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A contemporary decennial examination
of changing agricultural field sizes using
Landsat time series data

Emma V. White and David P. Roy

Field size distributions and their changes have not been studied over large areas as field size change datasets are not
available. This study quantifies agricultural field size changes in a consistent manner using Landsat satellite data that
also provide geographic context for the observed decadal scale changes. Growing season cloud-free Landsat 30 m
resolution images acquired from 9 to 25 years apart were used to extract field object classifications at seven sites
located by examination of a global agricultural yield map, agricultural production statistics, literature review, and
analysis of the imagery in the US Landsat archive. High spatial resolution data were used to illustrate issues identi-
fying small fields that are not reliably discernible at 30 m Landsat resolution. The predominant driver of field size
change was attributed by literature review. Significant field size changes were driven by different factors, including
technological advancements (Argentina and USA), government land use and agricultural policies (Malaysia, Brazil,
France), and political changes (Albania and Zimbabwe). While observed local field size changes were complex, the
reported results suggest that median field sizes are increasing due to technological advancements and changes to
government policy, but may decrease where abrupt political changes affect the agricultural sector and where pas-
tures are converted to arable land uses. In the limited sample considered, median field sizes increased from 45%
(France) to 159% (Argentina) and decreased from 47% (Brazil) to 86% (Albania). These changes imply significant
impacts on landscape spatial configuration and land use diversity with ecological and biogeochemical consequences.
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Introduction

Agriculture is associated with some of the most signifi-
cant human-induced land cover land use changes, with
dramatic cropland expansion in the last several hundred
years and a marked increase in productivity in the past
few decades driven by increasing populations and
changing diets (Goldewijk and Ramankutty 2004;
Kastner et al. 2012; Tilman et al. 2002). Globalisation
has shortened the connections between consumers and
agricultural commodities with contemporary produc-
tion patterns influenced by demands from distant urban
areas and by food, fuel and fibre preferences among na-
tions (Garrett et al. 2013; Seto et al. 2012). Although de-
mands remain high, agricultural productivity as well as
cropland area is unevenly distributed globally (Foley
et al. 2011; Lambin et al. 2013; Monfreda et al. 2008;
van Asselen and Verburg 2012).

Field sizes are indicative of the degree of agricultural
capital investment, mechanisation, and labour intensity
(Herzog et al. 2006; Kuemmerle et al. 2013; Rodríguez
and Wiegand 2009). Information on the size of fields is
needed to plan and understand these factors, and may
help the allocation of agricultural resources such as
water, fertiliser, herbicide, and farming equipment
(Anderson et al. 2012; Johnson 2013; Rudel et al. 2009;
You et al. 2009). Field sizes are thought to be increasing
due to agricultural intensification as farmers seek to
maximise profit and reduce risk through larger agricul-
tural enterprises, with ecological and biogeochemical
consequences. Various national and international agen-
cies report crop yields, and sometimes farm size statis-
tics, but statistics concerning the sizes of agricultural
fields or their changes are not reported. Recently, a c.
2005 global field size dataset was developed by spatial
interpolation of 13 963 crowd sourced (internet and
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mobile phone based) geotagged categorisations of
GoogleEarth images into very small, small, medium
and large field size categories (Fritz et al. 2015). The
interpolated global field size dataset has unknown accu-
racy and does not capture field size change. Studies of
the incidence, drivers, modifiers, and impacts of chang-
ing field sizes have not been undertaken over large areas
and certainly not from a global perspective.

Satellite data provide a synoptic view and have been
used for agricultural applications, including cropland
distribution mapping, crop condition monitoring, crop
production assessment, and yield prediction (Bauer
et al. 1978; Becker-Reshef et al. 2010; Johnson and
Mueller 2010). The ability of satellite data to monitor
agriculture reliably is dependent on many factors but
is fundamentally constrained by the satellite spatial res-
olution relative to the field spatial dimensions. Com-
mercial high spatial resolution (<10 m) satellite data
have only been available since 1999 (Belward and
Skøien 2014; Johansen et al. 2008; Turker and Ozdarici
2011) and so cannot be used for field size change anal-
ysis prior to 1999. The Landsat series of satellites pro-
vides the longest satellite data record spanning from
1972 to present day (Roy et al. 2014) and with appropri-
ate resolution for monitoring anthropogenic surface
changes (Hansen and Loveland 2012; Townshend and
Justice 1988). The recent free availability of the
Landsat data in the US Landsat archive (Wulder et al.
2012) provides the opportunity to study field size
changes for large areas and in a globally distributed
and consistent way. Landsat-based agricultural applica-
tions were developed after the launch of the first
Landsat in 1972 and have been subject to multi-agency
funded support through initiatives such as the Large
Area Crop Inventory Experiment (LACIE) (MacDonald
et al. 1975) and US Department of Agriculture (USDA)
initiatives (Hanuschak et al. 1980; Johnson and Mueller
2010). A seminal agricultural field size study was under-
taken by digitising more than 112 000 US and Canadian
agricultural field boundaries from Landsat data sensed
from 1977 through 1980 (Ferguson et al. 1986).

This study, for the first time, quantifies agricultural
field size changes. Satellite data are used to extract field
sizes and to provide geographic context for the spatial
nature of observed changes and literature review is used
to attribute the change drivers. A pragmatic approach is
used to select Landsat images at locations where agricul-
tural field size changes are discernible. Major global
agricultural production regions are identified by analysis
of 2010 FAO continental crop production statistics
(FAOSTAT 2010) and global 5 min EarthStat crop yield
data (Monfreda et al. 2008). Within these regions, pairs
of cloud-free growing season Landsat images acquired
about a decade apart at locations with documented
changes in field size, farm size, agricultural intensity, or
extent are selected. GoogleEarth high spatial resolution

data are used to help ensure that only crop fields are ex-
amined. In addition, Landsat image pairs are selected
where rapid political changes caused significant agricul-
tural sector change. Fourteen Landsat images sensed up
to 25 years apart at seven locations that each include a
major cereal or biofuel crop are considered. High spatial
resolution 2.5 m Quickbird 2 data are used to illustrate
difficulties in identifying small field sizes that are not dis-
cernible at 30 m Landsat resolution. The implications of
observed field size changes on landscape spatial config-
uration and land use diversity and their ecological and
biogeochemical consequences are considered briefly,
and recommendations for future research discussed.

Materials and methods

Satellite data
Growing season cloud-free Landsat 30m resolution images
acquired from 9 to 25 years apart were used to examine
field size changes. Global 30 m multispectral Landsat
observations have been provided by the Landsat 4 and 5
Thematic Mapper (TM), Landsat 7 Enhanced Thematic
Mapper Plus (ETM+), and Landsat 8 Operational
Landsat Imager (OLI) from 1984 to present (Loveland
and Dwyer 2012; Roy et al. 2014). These sensors provide
multispectral observations in similar reflective wavelength
bands, in the visible, near-infrared andmiddle-infrared that
can be used to identify landscape features such as fields and
their boundaries (Yan and Roy 2014). For example,
Figure 1 illustrates qualitatively the utility of 30 m Landsat
data to monitor field size change over a 25-year period.

The Landsat data were obtained from the United
States Geological Survey (USGS) Earth Resources
Observation and Science (EROS) via the Global Visuali-
sation Viewer internet system (GloVis: http://glovis.usgs.
gov/). Selected Landsat data were converted from digital
numbers to top of atmosphere reflectance and brightness
temperature using Landsat acquisition specific calibra-
tion information and standard processing algorithms to
ensure temporally consistent data needed for their
multi-temporal comparison (Roy et al. 2010). These data
are made available in approximately 180× 170 km scenes
defined in a Worldwide Reference System of path
(groundtrack parallel) and row (latitude parallel) coordi-
nates (Arvidson et al. 2001). The Landsat sensor geome-
try and orbit characteristics are such that each path/row
can be sensed every 16 days, however globally not every
scene is stored in theUSLandsat archive due to a number
of factors and because of cloud obscuration at the time of
satellite overpass (Kovalskyy andRoy 2013). The Landsat
5 TMwas launched in 1984 and remained operational un-
til 2011. The Landsat 7 ETM+was launched in 1999 and
remains operational with an overpass 8 days later than
Landsat 5 TM. InMay 2003 theLandsat 7ETM+scan line
corrector failed, systematically reducing the amount of use-
able ETM+ image data by 22% (Markham et al. 2004) and
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so limiting the area over which reliablemapping can be per-
formed. In this study 30mLandsat 5 TM from 1984 to pre-
sent andLandsat ETM+data from1999 to 2002, i.e. before
the ETM+ scan line corrector failure, were examined.

High spatial resolution data were used to illustrate
the difficulties in identifying small field sizes that are
not discernible at Landsat resolution. High spatial res-
olution data are well suited for interpretation of agri-
cultural fields, in particular small and irregularly
shaped fields, but are not available before 1999
(Johansen et al. 2008; Turker and Ozdarici 2011). In
this study therefore a small number of Quickbird-2

high spatial resolution 2.5 m red, green, blue and near-
infrared wavelength images (Johansen et al. 2008) were
used to illustrate Landsat field size detection issues.

GoogleEarth time series imagery (http://www.goo-
gle.com/earth/) are freely available and have near
global coverage. They were used in this study as they
include high spatial resolution satellite and airborne
images from a variety of commercial providers and
US government agencies. Only image pictures are
available and the sensor characteristics are undefined
so, although useful for visualisation and contextual in-
terpretation (Hansen et al. 2014), the imagery cannot
be reliably processed using standard remote sensing
algorithms. In this study GoogleEarth time series im-
agery were used to help visually confirm that fields
identified in the Landsat data were arable and not
pasture or other grassland uses which can be hard to
discriminate using just Landsat data (Müller et al.
2015). In addition, GoogleEarth imagery was used to
examine rice fields.

Agricultural statistics
Agricultural statistics extracted from the 2010 global
FAO crop commodity production statistical database
(FAOSTAT 2010) were used to identify the top four
harvested staple cereal crops, namely, wheat, maize,
rice, and soybeans, that together account for more
than 50% of the total global harvested acreage and
production (FAOSTAT 2010). In addition statistics
for the top producing non-cereal biofuel crops, i.e. oil
palm and sugar cane, were extracted as these crops
have experienced rapid development in the last several
decades (Cassidy et al. 2013; Goldemberg 2008;
Graham-Rowe 2011). The FAO crop data were
collated using the best available information provided
by national governments, online databases, publica-
tions and questionnaires, and unofficial sources and
provide the most complete publically available re-
source for global agricultural crop production
(FAOSTAT 2010). The FAO data were used to identify
the global rank by crop production for each of the six
crops at continental scale.

For the USA, county level statistics produced by the
USDA agricultural census were also examined. The
census is undertaken every 5 years by classification of
aerial survey photography, field sampling and by mail-
ing a questionnaire to a sample of farmers with holdings
that produce and sell at least $1000 of agricultural
products per year (Johnson 2013; USDA 2009). County
level mean farm size statistics are reported but the farm
area definition includes the area of land used for live-
stock agriculture and on-farm infrastructure. There-
fore, in order to derive a US metric more compatible
with this research, an alternate measure of mean farm
size per county was calculated by dividing the total har-
vested cropland area per county by the number of farms

Figure 1 True colour (red, green, blue wavelength) 30 m
top of atmosphere Landsat 5 TM reflectance images for a
15 × 15 km (500 by 500 30 m pixel) area near Los
Surgentes, Córdoba, Argentina. Landsat path 228, row
83, acquired 10 February 1986 (top) and 15 February

2011 (bottom)
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with harvested cropland per county. Percent county
level mean farm size change was computed using the
1987 and 2007 census data.

Global crop yield map
The global 5 min EarthStat crop yield data (Monfreda
et al. 2008) were used tomap themajor global agricultural
yield regions for the four harvested staple cereal and the
two biofuel crops. The EarthStat data are derived by spa-
tial disaggregation of national and sub-national scale
1990–2003 agricultural census information into cultivated
cropland areas defined by Ramankutty et al. (2008). The
data, acquired from EarthStat (http://www.earthstat.org/
) include a quality layer that designates if the data were
derived at (1) county level, (2) state level, (3) interpolated
from the nearest county or state level data within 2 de-
grees, (4) national level, or (5) were not defined. In this
study only sub-national scale data [i.e. (1) to (3)] were
used as the national scale data do not provide sufficiently
detailed spatial information. Figure 2 shows the 80%,
90%, and 95% crop yield percentiles for the four cereal
and two biofuel crops.

Location of Landsat scenes capturing
contemporary agricultural field size change
The globe was divided into five continental regions
(Africa, Americas, Asia, Europe and Oceania) and the
2010 global FAO statistics were used to identify the
top two continents by production (tons) for each of
the six crop types. Antarctica was not considered as it
has no cropland. Within the chosen continents, only re-
gions where the global crop yield exceeded the 80th
percentile (coloured, Figure 2) were considered. Selec-
tion was further refined within these major production
regions by review of the post 1980 published agricul-
tural literature concerning documented changes in field
size, farm size, and agricultural intensity or extent. Pri-
ority for selection was given to agricultural regions
where the literature described information on field
and farm size change. If the literature on these aspects
were limited then regions were selected where there
were documented changes in agricultural extent and
then agricultural intensity. For example, in the USA,
the percentage county level mean farm size change
was used to identify counties where farm size (and so

Figure 2 Global high-yield agricultural regions for staple cereal crops (maize, rice, wheat, and soybeans) and biofuel
crops (oil palm and sugarcane). The 5 min EarthStat crop yield data were used to derive the illustrated global crop yield
percentiles coloured as red (>95th percentile), orange (>90th to 95th percentile), yellow (>80th to 90th percentile), grey

(≤80th percentile or undefined)
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potentially field size) changes were maximal. Additional
regions that were reported in the literature to have sig-
nificant changes in field size or agricultural productivity
that were not evident in the global crop yield map or in
the FAO statistics were included. These were in nations
that experienced rapid political changes that dramati-
cally altered the agricultural sector.

The literature review helped attribute primary field
size change drivers that were broadly categorised as be-
ing associated with technological advancements, with
government land use and agricultural policy changes,
and with political changes (Brown and Schulte 2011;
Hazell and Wood 2008; Muller and Munroe 2008).
When several regions could be selected with the same
crop type an attempt was made to select those that were
representative of different primary driving forces. A
more sophisticated categorisation was not undertaken
given the relatively small number of Landsat locations
that could be considered and because of the complexity
of understanding land cover land use changes (Turner
et al. 2007; Veldkamp and Lambin 2001).

A single Landsat 180 × 170 km path/row was chosen
within each selected primary crop production region.
There were typically several suitable Landsat path/row
locations in each selected region. Only path/row loca-
tions where approximately decadal growing season im-
age pairs acquired with approximately the same
calendar date were considered. This was required as
field boundaries may not be spectrally separable from
field interiors at different phenological stages (Ozdogan
and Woodcock 2006; Pan et al. 2012; Rydberg and
Borgefors 2001; Yan and Roy 2014). The image selec-
tion was also constrained by limited Landsat data avail-
ability in the US Landsat archive, especially for
geographic regions outside of the USA, and because
of cloud obscuration (Kovalskyy and Roy 2013). Only
Landsat path/row locations with suitable images avail-
able in the growing season and with cloud cover less
than 30%, as defined by the Landsat metadata and indi-
cated in the GloVis Landsat ordering system, were con-
sidered. GoogleEarth high spatial resolution data were
used to check that the Landsat data contained crop
fields and not grasslands, although this was not always
possible where there were no high spatial resolution
data in GoogleEarth and was not possible for the pre-
1999 Landsat scenes.

Landsat subset selection
From each selected Landsat image pair a 15 × 15 km
spatial subset that was representative of the majority ag-
ricultural land use in the image and where obvious field
size change was most visually evident was selected. This
was a subjective and time-consuming process. The sub-
set size was kept small due to the time-consuming na-
ture of the field extraction process described below.
The 15 km subset side dimension was selected as it is

greater than the largest field dimensions reported in
the literature that report long-axis field dimensions as
great as 6 km in the USA (Connor et al. 2011; Ferguson
et al. 1986). The 15 km dimension was more than an or-
der of magnitude greater than the largest field size di-
mensions observed in the Landsat data selected in this
study.

Landsat field extraction
Field boundaries can often be identified by visual in-
spection of appropriately displayed Landsat data (e.g.
Figure 1) and can be straightforward to extract, espe-
cially if undertaken by a capable interpreter, for exam-
ple, by screen digitising or by interactive thresholding
spectral band indices (Basnyat et al. 2004; Lobell et al.
2003). Ideally, seasonal Landsat data acquired in the
same year would be used to better capture seasonal ag-
ricultural differences (Lo et al. 1986; Schriever and
Congalton 1993), and enable more clear differentiation
between, for example, cropland and managed grass-
lands (Kuemmerle et al. 2006; Prishchepov et al.
2012), and provide improved field boundary delineation
(Yan and Roy 2014). However, the availability of de-
cadal pairs of seasonal Landsat data over suitable field
size change locations was limited, particularly for Asia
and Africa. Consequently, in this study, fields were ex-
tracted independently from single date Landsat images
acquired about a decade apart. An interactive object
based classification approach that is directly applicable
to the extraction of discrete objects such as agricultural
fields (Blaschke et al. 2014) was used. Only the field
boundaries, and not the field crop types, were extracted.

Each 15 × 15 km Landsat subset was segmented
using the Definiens eCognition multispectral image seg-
mentation package (Definiens 2009). Different surface
features within a subset can be identified by their re-
motely sensed spectral signatures (the amount of elec-
tromagnetic radiation that they reflect at different
wavelengths). Due to different phenological stages cer-
tain field boundaries, such as grass strips and irrigation
ditches, were not always clearly spectrally separable
from the field interiors (Ozdogan and Woodcock
2006; Yan and Roy 2014). Moreover, within-field spec-
tral variability, caused by spatial variations in factors
such as soil moisture, salinity, fertility and nutrient lim-
itations, pesticide, herbicide and fertiliser treatments,
pollution, pests and diseases, reduce field boundary
separability (Chang et al. 2007; Hall and Badhwar
1987; Rao 2008). Consequently, the Landsat subsets
were purposefully over segmented so that there were
many segments per field that were then subsequently
merged together into single field objects. This approach
reflects standard practice; most object-based classifiers
over-segment the scene prior to merging (Pavlidis and
Liow 1990; Rydberg and Borgefors 2001). The
eCognition software was used to group adjacent pixels
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with similar spectral signatures together, considering
the six available reflective wavelength Landsat bands
and by setting object shape and compactness segmenta-
tion parameters. The shape and compactness parame-
ters were different for each Landsat subset as field
sizes and shapes varied considerably (parameters
ranged between 0.3 and 0.9 for shape and between 0.3
and 0.5 for compactness). The segments were merged
into distinct unambiguous objects by interactive on-
screen selection. The objects were then classified as
agricultural fields or other objects using the nearest
neighbour eCognition supervised classifier. The classi-
fier requires training data which were generated by
selecting a representative sample of objects that were
unambiguously visually identified as agricultural or
non-agricultural. The classifier was applied to the
Landsat spectral band values averaged over each object
to classify them into agricultural fields and other objects
of no interest to this study. This process was iterated
and more training samples were added as needed to
provide a visually unambiguous classification. Agricul-
tural field objects that did not fall entirely within the
15 × 15 km Landsat subset were removed.

Field objects that were too small to be mapped reli-
ably were removed. The minimum field size that can
be reliably extracted from satellite data is dependent
on factors including the sensor spatial resolution, satel-
lite geolocation errors, the spectral contrast between
field interiors and exteriors, and the field shape
(Duveiller and Defourny 2010; Ji 1996; Mueller et al.
2004; Ozdogan and Woodcock 2006; Rydberg and
Borgefors 2001; Yan and Roy 2014). Figures 3 and 4
show example 30 m Landsat (left columns) and 2.5 m
Quickbird (right columns) images that illustrate fields
that are not clearly discernible in Landsat imagery.
The top rows of these figures show 15 × 15 km images
and the rows below show illustrative 750 × 750 m de-
tails. The China images (Figure 3) were sensed over rice
paddies in Jiangsu province, southeastern China, where
irrigation systems and fertiliser inputs contribute to
high rice yields (Jing et al. 2007) with a typical paddy
rice and then winter wheat or rapeseed rotation (Xiao
et al. 2006). The India images (Figure 4) were sensed
over north-western India in the Punjab where tradi-
tional small-scale intensive farming has kept field sizes
small despite the adoption of new irrigation technolo-
gies and new improved varieties of rice and wheat
(Sampath 1992; Smale et al. 2008). The China Landsat
and Quickbird data were acquired only one month
apart and show unambiguously that fields with small
axis dimensions less than two 30 m Landsat pixels can-
not be discerned in the Landsat data. The China
Quickbird 750 × 750 m detail images illustrate typical
rice paddies that are narrow in one axis and long in
the other and include fields with dimensions as little
as about 10 m and 60 m in the small and long axis

dimensions, respectively. The India Landsat and
Quickbird data were acquired in the same month but
one year apart due to limited satellite data availability,
and exhibit inter-annual variation in crop planting and
harvesting. The India Quickbird data include distinct
fields that are often more than two Landsat pixels wide
but are sometimes not separable in the Landsat data,
particularly where adjacent fields are similar and not
separated by large and/or distinct boundaries. These is-
sues were observed by Yan and Roy (2014) who
adopted a conservative minimum field size extraction
of sixteen 30 m Landsat pixels for their automated
US Landsat field extraction algorithm research. As
the field extraction methodology used in this study is
interactive and includes visual assessment, a smaller
minimum field size was used. Based on the results il-
lustrated in Figures 3 and 4, and upon our experience
examining the field extraction results applied to the
selected Landsat data, a minimum field size mapping
unit of six 30 m pixels was used. Thus, Landsat ex-
tracted field objects composed of less than six 30 m
pixels were removed, i.e. the smallest extracted field
size corresponded to 0.0054 km2.

The absolute accuracy of the resulting field extrac-
tions was unknown but, given the interactive and visual
extraction approach, the field segmentations reflect the
highest accuracy we judged possible. Conventionally the
accuracy of satellite products is assessed by comparison
with independent reference data (Justice et al. 2000).
However, the earlier Landsat images were acquired be-
fore the availability of independent reference data,
namely high spatial resolution satellite data. Statisti-
cally robust and transparent approaches for assessing
the accuracy of satellite temporal change products have
been recommended using approaches that assess pixel
level thematic mapping accuracy and the accuracy of ar-
eal change estimates (Olofsson et al. 2014). These
established approaches do not quantify the extraction
accuracy of individual objects which is still an area of
active research (Möller et al. 2013; Persello and
Bruzzone 2010; Yan and Roy 2014). Consequently, in
this study we assumed that if any field extraction errors
did occur then they were systematic for each pair of
subsets and so did not unduly affect the change infor-
mation. Moreover, we ensured that the metrics used
to summarise field size change (described below) were
non-parametric and robust to extraction errors.

Decadal Landsat field size change assessment
The area of each agricultural field object was calculated
by counting the number of 30 m pixels it encompassed.
The median field size, i.e. the 50th percentile, and
also the 25th and 75th percentile field size statistics
were computed for each 15 × 15 km subset and for each
of the two time periods. Non-parametric summary
statistics, rather than parametric statistics (mean and
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standard deviation), were used as field size frequency
distributions can be skewed (Ferguson et al. 1986) and
because they are robust to outlying values due to, for
example, field extraction errors. The percentage change
in the median field size between the earlier and later
time periods was computed as [(medianlater –

medianearlier) / medianearlier] × 100.

Histograms of the field sizes were computed for
each 15 × 15 km Landsat subset and ‘back-to-back’
histograms were created for the two time periods
using the same optimal histogram binning scheme de-
rived by combining the datasets using the Sturges
method (Sturges 1926). The significance of any changes
in field size distribution between the two dates was

Figure 3 Comparison of Landsat 5 TM 30 m (left column) and Quickbird-2 2.5 m (right column) true colour satellite
data over rice paddies in Jiangsu province, Southeastern China (latitude 32.79°, longitude 120.77°). Data were acquired
on 23 March 2005 (Landsat) and 7 April 2005 (Quickbird). The top row shows the same 15 × 15 km area and the bound-

aries of three 750 × 750 m detailed subsets, and the bottom three rows show the subsets in detail
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quantified using a bootstrap version of the two-sample
Kolmogorov–Smirnov (KS) test (Conover 1971) that
is more robust to the presence of potential ties
(Abadie 2002).

In accordance with packing theory (Erdös and
Graham 1975), the field sizes are expected to be in-
versely related to the number of fields if the fields

are regularly shaped. To examine this, the field sizes
(km2) were plotted against the number of fields per
cultivated km2 for each subset at all locations. To ex-
amine if the median field size was related to field size
diversity the median field size was compared with the
field size interquartile range, defined as the 75th–25th
percentile field size.

Figure 4 Comparison of Landsat 7 ETM+ 30 m (left column) and Quickbird-2 2.5 m (right column) true colour satellite
data over rice and wheat in north western India in the Punjab (latitude 30.14°, longitude 74.86°). Data were acquired on
28 October 2002 (Landsat) and 7 October 2003 (Quickbird). The top row shows the same 15 × 15 km area and the bound-

aries of three 750 × 750 m detailed subsets, and the bottom three rows show the subsets in detail
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Results

Selected contemporary agricultural field size
change locations

Table I summarises the seven selected 15 × 15 km sub-
sets. The cereal and biofuel crop subsets were located in
continents defined by the FAO 2010 production statis-
tics with the top two greatest crop productions. No
Landsat subsets over rice agriculture were selected be-
cause even though there were high rice yield locations
in all continents (Figure 2) an exhaustive search found
no significant unambiguous change in rice field size;
this is discussed in more detail below. Landsat subsets
were selected within Argentina (soybeans), Brazil (sug-
arcane), France (wheat), Malaysia (oil palm) and the
USA (maize), where yields for the selected crop type
exceeded the 80th percentile (Figure 2) and where
there was documented change in field size, farm size,
agricultural intensity or extent. In addition, subsets in
Albania (wheat) and Zimbabwe (wheat) were added
as, although they do not exhibit particularly high crop
yields or production, they have experienced docu-
mented dramatic political and agricultural change.
The primary driving force of agricultural field size
change is tabulated in Table I and the context and likely
causes of field size changes are discussed below after
the quantitative field size change analysis.

Landsat field extractions
Figure 5 shows the fields extracted from the
Argentinian Pampas subset data, which since the
1990s has become an area of intensive soybean pro-
duction (Gavier-Pizarro et al. 2011). The two Landsat
dates were sensed in mid-February in the Pampas
growing season (USDA 1994) and capture a time

period 25 years apart. A 25-year time period was used
in order to capture the agricultural landscape before
and after the intensification of soybean production
and because the availability of cloud-free Landsat im-
ages acquired in the same growing season was limited
for shorter periods.

The locations and extents of the extracted fields
(Figure 5) appear correctly identified when compared
with the Landsat true colour reflectance data (Figure 1).
The extracted fields (white) are surrounded by non-
agricultural areas, including ditches, grassy swards, riv-
ers, roads, and farm buildings. Fields that did not fall
completely within the subset were discarded from the
subsequent field size analysis. This example illustrates
the utility of the object-based classification to identify
agricultural fields and also to provide geographic con-
text for the nature of the field size changes. The field
sizes appear to have increased from 1986 to 2011 due
to a consolidation of adjacent land parcels and a
reduction in the number of fields. The spatial arrange-
ment of the fields has been largely preserved between
the two dates. This is likely because of constraints
imposed by the historic land use (paved roads and farm
buildings are not converted to agricultural fields) and
by the landscape structure (the rivers in the North and
South of the image).

Figure 6 shows the fields extracted from the two
Landsat acquisitions for the other sites (Table I). The
sites in France, Malaysia, and the USA exhibit field
size increases whereas the sites in Brazil, Albania,
and Zimbabwe exhibit decreases. The smallest fields
occurred in the 1984 France, 1990 Malaysia, and in
the 2010 Albania Landsat images. A minority of
fields were removed from the 1984 France and 1990
Malaysia field segmentations because they had areas

Table I Summary of selected Landsat subset field size change locations and Landsat acquisition dates

Major
crop

Continent
(crop rank) Nation Locale

15 × 15 km subset
centre Lat., Long.

Landsat
path/row

Landsat
acquisition

dates

Primary field
size change

driver

Soybeans Americas (1) Argentina Argentinian
Pampas Córdoba

–32.85°, –62.11° 228/83 02/10/1986
02/15/2011

Technological
advancements

Sugarcane Americas (1) Brazil Coastal Brazil
northern Paraná

–22.79°, –52.19° 223/76 12/22/1991
05/03/2011

Government
policy changes

Wheat Europe (2) France Central France,
Poitou-Charentes

46.78°, –0.01° 200/27 09/28/1984
08/29/1999

Government
policy changes

Oil Palm Asia (1) Malaysia Coastal Malaysian
peninsular, Perak

4.20°, 101.10° 127/57 12/27/1990
06/01/2010

Government
policy changes

Maize Americas (1) USA Corn Belt Plains,
Iowa

42.88°, –94.73o 28/30 07/27/1989
08/17/2011

Technological
advancements

Wheat Europe Albania Northern coastal
region

19.45°, 41.97° 186/31 06/10/1991
06/14/2010

Political change

Wheat Africa Zimbabwe Mashonaland East
province

–18.47°, 31.60° 169/73 06/22/2001
05/25/2011

Political change

Listed in alphabetical row order by nation, except for the last two locations that were selected without reference to the EarthStat crop yield
map. The continental scale global crop rank as defined by 2010 FAO production statistics (tons) for the indicated major crop type in each
subset are shown in parentheses.
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less than the six 30 m pixel minimum mapping unit.
The greatest number of small fields occurred in the
2010 Albanian Landsat acquisition and we estimate
40% of the cultivated land had fields that could not
be unambiguously mapped as they were too small.
Some fields were introduced or removed between the
dates of the two Landsat acquisitions, this is particu-
larly evident for the Malaysian site, but for all sites
the 15 × 15 km subset dimensions were sufficiently
large to capture the field size populations in each
Landsat acquisition (Figures 5 and 6) and their chan-
ges (Figure 7).

Quantitative decadal field size change analysis
The largest field sizes were in Argentina (2011) and the
USA (2011) with 75% percentiles of 0.447 km2 and
0.364 km2 and maximum field sizes of 2.023 km2 and
1.284 km2, respectively (Table II). The magnitudes of
these values are similar to those reported by Ferguson
et al. (1986), who observed maximum field sizes of 0.8
km2 (200 acres) for spring wheat fields in Montana.
Similarly, Yan and Roy (2014) found a South Dakota
median field area to be 0.1053 km2 with several fields
greater than 3 km2. The smallest fields occurred in the
later Albanian Landsat subset which was consequently
the most difficult to interpret.

The results of the bootstrap two sample non-
parametric KS test (Table II) indicate that the field size
distributions changed significantly at all seven locations.
This is expected given the location selection criteria and
is evident in the back-to-back field size histograms
(Figure 7). The field size histograms are skewed and
so are displayed with a log scale.

The field sizes are inversely related to the number of
fields (Figure 8). The number of fields per cultivated
km2 is plotted on the x axis with a log scale to capture
the considerable variation in the number of fields and
cultivated areas among the seven locations. The later
Argentinian acquisition (2011) had the smallest number
of fields per cultivated km2 (2.7) and the second
Albania acquisition (2010) had the greatest number
(75.0) (Table II). The circles show the median field sizes
and the arrows point from the earlier (first) to the later
(second) Landsat subset acquisition date, illustrating
where the median fields sizes increased or decreased.
The field size interquartile range (75th – 25th percen-
tile) is directly proportional to the median field size
(Figure 9). A reduced major axis linear regression fit,
used as it allows for both the dependent and indepen-
dent variables to have error (Cohen et al. 2003), pro-
vides a relationship of the form interquartile range =
0.104 + (1.123 median field size) with an R2 = 0.933.
This relationship occurs because field sizes were smaller
in the vicinity of roads, buildings, and rivers that seg-
ment the landscape. Consequently, subsets where the
median field size increase but that retain a number of
small fields, due to the landscape structure and pre-
existing land use, have an increased field size interquar-
tile range. Other local factors, including spatial gradi-
ents of soil fertility and sub-surface drainage, and
spatial patterns of human tenure and management
and farmer decision making, may also play a similar
spatial constraining role. However, these factors are
not possible to assess from the Landsat data.

Significant increases in field sizes occurred in
Argentina (soybeans), France (wheat), Malaysia (oil
palm), and the USA (maize) (Table II, Figure 8). The
greatest median field size increase was in Argentina
where the median increased from 0.123 km2 (1986) to

Figure 5 Argentina extracted agricultural field objects
(white), for the 15 × 15 km subset area (grey) segmented
and classified in eCognition from the two Landsat acquisi-
tions illustrated in Figure 1. Classified field objects com-
posed of less than six 30 m pixels removed as they could

not be confidently identified
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Figure 6 Extracted agricultural field objects (white), for the 15 × 15 km subset areas (grey), for all the study sites
(Table 1) except Argentina (already shown in Figure 5). Classified field objects composed of less than six 30 m pixels

removed as they could not be confidently identified
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0.319 km2 (2011), a 159% increase. In France, the USA,
and Malaysia, the median field size increases were
100%, 89%, and 45%, respectively. For all these locations
the number of fields per cultivated km2 decreased by a
factor of about two.

Significant decreases in field sizes occurred in Brazil
(sugarcane), Albania (wheat), and Zimbabwe (wheat)
(Table II, Figure 8). The greatest field size decrease
was in Albania where the median field size decreased
from 0.087 km2 (1991) to 0.013 km2 (2011), an 86% de-
crease and the number of fields per cultivated km2 in-
creased by a factor of about 7. In Brazil and
Zimbabwe the median field size decreases were 47%

and 55%, respectively, and the number of fields per cul-
tivated km2 increased by a factor of about 1.6 and 1.8,
respectively (Figure 8, Table II).

No quantitative decadal field size change analysis
was undertaken for rice because, even though there
was high rice yield locations in all the continents, an
exhaustive search of the global Landsat archive and
the available high spatial resolution GoogleEarth time
series found no systematic or significant unambiguous
rice field changes. The majority of the regions with high
rice yields (Figure 2) had fields that were not discern-
ible in Landsat data, primarily because, as illustrated
in Figure 3, the fields were too small relative to the

Figure 7 Back to back histograms of field sizes for each 15 × 15 km subset (Table 1). The field sizes (y axis) are illus-
trated with a natural log scale but annotated in km2 for visual clarity. The histograms are ordered alphabetically and by

field size change – increases in field size (green), and decreases in field size (red)
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Landsat 30 m resolution. Typically, these small fields
were rectangular and narrow and only a minority had
curvilinear shapes associated with terraced rice cultiva-
tion. Detailed examination of 61 globally distributed

high-yield rice cultivation locations discernible in the
available high spatial resolution GoogleEarth imagery
revealed no changes in rice field area. Certainly, rice
field boundaries were sometimes moved but the field
areas were not significantly changed. A global minority
of very large (more than ~0.2 km2) and intermediate
sized (typically ~0.05 km2) rice fields that were discern-
ible in the Landsat data record were found in regions
including California (USA), Arkansas (USA), Sinaloa
(Mexico), and New South Wales (Australia), and in re-
gions including Andalucía (Spain), the Po Valley (Italy),
and Epirus (Greece), respectively. No large rice field
areal change was evident in the post-1984 Landsat data
record. We expect that the high rice yield locations
(Figure 2) contain rice that is grown predominantly
using irrigated cultivation methods that produce the
greatest yields (Maclean et al. 2002). Limited studies
suggest that the size of irrigated rice fields is
constrained by water management issues, and depends
on the slope, the soil type, and the water supply flow
rate needed to ensure optimal irrigation depth and soil
infiltration rates (Anbumozhi et al. 1998; Brouwer et al.
1988). We hypothesise, therefore, that the lack of any
significant observable rice field change is associated
with these constraints, i.e. that smaller rice fields
evident in the high spatial resolution imagery have
already been adapted by farmers to their optimal
size and that larger rice fields were established with
optimal size.

Decadal field size change contextual analysis
Argentina
The Americas is by continent the largest producer of
soybeans and Argentina is the third largest national
producer of soybeans within the Americas (after the
USA and Brazil) (FAOSTAT 2010). The Landsat data
were located in the state of Córdoba, over the north-
ern portion of the Central Pampas, in an area of his-
torical agricultural production that has experienced
significant increases in intensive soybean cultivation
(Gavier-Pizarro et al. 2011; Viglizzo et al. 2001). Ge-
netically modified (GM) soybean varieties were
adopted in Argentina from the 1990s to reduce costs
and expand production into marginal lands using
zero-till cultivation practices (Craviotti 2002; Pengue
2005; Zak et al. 2008). Increased demand for biofuels,
and the growth of large agricultural enterprises and
one year land leasing encouraged the replacement of
pasture and mixed cropping with profit maximising
soybean monocultures, creating larger fields that are
better suited to mechanised cultivation (Craviotti
2002; Lamers et al. 2008; Mathews and Goldsztein
2009; Viglizzo et al. 2011). This is unambiguously con-
sistent with the results obtained in this study, where
the Argentinean median field sizes exhibited a 159%
increase over a 25-year period from 1986 to 2011.
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Figure 8 Relationship between field size (y axis) and the
number of fields per cultivated km2 (x axis) for all seven
Landsat subsets and both acquisition periods. Open and
closed circles show the first (earlier) and second (later)
Landsat acquisitions with arrows indicating the direction
of time progression. The vertical lines show the 25th per-
centile (bottom) and 75th percentile (top) field size and
the circles show the median, i.e. 50th percentile field size.
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France
Europe is by continent the second largest producer of
wheat after Asia, and France is the largest national pro-
ducer of wheat in Europe (FAOSTAT 2010). High
yields of wheat were encouraged after the development
of the European Union (EU) (Bouma et al. 1998) and
were facilitated by high nitrogen fertiliser application
rates (Brisson et al. 2010). The Landsat subset was
located over the province of Poitou-Charentes in
north-west France in an area of relatively high wheat
production. Despite agricultural intensification encour-
aged by the EU Common Agricultural Policy (CAP) to
remove hedgerows and increase field sizes, the fields in
France still remain relatively small (Busch 2006;
Stoate et al. 2009; Thenail and Baudry 2004). Indeed,
field size growth is constrained by the prevalence of
historic bocage landscape patterns dating to the nine-
teenth and early twentieth centuries (Thenail and
Baudry 2004; van Eetvelde and Antrop 2004). Re-
forms to the CAP in the 1990s shifted focus away
from intensification to an increased emphasis on envi-
ronmentally friendly agriculture and the adoption of
agricultural set-aside and field margin preservation
schemes (Daniel and Perraud 2009; Mosnier et al.
2009). As previously noted, the median field size
increase for this location was 100% over a 15-year
period from 1984 to 1999.
Malaysia
Asia is by continent the largest producer of oil palm and
Malaysia is the largest oil palm producing nation glob-
ally (FAOSTAT 2010). Oil palm plantations have ex-
panded significantly in the past few decades
encouraged by increased global demand for food and
biofuel (Abdullah et al. 2009; Wicke et al. 2011). The
Landsat data were located over the eastern end of the
Malaysian peninsular, in the state of Perak, an area
where existing agricultural lands have been converted
to oil palm plantations (Abdullah and Nakagoshi
2006). Since 1985, industrial development driven by
government policy reforms, including a 2005 national
biofuels policy, has stimulated the domestic conversion
of oil palm into biodiesel for export to primarily
European markets (Abdullah et al. 2009; Abdullah
and Nakagoshi 2006; Gan and Li 2008; Wicke et al.
2011). An increase in the area of land under palm oil
(that exhibits larger field sizes compared with surround-
ing food crop fields) has been unambiguously driven by
changes in government policy, resulting in a 45%
median field size increase from 1990 to 2010.
USA
The Americas is by continent the largest producer of
maize and the USA is the largest national producer
(FAOSTAT 2010). Farm sizes (and so potentially field
sizes) in the USA have increased in the past few de-
cades due to a shift toward industrialised agriculture
(Barlett 1993; Cleveland 1995; Hart 1986; USDA

2009). The Landsat data were located over Iowa in
the eastern end of the Corn Belt plains ecoregion that
is an area of particularly intensive agriculture, primarily
maize and soybeans for animal feed and biofuels
(Karr-Lilienthal et al. 2005; Petrou and Pappis 2009).
Intensive cash grain production has been facilitated
by technological advancements, including selective
breeding, genetic manipulation, irrigation, and
mechanisation (Plourde et al. 2013; USDA and Natural
Resources Conservation Service 2007). Similar to farm
size increases noted in the literature (MacDonald
2011), the median field sizes increased by 89% over a
22-year period from 1989 to 2011 and this was driven
primarily by technological advancements.
Brazil
The Americas is by continent the largest producer of
sugarcane and Brazil is the largest national producer
(FAOSTAT 2010). Sugarcane, grown primarily for etha-
nol production, was adopted in Brazil in the 1970s in re-
sponse to government policies (including the ProAlcool
scheme) initiated to reduce fossil fuel dependence
(Hira and de Oliveira 2009; Moraes 2011). Although
subsidies for ethanol production were withdrawn by
2004 (Uriarte et al. 2009) global demand for food, fibre
and energy has caused continued production and ex-
pansion of Brazilian sugar cane plantations (Smeets
and Faaij 2010). The Landsat data were located in
Paraná, one of the largest sugarcane producing states,
that in recent decades has experienced expansion of
sugarcane at the expense of other agricultural and pas-
toral land uses (Nassar et al. 2008). This conversion to
sugarcane plantations was observed, with changes in
both the field sizes (earlier pasture and agricultural
fields were larger than the later sugarcane fields;
Figures 6 and 7) and the field arrangement (due to
the placement of completely new field boundaries).
These changes resulted in an increase in the number
of fields and a median field size decrease of about
47% over a 20-year period from 1991 to 2011.
Albania
Albania was considered because of well documented
rapid agricultural change. The Landsat data were in
the northern coastal agricultural district of Shkodër. In-
tensive collectivised large-scale agriculture with guaran-
teed markets and predominantly wheat crop cultivation
was practiced until the collapse of communism in 1991
(Christensen 1994; Cungu and Swinnen 1999). This po-
litical change produced a shift from state to private
ownership of lands, with land being divided based on
household size (Muller and Sikor 2006; Swinnen
1999). Inappropriate tenure agreements led to land
fragmentation (Sikor et al. 2009; van Dijk 2003) and
small field sizes due to limited opportunities for expan-
sion (Muller and Munroe 2008). This is apparent in the
Landsat results, with nearly all the large fields
subdivided into fields with distinct field boundaries,
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and a median field size decrease of 86% over a 19-year
period from 1991 to 2010.
Zimbabwe
Zimbabwe was considered because of well docu-
mented rapid agricultural change. The Landsat data
were located over Mashonaland East Province, one
of the highest crop production areas in Zimbabwe
(Jingura and Matengaifa 2008), with cash (cotton
and tobacco) and food crops (primarily irrigated
wheat and maize) and also some subsistence farming
(Nyagumbo and Rurinda 2012; Palmer 1990; Yates
1980). Until 2000 the greater majority of the commer-
cial agricultural land in Zimbabwe was farmed by co-
lonial, predominantly European, farmers. After
independence in 1979, a government-based process
of land reform aimed to redistribute lands more
equally on a ‘willing seller, willing buyer’ basis
(Palmer 1990). In 2000 the forced seizure and redis-
tribution of land by a fast track process of land re-
form without compensation was legalised and
commercial farmland was redistributed to small-scale
indigenous famers (Cliffe et al. 2011). This resulted
in the mismanagement of many commercial farms
and caused declining yields and cropland degradation
(Prince et al. 2009; Richardson 2007; Sachikonye
2003). The number of fields per cultivated km2 almost
doubled due to the introduction of smaller plots con-
structed within the preserved outer boundaries of
pre-existing field boundaries. A 55% median field size
decrease over a 10-year period from 2001 to 2011 was
found for this location, likely driven by the fast track
land reforms.

Discussion

A body of literature has alluded to the likelihood of
field sizes changing due to increasing demand for food,
fibre and biofuel. Significant changes in field sizes were
observed over approximately decadal periods and are
likely to have significant ecological and biogeochemical
consequences. The magnitude and relative speed of the
observed changes were dramatic and greater than
changes due to many natural processes.

A pragmatic approach was used to select seven loca-
tions where there were cloud-free Landsat data and
that captured contemporary field size change. The re-
ported sample results indicate increasing field sizes as-
sociated with technological advancements (improved
mechanisation and new and improved crop varieties)
and governmental policy changes (economic investment
reforms, incentives for agricultural practices, and bio-
fuel mandates). Decreasing field sizes were associated
with political events that rapidly changed the agricul-
tural sector and where pastures were converted to ara-
ble agriculture. Local patterns of field size change
were complex however. Field sizes remained small

where there were constraints imposed by the landscape
structure and pre-existing land uses, presumably be-
cause these constraints were not easily or profitably re-
moved. Other local factors, including spatial gradients
of soil fertility and sub-surface drainage, and spatial
patterns of human tenure and management as well as
farmer decisionmaking, may also play a spatially
constraining role. However, these factors are not possi-
ble to assess from Landsat data and were not possible to
ascertain from the available literature. No systematic or
significant unambiguous changes in rice field sizes
could be detected and this may be due to physical con-
straints concerning water management issues. This
study illustrates that changes may be influenced by a
multitude of environmental and human factors, al-
though the attribution of land use change drivers is
challenging (Veldkamp and Lambin 2001; Verburg
et al. 2004).

A pattern of increasing field sizes was indicated by
this research. This may decrease landscape spatial com-
plexity and therefore decrease landscape diversity
through the homogenisation of land uses. These
changes are likely to have significant ecological and bio-
geochemical consequences. Potential consequences
include a reduction in the number of natural and
semi-natural landscape patches (Merriam and Wegner
1992; Petit and Firbank 2006; Pogue and Schnell
2001), declines in biodiversity and loss of habitat
(Benton et al. 2003; Duro et al. 2014; Green et al.
2005; Krebs et al. 1999), increased Aeolian soil erosion
(Skidmore et al. 1970), reduced plant–pollinator inter-
actions (Gabriel and Tscharntke 2007), modification
of the ability of invasive species to establish themselves
(Holway 2005; Yates et al. 2004), increased likelihood of
disease pathogens and pests (Margosian et al. 2009),
and loss or degradation in buffers to nutrient, herbicide
and pesticide flows from agricultural lands (Martin
2011; Ryszkowski 1992). Evidence also suggests that
larger regular-shaped fields are more likely to be irri-
gated and therefore have increased water consumption
(O’Brien et al. 1998; Schuck and Green 2001). Field size
increases have been associated with agricultural intensi-
fication (Kuemmerle et al. 2013; Tscharntke et al. 2005)
that is associated with increased agricultural water and
energy use and emission of greenhouse gases (Foley
et al. 2005; Matson et al. 1997; Robertson et al. 2000).

While this research provides a snapshot of field size
changes, the extrapolation of results to infer reliable,
more general patterns will depend on the number of
sample locations and their placement relative to the
heterogeneity of field size distributions and changes.
As this information is not well defined, global wall-to-
wall quantitative spatially explicit field size mapping is
suggested. Terrestrial changes may be exhibited and un-
derstood in quite different ways in the context of multi-
decadal rather than decadal time series, and so
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repeated decadal field size mapping is suggested. It is
expected that more Landsat data acquired in the
1970s to the present day will become available as they
are repatriated from non-US receiving stations into
the US Landsat archive. A limitation of the current re-
search is the 0.0054 km2 minimum mapping unit that
results from the 30 m Landsat pixel size and that pre-
cludes small field identification. In regions that are, or
have previously been dominated by small holder agri-
culture, such as in Asia (Fan and Chan-Kang 2005)
and Africa (Morton 2007), this may be an issue when
Landsat data are used. As higher spatial resolution sat-
ellite alternatives to Landsat are not available prior to
1999, a potential solution is to use historical aerial pho-
tography such as declassified military imagery (Tappan
et al. 2000).

The absolute accuracy of the resulting field extrac-
tions was unknown but, given the interactive and visual
extraction approach used, the field extractions reflect
the highest accuracy we judged possible. We admit that
if other operators followed the same approach the
resulting field maps could be different, particularly for
smaller fields. The minimum field size that can be ex-
tracted reliably from satellite data is dependent on sev-
eral factors, including the sensor spatial resolution,
satellite geolocation errors, the spectral contrast be-
tween field interiors and exteriors, the field shape, and
the extraction methodology. The use of a minimum
field size threshold is problematic for locations where
field sizes changes occur above and below the thresh-
old. In this research both the consolidation of small ad-
jacent fields into larger fields, and the subdivision of
larger fields into smaller ones was observed. However,
the percentage change in the median field size will only
be sensitive to small field size detection issues if 50% or
more of the field sizes were undetectable. Of the seven
sites considered, only the second Landsat image ac-
quired over the Albanian site had more than a minority
of fields (and less than 50%) that were close to the
0.0054 km2 minimum field size limit and so the changes
in Albanian field sizes from 1991 to 2010 were sufficient
to reveal an unambiguous decrease.

Future agricultural production is expected in many
regions to rely on increased agricultural yield rather
than agricultural land expansion (Erb et al. 2013), al-
though yield increases are likely to vary geographically
and with crop type, and to be sensitive to climate
changes (Lobell and Field 2007). This research sug-
gests that in such regions future field sizes may also
increase, likely facilitated by opportunities provided
by technological developments, and driven by the
need to increase agricultural yield and by demand
for particular crops in response to macroeconomic
drivers and governmental policies. However, the ex-
tent to which field sizes globally have already in-
creased is unquantified.
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