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Abstract. Spatially explicit land cover land use (LCLU)
change information is needed to drive biogeochemical mod-
els that simulate soil organic carbon (SOC) dynamics. Such
information is increasingly being mapped using remotely
sensed satellite data with classification schemes and un-
certainties constrained by the sensing system, classification
algorithms and land cover schemes. In this study, auto-
mated LCLU classification of multi-temporal Landsat satel-
lite data were used to assess the sensitivity of SOC modeled
by the Global Ensemble Biogeochemical Modeling System
(GEMS). The GEMS was run for an area of 1560 km2 in
Senegal under three climate change scenarios with LCLU
maps generated using different Landsat classification ap-
proaches. This research provides a method to estimate the
variability of SOC, specifically the SOC uncertainty due to
satellite classification errors, which we show is dependent
not only on the LCLU classification errors but also on where
the LCLU classes occur relative to the other GEMS model
inputs.

1 Introduction

Africa is experiencing rapid and substantial social, eco-
nomic, climatic and environmental change (Brooks, 2004;
Challinor et al., 2007; IPCC, 2007; Nkonya et al., 2011).
Soil carbon is important in West African drylands for soil
fertility and agricultural sustainability and the influence of
land management under changing climate on soil carbon is
of particular interest (Batjes, 2001; Lal, 2004; Tieszen et
al., 2004). Biogeochemical model simulations of carbon dy-

namics in vegetation and soil in response to changes in land
cover and land use (LCLU), land management and climate
increasingly use spatially explicit LCLU data derived from
satellite remote sensing (Turner et al., 2000; Liu et al., 2004;
Kennedy et al., 2006; Liu et al., 2008; Tan et al., 2009).
There is a recognition however that errors in satellite de-
rived LCLU data, both in terms of classification errors and
the degree of generalization of the landscape into the dif-
ferent LCLU classes, and differences between LCLU data
sources and land cover classification approaches, may prop-
agate into model outputs (DeFries et al., 1999; Reich et al.,
1999; Turner et al., 2000; Quaife et al., 2008).

Remotely sensed satellite data have been used extensively
to map land cover (Tucker et al., 1985; Pickup et al., 1993;
Lambin and Strahler, 1994) although human influences are
difficult to discern reliably except when using high spa-
tial resolution data (Townshend and Justice, 1988). Conse-
quently, high spatial resolution data, in particular from the
Landsat satellite series, have been used for mapping land
cover change over decadal periods (Skole and Tucker, 1993;
Gutman et al., 2008). Satellite classification by visual photo
interpretation is not suited to mapping large areas on the con-
sistent and repeated basis required for long term monitor-
ing. Automated techniques that use digital computer pro-
cessing and statistical classification approaches largely over-
come this issue, but also do not provide error free classifi-
cations. Furthermore, it is not usually possible to reliably
map land use, i.e. the land’s social, economical, and cul-
tural utility, using automated techniques (Turner et al., 1997).
In semi-arid areas, such as the West African Sahel, satellite
land cover classification is particularly challenging because
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the vegetation types may be sparsely distributed across vari-
able soil backgrounds and because they frequently transition
and mix across the landscape at scales finer than the satellite
pixel dimension (Frederiksen and Lawesson, 1992; Prince
et al., 1990; Lambin and Ehrlich, 1997). Further, semi-arid
vegetation often exhibits a marked seasonality in photosyn-
thetic activity and leaf area in response primarily to seasonal
precipitation, making the selection of appropriate satellite ac-
quisitions important (Hiernaux and Justice, 1986).

The General Ensemble biogeochemical Modeling System
(GEMS) is a well-established biogeochemical model devel-
oped for spatially and temporally explicit simulation of bio-
geochemical cycles (Liu et al., 2004; Tan et al., 2009). In this
paper the sensitivity of GEMS modelled soil organic carbon
to satellite LCLU mapping uncertainties is quantified for a
semi-arid Sahelian region of Senegal. Supervised decision
tree classification approaches are used to map LCLU from
multi-temporal Landsat satellite data which are used to drive
sapatially explicit maps of GEMS soil organic carbon under
different climate change scenarios. A description of the study
area (Sect. 2), the Landsat data and pre-processing (Sect. 3)
and the GEMS input data and parameterization (Sect. 4) are
described. This is followed by description of the LCLU
classification (Sect. 5) and carbon modeling and sensitivity
analysis methodologies (Sect. 6). The results are presented
and discussed (Sect. 7), preceding the concluding remarks
(Sect. 8).

2 Study area

The study area is located in the north of Senegal, bordered by
the Senegal River to the North and the Atlantic Ocean to the
west, with the southern edge 100 km north of Dakar (Fig. 1).
It covers 1560 km2 lying between 15◦24′ to 17◦00′ W and
15◦00′ to 16◦42′ N. The area has a semi-arid climate with
a single rainy season from June–July through September–
October; average rainfall decreased from 400–600 mm in the
1960s to 200–400 mm in the 1990s, mean monthly tempera-
ture varies from 24.5◦C in January to 31.9◦C in May (Fall
et al., 2006).

The study area includes a wide range of land covers and
land uses, and consequently soil organic carbon, making it
appropriate for the sensitivity analysis described in this pa-
per. Most agricultural activities in the study area are un-
dertaken during the rainy season, planting occurs in June
followed by harvesting in late October through November.
Flood recession farming is practiced in the Senegal River val-
ley and irrigated crop production, largely dominated by veg-
etable production, is practiced where groundwater is avail-
able elsewhere. The dominant natural vegetation species
are, trees:Acacia raddiana, Balanites aegyptica, Sclero-
carya birrea, Combretum glutinosum, Adansonia digitata
(boabab tree); shrubs:Guiera senegalensis, Boscia sene-
galensis, Calotropis procera;and grasses include primar-

 1

Figure 1 Landsat 28.5m hard decision tree classification of the study area in north-
western Senegal, covering 1560 km2 lying 15º24’ - 17º00’ W and 15º00’ - 16º42’ N.  Dry 
and wet season 2002 Landsat data were classified using a bagged decision tree 
classification procedure into 9 land cover land use classes (plantation forest, water, bare 
soil, rainfed agriculture, wetlands, mangrove, mud flats, irrigated agriculture, and 
savanna grassland). The study area is shown bounded by a black vector. White shows 
unclassified (clouds, cloud shadows, settlement areas, or no Landsat data). The 
boundaries of the four main agro-ecological zones (I: Niayes; II: Peanut Basin; III: Sandy 
Ferlo; and IV: Senegal River Valley) are shown as red vectors. 
 

 
 
 
 
 
 
 
 
 

Fig. 1. Landsat 28.5 m hard decision tree classification of the study
area in north-western Senegal, covering 1560 km2 lying 15◦24′–
17◦00′ W and 15◦00′–16◦42′ N. Dry and wet season 2002 Landsat
data were classified using a bagged decision tree classification pro-
cedure into 9 land cover land use classes (plantation forest, water,
bare soil, rainfed agriculture, wetlands, mangrove, mud flats, irri-
gated agriculture, and savanna grassland). The study area is shown
bounded by a black vector. White shows unclassified (clouds, cloud
shadows, settlement areas, or no Landsat data). The boundaries of
the four main agro-ecological zones (I: Niayes; II: Peanut Basin;
III: Sandy Ferlo; and IV: Senegal River Valley) are shown as red
vectors.

ily Cenchrus biflorus, Schoenefeldia gracilisandDactylocte-
nium aegyptium. In order to summarize the region succinctly
we refer to the Senegalese agro-ecological zones (also known
as ecoregion) defined by Tappan et al. (2004). The study area
encompasses four zones, and these are illustrated in Fig. 1
and are described below.

The smallest ecoregion (2 % of the study area), is a nar-
row strip of land (10 to 30 km wide) along the Atlantic coast
(120 km) from Saint-Louis to Dakar. The predominant soils
are ferruginous tropical sandy soils, deep and well drained,
low in organic matter and mineral content (Tappan et al.,
2004). The ecoregion is characterized by geomorphologi-
cal features composed of active littoral and stabilized con-
tinental sand dunes that alternate with longitudinal depres-
sions. The sand dunes support shrub savanna used by pas-
toralists as gazing land. The longitudinal depressions, lo-
cally calledniayes, have given their name to the region as
a whole, and are used for irrigated agriculture owing to the
shallow water table accessed by artisanal wells. The main
irrigated agricultural land use is market gardening, primarily
carrots, onions, and cabbages, for sale in Dakar. Beginning
in the early 1980’s, coastal sand dune stabilization projects
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planted drought-tolerant Whispering Pine (Casuarina equi-
setifolia) which cover much of the coastal zone from Dakar
to Saint-Louis (Tappan et al., 2004; CSE, 2005). A second
ecoregion, lying east of the smallest ecoregion, and covering
45 % of the study area, includes much of thepeanut basin,
an area dedicated since the 1880s to groundnut cultivation.
The predominant soils are slightly leached ferruginous trop-
ical sandy soils lying in the plateau of the continental sedi-
mentary basin. The main crops are millet, groundnuts, and
sorghum in acacia tree parkland, which have replaced all ves-
tiges of the pre-colonial woodland savanna landscape (Tap-
pan et al., 2004). A third ecoregion, lying in the north east
(east of Lake Guiers, Fig. 1) and covering 43 % of the study
area, is thesandy ferlo. It constitutes Senegal’s main sylvo-
pastoral zone, an area that is generally too dry for crop pro-
duction, with mean annual precipitation less than 200 mm.
The vegetation is composed of open grasslands with scat-
tered shrubs and predominantly acacia trees on red-brown
sandy and ferruginous tropical sandy soils. The last ecore-
gion (11 % of the study area) is the Senegal River Valley, a
floodplain previously covered by riverine woodland, today
used for irrigated-agricultural projects that pump water from
the Senegal River onto extensive rice and sugarcane fields.
The predominant soils are hydromorphic and vertic with a
sandy, clay loam, and clay. The natural vegetation is open
steppe, shrub steppe, and riparian acacia woodland.

3 Satellite data

3.1 Landsat data

Landsat Enhanced Thematic Mapper Plus (ETM+) satellite
data were used in this study. All six 28.5 m reflective, the
two 57 m thermal (low and high gain), and the single 15 m
panchromatic bands were used. Each ETM+ scene is approx-
imately 180× 180 km and is defined in the UTM coordinate
system and referenced by a unique Landsat Worldwide Ref-
erence System (WRS-2) path and row coordinate (Arvidson
et al., 2001).

Multi-temporal satellite data provide improved land cover
classification accuracies over single-date classifications if the
acquisitions capture seasonal and agricultural differences (Lo
et al., 1986; Schriever and Congalton, 1993). Consequently,
in this study two Landsat ETM+ scenes, acquired in 2002 in
the early wet season (21 June) and the dry season (30 De-
cember) over the study area, WRS-2 scene path 205 row 49,
were used. These acquisitions were selected because they
were the only available scenes with very low (<1 %) cloud
cover. They are considered to be representative of the year
2000 in the subsequent GEMS modeling.

3.2 Landsat data pre-processing

Landsat data are affected by several factors that need to
be corrected before multi-date data can be compared reli-

ably (Coppin et al., 2004). In this study, corrections for
radiometric, atmospheric and geometric effects were under-
taken. The ETM+ reflective bands were converted from dig-
ital numbers to at satellite reflectance using the best avail-
able ETM+ calibration coefficients and standard correction
formulae taking into account the solar constant (Markham
and Baker, 1986). The thermal bands were similarly con-
verted from digital numbers to effective at satellite tempera-
ture using standard coefficients and Planck function formu-
lae (USGS, 2001). The impact of the atmosphere is vari-
able in space and time and is usually considered as requir-
ing correction for quantitative and change detection applica-
tions (Ouaidrari and Vermote, 1999; Coppin et al., 2004).
Several Landsat atmospheric correction methods have been
proposed, with the dark-object subtraction (DOS) method
widely used due to its methodological simplicity (Chavez,
1996). In the DOS approach, atmospheric path radiance is
assumed to be equal to the radiance sensed over dark ob-
jects, such as dense vegetation or water, and is subtracted
from each band. In this study, each Landsat acquisition was
normalized using a dark object subtraction method to reduce
scene-to-scene and within scene radiometric variations asso-
ciated with atmospheric, phenological, and sun-sensor-target
geometric variations. Surface reflectances were computed in-
dependently using inland water bodies and a small number
of cloud shadows as dark objects. Clouds and cloud shad-
ows were screen digitized manually and not considered in
the subsequent analysis as they preclude optical wavelength
remote sensing of the surface and deleteriously contaminate
surface reflectance (Roy et al., 2010).

The two ETM+ acquisitions had already been ortho-
rectified following established procedures (Tucker et al.,
2004). However, to ensure precise sub-pixel co-registration,
an image-to-image registration was performed using 25
ground control points identified in both scenes, and the De-
cember image was nearest neighbor resampled into refer-
ence with the June acquisition using a first-order polynomial
warping transformation. The two 57 m at satellite tempera-
ture bands and the six 28.5 m at satellite reflectance bands
were resampled in this way to 28.5 m to provide the same
image spatial dimensions needed for the subsequent image
classification.

4 GEMS model, input data and parameterization

4.1 GEMS model overview

The General Ensemble biogeochemical Modeling Sys-
tem (GEMS) was developed from the CENTURY model
(Metherell et al., 1993) to enable integration of spatially ex-
plicit GIS data, including land cover, soils, climate, and land
management practice information (Liu et al., 2008). CEN-
TURY is an established plant-soil ecosystem model that sim-
ulates the dynamics of carbon, nitrogen, and phosphorus
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in various ecosystems including grassland, forest, savanna,
and crop systems (Metherell et al., 1993; Parton et al.,
2004). The input parameters comprise site specific biophysi-
cal data, plant characteristics, and management data, includ-
ing monthly precipitation, monthly maximum and minimum
air temperature, soil texture, bulk density, drainage, water
holding capacity, cropping systems, fertilization, cultivation,
harvesting, grazing, tree removal, and natural disturbances
such as fire (Parton et al., 2004; Liu et al., 2004). GEMS
couples CENTURY with various spatial databases to simu-
late biogeochemical cycles over large areas (Liu et al., 2004;
Liu et al., 2008).

GEMS consists of three major components: an encapsu-
lated ecosystem biogeochemical model (i.e., CENTURY), a
data assimilation system (DAS), and an input/output proces-
sor (IOP). GEMS uses a Monte-Carlo based ensemble ap-
proach to incorporate the variability of state and the driving
variables of the underlying biogeochemical models into sim-
ulations. Geographic information system software (ESRI,
2007) are used to group pixels that have the same combi-
nation of spatially explicit input data values. Each combi-
nation is described by a joint frequency distribution (JFD)
that is used by the DAS to relate the spatially explicit data
and model input parameters using look-up-tables (Liu et al.,
2004). The IOP incorporates the assimilated data to the mod-
eling processes and in return writes the selected output vari-
ables to a set of output files after each model run. The main
output variable of interest for this study is the total soil or-
ganic carbon (SOC) (gCm−2) in the top 0–20 cm soil layer.
Soil organic matter is a key indicator of soil quality and is
most usually determined by application of conversion factors
to estimates of the soil organic carbon to some prescribed
depth (Lal, 2004). The GEMS model includes three soil
organic matter pools (active, slow and passive) with differ-
ent potential decomposition rates of turnover: fast turnover
(active SOM), intermediate turnover (slow SOM) and slow
turnover (passive SOM) (Metherell et al., 1993).

In this study, 20 repeat GEMS model runs for each of
1081 JFDs were computed to incorporate the uncertainty of
the input data and to provide stable spatially explicit soil
organic carbon (SOC) estimates (Liu et al., 2004; Liu et
al., 2008). Similarly, above ground net primary production
(NPP) (gCm−2 yr−1) estimates were derived to check that
the SOC and NPP values were plausible and spatially co-
herent. The GEMS model inputs are described below for
the spatially explicit input data and the GEMS look up ta-
ble parameterizations. In this study only the sensitivity of
GEMS modeled SOC to land cover land use (LCLU) classi-
fication uncertainties are examined. Errors in the other input
data and model parameterizations are not explicitly exam-
ined. Although, errors in the vegetation biomass and land
management parameterizations are likely to be correlated to
LCLU errors, other errors may change in space and time in
ways that are only weakly correlated to LCLU.

4.2 GEMS spatially explicit input data

4.2.1 Land Cover Land Use (LCLU) data

Spatially explicit 28.5 m LCLU maps representing the year
2000 were derived by multiple classifications of the Landsat
ETM+ satellite data using a number of approaches described
in detail in Sect. 5.

4.2.2 Climate data

Spatially and temporally explicit climate data were defined
using 37 years of monthly average precipitation and min-
imum and maximum air temperature data defined in 0.05
degree grid cells (Hutchinson et al., 1996) nearest neighbor
resampled to the 28.5 m Landsat pixel dimensions. These
monthly data were available for the period 1960–1996
and were used to “spin-up” the GEMS model to 1900
equilibrium, and then to run the GEMS model from 1990 to
2000 and to run the GEMS model for three future climate
scenarios from 2000 to 2052. The future climate scenarios
(no change, low and high change) were developed following
the approach developed by Hulme et al. (2001) who assessed
possible future (2000–2100) changes in temperature and
rainfall for Africa using seven global climate models. The
Hulme et al. (2001) approach and results are considered (Tan
et al., 2009) to be compliant and comparable with those from
the IPCC Fourth Assessment Report (Christensen et al.,
2007). Monthly climatologies of the 1960–1996 precipita-
tion and minimum and maximum air temperature data were
derived (i.e. 12 monthly values per 28.5 m Landsat pixel).
The no climate change scenario (NCCS) simply used the
same monthly values of these data for each month of 2000
to 2052. The low climate change (LCCS) and high climate
change (HCCS) scenarios were defined by weighting the
monthly climatology values using the following equations
derived from Hulme et al. (2001) for the study area:

Low Climate Change Scenario (LCCS):

Temperature: change(◦C) = 0.0133·year−26.6 (1)

Precipitation: change(%) = −0.25·year+ 500 (2)

High Climate Change Scenario (HCCS):

Temperature: change(◦C) = 0.06·year−120 (3)

Precipitation: change(%) = −0.55·year+ 1100 (4)

where year is set from 2000 to 2052. The additive constants
in the above equations ensure that the LCCS and HCCS val-
ues are equal to the NCCS values in year 2000. In this way
under the low climate change scenario by 2052 the tempera-
ture is 0.69◦C warmer with 13 % less precipitation, and un-
der the high climate change scenario by 2052 the tempera-
ture is 3.12◦C warmer with 28.6 % less precipitation. We
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note that these scenarios do not model inter-annual variabil-
ity in precipitation and minimum and maximum air temper-
ature data, which is a limitation but not a concern for the
purposes of this sensitivity study, and is the same approach
used by Liu et al. (2004) and Tan et al. (2009) to prescribe
climate scenarios in studies in Ghana and Senegal.

4.2.3 Soil, drainage and water holding capacity data

A map of static soil information was extracted from a Sene-
galese 1:500,000 vector soil atlas defined with 168 soil units
(Stancioff et al., 1986). Soil characteristics were defined for
the 45 soil units falling in the study area using a look up table
with respect to texture (i.e., factions of sand, silt, and clay),
drainage state, and water holding capacity. Sand fractions
varied from 51 % to 87 %, silt fractions from 11 % to 38 %,
and clay fractions from 5 % to 15 %. The drainage state var-
ied from poorly drained (= 0) to overly well drained (= 5),
and the water holding capacity varied from high (clay = 5) to
low (sand = 1).

4.2.4 Potential Natural Vegetation data

A static potential natural vegetation (PNV) map for 1900 was
needed to run the GEMS model to equilibrium. In the ab-
sence of a PNV for Senegal, the earliest available vegetation
map (Stancioff et al., 1986) developed by visual interpreta-
tion of 1985 Landsat data supplemented by intensive field
survey was used. The map was nearest neighbor resampled to
the 28.5m Landsat pixel dimensions, assigning to each out-
put 28.5 m pixel the value in the input data set nearest its
centre. This map is considered as the most authoritative in
its domain for Senegal for the 1980’s (Tappan et al., 2004).

4.3 GEMS look-up-table parameterization

Vegetation biomass and land management practices were pa-
rameterized using look-up-tables related to the derived Land-
sat land cover land use (LCLU) classification data. Joint fre-
quency distributions of the look-up-table variables values for
each of the Landsat LCLU classes were developed following
established GEMS conventions (Liu et al., 2004).

4.3.1 Vegetation biomass parameterization

Vegetation attributes required for the model parameterization
were synthesized from an inventory of soil and biomass sam-
plings conducted in Senegal during the last 20 years (CSE,
2004; Woomer et al., 2004b; Tschakert et al., 2004). Above-
ground biomass (trees, herbs, and litter) and their carbon
stocks were calculated using allometric formulae (Woomer
et al., 2004a; Brown, 1997). The root biomass of trees and
herbs were estimated as 0.35 and 0.15 of the above-ground
biomass, respectively, based on field observations (Woomer
et al., 2004a). The proportion of carbon in all biomass pools
was set as 0.47 (Woomer et al., 2004a).

4.3.2 Management practices

Management practices that affect carbon dynamics were
used: crop composition, crop rotation probability, temporal
changes of harvest practices, cropping practices (including
plowing and selective cutting), fertilizer use, fallow proba-
bility and fallow length, fire frequency, and frequency and
intensity of grazing. These practices were compiled from
annual agricultural acreage and yield statistics, and live-
stock census data defined by Senegalese administrative units
(départements) (CSE, 2002) and from information collated
in previous studies (Touré et al., 2003; Manlay et al., 2002;
Tchakert et al., 2004a). The management practices are sum-
marized in Table 1 and were considered in terms of non-
arable (including pastoralism) and arable land uses defined
by the Landsat classified LCLU class. The main crops grown
are millet, sorghum, and groundnuts. Fallow lengths were
set as 1–5 years with successive 5–10 years of cropping.
Non-subsistence agriculture was assumed to have started in
1920 with current mineral fertilizer use varying from 0 to
300 kg ha−1 (Tschakert et al., 2004). Before this date, the
study area was assumed to be savanna with low to moder-
ate grazing (little influence on plant production) that rose to
current high grazing rates of 12 to 30 tropical livestock units
per km2 (CSE, 2002), with an assumed linear effect on plant
production (Woomer et al., 2004a).

5 Landsat satellite data classification

The six 28.5 m reflective, and the two 57 m thermal (low and
high gain) bands nearest neighbor resampled to 28.5m were
classified together as described below. Clouds and cloud
shadows were visually identified (<1 % of the image) and
masked from both Landsat acquisitions and were not classi-
fied. The dry and wet season Landsat data were classified
together, rather than independently.

5.1 Landsat LCLU classification scheme and training
data

The state of the practice for automated satellite classifica-
tion is to adopt a supervised classification approach where
samples of locations of known land cover classes (training
data) are collected. The optical and thermal wavelength val-
ues sensed at the locations of the training pixels are used to
develop statistical classification rules, which are then used to
map the land cover class of every pixel (Brieman et al., 1984;
Foody et al., 2006). Supervised classification results depend
on the appropriateness of the LCLU class nomenclature and
on the quality of the training data used.

Table 2 summarizes the nine LCLU classes and the num-
ber of Landsat training pixels for each class. These nine
classes were selected by examination of pre-existing land
cover maps including a land cover map of the north of Sene-
gal generated by the Centre de Suivi Ecologique (CSE, 2002)
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Table 1. Summary of management practices used for the GEMS model parameterization. The crop rotation probabilities should be read
horizontally from time 1 to time 2; each row sums to 1.

Savanna

Grazing Moderate to high grazing intensity all year
Fire Once every year in February

Agriculture

Growing season June to September
Crop composition Millet, sorghum, groundnuts
Crop/fallow ratio (year) (5–10)/(1–5)
Tree removal Clear cut
Fertilizer Low to moderate use of NPK fertilizer
Cultivation Cultivation with cultivator tool (hoe) in July–September
Harvest Harvest with 90 % straw removal in October
Grazing Winter grazing November–December

Crop rotation probabilities time 1/time 2 Fallow Millet Sorghum Groundnuts

Fallow 0.50 0.10 0.15 0.25
Millet 0.02 0.45 0.00 0.53
Sorghum 0.00 0.00 0.55 0.45
Groundnuts 0.06 0.34 0.00 0.60

and were selected to ensure that the classes were mutually
exclusive and that every part of the study area could be clas-
sified into one and only one class (Anderson et al., 1976).
The CSE land cover map used the Yangambi vegetation clas-
sification scheme that contains 25 vegetation classes defined
according to their physiognomy (i.e. structure and form of
vegetation groups) (Monod, 1956; Trochain, 1957). The
Yangambi scheme predates by two decades the availabil-
ity of satellite data, and the different Yangambi vegetation
classes were not always spectrally unambiguous from one
another in the multi-date Landsat data. For these reasons sev-
eral of the Yangambi classes were combined and three veg-
etation classes, savanna grassland, mangrove and wetlands,
were considered. In addition, the study area includes non-
vegetated surfaces not considered in the Yangambi scheme,
and the classes water, bare soil, rainfed agriculture, mud flats,
and irrigated agriculture were identified based on our expert
knowledge of the study area and multi-annual field visits.

Training pixels for each class were selected by visual anal-
ysis of the co-registered dry and wet season 2002 ETM+ im-
agery, augmented by our expert knowledge of the study area
including information gathered during multi-annual field vis-
its. Only training pixels that could be unambiguously iden-
tified were collected. A total of 11 717 Landsat 28.5m train-
ing pixels were selected (Table 2). Ideally, the training data
should be representative of the area classified and of the
classes in the classification scheme, although there is no sta-
tistical procedure to define a suitable number and spatial dis-
tribution without a priori information concerning the area
(Stehman, 1997; Foody et al., 2006). Great care was taken

in the training data collection. The land use-related classes
(irrigated agriculture, rainfed agriculture, plantation forest)
were the most difficult to reliably collect training data for.
Irrigated agriculture is a unique characteristic of the Senegal
River Valley and was interpretable on the Landsat data owing
to the patterns of irrigation channels within and adjacent to
agricultural fields. Thepeanut basinis the foremost rainfed
agriculture area of Senegal, and polygonal rainfed agricul-
tural fields were distinguishable by differences between the
wet and dry season Landsat acquisitions. Plantation forest in
theNiayesecoregion forms a distinctive strip observable on
the Landsat data.

Settlements contain different LCLU classes and conse-
quently are difficult to classify reliably (Barnsely and Barr,
1997; Sun et al., 2003). This was particularly true for the
rural villages occurring across the study area, which tended
to be small and heterogeneous relative to the Landsat 28.5m
pixel size. Consequently, all of the settlements were screen
digitized manually and were not considered subsequently in
the carbon modeling.

5.2 Classification approaches

The Landsat ETM+ data were classified using bagged deci-
sion tree approaches. Decision trees are hierarchical clas-
sifiers that predict class membership by recursively parti-
tioning data into more homogeneous subsets (Breiman et
al., 1984). Trees can accept either categorical data in
performing classifications (classification trees) or continu-
ous data (regression trees). They accommodate abrupt and
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Table 2. Description of the 9 land cover land use (LCLU) classes and the number of training pixels used for the classification.

Code LCLU class Definition Training pixels

1 Plantation Forest PineCasuarina equisetifoliaplantation forest known only to oc-
cur in the Niayes coastal ecoregion.

113

2 Water Permanent inland water (rivers, lakes); defined by visual inter-
pretation of dry and wet season Landsat ETM+ data.

627

3 Bare Soil Natural areas devoid of vegetation; defined by visual interpreta-
tion of dry and wet season Landsat ETM+ data.

280

4 Rainfed agriculture Agricultural fields which crop development relies primarily on
natural rainfall; defined by visual interpretation of dry and wet
season Landsat ETM+ data and using contextual knowledge.

2150

5 Wetlands Areas inundated or saturated by surface or ground water in a per-
manent or temporary basis to support a prevalence of vegetation
adapted for life in saturated conditions; defined after Yangambi
classification.

922

6 Mangrove Trees and shrubs that grow in saline coastal habitats; defined
after Yangambi classification.

72

7 Mud flats A mud area devoid of vegetation; seasonally inundated; defined
by visual interpretation of dry and wet season Landsat ETM+
data.

149

8 Irrigated agriculture Agricultural fields in proximity to the Senegal River and to arte-
sian wells; defined by visual interpretation of dry and wet season
Landsat ETM+ data and using contextual knowledge.

151

9 Savanna Grassland Open savanna with annual grasses and scattered trees or shrubs
(< 10 % of cover); defined after Yangambi classification.

7253

Total 11 717

non-monotonic relationships between the independent and
dependent variables and make no assumptions concerning
the statistical distribution of the data. Currently, bagged de-
cision tree classifiers are the state of the practice approach
for supervised satellite data classification (Doan and Foddy,
2007; Hansen et al., 2008). Bagging tree approaches use a
statistical bootstrapping methodology to improve the predic-
tive ability of the tree model and reduce over-fitting whereby
a large number of trees are grown, each time using a differ-
ent random subset of the training data, and keeping a certain
percentage of data aside (Breiman, 1996).

In this study, both hard and soft supervised classification
approaches were undertaken. Classifications are described
as “hard” when each pixel is classified into a single class
category, i.e., full membership of a single class is assumed,
and as “soft” when each pixel may have multiple partial class
memberships (Foody, 2000).

Thirty bagged classification trees were generated, each
time, 25 % of the training data were used to generate a tree,
and the remaining 75 % were used to assess the classifica-
tion accuracy. The 25 % proportions were sampled at ran-

dom with replacement. To limit overfitting, each tree was
terminated using a deviance threshold: additional splits in
the tree had to exceed 1 % of the root node deviance or the
tree growth was terminated. For each of the 30 trees, a soft
classification result was generated defining for each 28.5 m
Landsat pixel the probability of it belonging to each of the
nine LCLU classes.

A hard decision tree classification was generated from the
30 soft classifications. Each soft classification was converted
to a hard classification by assigning to each pixel the class
with the highest probability, and then assigning the single
most frequently occurring class category over the 30 classifi-
cations (Breiman, 1996; Bauer and Kohavi, 1999). When the
maximum probability corresponded to more than one class,
one of the classes was selected randomly. The number of
unique classes that a pixel was independently classified in
this way over the 30 trees was also recorded.
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5.3 Classification accuracy assessment

The ensemble classification accuracy of the 30 soft decision
tree classifications was quantified using a confusion matrix
based statistical method. The confusion matrix is a two di-
mensional matrix composed ofn columns and rows, where
n is the number of classes, and each column represents the
number of instances of a predicted (i.e. classified) class and
each row represents the number of instances of an actual true
class (Congalton et al., 1983). The diagonal of the confu-
sion matrix records the agreement between the “classified”
and the corresponding “truth”. The off-diagonal records the
disagreement. Conventional confusion matrix accuracy as-
sessment approaches are inappropriate for application to soft
classification results (Foody, 2000). Consequently a “soft-to-
hard” confusion matrix generation methodology was devel-
oped following the method of Doan and Foody (2007).

Recall that each of the 30 classification trees was gener-
ated from 25 % of the training data sampled at random with
replacement. In the accuracy assessment, first each classifi-
cation tree was used to classify the remaining (“out-of-bag”)
75 % of the training data, deriving a vector of class proba-
bilities for each out-of-bag pixel (Breiman, 1996). Then a
single confusion matrix was generated from the 30 vectors
of class probabilities. Throughout the 30 vectors of proba-
bilities, each pixel was assigned to the LCLU class with the
maximum probability. If several classes had the same proba-
bilities then one class was selected at random.

Conventional accuracy statistics were then derived from
the “soft-to-hard” confusion matrix. Thepercent correct,
was calculated by dividing the total number of pixels cor-
rectly classified by the total number of pixels in the training
data. The Kappa coefficient was also calculated as it pro-
vides another measure of overall classification accuracy, but
that uses all the elements of the confusion matrix to compen-
sate for chance agreement, although kappa values may be bi-
ased in areas with uneven proportions of the different classes
(Stehman, 1997, 2004; Foody, 2004). Theproducer’sand
the user’s accuracieswere computed to assess the accura-
cies of each class (Foody, 2002). Theuser’s accuracywas
calculated by dividing the number of all correctly classified
pixels of a class by the sum of all pixels which had been as-
signed to that class; it indicates the probability that a pixel
classified to a given class actually represents the reality on
the ground (Congalton, 1991). Theproducer’s accuracywas
calculated by dividing the number of all correctly classified
training pixels of a class by the sum of training data pixels
for that class; it indicates the probability of a training pixel
being correctly classified (Congalton, 1991).

6 Carbon modelling and sensitivity analysis
methodology

6.1 Carbon modelling

The GEMS model was used to estimate soil organic car-
bon SOC (gCm−2) in the top 0–20 cm soil layer and also
above ground net primary productivity (NPP) (gCm−2 yr−1).
In this study we assumed that human disturbances in the
study area were negligible before 1900 and that consequently
carbon stocks and fluxes were at near equilibrium condi-
tions in 1900. This is primarily justified since colonial im-
pacts on Senegalese land use practices in the early colo-
nial period were limited to small urban settlements and non-
subsistence arable practices had largely not been developed
(Gellar, 1976; Tschakert et al., 2004). Estimates of carbon
stocks and fluxes in the study area in 1900 were obtained by
running the model for 1500 years to a 1900 equilibrium (Liu
et al., 2004; Tan et al., 2009) using the potential vegetation
map, the 1960–1996 climate data, and the contemporary soil
and drainage data described in Sect. 4.

The model was run from 1900 to 2000 using the 1900 car-
bon estimates to initialise the post-1900 model runs. The
land cover of the study area was characterized in 1900 by the
potential natural vegetation map and in 2000 was character-
ized by the Landsat classifications. The historical trajectory
of land cover and land management between 1900 and 2000
is unknown, and so we assumed a linear change as a best es-
timate and following the approach used by other researchers
(Liu et al., 2004, Liu et al., 2008 and Tan et al., 2009).

The GEMS model was run from 2000 to 2052 for the
three climate change scenarios described in Sect. 4.2.2. The
GEMS model was run independently parameterizing the
2000 land cover land use and associated land management
parameterization (Table 1) from the 30 Landsat soft classi-
fications and the single hard Landsat classification derived
from the 30 soft classifications. These 31 runs were each
repeated for the no, low, and high climate change scenarios.

We assumed there was no LCLU change after 2000 in or-
der to assess only the sensitivity of the GEMS model out-
puts to the LCLU classification uncertainties under the differ-
ent climate scenarios. Moreover, prediction of future LCLU
is difficult, not least because even if appropriate statistical
LCLU change trend data existed, it may not capture fu-
ture changes in LCLU driving forces, such as economic and
policy modifications, acting at varying scales (Moss et al.,
2010). Further, as LCLU in the study region is extensively
soil moisture limited, future LCLU scenarios can only be
meaningfully developed when coupled with future climate
scenarios. This will be examined in future research that is
not described here.
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6.2 Soil Organic Carbon assessment & sensitivity
analysis

Soil organic carbon (SOC) assessment and sensitivity analy-
ses were performed to explore the variability imposed by the
different land cover classification approaches for the three
different climate scenarios. For the hard Landsat classifica-
tion, where each 28.5 m Landsat pixel is assigned to only one
LCLU class, the SOC for each pixel and simulation year and
climate scenario was defined as:

SOCyear,scenario(i,j) = Cyear,scenario,class(i,j) (5)

where SOCyear,scenario(i,j) is the SOC estimated at pixel col-
umn and row (i,j) and Cyear,scenario,class(i,j) is the GEMS mod-
eled SOC at that pixel assuming that the pixel is entirely
LCLU classclass. The net primary productivity (NPP) was
similarly derived for each hard classification pixel so that the
GEMS NPP could be compared to the SOC data to ensure
the estimates were plausible and spatially coherent.

For each soft classification, where the probability of class
membership is stored at each pixel, the SOC for each pixel
was defined as:

SOCyear, sceanrio(i,j) = (6)
n∑

class=1

Cyear, scenario, class(i,j) P2000,class

n∑
class=1

P2000, class= 1

where SOCyear,scenario(i,j) is the SOC estimated at pixel col-
umn and row (i,j),Cyear,class(i,j) is the GEMS modeled SOC
for that pixel assuming all the pixel is entirely classclass, and
P2000,classis the soft classification probability of the pixel be-
longing to classclass.

7 Results

7.1 LCLU classification scheme and classification
accuracy assessment

Table 3 shows the “soft-to-hard” confusion matrix results for
the 9 LCLU classes. The classification accuracies tabulated
in Table 3 provide an assessment of the ensemble classifica-
tion accuracy of the 30 soft decision tree classifications and
so also indicate the hard classification accuracy as it is de-
rived from the 30 soft classifications. The percent correct and
Kappa were 97.79 % and 0.98 respectively. The producer’s
and user’s classification accuracies were greater than 90 %
for all the classes except for the wetlands, irrigated agricul-
ture and mangrove classes. No class was misclassified as
another by a significant amount - the greatest misclassifica-
tion was 0.19 % between the rainfed agriculture and savanna
grassland classes. These classification accuracies are high

 2

Figure 2 The “reliability” of the hard decision tree classification results shown in Figure 
1. For each pixel the number of unique classes (maximum 9) that it could be 
independently classified as over the 30 decision tree classification runs is shown. Pixels 
reporting a value of 1 were always classified as one particular LCLU type, whereas pixels 
reporting values of 5-7 were variously classified into between 5-7 LCLU types. White 
shows unclassified (water bodies, clouds, cloud shadows, settlement areas, or no Landsat 
data). 
 

 

Fig. 2. The “reliability” of the hard decision tree classification re-
sults shown in Fig. 1. For each pixel the number of unique classes
(maximum 9) that it could be independently classified as over the 30
decision tree classification runs is shown. Pixels reporting a value of
1 were always classified as one particular LCLU type, whereas pix-
els reporting values of 5–7 were variously classified into between
5–7 LCLU types. White shows unclassified (water bodies, clouds,
cloud shadows, settlement areas, or no Landsat data).

and reflect what we expect is the best classification typically
achievable for the study area.

Figure 1 shows the hard decision tree classification where
each pixel is classified as one of the 9 LCLU classes. The
classification indicates that in the study area, the dominant
land cover is savanna grassland (61.5 % of the area), fol-
lowed by rainfed agriculture (20.58 %), and then mud flats
(5.67 %), wetlands (4.92 %), irrigated agriculture (3.25 %),
water (2.93 %), plantation forest (0.70 %), bare soil (0.44 %),
and mangrove (0.01 %).

The hard classification was defined from the 30 soft clas-
sifications, assigning at each pixel the single most frequently
occurring class category over the 30 classifications using a
voting procedure. Pixels where all 30 soft classifications
agreed are more likely to be reliable than those where there
was disagreement. Figure 2 shows the number of unique
classes (maximum 9) that a pixel was independently clas-
sified as over the 30 decision tree classifications. Approxi-
mately 82 % of the pixels were classified into no more than
2 classes with 55 % classified as one class and 27 % as two
classes. The least reliable areas, classified into 3 classes or
more, occurred predominantly in areas classified as wetlands,
mud flats, bare soil, irrigated agriculture, and mangroves;
these classes also had the lowest producer’s and user’s ac-
curacies (Table 3). Varying water levels present in all of
these cover types may confound their discrimination, which
is not unexpected when passive optical wavelength satellite
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Table 3. Soft-to-hard confusion matrix results for the 9 land cover land use classes. The cell values report percentages of the total area;
a total of 305 428 pixels were considered. The percent correct is 97.79 % and Kappa-coefficient is 0.98. Grey fields, along the diagonal,
represent for each class, the percentage correctly classified. The classes are: 1. Plantation; 2. Water; 3. Bare soil; 4. Rainfed agriculture;
5. Wetlands; 6. Mangrove; 7. Mud flats; 8. Irrigated agriculture; 9. Savanna grassland (Table 2).

True Classification Row Producer’s

Class 1 2 3 4 5 6 7 8 9 Total Accuracy

1 3.30 0.00 0.00 0.00 0.03 0.00 0.00 0.02 0.00 3.4 98.4 %
2 0.00 13.94 0.00 0.00 0.03 0.00 0.00 0.00 0.00 14.0 99.8 %
3 0.00 0.00 1.43 0.01 0.00 0.00 0.02 0.00 0.02 1.5 96.1 %
4 0.00 0.00 0.02 6.54 0.00 0.00 0.01 0.00 0.14 6.7 97.4 %
5 0.02 0.00 0.00 0.00 1.04 0.04 0.04 0.05 0.07 1.3 82.0 %
6 0.01 0.00 0.00 0.00 0.05 0.03 0.00 0.01 0.00 0.1 35.1 %
7 0.00 0.00 0.05 0.03 0.01 0.00 4.06 0.01 0.12 4.3 94.8 %
8 0.02 0.00 0.00 0.00 0.06 0.01 0.02 1.00 0.04 1.2 86.7 %
9 0.00 0.00 0.01 0.19 0.06 0.00 0.13 0.08 67.21 67.7 99.3 %

Column
Total 3.4 13.9 1.5 6.8 1.3 0.1 4.3 1.2 67.6 100

User’s
Accuracy 98.4 % 100.0 % 94.1 % 96.5 % 81.9 % 36.5 % 94.7 % 85.7 % 99.4 %

data are classified (Ozesmi and Bauer, 2002). In addition,
the peanut basin agricultural expansion zone in the South
West of the study area, composed of a mix of savanna and
rainfed agriculture, was less reliably classified. This is most
likely because of the presence of abandoned rainfed agricul-
tural fields in this region that are used for intermittent grazing
and can physically resemble grassland (Tappan et al., 2004;
Tschakert et al., 2004).

7.2 Year 2000 carbon assessment and land cover
classification sensitivity analysis

7.2.1 Hard decision tree classification SOC and NPP
model results

Figures 3 and 4 illustrate year 2000 GEMS SOC in the top
0–20 cm soil layer and the above ground NPP respectively.
The data were estimated as Eq. (5) using the 9 LCLU class
hard Landsat classification illustrated in Fig. 1 and using the
corresponding spatially explicit GEMS model inputs for the
9 classes under the no climate change scenario. Some spatial
discontinuities are evident and are due to changes in certain
GEMS input data, including the soil and climate data that are
defined at coarser spatial resolutions than the 28.5m Landsat
pixel dimensions.

Table 4 summarizes the mean SOC and NPP for the 9
LCLU classes defined by the hard decision tree classification.
The mean class SOC values range from 480.2 gCm−2 (Bare
soil) to 1487.5 gCm−2 (Irrigated agriculture) with a mean
study area SOC of 1219.3 gCm−2 or 12 193 MgCha−1 which
is in general agreement with other worker’s Senegalese esti-
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Figure 3 GEMS soil organic carbon (SOC) model output for 2000 using the 9 class 
28.5m Landsat hard decision tree classification illustrated in Figure 1 and the 
corresponding spatially explicit model inputs for the 9 LCLU classes. White shows  areas 
where no SOC was modeled (water bodies, clouds, cloud shadows, settlement areas, or 
no Landsat data). 
 

Fig. 3. GEMS soil organic carbon (SOC) model output for 2000
using the 9 class 28.5 m Landsat hard decision tree classification
illustrated in Fig. 1 and the corresponding spatially explicit model
inputs for the 9 LCLU classes. White shows areas where no SOC
was modeled (water bodies, clouds, cloud shadows, settlement ar-
eas, or no Landsat data).

mates (Touŕe, 2002; Manlay et al., 2002; Touré et al., 2003;
CSE, 2004). Owing to the spatial differences in GEMS input
data, within a given LCLU class, SOC values vary consider-
ably. Thus, for Bare soil, SOC values range from a minimum
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 4

Figure 4 GEMS net primary productivity (NPP) model output for 2000 using the 9 class 
28.5m Landsat hard decision tree classification illustrated in Figure 1 and the 
corresponding spatially explicit model inputs for the 9 LCLU classes. White shows   
areas where no NPP was modeled (water bodies, clouds, cloud shadows, settlement areas, 
or no Landsat data). 
 

 
 

Fig. 4. GEMS net primary productivity (NPP) model output for
2000 using the 9 class 28.5 m Landsat hard decision tree classifi-
cation illustrated in Fig. 1 and the corresponding spatially explicit
model inputs for the 9 LCLU classes. White shows areas where no
NPP was modeled (water bodies, clouds, cloud shadows, settlement
areas, or no Landsat data).

of 358 to a maximum of 1491 gCm−2; while for Irrigated
agriculture they range from 417 to 4138 gCm−2. In gen-
eral, higher SOC values (Fig. 3) occur where NPP is higher
(Fig. 4). The mean study area NPP is 185.1 gCm−2 yr−1,
which is in agreement with the results of Parton et al. (2004)
who estimated NPP values up to 200 gCm−2 yr−1 in this re-
gion using the CENTURY model and coarser 10 km resolu-
tion input data. Similar differences of NPP values are also
noted within LCLU classes.c

Table 5 summarizes the LCLU class minimum, mean
and maximum SOC defined by the hard classification, and
LCLU class percentage area, for each agro-ecological zone
(Fig. 1). Comparison with the corresponding Table 4 study
area LCLU class SOC statistics reinforces that geographic
differences in the GEMS input data introduce SOC variabil-
ity for any given LCLU class. For example, the savanna
grassland class is highly prevalent in all four zones (vary-
ing from 41 % to 87 %), and although the mean savanna
SOC for the entire study area is 1212 gCm−2 (Table 4) the
zonal mean savanna SOC varies from 1127 gCm−2 (Sene-
gal River Valley) to 1259 gCm−2 (Peanut Basin) (Table 5).
The agro-ecological zone with the highest mean SOC is the
Peanut basin (1344 gCm−2), followed by the Sandy Ferlo
(1214 gCm−2), Niayes (1124 g C m−2) and the lowest is the
Senegal River Valley (1046 gCm−2). This pattern reflects the
SOC of the predominant LCLU classes. For example, the
Peanut basin is predominantly rainfed agriculture (57 %) and
savanna (41 %) which have high mean study area SOC (Ta-

ble 4) and the Senegal River Valley zone includes the greatest
proportion of mud flats (22 %) which has nearly the lowest
mean study area SOC (Table 4).

7.2.2 Soft decision tree classification SOC results

There is insufficient space to illustrate the GEMS SOC de-
rived as Eq. (6) for each of the 30 soft decision tree classifi-
cations for the year 2000. The mean of the 30 soft decision
tree SOC estimates has a similar spatial pattern as the hard
decision tree SOC illustrated in Fig. 3. Table 6 tabulates sum-
mary statistics of the 30 soft decision tree SOC estimates.
Over the study area the mean SOC is 1217.4 gCm−2 and is
very similar to the 1219.3 gCm−2 value estimated using the
hard classification SOC (Table 4). For each class there is
considerable variation between the minimum and maximum
mean SOC statistics. For example, the irrigated agriculture
class has mean SOC varying the most of all the classes from
a minimum mean SOC of 457.9 gCm−2 to a maximum mean
SOC of 4138.0 gCm−2. This is explained in Sect. 7.2.3. The
class mean SOC values in Table 6 are similar to the hard SOC
classification equivalents tabulated in Table 4. For all classes
the difference in the mean SOC between the 30 soft and the
hard classification SOC results is less than 4 %, except for
mud flats (31 %), bare soil (22 %) and irrigated agriculture
(8 %), which were the most inconsistently classified over the
30 soft classification trees (Fig. 2).

7.2.3 SOC Sensitivity to Land Cover Classification

The SOC derived from the hard classification (Fig. 3) for
a given LCLU class varies spatially due to spatial variation
in the GEMS model inputs (soil, climate, land management,
etc.). The SOC also varies between the 30 SOC soft decision
tree classification estimates due to differences both in the
LCLU classifications and to spatial differences in the GEMS
model inputs. The 30 soft LCLU classifications are different
because of differences in the training data sampling which
causes differences in the LCLU class membership probabil-
ities for each soft decision tree classification. For these rea-
sons the sensitivity of the GEMS SOC model is dependent
not only on the LCLU classification errors and the degree of
generalization of the landscape into the LCLU classes, but
also on where the classes occur relative to the other GEMS
model inputs.

To examine this sensitivity in more detail, Fig. 5 shows
a map of the coefficient of variation (the standard deviation
divided by the mean) of the 30 SOC soft decision tree classi-
fication estimates. The coefficient of variation, instead of the
standard deviation, is used as it enables meaningful compar-
ison between pixels that have markedly different mean SOC
values. The SOC coefficient of variation varies from less than
0.15, for the majority of the study area, to more than 0.60.
The highest SOC coefficient of variation values occur for the
less accurately classified classes described in Sect. 7.1 and
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Table 4. Comparison of the minimum, mean and maximum SOC (Fig. 3) and NPP (Fig. 4) simulated for the 9 LCLU classes using the
year 2000 hard classification (Fig. 1). Only pixels where SOC and NPP was modeled are considered (i.e., not water bodies, clouds, cloud
shadows, settlement areas, or where there was no Landsat data).

LCLU class
SOC NPP

(gC m−2) (gC m−2 yr−1)

Min Mean Max Min Mean Max

Plantation forest 452 1190.32 1525 0 162.55 756
Bare soil 358 480.22 1491 0 11.28 118
Rainfed agriculture 518 1441.5 2655 14 295.39 596
Wetlands 262 1094.6 2088 8 113.93 258
Mangrove 455 1010.11 1573 8 170.09 412
Mud flats 353 537.63 1537 0 45.36 149
Irrigated agriculture 417 1487.47 4138 0 200.99 720
Savanna 411 1212.44 1543 0 159.98 243

Over the study area 262 1219.3 4138 0 185.1 756

Table 5. Comparison by agro-ecological zone of the minimum, mean and maximum SOC (gC m−2) (Fig. 3) for the 9 LCLU classes using
the year 2000 hard classification (Fig. 1). The LCUC percentage area in each zone is shown in parentheses. Only pixels where SOC was
modeled are considered (i.e., not water bodies, clouds, cloud shadows, settlement areas, or where there was no Landsat data).

Agro-ecological zones

Niayes Peanut basin Sandy Ferlo Senegal River Valley

LCLU classes Min Mean Max Min Mean Max Min Mean Max Min Mean Max

Plantation forest 452 948.6 1522 1108 1373.0 1471 454 1296.1 1525 452 1164.3 1525
3.4% 0.01% 0.4% 1.2%

Bare soil 358 534.9 1491 358 991.3 1487 370 688.0 1411 370 654.1 1478
6.1 % 0.1 % 0.01 % 0.2 %

Rainfed agriculture 519 1385.8 1858 518 1422.3 1890 519 1390.2 2183 534 1407.2 2655
5.7 % 56.7 % 5.8 % 0.1 %

Wetlands 371 948.6 1512 379 1075.1 1471 353 1040.0 2064 262 1106.7 2088
0.9 % 0.02 % 2.4 % 22.8 %

Mangrove 455 969.3 1474 483 1084.7 1573
0.01 % 0.0 % 0.0 % 0.01 %

Mud flats 353 682.5 1535 358 944.5 1522 353 669.7 1537 370 639.8 1537
7.4 % 2.2 % 2.0 % 21.7 %

Irrigated agriculture 417 1174.6 1830 576 1328.2 1590 417 1507.7 4138 417 1356.8 2390
3.0 % 0.03 % 2.7 % 12.7 %

Savanna 411 1205.3 1538 416 1258.6 1541 411 1210.6 1543 411 1127.2 1543
73.6 % 41.0 % 86.7 % 41.4 %

Over the study area 353 1124.5 1858 358 1344.3 1890 353 1214.3 4138 262 1046.1 2655

summarized in Table 3, i.e., for the bare soil, mud flats, wet-
land and rainfed agriculture classes situated along the coast
and in the northwest. In addition, higher SOC coefficient of
variation values occur in the peanut basin agricultural expan-

sion zone in the south west where the hard classification “re-
liability” results illustrated in Fig. 2 shows several classes per
pixel. This is most likely because abandoned rainfed agricul-
tural fields in this region are used for intermittent grazing and
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Table 6. Summary statistics of the mean of the 30 soft decision tree SOC estimates for year 2000. The statistics are summarized with respect
to the 9 LCLU classes defined by the hard decision tree classification (Fig. 1). The mean study area mean SOC is 1217.4 gC/m2. Only pixels
where SOC was modeled are considered (i.e., not water bodies, clouds, cloud shadows, settlement areas, or where there was no Landsat
data).

LCLU class Minimum Mean SOC(gC/m2) Mean Mean SOC (gC/m2) Maximum Mean SOC (gC/m2)

Plantation forest 445.0 1203.26 1785.57
Bare soil 374.0 588.83 1491.0
Rainfed agriculture 474.6 1411.63 2655.0
Wetlands 150.0 1099.39 2278.73
Mangrove 439.0 979.5 1588.97
Mud flats 365.0 706.47 2207.17
Irrigated agriculture 457.93 1366.51 4138.0
Savanna 412.0 1211.9 2714.0

Over the study area 150.0 1217.4 4138.0

Table 7. Summary statistics of the mean study area hard and soft decision tree (DT) soil organic carbon (SOC) (gC/m2) model estimates
illustrated in Figs. 7 and 8, for theno, low andhighclimate change scenarios, for selected years.

Carbon dynamics 1900–2000 No climate change Scenario Low climate change scenario High climate change scenario

1900 1940 1980 2000 2020 2040 2052 2020 2040 2052 2020 2040 2052
Hard DT
SOC

1803.3 1470.6 1282.5 1219.3 1138 1102.9 1080.7 1129.3 1082.2 1052.6 1104.8 1014 931.5

Mean of 30
soft DT
SOC
estimates

1803.3 1471.1 1283.3 1217.4 1135.4 1100.1 1077.7 1128 1080.5 1051.3 1103.2 1011 929.7

Minimum
of 30 soft
DT SOC
estimates

1803.2 1465.3 1267.1 1196.6 1117.5 1083.1 1061.2 1108.8 1061.6 1032.8 1083.4 991.2 911.3

Maximum
of 30 soft
DT SOC
estimates

1803.3 1474.2 1291.9 1228.8 1145.1 1109.9 1087.8 1139.8 1093.2 1064.2 1114.6 1023 941.2

Range of 30
soft DT
SOC
estimates
and percent
of mean
(%)

0 (0.00) 8.9 (0.60) 24.7 (1.92) 32.2 (2.64)27.5 (2.42) 26.8 (2.44) 26.7 (2.48) 31.1 (2.76) 31.7 (2.93) 31.4 (2.99) 31.2 (2.83) 31.6 (3.13) 29.9 (3.22)

can physically resemble other LCLU classes such as savanna
grassland (Tappan et al., 2004).

Fig. 6 shows histograms of the SOC coefficient of vari-
ation values for each land cover land use class defined by
the hard decision tree classification (Fig. 1). The less ac-
curately classified classes, i.e., bare soil, mud flats, wetland
and rainfed agriculture, have more widely distributed SOC
coefficient of variation values with more than 20 % of their
pixels with SOC coefficient of variation values greater than
0.1. The results shown in Figs. 5 and 6 illustrate that satellite
classification uncertainties impact the GEMS model results
not insignificantly. Similar SOC coefficient of variation his-
tograms were observed for the SOC modeled under the low
and high climate change scenarios.

7.3 1900 to 2052 carbon assessment and land cover
sensitivity analysis under different climate change
scenarios

Fig. 7 shows the mean SOC averaged over all the classified
pixels in the study area for the no climate change scenario
plotted every 4 years from 1900 to 2052. The open circles
show the mean SOC from simulation using the 30 indepen-
dent decision tree soft classifications; the orange filled cir-
cles show the mean of the 30 simulations. The green filled
circles show the mean SOC derived from the hard decision
tree classification carbon assignment approach. It is evident
that from 1900 to 2000 the SOC is generally decreasing,
by about 32 % from approximately 1800 gCm−2 to approx-
imately 1220 gCm−2, this is due to human land cover land
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 5

Figure 5 The soil organic carbon (SOC) coefficient derived from the 30 soft decision tree 
classification model runs. The coefficient of variation (standard deviation divided by 
mean) is dimensionless. The 2000 Landsat data were classified 30 times into one of more 
the 9 LCLU classes and the SOC modeled for the corresponding spatially explicit model 
inputs for those classes. White shows areas where no SOC was modeled (water bodies, 
clouds, cloud shadows, settlement areas, or no Landsat data). 
 
 

 

Fig. 5. The soil organic carbon (SOC) coefficient derived from the
30 soft decision tree classification model runs. The coefficient of
variation (standard deviation divided by mean) is dimensionless.
The 2000 Landsat data were classified 30 times into one of more
the 9 LCLU classes and the SOC modeled for the corresponding
spatially explicit model inputs for those classes. White shows areas
where no SOC was modeled (water bodies, clouds, cloud shadows,
settlement areas, or no Landsat data).

use, with some perturbations in this trend due to the growth
and decay of the modelled vegetation.

Figures 8a–c show the mean SOC computed over all the
classified pixels in the study area for the no, low, and high
climate change scenarios plotted from 2000 to 2052. The
SOC is estimated to decline from 2000 to 2052 under all
climate change scenarios by approximately 11 %, 14 %, and
24 %, for the no (Fig. 8a), low (Fig. 8b), and high (Fig. 8c)
climate change scenarios respectively. This trend has been
observed elsewhere in West African drylands when temper-
ature increases and precipitation decreases (Tan et al., 2009;
Liu et al., 2004; Touŕe, 2002; Batjes, 2001). Summary statis-
tics of the mean study area SOC results illustrated in these
figures are tabulated in Table 7. These results reflect the spa-
tial variability and uncertainty imposed by the different 2000
Landsat classifications and the spatio-temporal sensitivity of
the GEMS model to that variability.

For all three climate scenarios, and for each simulation
year, the mean study area SOC obtained running GEMS with
the hard decision tree classification (green filled circles), is
similar (within 4 gCm−2) to the means of the 30 soft deci-
sion tree classification model results (orange filled circles)
(Figs. 7 and 8). This is not unexpected as the hard decision
tree classification is generated by applying a voting proce-
dure to the 30 soft classification trees and demonstrates that
the hard decision tree classification approach does provide a

 6

 
 
Figure 6 Histograms of the year 2000 SOC coefficient of variation (Figure 5) for each 
land cover land use class defined by the hard classification (Figure 1). 
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Fig. 6. Histograms of the year 2000 SOC coefficient of variation
(Fig. 5) for each land cover land use class defined by the hard clas-
sification (Fig. 1).

 7

Figure 7 Mean GEMS modeled soil organic carbon (SOC) computed for the entire study 
area under the no climate change scenario, from 1900 to 2052 at 4 yearly intervals, using 
the 9 land cover land uses classes and different Landsat classification approaches. The 
open circles show the mean SOC for each of the 30 independent bagged decision trees 
computed using the soft classification-carbon assignment approach; the orange filled 
circles show the mean across 30 soft classification simulations; the green filled circles 
show the mean SOC derived simulations using the hard decision tree classification.  

 
 
 
 
 
 
 

Fig. 7. Mean GEMS modeled soil organic carbon (SOC) computed
for the entire study area under theno climate change scenario, from
1900 to 2052 at 4 yearly intervals, using the 9 land cover land
uses classes and different Landsat classification approaches. The
open circles show the mean SOC for each of the 30 independent
bagged decision trees computed using the soft classification-carbon
assignment approach; the orange filled circles show the mean across
30 soft classification simulations; the green filled circles show the
mean SOC derived simulations using the hard decision tree classi-
fication.

representative single mean study area SOC estimate.
The mean study area SOC for individual soft classifica-

tions varies for each simulation due to their different training
data sampling which causes differences in the LCLU class
membership probabilities and due to spatial differences in
the GEMS model inputs as discussed in Sect. 7.2.3. In 2000,
for the no climate change scenario, the mean study area SOC
values vary over the 30 soft decision tree classifications from
1196.6 to 1228.8 gCm−2 (Fig. 8a, Table 7). This 32.2 gCm−2
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 8

Figure 8 Mean GEMS modeled soil organic carbon (SOC) computed for all the study 
area for the period 2000 to 2052, under the a) no, b) low, and c) high climate change 
scenarios. See Figure 7 caption for details. 
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Fig. 8. Mean GEMS modeled soil organic carbon (SOC) computed
for all the study area for the period 2000 to 2052, under the(a) no,
(b) low, and(c) highclimate change scenarios.

SOC range corresponds to a variation of 2.6 % of the mean
study area hard decision tree classification SOC. This varia-
tion decreases in time to 26.7 gCm−2 in 2052, equivalent to
2.5 % of the mean study area hard classification SOC, and
similarly it decreases to 31.4 gCm−2 (3 %) and 29.9 gCm−2

(3.2 %) for the low (Fig. 8b, Table 7) and high (Fig. 8c, Ta-
ble 7) climate change scenarios. These results imply that
using a state of the practice hard decision tree classification
approach with a 9 class LCLU classification scheme imposes
a variability of a maximum of 3.2 % of the mean study area
SOC.

8 Conclusions

Research has attested to the significance of land cover and
land use (LCLU) change on carbon dynamics (Scholes and
Hall, 1996; Houghton et al., 1999; Lal, 2004; Tieszen,
2004) and on the utility of biogeochemical models to sim-
ulate soil and carbon biomass under different land manage-
ment (Metherell et al., 1993; Batjes, 2001; Liu et al., 2004;
Tschakert et al., 2004). However, differences between LCLU
data sources and classification approaches, and errors in the
LCLU data both in terms of classification errors and the
degree of generalization of the landscape into the LCLU
classes, may influence model outputs. Despite this, relatively

few studies have examined this issue. In this study, state
of the practice bagged decision tree approaches for LCLU
classification of dry and wet season Landsat satellite data
were used to assess the sensitivity of SOC estimated us-
ing the spatially explicit Global Ensemble Biogeochemical
Modeling System (GEMS) under different climate scenar-
ios. The approach could be utilized by other biogeochemical
models that use spatially explicit LCLU parameterizations.
This study was undertaken in northern Senegal, where satel-
lite LCLU classification is particularly challenging because
of the semi-arid landscape, and where the coupling between
future LCLU and climate change is poorly understood.

This research provides a new method to estimate the vari-
ability of SOC due to satellite LCLU classification errors.
The single hard decision tree Landsat classification results,
generated by applying a voting procedure to the 30 soft de-
cision tree results, typically provided mean study area SOC
values within about 4 gCm−2 of the mean of the 30 soft de-
cision tree classification results. This is not unexpected, and
demonstrates that hard decision tree classification provides
an appropriate approach to define a single classification ap-
propriate for GEMS modeling. The 30 SOC maps estimated
independently using the 30 different soft classifications pro-
vide data that were used to quantify the variability of SOC
imposed by satellite classification errors.

At the study area scale, considering the mean study area
SOC, the variability of SOC imposed by satellite classifica-
tion errors was not high. In 2000 the mean study area SOC
values varied over the 30 soft decision tree classifications
by 32.2 gCm−2and corresponded to 2.6 % of the mean study
area hard decision tree classification SOC. In 2052 this rela-
tive SOC variation was 2.5 %, 3 % and 3.2 % for the no, low
and high climate change scenarios respectively. These vari-
ations are much less than the corresponding 11%, 14 % and
24 % declines from 2000 to 2053 in mean study area SOC
modeled for the no, low and high climate change scenarios
respectively.

At local, pixel, scale the impacts of satellite classifica-
tion errors can be very apparent. The per-pixel coefficient
of variation (the standard deviation divided by the mean) of
the 30 SOC soft decision tree estimates was used to quantify
the pixel-level spatial variability of SOC imposed by satellite
classification errors. The highest coefficient of variations oc-
curred for the least accurately classified classes and were not
negligible. In this study, more than 20 % of the bare soil, mud
flat, wetland and rainfed agriculture pixels had SOC coeffi-
cient of variation values greater than 0.1 with some as great
as nearly 0.6. These high local-scale SOC variations are due
to differences in the satellite classification training data sam-
pling, which causes differences in the mapped LCLU class
membership probabilities, and due to the interaction of these
differences with spatial differences in the other GEMS model
inputs.
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The findings of this study indicate that the high local vari-
ability of SOC due to satellite classification errors should
be taken into consideration, for example, using the method
described here. This is particularly important as local-scale
SOC variations imposed by satellite classification errors may
obscure modeled temporal changes in SOC due to climate
influences that may be highly land cover specific. There
are a number of recent and planned spaceborne sensors with
very high (<10 m) spatial resolution (Norris, 2011) and,
in conjunction with next generation freely available Land-
sat and similar high spatial resolution systems designed for
land cover monitoring (Wulder et al., 2008, 2011), they pro-
vide opportunities for high resolution LCLU biogeochemical
model parameterization and LCLU mapping uncertainty as-
sessment.

This research has demonstrated a method to estimate the
variability of GEMS modeled SOC due to satellite classifica-
tion errors. The method can be applied to other biogeochem-
ical models that use spatially explicit land cover land use
(LCLU) parameterizations by running the model with a sin-
gle hard and multiple soft LCLU classification inputs to infer
model sensitivity. The Senegalese findings described in this
paper can only be generalized to other process based models
by repeating the described method with the new model. This
is because of the non-linear dependency of the GEMS SOC
estimates on LCLU and because, as we have demonstrated
for specific LCLU classes at the study area scale and for four
agro-ecological zones, the SOC uncertainty due to satellite
classification errors is dependent not only on the LCLU clas-
sification errors but also on where the LCLU classes occur
relative to the other biogeochemical model inputs.

As the goal of this study was to examine the sensitivity of
GEMS modeled SOC to land cover land use (LCLU) classifi-
cation uncertainties, the impacts of errors associated with the
other GEMS spatially explicit input data and model parame-
terizations were not considered explicitly. The best available
data sets and parameterizations were used. However, the de-
gree to which all input data and model parameterization er-
rors are captured by the GEMS simulations and by the LCLU
bagged decision tree classification approach requires further
research.
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