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SECTION I 

INTRODUCTION 

1 

When two circuits are so placed that energy may be 

transferred from one to the other they are said to be coupled. 

If the coupling is obtained by a circuit element (resistor, 

capacitor or coil) common to both circuits the coupling is 

direct. If the circuits are linked only by a magnetic field 

the coupling is called inductive. This paper will concern 

itself only with inductively coupled circuits. Figure l is 

an example of this type circuit. 

Primary Secondary 

Circuit #1 Circuit #2 

Figure 1 
The steady state characteristics of this network are, 

a Aigh gain and good frequency selectivity. Thus it finds 

extensive use in communication work. There are many texts 

which give excellent analyses of the steady state charac­

teristics .of this circuit. Morecrofts' text "Principles 

of Radio Communication 11 is particularly good. 
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Although the circuit has been used extensively for a 

good many years there has been no complete analysis of its 

transient characteristics. This analysis .involves the 

solution of two simultaneous differential equations. This 

solution involves the determination of roots of a fourth 

_degree equation. Therefore a completely general solution 

is impnac�ai If it is assumed that the resistance of 

the·two circuits is negigible, the roots of the fourth 

degree equation will occur in imaginary pairs and.the 

equations have a definite solution. The approximate 

damping affect of resistance may then be introduced into 

this solution. Again Morecroft has an excellent analysis 

of the circuit based on this assumption. However, in the 

determination of the constant terms and the frequenc'y 

terms, the effect of resistance is excluded and sometimes 

it is necessary that the resistance be large. Frequently 

the condensers of the circuit are punctured by too high 

voltage, or the coils, resistances or instruments· are 

burned out because this lack of knowledge of the transient 

ch�racteristics. This introduces the idea that the re­

sistance may .play an important part in the determination 

of the magnitude of the transients. 

Because there are many texts which have_ very good 

descriptions and analyses of the characteristics of this 

circuit it is considered necessary to give only a brief 

description of general transient characteristics*here. 



Let it be assumed that a pulse voltage, e(t), is 

applied to the circuit of Fig. 1. Looking at the circuit 

from the primary side, the circuit may be represented as 

R1, 11, c1 plus the impedance of the secondary circuit 

which is reflected by the coupling into the primary circuit. 

If R1 and the reflected R2 are not too large the energy 

imparted to the circuit by the pulse voltage will oscillate 

because the total circuit may be represented as a series 

R, L, and C circuit. Where R is R1 plus the reflected R2, 

L is 11 plus the reflected L2,etc. Now we look at the 

circuit from the secondary side. The secondary may be 

represented a_s R2, 12, c2 plus the reflected impedance of 

the primary. The energy imparted to·this secondary is 

the voltage i�pulse reflected th�ough the coupling. Thus 

the secondary may be represented by an RLC circuit and 

the energy reflected· into the secondary will oscillate at 

a frequency different from that of the primary. Therefore 

there are two oscillating ener�ies coupled together by a 

com�:1on factor. The energy will be transferred from one 

circuit to the other at a rate depending on the difference 
I 

of the two frequency terms. Whether the energy transfer 

will be complete will depend on the circuit constant. 

Several of the references listed in the bibliography give 

an exc,ellent description of the characteristics of this 

circuit. 

3 



SECTION II 

OBJECT - STATEJ:ENT OF PROBLEM AND METHOD OF SOLUTION 

The purpose of this paper· is to establish upper 

. l.imi ts or me�s by which the upper limit may be cte-

- termined for the transient currents and condenser voltages 

in magnetically- coupled circuit and to discover any 

dangerous transient conditions that can exist. A high 

ratio of transient amplitude to steady state amplitude 

is interpreted here as a dangerous condition. 

Figure 2 shows the magnetically coupled tuned 

circuits which will be analysed. 

+ + ti 

l---v1 (t )---...... �,. 1� 
Figure 2 

+ 



A descriptive type analysis is of little value in 

determining the transient limits. A laboratory method 

of analysis would be satisfactory but would require a 

precision of measurement that is not easily obtainable 

and would also require a very large number of tests. The 

-mathematical analysis of the circuit requires the solution 

of a fourth degree differential equation. Fortunately 

this difficulty can be overcome by assuming the roots of 

the quartic equation and definite results can be obta1ned. 

The equations of the network of Fig. 2 are as follows: 

5 

The�e are four available methods-for solving the above 

equations. These methods are, the classical, the Cauchy­

Heaviside, the Fourier Transform, and the Laplace Transform. 

If the solution were to consider one specific case there 

would be little choice .in the method of solution. However, 

a general solution is wanted, ·a solution that has as wide 

a range of flexibility as possible. The Laplace Transform 

method is by far the best suited for this purpose. The 

constants are readily determined and the method of solution 



is simple and straight forward. This is evident in the 

general development in the next section. The notation 

used will be the same as .developed by Gardner and Barnes 

in their text HTransient in Linear System". A brief 

description of the notation to be used follows. 

6 

The primary circuit will refer to circuit #1 of Fig. 1. 

The secondary circuit will refer to circuit #2 of Fig. l. 

i1 (t) 

i2(t) 

v1 (t) 

v2(t) 

e( t) 

instantaneous loop current of the primary. 

instantaneous loop current of the secondary: 

instantaneous voltage drop a.cross cl. 
instantaneous voltage drop across c2. 
instantaneous input voltage rise. This 

term will also include the effect of closing 

the switch. 

(The sign and dj.rection of the above quantit·ies are indicated 

on the circuit diagram.} 

J indicates the procedure of ·taking �he Laplace 

Transform of all that follows the symbol. 

indicates the inverse Laplace Transform. 

indicates the '/:i1 (t), I2(s) =�i2 (t), etc, 

z11(s) the loop impedance function seen by the 

current r1 ( s), 

z
22

(s) the loop :i!mpedance function seen by the 

dur:cent I2( s). 



z12
(s) the mutual impedance function to loop 

currents r
1 
( s) and r

2 
( s). 

(For an example of this notation see the illustration 

at the end of the section. )  

(R_ indicates the process of taking the real 

part of all that follows. 

A means equal by definition. 

means approximately equal. 

means approaches .(as anc. example uA-+B" 

means that A a proaches in value B). 

\A I means the absolute value of the constant 

within the bars. 

7 

A means the conjugate of the term under the bar. 

Condenser voltages and coil currents at the time 

t = o, are assumed zero throughout this analysis. a 

initial conditions would simply add other terms to the 

initial equations. These added terms can be carried 

through the analysis in the same manner as the principal 

terms. Therefore the analysis would be more complex. 

R 

C 
L 

Figure 3 



Little would be gained by including these terms. 

The following example illustrates the not�tion and 

method of solution. Given the circuit of Figure 3, the 

equations are as follows • 

0 

. 
1 

/ 

l 
J 

di (t) 
= - - i

1
(t)dt + - i (t)dt+ L 2. 

C C 2. dt 

Neglecting initial conditions the equations in transform 

notation are: 

1 
Et s) = RI1 (.s) + r

1 
( s) - I

2
( s) 

Cs Cs 

0 

These equations may be factored as follows: 

E (s) [ H �
s
] I1 (s) -[ �

s
] I

2(s) 

0 -[  �
s

] \Cs)+[ �
s 

+Ls ]I2(s) 

The impedance function of loop 1 is z11 ( s) =[ R + �$ l 9 

8 



--The impedance function ,of loop 2 is z-22(s) = ·1 �
s 

1-Ls] 

The mutual impedance function is z
12

(s) .... [ �s] 
Using this notation the network equations are: 

9 



SECTION III 

THE GENERAL SOLUTION 

The general solution of a coupled network involves 

the determination of the roots of a quartic equation. 

There is no �C solution for an equation of the 

fourth degree. However a solution can be assumed and 

then it can be shown how variation of the circuit-para­

meters affect the assumed solution. Condenser voltages 

and coil currents are assumed to be zero at the instant 

10 

the switch, K, is closed. The effect of closing the switch -

will be included in the expression' for e(t) .  

Let Z (s) and z
22

(s) be the self impedance functions 
11 

to the loop currents, i1(t) and 1
2

(t) respectively. Let 

Z12(s) be the mutual impedance function. Then, by the 

transform method illustrated on pages e and 9: 

z11 Cs) = .:
1 [ s 2 

+ 2a1 s "f� J 

1 
wl =:==:--

. �L1C·1 



!' 
w -2 -...JL C 2 2 

Let 'k' be the coefficient of coupling. 

2 1-i1: 

k :-
L1L

2 

The equations for the circuit (Fig. 2) in the transform 

notation are: 

Solving these equations for I1(s) and r2(�) by the method 

of determinants gives; 

Therefore from the ·Laplace Transform theory: 

11 



-\ _, 1. 1 
J

r1(s) 
vl (t) = Vl (s) = C

l s . 
-I " 

1 

l 1 ·! I (s) 
v2(t) = v2

(s) = C : 2 

[s4+ ... J. 

1.et the above quartic expression, in brackets, be re­

presented by the simpler notation, [ s.lt+ • ; .] • Then 

s.ubsti tuting for z
11 

( s) , z·
22 

( s) and z
12

( s) in equations 

1,thex become; 

i2(t) 

v1 (t) 

v2(t) 

M 
,

-1 
s3 

� � 
1112(1-k ) f s + •. � 

-· 
1 I: 

(s) 
=-

cl 
_, l I2(s) -

c2 s 

E( s) 

12 

••• l(c) 

•· •• 1( d) 

••• 2(a) 

••• 2(b) 

••• 2(c) 

••• 2(d) 
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Equations (2) are perfectly general solutions for 

the network of Fig_. 2. The only condition imposed is that 

condenser voltages and coil currents be zero at the instant 

the ·switch is closed. The effect of these initial currents 

or voltages may be taken into consideration by writing the 

·network equations as follows: 

E1(s) and E2(s) are made to include initial· voltages and 

currents. These terms make the solution longer but no 

more complex. 

To carry the solution further it is necessary to 

determine the roots of the expression [ s 1++ ••• ] • The roots 

must occur in conjugate or real pairs. Furthermore, the 

maxi-mum amplitudes and the most dangerous conditions will 

occur when these pairs of roots are conjugate pairs. 

Therefore this paper will develop only the solution where 

the roots are c0njugate pairs. The solution for the case 

where the roots_ are real pairs is very similar to this 

solution. In the following analysis these similarities 

will be pointed out. 

Let [ s 4 
+ •• J = ( s + oc, - j 1.91 ) ( s + oc, � j 13, H s + «z.- j iSi,H s + "'z + j �,) 

rit •• ··---



Expanding the right hand side of the preceding equation 

and equating the coefficients of like powers of s, the 

following equalities are derived: 

wf + w� + 4a1 a2 
l-k 2 

z z a. i z. -2 where .n.; = 0(, +S1 and'\= oc1 +oz.
.. It is necessary to solve 

14 

••• 3(a) 

••• 3( b) 

••• 3( c) 

••• 3(d) 

equations ( 3) si ul taneously to determine the «'5 and e's .. 
Dr. Harold M. Crothers, in an unpublished paper, has shown 

that the general .solution of equations (3) is: 

? 2 2 l+wyw2<l-k) 
••• 4(�) 

In.the above equations, x is the real root, which vanishes 

when the constant term vanishes, of the following equations; 
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••• 5 

Equations similar to� and 5 were also derived by Pierce in 
I 

his book HElectrical Oscillations and Electric Waves"(l920). 

Equations 4 and 5 also apply to the non-oscillatory case. 

In this case.11�= °'�--/3�and 'J??- �:-·13:ana the roots are; · 

[s4 + ••• ] = (s+oc, -/3,) (s+o<,+ 13,) (s+ 0(2 -13z) (s + <X2 ·1 t3e) 

Equations 2 in terms of o< and /3 are as fallows from ( 2a) ; 
-I 

1 Js [s�+ 2a s+ ,�]E(s) · 
i { t) - - 2 · 2 ••• 6 ( a) 1 - Ll (l-k2) [< s + o(,) 2+ 13,2] L ( Si- 0(2) +1.31] 

The equations for ·i2(t), v
1 

Ct) and v2(t) may be written in 

a similar manner from equations �2b) , (2c) and (2d). 

From this point, the solution may proceed by two 

different methods of analysis. One method vould be to 

specify e(t), determine its Laplace Transform and substitute 

this result into equations 6. Then taking the inverse 

·transform gives the desired results. The second method 

of analysis is to leave E(s) undeclared and examine the 

transfer or system function. The transfer or system 

function may be defined for this particular case as· the. 
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part of equation 6 whose value is dependent solely on net­

work parameters. To be more specific, equation 6ta) may 

be written as follows; 

11 (t) = Jr.:(s) =:;:Gl (s) [E(s)] 

·N1
G

1
(s) is the system function where, 

1 
N -l - 11 (l-k2J 

s [/ + 2a2
s tw� ] 

E(s) is called the forcing function. This system function 

can then be combined with the forcing function by means of 

the convolution integral. The formulation of the convo­

lution integral is treated extensively in the Gardner and 

Barnes text ttTransients in a Linear System", pages 228 

through 236. 

This second method of analysis has several distinct· 

advantages. The constants determined from an analysis of 

.the system function are a part of the constant term for 

any forcing function used. The damping factor and the 

frequency components determined from an analysis of the 

transfer function are of course the same for any forcing 

function used. The disadvantage of the second method is 

in the combination of the system function and forcing 



function. The convolution integral can be very complex. 

The method which best fits this problem is a combi­

nation of the two methods� There are only three types 

of forcing function which are of practical concern. They 

are, 

1. The unit pulse function (a pulse of exceedingly 

short duration compared to the time constants 

of the system) 

2. The unit step function 

3. The sine or cos. function 

17 

For these three forcing functions the problems of how the 

transfer function combines with the forcing function is 

best determined by solving the equation by method one and 

comparing this result with the analysis of the system 

function. The formulation of the real convolution integral 

will be outlined in the following so that the equations 

may·fit a more general case. In the following only the 

case of i1(t) will be developed. The case for i2(t) , v1(t) 

and v2(t) follow the same procedure as for the case i1(t). 

Equation 6 may be written; 

-t 

It should be noted that the J 11 ( s) 
does not equal i1( t) /e( t). 

� (.S) 
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The bar over the constant means the conjug·ate of the term. 

If the roots are real pairs then; 

[ 
K K K K ]' 

N
1

G
1 

(s) = 1 -t 11 + 2 + 22 -N, 
S+C(,-1.3, S+0(,+18, S+D<2-l3i s+oc:,+l3z 

The solution follows in the same manner�as for imaginary 

roots but of course the constants are different and the 

simplified notation of nconjugate" and "rea'l part" cannot 

be applied. The following analysis will apply only for the 

case where the roots are imaginary. Let()(.mean the. real 

part of all that follows in the brackets. 

N
l

G
l

(s•) - Nj(r_K __ + K2 ] - l�+ CX..1 -j 13, S + 0(2 -j 1.32 

similarly, 

K 1 +· 2 ) 
s + D(z. -j IBz 

In the following let z1 = -o<,+ j'51 and z2 = - o<2 + j tS,. The 

inverse transform of the system functions for equation 6 



are as follows; 

/-I Il ( s) 
- 1;' G ( s) - N <R rK eZlt + K eZ2t ] 

E (  s )  - J... l 1 l - 1 � 1 2 

/-• v  ( s) 
;

- •  &� z· t K tJ 1 - N G ( s)  - N f?. 1 
e l + -2 ez2 

E ( s ) -· 3 3 - 3 z1 z2 

1- I  V ( s )  f.. .. J t K '  Z t K '  Z t J 2 
= o<'...N4G1/ s) = N4d( .....l e 1 · + -2 e 2 

E ( s) zl z2 

19 

••• ? ( a )  

••• ?(b) 

••• 7 ( c) 

• • • 7 ( d )  

1 H 1 M 
where N 1 2 , N2'- 2 , N � 2 . , N, .:- 2 1 1(1-k _) L1L 2_(1-lt ) J L· -C (1-k ) "T-L L C (1-k ) 

The constant terms are : 

K . _ z1 [ z� + 2a2z1 +
w� ] _ 

1 - j s2T< °' 2  + z'l ) 2+ ..s:] 

K _ z2 [ z� + 2a2ZiH;J 

2 - j iSz � 0(, + Z 2) 2+ 13�] 

z3 

K ' - l 
1 - j 8, [(oC z.r Zl)

2
+ ,s:] 

z3 

l 1 1 2 2 

j \I, e ••• B (a) 

• • •  B ( b) 

• • •  8 ( c) 

••• 8( d)  



The angle terms associated with these constants· are 'ti,, '-tz, 

41: , and l.fl�respectively. 

I 
� - -I -

�· - -· 2 -

rr -1 ,s, · -1 2 13, (a � 0<,) 
- + Tan - -+ Tan ______ 2 _______ _ 

2: o(, w2 - n a.  + 0(. 2-2a 0( ,  2 ,�, ' 2 

Tr T -1 - +  an 
2 

7T Tan-1 -
2 

-1 2(  O(.z- C(, ) 13 ,  
- Tan __ r ------. . 2 

T -1 - an 

13: - 13,1°-•( �z. - C(, ) 

l l. ( . ) 2 
IS, - IS z. + �. - �2 

2 ( O<z. :.. 0(,) 13 ,  13, -1 3 --- - Tan 
- /3,2 + ( �. - �z) 2 0( ,  13 : 

l3i, Tan-1 2( �. - �z)�z 
3 - -

4 l.  z ( ) � Oc'2, I - /.3
2. 

-f- q'
Z. 

- 0(, 

These constant terms may be written in a manner more 
,f'\ 

( 9 '  convenient for calculations by substituting the followlng 

20 

1 t . h " 2. 'l. 'I. d z 1. ' re a ions ip s, 13, ::. .n.;- �. an 8z= n.z- �2 • Then, the terms in equations 

8 become : 
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The next step would naturally be the analysis of 

.equation (7) .  However this is also a good place to continue 

the general solution, to demonstrate the· application of 

the convolution integral and to find out how these transfer 

functions fit into the solution for the three particular 

forcing functions previously mentioned. · 

The complex multiplication theorem, as . stated and 

proved in the text "Transients in a Linear System", is as 

follows. If the functions f1 (t) and r
2

(t). are �trans­

formable and have, respectively, the cftransforms1 F1 (s) 

and F 2 ( s) , then ; 

1 [j�(t - 1- ) fi 1" ) dj = F1 (s) F
2

(s) 

The proc esses indicated within the brackets is called 

convolution in the real domain. This theorem states that 

the product of two functions in the complex Laplaca domain 

· goes over into the convolution of the two functions in 

the real domain. To apply this theorem for this case , _ ,  
Let f1 (t) = e(t )  and r

2
(t) = iJ:N

1
G1 (s) .  Therefore · F1(s) 



Then 

F ( s) F ( s ) - N1G1 ( s) E(s) 
l 2 -

22 

11 (t) = 1;�(s)F 2
(s) : f ;t-

1' {0tr/1\ K/� } d 1'" 

Let e(t) = sin (wt) then , 

�l(t) = (Jt[jt
1
l1\ K2

ez2r sin(wt - w 1" ) d 't' J . 

It is evident that this integral can be rather difficult, 

but for some special forcing functions i� is method of 

solution when the straight forward method or method one 

is practically impossible. 

For the three particular forcing functions which have 

been chosen for development, the Laplace Transforms are; 

1. 'c unit impulse at t = o)� /i1m J \ "J. �-- 0 

2. [<unit step at t = O) 4J.(t) = 

u (  t) -u( t-a) 
_____ _ : i l 

l 

s 

J! 41 w cos Q-s sin @ 
3. (unit sine or cos function)- sin(wt-� 2 s + w2 

The proper selection of Q will give a ·cosine or sine 

function or any combination of cosine or sine. 

For case #1, the ·unit pulse input, it is evident 
-l 

that 11 ( t) = JN1G1(s) or 1
1
(t) is equal to the inverse 



transform �f the system function. 

For· case #2, the only change in equation 7 is in the 

constant terms. The equations are; 

.where, 

K ( ls) :. K1IZ1 

:. -K ( 2s) = K 2/Z-2 

The angle functions associated with these constants are; 

�ti> = 't', - Tan -1 
a( ,  

For case #3, the constants are not only changed but there 

· is added to the transient term a steady state term. This 

steady state term may be determined by use of the "Final 

Value Theorem" which is given in Gardner and Barnes text 

ttTransients · in a Linear System" page 267 . This theorem 

states that ; 

1 im s F ( s) = 1 im f ( t) s �o t -+4o 

Letting e (t) = sin ( wt - Q) and then solving equations 6 

by taking the inverse transform there results ; 

23 
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i1
(t) = N1� ( l  e 1 K e -t K eJ 

� 
z t Z2t · · wt] 

sin) · + (2  sin) ( 3 sin) 

The constants are, 

K . - K  ( 1 sin) - l 
. w cos Q 

2 2 z1+ w 

� f7 - L.tl sin Q 

I K ( l s in)I  e 
j lr'(ls1n) 

w cos Q - z
2 sin Q· j l/ ( 2sin) 

K ( 2 sin) - K  - ,K le - 2 r,2 2 - ( 2sin) ""2 +w,...� 

K( 3  sin) 

The angle functions associated vlith these constants are, 

l .  1 _ 1 - 81 sin Q 
Y ( 1  sin) = lf', + Tan 

w cos Q +cf,sin Q 

l.  1 _1 - 13.,.sin Q 
T( 2  sin) = '4/z. + Tan -�.-- ----­

w cos Q + Oc'e in Q 

-1 -2  oc ,  t.S ,  
- Tan 

T -1 -2 O(z. ,.S z. - an -.,.i------
w2 - /3: .. o<: 2 

These values were arrived at by solving equations 6 

with the specified e ( t) and then comparing these results 

with the respective inverse transforms of the system function 

· rather than by the method of convolution. The method of 

solution for i2(t) , v1 ( t) and v2 (t )  proceeds in the same 

manner. 

The similarity in the preceding results suggests that 

the response equation may be written in a general equation 

as follows: 



where f( t )  represent.s 11 ( t ) , i2( t) , v1 ( t) '· or v 2( t) and 

25  

• • •  9 

�, A, B, and C are constant terms associated with the 

particular f(t) and input forcing function. The following · 

_table, Table 1, give s the expression for these constant 

terms for f(t) and any of the three forcing functions. 

The transient portion of equation 9 could be written in 

terms of an envelope and angle function. Let f (x)  represent 

this transient then; 

f(x) = N l'.R �e
zlt+ BeZ 2t] 

: N � 1 2e-2 0< ,t + 2 \A\\Bl e -( oc ,
"'" 

Ol!) tcos [ ( 6, - ISz) t+lt(- lf'J 
+ I B ( 2 e-2 Q'zt]� cos ( .e z.t + "z + cf( t ) ) • • •  10 

where Cf( t) 
IA I - 0( ,t . [ ( ) t ] 1 e sin 131 - ,Sz + �, - '°l'i 

- T�­
JA f e- ocztcos ( E .S 1 - 13z) t + 4', - 4'z.J t I Bl e- o<?.t 

and 'fl, and lfl
1. 
a.re the angle terms as sociated w'i th A and B 

respectively. A and B are the same constants given in 

Table 1. The envelope equation is; 

N �A I 2e -2 oc,t 
+ 2 IAIIB I  e- (ac ,

+
ot,

) cos [ Cs, - '9t) t + '+', - 4'z.] 

J B I  2 e-2 0(1t }t • • . 11 

Table 1 and equation 9 represent the complete general 

solution for the _network of Fig. 2. The next section 

will be an analysis of the system function. 
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-TABLE I 

CONSTANTS OF RESPONSE QUATION 

, Symbols: 

(unit pulse at t = O)� lim a--.. o  
u(t) - u(t - a) 

u1 ( t ) 

(unit step at t = 0)  � 1 or u (t) 

A (unit sinu soid) = sin ( wt - Q)  

Basic response equation: 

,.g fi· Z1  t z2t j wtl 
f(t) = N \T\ LAe + Be + Ce J 

a 



'TABLE I ( cont t d) 

Constants :· 

- K - zl �f + 2ai1 + ,rfl 
i - j 13, le C( i + \) 2 + 13� ] 

z2 [ z� + 2a2z
2
+ w; ] 

K 2  =. 2 
j 82[( oe, � Z2) -t /3� ] 

z3 
K ' - 1 

1 - j ,SI.
� Ol.1. + z1

) 2-,. iS: j 
z3 

K ' - 2 
2 --

j !dz [< C( s -t- Z2) 2 i- 18,z.J 

K -4 -

w cos Q - zl sin Q 

z2+ w2 
1 

w cos Q - z2 sin Q 

z2+ 2 
. 2 w 

w [ w� - w2 + 2j a2w )  e- jQ 
K - ------.,.--------------

5 - (C C( ,  + jw) 2+13.z ] l ( o( i + jw) 2+ 1.3�) 
. � - j Q  -,ve 
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e ( t ) 
( forc ing 
, function 

Unit Pulse 

u1 ( t ) 

Unit Step 

ui( t) 

-

TflBLE I ( con.t ' d) 

f ( t ) 
( response 
. func tion) A 

I 

ilt Kl 

i2t K '  1 

Kl 
v1 ( t ) -

zl 

K '  
v2 ( t) _J_ 

z 
1 

K 
il ( t ) ' --1... 

z
l 

-

K '  
i2 ( t ) ..:l... 

z1 

..::L v1 ( t ) 
z2 

1 

K ' 
V 2 ( t )  --1... 

- z2 
1 

CONSTANTS 

B 
. 

K 

K '  2 

K2 · -
z

2 

K '  ...:2.. 
z--2 

� 
z2 

K ' 
--2... 

Z2 

K2 
7 1 

K '  

-fr 2 

C 

0 

0 

0 

0 

0 

0 

w2 

2 
Jl t .It i. 

I 'l 

0 

-
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[ 

1 

1 ( l-k2) 
1 

M 

\1 2( 1-k�) 

11c1 ( 1-k ). 

2 L L C ( 1-lr ) 1 . 2 2 

.1 

11 (
l-k2) 

M 

( � 111 2 1-k ) 

L C ( l-k2) 
l 1 

L L C ( l-k2) 
l 2 2 
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J.ABLE I (c ont ' d) 

e(t) f (  t) CONSTANTS 
r,( forc ing (response 

function) function) A B C 1 N 
- -

Unit 11 (t) �KJ!(3 Kt<4 
K 

(l-k2) 5 
sinusoid . .  ( 

u ( t) / M 
3 i 2 {t) K1K

3 
Kif4 

·K 2 6 L L  ( 1-k ) 1 2 . 
K I

{ 

s. v1 ( t ) ""z1 K3 � K  z· 4 jw L C ( l�k2) 
l ·2 l l 

K '  K '  
� V 2(t) __i K � K4 L L C ( l-k2

) z .  3- z 2 jw 
l 1 2 2 
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SECTION IV 

�NALYSIS OF SYSTEM FUNCTION 

In the previous section the system function was 

defined as the part of equation 6 which is solely de­

pendent on the network parameters. Furthermore it was 

shown that the inverse L aplace Transform of this function 

gave a transient equation which had certain properties 

inherent in the transient response equations of the net­

work for any type input function or forcing function. This 

system furrction was represented by the symbols NG (s) . The 

J��( s )  are equations 7 .  

If this thesis were to be a complete analys is of the, 

transient conditions in mutually coupled networks, a complete 

analysis of the system function would be an important contri­

bution to the analysis. Curves could be plotted showing 

how �NG { s ) varies  as Ui.e circuit parameters vary. These  

circuit parameters could be represented by five dependent 

variables, a1, a
2

, w
1
, w2and k. The variables could be 

reduced to four variables, a1/a
2

, w
1
/w

2, a
2

/w
2 

and k. An 

analysis of this type is pos sible but it is a very long 

procedure and beyond the scope of this thesis. For any 

specific case, the expression for the maximum transient 

amplitude , or curves of the complete transient response 

may be readily determined by use of the equa_tion of the 
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- envelope function, . equation I�. Furthermore it is possible 

to determine when particular y dangerous conditions occur 

and the upper limits of transient amplitu4e without 

becoming involved �in this  extensive, complete analysis. 

Because of the reasons j ust mentioned the following 

_analysis will be split up roughly into three regions of 

operation. The first region will be where a1 
and a are 

' 2. 
small compared to the frequency terms, wf and �. The 

second region will be where the damping is large or  a 
l 

and a2 are large enough so that no simplifying asswnptions 

can be made. The third region will be where a1 � z.a
2
w�. 

This region covers the particular case where a1 = a2 and 

wl = - w2 ., 
The steps in the procedure of solution are much more 

definite than these three regions. Therefore, the analysis 

for the three regions will be carried through in each step 

of the solution rather than carry the complete solution 

through for each - of the regions. 

The first step in the analysis of the system functions 

is the determination of o<., �i, �. , and /d
t
by equations !it- and 5. 

Equations 4 and 5 are repeated here for convenience. 



Where x is the real root that vanishes when the constant 

term vanishes of the following equation: 

3.2 

+ 4(a - a ) (a w
2 - a ,,,2) ] x - 4k2

(a
1

w2
2 1 2 1 2 . 2 1 

2 2 
a w ) - o . . . 5 

2 1 - · 

For the first region, where a and a are smaJ.l .compared 
1 2. 

to 2 2 w
1 

and w , 
2· 

X in equation �(c) 
d 

may be neglected. Inspection 

of equation 5 shows that X will be small if a and a are 
1 2 

small. Another way of arriving to this conclusion is by 

inspection of equations 3 ( a) and 3(d). These equations 
2 2 show that if a1 am a

2 
are small compared to w1 

an.d w2, then 

OC, and OC2,will be small compared to �and �.. Therefore, � <X 1 0<1 
a a 

and 4-
l-�z2 may be negl ec t ed in e quation J ( b) � Equat ions 

3 ( b) and 3 ( d) may be solved simultaneously for ..n�and .n� • .  

!he resultant equations for��and .n.!are exactly the same as 

equations 4( �)  if x is considered negligible � 

Because x is negligible in equations 4(�) does not 

imply that it will be negligible in equations 4(8 ) .  There­
b 

fore, the value of  x must be determined. 

Sample calculations have shown that, if a
1 

and a2 
are small , a very close approximation of x may be de­

termined by using only the last three terms of equation 5 .  

This is a quadratic equation. Its ' solution is; 



Examination of this equation shows that . it meets the 

condition that x must be the real root that vanishes· 

when (a
1
w� - a2wf) _. O .  The other solution for x does 

not meet this condition - and therefore may be discarded. 
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The value of x determined in this manner should be checked 

and adjusted by substitution in equation 5 .  Sample calcu­

lations have shown this method gives a very close . approxi­

mation of x and generally no adjustment is needed • . If this 

value of x needs radical adjustments to make it fit equation 

5 ,  then a1 and a2 cannot be considered pegligible in the 

determination of  the frequency terms, or in other words, 

x will be large �d cannot be neglected in equatior �(�). 

The above equation for x shows that x must always 

be positive. Equations � are limited to real numbers. 

Therefore, x must be limi.ted to values which give real 

numbers in the radicals of equations 4. If a1 and a2 are 

small, then equation 4( �) give the limiting values of x. 

The possible range of x is, 

z x =  
af ... a� -t 4-k 2a1 a2 

l-k2 



There:tore the possible range of ct1 and oCzis, 

when x -

. 0( 
al-t 2 i- V (al-t- a

2) 2 (l-k2) a a 
1 - --------------�---------------l-.2_ 

O(�- 2 ( 1-k
2

) 
when x = o .  

This shows that for any value of x neither o(,nor c<z.may be 

zero. This merely checks a physical truth. If o<, or °'2.were 

zero than there would be unending oscillations in the net­

work. This could occur only if the resis t�ces were zero. 

In general unending oscillations cannot occur unless the 

network involves feedback or "negative" resistance. 

The special region where a
1
w; - a

2
wf_. o  fits . very well 

. . f 2 2 into the above analysi s, because 1 a
1

w2 - a
2
w
1 = 

o ,  then x 

must be zero. If a1 = a2 ::. a0 and w1 = w
2 
= w0 than the 

equations for 0(. 1 ,cx.1 1.n� and ll�may be- simplified to the following ; 

av w2 

_Q... 0( - - Jl. ,  t -
l-k 1-k 

ao w2 

'2 -o<2.= ttk J2l l+ k 

As a and a2 become larger, x will be larger for a 
- 2  

specific ratio of � .  It is noted · that regardless of 
2 a2Wl 



of how large .the damping becomes, x is zero when � -
Numerous calculations were made in an attempt to find a 

w2 
2 

set of constants which would give a value of x that would 

make the radicals of equations 4 imaginary. Conditions 

3 5  

were found which would make the radicals of equations 4( �) 

approach zero , but none of the conditions tried made any 

of the radicals imaginary.. These calculations also showed 

that the quadratic equation for x, given on page 28, gives 

a good approximation of x, even when the dampin was large 

enough to make the roots all real. However , when x is l arge 

it is very important that x be checked and adj usted by sub­

stitution into equation 5. 

If c ritical damping is defined as  the point between 

oscillatory conditions and non-oscillatory conditions 

then both �, and A3l-must equal zero. Therefore, � =  ./l.land «2= .n� 
and·""2 + 0c'l. _ n Z + n 2. Substituting equations 4 into the latter 'W\' 2 - .J I,, ' "' '"� . 
equation and simplifying, gives the following equation : 

Therefore if a system of parameters makes the above ratio 

greater than 1, then the roots of the quartic equation, 

[s4 + • • • �' are all real pair s. If the sys t em of parameters 



makes the ratio less than 1, then at least one pair of 

roots is imaginary. 

This particular case where the damping is large can 

be studied by a different method than presented here. Dr. 
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Y. J. Liu in his paper, "Stabilj_ty and Transient Analysis of 

Controlled Longitudinal Motion of Aircr�ft with Non-Ideal 

Automatic Controlu, develops a quartic chart for the solution 

of equations of the type, [sl+ -+ • • •  J • Dr. Liu' s method has 

some particular advantages and therefore will be briefly 

outlined here. 
. 

4 Dr. Liu ' s first step is to write the equation [s + • • •  ] 

in a non-dimensional form as follows; 

where 

Let 

Y - 2 
3 -



M =  and _N = 

The values of i and N are called the stability criterions . 

Knowing the values of M and N it can be determined from 

·inspection of the �ability chart whether the roots of the 

quartic equation are two real pairs, one real pair. and one 

imaginary pa�r or two imaginary pairs. Further charts 

presented will give the values of «, , cx 1 ,J1,and J'lz • 
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Dr. Liu ' s work is of particular value where sustained 

oscillation can occur. In our particular problem sustained 

oscillations cannot occur and the method of analysis presented 

here is more direct and in general much simpler then the 

use of the quartic chart., 

The next step is the analysis of the constant . terms. 

The analysis in the region where the damping is small will 

be developed first. The analysis for this region will be 

roughly split up into three cases as fol lows: 

Case 1, where 

Case 2, where 

C ase 3, where 

In the previous step it was shown that . if the damping 

is small x could be neglected in equation 1+(�) .  Equation 

�(�) becomes as follows; 



..n: I 
.Jt.1 = 

1 

3t) 

If wf and k
2 

are held constant while w� is varied from O to oo, 

Jl.� and �iwill vary as indicated by Fig. �. The approximate 

range of the three cases are marked on the figure. The dotted 

curve indicates the affect of increasing K. 

Log (1-k
2

)Jt.� 

Log (1-k 2)-n..i Region 
Case I 

I S"' 
,) ,, "" 
'::I �, � I  
� I  I 

ii - . � Region 
�I Case 3 
I 

- - -
#,,- /r 

I /. /"" I 
1 /:'� I 

I 
I 
I 
I 

I 

I 

2 · 2 Log w1 
Log w

2 
__.. 

2 2 2 (1-k )Jlf & (1-k Ln� vs. w
2 

Plotted to Log Scales 

FIGURE 4 
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From Fig. 4 it can be seen that the specific range of 

the three cases is dependent on the value o_ k. The value 

of x will also effect the range as � 1 and o(2 increase. In 

the following analysis, it should be kept in mind, that the 

ranges of the specific cases are not definite. Therefore, 

the results of the following analysis should be interpreted· 

as a rough guide to the limiting values of the constant 

rather than an approocimation of the value for a specific 

case •. 

If «, and cx2are much smaller than 13 1 and 132, it would 

seem that the equations for the constants ( equation 8) could 

be s:j:.mplified by assuming that - cx 1 + j 13, � j 13 1 and - o(,+ j 132 � j '5z • 

However, the terms in equations for the constants · involva 

differences which in some cases make o( the b portant factor 

in determining the value of the constant. Furthermore, if o< 

becomes an important factor, the� s: and /3!cannot be assumed 

a proximately eq.ual to -11,t and Jl.� . The terms involving 

differences are; 

zf + 2a2z-1 + w� = w� - Ji:;, 2 o(,(a 
2 

- �. ) + 2j tS, ( a2 - «,) 

Z� + 2a:f 2 + w� = w� -�:- 2 o<z.< a2 - «t) + 2j t,3/ a2 - c<z) 

( o< i- Z1) 2+1.3; /l�·Jl� + 2 OC,( �. - �z) - 2j /3,( o<, - oCi.) 

( 
2 2 

�. - Z2) + 13, =Jl7 Jl� + 2 ot.z< «2.- °'' )  - 2j /3.f. o<.,.- o<.,) 

In the above terms the imaginary part of the terms involve 



no differences, therefore .Jll and Jc�may be substituted for � ,  

and "3z . '- Fig. 4 shows that when, 

� 2· 
' Wl ' W2 than J1., -+ �  and .ni ..... � 

1-k� - 1-k� 

w� � wf than .11� - J?f _.. a minimum 
2 w2 

w2
2 )) w1

2 than .n1.-� and .n!-+ _1_ 
I 1-k l-k 2 

Substituting these approximations into the above terms, 

assuming k is small, so that ( i-k2) � 1 , except where differ­

ences are involved anft also assuming that «, and ��are small , 

the constants approach the following limits ; 

For Case I w� �<wr 
w�(l-k 2) - wf 

Kl -. 2 2 -+- l 
w2 - wl 

K '  -,. -1 

w2 
1 

,.,2 _ w2 
2 1 

For Case 2�- wf � w�- � w� 



l + k 
K � -

1 2 

1-k 
K

2
-+

-

2 

l + k 
K' --+ -1 2k 

1-k 
K ' � -

2 2k 

For Case 
- 2 

3 ·, .:- w
2 >>w1 

K
l -.

� K ..,.. _ 
2 

K '  _. _ 
1 

K ' -+ -
2 

small 

1 

2 Wl 

w
2 
2 

2 
w

2 

w -
1 

value 

� 

2 w2 

compared to K2 ] 

In the above approximations a<, and OC'1are assumed negligibilie 

except where differences are involved. In Case 2 differ­

ences are involved, but these differences are generally 

4-1 

large enough so that � .  and �i may be neglected . (l-k2) was 

assumed approximately equal to 1. Again it should .be pointed 



out tha t these approximations should not be used for any 

specific ca se but are presented as an app�oximate guide to 

the final result� . 

The constant terms for the regions where iqi; -�1f ..... o 

. and where the damping is large cannot be simplifi_ed.. For 

these regions the phase angle also becomes an important 

factor. The r amerator of the constants K1 and K2 will 

be maximum when the real part and the imaginary p·art are 

equal. However, it is noted that as we increase � , or ��  

4-2 

to obtain this condition the denominator will also increase. 

The effect is that the constant terms cannot become much 

larger than they are when o<, and o< 2 are. _sma ll. Increasing o( 1 

or �
t
means �hat the damping is increased. Therefore, the 

vectors will be greatly attenuated when· they finally are 

in phase. Inspection of the phase position indicates that 

as the damping . is increa sed the 1nitial phase difference 

between the vect'Ors is decreased. This would indicate that 

· the time required before the vectors are in phase is less. 

However, in practical cases thi s change in phase position 

is more than compensated by the increased attenuation. 

The final step is the substitution of the constant� 

and �. , �l , �d �,into equation 7 or equation 1 5 ,  the 

envelope function. This step is discussed in the next 

section. 



SECTION V 

TRANSIENT LHlIT S AND DANGEROUS CONDITIONS 

The general equation of the n etwork of Fig . 2 is 
f: Z .. t Z t · tl f(t) = N� 0,e 1 + Be 2 + CeJ W J where f(t ) , N( a  real 

constant)  and complex constants, A, B and C are defined 

in Table 1. z
1 
=- - « ,  + j 13, and z

2 
= - <;>< 2+ j /32 • 

The above equation describes three rotating vectors . 

The first two t erms are the transient part of the equation 

and the third term is the steady state term. The two 

transi ent vectors are rotating at different velocities, 

8 , and '3z respectively. If there were no damping, the 

maxi um transient ampli-tude will be  the pQint where these 

vectors are in phase. However, these two vectors are 
� t - O(.,t exponentially damped by the factors e- ' · ·  and e �- • 

Therefore these vectors may be attenuated to a small value 

before they are in phase . The maxinum transient amplitude 

will be  governed . by following four facto'rs: 

1 . The attenuation of the vectors 

2 . The difference in speed of rotation 

3 .  The initial phase position 

�.  The absolute magnitude of the constant 

A plot of the envelope function (equation 11 ) ,  of the 

transi ent term is the simplest way of determining the 

exact transient amplitude .. The envelope · equation is . 
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given in Section III, eq�ation 11 . A plot of this 

equation will reveal the maximum transient amplitude. 

A close approximation of the maximum amplitude may 

be determined by letting cos [( 13, - 191) t t 4', - "'-):: 1 ,  and 

solving this term for the minimum positive value of t. If, 

cos  l ( 13, - !.l) t +  If', -!iJ= 1 

then 

-1 cos 1 = o ,  2 n , 4-TT , • • •  

Let the minimum positive value of t =  t0 , then the envelope 

equation becomes ; 

Physically t0 is the t1me required for the two transient 

vectors to move from their initial phase position , (when 

t = O) , to a pos�tion· where they are in phase. Therefore 

the accuracy of this method for determining maximum transient 

will depend on the ratio of ol.. m where 0( 
m 

is the smaller 

value of o<, or oCz. . This method will always give a transient 

amplitude slightly less than the true maximum amplitude. 

The true maxL�um amplitude flay be determined by selecting 

several trial values of t slightly less than t and solving 
0 

the envelope equation until the maximum �oint is determined. 



Sample calculations have shown that if the ratio of 

c:i... m 1 ----- >-, the equation is very accurate. Whereas , if 
13. - 1.32. 10 
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0( m 1 
------ < ---, then the equations were almost 50% in error. 

13, - t3z. 2· 

t · 
In this case a good sample value of t to try .1:_sl\ equax ., Lto· 

d./..2·'. _ 0 , · � .. In these calculations � - 4'2. was assumed to be 180°. 

When there is a steady state term ; this method may 

not be of any practical value, because the . transient ampli­

tude at t = O may have a value which balances out the steady 

state value. In such cases the maximum transient can occur 

. when t = o ,  but as this transient is completely balanced 

out by the steady state term, the actual voltage or current., 

at t ·= o ,  is zero. This case is illustrated in the appendix. 

The upper limit of the transient amplitude may be 

determined by assuming the damping is zero. This limit is 

N ( I A\ + I B I  ) • The current or voltage upper limit is 

N ( \ A '  + IB I + ' C  I ) • 

The complete expression for f (t) may be written in 

terms of an envelope and angle function. Let m(t )  equal 

the transient envelope equation, then; 

f ( t )  = m { t) Co S ( 8 z t + \.f 2. -+ cf ( t )  ) + N - \ C \ cos ( wt + \¥3 ) 

The envelope of .f(  t )  is, 



f (  t )  [m< t )  2 + 2N l e  I m { t ) [ c o s  l w- lSz ) t - 'tlz + ll'J- q,' ( t �  

- 'I: 
+ N 2 I cf] � O S  [ ..g "2 i; + �2 -� (/1( t )  + P ( t � 

p(t) 
N IC I sin [<w . - �z) t - lf/1+ �3 - Cl ( t� 

The carrier frequency has been taken as · ��. Calculations 

are made easier if the carrier frequency is taken as 

highest frequency term. 

For specific· cases , assumptions can be made which 

simplify this equation. However it is often simpler to 

start with the general equation , equation 9, and derive an 

envelope equation for the specific case. -For example, when 
2. ' 2' . w1 - w2 is large, one of tb:e t._ ansient constant terri1s might 

be negligible and the envelope equation could be ·written in 

terms of the large transient and the steady state term. If 

one _of the dampin terms is large it may be possible to 

neglect the term· with the larger damping. The example in 

the app endix is another illustration of how a simpler enve­

lope equation may be derived. 

The ratio of the -�ransient a plitude to the steady 
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state amplitude is \A \ + \ B l  or the actual curr ent , or volt-
l g  I 

I A  I + JB I + J C '  
age amplitude, is 

\ C l 
A dangerous condition -------. 

will occur when this ratio is large because quite often 



engineers design their circuits safely for the steady 

state amplitudes and assume that this will rovide safe�y 

for the transient s. 

t t 2 · 2 Inspec ion of he constant terms shows that w � w2 
- appears only in the numerator of the constants for the 

pri.rnary circuit ( i. e. i1(t)  and v1 ( t) ) . ·  This indicates 
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that measurements or calculations of the transient or steady 

state term in the secondary do not indicate what the primary 

conditions are . This may be considered another dangerous 

condition. 

Inspection of the constants of Table I ,  shows that the 

amplitude of the transient constants �or any of the three 

input or forcing functions, cannot be greater than the 

respective constants for the system function. In the pre­

ceding section, the system function was analysed for specific 

reg1,ons of operation. A few simplifications were presented. 

In general, the se simplifications applied only when several 

ass ptions,which are not always valid, were made. In any 

specific <!SSe where definite values are knovm. for the para­

meters, any simplifying assumptions that can be made are 

iIIL�ediately evident. Therefore, it is . felt that further 

analysis of this sort would be misleading and such an 

analysis  is not essential. 



SECTION VI 

SUH11ARY 

This summary will be limited to g en eral equations 
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and to method s of calcula tion ·which will yield limits 

rather than the specif ic limit s for any particular cas e or 

. region. Any specific limits or results for a definit e 

region presented in this  thesis  have been bas ed on several 

as sumptions, a s sumptions which are not valid for all cas es. 

Therefore  thes e  specific limits will be omitted in thi s  

review. It is  felt that the general equation s  developed 

have s im- lified the calculations to such an extent ·that 

for any specific cas e, limit s  or the complete transient 

respons e may readily be determined. 

Figure - 3 i s  an illustration of the network which i s  

analyzed for transient conditions. In S ection III, the 

general equation for this network was developed. This  

equ�tion is, 

• • •  9 

The real 

constant, N, and the complex constants, A, B, and C are 

given in Table I, pag e  26, for an input voltag e, e ( t) , of 

a unit pul se  function, a unit step function or a unit sinu­

soidal or co sinusoidal function. Z 1 . - o<. 1 + j /31 and 

z 2 = - 0( Z T j t3z • 



The analysis of this equation was ba sed on the 

analysis of the system function. The system function 

was defined as the �� (  s), where NG( s )  j_S  the part 

of the general equations which is dependent only on the 

network parameters. The system function i s  part of the 

response for any type of input • . 

' 0( 1 , o<i ,  B, , and 1.32 are determined from eqtia tions · 4 

and 5 .  In Section IV, equations 4 and 5 · were analyzed and 

simplified as much as possible.. Also in this section , the 

constants for the system function were analyzed and a few 

limiting values of these constants were established for 

nebulous regions of operation. Tbe constants A and B of 

equation 11 cannot be greater in value than the respective 

constants for the system function. 

The first two terms of equation 11 are the transient 

portion. The transient portion can be written in terms of 

envelope and angle function. This is equation 10, page 25 •. 
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A plot of this envelope equation will give the maximum 

transient a.I1plitude. A close approximation of this maximum 

amplitude may be determined by letting cos [< d, - t3z ) t  ·f-11", - �1 1. 

The envelope equation becomes; 

where t0 is the minimum positive value of t determined � 

by the following equation, 



cos-l [ ( 13, - '9r) t + -V 1 - 1111.)= 0, 2lf , 4- Tr, • • • 
This vrill give an amplitude slightly less than the true 

value. The true value may be determined by taking 

successive values of t less than t .  When there is a 

steady state term ,the maximum transient can occur at t = o ,  

but at this point the steady state will balance out the 

transient. Therefore this method, discus sed in Section rv,  
may be of little use. The example in the appendix illustrates 

this c ase. The complete expression for f ( t) may be written 

in terms of envelope and angle function. This is illustrated 

in Section IV and several ways this expression may be simpli­

fied are mentioned. The exam le in the appendix illustrates 

how the expression for f ( t) may be simplified for the case 

where w1 = w2 = w = w0 .. and k A< 1. 

The upper limit of the transient term may be determined 

by assuming that the damping is zero. Then the upper. limit 

is N fl A I + IB Q . The. upper current or voltage limit is 

N UA l + I B l -t I C ,J . 
Dangerous conditions are interpreted to be points 

where the ratio of transient amplitude to steady state 

l · t  d . h "  h Th 1 ·  · t  f this t ·  · t A l � IB J amp i u e - is ig . e upper 1m1 o ra 10 is 10 1 • 

A closer approximation of this ratio may be determined by 

a more exact expression for the transient term , lA I +  I B I . 

The fact that the term w2 - w� appears only in the numerator 

of the transient and steady state terms for the primary 

circuit, (i. e. i1 (t) and v1(t», indicate s  that calculations 



or measurements in one circuit do not indicate what the 

conditions are in the other circuit. Tb.is may be inter­

preted as another dangerous condition. 

In conclusion it should be pointed out that these 
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results are limited to the circuit in Fig. 2 and oscillatory 

conditions have been assumed. However ,  similar analysis 

can be developed and similar results determined f,or . the 

non-oscillate case. For a circuit consisting of inductive 

coupling and parallel elements ,the same form of  analysis may 

be used if the differential equations are 1vritten on a node 

basis , a current source input assumed, and, the equations 

solved for v1(t) and v2(t) instead of 1
1

( t )  and i2(t). This 

will give different equations for a1
; a

2
, \ w2

, w
2 

and k. The 

solution then follows in the same manner as the series circuits 

analysis presented here. An excellent reference on the node 

b sis and current source method of solving circuits is Gardner 

and. Barnes text "Transients in Linear Systemsn , chapter II. 

Directly coupled circuits may also be analyzed in this 

manner. The equations for directly coupled circuits reduce 

to a Laplace Transform equation o · the third order. I ts 

roots can be assumed to _be ( s + 0(1 - j /31 ) ( s + °'
t 

+ j/3 1 ) ( s + 0(1 ) o 

The analysis can proceed in the same manner as presented in 

this thesis. The solution is simpler becaQse �2 in this 

case is zero. A good many filter circuits may be represented 

as directly c oupled c ircuits. 



APPENDIX 

The .procedure involved in the solution of mutually 

coupled circuits is illustra ted by the following calcu­

lations for a special case. Fig. 3 is the circuit diagram. 

Let the circuit parameters be as follows: 

-4 L 1 = 1 2 =. 10 henries 

I\ =. R2 = .. 5 ohms 

. -8 c1 = c2 = �o . farads 

M - 5xl0-7henries 

e(t) = sin(w
0
t-Q )  where Q = f 

l 6 
w1 -. w2 - w - - 10 rdns/sec. 

- - o -[LlCl 
-

a - a - a -
Rl 

_- 2. 5xio3 

1 - 2 -· o - 211 

sec. 

k - - �00 5 
J1.

:L
L 2  -

Therefore, 

a 
0 

1-k 
2, 512 

w 2 

r-, z - _.Q_ 
- L t - 1-k 

-1 

1 2  
1. 00 5025x10 

w 1 2  
J11. - � - . 99 502 5xl0 

tS� = 1. 00 5019x101 2 

� - 1 +  k -

6 
f3

1 
= l . 00 2 5xl0 
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s; = • 99 5019xlo1 2 

10 Jl� -JZ!= lxlO 

6 ·  !S'l. = . 997 5xl0 

/3 - A - 5xl03 
I '"'"1-

Substituting the above values into the constants 
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given ih Table I and evaluating, gives the following values: 

K
2 
= • 500 

Ki = l . 00 5xl02 

K2 = - . 99 5xl02 

1+ L o K3 = l . �lxlO- 45 

K
t+ 
= 1 .  4-lxlo-l+ L-4-5° 

_4-
K

5 
= - lxlO 

K6 = 2xlo- 2.l_ ,0
° 

Therefore the constant terms for i1 (t) are: 

· 
· -4L o A. = K1K

3 
= . 710xl0 . 1+5 

- 4- I o B = K;f 4 = . 704-xlO �4-5 

C - K - - lxlO - 5 -
-4 

N = lxlo4 

The constant terms for i2(t) are: 

A = KiK3 
= l . 4lxl0-2 L 4-50 

B = K�K4 =. -1 . ltox10-2L 4 -5 ° 

C =- 2xlO - 2L-90° 

N :  5J) 



54 

For this particular case , the calculations may be 

simplified by assuming that \ A \ = \ :s  \ and· that O\', = C(-z.= 2, 500. 

The error introduced by 'these assumptions is very small. 

It i's further noted that ( '6, - w) = - (  !3z.- w) = 2, 500 . The 

general· equation of Table I may be factored and written as 

follows: 

. r.;> [ -2, 5oot r. j < 2, 5oot+ 41, ) -j < 2, 5oot+- t,fJ\ 
J jw:t 

f ( t)� N(f\ tA \ e \.e -+ e ·J+ C e 
. 

. - 0 
For 11 ( t) ,  \t{ = - � _ i+5 and C · is a real number. There-

fore substituting the values for the constants and evaluating, 

i1 (t) becomes: 

_ii ( t)= (}t � ?O?e -2, 500t(ej ( 2, 500t + 4·5°
\ e -j ( 2, 5oOt t 4-5°)] 

1] ej wt 

[ 
. -2, 5oot o 

] = 1. �lt+e 
. 

cos ( 2, ,oot + 4-5 ) -1 cos(wt) 

The ·aqua tion :Bor . i/ t)  may be written as follows: 

( ) r, , .  ). -2 ; 5oot 
( 5 !fk0

) - 1 ] [-sin (wt)] 12 t = i:- ·  ..,-l"Te sin 2, oot + _ ] 

The equations for i1 (t) and i2( t) are now in terms of 

· envelope and frequency_ or carrier function. · A  plot of the 

envelope of i1 (t) and i2(t) is given in FiguFe 6. 

The above equa tions are in terms of a transient (i. e .  

an exponential ly decaying term) and a steady state term. 

Let the· envelope transient terms for i
1 

( t )  and 12 ( t )  be 

represented by i1 ( x) and 12 C x) .  Then: 



i1(x) =[l. 414e-2, 5oot cos(2, 5oot + 45°J 

i2(x) = f 1. 414-e-2 ' 500t sin(2, 500t + 45
° )] 

55 

It can be s own that these envelope equations are the same 

as derived directly by use of equation 11. The angle 

functions or carrier terms will be different for the two 

different ways  of deriving the envelope equation. Figure. 

6 is a plot of the two envelope equations. 

The upper limit of the transient term is, 

N lt A \ i- l Bj= 1. 414- amps, ( primary) 

l . 4l'+z�:amie.re- - , ,. secondary) 

The ratio of maximum transient limit to steady state 

amplitude is, 

J A  I t  I B I 
---- = l. 1+14-( primary) 

I C  I 

= 2. �2 ( secondary) 

The approxi ate maximum transient amplitude is, 

ere 

N �A l  e- o<,to + I BI e- oeit�
::: . 133 amps(primary) 

. 628 amp s (secondary) 

t -'+ ( . ) 0 = 3 Tfx 10 sec. primary 

= 1f x 10-4-sec. (secondary) 



Inspection of the curves for the envelope equations 

show that these calculations are practically useless for 
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this particular case. This is because the ratio of 0( m is 
13, - l3z. 

too large. 

For this particular case the transient amplitudes were 

not dangerous. However, this does not ?-mply that dangerous 

conditions do not �xist. The reason they do �ot appear in 

this case is because the frequency terms M, , 132. and w,  are 

all very close in value. Therefore the time lapse is  large 

before the vectors of transient amplitude or the vectors of 

transient amplitude and steady state amplitude are in phase. 

Thus the attenuation is large. Consideration of the general 

equations show that this can occur only when w1 - w - w - w0 • ... . - 2 - -
If w were greatly different from w0 and thus greatly different 

from IS, or /3 2 , then the maximum qurrent could approach 

N �Al or I B l + cJ. If I?> ,  were mada greatly different from 132. 

by increasing t�e cori ling or unbalancing the circuits, then 

the transie�t term could approach N LIA I +  \B \j as a limit. 

If e, , � �and .w ver.e 'all greatly different in value then 

the maximum · current could approach N � A l -t ( B J + te l] � 
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