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ABSTRACT 

NORMALIZATION OF PSEUDO-INVARIANT CALIBRATION SITES FOR 

INCREASING THE TEMPORAL RESOLUTION AND LONG-TERM TRENDING 

HARIKA VUPPULA 

2017 

Given their low level of temporal, spatial, and spectral variability, Pseudo-Invariant 

Calibration Sites (PICS) have been increasingly desired as data sources for radiometric 

calibration of Earth imaging satellite sensors. The temporal resolution for PICS data 

acquired by any sensor is limited by the amount of time required for it to make subsequent 

passes over the site. Consequently, for any given PICS, it can take many years of imaging 

to develop a sufficient amount of cloud-free data to perform radiometric calibration; this 

can be especially problematic for sensors in their early years after launch. This thesis 

presents techniques to combine Landsat-8; normally acquiring data for every 16 days, 

image data from multiple PICS into a single dataset with increased temporal resolution 

and is called “PICS Normalization Process” or PNP. Landsat-8 Operational Land Imager 

(OLI) data from six Saharan desert sites were normalized to the Libya-4 reference. The 

normalized data were then merged into a “Super PICS” dataset, and the estimation of 

calibration drift was derived. The results of the Super PICS dataset show that the temporal 

resolution of the calibration dataset can be increased by approximately a factor of three 

to four times. The normalization process was performed on radiometrically and 

geometrically corrected image data (“L1T” product), and also on the same image data 

corrected for BRDF effects using a quadratic function of the solar zenith angle and TOA 

reflectance over a region of interest.  
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An additional uncertainty analysis was performed using the BRDF corrected image data 

based on the following parameters which are involved in this whole BRDF PICS 

Normalization Process: Worst-case histogram bin analysis, Temporal Uncertainty of each 

PICS, BRDF Super PICS uncertainty. The resulting uncertainties are within the currently 

accepted satellite calibration range, within 3% for all spectral bands. Overall, the process 

indicates a calibration drift for OLI within 0.15% per year, agreeing quite well with the 

calibration drift derived from the on-board calibrators.
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CHAPTER 1 

INTRODUCTION 

1.1 Sensor Calibration 

By monitoring and recording changes on the Earth’s surface over a long period of time, 

satellite sensors have made significant contributions to the field of remote sensing [1]. 

Data acquired by these sensors are widely used in applications monitoring land cover 

change and weather. These applications require input data free of radiometric and 

geometric artifacts caused by changes in response of detectors in the sensor, orientation 

of the sensor/satellite platform with respect to the Earth’s surface, atmospheric effects, 

etc. [1]. Radiometric and geometric calibration processes attempt to eliminate or 

significantly reduce the effects of these artifacts. They are, therefore, essential processes 

in remote sensing that should be performed as needed throughout the operational lifetime 

of the sensor in order to maintain data accuracy. For the purposes of this thesis, only 

radiometric calibration will be considered. 

1.2  Radiometric Calibration 

A satellite sensor measures the amount of solar energy reflected from the Earth’s surface.  

Electronics within the sensor convert the reflected energy observed by the sensor’s 

detectors to a series of Digital Numbers (DN) which can be displayed as an image. 

Radiometric calibration techniques attempt to ensure that the image DNs represent as 

accurate an estimate of the reflected energy as possible [1], typically at the sensor itself, 

which is positioned above the Earth’s atmosphere (top of atmosphere-TOA). For an 

individual sensor, two fundamental types of radiometric calibration may be performed: 
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 Relative radiometric calibration: Differences in individual detector response are 

characterized and corrected. This calibration method involves determining, for each 

detector, the ratio of its gain to the average gain of all detectors in the detector array.  

Application of these ratios “equalizes” the response across all detectors in the array. 

 Absolute radiometric calibration: Absolute gain and bias of the sensor as a whole is 

determined. These gains are used to convert image DNs to the corresponding values of 

radiance and/or reflectance measured at the Earth’s surface (TOA). 

Radiometric calibration can be performed prior to launch of the satellite, when the sensor 

has been assembled, or at various times after satellite launch (“pre-launch” vs. “post-

launch” calibration). Radiometric calibration can be performed with respect to ground 

measurements of surface reflectance and/or radiance (“vicarious” calibration), or with 

respect to data provided by sources onboard the sensor, such as lamps or solar diffuser 

panels (“internal” calibration). Radiometric calibration can also be performed to ensure 

data acquired by multiple sensors (or data from multiple sites acquired by one sensor) are 

accurately measuring consistent levels of surface reflectance and/or radiance (“cross” 

calibration).   

The radiometric calibration analysis performed for this thesis can be considered as a 

“relative” “cross-calibration”, in that data from multiple sites acquired by a single sensor 

are “equalized” to a single reference level. The sites used in this analysis are known as 

Pseudo-Invariant Calibration Sites (PICS), which were selected for their observed low 

temporal and spatial variability [1].  
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1.3 Pseudo-Invariant Calibration Sites (PICS) 

PICS have been used for monitoring the radiometric stability of satellite sensors for at 

least twenty years [1]. Currently, most PICS-based radiometric calibration is performed 

using data acquired from areas within the Sahara desert of North Africa. These sites 

consistently exhibit good temporal stability with respect to natural environmental or 

human-induced changes [2], relatively high surface reflectance, and inhibited vegetation 

growth due to limited rainfall. 

The analysis for this thesis uses cloud-free Landsat-8 Operational Land Imager (OLI) 

image data acquired over six Saharan desert PICS known to exhibit temporal variability 

of 2% or less. The sites are identified by their World Reference System 2 (WRS2) path 

and row designation, as used by the Landsat series sensors. Figure 1.1 shows the location 

of these six PICS on the world map. 

 Egypt-1 (path/row 179 / 41)  

 Sudan-1 (path/row 177 / 45) 

 Libya-1 (path/row 187 / 43) 

 Libya-4 (path/row 181 / 40) 

 Niger-1 (path/row 189 / 46) 

 Niger-2 (path/row 188 / 45) 

Libya-4 was selected as the reference for the analysis as it has the largest area of both 

temporal and spatial variability as measured in all spectral bands of OLI image data [2]. 
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Figure 1.1. Location of 6 PICS on the world map. 

1.4 Limitation of PICS and a Solution 

With the Landsat-8 acquisition capability, a single PICS can be imaged once every 16 

days [3]. Typically, this results in at most two useable images per month for a given site, 

assuming it is not obscured by clouds. More cloud-free images (Minimum of 100 for 

Niger-1 

Sudan-1 
Niger-2 

Libya-4 Egypt-1 

Libya-1 
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good long-term trending) are needed for a high quality calibration. A reasonable solution 

to this problem is to use images acquired from multiple PICS. Figure 1.2 compares the 

temporal resolution, with respect to Days Since Launch (DSL), using just Libya-4 OLI 

image data (lower plot of blue dots) to the temporal resolution for image data acquired 

from all six PICS (upper plot). The gaps in the Libya-4 data, especially the gap between 

600 and 800 DSL, are due to the fact that no cloud-free scenes were acquired over this 

site. Clearly, combining cloud-free image data from multiple sites significantly improves 

the temporal resolution possible for any time-series based analysis. For this selection of 

sites, the temporal resolution has improved by approximately a factor of three to four 

times. 

 

 Figure 1.2. Increased temporal resolution from utilization of multiple PICS. 
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1.5 Thesis Objective and Summary of Results 

The goal of this thesis was to develop a calibration technique that uses image data 

acquired from six selected PICS in order to overcome the limitation in data quantity 

described in Section 1.4. The technique involves normalizing all PICS data with respect 

to Libya-4. This normalization process is known as PICS Normalization Process or PNP, 

and is described in additional detail in Chapter 3. Steps to enhance the basic PNP 

technique, such as correction for bidirectional reflectance distribution function (BRDF) 

effects, drift estimation (to compare with the onboard calibrators) and uncertainty 

analysis are also described in Chapter 3. 

Both the basic and Refined PNP techniques were applied to OLI image data to determine 

whether small changes in sensor responsivity could be detected in a shorter time period 

when multiple PICS are considered. An analysis was done to estimate the uncertainty 

throughout the Refined PNP technique; the analysis procedure is presented in Chapter 3. 

Results showing the effect of greater temporal resolution on PICS trending precision will 

be presented in greater detail in Chapter 4, as will results of analyses of calibration drift 

based on statistical tests and the overall uncertainty estimated for the Refined PNP 

technique. Chapter 5 summarizes the work done, conclusions, and provides 

recommendations for future work.  
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CHAPTER 2 

LITERATURE REVIEW 

As mentioned in Chapter 1, radiometric calibration of PICS has been performed over the 

past 20 years using a variety of techniques. This chapter presents a review of those 

techniques. 

 

Several investigators (Thome et al. [4] and Chander [5]) have reached a consensus on the 

properties that a good PICS should possess. A list of these properties is presented below. 

Some of these have been mentioned in Section 1.4. 

 High surface reflectance, in order to maximize the signal-to-noise ratio 

 Temporal radiometric stability 

 Flat surface spectral reflectance 

 High spatial uniformity, over a sufficiently large area, in order to minimize errors 

due to spatial misregistration 

 Lambertian surface reflectance characteristics, in order to minimize BRDF 

effects 

 Located at high altitudes, in order to minimize atmospheric aerosol effects 

 Located away from large bodies of water, in order to minimize atmospheric water 

vapor effects 

 Located away from urban and industrial sites, in order to minimize man-made 

atmospheric effects (e.g. smoke, soot, etc.). 

African desert sites have been the most widely used candidates for PICS-based 

radiometric calibration analysis. Rao and Chen [6] used a temporally radiometrically 
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stable Section of the Libyan Desert to monitor yearly degradation of VNIR response in 

the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensors. An analysis 

of Meteosat-4 image data performed by Cosnefoy et al. [7] used twenty 100 km x 100 km 

North African and Saudi Arabian desert sites exhibiting 3% spatial non-uniformity. More 

recently, Valorge [8] used Cosnefoy’s [7] sites for a temporal sensitivity analysis of 

SPOT sensor data; his results estimated a calibration uncertainty of less than 4%. Helder 

et al. [9] developed a catalog of useable worldwide PICS, with seven Saharan desert PICS 

(including Libya-4, Egypt-1, and Libya-1), based on a temporal stability analysis of 

Landsat-5 Thematic Mapper image data; results estimated overall uncertainties in these 

sites of  less than 2% in the VNIR bands, and 2% to 3% in the SWIR bands [9]. One 

potential limitation of this analysis was that BRDF and atmospheric aerosol/water vapor 

effects at the selected sites were not accounted for. It is quite possible that these 

uncertainty estimates would have been lower with such corrections applied to the image 

data.        

 

Hadjimitsis et al. [10] considered that atmospheric effects were a sufficiently significant 

limitation on calibration accuracy that they should be corrected prior to performing any 

calibration analysis. They used pseudo-invariant targets from Landsat-5 TM and Landsat-

7 ETM+ image data to estimate atmospheric correction factors. Their ideal targets 

possessed the following characteristics: 

 Highly homogeneous 

 Smooth and horizontal, in order to be considered Lambertian 
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 As large in size/area as possible, in order to minimize adjacency effects and 

maximize ease of identification in different imagery as well as on the ground 

 Distributed among low and high radiance levels 

Their targets, however, included man-made materials such as concrete and asphalt. In 

addition, their correction factors were derived using the empirical line method, using the 

radiance/surface reflectance levels from two pseudo-invariant targets. Perhaps their 

reported accuracies would have been improved by 1) use of more than two pseudo-

invariant targets; and/or 2) normalization of their target data to the radiance / reflectance 

level of a more precisely known target. 

 

Mishra, Helder et al. [11] developed an absolute radiometric calibration using Terra 

MODIS multispectral and EO-1 Hyperion hyperspectral image data acquired over the 

Libya-4 PICS. Their analysis included application of a simple BRDF correction derived 

from the Terra MODIS image data. Their final calibration model had an estimated 

uncertainty on the order of 3% in all 7 bands; when applied to other sensors such as 

ETM+, ENVISAT Medium Resolution Imaging Spectrometer (MERIS), and OLI image 

data, the estimated uncertainty was on the order of 2% for all 7 bands. However, the 

image data used to validate this absolute calibration model did not correct for atmospheric 

effects. 

   

Chander et al. [12] assessed several PICS for use as quality-assured reference standards 

for a PICS global network. Among the PICS under consideration as references were 

Libya-4 and Libya-1. Their assessment was based on analyses of cloud-free and near 
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simultaneous Terra MODIS and Lansdat-7 ETM+ image data pairs acquired from launch 

to December 2008. In addition to assessing the quality of the calibration differences 

between the MODIS and ETM+ sensors, they also assessed the relative stability of the 

sites themselves, based on derivation of linear regression models of the TOA reflectance. 

There were observed differences in response between MODIS and ETM+, which the 

authors suggest was due to a combination of differences in relative spectral response, 

atmospheric effects, and the overall spectral signature of the surface. An obvious seasonal 

variation in response could also be observed in both datasets. In addition, BRDF 

correction had not been accounted for in the analysis.  

Morstad and Helder [13] proposed using PICS to perform long-term radiometric 

calibration of the Landsat-5 TM sensor. To overcome potential issues of data availability 

and lack of supporting vicarious calibration datasets for the Saharan desert PICS, they 

considered a much smaller PICS situated along the US and Mexican borders, in the 

Sonoran desert (WRS2 path/row 038 / 038). Thirty scenes acquired over this PICS were 

processed with scan-correlated-shift and memory-effect corrections, then corrected to 

account for relative differences in detector response.  Additional corrections included 

date-specific sun-earth distance correction and standard sun elevation angle correction. 

Geometric corrections were performed in order to account for forward/reverse scan 

misalignment and variation in scene center coordinates. Once the scenes were sufficiently 

corrected, a two-step approach was used to determine the “best” region-of-interest (ROI) 

for each spectral band: 

 Step 1: a 200 pixel x 200 pixel grid was used to identify candidate ROIs through 

comparison to a look-up Table (LUT) -based model. 
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 Step 2:  a 200 pixel x 200 pixel moving window was employed near the most 

invariant regions identified in the grid approach in order to rank the ROIs. 

The calibration models derived for the blue and green bands appeared to fit the best ROI 

data quite well; this did not appear to be the case for the longer wavelength bands, where 

the fits suggested a very small linear change. Overall, the estimated calibration 

uncertainties were on the order of 1% to 4%, with smaller uncertainties associated with 

the blue and green bands. 

 

Kim and He [14] performed an assessment of long-term degradation in radiometric 

response using a time series analysis of data acquired from the Libya-4 and Sonoran 

PICS. In this analysis, linear regression was performed on time series data with the 

component due to seasonal variability removed; the Seasonal Trend decomposition based 

on Loess (STL) and Discrete Wavelet Transform (DWT) algorithms were used to 

determine the seasonal varying component. Their results showed that the STL algorithm 

was slightly more effective at estimating the seasonal component, with the result that 

overall variability in the trend data was less. No uncertainty estimates for their analysis 

were provided. It is quite possible that residual variability resulting from removal of the 

seasonal component could be reduced further using different processing techniques. 

 

Angal, Xiong, et al. [15] developed a multi-temporal cross calibration technique for Terra 

MODIS and ETM+ sensors using cloud-free image pairs over the Libya-4 PICS. Their 

analysis developed a semi-empirical linear BRDF model and applied it to reduce effects 

due to viewing geometry differences. Atmospheric water vapor content was characterized 

using the MODIS water vapor product and corrected with a “split-window” processing 
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technique. In addition, differences in spectral bandpass response between the sensors 

were estimated from simulated TOA datasets generated by EO-1 Hyperion image data 

and MODTRAN simulations which used MODIS water vapor information as an input. 

The analyses allowed generation of spectral band adjustment factors (SBAFs). The results 

of their work indicated that ETM+ could be calibrated to an uncertainty on the order of 

4% for bands 1 to 4 and to an uncertainty on the order of 6% and 4% for bands 5 and 7, 

respectively, if SBAFs were applied as part of the analysis. Without application of 

SBAFs, the uncertainties were on the order of 6% for bands 1 to 4 and 10% and 16%, 

respectively, for bands 5 and 7. 

 

Bhatt, Doelling et al. [16] proposed that a Daily Exo-atmospheric Radiance Model 

(DERM) could be used to perform absolute radiometric calibration. With their method, 

desert PICS image data acquired by a well-calibrated “reference” Geostationary Earth 

Orbiting (GEO) sensor can “transfer” that calibration to a “target” GEO sensor located at 

the same equatorial longitude. For their analysis, Meteosats-7 and 8 were selected as the 

“target” GEO sensors, while Meteosat-9 was selected as the “reference” sensor. For both 

cases, the Libya-4 PICS was selected as their test site. A radiance-based cross-calibration 

of Meteosat-9 to Aqua MODIS was performed first. The DERM was developed based on 

this cross-calibration and applied to radiance-based cross-calibrations with Meteosat-7 

and Meteosat-8. Part of the calibration analysis involved derivation of SBAFs to account 

for spectral response differences. A similar analysis was performed using GOES-11 as 

the reference sensor and GOES-10 and 15 as the targets. 1σ uncertainties for each step of 

the method were provided for both datasets; the largest uncertainty component was found 
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to come from the Aqua MODIS cross-calibration. They estimated an uncertainty on the 

order of 1% related to the DERM model itself.  Based on the selected sensors and PICS, 

they estimated an overall uncertainty to their method on the order of 3%. For desert PICS 

at least, the approach appears to be promising. 

 

Mishra, Helder, et al. [17] summarized the continuous calibration improvement in the 

solar reflective bands from the Landsat-5 TM through the Landsat-8 OLI. They 

documented the differences in design between the OLI and the TM and ETM+ and how 

those differences affect overall sensor performance, such as the significant improvement 

in OLI spectral bandpass and signal-to-noise ratio due to its pushbroom design and greater 

number of detectors. Their primary objective was to compare the accuracy of OLI 

vicarious calibration of PICS to the calibration provided by the on-board calibration 

sources, which were indicating a general drift of less than 0.1% per year across all 7 

bands. Their vicarious results suggested a calibration drift of 0.7% per year for the 

Coastal/Aerosol band, as compared with a 0.3% yearly drift indicated by the on-board 

calibrators; this difference was entirely consistent with previous PICS-based calibration 

uncertainties. In the Blue, Green, Red, NIR, and SWIR1 bands, the vicarious drift 

estimates differed from the on-board calibrator estimates by approximately 0.5% per 

year; the SWIR2 band differences were slightly greater than 0.6% per year. In general, 

they estimated a lower uncertainty bound of 0.5% per year for PICS-based vicarious 

calibration. It should be noted, however, that atmospheric effects were not accounted for 

in the analysis.  
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From this literature it was observed that researchers have been using PICS (especially 

Saharan desert PICS) as calibration data sources for many years. Libya-4 in particular has 

been considered as a “reference” PICS, given its established temporal and spatial stability 

within 2% or less with respect to the bands of interest in most sensors. 

The techniques proposed in this thesis will be shown to address two particular limitations 

in the calibration analyses summarized in this chapter: 

1. The limited number of images for most sites, particularly for satellite sensors in early 

stage after launch, has hampered the ability to generate a consistent long-term trending 

record. The techniques proposed in this thesis will demonstrate that data from multiple 

PICS can be combined, and that this combined dataset provides sufficient temporal 

resolution to create a reliable long-term trending record. In addition, the proposed 

techniques can also provide sufficient trending information to allow vicarious calibration 

results comparison to various on-board calibration sources. 

2. As previously reviewed, BRDF effects were not accounted for or at best corrected by 

models assuming BRDF to be linear in nature. As will be discussed in Chapter 3, BRDF 

appears to be primarily quadratic in nature. So, a quadratic BRDF will be developed to 

further reduce uncertainties.  

The technique proposed in this thesis is expected to demonstrate uncertainty of Landsat-

8 data to match or better than the satellite calibration uncertainty of approximately 3% 

based on the currently used desert PICS, and confirm that it is a suitable method for 

satellite calibration. 
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CHAPTER 3  

METHODOLOGY 

3.1 Overview of PICS Normalization Process:  

As mentioned in Chapter 1, a significant limitation to using image data of a given PICS 

for radiometric calibration purposes is insufficient temporal resolution, as many currently 

operating sensors can only image the site on a weekly or bi-weekly basis. Combining 

image data from multiple PICS can provide increased temporal resolution, but the data 

must be normalized with respect to an accepted reference level in order to minimize 

uncertainties due to variability within and between sites. For this thesis work, an 

algorithm to perform this normalization has been developed. This chapter describes the 

proposed algorithm in greater detail. The algorithm is composed of 2 normalization steps: 

 Normalization of data for an individual PICS: The basic idea for this step is to 

develop correction maps that would bring all the pixel values in a PICS image to an 

optimal TOA reflectance level. 

 Normalization of data across multiple PICS: Libya-4 was chosen as the reference 

PICS for this step due to its previously demonstrated temporal and spatial stability. 

The intent of this step is to make each selected PICS “look like” Libya-4 with respect 

to its TOA reflectance levels.  

3.1.1 Image Selection and Pre-Processing: 

The input data used to develop the algorithm were cloud-free 2015 Landsat-8 OLI images 

acquired over six North Africa PICS (Egypt-1, Libya-1, Libya-4, Niger-1, Niger-2, and 
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Sudan-1); if a 2015 image for a given month was not usable, a 2013 or 2014 image from 

that month was used instead. The set of L1T product images was selected from the SDSU 

Image Processing Laboratory archive after processing through an internally developed 

cloud-screening algorithm [18]. All images were pre-processed to correct radiometric and 

geometric artifacts and converted to calibrated Digital Numbers (DN). 

3.1.2 Normalization of Data for an Individual PICS:  

An initial study was performed to determine the number of correction maps (maps to 

bring all pixels to optimal TOA level) needed for each PICS that would minimize effects 

due to seasonal variation within a given year and throughout multiple years. Three 

methods to generate correction maps were considered:  i) generate one correction map by 

averaging an entire year’s worth of image data; ii) generate an average correction map 

for each season (spring, summer, fall, and winter); and iii) generate a correction map for 

each month. Based on the variability of TOA reflectance for each method, the study found 

that seasonal effects were best minimized using correction maps generated for each 

month. Consequently, this approach for generating the required correction maps was 

selected for the PICS normalization process.  

The following steps comprise the normalization procedure applied to a set of yearly image 

data for a given PICS (i.e. one image acquired during each month). The result of this 

within-site normalization procedure is an estimate of the optimal TOA reflectance 

representing the PICS, which is defined as the mean TOA reflectance within a region 

exhibiting 3% or better temporal, spatial, and spectral stability. The processing steps are 

performed for each band separately. 
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1.  To reduce the effects of noise within the image data, apply a low-pass filter H (u,v) to 

the monthly image data I(i, j) as described in equation (1). 

 𝐼′(𝑖, 𝑗) =  ∑ 𝐼(𝑢 + 𝑖, 𝑣 + 𝑗) ∗0<𝑢<165
0<𝑣<165

𝐻(𝑢, 𝑣)                                      (1) 

The filter size used in the convolution is 165x165 pixels, which corresponds to a ground 

area of 5x5 km. This size is selected based on a study with ROI image data indicating that 

the mean TOA reflectance is essentially constant over such a region. The filtered output 

is then effectively cropped to the same size as the original input image. 

2. Arrange the monthly smoothed images in temporal order (i.e. from January to December) 

to form a “stack” or 3-dimensional array I'(i, j, t), where ‘i’ represents the ‘line’ 

dimension, ‘j’ represents the ‘sample’ dimension, and ‘t’ represents the temporal 

dimension. For each pixel location (i, j) in I ', calculate the temporal mean and standard 

deviation according to equations (2) and (3). These will result in temporal mean and 

standard deviation “images” µ and s, respectively.  

𝜇(𝑖, 𝑗) =
1

12
[∑ 𝐼′(𝑖, 𝑗, 𝑡)12

𝑡=1 ]                                                  (2) 

𝑠(𝑖, 𝑗) = √∑ (𝐼ˈ(𝑖,𝑗,𝑡)−𝜇(𝑖,𝑗))12
𝑡=1

2

11
                                                (3) 

3. Create a Temporal Uncertainty Map (TUM) by taking the ratio s / µ: 

𝑇𝑈𝑀(𝑖, 𝑗) =
𝑠(𝑖,𝑗)

𝜇(𝑖,𝑗)
× 100                                                                  (4) 

4. Create a binary Temporal Stability Mask (TSM) by setting TUM pixels with uncertainty 

less than 3% to 1, and setting TUM pixels with uncertainty greater than 3% to 0. 

5. Create a 3% Temporal Stability Mean Map (TSMM) by multiplying the temporal mean 

image µ created in step 2 with the binary TSM image created in step 4, as indicated in 

equation (5). Figure 3.1 shows an example TSMM for band 1 of the Libya-4 PICS. 
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𝑇𝑆𝑀𝑀(𝑖, 𝑗) = 𝑇𝑆𝑀(𝑖, 𝑗) × 𝜇(𝑖, 𝑗)                                           (5) 

 

 

Figure 3.1. 3% TSMM for OLI C/A band of the Libya-4 PICS. 

6. Generate a histogram of the TSMM created in step 5. Determine the mode TOA 

reflectance, ρmode (i.e. the TOA reflectance values observed most frequently) assuming a 

bin number of 20. Using equations (6a) and (6b) and the histogram mode, determine the 

range of TOA reflectance values ρmin and ρmax that are most frequently observed. An 

example histogram of the band 1 TSMM for the Libya-4 PICS is shown in Figure 3.2. 

𝜌𝑚𝑖𝑛 = (1 − 0.15) × 𝜌𝑚𝑜𝑑𝑒                                                   (6a) 

𝜌𝑚𝑎𝑥 = (1 + 0.15) × 𝜌𝑚𝑜𝑑𝑒                                                  (6b) 

 

 
 

Figure 3.2. Histogram of 3% TSMM for OLI C/A band of the Libya-4 PICS. 
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7. In the TSMM image, create a map, TempMap, by setting the pixels with TOA 

reflectances outside of the range (ρmin, ρmax) to 0 (leaving the pixel values within the range 

unchanged). Then use equation (7) to calculate the temporal mean of the N pixels within 

the resulting non-zero region. The ‘i’ subscript in equation (7) indicates those TempMap 

pixels with non-zero values.    

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑀𝑒𝑎𝑛 =  
1

𝑁
∑ 𝑇𝑒𝑚𝑝𝑀𝑎𝑝𝑖

𝑁
𝑖=1                                    (7) 

8. From TSMM created in step 5 and the temporal mean value calculated in step 7, create a 

3% Spatial Temporal Mask (SPTM) as follows. First, create a spatial variability map, 

SVM, calculated as the ratio of the difference between TSMM and temporal mean to 

temporal mean: 

𝑆𝑉𝑀(𝑖, 𝑗) =
𝑇𝑆𝑀𝑀(𝑖,𝑗)−𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑀𝑒𝑎𝑛

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑀𝑒𝑎𝑛
× 100                               (8) 

Then, create SPTM by setting all pixels in the SVM where the value is < 3% to 1, and 

setting all pixels in the SVM where the value is > 3% to 0. The SPTM represents the 

region identified as having 3% or less spatial and temporal uncertainty. Example SPTM 

images generated for each band of the Libya-4 PICS are shown in Figure 3.3. 

 

                         

          (a) SPTM, C/A Band                                             (b) SPTM, Blue Band     

Region of temporal and spatial variation 3% Band 1 Region of temporal and spatial variation 3% band 2 
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Where pink represents the 3% spatial and temporal stability region, blue represents 3% 

temporal stability region and white represents the region having more than 3% temporal 

uncertainty.  

 

                         

       (c) SPTM, Green Band                                         (d) SPTM, Red Band    

      

                                    

                                 (e) SPTM, NIR Band                                       (f) SPTM, SWIR1 Band 

 

Region of temporal and spatial variation 3% Band 3 
Region of temporal and spatial variation 3% Band 4 

Region of temporal and spatial variation 3% Band 5 Region of temporal and spatial variation 3% Band 6 
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                 (g) SPTM, SWIR2 Band 

Figure 3.3. SPTM for all OLI bands of the Libya-4 PICS. 

9. At the end of steps 1-8, there should be seven SPTM images (one for each band). Using 

equation (9) create an Optimal Area Mask (OAM) by identifying SPTM pixels with 3% 

or less uncertainty that are present in all 7 bands: Figure 3.4 shows the OAM generated 

for the Libya-4 PICS.  

𝑂𝐴𝑀(𝑖, 𝑗) = {
1, 𝑆𝑃𝑇𝑀(𝑖, 𝑗) = 1 𝑖𝑛 𝑎𝑙𝑙 𝑠𝑒𝑣𝑒𝑛 𝑏𝑎𝑛𝑑𝑠 

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                        (9) 

 

 

Figure 3.4 OAM for Libya-4 PICS.  

Region of temporal and spatial variation 3% Band 7 

Libya-4 spatial, temporal and spectral stability area (+/- 3% 

variation): Band 1-7 



22 
 

 
 

                

                 (a) ROI for Egypt-1 PICS                                      (b) ROI for Sudan-1 PICS 

                                    

                    (c) ROI for Libya-4 PICS                                   (d) ROI for Libya-1 PICS 

                  

                (e) ROI for Niger-1 PICS                                   (f) ROI for Niger-2 PICS 

Figure 3.5. Binary OAMs for each PICS showing in white. The solid red boxes 

represent the ROIs subsequently used to evaluate the PNP method’s performance. 
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The Figure 3.5 represents the optimal region for all 6 PICS. Where white region 

represents the 3% temporal, spatial and spectral stability region and red boxes indicate 

the ROI. Coordinates for these ROI regions are tabulated in Table 3.1 in Universal 

Transverse Mercator coordinate system (UTM).  

PICS 

Names 
Upper Left Corner (meters) 

Lower Right Corner 

(meters) 

No. 

Images 

Libya-4 E723825 N3171375 E743805 N3149685 62 

Libya-1 E330150 N2750850 E365070 N2716860 43 

Niger-1 E520470 N2271210 E555120 N2242890 46 

Niger-2 E644190 N2375910 E677670 N2350590 52 

Egypt-1 E431790 N3000930 E462960 N2977110 55 

Sudan-1 E561570 N2405850 E584250 N2367450 62 

 

Table 3.1. Corner coordinates defining the analysis ROIs for each PICS. 

 

10. Multiply the OAM determined in step 9 with each band’s TSMM image generated in step 

5 to create each band’s Optimal Reference Map (ORM): 

𝑂𝑅𝑀(𝑖, 𝑗) = 𝑂𝐴𝑀(𝑖, 𝑗) × 𝑇𝑆𝑀𝑀(𝑖, 𝑗)                                                (10) 

11. From the ORM images generated in step 10, calculate each band’s Optimal Reference 

value as the mean of all non-zero pixels: 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
1

𝑁
∑ 𝑂𝑅𝑀𝑘

𝑁
𝑘=1                                                (11) 

12. Apply the Optimal Reference mean value calculated in step 11 to the smoothed image 

stack generated in step 2 to create the set of monthly correction map images for each 

band: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑝(𝑖, 𝑗, 𝑡) =
𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐼ˈ(𝑖,𝑗,𝑡)
                                      (12) 
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An example correction map for month 1 in band 1 of the Libya-4 PICS is shown in Figure 

3.6. All the pixel values in this correction map are very close to the optimal mean TOA 

reflectance value for the Coastal/Aerosol band of Libya-4. The correction map shown in 

Figure 3.6 is used to correct all Coastal/Aerosol band images that are acquired in January 

over Libya-4. Likewise, for each month, each band, and also for each PICS, the correction 

maps were created and used to correct Landsat-8 images since launch to 2016.  

 
Figure 3.6. Correction map for month 1 in OLI C/A band of the Libya-4 PICS.  

Figure 3.7 summarizes the steps needed to perform the within-site normalization. Image 

statistics (mean, standard deviation, and uncertainty) are calculated from the smoothed 

and temporally ordered monthly image data stack. These statistics are used to create a 3% 

temporal stability mean map. The histogram of the temporal stability mean map 

establishes the range of TOA reflectances having 3% uncertainty. A mask with pixels 

having 3% temporal, spatial and spectral variability is created and applied to the temporal 

stability mean map to determine the optimal TOA reference mean value as described in 

steps 6 to 11. The final correction maps are then obtained by applying the optimal TOA 

reference mean to each smoothed monthly image. 

Correction map of Month 1 Band 1 for Libya-4 

PICS 
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Figure 3.7. Processing flowchart for Normalization of Data from a Given PICS. 
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3.1.3 Normalization of Data across Multiple PICS:  

Once the within-site normalization procedure described in Section 3.1.2 is completed, the 

variability in response for a single PICS is reduced by applying correction maps to bring 

all the pixel TOA reflectance levels to an optimal mean TOA reflectance for each PICS 

by reducing seasonal variability within each PICS. However, comparison of responses 

between PICS will still likely show significant differences in level. A second 

normalization procedure is then used to adjust the response of the PICS to achieve 

consistency with the Libya-4 reference as previously mentioned. The steps comprising 

this normalization procedure are described as follows. As with the previous normalization 

procedure, each band is processed separately. The essential part of this normalization 

procedure is to create “BaseMaps” which convert the TOA reflectance levels of multiple 

PICS to the selected reference TOA reflectance level.   

1. For each non Libya-4 PICS, calculate a scaling factor defined as the ratio of the Optimal 

Reference value obtained for Libya-4 to the Optimal Reference value obtained for each 

PICS. The Optimal Reference values were obtained in Step 11 of the previous 

normalization stage. 

𝑆𝐹 =  
𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝐿𝑖𝑏𝑦𝑎−4)

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑃𝐼𝐶𝑆)
                                               (13) 

2. Create the set of monthly “BaseMaps” for each PICS by multiplying the scaling factor 

calculated in step 1 by the monthly correction maps determined in step 12 of the previous 

normalization stage: 

𝐵𝑎𝑠𝑒𝑚𝑎𝑝(𝑖, 𝑗, 𝑡) = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑝(𝑖, 𝑗, 𝑡) × 𝑆𝐹                   (14) 

Figure 3.8 shows a summary of the across-PICS normalization procedure.  
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Figure 3.8. Flow chart for normalization across multiple PICS. 

Once the monthly BaseMaps are calculated, they are applied to the original, cloud-free 

L1T image to create a PNP image normalized to Libya-4. The overall temporal mean, 

temporal standard deviation, and corresponding uncertainty are then calculated for the 

selected ROI within the scaled PNP image as described in Table 3.1.  Figure 3.9 shows 

the final PNP processing prior to trending analysis.  

     

Figure 3.9. Flow chart for PICS Normalization. 

The normalized PICS data obtained from the procedure described in Sections 3.1.2 and 

3.1.3 are then combined into a single time-series dataset, creating a ‘Super PICS’. In 

addition to estimating the uncertainties for each PICS, the temporal mean, temporal 

standard deviation, and uncertainty for the Super PICS dataset are calculated. From these 

summary statistical data, the overall uncertainty and the percentage drift for each PICS 

are estimated.  

Correction map 
Scaling Factor to 

Libya-4, SF Base map 

Base map 

PNP 

to 

Libya4 

Cloud-free L1T image with ROI 
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3.1.4 PNP Drift Estimates for OLI: 

To reduce residual “noise” associated with measurement uncertainties for the individual 

PICS, the estimated drifts are inversely weighted by their uncertainties to derive a 

weighted average drift using equations (15) and (16). The weighting takes into account 

the difference of the mean drift derived from different sites as well as the number of 

observations from each of the PICS. These results will be presented in Chapter 4.    

For N measurements 𝑥1, 𝑥2, … . , 𝑥𝑁 with uncertainties 𝜎1, 𝜎2, … . , 𝜎𝑁 the weighted average 

is calculated as   ŷ =  
∑ 𝑊𝑖𝑥𝑖

𝑁
1

∑ 𝑊𝑖
𝑁
1

                                                                 (15) [19] 

where 𝑤𝑖  = 
1

𝜎𝑖
2 and 𝑥𝑖 is the % drift for each PICS and ŷ is the weighted average drift. 

Typically when a mean is calculated, it is important to know the variance and standard 

deviation about that mean. when a weighted mean is used, the variance of the weighted 

sample is different from the variance of the unweighted sample.  

𝜎 =  √
∑ 𝑛𝑖𝜎𝑖

2+∑ 𝑛𝑖(ŷ𝑖−ŷ)2

∑ 𝑛𝑖
                                                             (16) [19] 

where ŷi is the % drift for each PICS, ni is the number of observations and 𝜎 is uncertainty.  

3.2 Refined PICS Normalization Process (BRDF PNP): 

The initial PICS normalization process as defined in the previous sections shows that the 

statistical drift didn’t really match with the on-board calibrators because of the seasonal 

variations due to BRDF effects. An additional analysis was required in order to generate 

a reasonable BRDF model to improve the results. A separate processing procedure was 

https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Standard_deviation
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implemented in order to provide sufficient BRDF correction.  The processing steps in the 

refined PICS normalization process are presented in Sections 3.2.2 and 3.2.3. 

3.2.1 BRDF Overview:  

Seasonal variation of TOA reflectance of a PICS target due to solar zenith angle can be 

particularly noticeable, especially in the longer wavelength bands. Several factors can 

affect this variability, including seasonal atmospheric aerosol/water vapor changes; the 

most significant contributor to this seasonal variation is BRDF effects [20] [21]. The 

Landsat series sensors, including OLI, are typically oriented for near- or at-nadir viewing; 

any BRDF effects arising from the sensor viewing geometry should be minimal.  The 

solar zenith angle (SZA), however, varies considerably throughout the year. As a result, 

BRDF is most widely believed to be due to changes in illumination geometry induced by 

the variation in solar zenith angles. As discussed in Chapter 2, a linear BRDF model has 

often used to correct for BRDF effects [6] [10].  

For his MS thesis, Shrestha [22] characterized BRDF using data acquired in the 

Algodones dunes PICS located near the United States-Mexico border. Two 

characterization methods were performed – one used surface radiance/reflectance data 

obtained during a 2015 field campaign, and the other performed laboratory measurements 

of sand samples obtained from various locations among the dunes during the same field 

campaign.  The goal was to determine the most appropriate order for the model. Using 

linear regression analysis techniques, Shrestha discovered that linear and cubic terms 

were not statistically significant to a BRDF model, but the quadratic term was. All 

laboratory measurements were taken for solar zenith angle of 54.4˚and 45˚ which were 
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within the typical range of solar zenith and view angles were varied form +30˚ to -30˚. 

Based on these results, it can be reasonably concluded that the BRDF model applicable 

to PICS data is quadratic in nature. Consequently, a refined PNP procedure assuming a 

quadratic BRDF correction was developed. The refined procedure is presented in the 

following Sections. As currently implemented, the refined procedure is to be run AFTER 

the initial PNP procedure, as it relies on the previously selected ROIs and the original set 

of monthly smoothed image data.  

3.2.2 Normalization of Data for an Individual PICS: Refined PNP 

The following steps are used to create a set of monthly BRDF correction maps. As with 

the initial PNP procedure, each band is processed separately. 

1. Derive the BRDF models as quadratic functions of the solar zenith angle and TOA 

reflectance. The input data for the models consist of the mean TOA reflectance within the 

ROI’s selected during the initial PNP procedure; three years of data were used in the 

modeling. The solar zenith angles are time-dependent. 

2. Calculate the BRDF correction factor corresponding to a solar zenith angle reference of 

0° according to equation (17).  

𝐼𝑟𝑒𝑓
′ (𝑖, 𝑗) = 𝑝1 × 𝑆𝑍𝑟𝑒𝑓

2 + 𝑝2 × 𝑆𝑍𝑟𝑒𝑓 + 𝑝3                              (17) 

3. Apply BRDF correction to the monthly smoothed images generated in step 1 of the initial 

PNP procedure: where SZ is the solar zenith angle of each selected image for 

corresponding PICS.  𝐼′′(𝑖, 𝑗, 𝑡) =
𝐼′(𝑖,𝑗,𝑡)×𝐼′

𝑟𝑒𝑓(𝑖,𝑗)

𝑝1×𝑆𝑍(𝑖,𝑗,𝑡)2+𝑝2×𝑆𝑍(𝑖,𝑗,𝑡)+𝑝3
                                         (18) 

4. Stack the BRDF corrected images in temporal order as a 3D array and calculate the 

temporal mean image: 𝜇(𝑖, 𝑗) =
1

12
∑ 𝐼′′(𝑖, 𝑗, 𝑡)12

𝑡=1                                                          (19) 
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5. Use the selected ROI’s OAM mask (red rectangles shown in Figure 3.5) determined from 

the initial PNP procedure to create an ORM image as indicated in equation (20), then 

calculate the Optimal Reference Mean value from the ORM image according to equation 

(21).  The ‘k’ subscript in equation (21) indicates those ORM pixels with a nonzero value. 

𝑂𝑅𝑀𝐵𝑅𝐷𝐹 = 𝑂𝐴𝑀(𝑖, 𝑗) × 𝜇(𝑖, 𝑗)                                                   (20) 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐵𝑅𝐷𝐹 =
1

𝑁
∑ 𝑂𝑅𝑀𝑘

𝐵𝑅𝐷𝐹𝑁
𝑘=1                                    (21) 

6. With the calculated optimal reference mean value, generate monthly BRDF based 

correction maps using equation (22): 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑝(𝑖, 𝑗, 𝑡)𝐵𝑅𝐷𝐹 =
𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐵𝑅𝐷𝐹

𝐼′′(𝑖,𝑗,𝑡)
                    (22) 

Figure 3.10 shows the processing flow for the refined procedure. BRDF correction is 

performed on each smoothed monthly image, and the corrected images are stacked in 

temporal order. Using the ROI OAM mask, the BRDF-corrected optimal region mean is 

calculated. The final correction maps are obtained by ratioing the BRDF optimal region 

mean and the monthly BRDF corrected images. 

 

 

 

 

Figure 3.10. Flow chart for BRDF corrected normalization within PICS. 
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3.2.3 Normalization of data across Multiple PICS: Refined PNP 

The steps comprising this cross-PICS normalization are described as follows.  As with 

the previous PNP process, each band is processed separately.   

1. For each non-Libya-4 PICS, calculate a BRDF corrected scaling factor defined as the 

ratio of the (BRDF corrected) Optimal Reference value obtained for Libya-4 to the 

(BRDF corrected) Optimal Reference value obtained for the PICS under consideration. 

The BRDF corrected Optimal Reference values were obtained in Step 5 (equation 21) of 

the previous normalization stage. 

𝑆𝐹𝐵𝑅𝐷𝐹 =  
𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐵𝑅𝐷𝐹(𝐿𝑖𝑏𝑦𝑎−4)

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐵𝑅𝐷𝐹(𝑃𝐼𝐶𝑆)
                                            (23) 

2. Create the set of monthly BRDF corrected BaseMaps for each PICS by multiplying the 

scaling factor calculated using equation (23) and the monthly correction maps determined 

in step 6 of Section 3.2.2: 

𝐵𝑎𝑠𝑒𝑚𝑎𝑝𝐵𝑅𝐷𝐹(𝑖, 𝑗, 𝑡) = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑝𝐵𝑅𝐷𝐹(𝑖, 𝑗, 𝑡) × 𝑆𝐹𝐵𝑅𝐷𝐹                   (24) 

Figure 3.11 shows the processing flow required to create the BRDF corrected BaseMap. 

This processing flow is identical to the cross-PICS normalization processing flow in the 

initial PNP procedure. 

 

 

 

Figure 3.11. Flow chart for BRDF corrected normalization across PICS.  
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Once the BRDF corrected BaseMaps are created, they are applied to the cloud-free BRDF 

corrected L1T image data to create BRDF corrected PNP images normalized to Libya-4. 

The temporal mean, temporal standard deviation, and corresponding uncertainty are then 

calculated for the selected ROI within the BRDF corrected PNP image for individual 

PICS. Figure 3.12 shows the final BRDF corrected PNP processing prior to trending 

analysis.  

 

Figure 3.12. Flow chart for BRDF corrected PICS Normalization. 

As with the initial PNP technique, the normalized PICS data obtained from the procedure 

described in Sections 3.2.2 and 3.2.3 are then combined into a single time-series dataset, 

creating a BRDF corrected Super PICS. In addition to estimating the overall uncertainties 

for each PICS, summary statistics for the BRDF corrected Super PICS are calculated. 

3.2.4 BRDF corrected PNP Drift Estimates for OLI: 

The same procedure shown in Section 3.1.4 is repeated for the BRDF corrected dataset. 

The results for this Section is also shown in Chapter 4.  
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3.3 BRDF corrected PNP Uncertainty Analysis:  

There are two primary sources for uncertainty in the estimates generated from the BRDF 

corrected PNP technique:  

1. Inherent uncertainty in the image data itself. 

2. Uncertainty due to processing. 

Both sources are considered in this Section. 

3.3.1 Uncertainty in Image data:  

OLI has stringent radiometric performance requirements. It is required to produce data 

calibrated to an uncertainty of less than five percent in terms of absolute, at-aperture 

spectral radiance and to an uncertainty of less than three percent in terms of TOA spectral 

reflectance for each of the spectral bands [2]. The inherent uncertainty in the image data 

for each band (𝑢𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡) is estimated by taking the average of the temporal uncertainties 

(u) derived for all the selected PICS: 

𝑢𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡 =
1

6
∑ 𝑢𝑖

6
𝑖=1                                                      (25) 

3.3.2 Uncertainty due to Processing:  

Each processing step in the BRDF corrected PNP technique will introduce a degree of 

uncertainty impacting the final results. The amount of uncertainty is a measure of 

sensitivity within the process. 

The major contribution to the processing uncertainty within each PICS comes from 

calculating the temporal mean. Recall from Section 3.1.2 that the temporal mean is based 
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on a histogram analysis of the most commonly occurring TOA reflectances within the 

3% range. Changing the number of bins can affect the histogram mode, which in turn 

affects the size of the range. If the range is too large then the accuracy of finding the most 

commonly occurring TOA reflectance level may change. Figure 3.13 shows the 

histograms resulting from selecting 10 vs 20 bins; with 10 bins the TOA reflectance 

ranged from 0.229 to 0.242, and with 20 bins the TOA reflectance ranged from 0.2377 to 

0.2438. Changing the number of bins shifts the range of TOA reflectance levels.  As a 

result, variation in the number of bins used in the histogram will produce uncertainty in 

the estimated temporal mean.  

           

Figure 3.13. Histogram of temporal stability map for band 1 Libya-4 PICS using 10 bins 

 (Left histogram) vs 20 bins (Right histogram). 

Uncertainty in the temporal mean will lead to uncertainty in the optimal mean value, 

which will in turn lead to uncertainty in the correction map and corresponding scale factor 

calculation.  These uncertainties will create uncertainty in the BaseMap and lead to 

uncertainty in the BRDF PNP results.  A sensitivity analysis to quantify the amount of 

uncertainty in the BRDF PNP results was performed on the BRDF corrected image data 
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to determine the “best” number of bins to use in performing the histogram when 

calculating the temporal mean. Then, the temporal means resulting in each bin analysis 

were compared to the BRDF temporal mean. A brief description of the analysis is given 

below. 

The number of histogram bins is set at 10, 15, 20, and 30. Histograms are generated with 

the selected number of bins, and the resulting optimal means are calculated. The results 

of this analysis suggest that the number of bins producing the “best” optimal mean 

estimate varies by site. The optimal mean value used for the BRDF corrected PNP 

technique is compared to the optimal means calculated from the sensitivity analysis. From 

this comparison, it was observed that the difference is within 1% for all bands and all 

PICS for each histogram bin number. For the calculation of sensitivity analysis 

uncertainty(𝑢𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦), the “worst-case scenario” (highest difference to the initial 

BRDF optimal mean) was chosen for uncertainty analysis. The overall process 

uncertainty for each band is then calculated by temporally averaging the worst-case 

scenario uncertainty values for the “worst-case bin analysis” across 6 PICS.  

The temporal uncertainty for the BRDF Super PICS (𝑢𝐵𝑅𝐷𝐹 𝑆𝑢𝑝𝑒𝑟 𝑃𝐼𝐶𝑆) dataset is 

determined from the combined temporal trending data for the individual PICS.  

The sensitivity analysis and BRDF Super PICS uncertainties are then combined with the 

inherent temporal image data uncertainty, calculated with equation (25), to obtain a final 

uncertainty given in equation (26): 

𝑈 =  √(𝑢𝑖𝑛ℎ𝑒𝑟𝑒𝑛𝑡)2 + (𝑢𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)2 + (𝑢𝐵𝑅𝐷𝐹 𝑆𝑢𝑝𝑒𝑟 𝑃𝐼𝐶𝑆)2                       (26) 

The results of the Refined PNP uncertainty analysis will be presented in Chapter 4. 
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CHAPTER 4 

RESULTS 

4.1 PICS Normalization Process:  

This Section presents the results obtained from the initial PNP normalization procedure 

described in Sections 3.1.1 and 3.1.2. 

4.1.1 Normalization of Data for an Individual PICS:  

As discussed in Chapter 3, pixel values from each PICS were normalized to the Optimal 

TOA Reflectance level (i.e. reflectance level representing an optimal area mask 

exhibiting 3% or less temporal, spatial, and spectral stability). The optimal area mask 

(OAM) for each PICS is indicated in Figures 4.1 – 4.6, represented as the area(s) in 

magenta.  The areas in cyan represent the portions of the site not considered to be stable 

in any sense. The following Sections provide a brief description of the optimal area mask 

and the overall characteristics of each PICS. Descriptions of each PICS are based on 

summary descriptions for the site given in the USGS Remote Sensing Technologies Test 

Site Catalog [23]. 

Libya-1 (WRS2 path/row 187/043): 

Figure 4.1 shows the true-color image and the identified optimal area mask of Libya-1 

PICS. The surfaces at the site show a range of colors, from reddish-brown in the northwest 

corner, a lighter brown to tan color in the center, an off-white to whitish color in the 

southwest corner, and a blue to bluish-gray to slate color to the east and south. Dunes at 

the site also vary, with smaller dunes occurring at the northwestern corner of the site, to 
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longer and narrower dunes in the center; the eastern portions of the site appear to contain 

few if any dunes. The optimal area mask for this PICS (Figure 4.1) runs in a belt from 

southwest to northeast, between the west-central and north-central portions of the site, 

covering between one quarter to one third of the site. Smaller gaps in the area are observed 

towards the west, and a significant “fork” can be seen to the northeast. The OAM region 

does not appear especially homogeneous in the true-color image, as it is located in the 

areas containing the longer and narrower dunes. 

             

 (a)  Libya-1 True Color Image                           (b) Libya-1 Optimal Area Mask 

Figure 4.1. Libya-1 True Color Image and Corresponding OAM. 

Sudan-1 (WRS2 path/row 177/045): 

Figure 4.2 shows the true-color image and the identified optimal area mask of Sudan-1 

PICS. The surfaces at this site appear to be multi-colored in the true-color image, with 

more apparent variability than is seen in Libya-1. Some of the coloring in the extreme 

southeast suggests the presence of thin vegetation cover. Evidence of human agricultural 

practices can be seen in the far north, with the presence of areas of circular irrigation of 

crop land. The corresponding OAM generally runs in a belt from west to east across most 
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of the site, with most of the region concentrated in the south. There are more gaps and 

“holes” in the region than is observed for Libya-1. The OAM region appears to be more 

homogeneous than is observed in Libya-1, consisting primarily of bluish-gray to slate 

colored sands as seen in the true-color image.  

                 

(a)  Sudan-1 True Color Image                           (b) Sudan-1 Optimal Area Mask 

Figure 4.2. Sudan-1 True Color Image and Corresponding OAM.  

Niger-1 (WRS2 path/row 189/046): 

Figure 4.3 shows the true-color image and the identified optimal area mask of Niger-1 

PICS. The surfaces in the west appear as darker shades of grayish-blue to dark brown to 

black in the true-color image. These surfaces are may be a rock’s. The OAM for this PICS 

lies roughly within the east-central portion of the site, with the area roughly equally 

divided between north and south. The sands appear to be most homogeneous in character 

in these parts of the site, generally a light brown to tan to off-white in color as seen in the 

true color image, with almost no dunes observed in the area. There are multiple, smaller 

optimal “sub-regions” not physically connected to the main region, mainly occurring 

towards the west and south.  
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(a)  Niger-1 True Color Image                    (b) Niger-1 Optimal Area Mask 

Figure 4.3. Niger-1 True Color Image and Corresponding OAM. 

Egypt-1 (WRS2 path/row 179/041): 

        

    (a)  Egypt-1 True Color Image                   (b) Egypt-1 Optimal Area Mask 

Figure 4.4. Egypt-1 True Color Image and Corresponding OAM. 

Figure 4.4 shows the true-color image and the identified optimal area mask of Egypt-1 

PICS. As seen in the true color image, the surfaces at the site are a mix of sands and rocks, 

with sands to the west and south, and rocks to the southeast and north. The sands appear 

to be brownish in color and show evidence of long, narrow dunes concentrated in the west 

and east-central portions of the site. The optimal area mask for this PICS lies in a belt 

within the south-central portion of the site, running from northwest to southeast, with 
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most of the region concentrated in the south. The OAM appears to be in the most 

homogeneous part of the site where the sands are lighter brown in color with narrower 

dunes. 

Niger-2 (WRS2 path/row 188/045): 

Figure 4.5 shows the true-color image and the identified optimal area mask of Niger-2 

PICS. The surfaces in the south and west appear to be very homogeneous, appearing to 

be a mix of tan, off-white, and gray-colored sands. A ridge running from southeast to 

northwest can be seen, showing a transition to a rockier, less sandy area in the northeast. 

The optimal area mask for this PICS runs in a belt from the extreme south-central to 

southwestern portions of the site. It consists of two main areas connected by a narrow 

strip. Multiple smaller optimal sub-regions can be seen in the east, and a single optimal 

sub-region can be seen to the north. The OAM is primarily in the homogeneous region 

with the tan to grey colored sands.  

                        

                (a)  Niger-2 True Color Image               (b) Niger-2 Optimal Area Mask 

Figure 4.5. Niger-2 True Color Image and Corresponding OAM. 
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Libya-4 (WRS2 path/row 181/040): 

Figure 4.6 shows the true-color image and the identified OAM of Libya-4 PICS. The 

surfaces at the site are predominantly brown to tan colored sand. A rockier area appearing 

dark blue with areas of white can be seen in the far north. Dunes of varying lengths and 

widths can be seen in nearly all of the true color image; the dunes appear to be longer and 

deeper towards the south and east. The region defining the OAM for this PICS is by far 

the largest among the selected PICS used in this thesis work. The main area of the region 

covers more than 50% of the site, running across nearly all of the site to the north. The 

OAM region narrows considerably to the south, where it is primarily in the west-central 

portion of the site. Multiple smaller regions can be seen near the main part of the region, 

primarily to the south and east; a single sub-region band can be seen in the far northeast. 

The OAM lies in the sandier parts of the site with fewer significant dunes. 

               

(a)  Libya-4 True Color Image                           (b) Libya-4 Optimal Area Mask 

Figure 4.6. Libya-4 True Color Image and Corresponding OAM. 

Following the procedure described in Section 3.1.2 and described in equation (11), the 

optimal mean TOA reflectance is calculated for each band at each site. Table 4.1 shows 

the results of these calculations.  
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As indicated in Section 3.1.2, these values normalize the TOA reflectance levels in an 

image to the TOA reflectance level determined to optimally represent the site; the optimal 

mean value is band and site dependent, primarily due to the characteristics of the 

material(s) comprising the site as described in Section 4.1.1. Once the optimal mean 

values were calculated, the correction maps for each month were then calculated 

according to equation (12). 

Normalization within the PICS – Optimal mean Values of Different PICS 

Band Egypt-1 Sudan-1 Niger-1 Niger-2 Libya-1 Libya-4 

C/A 0.2144 0.2093 0.1972 0.2000 0.1895 0.2289 

Blue 0.2274 0.2184 0.2113 0.2060 0.2040 0.2470 

Green 0.314 0.3009 0.3134 0.2790 0.3070 0.3329 

Red 0.4275 0.4319 0.4644 0.3960 0.4910 0.4520 

NIR 0.5561 0.5405 0.5831 0.4960 0.6170 0.5771 

SWIR1 0.676 0.6646 0.6976 0.6370 0.7150 0.6697 

SWIR2 0.5881 0.5784 0.6118 0.5600 0.6130 0.5835 

            

Table 4.1 PNP Optimal TOA reference for all 6 PICS and all 7 bands. 

4.1.2 Normalization of Data across Multiple PICS:  

As discussed in Section 3.1.3, scaling factors for all PICS are calculated according to 

equation (13), in order to normalize them to the Libya-4 optimal mean value. Table 4.2 

shows the results of these calculations. As expected, the scale factors for the non-Libya-

4 PICS are very close to 1, and exactly 1 for Libya-4. 
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Normalization across PICS – Scale Factor Values  

Band Egypt-1 Sudan-1 Niger-1 Niger-2 Libya-1 Libya-4 

C/A 1.0676 1.0936 1.1608 1.1445 1.2079 1 

Blue 1.0862 1.1310 1.1690 1.1990 1.2108 1 

Green 1.0602 1.1063 1.0622 1.1932 1.0844 1 

Red 1.0573 1.0465 0.9733 1.1414 0.9206 1 

NIR 1.0378 1.0677 0.9897 1.1635 0.9353 1 

SWIR1 0.9907 1.0077 0.9600 1.0513 0.9366 1 

SWIR2 0.9922 1.0088 0.9537 1.0420 0.9519 1 

 

Table 4.2 PNP Scale factor values for all 6 PICS of all 7 bands. 

After applying the scale factor values to each selected PICS with corresponding 

correction maps, the BaseMaps are created. The significance of these BaseMaps is to 

bring each PICS optimal TOA reflectance level to the Libya-4 optimal TOA reflectance 

level. The PNP was then performed and trending analysis for each PICS was calculated. 

Figure 4.7 and Figure 4.8 shows the resulting TOA reflectances for all PICS after PNP.  

With the exception of the Egypt-1 PICS, the remaining PICS TOA reflectances agree 

quite well with the PNP Libya-4 PICS TOA reflectances. Residual seasonal variation is 

observed in the Red and NIR bands as pointed out with red arrow. Figure 4.8 shows the 

TOA reflectance results for all PICS in the Coastal/Aerosol and SWIR2 bands. The 

observed values are in the same range as the corresponding TOA reflectances of the Blue 

and SWIR1 bands, respectively, and would have been difficult to visualize when plotted 

against those bands in Figure 4.7. For the Coastal/Aerosol band, the TOA reflectances of 
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all PICS are in very good agreement. For the SWIR2 band the agreement in TOA 

reflectances is worse, due to residual seasonal variation. 

 

Figure 4.7. PNP Trending for 5 spectral bands of 6 PICS (VNIR and SWIR1). 

 

Figure 4.8. PNP Trending for 2 spectral bands of 6 PICS (Coastal/Aerosol and SWIR2). 
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After the PNP is applied to all of the archived images, temporal uncertainties are 

calculated for each PICS (temporal standard deviation/temporal mean). Table 4.3 shows 

the resulting temporal uncertainty estimates. Overall, the temporal uncertainty for most 

PICS is well within 2.5% for all spectral bands. The Libya-1 and Niger-2 PICS have 

slightly higher uncertainties in the C/A and Blue bands, on the order of 3%. The 

uncertainty in the SWIR2 band for Niger-2 was also slightly higher, but well within 2.5%.  

PICS_PNP 
Uncertainty 

C/A Blue Green Red NIR SWIR1 SWIR2 

Libya-4 1.22% 1.37% 1.39% 1.30% 0.93% 0.78% 1.90% 

Libya-1 2.55% 2.65% 1.62% 0.82% 0.65% 0.83% 1.38% 

Niger-1 1.74% 1.67% 0.86% 0.65% 0.50% 0.73% 1.75% 

Niger-2 3.01% 3.11% 1.59% 1.33% 1.11% 0.51% 2.22% 

Sudan-1 1.51% 1.45% 0.93% 1.10% 0.79% 0.69% 1.87% 

Egypt-1 1.24% 1.33% 1.29% 1.16% 0.90% 0.65% 1.52% 

  

Table 4.3 % temporal uncertainties for all 7 bands for each PICS after PNP trending. 

 

Figure 4.9. PNP Super PICS trending for VNIR and SWIR1 bands. 
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Figure 4.9 shows the TOA reflectance trend after combining 6 PICS into a Super PICS 

dataset in the Blue, Green, Red, NIR and SWIR1 bands with a total number of 320 

images. A change in response can be seen in the 2016 data (approximately from DSL 

1050 to 1200); the change is more noticeable for the longer wavelength bands. The major 

contribution to that change appears to come from the Egypt-1 PICS data, perhaps due to 

uncorrected BRDF effects, which can also clearly be seen in Figures 4.7 and 4.8. 

 

Figure 4.10. PNP Super PICS trending for Coastal/Aerosol and SWIR2 bands. 

Figure 4.10 shows the Super PICS trending results for the Coastal/Aerosol and SWIR2 

bands. The change in 2016 data appears to be less noticeable in these bands.  For the 

Coastal/Aerosol band the overall variation is much less, while for the SWIR2 band the 

residual seasonal variation appears to be more dominant. 

4.1.3 PNP Drift Estimates for OLI:  

Gain drift in % per year is estimated from trending of individual PNP PICS data, the 
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gives the estimates for all PNP PICS along with the estimates for the weighted average 

and Super PICS dataset and Table 4.5 shows the corresponding 2-sigma uncertainties for 

each PICS. 

 The estimated drift is highest for Libya-4, with values greater than -0.5% per year for all 

spectral bands except SWIR1, which has an estimated drift on the order of -0.3%. Sudan-

1 has the lowest estimated drifts, on the order of -0.2% per year, for all bands. The drift 

estimates for the other PNP PICS appear to be consistent with each other. 

Percentage drift per year for PNP analysis 

PNP 
Drift 

Libya-4 Libya-1 Niger-1 Niger-2 
Sudan-

1 
Egypt-1 W.avg 

Super 
PICS 

C/A -0.66 0.13 -0.56 -0.40 -0.23 0.21 -0.33 -0.24 

Blue -0.79 0.10 -0.34 -0.34 -0.15 0.32 -0.27 -0.19 

Green -0.72 -0.05 0.07 -0.40 -0.10 0.23 -0.14 -0.18 

Red -0.64 -0.08 0.12 -0.52 -0.12 0.15 -0.14 -0.28 

NIR -0.54 -0.06 -0.07 -0.47 -0.10 0.10 -0.18 -0.25 

SWIR1 -0.27 -0.08 -0.34 -0.12 0.00 0.03 -0.16 -0.18 

SWIR2 -0.62 -0.11 -0.09 -0.63 -0.21 -0.16 -0.45 -0.41 

   

Table 4.4 Percentage drift per year for each PICS using PNP technique. 

2 sigma values for PNP analysis 

PNP 
2-sigma 

Libya-4 Libya-1 Niger-1 Niger-2 
Sudan-

1 
Egypt-1 W.avg 

Super 
PICS 

C/A 0.35 0.93 0.65 0.98 0.33 0.38 0.78 0.26 

Blue 0.38 0.97 0.64 1.02 0.30 0.40 0.81 0.27 

Green 0.38 0.59 0.34 0.51 0.21 0.39 0.54 0.18 

Red 0.35 0.30 0.25 0.41 0.26 0.36 0.46 0.24 

NIR 0.24 0.24 0.19 0.34 0.19 0.27 0.36 0.16 

SWIR1 0.23 0.30 0.26 0.16 0.17 0.20 0.27 0.12 

SWIR2 0.57 0.50 0.68 0.70 0.44 0.46 0.67 0.23 

 

Table 4.5 2-Sigma values for each PICS using PNP technique. 



49 
 

 
 

The observed drifts for the PNP weighted average and Super PICS estimates are within -

0.35% and -0.3% per year, respectively, for all bands except SWIR2 which has drift 

estimates of approximately -0.45% and -0.41% per year, respectively.  

A statistical analysis is performed to test the zero slope hypothesis at the 95% confidence 

level for the Super PICS dataset. The significance of this analysis to estimate the drift of 

OLI sensor. For the longer wavelength bands there is sufficient statistical evidence to 

conclude non-zero slopes, especially for the NIR, SWIR1 and SWIR 2 bands; their p-

values were significantly small. For the shorter wavelengths, only Coastal/Aerosol and 

Blue bands show the zero-slope with p-value is greater than 0.05. For all spectral bands 

except SWIR2 the estimated drift is less than -0.3% per year; for SWIR2, the estimated 

drift is within -0.45% per year. The corresponding temporal uncertainties in the estimates 

are within 2% for all spectral bands. Table 4.6 shows the results of this analysis.      

PNP Super 
PICS 

C/A Blue Green Red NIR SWIR1 SWIR2 

%Drift/year -0.24 -0.19 -0.18 -0.28 -0.25 -0.18 -0.41 

2Sigma 0.26 0.27 0.18 0.24 0.16 0.12 0.23 

p-value 
Slope = 0 

0.0682 0.1447 0.0436 0.023 0.0023 0.0048 0.0004 

Uncertainty 1.91% 1.95% 1.33% 1.79% 1.19% 0.92% 1.73% 

 

Table 4.6 PNP Super PICS Statistical analysis for the estimation of drift for OLI. 

The analysis results presented so far apply to the initial PNP technique, in which no 

explicit BRDF corrections have been applied to the data. All normalizations performed 

in the initial technique could perhaps be considered a “pseudo” BRDF correction, as any 

BRDF effects would be largely averaged out. Performing explicit BRDF correction as 

part of PNP processing should improve the results. These results are presented in the 

following Sections. Figure 4.11 shows the combined plot of these estimates. 
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Figure 4.11. % Drift comparison for individual PNP PICS, weighted avg. & Super PICS. 

4.2 Refined PICS Normalization Process:  

This Section presents the results obtained for the BRDF corrected normalization 

technique described in Sections 3.2.1 and 3.2.2. As indicated in Chapter 3 quadratic 

BRDF models as functions of the solar zenith angles are generated for each PICS. Tables 

4.7 through 4.12 show the resulting model coefficients for all 7 bands and all 6 PICS.  

Egypt-1 P1 P2 P3 

C/A 1.599e-05 -0.0010580 0.2311 

Blue 1.405e-05 -0.0009932 0.2449 

Green 6.447e-06 -0.0005894 0.3305 

Red 6.799e-06 -0.0008057 0.4645 

NIR 1.027e-05 -0.0012350 0.5991 

SWIR1 4.429e-06 -0.0013320 0.7278 

SWIR2 2.214e-05 -0.0023770 0.6492 

 

Table 4.7 BRDF Coefficients for Egypt-1 PICS (f(x) = p1*x2 + p2*x + p3). 
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Libya-1 P1 P2 P3 

C/A 9.219e-06 -0.0006889 0.1999 

Blue 5.278e-06 -0.0004457 0.2109 

Green -3.303e-06 0.0001622 0.3060 

Red -1.013e-05 0.0003419 0.4908 

NIR -3.413e-06 -0.0005108 0.6357 

SWIR1 -2.706e-06 -0.0012370 0.7583 

SWIR2 -1.002e-05 -0.0001486 0.6321 

 

Table 4.8 BRDF Coefficients for Libya-1 PICS (f(x) = p1*x2 + p2*x + p3). 

 

Niger-1 P1 P2 P3 

C/A 3.024e-05 -0.0021250 0.2347 

Blue 2.859e-05 -0.0019990 0.2468 

Green 1.307e-05 -0.0008231 0.3267 

Red 4.571-06 -0.0004162 0.4725 

NIR 2.875e-06 -0.0006748 0.5983 

SWIR1 -6.028e-06 -0.0010740 0.7331 

SWIR2 1.652e-05 -0.0019650 0.6516 

 

Table 4.9 BRDF Coefficients for Niger-1 PICS (f(x) = p1*x2 + p2*x + p3). 
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Niger-2 P1 P2 P3 

C/A 1.589e-05 -0.0012820 0.2240 

Blue 1.663e-05 -0.0014120 0.2328 

Green 1.260e-05 -0.0010560 0.2984 

Red 9.994e-06 -0.0008829 0.4118 

NIR 7.784e-06 -0.0009073 0.5153 

SWIR1 -4.409e-07 -0.0008099 0.6624 

SWIR2 2.217e-05 -0.0018220 0.5907 

 

Table 4.10 BRDF Coefficients for Niger-2 PICS (f(x) = p1*x2 + p2*x + p3). 

Sudan-1 P1 P2 P3 

C/A 6.026e-06 -0.0004665 0.2175 

Blue 6.689e-06 -0.0006012 0.2295 

Green 1.154e-05 -0.0010300 0.3192 

Red 2.226e-05 -0.0020320 0.4679 

NIR 1.732e-05 -0.0019480 0.5823 

SWIR1 1.130e-05 -0.0020300 0.7256 

SWIR2 5.831e-05 -0.0049610 0.6771 

  

Table 4.11 BRDF Coefficients for Sudan-1 PICS (f(x) = p1*x2 + p2*x + p3). 

 

 

 

 



53 
 

 
 

OLI Band p1 p2 p3 

C/A 1.433e-05 -9.290e-04 0.2404 

Blue 1.351e-05 -9.513e-04 0.2620 

Green 8.960e-06 -8.324e-04 0.3533 

Red 1.174e-05 -0.001200 0.4866 

NIR 1.228e-05 -0.001500 0.6164 

SWIR1 7.016e-06 -0.001600 0.7213 

SWIR2 4.655e-05 -0.004300 0.6818 

 

              Table 4.12 BRDF Coefficients for Libya-4 PICS. (f(x) = p1*x2 + p2*x + p3). 

4.2.1 Refined PICS Normalization of Data for an Individual PICS:  

BRDF corrected optimal mean values are generated from the ROIs selected in the initial 

PNP processing and the BRDF corrected temporal mean images, as shown in equations 

(17) through (19). The resulting optimal mean values for the individual PICS are shown 

in Table 4.13. These values bring all pixel TOA levels of site to an optimal TOA 

reflectance level.  

4.2.2 Refined PICS Normalization of Data across Multiple PICS:  

Table 4.14 gives the BRDF corrected scale factors determined from the BRDF corrected 

optimal mean values. As noted for the initial technique’s scaling factors, the values for 

the Libya-4 PICS are exactly 1, while the remaining PICS have scaling factors close to 1. 

After creating BRDF corrected BaseMaps and performing BRDF PNP, a trending 

analysis similar to the initial PNP analysis was performed. Figure 4.12 shows the results 

of this analysis for the Blue, Green, Red, NIR, and SWIR1 bands. The overall trends 

indicate decreased variability due to BRDF effects. Variability in response to longer 
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wavelength bands is significantly reduced for the Egypt-1. However, residual seasonal 

variation is still apparent, especially during 2013 and 2014 (DSL 50 to DSL 650). 

Normalization within PICS – BRDF Optimal mean Values of Different PICS 

Band Egypt-1 Sudan-1 Niger-1 Niger-2 Libya-1 Libya-4 

C/A 0.2312 0.2175 0.2334 0.2233 0.1997 0.2399 

Blue 0.2449 0.2293 0.2455 0.2320 0.2106 0.2613 

Green 0.3299 0.3181 0.3262 0.2978 0.3059 0.3521 

Red 0.4633 0.4669 0.4720 0.4120 0.4899 0.4850 

NIR 0.5979 0.5820 0.5967 0.5151 0.6338 0.6154 

SWIR1 0.7273 0.7245 0.7312 0.6628 0.7544 0.7205 

      SWIR2 0.6482 0.6738 0.6526 0.5941 0.6293 0.6795 

 

Table 4.13 BRDF PNP Optimal mean values for all 6 PICS and all 7 bands. 

Normalization across PICS – Scale Factor Values  

Band Egypt-1 Sudan-1 Niger-1 Niger-2 Libya-1 Libya-4 

C/A 1.0377 1.1031 1.0281 1.0743 1.2018 1 

Blue 1.0670 1.1395 1.0646 1.1262 1.2406 1 

Green 1.0672 1.1068 1.0795 1.1823 1.1511 1 

Red 1.0468 1.0386 1.0275 1.1771 0.9899 1 

NIR 1.0293 1.0575 1.0313 1.1947 0.9711 1 

SWIR1 0.9907 0.9945 0.9854 1.0871 0.9551 1 

SWIR2 1.0483 1.0084 1.0412 1.1437 1.0797 1 

 

Table 4.14 BRDF PNP per-band scaling factor values for 6 PICS and all 7 bands. 
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Figure 4.12. BRDF PNP Trending for 6 PICS (VNIR and SWIR1). 

 

Figure 4.13. BRDF PNP Trending for 6 PICS (Coastal/Aerosol and SWIR2). 
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Figure 4.13 shows the corresponding trends for all PICS in the Coastal/Aerosol and 

SWIR2 bands. Overall variability appears to have been reduced; however, 2016 data from 

the Libya-1 PICS appears to be showing greater variability. This variability is most likely 

due to atmospheric aerosol effects during this period. As with the other bands, residual 

seasonal variation can be observed in the 2013 and 2014 data. 

Once the BRDF normalization technique is completed, temporal uncertainties are 

calculated for each PICS. Table 4.15 shows the resulting temporal uncertainty estimates 

of each PICS after performing the trending using the BRDF PNP technique. As with the 

initial normalization technique, the overall uncertainties are well within 2%, with the 

exception of the Coastal/Aerosol and Blue bands for the Libya-1 and Niger-2 PICS, 

where the estimated uncertainties are on the order of 3%. For both techniques, the 

estimated uncertainty for the SWIR1 band is less than 1%. 

Table 4.16 gives the results of a percentage difference comparison, for each band, 

between the derived BRDF PNP TOA for each PICS and the Libya-4 BRDF optimal 

mean value. For all 7 bands and for all PICS, the differences are within ± 1%. 

PICS_BRDF 
PNP 

Uncertainty 
C/A Blue Green Red NIR SWIR1 SWIR2 

Libya-4 1.17% 1.34% 1.31% 1.16% 0.81% 0.57% 1.84% 

Libya-1 3.04% 2.95% 1.51% 1.02% 0.68% 0.70% 1.53% 

Niger-1 1.17% 1.20% 0.94% 0.86% 0.66% 0.78% 1.53% 

Niger-2 3.04% 3.11% 1.57% 1.26% 1.06% 0.48% 2.07% 

Sudan-1 1.53% 1.43% 0.89% 1.08% 0.71% 0.60% 1.89% 

Egypt-1 1.57% 1.69% 1.75% 1.74% 1.26% 0.75% 2.35% 

 

Table 4.15 Percentage uncertainties of selected PICS after BRDF PNP trending. 



57 
 

 
 

%Mean diff C/A Blue Green Red NIR SWIR1 SWIR2 

Libya-4 0.45% 0.48% 0.45% 0.40% 0.22% 0.14% 0.72% 

Egypt-1 0.13% 0.25% 0.47% 0.55% 0.40% 0.14% 0.44% 

Sudan-1 -0.05% 0.03% 0.24% 0.13% 0.01% 0.07% 0.28% 

Niger-1 0.42% 0.39% 0.15% 0.18% 0.28% 0.40% 0.40% 

Niger-2 0.18% 0.19% 0.16% 0.06% 0.16% 0.00% -0.35% 

Libya-1 0.58% 0.53% 0.16% 0.02% 0.15% 0.40% 0.25% 

 

Table 4.16 % difference for BRDF PNP TOA reflectance vs BRDF Optimal mean of 

Libya-4 for 6 PICS. 

Figure 4.14 shows the BRDF corrected Super PICS trends for the VNIR and SWIR1 

bands. Between approximately DSL 250 and DSL 1050, the trends appear to be relatively 

flat with little variation. Greater variability can be observed in the DSL 50 to DSL 250 

period (early 2013), most noticeably in the Red and NIR bands. Greater variability is also 

apparent in the 2016 data (approximately DSL 1250 onwards), again more noticeably in 

the Red and NIR bands. 

Figure 4.15 shows the BRDF corrected Super PICS trends for the Coastal/Aerosol and 

SWIR2 bands. For the Coastal/Aerosol band, the trend appears to be relatively flat with 

little variation. Greater variability is apparent in early 2013 and throughout 2016 in the 

Coastal/Aerosol band, and quite noticeable in the SWIR2 band. The results suggest that 

additional corrections for seasonal variability will be needed to reduce SWIR2 band 

uncertainty. 

Based on the refined PNP technique, Super PICS trending analysis and drift estimates 

indicate that the drift is generally within 0.2% per year across all spectral bands. 
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Figure 4.14. BRDF PNP Super PICS trending for 6 PICS (VNIR and SWIR1 bands). 

 

Figure 4.15. BRDF PNP Super PICS trending for 6 PICS for C/A and SWIR2 bands. 
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The same statistical analysis performed for the initial PNP Super PICS dataset was 

performed for the BRDF corrected Super PICS dataset. The results of this analysis are 

given in Table 4.17, and in general appear to be consistent with the results from the 

previous analysis. For the Coastal/Aerosol, Blue, Green and SWIR1 bands the estimated 

drifts are less than 0.1% per year. For the Red, NIR and SWIR2 the estimated drift is on 

the order of 0.15% to 0.2% per year. For all spectral bands, the corresponding temporal 

uncertainties for the Super PICS dataset are on the order of 2%. For all spectral bands 

except NIR, the p-values are significantly higher for the BRDF corrected Super PICS 

dataset than for the initial PNP Super PICS dataset. The differences are most significant 

in the Coastal/Aerosol and Blue bands, where the p-values increase from approximately 

(0.07, 0.15) for the initial dataset to approximately (0.38, 0.53) for the BRDF corrected 

dataset. Significant increases can also be seen in the SWIR1 and SWIR2 bands, where 

the p-values increase from approximately (0.005, 0.0004) for the initial dataset to 

approximately (0.08, 0.1) for the BRDF corrected dataset. These differences suggest that 

removal of BRDF effects provide better results of slope test for all spectral bands.  

BRDF-PNP 
Super PICS 

C/A Blue Green Red NIR SWIR1 SWIR2 

%Drift/year -0.09 -0.07 -0.09 -0.13 -0.14 -0.06 -0.17 

2Sigma 0.21 0.22 0.14 0.13 0.09 0.07 0.20 

p-value 
Slope = 0 

0.3765 0.5330 0.2273 0.0454 0.0021 0.0794 0.0964 

Uncertainty 2.05% 2.07% 1.38% 1.26% 0.91% 0.66% 1.93% 

 

             Table 4.17 BRDF PNP Super PICS statistical analysis for the estimation of drift for OLI. 
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4.2.3 BRDF corrected PNP Drift Estimates for OLI:  

Gain drift in percentage per year is estimated from trending of individual BRDF PNP 

PICS data, the weighted average of the BRDF PNP PICS data and the combined BRDF 

Super PICS data. Table 4.18 gives the estimates for all BRDF PNP PICS along with the 

estimates for the weighted average and BRDF Super PICS dataset, Table 4.19 shows the 

corresponding 2-sigma uncertainties.  

Percentage drift per year for BRDF PNP analysis 

BRDF 
PNP 
Drift 

Libya-4 Libya-1 Niger-1 Niger-2 
Sudan-

1 
Egypt-1 W.avg 

BRDF 
Super 
PICS 

C/A -0.46 0.70 -0.12 -0.54 -0.26 0.19 -0.21 -0.09 

Blue -0.56 0.66 -0.05 -0.53 -0.16 0.32 -0.17 -0.07 

Green -0.46 0.09 0.09 -0.47 -0.08 0.37 -0.10 -0.09 

Red -0.37 -0.20 0.09 -0.49 -0.07 0.30 -0.16 -0.13 

NIR -0.33 -0.13 -0.01 -0.43 -0.05 0.11 -0.15 -0.15 

SWIR1 -0.14 -0.08 -0.01 -0.14 0.01 -0.02 -0.09 -0.06 

SWIR2 -0.36 -0.29 0.13 -0.42 -0.24 0.18 -0.19 -0.17 

 

Table 4.18 Percentage drift per year for each PICS using BRDF PNP technique. 

2 sigma values for BRDF PNP analysis 

BRDF 
PNP  

2-sigma 
Libya-4 Libya-1 Niger-1 Niger-2 

Sudan-
1 

Egypt-1 W.avg 
BRDF 
Super 
PICS 

C/A 0.25 0.82 0.35 0.76 0.39 0.36 0.68 0.21 

Blue 0.28 0.80 0.36 0.78 0.37 0.39 0.69 0.22 

Green 0.29 0.41 0.29 0.38 0.23 0.40 0.46 0.14 

Red 0.26 0.27 0.26 0.29 0.28 0.40 0.41 0.13 

NIR 0.17 0.18 0.20 0.24 0.18 0.29 0.29 0.09 

SWIR1 0.13 0.19 0.24 0.12 0.15 0.17 0.18 0.07 

SWIR2 0.43 0.41 0.47 0.52 0.48 0.55 0.54 0.20 

 

Table 4.19 2-Sigma values for each PICS using BRDF PNP technique. 

BRDF correction of the original image data can reduce the scatter of data and greatly 

improve the result of trending analysis and drift estimation. The BRDF effect appears to 
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be band-dependent, as BRDF correction generally result in lower estimated drift in the 

longer wavelength bands. In the shorter wavelength bands, the effect may also be site-

dependent. For the Libya-4 PICS, the result of drift estimates has decreased significantly 

for all spectral bands; in the Blue band, the estimated drift decreases from approximately 

-0.8% per year with the initial PNP technique to -0.55% per year with the BRDF corrected 

PNP technique. On the other hand, for the Libya-1, Niger-2 and Sudan-1 PICS, the 

estimated drifts in the Coastal/Aerosol and Blue bands have increased with the BRDF 

PNP technique. For the Coastal/Aerosol band in Libya-1, the estimated drift is 

approximately -0.13% per year with the initial PNP technique; with the BRDF corrected 

PNP technique it is approximately -0.70% per year.  

Overall, the drift estimates for the BRDF Super PICS dataset have decreased for all 

spectral bands, from within -0.3% per year to within -0.2% per year. A similar decrease 

can also be seen for the BRDF corrected weighted average method, from within -0.35% 

to -0.25% per year for all spectral bands. Finally, the drift estimates for the BRDF 

corrected PNP technique with super PICS dataset in all spectral bands tend to be lower 

than the corresponding BRDF corrected weighted average estimates. Figure 4.16 shows 

the combined plot of these estimates. 
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Figure 4.16. % Drift comparison for BRDF PNP from each PICS, weighted avg. & 

Super PICS. 

4.3 BRDF corrected PNP Uncertainty Analysis:  

Worst-case bin Analysis: 

This Section shows the effect of the number of histogram bins on the resulting optimal 

region for each PICS, as derived according to the “worst-case number of bins” uncertainty 

analysis described in Section 3.3.2. The analysis is performed using the BRDF corrected 

image data. Recall that equations (6a) – (9) from Section 3.1.2 are used to generate the 

optimal regions. For all PICS, 10, 15, 20, and 30 are used as the selected number of bins 

when generating the histograms. 

The summary results for each PICS are presented as follows: 

1. Figures showing the optimal region resulting from histograms with a given number of 

bins. 
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2. Tables showing the mean TOA reflectance in the ROI selected from the optimal 

region. Values in blue indicate the ROI optimal value used to derive the trending 

results presented in this chapter. Values in green indicate the mean TOA reflectance 

derived from the “worst-case number of bins” analysis. 

3. Figures showing the percentage difference between the ROI TOA reflectance mean 

used for trending purposes, and the TOA reflectance calculated from the stable region 

given a specific number of histogram bins. 

4. A given number of histogram bins is considered the “worst-case” estimate if the 

percentage difference in ROI mean TOA reflectance and stable region mean TOA 

reflectance is greatest in at least 2 bands.  

4.3.1 Libya-1:  

 Figures 4.17 (a) – (d) show the optimal area mask generated for the Libya-1 PICS. The 

region generated from the 10 and 30 bin histogram analyses has a prominent “tail” at the 

southeast corner; with a histogram using 10 bins, the resulting tail extends to the southern 

border of the site. The tail is much less pronounced in the regions derived from the 15 

and 20 bins histogram analyses. The region generated from the 20 bins analysis appears 

to be most consistent with the region shown in Figure 4.1, which was generated using the 

initial PNP technique.    

Libya-1 C/A Blue Green Red NIR SWIR1 SWIR2 

BRDF ROI 0.1997 0.2106 0.3059 0.4899 0.6338 0.7541 0.6293 

Bin10 0.2013 0.2122 0.3053 0.4914 0.6376 0.7589 0.6308 

Bin15 0.2013 0.2124 0.3057 0.4924 0.639 0.7604 0.6319 

Bin20 0.2014 0.2124 0.3056 0.4925 0.6393 0.7606 0.6317 

Bin30 0.2013 0.2124 0.3056 0.4924 0.6392 0.7606 0.6318 

 

Table 4.20 BRDF OAM mean values for (different bins & selected ROI) Libya-1. 
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Table 4.20 gives the optimal mean TOA reflectance for the selected Libya-1 ROI, as 

derived from equations (10) – (12). Overall, the difference between the ROI optimal mean 

TOA reflectance and the TOA reflectance estimates from the “worst- number of bins” 

analysis for Libya-1 are less than 1% for all selected number of bins. These differences 

are shown in Figure 4.18. The Green and SWIR2 bands show the smallest differences, 

suggesting that for this PICS, the Green and SWIR2 bands are relatively insensitive to 

changes in the number of histogram bins. 

 

                            a)  Histogram of 10 bins                                 b)Histogram of 15 bins 

     

                                 c)  Histogram of 20 bins                                     d) Histogram of 30 bins 

                  Figure 4.17. OAM within the Libya-1 PICS for different number of histogram bins. 
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Figure 4.18. “Worst-case bin analysis” (sensitivity test) for Libya-1 site.  

4.3.2 Sudan-1: 

Figures 4.19 (a) – (d) show the optimal area mask generated for the Sudan-1 PICS. 

Overall, the BRDF corrected OAM regions are similar; some differences can be seen due 

to the varying number of histogram bins used in the analysis. Each of the BRDF corrected 

regions cover more area than the region shown in Figure 4.2 that was generated with the 

initial PNP technique. This can be most clearly observed with the northern area of the 

region. In Figure 4.2, only a slight tail in the western portion is present. In all of the 

regions derived from BRDF corrected data, the western part of that area has almost 

completely filled in. The optimal mean BRDF TOA reflectance values for corresponding 

regions were shown in Table 4.21.   

Figure 4.20 shows the difference between the optimal mean TOA reflectance value for 

the selected ROI and the TOA reflectances derived from the ““worst-case number of 

bins” analysis. As might be expected, the greater sensitivity to changes in the optimal 

region boundaries corresponds to greater variability in the resulting optimal mean TOA 

reflectances, on the order of 1.05% for all 7 bands. For this PICS, the Green, Red, and 

SWIR1 bands appear to be more sensitive to changes in the number of histogram bins. 
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                      a)  Histogram of 10 bins                                b)Histogram of 15 bins 

  

                      c)  Histogram of 20 bins                                d) Histogram of 30 bins 

                    Figure 4.19. OAM within the Sudan-1 PICS for different number of histogram bins.  

Sudan-1 C/A Blue Green Red NIR SWIR1 SWIR2 

BRDF 
ROI 

0.2175 0.2293 0.3181 0.4669 0.5820 0.7245 0.6738 

Bin10 0.2177 0.2307 0.3215 0.4731 0.5845 0.7166 0.6703 

Bin15 0.2169 0.2298 0.3209 0.4734 0.585 0.7183 0.6718 

Bin20 0.2171 0.2301 0.3213 0.4735 0.585 0.7173 0.6713 

Bin30 0.2176 0.2304 0.3206 0.4713 0.5828 0.7169 0.6703 

 

     Table 4.21 BRDF OAM mean values for (different bins & selected ROI) Sudan-1. 
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Figure 4.20. “Worst-case bin analysis” (sensitivity test) for Sudan-1 site. 

4.3.3 Niger-1: 

Figures 4.21 (a) – (d) show the optimal area mask generated for the Niger-1 PICS. In 

general, the region is confined to the center part of the site. Among the BRDF corrected 

regions, the region generated from the 10 bin analysis is clearly the smallest area, and is 

smaller in area than the region shown in Figure 4.3 generated with the initial PNP 

technique.  This can be seen in the gap at the center of the region. With 10 histogram bins, 

the gap almost cuts the region into two parts; with more than 10 bins, the gap only extends 

to the center of the region. Table 4.22 shows the coresponding optimal mean TOA 

reflectance values.   
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                           c)  Histogram of 20 bins                                d) Histogram of 30 bins 

Figure 4.21. OAM within the Niger-1 PICS for different number of histogram bins.  

Niger-1 C/A Blue Green Red NIR SWIR1 SWIR2 

BRDF 
ROI 

0.2334 0.2455 0.3262 0.4720 0.5967 0.7312 0.6526 

Bin10 0.2346 0.2468 0.3289 0.4727 0.5982 0.7323 0.6521 

Bin15 0.2332 0.2451 0.3265 0.4708 0.5964 0.7314 0.6513 

Bin20 0.2345 0.2466 0.3284 0.4724 0.5981 0.7324 0.6522 

Bin30 0.2336 0.2456 0.3276 0.4723 0.5981 0.7325 0.6524 

  

 Table 4.22 BRDF OAM mean values for (different bins & selected ROI) Niger-1. 

 

Figure 4.22. “Worst-case bin analysis” (sensitivity test) for Niger-1 site. 
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Figure 4.22 shows the difference between the optimal mean TOA reflectance value for 

the selected ROI and the TOA reflectances derived from the “worst-case bin number of 

bins” analysis. The differences for this PICS are greater in the shorter wavelength bands. 

However, none of the differences exceed 1%. The smallest differences are found in the 

longer wavelength bands, where the differences for all selected number of bins are less 

than 0.3%.  

4.3.4 Egypt-1: 

 

               a)  Histogram of 10 bins                               b)Histogram of 15 bins 

 

                     c)  Histogram of 20 bins                       d) Histogram of 30 bins 

Figure 4.23. OAM within the Egypt-1 PICS for different number of histogram bins. 
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Figures 4.23 (a) – (d) show the optimal area mask generated for the Egypt-1 PICS. Among 

the BRDF regions generated from BRDF corrected data, the boundary is consistent with 

respect to the number of histogram bins used in the analysis. When compared to the region 

generated using the initial PNP technique (shown in Figure 4.4), there is a significant 

difference; the region generated from the BRDF corrected data extends much further to 

the northwest. The Table 4.23 shows the coresponding optimal mean TOA reflectance 

values.  Figure 4.24 shows the difference between the optimal mean TOA reflectance 

value for the selected ROI and the TOA reflectances derived from the “worst-case number 

of bins” analysis. The estimated TOA reflectances are consistently smaller than the ROI 

optimal mean TOA for all 7 bands, across all selected number of histogram bins. Overall, 

the differences are on the order of 1 

Egypt-1 C/A Blue Green Red NIR SWIR1 SWIR2 

BRDF 
ROI 

0.2312 0.2449 0.3299 0.4633 0.5979 0.7273 0.6482 

Bin10 0.2306 0.2440 0.3272 0.4592 0.5939 0.7222 0.6448 

Bin15 0.2293 0.2427 0.3268 0.4596 0.5945 0.7227 0.6435 

Bin20 0.2287 0.242 0.3263 0.4593 0.594 0.7228 0.6433 

Bin30 0.2307 0.2442 0.3274 0.4595 0.5941 0.7223 0.6447 

 

Table 4.23 BRDF OAM values for (different bins & selected ROI) Egypt-1. 

 

Figure 4.24. “Worst-case bin analysis” (sensitivity test) for Egypt-1 site.  
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4.3.5 Niger-2: 

Figures 4.25 (a) – (d) show the optimal area mask generated for the Niger-2 PICS. Among 

the BRDF corrected data, the region generated using 10 histogram bins is the smallest in 

area. The southernmost part appears to fill in when using 15 and 20 bins, and thins out 

again when 30 bins are used. Interestingly, the region generated with the initial PNP 

technique is generally larger in area, and appears to be most consistent with the region 

generated with a histogram of 20 bins. Table 4.24 shows the coresponding optimal mean 

TOA reflectance values.   

         

               a)  Histogram of 10 bins                                 b)Histogram of 15 bins 

 

                c)  Histogram of 20 bins                                d) Histogram of 30 bins 

Figure 4.25. OAM within the Niger-2 PICS for different number of histogram bins. 
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Figure 4.26 shows the difference between the optimal mean TOA reflectance value for 

the selected ROI and the TOA reflectances derived from the “worst-case number of bins” 

analysis. The difference values estimated for this PICS suggest marked sensitivity to 

changes in the number of histogram bins that is somewhat inconsistent both within a band 

and across bands.  

Niger-2 C/A Blue Green Red NIR SWIR1 SWIR2 

BRDF 
ROI 

0.2233 0.2320 0.2978 0.4120 0.5151 0.6628 0.5941 

Bin10 0.2207 0.23 0.297 0.4152 0.5165 0.6626 0.5899 

Bin15 0.2214 0.2306 0.2971 0.4142 0.5156 0.6615 0.589 

Bin20 0.2232 0.2327 0.3007 0.4176 0.5204 0.6682 0.5965 

Bin30 0.2220 0.2315 0.2982 0.4150 0.5161 0.6605 0.5878 

 

Table 4.24 BRDF OAM mean values for (different bins & selected ROI) Niger-2. 

  

Figure 4.26. “Worst-case bin analysis” (sensitivity test) for Niger-2 site.  

4.3.6 Libya-4:   
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increased beyond 10. It is not currently known whether this consistency would remain if 

the number of bins is increased beyond 30. For this PICS at least, it is possible that there 

is a large “sweet-spot” in the number of bins that can be used when generating the 

histogram. The region generated with any number of histogram bins is also generally 

consistent with what was generated using the initial PNP technique. The Table 4.25 shows 

the coresponding optimal mean TOA reflectance values.  

  

              a)  Histogram of 10 bins                            b) Histogram of 15 bins 

  

               c)  Histogram of 20 bins                             d) Histogram of 30 bins 

Figure 4.27. OAM within the Libya-4 PICS for different number of histogram bins. 
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Libya-4 C/A Blue Green Red NIR SWIR1 SWIR2 

BRDF 
ROI 

0.2399 0.2613 0.3521 0.4850 0.6154 0.7205 0.6795 

Bin10 0.2409 0.2609 0.3488 0.4784 0.6113 0.7178 0.6709 

Bin15 0.2408 0.2606 0.3484 0.478 0.6105 0.7178 0.6717 

Bin20 0.2406 0.2605 0.3487 0.4784 0.6108 0.7180 0.6714 

Bin30 0.2407 0.2605 0.3485 0.4782 0.6107 0.7179 0.6714 

 

Table 4.25 BRDF OAM values for (different bins & selected ROI) Libya-4. 

Figure 4.28 shows the difference between the optimal mean TOA reflectance value for 

the selected ROI and the TOA reflectances derived from the “worst-case number of bins” 

analysis. Surprisingly, differences ranging from 1% to 1.5% are observed in the Green, 

Red, and SWIR2 bands. For all 7 bands but the Coastal/Aerosol, the ROI optimal mean 

TOA reflectances are less than the estimated mean TOA reflectances.  

 

Figure 4.28. “Worst-case bin analysis” (sensitivity test) for Libya-4 site.  

Table 4.26 shows the uncertainties of the “worst-case bin analysis” for each PICS. Among 

all the PICS, the Egypt-1 results seem to be the most sensitive to the selected number of 

histogram bins in most spectral bands. Overall, the differences were within 1.5% for all 

PICS. The largest difference, 1.4%, is observed for the Red band in Libya-4; the smallest 
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difference, 0.03%, is observed for the SWIR1 band of Niger-2. These results suggest that 

the number of bins to use when generating the histogram may be site-dependent. 

“worst-case 
bin” 

Uncertainty 

No. 
bins C/A Blue Green Red NIR SWIR1 SWIR2 

Libya-4 30 0.33% 0.31% 1.02% 1.40% 0.76% 0.36% 1.19% 

Egypt-1 20 1.08% 1.18% 1.09% 0.86% 0.65% 0.62% 0.76% 

Libya-1 30 0.80% 0.85% 0.10% 0.51% 0.85% 0.86% 0.40% 

Niger-1 10 0.51% 0.53% 0.83% 0.15% 0.25% 0.15% 0.08% 

Niger-2 10 1.16% 0.86% 0.27% 0.78% 0.27% 0.03% 0.71% 

Sudan-1 10 0.09% 0.61% 1.07% 1.33% 0.43% 1.09% 0.52% 

  

Table 4.26 “Worst-case bin analysis” Uncertainty of each PICS after BRDF PNP. 

4.4 Estimation of Final Uncertainty for BRDF corrected PNP:  

Table 4.27 shows the sources of uncertainty (units of TOA reflectance) determined for 

this technique and presents the final uncertainty estimate as determined from equation 

(24). Equation (23) was used to estimate the inherent temporal uncertainty for each band 

across all PICS. The uncertainty from the “worst-case bin analysis” is also determined as 

a spatial uncertainty which may still inhibit in the process. The final uncertainty of the 

BRDF PNP technique is estimated as better than 2% for all bands except C/A, Blue and 

SWIR2 bands. The estimated uncertainties are greater in the Coastal/Aerosol, Blue, and 

SWIR2 bands, which are within 3%. 

As mentioned before, all of the analysis results presented in this thesis are generated from 

Landsat-8 OLI image data, which has an estimated inherent uncertainty in all bands of 
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less than 3% with respect to spectral TOA reflectance [17]. For the datasets used in this 

analysis, the estimated final uncertainty is within the accepted spectral reflectance 

uncertainty for the OLI sensor. 

Uncertainty CA Blue Green Red NIR SWIR1 SWIR2 

BRDF Super 
PICS 

2.05% 2.07% 1.38% 1.26% 0.91% 0.66% 1.93% 

Bin Analysis 
(spatial) 

0.66% 0.72% 0.73% 0.84% 0.54% 0.52% 0.61% 

Temporal 
Uncertainty  
across PICS 

1.65% 1.65% 1.13% 0.95% 0.69% 0.54% 1.81% 

Final 2.71% 2.74% 1.93% 1.79% 1.26% 1.00% 2.72% 

 

Table 4.27 Estimation of final uncertainty for BRDF PNP technique. 

As mention earlier, the preceding analysis was performed using the OLI sensor. The 

results from this analysis can also be used for any other sensors by applying appropriate 

spectral band adjustment factor corrections. As an example, a commercial satellite, Planet 

Labs, is using the initial PNP technique. The results of this process will form a time series 

referenced back to Libya-4 that can be used to trend the gain of an instrument over time. 

These time series can also can be used for cross-calibration between sensors. 

Implementation of the calibration procedure developed for this project with the Planet 

Labs fleet represents a major step forward in cross-calibration of optical remote sensing 

satellites. Heretofore, cross-calibration has implicitly meant application to only a handful 

of satellites at a time—six or less. Cross-calibration of the Planet Labs flock of dozens of 

satellites is unprecedented and will provide an excellent opportunity to observe the merits 

and limitations of this approach. 
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CHAPTER 5 

CONCLUSION  

5.1 Summary:  

A new technique is presented that combines sensor observations of multiple PICS into a 

single time series dataset with greater temporal resolution. The technique was applied to 

six Saharan PICS locations selected for their temporal and spatial uniformity. OLI image 

data from five of these sites were normalized to data from the Libya-4 PICS reference. 

The temporal resolution (OLI revisit time) resulting from application of this technique 

increased by approximately a factor of three to four i.e. acquiring an image for every 3 to 

4 days. Adding correction of BRDF effects using a quadratic function of solar zenith 

angle and TOA reflectance, a calibration result consistent with current onboard and 

vicarious calibration results was achieved. With this technique, other sensors can 

potentially detect early signs of response changes through cross calibration with OLI 

(well-calibrated sensor [17]). In addition, this technique demonstrates why Libya-4 is 

considered a suitable reference PICS, not only due to its spatial and temporal stability, 

but also due to its largest 3% temporal, spatial and spectral region.  

Using the initial PNP technique, the estimated drift for the Super PICS dataset was on the 

order of -0.25% per year for the VNIR and SWIR1 bands and -0.4% per year for the 

SWIR2 band. Using the BRDF corrected PNP technique, the estimated drifts were on the 

order of -0.15% per year. BRDF correction reduced the estimated drifts by approximately 

50%. These reduced drift estimates agree well with the on-board calibrator estimates 

shown in [24]. The corresponding Super PICS uncertainties for both methods were on the 
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order of 2% for all solar reflective bands. For most bands, the PNP weighted average drift 

estimates were normally larger at shorter wavelengths and at longer wavelengths they 

tend to be same as PNP Super PICS estimates. The weighted average drift estimates were, 

surprisingly, worse in all bands when using the BRDF corrected PNP technique. Based 

on the results of this analysis, it appears that calibration drift is better estimated using the 

combined BRDF Super PICS dataset rather than the BRDF weighted average of all data. 

However, the results of the uncertainty analysis described in this chapter might not 

include the uncertainty of the sensor itself. Correlation may occur between the target and 

sensor which was not included in this thesis. If there is a correlation then, it will need to 

be included in equation (24). 

5.2 Directions for Future work:  

With the PNP and Refined PNP techniques described in this thesis, BaseMaps were 

calculated using 12 months of image data from 2015 for all 7 solar reflective bands. The 

resulting super PICS trend exhibits the least variability during that particular period, as 

shown in Figure 5.1 for the Green band (DSL 750 to DSL 1050). The variability in other 

years appears to be amplified. One potential enhancement to this technique is to derive 

the BaseMaps using the lifetime archive of cloud-free image data.   

For the Refined PNP technique, the BRDF correction models include a linear term. The 

analysis described in Section 3.2.1 suggests the linear term may contribute little if 

anything to the overall BRDF response. The technique could be rerun with BRDF 

correction models generated with only the quadratic and constant terms, and compared to 

the new results with the current technique. 
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Figure 5.1. Zoom view of BRDF Super PICS results for Green band. 

 

 
Figure 5.2. Aerosol optical depth and Atmospheric pressure over Libya-1 PICS. 

The Super PICS trend data in Figure 5.1 shows residual seasonal variation, particularly 

in 2013. This variation is even more pronounced in the SWIR2 band. The seasonal 

variation is impacted by water vapor coming from the Mediterranean Sea, as well as 

perhaps sand and other dryer aerosol components.  The technique as currently 

implemented may average out some of this variation. A further enhancement would 

include explicit correction of atmospheric effects.  
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From Figures 4.12 and 4.13, it has been clearly observed that the aerosol effect on recent 

image data for Libya-1 PICS suggests that the correction should be needed. Figure 5.2 

shows the aerosol and atmospheric pressure effects at Libya-1 PICS. 

Even though Libya-4 is currently the reference PICS for most calibration analyses, it 

appears to be showing more drift than expected. The maximum drift for this site was 

estimated on the order of -0.8% per year using the initial PNP technique, as shown in 

Table A.1 in the Appendix; the maximum estimated drift using the BRDF corrected PNP 

technique was estimated on the order of -0.6% per year, as shown in Table A.2. Leigh 

and Tabassum [25] identified the most temporally stable locations in North Africa for 

each individual reflective OLI band (Coastal, Blue, Green, Red, NIR, SWIR1, SWIR2) 

using the first three years of image data. These locations, shown in Figure 5.3, may be 

found to exhibit less drift than Libya-4, suggesting they would be a better choice for a 

reference PICS; at the very least, they could be useful as additional PICS to further 

enhance temporal resolution. It might be possible to group these sites into “dark” PICS 

and “bright” PICS and run this technique on both sets. This analysis could further improve 

overall calibration accuracy, as more of a sensor’s dynamic range would be considered.   

 
 

Figure 5.3. Most stable regions in North Africa for all 7 spectral bands [25]. 
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APPENDIX A 

A.1 Data Location for PNP Project:  

All the results for this project are located in the SDSU Image Processing Lab 

‘iplabstorage (Z)’ drive PNP folder. 

1. Common for both L1T and BRDF Corrected Dataset:  

Selected Image Dates: Z:\PNP\Basemap_image_dates\ PICSName_basemap_dates.txt 

Geometrical Information for Selected L1T Images: 
Z:\PNP\SubR\Ratiocal\PICSName\ 

ROI Location: Z:\PNP\ROI_Location\ PICSName_ROI_OPT.txt 

Cloud-Free TOA Reflectance: Z:\PNP\cloudfree_TOA\ 

PICSName_cloudfree_TOA.mat 

MATLAB Master Codes: Z:\PNP\MasterCodes\ 

2. L1T PNP data:  

Trending Analysis: Z:\PNP\MasterPNP\ Normalized_AllPICS.xlsx 

Z:\PNP\MasterPNP\ Master_SuperPICS.xlsx 

PNP output data: Z:\PNP\MasterPNP\PICSName\ 

3. BRDF corrected PNP Data:  

BRDF Coefficients: Z:\PNP\BRDF_Coeffs\ PICSName_L8_BRDFcoeffs.txt 

Solar Zenith Angles for Selected Images: 

Z:\PNP\sunzenith_angles\PICSName_sunzenith.txt 

BRDF corrected TOA Reflectance:  

Z:\PNP\MasterBRDFPNP\ PICSName_BRDF_corrected_TOA.mat 

BRDF Corrected PNP output data: Z:\PNP\MasterBRDFPNP\PICSName\ 

Trending Analysis: Z:\PNP\MasterBRDFPNP\ Normalized_AllPICS.xlsx 

Z:\PNP\MasterBRDFPNP\ Master_SuperPICS.xlsx 

Drift Estimates and Worst-case bin Analysis:  

Z:\PNP\MasterBRDFPNP\Drift for Individual PICS.xlsx 

BRDF PNP output data: Z:\PNP\MasterBRDFPNP\PICSName\ 
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