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DUCTION

Mény theories have been proposed to yield a current-
tiﬁe relationship in Polarography. The most widely
accepted is that of Maﬁsuda.l He assumes that the electro-
lyte can be separated into an inhomogeneous region about
the mercury drop and a homogeneous region elsewhere.

This assumption leads to a first order, nonlinear,
ordinary differential equation directly solvable by .
substitution of a properly chosen series. But the series
solution obtained is only a particuiar solution; for
there exists, as one would expect, a family of solutions
depending on a constant of integration.

In the literature, derivation of the diffusion
equation has never been attacked from the standpoint
that the diffusionlprocesaes are occuring with respect
to the medium. The convection term in the accepted
diffusion equation is introduced as a generalization to
account for the growth of the mercury drop.2

This paper will show that the function describing
the concentration of diffusing ions need not be broken

up into two separate parts. Integration will be carried

1&. Matsuda, Bull. Chem. Soc. Japan, 26, 342 (1953).

2 X :
Jo M, Markowitz and P. J. Elving, Chem. LeV.,
1066 (1958). ’ &3



out an infinite distance rather than from the surface

of the mercury drop out distance-g;. The geries solution
is only one of many solutions, A solution obtained by
using an experimental value for an initial @ will compare
favorably with experiment. Also, derivation of a
diffusion eguation based on diffusion with respect to

the medium will be given.



DER OF A @ EQUATION
s with, some tions must be made in

order to simplify the derivation. tions
are listed below: '

1. The diffusion process tekes place with respect

to th iwm. lsmentary step consists
of movement of te from one equilibrium
position in the to nnother.3

2. The dropping mercury oloctiode potentiel is
enough to deplete the region next to

the electrode surface of a certain ion. In
other words, the rate of reduction at the elec-
trode depends only on the rate at which the
reducible ion reaches the surface. Presumably,
electron transfer to each surface ion is very
fast.

3. The drop is motionless. Actually the c

of gravity moves @is motion 1is
negligible.
he mercury drop poss spherical ry.
-n shown speed 8
K E “The
M k s



by llacNevin and Balis to be en accurate assump-

tion.4

5. The pertinent solution about the drop exhibits
spherical symmetry. This assumption is no
better than a rough aspproximation. Certainly
there exists a shielding effect dus to the pres-
ence of the capillary., Deriveation of a diffu-
sion equation is made complicated by inelusion
of the capillary in the theory.

6. The solution extends out an infinite distance.
Antweiler has shown this to be a very good

assumption.5

Two other assumptions that are cited in the literature

are: The mass rate of flow of mercury is constant;6

and there is no depleted region around the newly forming

drop.7 It will be showvn that these need not be made

in this derivetion. To be more general, the diffusion

coefficient will be taken as a function of the variables

r and t.

zlw‘. e ilacNevin and E. W. Balis, J. Am. Chem. Soc.
82, 620 (1943).
Von H. J. Antweiler, ‘Ztschr. Electrochem. 44
888 (1938). ’ '
7. J. Lingane, J. Am. Chem. Soc., 7S, 788 (1953).

7 . " -
Jo. M. Markowitz and P. J. Elving, J. Am. Chemn.
Soc.. 81, 3518 (1959).




Derivation of tihe Diffusion Equation

Given a spherical surface in a medium where radial
diffusion occurs, the moles, ggs, that diffuse across

in time dt equal

(1)
where gf is the area of surface, Qi the diffusion
8
coefficient at the surface and (%%) the gradient of

the concentration evaluated at the surface.

Consider an infinitesimal spherical shell of thick-
ness dr in the medium with a‘centor common to the center
of the mercury drop. Label the inner and outer surfaces
& and f, respectively, as shown in Figure l. The radius
of the growing electrode is denoted by T,e

By Equation (1), the moles passing through surface

L is given as

(2)
and for surface g, the number of moles is
(3)

Then the time rate of change of the concentration in

the shell will be

(4)



FPigure 1.

Description of Spherical Shell

dr



where dV is the volume of the spherical shell.

If the mercury drop did not change size, then no
problem would exist in deriving a diffusion equation.
But the surfaces given move with the mediuin. Hence the

4 £

f 8
quantities (22) (g%) , AX, A8, ' ana p& cammot be

or s
taken with constant time; for this would freeze the
surfaces at some radius. There would be flow of medium
in and out of the shell. Thus, the quantity, %%-, is
not teken with r held constant; instead it is evaluated
between points fixed in the medium. The problem that
now arises is to express a p‘arameter labeling such points
as a function of r and %.

In solving this predicament, define a spherical
volume, AV, of radius P which has the same volume as

a spherical shell of inner radius z, and other radius

r. Figure 2 illustrates the relationship. Then

or

(5)

Equation (5) gives a simple relation between _f and the
variables £, t. The coordinate fidentifies a given
element of solvent; for it can be argued that each

given point in the medium will have a value f associated



=t

Figure 2. Definition of'o
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The shell's volume is calculated ag follows:

or

av = %Tr(rg + dr)3 - éﬂrgg.

Expanding the first term on the right side and neglecting
high-ordered differentials, the expression for 4V be-

comes

av = %Tr(r; + 3rg2ar) - %‘ﬂ'rg3

or

av = 41\'rg2dr. (9)

The area of the surface g is

(10)
and a change in area
A\B

With Equetions (8), (9), (10) and (11), Equation (6)

becomes "

2.8 ¢ © 220182018
20 [41n:g D8 ;;.2. + [D54ﬂ(2rg) - 4‘rrrg (g-;) ](%) ldrdt
2t - g

47T r “drdt
g

or
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c 20 g 2 D\& ¢\ & |
%-_E = Dg(:—r-z) + [Dg I"g + ('g';,) (g";) o (12)

Since all quantities on the right side of Equation (12)
are evaluated at surface g, the superscripts can be

dropped. Equation (12) is now written as

or

(13)

The left side is all that remains to be considered.
Writing C = C(P,t) = ¢(r,t), and differentiating
gives
(14)

ac = (g%)t dr + (%—%)rdt (15)

Differentiating the relationship derived for f gives

or 5
pe To

dr = d + dr

2 e 0
or P

P2 I‘o dr
dr = -5 d + i (-E dt. (16)
r
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Insert Equation (16) into Equation (15). Equating the
ré8ult to EFquation (14) and comparing coefficients of

dt gives

and
dro : r02 (?_Q,)
= 7 &

Hence, Equation (13) becomes

oy P ‘ dl‘

2C i« 2 2126 Q 20

= —— Dr -
(%) -4 u[ (ar):lt o 2 @),

or

26y 1.2 [+.273¢C g 4%,

(5¥)r ";3 FY3 [%r (g?) “ Ty 3% ° e (17)
Taking the mass-rate of flow of mercury to be

dependent on time yields

(18)
or
Bl W
4'ﬂro 1%: Hm(t)' (19)
Integration gives
t
- Sm(t)dt (20)
o

where d is the density of mercury in gm/cm3 and m(t) hes
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the units of gm/sec. In keeping with the notation in
the literature, Equation (20) is rewritten

r° = H'?i jog(t)dt =Y fg(t)dt = fo Y(s)at, (21)

(]
o

where g(t) is some uni%less function of time and 1; has
the units of cm3/sec.

Substitution of (21) into (17) gives finally

(;i%)r=i7'§r- [Drz (&) - %ﬂ{lt , (22)

Equation (22) is valid for variation of D with r and %,
and mass rate of flow dependence on time.

Solving Equation (22) presents a formidable task.,
The most common method, separation of variables, is use=
less if m has time dependence and D varies with distance
and time. For consfant m and D, the separation method
yields a second order, ordinary differential equation
in r involving an irregular singularity. Differential
equations possessing such singularities are not easily
solved. A series expansion for the solution, where the
singularity has been removed by expanding about a chosen
value of r, does not give suitable results. The relation-
ship for the coefficients in the sexries is complicated.
Thus, integration over the separation constant is not
possible. There is a way however, which is not strictly

1854473 .
) SOUTH DAKOTA STATE UNIVERSITY LIBRARY
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correct in a mathematical sense, but does give acceptable
results. This method is the integral solution employed

PV
by. diatsuda.
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SOLUTION OF THE DIFFUSION EQUATION

A procedure like that of Matsuda will be used in
solving Equation (22).
The Integral Method

Equation (22) is now multiplied by r2dr and inte-

grated from e

e - (T2 ne 39 %0 o] a

r0 o}

to infinity to get

or

To

© ' oo
t
f r?(3%)ar = E’rz('g‘g') - -§—” 0] . (23)
To
If reduction of an ion takes place as soon as it reaches
the mercury drop2, then g(ro,t) = 0, If the concentra-

tion is uniform at some distance away from the electrodez,

then
lim C¢(r,t) = ¢,
I'— o0
and
(24)
So, Equation (23) reduces to
o Y
1
jr rQG%%)dr = ‘D(ro’t)roztgg) = -§_l Cot (25)
r

) o]
But with the relationships:
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[¢0] o0
3 2 2 (36 i 3
= Lr cdr = S r?(8)ar + 118 n2c(n, )8 -r 20(r,,t)—F

or..

©0 00
) 2 2(3C
= jr r°Cdr = j r (-b-f)dr’
r.O

0

where %% = 0, and

- o] © -
) 2 2/ %% lim , 2 Tl
Egr”odr“ir(w)dr* A0, OF - 7,70 h

0 0
or
> g& 2 2 4r X(t)
5T . r Codr = - ro Co—a% = - 3 Co.
0

Equation (25) becomes

)

oo

S r2¢dr = «D(r ,t)r 2(

T ot ¥ T
0 o

1

=
at

or

00
%% g r2(o°-c)dr = D(ro,t)roz(gg)

¥y Tye (26)
Equation (26) holds whether or not jfvaries. It is also
valid for a variable diffusion coefficient as long as
Q(ro,t) = D(t) and D(« ,t) = D,» where D  is the limiting
diffusion coefficient for large r. The conditions imposed
on Q(r,t) are not objectionable because physically the
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diffusion coefficient would be expected to vary with
time at the surface of the drop and be constant for
large distances from the electrode. The equality in
Equation (26) will hold only if the C in the equation
is a solution of the diffusion equation. The correct
solution of Equation (22) is not known, but the true
form for C is not of direct interest; for in the final
analysis, only the gradient of ( evaluated at r = Iz
is important., )

Choice of Concentration Function

The solution for the stationary spherical electrode

has been discussed before.7 It is given by

- r « p'
C=CO~COF—erfC(—m (27)
- Yan, ¢

where r' is the radius of the stationary electrode.
Equation (27) will be the choice for ¢, but modified
somewhat. A question may be raised as to why this is

a reasonable selection. The answer is that the actual
solution of Equation (22) would be of a similar form as
Equation (27) because in both cases, the diffusion proc=-
ess 1s radial. In other words, from symmetry alone,

the solution of Equation (22) should be similar to Equa-
tion (27). Matsuda chose a form for C analogous to

Equation (27).l
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The modifications to be made are based on the results
previously obtained by Kidman.8 " He argues that the tempo~
ral factor in the denominator of the complimentary error
function should be replaced by f£(t), where £(t) has the
form

£f(t) = at + b. (28)

He gives b meaning by stating that initially there exists
a layer about the drop depleted of reducible ions be-
cause some of the layer about the previous drop is left
behind. The coefficient of % is given the same signifi-
cance &8s the 3/7 factor of Lingane and Loveridge.9

The corresponding change in Equation (27) will be to
replace 1 by g(t). The only other modification is the

obvious one; r' is replaced by radius L, With

these alterations,'Equation (27) is now written as

wlo™

(29)

C =¢ - e s

I' =Y
o = 0o Ty O¥EC (1[433 f(t))

Note that conditions (24) are satisfied.

Solution
Even with the aid of Equation (29), the solution
of Equation (26) will be very much handicapped if the
gﬁ. B. Kidman, A New Partial Differential Eguation
And A New Instantaneous GCurrent-Time Curve for Polarogra 3
M. S. Thesis, South Dakota State university, 32 !I§EZ§.
9J Jd. Lingane and B. A. Loveridge, J. Am. Chem.
Soc., 72, 438 (1950).
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diffusion coefficient is to vary. To simplify matters

considerably, D(r,t) will be taken as constant at the

surface of the electrode and throughout the bulk of the

electrolyte. Let D(r,t) = D, where, D is.the value of

the diffusion coefficient given in the literature.
Solving Equation (29) for €, - £ yields

Co-Czcof%erfc(r-ro ) (30)

Differentiating Equation (29) partially with respect
to r, and evaluating the resplting éxpression'at X+ K
gives the value of the concentration gradient at the
surface of the mercury drop:

20 1 1 _

(ﬁ)ro = % I;o ¥ 171-13':—;@] ‘ L
Substitution of Equations (30) and (31) into Equation
(26) yields

- r -
= g rrerfc( )dra])rz{-]; $ L . (32)
el ¥, - Y4D, £(t) ©°% | %o 4/mD £(t)

The integration is simplified somewhat by letting

» (33)

or
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and

The limits of integration, r = x , L =00 become x = O,

x =0 , Equation (32) is written
a
P)
ST foro EO +’l/4Dof(t x]]/“)of(t) erfe(x) dx

=or 2 (& = ) 34
L +’VTTDof(t) (\ ‘

Rearranging, Equation (34) becomes

(¢ o)

o
% ]/I])O—fm rozjlg erfe(x)dx + 3%[413015'(17)1'(;' S x erfe(x)dx
0

o]

3

=Dr2-‘+ 1 .
o0 o W £(%)

The integrals in the first and second terms of the left

(35)

side are easily evaluated with the aid of the following
relation:

1 -x2
erfc(x)dx = x erfc (x) -ﬁ e + k,

where k is a constant of integration. The first integral

is computed directly:

oo 2°0

=X

o VT

Xerfc(x)dx = x erfec(x)
o

or
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S erfe(x)dx = i (36)

0 v
Integration by parts is used to calculate the second

integral:

© Sad fo o) @ 2
Sx erfe(x)dx = x2erfc(5:) - Sx erfe(x)dx + L S e~* ax
o o “o ﬁ )
or o
Sw (x) = S -x*
2 x erfe(x)dx = = @ dx
0 VI /g
or
® 1 = 1
gx erfe(x)dx = T S e X ax | = r (37)
o V— 0
where

®© 2
2 S e X ax = erf(co) = 1.
(o]

T

With Bquations (36) and (37) and multiplying through
By T, Equation (35) reduces %o

[V—_T'S r,© + TD oL(t) r =TID r_ [ VTTD f(t):l

Since r has been integrated out of the expression, the
partial time derivative can be replaced by a total time

derivative. The final expression is

2 211 1
?{?[ o 0 o o oo |T, TD_£(t)




22

Equation (30) is a first order, nonlinear ordinary
differential equation with £(t) teken as the dependent
variable. The equation does not lend itself to be easily
solved. A series solution can be readily obtained but

it is only one of many solutions.
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SCLUTION OF THE NONLINEAR EQUATION

Sblutions for the nonlinear equation will now be
obfained. The radius of the mercury drop will be treated
as it is in the literature,°
Dimensionless Equation

Equation (38) is put into dimensionless form by
the substitutions

(39)
and 2 3
I(T) = =25 £(t), (40)
XB
where 3 represents reduced time. Equation (38) then
becomes
8 |,32/3 5 4 33 52} =32/3 + 2], (41)
a% [ v %%73 3

- 3 -
where & = T(T)and r 7 = X t.
lamerica eration
JMany numerical methods can be applied to Equation

(41). The method to be used here is the fourth-order

Runge-Kutta procoss.lo

iUStanton, Re G., §um§r1§al Met%gds or Science
and Engineering, Prentice~Hall, Fy
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Equation (41) is put into the form

= 7(T,9).

] )

The equations to be used in the Runge-~Kutta integration

are s

k, = hF(¥,9),

k. = hP(T+2, B kl)

2 ° b Ly L

k
k3 & hF(%-“‘%’ e + -é’)y
(42)

and

where b is the increment in I in each calculation. The
k's are determined by starting with a value for % and g;
then 46 is calculated. A new T and © are inserted into
each of the k's and a second  is calculated. The process
is repeated as often as desired. 7Ten integrations were
carried out. The results are plotted in Figure 3. The
quantities plotted are 82 /5x = Z(T) and T. Table 1 gives
representative values for each integration. Calculations
were made on an IBM 1620 digital computer. The program

is given in Appendix 1.



2%

A series solution of Equation (41) can be obtained

in the following way: Let § be represented by the series
(43)

Multiply Equation (41) through by §, carry out the indi=

cated operations and equate all like powers of i. The

procedure gives

5V [ § 0 T/ - il 6 J (4

Squaring Equation (44) and dividing through by yields

LT - 5T+ g3ef2 T/ . JBRE T/ 4 e (sas)

Equetion (45) is a particular solution of Equation (41);

3lo}

it is also a limiting solution for all other solutions

to Equation (41). Notice that the coefficient of the
linear term in  is the same as that introduced by Lingane
and Loveridge.

Matsuda's Equation

Matsuda's concentration gradient at r = r  is

%) -c [+ %], (46)
(0]

where the subscript, m, denotes Matsuda. Equation (46)

is comparable to Equation (31) if



(47)

where P compares with @.

The nonlinear equation derived in Matsuda's theory

is
d 2 1
r.c 3 [%T ry em-i— 35 roeﬂa ]')03:'02 l:% ks é]‘ (48)
(6] m

Inserting Equation (47) into Equation (48) and multi-
plying through by 28/9 gives y

3% (49)

Substitutions (39) and (40) reduce Equation (49) to

d =2/3 = 1/3 =2 | _ 28 =2/3 1
E‘:Qt/ 2+ 3 p]~-§ 2/ [:%%73-*-%]-(50)

Solutions for Equat:ion (50) are obtained in the same
manner as before. Only one integration, of Equation
(50) was performed. %The calculations are listed in
Table 2 with Run 4.

A series solution to Equation (50) can be obtained

in the same manner as Equation (45); it is

-%2=3%¥+%_§J1T5¥7/6_2%%‘;8/6+... (51)

Equation (51) is a limiting solution for all other

solutions of Equation (50).
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Discussion of Solutions

Matsuda gave Qm physical significance by stating
that it is the depleted layer thickmness. If 6 in the
present theory has similar significance, then the solu=
tions represented in Figure 3 imply various initial

11 Those solutions below the series solution

conditions.
indicate that the solute is concentrated around the
electrode. The diffusion occurs for a time t before
the solution becomes homogeneous. Then depletion pro-
ceeds. The series solution implies that the concentra-
tion distribution is homogenéoua everywhere initially.
Those solutions above the series solution imply that
the concentration is low about the mercury drop; for

small time Q is very large meaning that the concentra-

tion must be small around the d4rop.

Iznniiax, G. H., (submitted for publication).



Reduced Time I

1.000 x 10~2

2.000
4.000
8.000
1.600
2.160
3.200
4.240
6.400
8.640
1.280
2.560
5.120
1.024

X

X

1072
1079

10™°

10~8

1078

10°8

1078

10°8

1078
10”7
1077
10~7

10‘6

Table I. Variation of &=

Run

3.590
2.360
1.455
8.260
4.330
3.220
2.180
1.667
1.198
1.023
9.670
1.310
2.360
4.620

X

X

X

10~

100
10~
10”7
10”7
1077
10”7
1077
107
lo07

1078

10”7
10~7
10~7

v "4
T

Run 2

2.160 x 10~

1.368
8.040
4.340
2.190
1.621
1.115
8.870
7.110
6.790
7.510
1.217
2.320
4.610

X

X

6

100

10~7

10”7

10”7
10”7

10~7

10~8

1078

10~8

10°8
10~7
10”7

10~7

Run 3
1.169 x 10~

7.040
3.910
2.000
9.910
7.450
5.490
4.780
4.590
5.040
6.420
1.170
2.300
4.600

X

X

X

6

10~7
10~7

10~7

1078

1078

108

10~8

10~8

108

10~8

10~7
10~7

107

Run 4

5.380 x 10~/

3.030
1.572
7.720
3.990
5.240
2.830
2.870
3.430
4.240
5.930
1.149
2.290
{.590

X

X

X

X

10'7

10~7

1078

10~8

10~8

1078

10~8

10~8

10~8

-8
=7

10
10
10”7

10”7

with T for Various Starting Values.

Run 5

7.910 x 10~8

3.870
1.874
1.083

.1.012

1.162
1.539
1.961
2.880
3.860
5.700
1.139
2.290
4.590

X

X

X

1078

10-8

10~8

10™8

108

10”8

10”8

10~8

1078

-8
=7

10
10
1077
107

8¢



Table I. (continued)

Reduced Time T Run 6 Run 7 Run 8 Run 9 iun 10

3,200 x 10~2 e
-8

1.0%6 x 10

-8

4.240 x 10 1.607 x 10

6.400 x 10~° 2.670 x 108 6.010 x 10~°

8.640 x 10~S N e

3.710 x 10 2.300 x 10
1.280 x 107 5.610 x 10~ 4.740 x 10 1.191 x 1078
1.696 x 10~7 7.480 x 10™° 6,870 x 10~ 4.370 x 1078
2.560 x 107! 1.135 x 10”7 1.098 x 10~! 9.470 x 10~% 6.660 x 10™° 2.390 x 10~
3.456 x 107! 1.538 x 10”! 1.512 x 10~7 1.408 x 10”7 1.214 x 10”7 9.220 x 102
5.120 x 10”7 2.290 x 107 2.270 x 10”7 2.200 x 10~! 2.080 x 10~! 1.904 x 10~'

1.024 x 10~° 4.590 x 10~7 4.580 x 10”7 4.550 x 10~! 4.500 x 10~! 4.420 x 10~

62
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Figure 3. Variation of 32/4r with T



Reduced Time %

Table 2.

1.000 x 10~9

2.000
4.000
8.000
1.600
2.160
3.200
4,240
6.400
8.640
1.280
2.560
5.120
1.024

X

10~2
1072

1079

10~8

10~8

10~8

10™8

10~8

10”8
10”7
10~7
10”7

10~

Comparison

8

of
2

~

5.380
3.030
1.572
7.720
3.990
3.240
2.830
2,870
34430
4.240
5.930
1.149
2.290
4,590

X

%; of Run 4 with
10~7 5.390
10~7 3.040
10~7 1.575
1078 7.730
1078 3.988
1078 3.230
1078 2.810
16" 2.850
10~8 3.400
T g 4,200
108 5.870
10~7 1.138
10~7 2.268
10”7 4.550

A

e
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E

X

X

X

X

10”7
10~7

10~7

10”8

1078

10~8

10™8

10~8

1078

10~8

10~8
10~7
10'7

10”7
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COMPARISON OF THEORY WITH EXPERIMENT

Experimental Curve

The expression fer instantaneous current to a

spherical electrode is, 6 given by

2/(3C
(0} -a?)r ’ (52)
o

1= nFDO4“I‘

where n is the number of electrons transferred in the

reduction, I the Faraday constant, D  the diffusion -

2

coefficient, 4Ty the area of the nmercury drop and

%)

r
(o)

the gradient of the concentration at the drop

surface.

Inserting Equation (31) into Equation (52) gives

(53)

= 4 nFDoCor02 [-:I-L,- +1r_l_
o) TTDofE(t)
where the subscript, E, denotes experiment.

Solving for _f._‘E(t) yields

-2
1
£5(t) = 1?%- [41anD -y v ;o:| . (54)

0 0 0

. 2
Equation (54) is multiplied by D_°/y,° to give

3 —§D°2 1 L], (ss)
?E( ) =1f\&) [41(nFDoG°ro ro] -
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Putting experimental values of i and 312 into Equation
(55) gives a relationship between IE(?) and ¥ as shown
with points in Figure 4. Table 3 gives values of zh(?)
and ¥ for the corresponding t and ;. Ihe behavior of
the experimental Zﬁ(?)'is quite similar to the theore-
tical curves in Figure 3.
Comparison of Curves

Figure 4 shows the comparison of Run 4 with experi-
ment. The starting value for Run 4 is used for Equaéion
(50) and the resulting calcu}ationsjare listed in Table
2. This solution of Equation (54) is not plotted in
Pigure 4 because of the closeness of values with Run 4.

The agreement between experiment and theory is
very close for small times. For large times, the
experimental curve becomes linear with a slope of approxi-
mately .388. The theoretical curve becomes linear also
but with a slope of .444. Matsuda's curve, if plotted,
yields a slope of .442 for large times,

Equations (41) and (50) differ by the factors
and 28/9. These factors account for the close agreement

between Matsuda's theory and the present theory.

K., Smith, R. E., and Cooter, T, L.,

Je Bur. Standards, 42, 387 (1949).



4,20

6.74

8.67
12.48
14.42
16.81
18.47
20.05
20.99
22.92
24.83
25.94
26.81
27.38

Table 3.

t
(sec)
0.049
0.076
0.104
0.204
0.296
0.461
0.635
0.863
1.0%8
1.451
2.005
2.446
2.932
34392

Variation

1.110
1.720
2.350
4.620
6.700
1.043
1.437
1.953
24349
3.283
4.538
5.536
6.635
T.676

of TE("t') with T.

?t‘

7, (%)

5.559 x
3.500 x
3,100 x
3.598 x
4.383 x
5.817 x
7.400 x
9.491 x
1.111 x
1.463 x
1.929 x
2.315 x
2.776 x
3.251 x
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T x 10°
Figure 4. Comparison of T (%) with Run 4
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NS

' The derivation of the diffusion equation gave the
same partial differential equation as in the literature.
The way that the convection term is introduced in the
literature does account for diffusion with respect to
the medium although this is not immediately evident.
lhe derivation is general in the sense that D and m are
allowed to vary.

The integro-differential equation, derived by
Matsuda's method, allows for variable m and D. Howevar,
reducing the integro-differential equation to the non-
linear differential equation is not simple unless the
functional form for D is known. In other words, the

choice for C would'not be the convenient form given by
Equation (27); for variation in D will yield a different
relationship for ¢ in the stationary electrode case.
Variation of m with time is still valid though.

Solving the nonlinear equation was simplified by
choosing m to be constant. Solutions for the nonlinear
equation imply certain physical interpretations. Those
golutions represented by curves above the series solution
(Curves 1, 2, 3, 4 and 5) are for low initial concentra-
tiong about the mercury drop. The series solution implies
that the concentragtion is the same around the electrode

initially, as it is throughout the electrolyte. Solutions
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beloW the series solution (Curves 6, 7, 8, 9 and 10) are
for high initial concentrations about the drop.

The results show that the concentration function
describing the diffusion does not need to be broken up
into two parts. The choice for C given in this paper
avoids any questionable boundary conditions such as
those employed by Matsuda.® The form for T(¥) derivead
from this theory does have the same form as zi(?). The
similarity in the behavior of I(¥) and Z (%) indieates
that the choice for C is nearly corfect. Perhaps if
£(t) in Equation (29) is allowed to vary with r also,
then the solutions for gjro,t) may agree with f(t) even
better.

It 18 obvious that the present theory does not
describe the experimental results completely., More work
has to be done. This paper does indicate that a new
choice for G, where f(t) is replaced by f£(r,t), may lead
to the desired agreement between theory and expeériment.
Choosing the desired form for g(r,t) and as8igning physi-

cal meaning to it is the problem to be solved next.
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APPENDIX I

Solutions of Equations (41) and (50) can be obtained

by the following programx13

PROGRAM TO SOLVE A NONLINEAR DIFFERENTIAL EQUATION
USING FOUKTH ORDER RUNGE KUTTA

G=(3.%.002305)/(4.%3.14159265%13.55)
G=G¥*¥*,33333333
GG=G*G
GGG=G*GG
PUNCH 500,GGG
500 FORMAT(E2O 8)
0380 *GG
D=2, *G
E=C/4
F=0
1000 READ 1100,TS, YS D?,N,DC
1100 FORMAT(3F1O 15 5XE20. 8)
A=6,*DO*G
A=A*3, 14159265
BaG*A
RS=Tg##*(, 16666667)
R2=RS*RS
R3=RS*R2
R4=R2%R2
R8=R2%*TS
Y2=YS#*YS
YI=nYS*Y2
IP(YS) 1150,1150,1175
1150 YP“O.
G0 TO 1190
1175 YPm(A#TS*YS+B*R8=C*R2#Y2~-D*Y3~F#R4*#YS)/(E*R3#YS+
D*Y2#RS
1190 YTP=6.*R2*R3*YP
YSQ=YS*YS
YSQ=YSQ/(3.14159265%DC)
PUNCH 1200,TS,YS,YSQ,YTP

T

_“Germain, B., Wﬁ % 1620, Prentice-
Hall, Inec., Englewood, ersey, sy P. 102,

QaaQ




1200

FOEMAT(3710.7,E16.8)
RSS=RS

D0 2000 I=1,l

1300

1400
1450

1500

1600

1700

1800

1900

2000

TS=TS+DT
RS=T5**(.16666667)
DR=RS~-RSS
XUl=DR*YP
ADD=XM1/2.
DRH=DR/2.
JUMP=-1
AnS=RSS/DLH

2=ARS*ARS

B=ARS*ALD

_ 4=AR2*AR2

ALG=AR3*AK3
ARB=ARG*AR2
AYS=YS+ADD
AY2=AYS*AYS .
AY3=AYS*AY?2 :

YP=(A*ARG*AYS+B*ARS-C*ALL2¥AY2-D*AY3=-F*#AR4*AYS)

YP=YP/(E*AR3*AYS+D*AY2*ARS)
IF(JUMP) 1500,1600,1700
JUMP=0
XM2=DR*YP
ADD=Xli2/2.
GO 70 1400
JUMP=1
vgzna*yp

S=RS
4 L2=RE*RS
AR3=KS*AR2
AR4=AR2%AR2
AR6=TS
AR8B=TS*AR?2
GO TO 1400
IP(JUMP-1) 1800,1800,1900
JUMP=2
XM4=DR*YP
YS=YS+(XM1+2. *XM2+2. #XMM3+XM4 ) /6.
AYS=YS
GO TO 1450
YTP=6,*RS**5%YP
YSQ=YS*YS
YSQ=YSQ/(3.14159265%DC)
PUNCH 1200,TS,¥8,YSQ,YTP
RSS=RS
GO T0 1000
END

40
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For Bquetion (41), the thirteenth card should read
A=A%*3,14159265 and for Equation (50) the thirteenth card
should read A=A*3%,11111111.
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