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Abstract: Planting and harvesting times drive cropland phenology. There are few datasets that derive
explicit phenological metrics, and these datasets use the visible to near infrared (VNIR) spectrum.
Many different methods have been used to derive phenometrics such as Start of Season (SOS) and
End of Season (EOS), leading to differing results. This discrepancy is partly due to spatial and
temporal compositing of the VNIR satellite data to minimize data gaps resulting from cloud cover,
atmospheric aerosols, and solar illumination constraints. Phenometrics derived from the downward
Convex Quadratic model (CxQ) include Peak Height (PH) and Thermal Time to Peak (TTP), which
are more consistent than SOS and EOS because they are minimally affected by snow and frost and
other non-vegetation related issues. Here, we have determined PH using the vegetation optical
depth (VOD) in three microwave frequencies (6.925, 10.65 and 18.7 GHz) and accumulated growing
degree-days derived from AMSR-E (Advanced Microwave Scanning Radiometer on EOS) data at a
spatial resolution of 25 km. We focus on 50 AMSR-E cropland pixels in the major grain production
areas of Northern Eurasia (Ukraine, southwestern Russia, and northern Kazakhstan) for 2003–2010.
We compared the land surface phenologies of AMSR-E VOD and MODIS NDVI data. VOD time
series tracked cropland seasonal dynamics similar to that recorded by the NDVI. The coefficients
of determination for the CxQ model fit of the NDVI data were high for all sites (0.78 < R2 < 0.99).
The 10.65 GHz VOD (VOD1065GHz) achieved the best linear regression fit (R2 = 0.84) with lowest
standard error (SEE = 0.128); it is therefore recommended for microwave VOD studies of cropland
land surface phenology. Based on an Analysis of Covariance (ANCOVA) analysis, the slopes from the
linear regression fit were not significantly different by microwave frequency, whereas the intercepts
were significantly different, given the different magnitudes of the VODs. PHs for NDVI and VOD
were highly correlated. Despite their strong correspondence, there was generally a lag of AMSR-E
PH VOD10.65GHz by about two weeks compared to MODIS peak greenness. To evaluate the utility
of the PH determination based on maximum value, we correlated the CxQ derived and maximum
value determined PHs of NDVI and found that they were highly correlated with R2 of 0.87, but
with a one-week bias. Considering the one-week bias between the two methods, we find that PH of
VOD10.65GHz lags PH of NDVI by three weeks. We conclude, therefore, that maximum-value based
PH of VOD can be a complementary phenometric for the CxQ model derived PH NDVI, especially in
cloud and aerosol obscured regions of the world.

Keywords: cropland phenology; microwaves; VNIR; downward convex quadratic model; peak
height phenometrics
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1. Introduction

Planting and harvesting times drive the phenologies of crops. Complex networks of factors
influence when farmers plant particular crops and when they harvest them, including: recent and
forecast weather; commodity prices, situation of local markets, and foreign crop conditions; crop
insurance and governmental policies and subsidies; agronomic practices; and the cold hardiness,
drought tolerance, or differential maturities of planted crop varieties. Most of these factors cannot be
observed directly through remote sensing technologies. However, the remote sensing of land surface
phenology (LSP) can reliably reveal the seasonality of vegetation in croplands in an ordinal sequence of
broad phases: green-up onset (start-of-season, SOS), maturity onset, senescence onset, and dormancy
onset (end-of-season, EOS). The dates or days of the year of the SOS and EOS are commonly used as
phenological metrics (or phenometrics) to study the land surface phenology of croplands in relation to
climatic and hydrological variability and, to some extent, the variation in land management [1].

Cropland phenology is not equivalent to crop phenology. The phenologies of crops describe
particular observable life history events in the specific crop species. Implicit in crop phenology is
a human observing the crop at sufficiently close distance to distinguish the plant parts relevant
to the phenological phases (or phenophases). In contrast, cropland phenologies describe the land
surface phenologies of croplands captured through remote sensing. These may include a mixture of
multiple crop types with non-crop elements such as roads, vegetated ditches, hedgerows, woodlots,
and rural buildings. Crop phenologies can be quite detailed; cropland phenologies offer relatively
few phenophases. Cropland phenologies are useful for models of land surface, weather, and climate.
Crop phenologies are useful for models of crop growth and yield and field-scale hydrological and
biogeochemical processes.

Few remote sensing data products are used to derive explicit phenometrics, and each of these
datasets uses the VNIR (visible-to-near-infrared) spectrum [2]. Moreover, each of the phenologically
explicit LSP products uses different methods to derive phenological metrics, resulting in different
metrics for SOS and EOS [2]. This discrepancy is also partly due to the challenge of equating
satellite derived LSP metrics to in situ observations of plant phenology, and the spatial and temporal
compositing of the VNIR satellite data to minimize data gaps that result from cloud cover, atmospheric
aerosols, and orbital and solar illumination constraints [3,4].

Microwave remote sensing is based on the dielectric property of materials, which is largely
governed by the material’s water content. Thus, microwave measurements are sensitive to vegetation
and soil water content and to changes in plant biomass and soil moisture. The frequencies of
microwaves emitted by the land surface are much lower than VNIR light. These longer wavelengths
are less attenuated by the atmosphere, and the earth’s surface constantly emits microwaves. Satellite
active and passive microwave data have been successfully applied in many LSP studies such as
vegetation phenology assessment [5–8], vegetation drought response [9,10], and growing season
variability [11,12]. Limitations of microwave LSP monitoring include very coarse spatial resolution
(25 km in this study) due to the faint microwave signal emissions of land surface materials [1,13],
sensitivity to radio frequency interference (RFI; [14,15]), and signal degradation or loss due to snow
cover and frozen ground [5,6].

Vegetation optical depth (VOD) is a measure of aboveground vegetation canopy thickness [16]
that is less sensitive to dense biomass saturation, less sensitive to atmospheric contamination and solar
illumination constraints, and it can have high temporal resolution [1,6,17]. VOD is directly proportional
to the vegetation dielectric constant and canopy water content. VOD responds to vegetation seasonal
dynamics similar to those recorded by the VNIR MODIS vegetation indices (VIs: NDVI, EVI, and
LAI) and an independent bioclimatic growing season index (GSI; [1,6,18]). VOD has been shown to
track seasonal changes in croplands in spring wheat producing regions of North America and winter
wheat producing areas of Volga River Basin in Russia, and heatwaves that devastated crop production
in Northern Eurasia [19,20] similar to that of NDVI and EVI [21,22]. VOD SOS corresponds well to
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MODIS NDVI and EVI green-up dates, and SOS estimates from flux tower gross primary production
(GPP) and ecosystem respiration, but with temporal offsets [1].

Phenometrics derived from the downward Convex Quadratic (CxQ) model include Peak Height
(PH) and Thermal Time to Peak (TTP), which are more consistent than SOS and EOS, because they are
minimally affected by snow and frost and other non-vegetation related issues [23,24]. PH, estimated
as a quadratic function of accumulated growing degree-days (AGDD) [21,22] or accumulated relative
humidity [25], has been found to have significant positive correlation with agricultural production
statistics for rainfed agriculture. In the application of the CxQ model, a piece of a parabola is fit to
the response variable as a quadratic function of an accumulated seasonal forcing, such as AGDD.
The advantage of the CxQ model is the phenometrics PH and TTP can be calculated directly from the
fitted parameter coefficients. The disadvantage is that some LSP shapes are not well approximated
by a parabolic curve. We observed in earlier work [21] that only at the very center of the growing
season were VOD cropland time series fitted well by the CxQ model. In this study, we hypothesize
that VOD phenometrics characterize cropland dynamics in a manner complementary to MODIS
NDVI phenometrics, but with a temporal lag. The aims of this study are: (1) to compare the VOD
phenometrics TTP and PH estimated from passive microwave time series using a maximum value
approach with the NDVI phenometrics TTP and PH estimated from MODIS data using the CxQ model;
(2) to quantify temporal offsets between the two sets of phenometrics; (3) to interpret the origin of
these offsets; and, importantly; and (4) to demonstrate the validity of the VOD approach so that these
microwave phenometrics can be used in cloud-obscured areas.

2. Data and Methodology

2.1. Remote Sensing Data

We used two very different remote sensing datasets: emitted terrestrial microwave radiation
and reflected solar shortwave radiation. The microwave dataset was based on the Advanced
Microwave Scanning Radiometer (AMSR-E) enhanced land parameters developed by the Numerical
Terradynamic Simulation Group at the University of Montana [26]. These parameters include near
surface air temperature (ta; ~2 m height) and vegetation canopy transmittance (tc) at three microwave
frequencies (6.925 GHz, 10.65 GHz, and 18.7 GHz). Onboard the NASA-EOS Aqua satellite, AMSR-E
recorded data twice daily (daytime, ~13:30; and nighttime, ~01:30) from mid-June 2002 to October
2011, when the rotating antenna failed. The second dataset included optical reflectance data from the
Moderate-resolution Imaging Spectroradiometer (MODIS). We used MODIS collection 5 level 3 data
product in a 0.05 degree (~5.6 km) Climate Modeling Grid (CMG), specifically the Nadir Bidirectional
Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) data that combines observations
from Terra and Aqua (MCD43C4; [27]). NBAR provides 16-day retrievals (updated every 8 days) of
surface reflectance normalized to a nadir view using BRDF models of surface anisotropy [28,29].

Croplands for this study were identified based on the International Geosphere Biosphere
Programme (IGBP) global land cover classification scheme in the MODIS land cover CMG product
(MCD12C1; [27]), and the USDA Foreign Agriculture Service (FAS) crop layers by oblast (for Russia [30],
Kazakhstan [31], and Ukraine [32]).

We used tree cover data (ca. 2010) from the 30 m Global Land Cover dataset, which was derived
from Landsat 7 ETM+ data by USGS and the Department of Geographical Sciences at University of
Maryland [33]. We used these data to calculate the proportion of tree cover within our study sites.

2.2. Study Region

We conducted this study at the same sites identified in our companion paper [22] that established
the notion that the surface air temperature data retrieved from the microwave radiometers could be
used instead of MODIS land surface temperature data to drive the convex quadratic model of land
surface phenology (LSP). Indeed, it improved model fits, despite its coarser spatial resolution, because
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there was higher temporal resolution and lower variability arising from the spatial heterogeneity of the
land surface. In that paper, we used AGDD from AMSR-E air temperature data, and NDVI and EVI from
MODIS data to characterize cropland dynamics throughout the growing season in the study region [22].

AMSR-E pixels dominated by croplands were identified through land cover stability
analysis [22,34] using the MODIS IGBP Land Cover Type 1 Percentage Product (MCD12C1; [27]).
We identified 49 AMSR-E pixels (or study sites) across the major grain producing areas of Ukraine
(UA, 14), southern Russia (RU, 24), and northern Kazakhstan (KZ, 11) (Figures 1 and 2; [22]).
For contrast, we selected one AMSR-E pixel dominated by mixed forest cover (IGBP class 5) in
Mari El Republic of the Russian Federation. We used this representative MFO site only for contrast
and did not incorporate it into our full analyses. Where it is included, it is indicated in figure captions
or accompanying text. We derived, within each study pixel, the proportions of croplands, grasslands,
and cropland/natural vegetation mosaic (CNVM) using the MODIS IGBP Land Cover product
(MCD12C1; [27]). These classes were the three predominant land covers in the region. In addition,
we calculated the tree cover proportion from the Landsat 7 ETM+ 30 m resolution Global Land Cover
data [33]. The proportions of tree cover, open water, bare ground, and undifferentiated other classes
(including croplands and grasslands) that occur within each AMSR-E study pixel appear in Figure 2.
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Figure 1. Land cover stability in Ukraine (UA), southern Russia (RU), and northern Kazakhstan (KZ) 
as revealed by International Geosphere Biosphere Programme (IGBP) global land cover classification 
scheme MODIS 0.05° cropland (IGBP class 12) land cover products for 2003–2010. For details on how 
the land cover stability analysis was conducted, please refer to [22,34]. In this figure, Yellow = stable 
core area; Magenta = unstable peripheral areas; Black = no occurrence of the given land cover class. 
Overlaid are the 49 specific cropland and one mixed forest (site 50—most northern site) study sites. 
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Figure 2. Average cropland (purple), and grassland (orange) cover in percent for 2003–2010 from the 
MODIS IGBP Land Cover Type 1 Percent Product at ~5.6 km spatial resolution MCD12C1 [27],  
and tree cover fraction (%) in 2010 from the Landsat ETM+ 30 m resolution Global Land Cover product [33]. 
X-axis indicates study sites numbered from lower (1) to higher (50) latitudes. Figure 1 shows the 
latitudinal distributions of the study sites and countries in which they are found. Sites are sorted from 
largest (left) to smallest (right) cropland cover percent. Site 50 is a Mixed Forest site, in Mari El, RU. 
Note that summation of land cover proportions can exceed 100% at some sites, because the tree cover 
data source is different and at a different scale from the other two land cover classes. Cropland cover 
in some sites might be larger than what is presented here, since the MODIS land cover data has a 
separate class named Cropland/Natural Vegetation Mosaic (CNVM, IGBP class 14), which is not 
illustrated here to avoid overlap with the tree cover data. Land cover values >5% are labeled on the 
respective bars. These MODIS land cover data are also used in [22]. 

Figure 1. Land cover stability in Ukraine (UA), southern Russia (RU), and northern Kazakhstan (KZ)
as revealed by International Geosphere Biosphere Programme (IGBP) global land cover classification
scheme MODIS 0.05◦ cropland (IGBP class 12) land cover products for 2003–2010. For details on how
the land cover stability analysis was conducted, please refer to [22,34]. In this figure, Yellow = stable
core area; Magenta = unstable peripheral areas; Black = no occurrence of the given land cover class.
Overlaid are the 49 specific cropland and one mixed forest (site 50—most northern site) study sites.
The AMSR-E pixels are numbered from lower to higher latitude. Modified from [22]. Site names,
latitudinal and longitudinal coordinates for all the study sites can be found in Table A1.
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Figure 2. Average cropland (purple), and grassland (orange) cover in percent for 2003–2010 from the
MODIS IGBP Land Cover Type 1 Percent Product at ~5.6 km spatial resolution MCD12C1 [27], and
tree cover fraction (%) in 2010 from the Landsat ETM+ 30 m resolution Global Land Cover product [33].
X-axis indicates study sites numbered from lower (1) to higher (50) latitudes. Figure 1 shows the
latitudinal distributions of the study sites and countries in which they are found. Sites are sorted from
largest (left) to smallest (right) cropland cover percent. Site 50 is a Mixed Forest site, in Mari El, RU.
Note that summation of land cover proportions can exceed 100% at some sites, because the tree cover
data source is different and at a different scale from the other two land cover classes. Cropland cover in
some sites might be larger than what is presented here, since the MODIS land cover data has a separate
class named Cropland/Natural Vegetation Mosaic (CNVM, IGBP class 14), which is not illustrated
here to avoid overlap with the tree cover data. Land cover values >5% are labeled on the respective
bars. These MODIS land cover data are also used in [22].
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Over the eight years of the study period, the average cropland cover for all sites was 88%; in
contrast, the mixed forest site was 93% mixed forest. Many sites in UA and some in RU had 100%
average maximum cropland cover over the study period, while Volgograd (site 14) in RU had the
minimum average cropland cover (46%, Figure 2). Saratov 1 in RU (site 21) had the largest grassland
encroachment with 69% and 31% mean cropland and grassland cover, respectively, over the eight years
(Figure 2). Thus, site 21 exhibited the largest cropland cover variation (range = 28%) [22]. Omsk 1 in RU
(site 46), and Kostanay 2 in KZ (site 36) are other examples. The finer resolution Landsat data revealed that
the MFO site (site 50) had the largest tree cover proportion (75%), followed by Volgograd (site 14, 17%).

2.3. Characterizing Land Surface Phenology in VODs and NDVI

We used the AMSR-E and MODIS data from all eight years (2003–2010) for all pixels. The AMSR-E
data record has winter data gaps as it was pre-filtered for snow covered or frozen land surfaces [35].
To avoid the frozen season and to maintain a consistent analysis period across all pixels, we restricted
our focus to data from DOY 89–305, i.e., 30 March to 1 November for non-leap years and 29 March
to 31 October for leap years. An 8-day forward moving average filter was applied to the AMSR-E
data to minimize data gaps due to orbit and swath width, and to align the AMSR-E data with the
corresponding compositing periods of the MODIS NBAR data (MCD43C4) (Figure 3). Growing
degree-day (GDD) is the daily thermal time increment above a certain threshold (base temperature)
for plant growth [36–38], and accumulated growing degree-days (AGDD) are the summation of daily
thermal time increments throughout the whole growing period [24,39,40]. In other words, the passage
of days is weighted by the quantity of growing degrees occurring that day, with zero (but not negative)
degrees being a permissible weight [41]. McMaster [42] concluded that the base temperature of 0 ◦C
is a robust and sufficient threshold for wheat phenology, which is the main crop in our study region.
GDD was calculated from the AMSR-E air temperature (ta) data with a base temperature of 273.15 K
(=0 ◦C) as follows:

GDD = max[
tASC + tDES

2
− 273.15, 0] (1)

where tASC and tDES are ascending and descending pass temperatures, which roughly corresponds to
the daytime (~13:30) and nighttime (~22:30) temperatures, respectively. We applied an 8-day forward
moving summation to the GDDs and picked up those values corresponded with the MODIS reflectance
data (MCD43C4) acquisition dates to mimic the whole growing season GDD (DOY 89–305 in this
case) and to align it with the MODIS data. Thus, each annual growing period has 28 GDD values.
These GDD values were accumulated to yield AGDD.

AGDDt = AGDDt−1 + GDDt (2)

where GDDt is daily temperature increment of growing degree days at time t.
Daily GDD from AMSR-E tracked seasonal, weekly and monthly dynamics of corresponding

weather station GDD [22]. The root mean square deviation (RMSD) between these daily datasets from
the two sources was very low, 1.86–3.16 ◦C [22]. Linear regression of AMSR-E GDD with weather
station GDD on these cropland sites yielded R2 > 0.82 [22]. This result is in line with Jones et al. [43]
who found a bias of 1.0–3.5 K between WMO weather station and AMSR-E daily air temperature data
on vegetated lands across the Northern Hemisphere.

NDVI was calculated from the MODIS NBAR reflectance data using the standard formula by
Tucker [44]. NDVI was calculated for each 0.05-degree (~5.6 km) pixel and zonal-averaged to the
0.25-degree (25 km) AMSR-E study pixels. We fitted the MODIS NDVI as a function of AMSR-E AGDD
using the downward CxQ model.

NDVIt = α + β × AGDDt - γ × AGDDt
2 (3)
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The intercept α is the background NDVI at the start of observation period, the linear parameter β
affects the slope, and the quadratic parameter γ controls the curvature. Since the model is downward
convex quadratic, the sign of β coefficient is positive and γ coefficient is negative.

Two phenometrics were derived from the fitted parameter coefficients of the CxQ model. These
are Peak Height NDVI (PH; Equation (4)) and Thermal Time to Peak NDVI (TTPNDVI; Equation (5)):

PH = α − (β2/4 × γ) (4)

TTPNDVI = −β /2 × γ (5)

where α, β, and γ are the fitted parameter coefficients.
Vegetation Optical Depth (VOD) was derived as a negative natural logarithm of vegetation

transmittance [VOD = −loge(tc) = −ln(tc)]. In a previous study [21], we fitted the core growing
season VODs from the three microwave frequencies (6.925 GHz, 10.65 GHz, and 18.7 GHz) using
the CxQ model in a two-step process. The fits in that study were good (coefficients of determination
were larger than 0.90 (R2 > 0.90) in time and space) but limited to around the peak of the growing
season. Here, however, we need to consider a larger fraction of the growing season; thus, we needed
a different approach. The VOD shapes for the entire growing season are not well fitted using the
CxQ model. VOD is sensitive to aboveground biomass structure, including crop residues, and to the
vegetation water content found in entire aboveground biomass, while NDVI is sensitive primarily to
vegetation greenness. VOD has a different seasonal progression shape that is not suitably captured by
a quadratic curve compared to that of NDVI. Therefore, we used the maximum VOD value approach
to determine cropland vegetation PH and TTP. That is, the observed maximum VOD value was taken
as PH VOD, while the corresponding AGDD was taken as TTP. Similar approach was also used for
the NDVI for a direct comparison with the CxQ model fit derived PH and TTP NDVI. The PH NDVI
and PH VOD values were regressed to see the relationship between cropland peak greenness and
peak biomass and water content. We then used analysis of covariance (ANCOVA) to test whether the
slopes and/or intercepts from the linear regression model fit were significantly different by microwave
frequency: the microwave frequencies (6.925, 10.65, and 18.7 GHz) were the independent categorical
effect variables, the peak greenness was covariate, and PH VOD was the response variable. The first
statistical assumption for ANCOVA is that the covariate (peak greenness in our case) is uncorrelated
with other independent variables (microwave frequencies), and the second assumption is that the
covariate (peak greenness) is correlated with the dependent variable (PH VOD; [45]). In all cases,
p ≤ 0.05 was considered significant.
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3. Results

3.1. Time Series Land Surface Phenologies of NDVI and VODs

All three VOD time series were able to capture the seasonality of croplands (both bimodal patterns
and unimodal patterns), similar to MODIS NDVI (Figure 4). The bimodality arises from the planting
of winter grains in the fall, and growth and harvest in the subsequent early summer. After snow
melts, croplands are primarily barren or contain crop residues (non-photosynthetic biomass) prior
to tilling and planting. Green-up occurs after seed germination at emergence (initiation of visible
aboveground growth) but prior to significant aboveground biomass accumulation. This pattern is
evident in Figures 4 and 5, where the rise in VOD occurs later than NDVI. Cropland peak VODs, which
are sensitive to aboveground vegetation water content and biomass, consistently lagged in time and
space from the peak NDVI, which is sensitive to vegetation greenness and leaf area index (Figures 4
and 5). Furthermore, the VODs showed slower senescence, likely a consequence of residual biomass
(crop residue) following harvest. VOD PH for sites with ≥10% tree cover were not significantly
different from sites with ≥99% croplands at α = 0.05 and p > 0.05 (Figures 4 and 5) [46,47]. Higher
microwave frequencies exhibit higher dynamic range: the shorter wavelengths are more attenuated by
vegetation canopy (Figures 4 and 5).
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3, KZ, site 42; and (d) Kazan, RU, site 49; and (e) Mari El, RU, site 50 (MFO site included for contrast). 
Note that the VOD range for the MFO site is higher (0.2–1.9) than the range for the cropland sites (0.2–1.6). 

LSPs at the lower latitudes within the region exhibit longer and/or bimodal patterns arising from 
the cultivation of winter grains (Figure 4a,b). On the other hand, LSPs at the higher latitudes exhibit 
shorter unimodal growing season due to cultivation of spring grains (Figure 4c,d). At each study site, 
the VOD and NDVI exhibit similar seasonal patterns, amid interannual variation. For example, in 
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Figure 4. VOD time series for the three microwave frequencies: green pluses = 18.7; purple circles = 10.65;
orange triangles = 6.925 GHz; and blue diamonds = NDVI. Selected series arranged from south to north
of our study region: (a) Stavropol, RU, site 2; (b) Kirovohrad, UA, site 15; (c) Petropavlovsk 3, KZ, site 42;
and (d) Kazan, RU, site 49; and (e) Mari El, RU, site 50 (MFO site included for contrast). Note that the
VOD range for the MFO site is higher (0.2–1.9) than the range for the cropland sites (0.2–1.6).
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Figure 5. VODs in three microwave frequencies (green squares = 18.7, purple circles = 10.65, and
orange triangles = 6.925 GHz) and NDVI (blue diamonds) interannual variability of a southern study
site (Simferopol, UA, 45.6◦N) for 2003–2010. The 6.925 GHz vegetation transmissivity was missing
from the source dataset in 2004. Seasonal patterns changed from bimodal (2003–2004) to unimodal
(2005–2009) and back to bimodal (2010).

LSPs at the lower latitudes within the region exhibit longer and/or bimodal patterns arising from
the cultivation of winter grains (Figure 4a,b). On the other hand, LSPs at the higher latitudes exhibit
shorter unimodal growing season due to cultivation of spring grains (Figure 4c,d). At each study site,
the VOD and NDVI exhibit similar seasonal patterns, amid interannual variation. For example, in
Petropavlovsk 3, KZ (Figure 4c), in 2003 there was high and earlier peak LSPs in fewer AGDD, while
in 2010 there was lower and flatter peak in more AGDD, due to the 2010 heatwave affecting European
Russia [19,20]. Note the 2007 VOD in Kirovohrad, UA (Figure 4b) is almost flattened compared to
other years, due to the devastation of crops by the 2007 heatwave in Ukraine [48]. The heatwave effect
is more evident on the VODs compared to their counterpart NDVI (Figure 4b), due to the sensitivity of
VODs to vegetation water content. The Mari El mixed forest site in Russia displayed a distinct LSP in
magnitude and shape compared to the rest of the 49 cropland sites (Figure 4e). Both VOD and NDVI
were larger in magnitude (note the y-scales) and flatter in shape. The VODs in particular showed a
much-delayed senescence compared to the NDVI. The magnitude and peak timing of VOD were found
sensitive to woody plant foliage, whereas NDVI seasonality was governed by the green herbaceous
vegetation [49–51].
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Figure 5 shows Time series of VODs and NDVIs in a southern study site (Simferopol, UA)
that experienced alternate unimodal and bimodal seasonal patterns over the eight years. All three
microwave frequencies VOD were able to capture these LSP patterns similar to their counterpart NDVI,
despite some differences in magnitude and shape.

3.2. Thermal Time to Peak and Peak Height NDVI and VOD Phenometrics

In this section, we present TTPNDVI and PHNDVI derived from the CxQ model, followed by
nonparametric phenometrics for VOD and NDVI determined from the growing season maxima.

3.2.1. The CxQ Model Derived NDVI Phenometrics

The NDVI CxQ model fits for all sites are high with 0.78 < R2 < 0.99. Sample fits appear in Figure 6.
Sites at lower latitudes that can support double growing season attain their first peaks at the earliest
(<1000 AGDD, e.g., Figure 6d, Cherkessk, RU, 44◦); moving farther north, the seasonal pattern shifts
from bimodal to unimodal, and the TTPNDVI is pushed up further to the growing season (between
1000 and 2000 AGDD, e.g., Figure 6c, Zaporiyhzhya 1, UA, 48◦ and Figure 6b, Kokshetau 1, KZ, 53◦).
Moving towards the northern study sites, the TTP starts to decrease to 1000 AGDD due to the thermal
limitation and shorter growing season (e.g., Figure 6a, Cheboksary, RU, 56◦). Figure 7 presented the
general relationship of TTPNDVI as a function of latitude for all sites. Note also the NDVI CxQ fit
intercept in the different latitudes in Figure 6 that the growing season in the lower latitudes (e.g.,
Figure 6d) starts a bit earlier than the time we considered in this study (DOY 89 = March 30 (March 29
in leap years)).
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Figure 6. Average NDVI (2003–2010) as a function of AGDD for cropland sites that encompass the
whole latitudinal range: (a) 48, RU; (b) 28, KZ; (c) 11, UA; and (d) 1, RU. Coefficients of determination
(R2) for these sites ranged from 0.88 to 0.97.
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Figure 7. Scatterplot for TTPNDVI as a function of latitude fitted with a convex quadratic model.
There is a significant positive relationship (R2 = 0.50): as latitude increased, TTPNDVI increased in lower
latitudes to certain limit and then declined in the northernmost study sites (54–56◦N latitude).

Average (2003–2010) PHNDVI phenology metric in our study croplands ranged between 0.58 and
0.84 (not shown here). NDVI at half-TTP (NAHT) as a function of PHNDVI displayed a distinct trend
indicating that NDVI in these sites is driven by local climate (Figure 8a). Generally, lower latitude
study sites have gentler NDVI gradient time series with longer growing season compared to the
steeper NDVI gradient of the shorter summer growing season at higher latitudes. Thus, the difference
between PHNDVI and NDVI at half-TTP increased as latitude increases, yielding a strong linear fit
with R2 = 0.81 (Figure 8a). However, the PHNDVI as a function of latitude did not show a clear trend
(Figure 8b). Temperature dominates crop growth from spring to summer, while other variables (such
as rainfall) play roles that are more important in crop production.
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Figure 8. Scatterplot for: PHNDVI minus NDVI at half-TTP (NAHT) as a function of latitude (a);
and PHNDVI as a function of latitude (b). Both are fitted with linear trend line yielding strong
correspondence for the former (R2 = 0.81), but no clear correspondence for the latter (R2 = 0.07).

The NAHT as a function of PHNDVI, for selected sites that were more impacted by the 2003,
2007, and/or 2010 heatwaves, showed a positive correspondence (Figure 9b). The two phenometrics
for the mixed forest in the most northern study site Mari El, Russia (site 50 appears as the outlying
green circles in upper right corner) displayed strong correspondence with R2 = 0.94. In contrast, the
correspondence between these phenometrics for croplands exhibited more interannual variability.
due to the fact that crops are annual vegetation and due to possible crop and land rotation annually
or every few years. Moreover, croplands are more vulnerable to climatic variability compared to
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the perennial mixed forests. The southern study sites exhibited smaller NAHT and PHNDVI in 2003
due to minimal effect of the European heatwave on croplands in the study area [52]. As the winter
grains were affected many croplands were sown to spring grains and, therefore, many southern study
croplands in 2003 exhibited the double seasonality. The affected winter croplands (first peak) exhibit
smaller NAHT and PHNDVI (Figure 9b sites 1, 2, 4, and 13). However, the smaller values for the two
phenometrics were recorded in 2010 for the northern study sites, due to the effect of the 2010 Russian
heatwave, which also impacted northern Kazakhstan (Figure 9b, sites 13, 24, and 36) [19,20]. As forests
are perennial and resilient to climatic variability, the two phenometrics in Mari El, Russia were not that
affected by the 2010 Russian heatwave and displayed closer values consistent trend throughout the
study period. The 2010 NAHT as a function of PHNDVI for this mixed forest site was just about at an
average position of the other seven years of values (Figure 9b).Remote Sens. 2017, 9, 613  11 of 20 
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Figure 9. Annual phenometrics of NAHT as a function of PHNDVI: (a) for all study sites; and (b) selected
study sites for 2003–2010. Sites are numbered according to their latitudinal position from south (1) to
north (50) (Figure 1).

3.2.2. The Maximum Value Approach for VOD Phenometrics

For the land surface phenology of VOD, Figure 10 presents the PHVOD as a function of the
corresponding TTPVOD for all sites. In the study sites dominated by croplands, PHVOD ranged
between 0.85 and 1.74, while the PHNDVI (also calculated using the maximum value approach)
ranged between 0.60 and 0.83. The ordering of the PHVOD magnitude from high to low was
18.7 GHz > 10.65 GHz > 6.925 GHz: the higher the frequency, the higher the attenuation by vegetation,
and, thus, the larger the VOD magnitude. The PHVOD lags the PHNDVI, because the PHVOD responds to
vegetation water content and aboveground biomass, which both continue to increase after the apparent
peak absorption of photosynthetically active radiation, which is captured by the PHNDVI. Generally, the
shorter the microwave wavelength, the later the PHVOD occurs in terms of AGDD. The lag between the
PHVOD for 10.65 and 18.7 GHz was narrower than between the PHVOD for 6.925 GHz from the other
two. We have presented a quantified lag graph (Figure 11b) among the maximum value determined
PH VODs and the CxQ model derived PH NDVI in Section 4.1.
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Figure 11. Scatterplots and linear regression fits of the CxQ model derived PHNDVI and maximum
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high with coefficients of determination of 0.77, 0.84, and 0.78 for the 6.925, 10.65, and 18.7 GHz
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4. Discussion

4.1. VOD and NDVI Peak Heights: Correlations and Biases

Peak heights are less likely to be affected by snow and other non-vegetation related issues
compared to the start-of-season (SOS) [23,24]. PHNDVI has significant positive correlation to
agricultural production [25]. The PHVOD derived using the maximum value approach corresponded
favorably with the PHNDVI derived using the CxQ model. The 10.65 GHz PHVOD achieved the highest
correspondence with the PHNDVI with a high coefficient of determination (R2 = 0.84) and the lowest
standard error (SEE = 0.1275; Table 1, Figure 11). PH for the eight years’ average VOD and NDVI
for all cropland sites except Saratov 1 (which had a significant proportion (31%) of grassland), were
considered in this analysis.

Two hypotheses were tested using analysis of covariance (ANCOVA). First, the covariate (peak
greenness) was not significantly (at α = 0.05) correlated to the independent variable (microwave
frequency) [45]. ANCOVA revealed the slopes resulting from the linear fits between PHNDVI and
PHVOD did not differ significantly between pairs of microwave frequencies (Table 2). The intercepts
were significantly different, given the different magnitudes of the VODs. On global, annual scales,
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AMSR-E VOD was found more highly correlated with MODIS VI’s compared to anther passive
microwave data, Soil Moisture and Ocean Salinity (SMOS) VOD did with the MODIS VI’s [53]. Second,
the covariate PHNDVI was correlated with response variable PHVOD as described in the previous
paragraph and in Table 1 and Figure 11 [45]. The interpretation from the fulfilment of these two
ANCOVA assumptions is that peak greenness (PHNDVI) had a significant and positive effect on PHVOD

and the effect is similar for all three microwave frequencies (the effect of PHNDVI on PHVOD did not
depend on microwave frequency).

Even though PHNDVI and PHVOD have significant positive correspondence, the latter lagged
the former (Figure 12b). This behavior was expected since microwaves are differentially sensitive to
aboveground biomass and canopy water content; in contrast, the VNIR is differentially sensitive to
photosynthetically active radiation (PAR) absorption. The peak VOD lags the peak greenness by several
weeks following delayed increases in vegetation water content and development of aboveground
biomass. Average VOD lag for all study years and sites was about three weeks, but it varied in time and
space, and by microwave frequency (Figure 12b). We have also presented the PHVOD and PHNDVI as a
function of their respective TTP metric in Figure 12a for ease of interpretation of the lags in Figure 12b.
The temporal and spatial average PHVOD lag increases as microwave frequency increases. The 6.925,
10.65, and 18.7 GHz PHVOD average lags are 1.9, 2.2 and 2.7 weeks, respectively, relative to the peak
greenness (Figure 12b and Table A1). PHNDVI lags PHVOD 6.925 GHz at three sites only. Few sites that
showed PHNDVI temporal average lag to that of the PHVOD—three sites for the 6.925, one site for the
10.65 and one site for the 18.7 GHz PHVOD over the study period (all lags less than a week). Across
the 50 sites the average temporal lag of PHVOD relative to PHNDVI ranges from −0.8 to +5.1 weeks for
6.925 GHz, from −0.1 to 6.7 weeks for 10.65 GHz, and from −0.9 to 7.2 weeks for 18.7 GHz.
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model as a function of their corresponding TTP; and (b) PHVOD lags relative to their corresponding
PHNDVI as a function of the respective TTP VODs. Details can be found in Table A1.

To check the usefulness of the maximum value-based PH phenometrics determination approach,
we correlated PHNDVI determined using this approach with that of the CxQ model. The PHNDVI from
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the two methods showed a strong linear relationship with an R2 of 0.86 (Figure 13). However, the CxQ
model derived peak greenness lags the maximum-value determined peak greenness. On average, the
CxQ model derived PHNDVI lags the maximum-value determined PHNDVI by one week. Therefore,
there was a general underestimation of the PHVOD lags by about one week. On an ecoregional scale,
studying AMSR-E SOS and MODIS green-up onset dates in North America, Jones et al. [1] found a
correspondence between VOD SOS and green-up onset dates with R2 = 0.45 for VOD and NDVI, and
R2 = 0.48 for VOD and LAI. In cropland dominated ecoregions (63% cropland) in North America, VOD
SOS lagged by 5.7 to 12.9 weeks (mean = 8.6) compared to the NDVI green-up onset date [54].Remote Sens. 2017, 9, 613  14 of 20 
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Figure 13. Scatterplot and linear fit between the PHNDVI derived from the CxQ model and the PHNDVI

determined by the maximum-value method from the same MODIS dataset for 2003–2010. The linear fit
for the PHNDVI from the two approaches of the same dataset was high with R2 = 0.86.

Table 1. Regression results for the linear fits between PHNDVI and PHVOD.

Frequency
(GHz) n Intercept Slope R2 SEE *

6.925 48 −0.1065 1.7352 0.770 0.1401
10.65 48 −0.0988 2.0079 0.844 0.1275
18.7 48 0.1728 1.6652 0.781 0.1298

* indicates standard error of the estimate.

Table 2. Analysis of covariance (ANCOVA) to test whether slopes resulting from linear fit of PHNDVI

and PHVOD differed significantly by microwave frequency. With Bonferroni adjustment, the pCRIT is
0.0167 (=0.05/3).

Pair of Microwave Frequencies (GHz) p-Value for Slope Difference

6.925 vs. 10.65 0.1582
6.925 vs. 18.7 0.6544
10.65 vs. 18.7 0.05497

4.2. Heatwave Responses of VODs and NDVI

In our previous work [21,22], we have noted the 2010 heatwave affecting Russia and
Kazakhstan [19,20] and the 2007 heatwave affecting Ukraine [48]. Here, the heatwave effects on
croplands were revealed by the time series of VODs and NDVIs, the relative comparison of the two
LSP measures, and the model derived phenometrics PHNDVI and NAHT. During the heatwave years,
the VODs and NDVIs were well below the average VOD and NDVI for non-heatwave years, as
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croplands were negatively impacted by the excess heatwave (Figure 14). Heatwave years were more
evident in the VODs compared to their counterpart NDVIs, since VOD strongly responds to vegetation
water content. The difference of the VOD data during the heatwave years to the average non-heatwave
years VOD was found significantly different (p < 0.001) from that of the similarly analyzed NDVI data
(Figure 14). The CxQ model derived NAHT as a function of PHNDVI for sites affected by the 2010
heatwave was lower relative to the other non-heatwave years (Figure 15a). The difference between the
PHNDVI and NAHT for the 2010 data was found significantly different (p < 0.001) from the average of
the 2003–2009 data (Figure 15b). The marker in the upper-right corner of figure 15a is the mixed forest
site in Mari El, Russia, showing little effect of the heatwave at that site.Remote Sens. 2017, 9, 613  15 of 20 
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Figure 14. VOD and NDVI plots for sample sites: (a) Mykolayiv, UA; and (b) Voronezh, RU, affected
by the 2007 and 2010 Ukrainian and Russian heatwaves, respectively. In both plots, purple circle
represents VOD at 10.65 GHz and blue diamond represents NDVI plots average (2003–2010) excluding
the respective heatwave years with relative maximum and minimum error bars. The red circle and
orange diamond plots represent heatwave year VODs and NDVIs, respectively, for both sites. Note the
PH in both the average and heatwave affected years. Note also the shapes and magnitudes of the time
series in the heatwave years relative to the other year’s average.
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Figure 15. Scatter plots of: (a) NDVI at half-TTP as a function of PHNDVI derived from a CxQ model
for the 2010 heatwave affecting Russia and Kazakhstan; and (b) the 2010 data and the average data
for the rest of the years (2003–2009). Note in (a) the position of the 2010 phenometrics presented by
red diamonds relative to the other years in their respective sites. Note also the 2010 marker for the
upper-right corner, which is for the MFO site in Mari El, Russia.

5. Conclusions and Recommendations

In this paper, we have compared and contrasted the peak timing of cropland vegetation maturity
using two complementary remote sensing datasets. Time series of LSP of VOD at three microwave
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frequencies—6.925, 10.65, and 18.7 GHz—from the passive Advanced Microwave Scanning Radiometer
on EOS (AMSR-E) was able to capture the seasonality of croplands (both bimodal and unimodal
seasonal patterns) similar to but different from that of the VNIR MODIS NDVI. A higher microwave
frequency generates a higher VOD, since smaller wavelengths are more quickly attenuated by
aboveground vegetation.

The timing and magnitude of the growing season peak (TTP and PH) are more consistent
quantitative cropland phenometrics, in large part because they are minimally affected by snow or
frost, unlike the commonly-used but ill-defined phenometrics of Start of Season and End of Season.
The vegetation optical depth (VOD) retrieved from passive microwave data appears to be more robust
to atmospheric effects and biomass saturation than the phenometrics based on the NDVI.

We have also demonstrated the application of the downward convex quadratic (CxQ) function
to model cropland dynamics using MODIS NDVI yielding strong fits (0.78 < R2 < 0.99). However,
the shape of the VOD time series curve shape was more complicated than a simple quadratic fit.
The passive microwave AMSR-E PHVOD determined using the growing season maximum value of the
growing season approach favorably corresponded with that of the VNIR MODIS peak greenness
(PHNDVI) derived using the CxQ model over the study domain with R2 between 0.77 and 0.84.
Although the 10.65 GHz PHVOD exhibited the best linear regression fit (R2 = 0.84) and with lowest
standard error (SEE = 0.128) with the PHNDVI, the ANCOVA model analysis revealed that the slopes
resulting from the linear regression fits were not significantly different by microwave frequency.
In contrast, the intercepts from the ANCOVA analysis were significantly different: not surprising given
the different dynamic ranges of the VODs.

Despite the strong correspondence between peak LSPs of the two datasets, there was a general
lag of AMSR-E PHVOD by two weeks compared to that of MODIS PHNDVI. Based on PHNDVI analysis
of same dataset using the two procedures, we found a one-week bias between the two methods,
translating into a lag of three weeks between PHNDVI and PHVOD. We conclude that maximum value
based PHVOD can yield phenometrics complementary to the model based PHNDVI, especially in cloud
and aerosol obscured parts of the world.

The unsuitability of the CxQ model for characterizing the VOD curves and deriving simple
phenometrics limits the generalizability of the CxQ model. Moreover, determining the PHVOD

phenometrics using the seasonal maximum value could introduce error, when maxima result from
noise. With this caveat and keeping the lag, we find the passive microwave PHVOD to complement
well the VNIR PHNDVI. However, further research is needed to evaluate how best to use this
complementarity for monitoring cropland dynamics and forecasting agricultural crop production,
particularly in data sparse, cloud-obscured, and food-insecure parts of the world.

Although the AMSR-E ceased to function in October 2011 due to antenna failure, its legacy
has been continued since May 2012 by AMSR2, an improved version of AMSR-E but with similar
functionality since May 2012 [55]. A new blended passive microwave dataset spans the gap between
the two sensors by the Microwave Radiation Imager (MWRI) sensor data on-board the Chinese
FengYun 3B (FY3B) satellite [55,56]. Our next step is to evaluate the use of these passive microwave
data to characterize the croplands dynamics in cloud-obscured East Africa and explore linkages to
agricultural crop production.
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Appendix A

Table A1. Study sites average GDD, and PH VOD lags (in weeks) relative to PHNDVI (Figure 11).

Site No. Name Latitude Longitude Lag, 6.9 ** Lag, 10.7 ** Lag, 18.7 ** Site No. Name Latitude Longitude Lag, 6.9 ** Lag, 10.7 ** Lag, 18.7 **

1 Cherkessk, RU 44.4 43.5 2.7 2.4 4.4 26 Kursk, RU 52.1 37.5 5.1 3.8 7.0
2 Stavropol, RU 45.0 42.4 2.6 3.3 3.1 27 Orenburg, RU 52.4 55.2 1.4 1.2 1.1
3 Krasnodar, RU 45.6 39.6 4.8 6.7 7.2 28 Kokshetau 1, KZ 52.7 69.2 2.7 2.5 2.6
4 Simferopol’, UA 45.6 34.1 1.7 1.8 1.3 29 Barnaul 2, RU 52.7 83.0 1.0 1.7 1.9
5 Tulcea, UA 45.8 29.2 2.5 3.5 4.6 30 Kuybyskev 2, RU 52.7 50.2 1.1 2.3 4.0
6 Rostov-on-Don 2, RU 46.7 39.8 1.5 2.5 2.3 31 Orel, RU 52.7 35.7 2.7 2.9 3.5
7 Odesa, UA 47.3 30.7 3.1 3.7 4.4 32 Kokshetau 2, KZ 53.0 67.4 1.7 1.7 1.6
8 Rostov-on-Do 1, RU 47.5 40.9 4.7 3.5 4.5 33 Lipetsk, RU 53.0 39.1 1.6 2.0 2.3
9 Donets’k, UA 47.5 37.7 3.6 3.9 5.0 34 Kokshetau 3, KZ 53.7 68.2 0.9 0.8 1.2
10 Mykolayiv, UA 47.5 32.3 4.4 4.9 5.4 35 Kostanay 1, KZ 53.7 63.3 1.0 0.9 0.7
11 Zaporiyhzhya 1, UA 47.8 35.7 −0.3 0.3 1.1 36 Kostanay 2, KZ 53.7 62.2 0.9 0.5 0.5
12 Zaporiyhzhya 2, UA 48.1 34.1 1.4 2.4 2.4 37 Kurgan, KZ 53.7 65.6 1.5 1.0 1.0
13 Luhans’k, RU 48.7 40.4 0.7 1.0 0.6 38 Barnaul_1, RU 53.7 79.4 1.5 1.6 1.9
14 Volgograd, RU 48.7 44.8 −0.1 −0.1 −0.9 39 Kokshetau 4, KZ 54.0 69.0 1.1 1.8 1.9
15 Kirovohrad, UA 48.7 31.8 1.8 1.0 2.2 40 Kostanay 3, KZ 54.0 64.0 1.3 0.9 0.7
16 Kharkiv 2, UA 49.0 36.2 1.8 2.2 2.6 41 Petropavlovsk 2, KZ 54.4 70.8 1.5 2.3 2.4
17 Khmel’nyts’kyz, UA 49.0 26.8 3.9 4.3 4.4 42 Petropavlovsk 3, KZ 54.4 67.4 1.1 1.4 1.6
18 Vinnytsya, UA 49.0 28.9 2.3 3.1 5.8 43 Kuybyskev 1, RU 54.4 50.8 2.8 3.0 2.8
19 Poltava, UA 49.6 35.1 1.3 2.7 3.0 44 Ryazan, RU 54.4 39.3 2.5 2.8 3.0
20 Kharkiv 1, UA 49.9 37.0 0.0 0.8 1.1 45 Petropavlovsk 1, KZ 54.7 69.5 1.5 1.7 1.8
21 Saratov 1, RU 50.8 46.9 0.1 −0.3 −0.7 46 Omsk 1, RU 54.7 72.9 1.3 1.9 2.2
22 Sumy, UA 50.8 34.1 −0.8 0.6 1.2 47 Omsk 2, RU 55.0 74.5 0.3 1.8 2.0
23 Semipalatinsk, RU 51.4 81.7 0.6 0.8 1.4 48 Cheboksary, RU 55.7 47.1 3.0 3.0 5.1
24 Voronezh, RU 51.4 39.8 2.9 3.2 3.7 49 Kazan’, RU 56.1 49.5 2.3 2.8 2.4
25 Saratov 4, RU 51.8 45.3 1.7 2.2 2.0 50 Mari El * 56.4 48.4 −0.7 4.7 6.9

Max * 5.1 6.7 7.2
Min * −0.8 −0.1 −0.9

Average * 1.9 2.2 2.7

* excludes Saratov 1 and Mari El. ** lags have not been adjusted to account for the methodological bias described in Section 4.1.
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