, 62, 59, and 55 unique primary shape motifs for HelT, 

MGW, ProT, and Roll, respectively. 322 TFs have at least one shape motif, and MGW is 

the most prevalent one. This disclosed the shape preference of TF, which is mainly 

determined by TFs’ DNA binding domain. It obviously demonstrated that TFs with 

identical sequence motifs can have distinct shape motifs. We generated sequence logo for 

sequences of shape motif instances, some of them are not conserved and do not have 

matched motif, but some of them corresponds to TF’s motif. For example, MAFF 

recognizes Maf recognition element [TGCTGAC(G)TCAGCA]. One of the sequence 

logos of the identified HelT motif corresponds to its sequence motif (Figure 21A), but 

another one is not (Figure 21B). Additionally, most of these sequence logo have low IC 

compared to their corresponding sequence motifs, indicating that shape motifs are 

generally not well-conserved at the sequence level.  
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5.4.3 GCNN captures motif dependencies of long DNA sequences 

 Based on our observation, the classification accuracy of CNN can be improved 

significantly as peak length increases (Figure 22A). To investigate the performance of 

GCNN, we applied our GCNN model on DNA sequences with length 1001 bps. The 

results show that GCNN outperforms CNN on most of the datasets (Figure 22B). This 

remarkable improvement mainly benefits from GCNN’s capability in capturing motif 

dependencies. 

5.5 Conclusion 

In this chapter, we developed a DL framework to identify sequence and shape 

motifs from ChIP-seq data. Unlike previous work using a solid threshold for motif 

identification, here we introduced a binomial distribution to select the optimal threshold. 

For long DNA sequences, we developed a GCNN model to capture motif dependencies. 

To broadly facilitate motif-related analysis in this field, we also provide an integrated 

web server DESSO, which is freely available at http://bmbl.sdstate.edu/DESSO. In 

addition to showing derived results based on 690 ENCODE ChIP-seq datasets, DESSO 

enables a comprehensive analysis of user-provided DNA sequences, along with a 2-

dimensional convolutional network visualization to exhibit its actual behavior [139]. 

 

 

 

 

http://bmbl.sdstate.edu/DESSO
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CHAPTER 6. Discussion 

TFBSs play critical roles in regulating transcription rates and expression levels of 

their target genes. The knowledge of genome-scale TFBSs can greatly help the 

elucidation of gene regulatory mechanisms in a cell. Hence, de-novo motif identification 

and associated computational analyses (e.g., motif scanning and comparison) play an 

important role in regulatory network construction in all organisms.  

Although substantial algorithms and tools have been developed in the past few 

decades, phylogenetic footprinting-based algorithms have not been fully considered. 

Additionally, no such work has considered the relationship and visualization among 

identified motifs (or corresponding genes). Existing DL models use a subjective threshold 

in motif identification, which incurs severe false positive and false negative issues. 

Furthermore, DNA shape has not been integrated with DL in shape motif identification. 

To overcome these limitations, we have made two main contributions as follows:  

We have developed an integrated web server, DMINDA 2.0, which contains: (i) five 

motif prediction and analysis algorithms, including a phylogenetic footprinting 

framework; (ii) 2,125 species with complete genomes to support the above five functions, 

covering animals, plants, and bacteria; and (iii) bacterial regulon prediction and 

visualization. Compared to other existing web servers, DMINDA 2.0 provides 

comprehensive motif analysis functions. DMINDA 2.0 is freely available at 

http://bmbl.sdstate.edu/DMINDA2.   

We have proposed a DL framework, DESSO, which is used to identify both 

sequence and shape motifs from ChIP-seq data. To optimize the threshold in motif 

identification, we introduced a binomial distribution to select the best threshold based on 

http://bmbl.sdstate.edu/DMINDA2
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a P-value strategy. Results show that DNA shape also has strong predictive power in TF-

DNA binding specificity prediction. In addition, shape motifs are prevalent and can help 

interpret why TFs with the same sequence motif bind to distinct genome regions. 

Compared to CNN, the GCNN model proposed in this study can improve TF-DNA 

binding specificity prediction on long DNA sequences. This performance mainly benefits 

from GCNN’s capability in capturing motif dependencies. 
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Figure 1. Motif instances and logo. 
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AACTGTGAGGTATTTCATAAAGC
AACTGTGATAGTGTTCACATATC
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Figure 2. Representation of a motif. (A) An example of motif consensus, degenerate 

consensus, and profile. (B) A full list of wildcards in the degenerate consensus. (C) A 

different motif but has same profile with the motif in A.  
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Figure 3. CNN in image classification based on the multi-layer structure: convolutional 

layer, pooling layer, and fully-connected layer. 
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Figure 4. Existing algorithms and tools for motif identification. 
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Figure 5. DL framework for motif identification, including bound and unbound sequences 

as training data, convolutional layer, pooling layer, and fully-connected layer. 
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Figure 6. Schematic overview of the BOBRO, including (A) a two-stage alignment, (B) 

matrix approximation (each red circle represents an identified motif starting position), (C) 

graph construction and clique finding (each clique corresponds to the core part of a 

conserved motif pattern), and (D) expansion and evaluation (each motif closure represents 

an identified motif by refining and expanding corresponding motif cliques).  
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Figure 7. Workflow of DMINDA. Four motif analysis functionalities are accessible by the 

following clickable buttons on the front page of DMINDA: Motif finding, Motif scanning, 

Motif comparison and Motif co-occurrence analysis. And 21 motif databases are integrated 

into Access to other databases. 
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Figure 8. An outline of the MP3 framework. (A) RPS preparation based on the sequenced 

genome from NCBI, operon information retrieved from DOOR, and identified orthologous 

genes for a target gene using GOST. The promoters of orthologous operons are generated 

and then are refined to build RPS. (B) CBR detection by voting strategy and peak finding. 

The predicted motifs by six tools (short sequences) are mapped back on promoter 

sequences and generate score curves. The peaks on the curve are identified as CBR by a 

peak calling method. (C) CBR clustering based on a new graph model. r0, r1… are CBRs 

on promoters, which are clustered together as a related CBR set R1. The motif finding will 

be performed on these clusters (R1, R2, ..., Rt) again to build motif profiles. (D) Motif 

profiles identification and motif width optimization through curve fitting. 
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Figure 9. Comparison of DMINDA 2.0 and six motif analyses webservers. A check mark 

indicates that the corresponding functionality is provided by the specific web server.  
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Figure 10. Workflow of DMINDA 2.0, including (i) de-novo motif finding, (ii) motif 

scanning, (iii) motif comparison, (iv) motif co-occurrence analysis, (v) de-novo motif 

finding based on phylogenetic footprinting strategy, and (vi) regulon prediction. 
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Figure 11. Identified motifs from DMINDA 2.0, including motif logo, motif length, P-

value, number of motif instances, and detailed information of motif instances. 
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Figure 12. (A) Result page of motif scanning, including (i) query motifs and related 

sequence details; (ii) three follow-up motif analysis functions; and (iii) options for 

downloading the submitted motif alignments, query genome sequences and predicted 

results. (B) The locational mapping of identified motif instances to the corresponding query 

sequences. (C) The consensus, PWM, position-specific scoring matrix (namely PSSM), IC, 

and other formats (e.g., MEME and UniPROBE) of the query motifs. 
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Figure 13. Result page of motif comparison. (A) The paired similarity of query motifs, 

including (i) options for downloading the submitted motif alignments, similarity matrix, 

and clustering results; (ii) options for printing, copying, and downloading the paired 

similarity in multiple formats; and (iii) the paired similarity between submitted motifs. (B) 

The similarity matrix of query motifs, including (i) options for printing, copying, and 

downloading the similarity matrix; and (ii) similarity matrix. (C) The clustering tree. 
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Figure 14. Result page of motif co-occurrence analysis. (A) Identified co-occurring motifs, 

including (i) options for printing, copying, and downloading the co-occurring motifs in 

multiple formats; and (ii) P-values for each pair of co-occurring motifs. (B) Locational 

mapping of query motifs to query genome sequences. 
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Figure 15. Result page of motif finding by MP3, including (i) four follow-up motif analysis 

functions; (ii) options for downloading the submitted query sequences and predicted 

results; (iii) voting score curve and predicted candidate binding regions; and (iv) identified 

motifs and related sequence details. 
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Figure 16. (A) A Cytoscape-like network visualization of predicted regulons. The rounded 

rectangles indicate operons, orange circles represent identified motifs, and network in red 

highlights the selected regulon. (B) Details of the selected node (1382492_5) in (A). (C) 

Details of the selected edge (1382492_5-1382491_2) in (A). (D) The voting strategy in 

MP3 for generation of reliable TF binding regions. 

 

 

32

5

3

3248

3

2

2

1

1382489

5

1

3269 3228

1

1382488

5

3

5

1

1

2

3191

3

3196

1

1382487

3

4

5

1382485

3115

1382496

1382491

5

3075

1382492

4

2

A B

C

D

Promoter

Outputs of motif finding tools

Primary motif finding on reference promoter set

Score Curve



63 
 

 

Figure 17. Workflow of DESSO, including a DL model for data training and a statistical 

model for motif identification. 
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Figure 18. Workflow of GCNN , including a convolutional layer, max pooling layer, CGB, 

and fully-connected layer. 
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Figure 19. Performance of DESSO. (A) Comparison of DESSO and DeepBind on 

classification accuracy. (B) Classification accuracy of different inputs. 
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Figure 20. Analysis of identified motifs. (A) Mean value of DNase I cleavage and 

evolutionary conservation around identified motif instances. (B) Heat map of DNase I 

cleavage and evolutionary conservation around identified motif instances. (C) Enrichment 

analysis of identified motifs. 
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Figure 21. HelT motif and sequence logo of MAFF . The orange curve represents the mean 

value of HelT around shape motif instances (orange shadow), and the motif logo indicates 

the underlying sequences. 
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Figure 22. (A) Classification accuracy of CNN with different peak lengths. (B) Comparison 

of GCNN and CNN on classification accuracy. 
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