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SECTION I
INTRODUCTION

When two circuits are so placed that energy may be
transferred from one to the other they are said to be coupled.
If the coupling is obtained by a circuit element (resistor,
capacitor or coil) common to both circuits the coupling is
direct. If the circuits are linked only by a magnetic field
the coupling is called inductive. This paper will concern
itself only with inductively coupled circuits. Figure 1 is

an example of this type circuit.
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Figure 1

The steady state characteristics of this network are,
a high gain and good frequency selectivity. Thus it finds
extensive use in communication work. There are many texts
which give excellent analyses of the steady state charac-
teristics of this eircuit. Morecrofts' text "Principles

of Radio Communication" is particularly good.



Although the circuit has been used extensively for a
good many years there has been no complete analysis of its
transient characteristics., This analysis involves the
solution of two simultaneous differential equations. This
solution involves the determination of roots of a fourth
degree equation. Therefore a completely general solution
is impractical, If it is assumed that the resistance of
the two circuits is negigible, the roots of the fourth
degree equation will occur in imaginary pairs and the
equations have a definite solution. The approximate
damping affect of resistance may then be introduced into
this solution. Again Morecroft has an excellent analysis
of the circuit based on this assumption. However, in the
determination of the constant terms and the frequency
terms, the effect of resistance is excluded and sometimes
it is necessary that the resistance be large. ¥requently
the condensers of the circuit are punctured by too high
voltage, or the coils, resistances or instruments are
burned out because this lack of knowledge of the transient
characteristics. This introduces the idea that the re-
sistance may play an important part in the determination
of the magnitude of the transients.

Because there are many texts which have very good
descriptions and analyses of the characteristics of this
circuit it is considered necessary to give only a brief

description of general transient characteristics.here.



Let it be assumed that a pulse voltage, e(t), is
epplied to the tireuit of Fig. 1. Looking at the elreuit
from the primary side, the circuit may be represented as

Rl, L C1 plus the impedance of the secondary circuit

1’
which is reflected by the coupling into the primary circuit,

If R1 and the reflected R, are not too large the energy

2
imparted to the circuit by the pulse voltage will oscillate
because the total circuit may be represented as a series

Ry L, and C circuit. Where R is Rl plus the reflected R,,
L is Ll plus the reflected Lo,etc. Now we look at the
circuit from the secondary side. The secondary may be

represented as R2, L2, C_. plus the reflected impedance of

2
the primary. The energy imparted to this secondary is

the voltage impulse reflected through the coupling. Thus
the secondary may be represented by an RLC circuit and

the energy reflected into the secondary will oscillate at
a frequency different from that of the primary. Therefore
there are two oscillating energies coupled together by a
com:on factor. The energy will be transferred from one
circuit to the other at a rate depending on the difference
of the two frequency terms. Whether the energy transfer
will be complete will depend on the circuit constant.
Several of the references listed in the bibliography give

an excellent description of the characteristics of this

cirewit.,



SECTION II
OBJECT - STATEMENT OF PROBLEM AND METHOD OF SOLUTION

The purpose of this paper is to establish uﬁper
limits or means by which the upper limit may be de-
-termined for the transient currents and condenser voltages
in magnetically coupled circuit and to discover any
dangerous transient conditions that can exist. A high
ratio of transient amplitude to steady state amplitude
is interpreted here as a dangerous condition.

Figure 2 shows the magnetically coupled tuned

circuits which will be analysed.
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Figure 2




A descriptive type analysis is of little value in
determining the transient limits. A laboratory method
of analysis would be satisfactory but would require a
precision of measurement that is not easily obtainable
and would also require a very large number of tests. The
mathematical analysis of the circuit requires the solution
of a fourth degree differential equation. Fortunately
this difficulty can be overcome by assuming the roots of
the quartic equation and definite results can be obtained.

The equations of the network of Fig. 2 are as follows:

dil(t) 1 diz(t)
e(t) = Rlil(t) +Ll + il(t) dt +M
at Cl dt
dil(t) di2(t) 1.
O=M +3212(t)+ L2 + i2(t) at .
o : dt C2

There are four available methods for solving the above
equations., These methods are, the classical, the Cauchy-
Heaviside, the Fourier Transform, and the Laplace Transform.
If the solution were to consider one specific case there
would be little choice in the method of solution. However,
a general solution is wanted, a solution that has as wide

a range of flexibility as possible. The Laplace Transform
method is by far the best suited for this purpose. The

constants are readily determined and the method of solution



is simple and straight forward. This is evident in the
general development in the next section. The notation
used will be the same as developed by Gardner and Barnes
in their text "Transient in Linear System". A brief
description of the notation to be used follows.
The primary circuit will refer to circuit #l1 of Fig. 1l.
The secondary circuit will refer to circuit #2 of Fig. 1.
il(t) instantaneous loop current of the primary.
iz(t) instantaneous loop current of the secondary.
vl(t) instantaneous voltage drop across Cl.
v2(t) instantaneous voltage drop across C2.
e(t) instantaneous input voltage rise. This
term will also include the effect of closing
the switch.
(The sign and direction of the above quantities are indicated
on the circuit diagram.)
;f indicates the procedure of taking the Laplace
g Transform of all that follows the symbol.
ufl indicates the inverse Laplace Transform.
I,(s) 1indicates the inl(t), I,(s) :‘1012(t), ete.
le(s) the loop impedance function seen by the
current Il(s)
Z,.(s) the loop impedance function seen by the

22
current I2(sL



Zl2(s) the mutual impedance function to loop
currents Il(s) and I2(sL
(For an example of this notation see the illustration
at the end of the section.)
(ﬁ? indicates the process of taking the real
part of all that follows,

éé means equal by definition,

o~ means approximately equal.

— means approaches (as an: example "A -+DB"
means that A asproaches in value B).

A means the absolute value of the constant
within the bars.

a means the conjugate of the term under the bar.

Condensor voltages and coil currents at the time
t = 0, are assumed zero throughout this analysis. Othes
initial conditions would simply add other terms to the
initial equations. These added terms can be carried
through the analysis in the same manner as the principal
terms. Therefore the analysis would be more complex.

R

.68 e 1,(t)

Figure 3



Little would be gained by inclucding these terms.
The following example illustrates the notation and
method of solution. Given the circuit of Figure 3, the

equations are as follows.

) 4 ' §
e(t) = Ril(t)+—— il(t)dt - —,,_/lz(t)dt

5 5
i ] di (t)
0 S e o [ B)AE o= [ 1, (B)dE+ B e
g 1 C 2 dt

Neglecting initial conditions the equations in transfornm

notation are:

) 1
s) = RIl(s) + — Il(s) - s Iz(s)

Cs Cs
. ( L ( (
0 = =« == I (s) 4 == I (s)+LsI,(s)
Cs E Cs 2 2

These equations may be factored as follows:

i

E(s)

- ( - (s)
R wma | I ) =|=— | I (s
[ i e cs| 2

1 ( 1
0 = =|m== | I_(s)¥| == 4+Ls |I.(s)
Cs 1 Cs -

The impedance function of loop 1 is le(s) =Rt ==,
Cs



The impedance function of loop 2 is 222(5) = | == +Ls
Cs

I

The mutual impedance function is 2, _(s) = [e=
") Cs

Using this notation the network equations are:

E(s) = zll(s)Il(S) - 212(5)12(5)

0 = - Z,,()L, () + Zy5(8)I,(s) »
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SECTION III
THE GENERAL SOLUTION

The general solution of a coupnled network involves

the determination of the roots of a quartic equation.

There is no mectlml solution for an equation of the

fourth degree. However a solution can be assumed and

then it can be shown how variation of the circuit para-
meters affect the assumed solution. Condenser voltages

and coil currents are assumed to be zero at the instant

the switch, K, is closed. The effect of closing the switch
will be included in the expression for e(t).

Let le(s) and Z22(s) be the self impedance functions
to the loop currents, il(t) and 12(t) respectively. Let
Zl2(s) be the nutual impedance function. Then, by the
transform method illustrated on pages 8 and 9:;

i T

5 Y
le(s) = -‘-s_ s”+2a;s -twf

-

[ 1
Z22(S) == e L52"" 2325+W§

7‘12( s) = Ms

R i
2Ll ‘\’Llcl



1

R 1
oy = —= Yo =
. \/ [6;
Ly B2
Let 'k' be the coefficient of coupling.
M
k2 = —
L1L2

The equations for the circuit (Fig.2) in the transform

notation are:
E(s) = Zqq(8)T () = Zy ,(s)I,(5)
0 I =Z7,(s)I (s)+255(s)I,(5)

Solving these equations for Il(s) and Iz(s) by the method

of determinants gives;

Z5(s)
21, (8)Z55(s) = 2y 5(s)
=Zq ~(s)
12(5) — 12%° E(s)

T2y, (9)Z,,(8) = 2, (8)°

Therefore from the Laplace Transform theory:

~! =
Z,.(s)
le(s)zzz(s) - 212(5)
=) -

314 =jI (s) =f 1200 —3- E(s) +..1(b)
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[ X ;fDIl(s)
(E=1%.6) = . «esl(@)
1 = el CI_DL s
-1
) ‘ X 2.(8)
v, (t) :IV (s) = — i o570 T(A)
2 e @ C, s

2
_Expanding the term,Z,7(s)Z,5(s) - Z,,(s), gives,

> R
Iil-k ) [sh‘ L aq+ as 39 ...l+ w_+ ’-l-alag s2
52 1-k° 1-k2
W wvow?| L.L (1-k2) "
PP b ke TR o) s L [ )
(1-k%) 1-k s

Let the above quartic expression, in brackets, be re-

presented by the simpler notation, s44-... « Then

substituting for le(s), 222(s) and le(s) in equations

+2 I
ozp : x B wé] E(s) S (N
l-k ) [s +-...

E(s) oo 2(b)
L,L (1 )I[s+...

1 I (s)
vl(t) ;ZO seslle)
C s

1

1 '& (s)
v,(t) Z 2 ee2(d)
02 s

1,thex becomes

il(t)

1,(t)

H
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Equations (2) are perfectly general solutions for
the network of Fig. 2. The only condition imposed is that
condenser voltages and colil currents be zero at the instant
the switch is closed. The effect of these initial currents
or voltages may be taken into consideration by writing the

network equations as follows:

E,(s) = le(s)Il(s) " le(s)Iz(s)

EZ( s) = -212( s) Il(S)+ 222(5) 12( s)

El(s) and Eg(s) are made to include initial voltages and
currents. These terms make the solution longer but no
nore complex,

To carry the solution further it is necessary to
determine the roots of the expression [su+-... o .The roots
must occur in conjugate or real pairs. Furthermore, the
maximum amplitudes and the most dangerous conditions will
occur when these pairs of roots are conjugate pairs.
Therefore this paper will develop only the solution where
the roots are conjugate pairs. The solution for the case
where the roots are real pairs is very similar to this
solution., In the following analysis these similarities

will be pointed out.

Lot [s* ..] = (s+o,- 38)(ss o6+ JB)(s+ XriB) (5495 4y)

KOTA STATE COLLEGE LIBRARY
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Expanding the right hand side of the preceding equation
and equating the coefficients of like powers of s, the

following equalities are derived:

al+a

2
o, + X o ooo3(a)
SLOE g
2
we 4+ w5+ baqa
1-k
2 2 a w2+a W]2_ 3(e)
Nn +u n : ——l—a——z——n—-—- eo e (0]
kA 1-k2
22
W, W

where Jlf: o(,z-c-e,"andn:: O(:-fG:. It 1s necessary to selve
equations (3) simultaneously to determine the «'s and@&'s.
Dr. Harold M. Crothers, in an unpublished paper, has shown

that the general solution of equations (3) is:

+ 2 2
X, a.+ a,= \[(al+ a2) - (1-k )(4a1a2+ X)

— _.l' e — e Ll'(a)
X, 2(1-k°) , b
2 2 2 o 2 =2 2
a;.l - W1+ W2 bkt e ‘J(W]2_+ W2 - x) 5 LFW‘]Z_WS(l-k ) )_I_(C)
™ 2(1-k°) d

In the above equations, x is the real root, which vanishes

when the constant term vanishes, of the following equations;
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3 S 2
X~ - 2(w1+w2 2a1a2) x

2 2.2 2 2 2 2
+ [(Wl - w2) + 4k (w%wz)-i-%(al - a2)(alw‘2 - azwl)] X
2 2 2
")'*'k (a1w2 - 32W§) - O 0005

Equations similar to 4% and 5 were also derived by Pierce in
his book "Electrical Oscillations and Electric Waves"(1920).
Equations 4 and 5 also apply to the non-oscillatory case.

. 2 2 . 2 2 .
In this casern= = @/and = -4 and the roots are;
[sh+ ] = (s+, =RB)(s+x+B) (s+ o, = B,) (s+%? 3;)

Equations 2 in terms of x and”B are as follows from (2a);
[s?+ 2a,s +wg ]E(s)

1 s
i (t) = I - 0006(3-)
1 Ll(l-kz) [(s + o, )2+ 13.2.] [ (s+ ;) %65]

The equations for iz(t), Vl(t) and v,(t) may be written in
a similar manner from equations (2b), (2c) and (24).

From this paint, the solution may proceed by two
different methods of analysis. One method would be to
specify e(t), determine its Laplace Transform and substitute
this result into equations 6. Then taking the inverse
‘transform gives the desired results. The second method
of analysis is to leave E(s) undeclared and examine the
transfer or system function. The transfer or system

function may be defined for this particular case as the
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part of equation 6 whose value is depvendent solely on net-
work parameters. To be more specific, equation 6(a) may

be written as follows;

-l -1
1,(%) :JJI:L(S) =ZF1G1(S) [E(S)J

'NlGl(s) is the system function where,
i ]
N. =
171 (k9
2 2
s |]s + 2a_8 +w2
G, (s) = -

[(S'l' °<l)2j+_6l2 ] [(S +°‘2)a+ 65]

E(s) is called the forcing function. This system function
can then be combined with the forcing function by means of
the convolution integral. The formulation of the convo-
lution integral is treated extensively in the Gardner and
Barnes text "Transients in a Linear System", pages 228
through 236,

This second method of analysis has several distinct
advantages. The constants determined from an analysis of
.the system function are a part of the constant term for
any forcing function used. The damping factor and the
frequency components determined from an analysis of the
transfer function are of course the same for any forcing
function used. The disadvantage of the second method is

in the combination of the system function and forcing
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function. The convolution integral can be very complex.
The method which best fits this problem is a combi-

nation of the two methods. There are only three types

of forcing function which are of practical concern. They

are,

l. The unit pulse function (a pulse of exceedingly
short duration compared to the time constants
of the system)

2. The unit step function

3. The sine or cos. function

For these three forcing functions the problems of how the
transfer function combines with the forcing function is
best determined by solving the equation by method one and
comparing this result with the analysis of the system
function., The formulation of the real convolution integral
will be outlined in the following so that the equations
may fit a more general case. In the following only the
case of il(t) will be developed. The case for i2(t), vl(t)
and v2(t) follow the same procedure as for the case il(t).
Equation 6 may be written;

4 -1
oZO'I]_(S) ;Z;qG R 1 s [s2 + 2a s-rwz]
: S — -—_——2— 4L._2—T—
E(s) 11 Ll(l—k ) )2+6f][(s+c(z) +6ZZ]

[(S+°<l

-~
I,(s)
It should be noted that the «7%-- does not equal il(t)/e(t).
= ($)
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K K K K |
NG, (s) = [ - + : E R W -émrl
S+=J3, S+t JB, S+&sjB, S+X+jAB,

The bar over the constant means the conjugate of the term.

If the reots are real pairs thenmj

K K K K ]
S+ &, =173, S+X,+@3, S+X =78, Stx,+73,

The solution follows in the same manner: as for imaginary
roots but of course the constants are different and the
simplified notation of "conjugate" and "redl part" cannot
be applied. The following analysis will aoply only for the
case where the roots are imaginary. Let (Rmean the. real

part of all that follows in the brackets.

K K
- 2
NlGl (s) Nxﬁ [ 1 + ]

S+x, =jB S+ Xp =373

similarly,

( K! X!
NG (s) =N ¢ TP RIS 2 o
2 2 s+ %, =38, s+ o =3B

-| -~/
K K
N.G.(s) = N f L - 2 )
Jl 1 AT lﬁ& s + "J "'3| S'fo(g'-j 6Z I

- Nlﬁ [Kle(' O(|'l'jB.) t+ K2e(_‘x2+ j GZ)E}

In the following let Zl = -x*J3, and 22 = =G+ jsa. The

inverse transform of the system functions for equation 6



are as follows;

= i
I (s) I z

—l = \ = 1t Z tJ
——— = NlGl(s) - Nl(R [Kle + K2e 2

-1
I (s) b, 7.t
Of & Ozgzezcs) - Nzﬁ[h'le + Kie

S

— L P

oo .7(b)

=1
V. (s) OZO" K- gz K
5 m - 1 2t 2 Z t]
: nG _2 2
of E(s) 35 "N30? z. . T 7 ° Rt

1 2

-1 -1
S [ =X =
= _ 1t 2 2,t
MG, (s) =N — g 2
OZG = Gy, (8) hﬂ[ + . J 7(d)

%1 2

M A

where N ——2— 1) ey

L, (1-k%) = L (l-k Al = L-lcl(l-k2)’

The constant terms are:

2

2 [22r202 2] .
0 =i T S ¥
1= 382[( Xt Z )2+6§] N ’El! °

z, [zi_+ 2a,7 _+ v

K o' i L _lKIE.'iWI
- ra- v—
2T 18w+ 2)% 8y 2
3
z
B = L = jw
1 iB, [(°<,_+ 21)2+6’§J > l %
3
Z ]
K T —= gy | o’ 2

ig[(«+r2 )% 8] ~

M

N—
L L C (1-k°
Vs s (1K)

o s sICa)

vss8(B)

sendie)

v 8ifd)
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The angle terms associated with these constants are ¥, Y2,

¥ , and w,respectively.

= - 2/3(& -o(l)
W, :--l-tTanl—ﬁarTanl 2‘ 2
2 e WS =B+ xf-2a
2 ! 2
_l 2(q2-°(.)6,
—Tan ~
82 - BH(%p=)?
T <1 1 -1 28 a, ~%)
Wo = =« 2~ +Tan =~ =3 Tan v e
2 it W, “BE+ A7 - 28, %2
il 2(“.-“2)62
—Tan ———
Bi- By + (A =)
. i -1, 8 -1 2= A
Y, = = = +Tan = 3 e== - Tan o)
2 &, BE -8+ (x-%)
2( o, = qz)gg
W= - I yran~l 3 Ba_ pap-l el
oy B = 35 + (ap = )

These constant terms may be written in a manner more
convenient, K for calculations by substituting the following
relationships,/a"z: 2% o and 5:-_-_ n= %3 « Then, the terms in equations
8 become:

22+ 28, Z. + W = 2(&12 -W.)Zl* wi - n}

1 Tl "2

2 2 2 2



(Xt Zl)2+622 == n2+2(0G - )%
(«, + 2,)% @2 =% nt+2(a, -%)Z
o ol T T e e Tl -

The next step would naturally be the analysis of
equation (7). However this is also a good place to continue
the general solution, to demonstrate the application of
the convolution integral and to find out how these transfer
functions fit into the solution for the three particular
forcing functions previously mentioned.

The complex multiplication theorem, as stated and
proved in the text "Transients in a Linear System", is as
follows. If the functions fl(t) and fg(t) are éf%rans-
formable and have, respectively, the ;ftransforms,Fl(s)

and F2(s) s theny

t
I [ﬁl(t -7) f2(1') d‘!] :‘Fl(s) F2(s)

The processes indicated within the brackets is called
convolution in the real domain, This theorem states that
the product of two functions in the complex Laplace domain
~goes over into the convolution of the two functions in
the real domain. To apply this theorem for this case,

-1
Let f;(t) = e(t) and fz(t) :INlGl(s). Therefore 'F; (s) =

E(s) and F,(s) = N1G,(s),
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Fl(S)FQ(S) = NlGl(s)E(s) = Il(s)

-l z
_ e(t-7 z 7 Z%
i, (%) -IFl(S)Fz(S) = / {ﬂ'%le +K2e ar

Let e(t) = sin (wt) then,

’ 4
T Z5Y
1,(t) = ﬁ[/Klezl+K2e 2) sin(wt - wt) dT‘J.

Then

It is evident that this integral can be rather difficult,
but for some special forcing functions it is method of
solution when the straight forward method or method one
is practically impossible.

For the three particular forcing functions which have
been chosen for development, the Laplace Transforms arej;

M u(t)-u(t-a)
1. [/(unit impulse at t = 0)=[lim ="l
a—=» 0

a
A‘ i
2h (anit step ot t = 0) W /(L) & ===
s

A W cOos ©-s sin ©
3. /(unit sine or cos function)= [ sin(wt-=g= m—

S+ W

The proper selection of © will give a cosine or sine
function or any combination of cosine or sine.
For case #l, the unit pulse input, it is evident

-
that 1i,(t) = INlGl(s) or il(t) is equal to the inverse
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transform of the system function,
For case #2, the only change in equation 7 is in the

constant terms. The equations are;

Z.t Z tJ
i i 1 2 2
ll(t) — Nlﬂélse 'f I\2Se

where,

Kl/Zl e ,K(ls)| ejw(ls)

=K,/2, = [K¢og)| oY (2s)

Kiig) =

K(2s)

The angle functions associated with these constants are;

= a8,
"}(u):‘ﬂ‘ Pan~l o=t

)

For case #3, the_constants are not only changed but there
is added to the transient term a steady state term. This
steady state term may be determined by use of the "Final
Value Theorem" which is given in Gardner and Barnes text

"Transients in a Linear System" page 267. This theorem

states that;
lim s P(s) = %im £( %)
s—=0 a9

Lettinz e(t) = sin (wt - ©) and then solving equations 6

by taking the inverse transform there resultss



2k

. ] AR -t Jut
11(t) = Nlﬁ%(l sin)e i 8 K(2 sin)e + K(3 sin)e

The constants are,

| wecos® -2, . © jV(lsin)
K - K 2~ |K | e
Gl sim) =i z2+ W2 - (1sin)
1
. |- W cos © Z2 gign ¥ —IK lej Y (2sin)
(2 simn) =P q Zg e i =" ( 2 31R)

jli/(Bf

2 w[wg - w2+ 2ja2W] o
CLE T [(oc.r+ W+ BE] [ (et jw)2+/3§l—|K(35in)‘e

The angle functions associated with these constants are,

v T <J - 6'Sin o - =2 «‘,3.
in) = Y +Tan = = Bl -
£, s ' w cos O +d4sin 6 wg -B8%4 F
-M@sin o -2 A3
kIJ(2 sin) =\, + Tan~t 6" - - - Tan'l 2 ~j -
w cos O +¥sin o i -6:+o(:

These values were arrived at by solving equations 6
with the specified e(t) and then comparing these results
with the respective inverse transforms of the system function
- rather than by the method of convolution. The method of
solution for iz(t), v, (t) and v2(t) proceeds in the same
manner.

The similarity in the preceding results suggests that
the response equation may be written in a general equation

as follows:
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Zst jwt
£(t) = Nﬁ@ezlt+ Be 2'+ Ce® ] 0ee9

where f(t) represents il(t), i2(t), v (t), or v2(t) and
N, A, B, and C are constant terms associated with the
partieular f(t) and input fercimg function. The following
table, Table 1, gives the expression for these constant
terms for f(t) and any of the three forcing functions.

The transient portion of equation 9 could be written in

terms of an envelope and angle function. Let f represent

(x)
this transient thenj

f(X) =N lREAeth+ BeZQt]
- N \.lAlze_g Xt 2\AlE) e-(°<.+ otz)tcos [('6‘ e il lt‘;]

’
+ |B|2 e'2"(2t:]2 cos (Bt + Wp + &(t)) 5400

-o,t

1 181e” " sin [(8, -4) t + v - vy

|ale™%ePcos [(8,-B)t+ W -]+ 1Ble” ™

where @(t) = Tan 3

and y, and y,are the angle terms assoclated with A and B
respectively. A and B are the same constants given in

Table 1. The envelope equation isg
= - o) &
N ,]Alze 2068 o st e @0 beos [(8- @)t + W, - W)

IB12 e’2°(‘t]% Ll

Table 1 and equation 9 represent the complete general
solution for the network of Fig. 2. The next section

will be an analysis of the system function.
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TABLE I

CONSTANTS OF RESPONSE EQUATION

Symbols:
u(t) - u(t - a)

> o = il Es
ul(t) = (unit pulse at t = 0)= %J_.ino

a

uz(t) — (unit step at t = 0)2 1 or u(t)

(unit sinusoid) £ sin (wt - 9)

u3(t)

Zl -t JB

Basic response equation:

Z1t Zot jwt
£(t) = N®R[ae T + Be 2+Cem]



TABLE I (contld)

Constants:
2 2
N [Z1+2a2§1+w2]
L= J'G:‘.( X2t Z)Z"'G:]
2 2
K - 2[Z+2az+w2]
2= 58, nt 2% 82 ]
Z3
) L 1 )
L7 i B+ 2% 81
2
K, = 2 2
27 j8,[(x,+ 2,)% 87]
W cos © - Z, sin o
K i i
3 Z%i—wz
wcos © - Z_ sin ©
K. - 2
S Z§+w
[w - vl + 2ja w]e Jo
K

[( X, + jw) “+B? ] [Cxp+ 3w T 62_]

e ™I°

%6 = [(tx, + jw)2+ 8,’][( X, + jw)2+6ﬂ
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e(t) TCE) CONSTANTS
(forcing (response :
function function) A B © ]
Unit Pulse " 1
i K K 0 -
u, (%) X 1 2 L (1-k°)
1
M
1% K! K! 0
2 1 2 LT (1-k2)
i 2
9} Kq K, 1
| 5
z1 22 LlCl(l k)
K! K! M
v2(t) =2 - 0 ( -
y pA BL & (1=K
1 2 12 9 )
K K 1
Unit Step 08 | =L —= 0 -
Z Z, L_(la"T)
u.(%) 1 1
2
K! K! M
iz(t) e ) - 0 -
z:L Z5 L1L2(l-k )
B
v, (%) -—]—K2 Kg ﬁzwz - : -
zs z7 P on LlCl(l-k )
K! K! i}
Tp) 72 5 K Ll & (Lak*
- ;i3 -
L 2 122 )




TABLE I (cont'd)

29

_ e(t) £(t) CONSTANTS
(forcing (resvonse
function) | function) A B Ec [ N
(%) .
Unit 1_(t K.K K K =
sinusoid o 1
u3(t) ( M
bl KK K'K K
2 ) L 3 2 Ll- 6 BB (l-kz)
13
K K K 1
. (8) —l, K B 2
1 2 Z i j C -:T
3 5 jw Ll l(l k<)
K! K? K M
v, (%) —Lx | =Rk, | =% s
- Z j L -
i 5 jw Ll 202 1-k )
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SECTION IV
ANALYSIS OF SYSTEM FUNCTION

In the previous section the system function was
defined as the part of equation 6 which is solely de-
pendent on the network parameters. Furthermore it was
shown that the inverse Laplece Transform of this function
gave a transient equation which had certain properties
inherent in the transient response equations of the net-
work for any type input function or forcing function. This
system fumction was represented by the symbols NG(s). The
Jgé(s) are equations 7.

If this thesis were to be a complete analysis of the
transient conditions in mutually coupled networks, a complete
analysis of the system function would be an important contri-
bution to the analysis. Curves could be plotted showing
how 'ﬁé(s) varies asthe circuit parameters vary. These
circuit parameters could be represented by five dépendent
variables, ayy a2, wi, w2and k. The variables could be
reduced to four variables, al/a2, wi/wz, a2/w2 and k. An
analysis of this type is possible but it is a very long
procedure and beyond the scope of this thesis. For any
specific case, the expression for the maximum transient
amplitude, or curves of the complete transient response

may be readily determined by use of the equation of the
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— envelope function, equation 10, Furthermore it is possible
to determine when particularly dangerous conditions occur
and the upper limits of transient amplitude without
becoming involved in this extensive, complete analysis.

Because of the reasons just mentioned the following
analysis will be split up roughly into three regions of
operation. The first region will be where ay and g2Aare
small compared to the frequency terms, Wi and wg. The
second region will be where the damping is large or al
and a, are large enough so that no simplifying assumptions
can be made., The third region will be where alwgzrazwi.
This region covers the particular case where W = a2 and
W) I Wse

The steps in the procedure of solution are much more
definite than these three regions. Therefore, the analysis
for the three regions will be carried through in each step
of the solution rather than carry the complete solution
through for each -of the regions.

The first step in the analysis of the system functions

is the determination of &, oy 8,5 and 8,by equations 4 and 9.

Equations 4 and 5 are repeated here for convenience,

B ~—3 3

% i ‘f(:l_f.;? ol vilond o o oot (3)
z 2(1-k<)

A4 vEav3 - x '-‘\/EffW% - 0% - 4%1-1&2) (%)

L 2(1-k2) R
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Where x is the real root that vanishes when the constant

term vanishes of the following equation:
3 2 2 9 ) 2o a. 22
x> = 2(wy+w, - 2a1a2)x + (w1 - w2) + 4k (wlwz)

*‘h(al - a2)(a1w§ - a2wi)] X - ¥k2(alw§ - azwi)2 =20 so0d
For the first region, whem a and a2 are small compared
to wi and wz, X in equation h(;) may be néglected. Inspection
of equation 5 shows that x will be small if a1 and a2 are
small. Another way of arriving to this conclusion is by
inspection of equations 3(a) and 3(d). These equations
show that if ay ania2 are small compared to wi and w%, then

&,and ;will be small compared toJltandJl’;. Therefore, 4 o, &,
a.a
and»4-—lgg- may be neglected in equation 3(b). Equations

3(b) and 3(d) may be solved simultaneously forJﬁand-Ri.-
The resultant equations for«landniare exactly the same as
equations 4(8) if x is considered negligible,

Because x is negligible in equations #(g) does not
imply that it will be negligible in equations 4(3). There-
fore, the value of x must be determined.

Sample calculations have shown that, if a1 and a,
are small, a very close approximation of x may be de-

termined by using only the last three terms of equation 5.

This is a quadratic equation. Its'solution is;



33

2 2 2
S (wl - wgﬁ- l+k2w%ﬂz+‘+(al - ag) (alwg - agwl)
T 4(w%+-w§ - 2a1a2)

2.5 3 ' 2y 2
I - - 2(a, wo-
RN T )+4k wiw (aq- a2)(a1w2 2“1 EFk (a,wo-a v)

2
2(W1+ Wy = 28.1 2) w%+w2-2a1a2

Examination of this equation shows that it meets the
condition that x must be the real root that vanishes

when (alwg - a2w1)—bo. The other solution for x does

not meet this condition and therefore may be discarded.

The value of x determined in this manner should be checked
and adjusted by substitution in equation 5. Sample calcu-
lations have shown this method gives a very close approxi-
mation of x and generally no adjustment is needed. If this
value of x needs radical adjustments to make it fit equation

5, then ay and a, cannot be considered negligible in the

2
determination of the frequency terms, or in other words,
x will be large and cannot be neglected in equation H(g).
The above equation for x shows that x must always
be positive. Equations 4% are limited to real numbers.
Therefore, x must be limited to wvalues which give real
nunbers in the radicals of equations 4. If a, and a, are
small, then equation 4(%) give the limiting values of x.

The possible range of x is,

2 2 .
ay - 2‘+4k aja
2

1-k

2

]
1A

HA



Therefore the possible range of % and %is,

aj +2a, ajz_ - a§+ *+k2al 5
o o= when x — - —
» == 51k 1-%2

A * . 2 e 2@
o _ 8t &, \/(aéi a,) (1-k )alaQ e
%~ A1-k°) "

This shows that for any value of x neither Xnor «,may be
zero. This merely checks a physical truth. If«orowere
zero than there would be unending oscillations in the net-
work. This could occur only if the resistances were zero.
In general unending oscillations cannot occur unless the

network involves feedback or "negative" resistance.

The special region where alwg - a2w]2_—b0 fits very well
into the above analysis, because if alwg - a2w]2_ — 0, then x

must be zero. If a; = a, = apg and W, = Wy = W, than the

equations for o(.,ogz’ﬂ.f and.n:may be” simplified to the following;

2
= aU E wO
= TR i ——t
1-k 1=k

2

- -
Q= 1 B =9 &

As a. and a
1 2 aat
speelifie ratio of <=2 e It is noted that regardless of
asw
2" L

become larger, x will be larger for a
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2
W
of how large the damping becomes, x is zero when -El = -% "
a Wi
2

Numerous calculations were made in an attempt to find a
set of constants which would give a value of x that would
make the radicals of equations 4 imaginary. Conditions
were found which would make the radicals of equations 4(2)
approach zero, but none of the conditions tried made any
of the radicals imaginary. These calculations also showed
that the quadratic equation for x, given on page 28, gives
a good approximation of x, even when the dampinz was large
enough to make the roots all real. However, when x is large
it is very important that x be checked and adjusted by sub-
stitution into equation 5,

If critical damping is defined as the point between
oscillatory conditions and non-oscillatory conditions
then both 8and Bymust equal zero. Therefore,d —nanda,= R,
and o?+ oG = p?+n%. Substituting equations 4 into the latter

equation and simplifying, gives the following equation:

(1-k2) (wf + W‘g)
2(a§; agt:kaalaz) "

Therefore if a system of parameters makes the above ratio

greater than 1, then the roots of the quartic equation,

Fql*...a, are all real pairs. If the system of parameters
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makes the ratio less than 1, then at least one pair of
roots is imaginary.

This particular case where the damping is large can
be studied by a different method than presented here. Dr.
Y. J. Liu in his paper, "Stability and Transient Analysis of
Controlled Longitudinal Motion of Aircraft with Non-Ideal
Automatic Control*, develops a quartic chart for the solution
of eguations of the type,[$4+ ...] e« Dr. Liu's method has
sonme particular advantages and therefore will be briefly
outlined here.

Dr. Liu's first step is to write the eduation(}na-...]

in a non-dimensional form as follows;
L 2
[S + eece o] _— p)++ y3p3+ sz + Ylp +l oeoed 0

where

[1-k2 3
D = ]
‘ ol
bt o
y < al+32 "
377 TaaA R (vt
2 +
Ve wlf-wg hala
2= (1-k°)% (wRw5)
5% 2
B a1w2+a2wl
¥

(1-k2)% (W%wgf@

Let
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V¥, = & y2+y2—4y
M:-—%——l and N = =3 31 it

I 5

The values of I and N are called the stability criterions.
Knowing the values of M and N it can be determined from
inspection of the stability chart whether the roots of the
quartic equation are two real pairs, one real pair and one
imaginary pair or two imaginary pairs. Further charts
presented will give the values of &,y%;ynandn, .

Dr. Liu's work is of particular value where sustained
oscillation can occur. In our particular problem sustained
oscillations cannot occur and the method of analysis presented
here is more direct and in general much simpler then the
use of the quartic chart..

The next step is the analysis of the constant terms.,
The analysis in the region where the damping is small will
be developed first, The analysis for this region will be

roughly split up into three cases as follows:

Case 1, where w§>>w§

Case 2, where wjz_x wg
Case 3, where w%((‘*’g

In the previous step it was shown that if the damping
is small x could be neglected in equation 4(3). Equation

4(g) becomes as follows;
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A2 2 wl+ w \/(wl +w§) L+1ar]_2:~:‘§(l-]::2)
= 2(1-k?)

If w]2_ and k2 are held constant while wg is varied from O to oo,
2% and will vary as indicated by Fig. 4. The approximate
range of the three cases are marked on the figure. The dotted

curve indicates the affect of increasing K.

Log (1-1{2)./73,

Log (l-kz)-n.zz Region
Case I

x| *ﬁ, Case 3

2 (l-kz)?Jl}_
Log Wy = ’
0
Log wf Log wg—"

2

(1-k )¢ & (1-k2).rz'.£ VS, wz
Plotted to Log Scales
FIGURE 4
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From Fig. 4 it can be seen that the specific range of
the three cases is dependent on the value of k. The value
of x will also effect the range as &,and &,increase. In
the following analysis, it should be kept in mind, that the
ranges of the specific cases are not definite. Therefore,
the results of the following analysis should be interpreted
as a rough guide to the limiting values of the constant
rather than an approximation of the value for a specific
case,

If « and o,are much smaller than 3, and /3, it would
seem that the equations for the constants (equation 8) eould
be simplified by assuming that - + ji3, a j3, and - «,+J B, & B, .
However, the terms in equations for the constants involve
differences which in some cases make & the important factor
in determining the value of the constant. Furthermore, if «
becomes an important factor, thepJQfand/3§cannot be assumed
approximately equal to nptand n¢. The terms involving

differences are;

2 2. .
Zy+ 2a,Z) + WS = w5 - R 2 (a, =) +2)8,(a, -«

DN D

2 .
25+ 23,7, +Vo = Wy 23 2%{ay - %) +2i8,(a, - %)
(xp= 27) %485 ZRE AT+ 2 (= ap) = 2 B(, =)
TR r =t af -
= 2) +A3, AT n, + 2°(2( X, = «) - 2j Bz( o« -,)

In the above terms the imaginary part of the terms involve



no differences, therefore n, and Jy,may be substituted for A3,

and /3, .. Fig. 4 shows that when,

) 2
we LW than %> o S i
» —> g ==y
2 1 ' 1-k 1-k
2 .3 . s .
W5 R Wy than n/- n; — a ninimun
w2 > w? than .nl_.—zwg and n;-»> w_f
el 'T1-x “lax®

Substituting these approximations into the above terms,

assuming k is small,so that (1-1{2)’«3 1, except where differ-

ences are involved and also assuming that &, and o, are small,

the constants avproach the following limits;

For Case T w% <<w%

2 2 2
w2(l-k ) - Wy

K, — - —=
il 2 2
b bl
-k2w§-2 0(,_(a2- ;) (1-k2) + 2 fa’,(az- S
K2 l 2 2l
LA
W%
Wi bl ~
1 -
w5 = Wy

wl - W5
. 2
For Case 2 wi n wg ~ Vo

-

small value
ompared to K

-



1

1+k
K! = —

1 ok

1-k

1
Kq—’ e

= 2k
o 2 E
For Case 3 v, >>Wl

Kl_. a small value compared to K2]

K2——>— 1
2
1
J —
R Va2
2 b}
2
W
Y e = Hz_é_.z
2 W) - W,

In the above approximations ,and are assumed negligible
except where differences are involved. In Case 2 differ-
ences are involved, but these differences are generally

large enough so that «, and X, may be neglected. (l-k2) was

assumed approximately equal to 1. Again it should w»e pointed
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out that these approximations should not be used for any
specific case but are presented as an approximate guide to
the final result..

The constant terms for the regions whereayg -ayf-avo
_and where the damping is large cannot be simplified. For
these regions the phase angle also becomes an important
factor. The ri%umerator of the constants K1 and K2 will
be maximum when the real part and the imaginary part are
equal. However, it is noted that as we increase «,or o,
to obtain this condition the denominator will also increase.
The effect is that the constant terms cannot become much
larger than they are when «,and Xzare small. Increasing «,
or o,means that the damping is increased. Therefore, the
vectors will be greatly attenuated when' they finally are
in phase. Inspection of the phase position indicates that
as the damping is increased the initial phase difference
between the vectors is decreased. This would indicate that
the time required before the vectors are in phase is less.,
However, in practical cases this change in phase position
is more than compensated by the increased attenuation,

The final step is the substitution of the constants
and o, y%,,4,and B,into equation 7 or equation 15, the
envelope function. This step is discussed in the next

section.,.
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SECTION V
TRANSIENT LINITS AND DANGEROUS CONDITIONS

The general equation of the network of Fig. 2 is
£¢8) - NR [Aezlt-r Bez2t+ Cejm:'] where f(t), N(a real
constant) and complex constants, A, B and C are defined
in Table 1. 29 = =&+ j@B and Z, = - &+ B3,

The above equation describes three rotating vectors.
The first two terms are the trensient part of the equation
and the third term is the steady state term. The two
transient vectors are rotating at different velocities,
A3, and é&respectively. If there were no damping, the
maximum transient amplitude will be the point where these
vectors are in phase., However, these two vectors are

- .G
-2 % end e ¢ -

exponentially damped by the factors e
Therefore these vectors may be attenuated to a small value
before they are in phase., The maxinum transient amplitude

will be governed by following four factors:

l. The attenuation of the vectors
2. The difference in speed of rotation
3. The initial phase pesition

L4, The absolute magnitude of the constant

A plot of the envelope function (equation 11), of the
transient term is the simplest way of determining the

exact transient amplitude. The envelope equation is.



given in Section III, equation 1ll. A plot of this
equation will reveal the maximum transient amplitude.

A close approximation of the maximum amplitude may
be determined by letting cos|[(B8,-8)t+ -%]_—_ 1, and

solving this term for the minimum positive value of t. If,
cos [(B,— q)t+ v, -wz]_-_ il

then

(el-,s‘)t-t- W -y = cos~l 1 =0, 2%y W y00e

Let the minimum positive value of t = t,, then the envelope

equation becomes;

N [A\ o u'to-ﬂB} & o(,_to]

Physically to is the time required for the two transient
vectors to move from their initial phase position, (when
t = 0), to a position where they are in phase. Therefore
the accuracy of this method for determining maximum transient
will depend on the ratio of _0(__111_’ where o 1is the smaller

B, -8B, m

value of &,or o, This method will always give a transient
anplitude slightly less than the true maximun amplitude.
The true maximum amplitude may be determined by selecting

several trial values of t slightly less than t and solving
o

the envelope equation until the maximum point is determined.
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Sample calculations have shown that if the ratio of

oA i
0 >> , the equation is very accurate. Whereas, if

B, 13, 10

X m .
<: s then the equations were almost 50% in error.

B,=3, 2

t .
In this case a good sample value of t to try-isAequal to

1/2‘tbiﬂu In these calculationsv, -y, was assumed to be 180°,
When there is a steady state term, this method may
not be of any practical value, because the transient ampli-
tude at t = O may have a value which balances out the steady
state value. In such cases the maximum transient can occur
.when t = 0, but as this transient is completely balanced
out by the steady state term, the actual voltage or current,
at. t = 0, is zero. This case is illumstrated in the appendix.
The upper limit of the transient amplitude may be
determined by assuming the damping is zero. This limit is
N (|A} +I1B| ). The current or voltage upper limit is
N (|A] +(B] +IC] ).
The complete expression for f(t) may be written in
terms of an envelope and angle function. Let m(t) equal

the transient envelope equation, then;
£(t) = m(6) cos( Bt + Y, + Cf(t))+N‘\C\cos (wt+ w3)

The envelope of f(t) is,
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E(E) = [m(t)2+ QN\Clm(t)[cos (w=-3,) t ""z“","‘p(t)]
5172 .
+ Nzlcf] cos [/5’2 t + ¥, + ¥(t) + p(t)]

Nicl sih [(w -8t -wewsy - @ (t)
m(t)+ W IC| cos [(w -8t - y,+v5 - d(t))

p(t)

The carrier frequency has been taken as’ MBye Calculations
are made easier if the carrier frequency is taken as
highest frequency term.

For specific cases, assumptions can be made which
simplify this equation. However it 1s often simpler to
start with the general equation, equation 9, and derive an
envelope equation for the specific case. For example, when
w% -\wg is large, one of the transient constant terms might
be negligible and the envelope equation could be written in
terms of the large transient and the gteady state term. If
one of the damping terms is large it may be possible to
neglect the term with the larger damping. The example in
the appendix is another illustration of how a simpler enve-
lope equation may be derived.

The ratio of the transient amplitude to the steady

state amplitude is \‘&%éz |B) or the actual current, or volt-
, |21 + 1Bl +)C| .
age amplitude, is ‘ « A dangerous condition
Cl

will occur when this ratio is large because quite often
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engineers design their circuits safely for the steady
state amplitudes and assume that this will nrovide safely
for the transients.

Inspection of the constant terms shows that w2 = WS
-appears only in the numerator of the constants for the
primary circuit (i.e. i;(t) and vy(t)). This indicates
that measurements or calculations of the transient or steady
state term in the secondary do not indicate what the primary
conditions are. This may be considered another dangerous
condition.

Inspection of the constants of Table I, shows that the
amplitude of the transient constants for any of the three
input or forcing functions, cannot be greater than the
respective constants for the system function. In the pre-
ceding section, the system function was analysed for specific
regions of operation. A few simplifications were presented.
In general, these simplifications applied only when several
assumptions,which are not always valid, were made. In any
specific case where definite values are known for the para-
meters, any simplifying assumptions that can be made are
immediately evident. Therefore, it is felt that further
analysis of this sort would be misleading and such an

analysis is not essential.



SECTION VI
SUNIMARY

This summary will be limited to genersl equations
and to methods of calculation which will yield limits
rather than the specific limits for any particular case or
.region. Any specific limits or results for a definite
region presented in this thesis have been based on several
assumptions, assumptions which are not valid for all cases,
Therefore these specific limits will be omitted in this
review. It is felt that the general equations developed
have simplified the calculations to such an extent that
for any specific case, limits or the complete transient
response may readily be determined.

Figure 3 is an illustration of the network which is
analyzed for transient conditions. In Section III, the
general equation for this network was developed. This

equation 1is,
' YAR" Zot j
£f(t) = Nﬂ[Ae 1%+ Be 2+CeJWt] ees

where f(t) is Il(t),’iz(t), vl(t) or v2(t). The real
constanty N, and the complex constants, A, B, and C are
given in Table I, page 26, for an input voltage, e(t), of
a unit pulse function, a unit step function or a unit sinu-

soidal or cosinusoidal function. Z; = - X, + jAB, and

Z2="qz+ja °



8

The analysis of this equation was based on the
analysis of the system Function. The system function
was defined as the NG(s), wvhere NG(s) is the part
of the general equations which is dependent only on the
network parameters. The system function is part of the
responge for any type of input,

X,y Xpy MB,,and B,are determined from equations k
and 5. In Section IV, equations 4 and 5 were analyzed and
simplified as much as possible. Also in this section,the
constants for the system function were analyzed and a few
limiting values of these constants were established for
nebulous regions of operation. The constants A and B of
equation 11 cannot be greater in value than the respective
constants for the system function.

The first two terms of equation 11 are the transient
portion., The transient portion can be written in terms of
envelope and angle function. This is equation 10, page 25.
A plot of this envelope equation will give the maximum
transient amplitude. A close approximation of this maximun
amplitude may be determined by letting cos [( B-3;)t +, -ql;_\: As

The envelope equation becomes;
- - of,t
N ﬁAl e d'to-HBl o~ % OJ

where t, is the minimum positive value of t determined

by the following equation,
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cos'l[(fs,-ﬂz)ti- v, -w,_}; 0, 2w, 4T, ...
This will give an amplitude slightly less than the true
value. The true value may be determined by taking
successive values of t less than tn' When there is a
steady state term,the maximum transient can occur at t = O,
but at this point the steady state will balance out the
transient. Therefore this method, discussed in Section IV,
may be of little use. The example in the appendix illustrates
this case. The complete expression for f(t) may be written
in terms of envelope and angle function. This is illustrated
in Section IV and several ways this expression may be simpli-
fied are mentioned. The examsle in the appendix illustrates
how the expression for f(t) may be simplified for the case
where w; — W, = W= VWy.and k &€ 1.

The upper limit of the transient term may be determined
by assuming that the damping is zero. Then the upper limit
is NEAI +lBl] « The upper current or voltage limit is
N [iat+ 181 + tcl] .

Dangerous conditions are interpreted to be points
where the ratio of transient amplitude to steady state
amplitude is high. The upper limit of this ratio ishg¥;%gl .
A closer approximation of this ratio may be determined by
a more exact expression for the transient term,lAl-lel.

The fact that the term w2 - WS appears only in the numerator
of the transient and steady state terms for the primary

eircuit,(i.e. i;(t) and vl(t», indicates that calculations
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or measurenents in one circuit do not indicate what the
conditions are in the other circuit. This may be inter-
preted as another dangerous condition,

In conclusion it should be pointed out that these
results are limited to the circuit in Fig. 2 and oscillatory
conditions have been assumed. However, similar analysis
can be developed and similar results determined for the
non-oscillatoricase, For a circult consisting of inductive
coupling and parallel elementsythe same form of analysis may
be used if the differential equations are written on a node
basis, a current source input assumed, and the equations
solved for vi(t) and v,(t) instead of il(t) and i2(t). This
will give different equations for a1y 859 w2, w2 and k. The
solution then follows in the same manner as the series circuits
analysis presented here. An excellent reference on the node
brsis and current source method of solving circuits is Gardner
and. Barnes text "Transients in Linear Systems", chapter II.

Directly coupled circuits may also be analyzed in this
manner. The equations for directly coupled circuits reduce
to a Laplace Transform equation o” the third order. 1Its
roots can be assumed to be (s# o, = jB)(s+ o+ JBY(s + ;)0
The analysis can proceed in the same manner as presented in
this thesis. The solution is simpler because 3zin this
case is zero. A good many filter circuits may be represented

as directly coupled circuits,
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APPENDIX

The procedure involved in the solution of mutually
coupled circuits is illustrated by the following calcu-
lations for a special case. Fig. 3 is the circuit diagran.

Let the circuit parameters be as follows:

- . -8
Ll - L2 =, Jd@ )+henries Cl - C2 = 10_ farads
Rl Z Ry = &5 ohms Mo 5x10_7henries

e(t) = sin(w_t-6) where 6 = L

1 6
Wy S Wy 2 W, = e 10 rdns/sec.
L.C]
R
a; T a, = a; = St = 2.53{103 sec.,
ok
il
M
k i . ‘3005
VLI,
Therefore,
2
. w e
o, = —= = 2,512 2= —2 = 1.,005025x10
1-k ' 1k
a wE "
O ) €
= = 2,488 t - 2. - ,995025x10
%= T4 =7 kLRt T
0] 6
B> = 1.005019x10"2 g = 1.0025x10
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/o’-‘.z = .995019x10%2 Ba = .9975xl06
PLES o 1210 B, -8= 5x10°

Substituting the above values into the constants

given in Table 1 and eveluating, gives the following values:

K, = .503 Ky = 1.41x107F / 15°
A = - o
Ky= 4500 K, = 1.41x10"" /45
2 =4
K} = 1.005x10 Kg = - 1x10
- 2 - -2 P
K} = -+995x10 K¢ = 2x1072 /- 90

Therefore the constant terms for il(t) are:

v o
n= K].K = x7i0z1e Z_ k5

3
B = KK, = .704x10" " /f-u5°

CZKgz - 1x10™ "
N = 1x10"

The constant terms for i2(t) are:

A = KIK; = 1.41x10"2 Ll+5°

h —

AT Z--9o°

B = K'K, = -1.40x10"2/- %5
=

N=J80
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For this particular case, the calculations may be
simplified by assuming that |A] = |B \and' that o = o,= 2,500.
The error introduced by these assumptions is very small.

It is further noted that (4, - w) = -( B,- w) = 2,500. The
general equation of Table I may be factored and written as

follows:

- ) =] Ot+ ¢ ;
£(t)= R \jal e 2, 500t{93(2,500t+w)+e j(2,50 +w)l+c]e3wt

' o
For il(t), Yy, = - Vz: 45 and C is a real number. There-
fore substituting the values for the constants and evaluating,

il(t) becomes:

L, ($)= ﬁ{:707e'2’500t[ej(2, 500t + 459),  -3(2,500% + 450)]

jwt
- 1] eJ

-2
’Sootcos(z,SUOt + 450)-l] cos(wt)

= [l cUlhe

The equation for i,(t) may be written as follows:

-2,500t

12(1:) :[l.l-l-lke sin(2, 500t + ':t‘io)- l] [-sin(wt))

The equations for il(t) and i2(t) are now in terms of
" envelope and frequency or carrier function. A plot of the
envelope of i,(t) and iz(t) is given in Figure 6.

The above equations are in terms of a transient (i. e.
ang exponentially decaying term) and a steady state term.
Let the envelope transient terms for il(t) and iz(t) be

represented by il(x) and 1,(x). Then:
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&)
1) (x) =|1.414e™21700% cos(2, 5008 + l+5°)j
1,(x) =[l.'—x-l4e'2’ 500t sin(2,500% + 450)]

It can be shown that these envelope equations are the same
as derived directly by use of equation 1ll. The angle
functions or carrier terms will be different for the two
different ways of deriving the envelope equation. Figure
6 is a plot of the two envelope equations.

The upper linit of the transient term is,
N [Ial+ 1B]= 1.41% amps, (primary)
:‘l.4lhqdamﬁére&-,(secondary)

The ratio of maximum transient limit to steady state
“amplitude is,

JAl+ IB|
= l.414(primary)

Icl

= 2,82(seeondary)
The approximate maximum transient amplitude is,

N ‘IA\ @ c"‘t").|. IBl e~ q‘to]— .133 amps(primary)

- .628 amps(secondary)
Where
= =4 .
t 37Tx 10 'sec.(primary)

i x lO'4sec.(secondary)
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Inspection of the curves for the envelope equations
show that these calculations are practically useless for

this particular case, This is because the ratio of ELE—— is

R,-B2
too large.

For this particular case the transient amplitudes were
ngt dangerous., However, this does not imply that dangerous
conditions do not exist. The reason they do not apvear in
this case is because the frequency terms #,, B3,and w, are
all very close in value. Therefore th-e time lapse 1s large
before the vectors of transient amplitude or the vectors of
transient amplitude and steady state amplitude are in phase,
Thus the attenuation is large. Consideration of the general
equations show that this can occur only when W = W, = W= W

1- o
If w were greatly different fronm W, and thus greatlfr different
from A, or/3;, then the maximum current could approach
N [I_Al or |Bl+ 6_]. If A,were made greatly different from A,
by increasing the coupling or unbalancing the circuits, then
the transient term could approach N \_lA I+ lBl] as a limis,
b 8', R,and w were all greatly different in value then

the maximun current could approach N [!AI + [B] +IC|]Q
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