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DUO I 

any theor es have been propoa d to yield a ourrent-
. . 

time relations ip in Pola.rogra hy. the most wi ely 

accepted is that of Matsuda .1 He assum <s that the electro

lyte can be separated into e.n inhomogeneous region about 

the mercury drop and a homogeneous region elsewhere. 

This assumption leads to a first order, nonlinear, 

ordinary differential quation directly solvable by , 

substitution o:f a properly ohosen series. :But the series 

solution obtained is only a :particular solution; for 

there exists, as one would expect·, a. family of ao,lutions 

depending on a constant of integration. 

In the literature, derivation of the diffusion 

equation has neve been attacked from the standpoint 

that the diffusion processes a.re occuring ith respect 

to the medium. Th convection term in the accepted 

diffusion equation is introduced as a generalization to 

e.oco . t for th gro·wth of the mercury drop. 2 

This paper 111 shovr that the .function de cr1b1ng 

the concentration of diffusing ions ne d not b broken 

up into two sep rate pa.rt • Integration will b,e carried 

• atauda, Bµ.l;J... Chem. -2Sl• ·a , �' 342 (1953). 
2J. M. rkowitz and P. J. Elving, �. ev,, �' 

1066 (1958). 
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o tan in "'i11:te d_st nee rather than from the surfa.c 
l of the ere ry d op ou:t dista ce ,i ·· £he· series solution 

is .. only one of a. sol· tions- solu ion obtained by 

us·· n ;' an expe in1ental v .lu . fo . · ni tial 0 : 11 compare ... 
fa orabl with experimen·. Also ., de ivation of a 

diffusion e uation based on diffusio.n with respect to 

t e medium v ill be iven. 
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by ac evin 

tion. 4 

4 

alis to be an a.ccu ate ass p• 

· · 5. 1 he pertinent solution abo 1.t t}ie drop exhibits 

,S herical s mmet y. r his assumptio11 is no 

better than a rou app oximation. Certa·n1 

there exists a shieldin0 effect due to the res

ence o the capillary. De ivation of a diffu• 

sion equation is made complicated by inclusion 

of the o pillary in the theory. 

6 . The solution extends o.ut en infinite distance. 

Antw$iler has shown this to be a very ,good 

assumption. 5 

o other assumptions that are oited in the literature 

are: The mass rate of f'low of meroury 1a constant; 6 

and there is no d Pl ted region a.r,ou.nd th ne ly forming 

drop . 7 It will be ahovm that these n,eed not be made 

in this derivation. o be more general, the diffusion 

co fficient will be taken as a function of the variables 

rand t. - -
4 • ii • .l.'lac evin and E • •  Ba.lie, J. '• �·, So·o. 

�t 660 (1943). 
-

5von B . J. Ant·r,oiler, ·zt ohr, El otroohem . il,, 
868 (1938). 

6 J. J. Lin a:ne, i• .,..• . h"m. Soc., li, 788 (1953). 
7 J. � ar. owi tz and. • J. Elving, i·• _. Ob4m. 

oc. , �' 3518 (1959) . 



De:r1vation £.! the Dif£usion Eque,tion 
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Given a spherical surface in a medium here re.dial 

di.ffusion occurs, the moles, �, that diffuse across 

in time� equal 

where i!_ is the area o! surface, D:8 the diffusion 

coefficient at the surface and , ;>c )
s 

the radient of l,u-· 
the concentration evaluated at the surface. 

(1) 

Consider an infinitesimal spherical shell· of thick

ness dr in the medium with a oent r common to the cent r 

of the mercury drop. Label the inner and outer surfaces 

and I., res:pectively, as shown in Figure 1. th radius 

of the rowing electrode is denoted by ;.o• 
By Equation (1,), the moles pa.·aing throu urface 

f is ·iven as ... 

and for surface , the number of moles is 

'hen the time rate of change of the cone ntra.tion in 

the shell will be 

(2) 

(3) 

(4) 



Figure 1. Description of Spherical Shell 

6 

dr 
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v re il is the volum of the spherical sh.ell6 

I.! the mercury drop did not· change size, then no 

p�pblem would exist in deriving a d1££usion equation. 

But the surfaces given move with the medium. Hence the 

quantities (�{ , (�/, A:,, A!, P,: and� cannot be 

taken with. constant time; for this would freeze the 

surfaces at some radius. 

in end out of the shell. 

�here would be flo of medium 
d0 Thus, the quantity, at, is 

not taken ith � held constant; instead it is evaluated 

between points fixa.d in th medium • .' The problem that 

now a.rises is to express a parameter labeling such points 

as a function of r and t. - -
In solving this predicament, define a eph·r1oal 

volume, AV, of radius P which has the same volume as - .. 
a spherical shell of inner radius .!:o and 0th.er radius 

I.• Figure 2 illuatra.t s the relationship. hen 

or 

(5) 

Equation (5) gives a simple relation betwe n !. and the 

variables,£, 1• The coordinate f i entifies given 

element of solvent; for it oa.n b argued that each 

giv n point in th m dium will hav a value f. associated 
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Figure 2. Definition 0£ p 
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'l'he shell's volume is calcula.te·d follows: 

or 

Expanding the first term on the right side· and negl cting 

high-ordered differentials, the expression for dV b -

comes 

or 
2 dV == 4 it rg dr. 

he area of the surface is 

and a change in area 

?JA)
g 

( --- = 4 1f ( 2r ) • clr g 

ith Equations (8), (9), (10) and {11), Equation (6) 

or 

41Tr drdt 
g 

(9) 

(10) 

(11) 
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do = Dg('3
2

�)
g + [ng 1. + (elt)g](�) g (12) ot �r r g 7>r a� • 

Since: all quantities on the right side of  Equation (12) 

are evaluated at surface 4, the superscripts can be 

dropped. Equation (12) is now written as 

or 

(13) 

The left side is all that remains to be considered. 

Writing c = c(p,t) = C(r, t)� and differentiating 

gives 

and 

dC = ("2-Q.) dr + (�t. ) dt 
';Jr t O r 

Differentiating the relationship de.rived for f gives 

or 

or 

p2 
dr = � d 

r 

p2 
dr = � d 

r 

r 2 
+, dr0 r 

+ r:: (d�t) dt. 

(14) 

(15) 

{16) 



2 

Insert Equation (16) into Eq at:on (1-). quntin the 

r· ult· to Equation (14) and comp rin � C·oe!'ficients of 

ives 

and 
dr 

0 • 
2 ro. (�) 7 art· 

Hence, Equation (13) becomes 

or 

Taking the mas -rat of flo of mercury to be 

d pendent on time yields 

or 

nte ration gives 

2 d l 411r0 � = (t). 

(m(t) t 

(18) 

(19) 

(20) 

where! is the density of mercury in gm/c 3 and m{t) ba 
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the uni ts of gm/s c .. I n  keeping with the notation in  · 

the literature , Equatio n  ( 20 )  1 s · rewritten 

. . 3 3m ( t 
ro = l�a J g ( t )  0 

t t 
= '( ( g ( t ) dt = ( '{( t ) dt , 

0 J o  J o  
( 2 1 )  

where ( t )  is some uni tless function of time and � has 

the units of cm3/se c .  

Substitution of ( 21 )  i nto ( 17 ) gives finally 

c�c) :::: 1 • 2. [Dr2 (2£) - O(t} c] . ( 22 )  n r � i) r  �r -r-. t 
Equation ( 22 )  is valid for variation of' l? with I. and 1• 

and mass rate of flow dependence on time . 

Solving Equation ( 22 )  presents a formidable task. 

The mo at common method ,  separation of variables ,  is  se

lese i£ m has time dependence  and � �aries with distano 

an.d time . For constant m and _ ,  the epara.tion method 

yields a se cond o rder , ordinary diff·erentia.l equation 

i n  r involving an irregular singularity . Differential -
equations posses i n  such singularities are not aaily 

solved .  A series expansion for the solution , where the 

singularity has been removed by expandi ng about a chosen 

value of r ,  does not give suitable results . The relation--
ship for the C·Oeffi cienta in the a e1:·i e a  i s  oompli oa.ted . 

Thus , integration over the separation constant is  not 

possible . There i s  a way however , vthi oh i s  not stri ctly 

1 8 5 4 4 3  
SOUTH DAKOTA STATE ·uNIVERSlff UBRARY 
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corre ct in a mathematical sense, but doe · ive aooeptabl& 

results. This method is the integral a .olution employed 

b I -,, l Y. .  ai;eua.a. 
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SOLUTION OF lIE DIF ,  USION EQUATI·O 

A procedure like that of atsuda will be us d in 

solvin Equation (22) � 

l!!.! Int gral Method 

Equation (22) is now multiplied by i2dr and inte

- rat d from .£o to infinity to get 

(r2 (�) dr .. t: fr [Dr2 (�) .. '(�tl o] dr 

or 

( 23) 

If reduction of an ion takes plac as soon as it reaches 

the m  rcury drop2 , then Q(r0 , t) = O. If the concentra

tion is uniform at some distance away from the electrode2 , 

then 

r�co 
lim C (r, t) = C 0 

and 

So , Equation (23) r duoes  to 

r r2 (-}¥) dr "' -D( r0 , t ) r/ ( �) ro ro 
But with the relationships :  

(24) 

.. �t) C • 0 ( 25 )  



16. 

� rd) 2 
·at l r Cdr = 

r ·  )
d:J 

) dr 
r2 (�. dr + 1

. 
im h2C (h t )� •r 2o ( r  t ).:.::..Q. · 

0 :  r a1; h-+co ' it O O '  <it 
0 

or . . 

or 

Equation ( 25 )  becomes 

or 

.£. (
,o 

r2Cdr = .. D (r , t ) r  2 (.39.) 
� J r o o ar r 

0 0 

Equation ( 26 )  holds whether or not r varies . It  is  also 

valid for a variable diffusion coeffici nt as long ae 

�( r0 t t ) = �( t )  and �(oa , t ) = � ' wh r � is the limiting 

diffusion ooeffioien'ti for large £• The conditions impos · d  

o n  D ( r , t )  are not obj ectionable beoaus phyaioally the -



diffusion coefficient would be expected t o  vary 1th 

time ·�t the surface of the drop and be constant for 

large distances from the electrode . he equality in 

17 

Equat.ion { 2 6 )  will hold only if the £. in the equation 

i s  a sol tion of the diffusion equation • . he correct 

solution 0£ Equation ( 22 ) i s  not kno m , but the true 

form for C is  not of direct  interest ; for in the final -
alysis, only the gradient of .Q. evaluated  at I =  I.o 

i s  important . 

Choi c e  .Q.! Conoentrat:i:on Function 

he solution for the stationary spherical electrode 

has been discussed before . 7 I t  is iven by 

C = C0 - C I.!. erfc ( 
r .. r '  

) o r y'4Dot 
( 27 )  

where ! '  i s  the radius of the stationary electrode . 

Equation (27 ) will be the ohoice for .[, but modified 

somewhat . A queati.on may be re.is d as to why this is 

a reasonable selection .  The a.newer i s  that the actual 

solution of Equation (22 )  would be of a similar form as 

Equation ( 27 )  because in both oases, th diffusion proc-

ss  1 radial . In other ords , from symm try alone, 

the solution of Equation ( 22 )  ehould be similar to Equa-

tion (27 ) . Mat suda oho e a  form for C analogous to -
Eque.tion ( 27 ) . 1 
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he modifications to be made are based on the r ults 

previ·o:usly obtained by Kidman. 8 · He argue that the tempo

ral factor in the denominator of th complimentary error 

function should be replaced by f(t ) ,  where f (t) has the - -
.form 

f(t) = at +  b. (28) 

Be gives Ji meaning by stating that initially there exists 

a layer about the drop depleted of reducible ions be

cause some of the layer about the previous  drop is left 

behind . The coeffici,ent of ·1 is given the same signifi

cance a.a the ;/7 factor of Linga.ne and Loveridge. 9 

The corresponding change in Equation (27) ill be to 

replace 1 by L( t ) . fhe only other modification is the 

obvious one ; E.'  is replaced by radius .to •  ith 

th ee alterations , Equation (27) is now written as 

C = 00 - 00 � erfc ( ;4:)t )
) 

Note that conditions (24) are satisfied. 

Solution 

(29 ) 

Even with the aid ot Equation (29 ) ,  the solution 

of Equation (26) will be very much handicapped if the 

SR. B , Kidman, ! .Nee ;fartial Di!f'er ntial Equation 
And A N

.
ew Inetantaners urrent-Ttrt <!urv� for Polaroyraphy • 

• s . Thesis, ·south akota State · n verai y02 {1§64 • 
9J .  J. Lingane and B. A. Lov ridge , i• Am. Che3 .  

Soc. , 11., 438 (1950). 
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diffusion eoeffioi nt is to vary. To simplify matter 

oonsid.. rably, �(r , t )  ill be ·taken as constant at the 

urfaoe of the electrode and throughout the bulk of the 

electrolyte. Let �(r , t) = � where, Ro is the value of 

th di.ff eion coefficient given in the literature. 

Solving Equation (29) for £o - � yields 

C - C = C � -erfo ( 
r • ro ) ( 30 ) o o r f 4Dot (t)  

Differentiating Equation (29) partially with respect 

to r _, and evaluating ,the reeultin expression ·at r = r - -o 
ive a the value of the c·oncentration gradient a.t the 

surfac of the mercury drop : 

(22.) = c r 1 + l 

J � r r O l ro �tnD f (t) • 
o V o 

( 31) 

· ub titution of Equations (30 ) and (31 ) into Equation 

( 33 )  

or 



and 

Th limits of integration, l: == .£o,  I. = (IJ beoom 

.!. = oo , Equation ( 32) ,ia written 

Rearranging , Equation ( 34) b comes 

20 

X = O ,  -

r h inte  rals in the first and second terms of the left 

side are easily eve.luat·ed with th.e aid of the following 

r lation c 

Jerfc(x)dx = x erfc (x) - 1 
fif 

2 
•X e + k , 

wh re !t. i a. constant of int ·gration. Th first int gral 

i computed dir otly a 

<X) 

f
0

erfc (x)dx = x rfo (x) 

or 

c:,o 2 CIC> 
l -x - - e 

0 ff 0 



r:rfc (x) dx = ,% . 
Integration by parts is used to calculate the second 

integral : 

21 

( 36 )  ( oo

x 
00 } co «) 

) erfc ( x) dx = x2er:tc (X) ,. x erfc (x) dx + .! r e-x
2

c1x 
0 0 0 yif )0 
or 

or 

wh re 

2 ( ex, x2 
..,� ) e· d.x = erf(oo ) = 1 .  
V I \ 0 

·Vith Equation ( 36 )  and ( 37)  a.nd multiplying through 

by J!, Equation { 35 )  reduces  ·to 

( 37) 

._;. '2v 1TD0 f( t)  r0
2 + 1tD

0
f ( t )  r

0 
l = 1'D r 2 fi + 1 � • 

dU L � o o Lo 1/TI Dof ( tlj 

Since r has been integrated out of the xpression , th -
artial time derivative can be replaced by a total time 

derivative . The final expression is 
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Equation ( ;o) ie a first order , nonlinear ordinary 

differ ntial equation with f ( t )  taken as th,e depenclen't -
variable .,  The equation does not lend itself to be easily 

solv d. A series solution can be readily obtai�ed but 

it is only one of many ' aolutions . 
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Solutions for the nonlin ar equation . ill no be 

obtained. The radius · of the mercury drop will be treated 

as it  1a  in the literature. 2 

p;i.mensionlesa  Em1ation 

, . 

Equation ( 38) is  put into dimensionless form by 

the substitutions 

and 
D 3 

''?(t) = � f( t ) , 
60 

aents reduced time . -where t repr -
becomes 

wb.er B :::  ?(t)and Lo 3 = �· 

'Jeeri!toal Integra.tio9 

Equation (38) then 

( 39) 

(40) 

any numerical methods can be applied to Equation 

( 41 ) . 

un 
he method to b us .ed here i th fourth-order 

-Kutta proc s s. 10 



Equation ( 41 ) i put into the form 

� == F (t,9) . 
dt 

24 

The equations to be used in th Rung -Kutta integration 

are : 

and 

k1 = hF (t, e) , 

( .... h - kl k2 = hF t�, e + �) ,  

k 
k3 = hF ( ti, e + �) ,  

( 42) 

wber a is th increment in I in eaoh calculation . The - -t ' e  are determined Qy starting with a value for 1 and ,ii 

then .A9 is calculated . A n w t and e are in.a rted into --- - · -
ach of the 15,' s  and a aeoond i is  calculated . The process 

is repeated as oft n as desired . Ten int grations were 

carried out .  h r sults ar plotted in Figure ; . The 

quantitie plott d are a2/-n- = ICt) and 1· Table 1 gives 

r presentativ values for each int gration. Calculations 

were made on an IB 1620 digital computer . The program 

is given in App ndix l .  
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A s eries  solution of Equation (41) oa.n b obtained 

in the follo ing way : Let ! be represented by the series 

(43) 

Multiply Equation (41) through by !, carry out the indi.

oated operations and equate all lik powers of I• The 

pro cedure gives 

e = Vnt [ � + � tl/6 � 29:IBor,=rn: . t2/6 + • ·J (44) 

quaring Equation (44 )  and dividin through by yielda 

-2 
/ / � = rcr> .. re + -kiim t7 6 • i�aN t8 6 + • • • (45) 

E.que.tion (45) is a p�rtioula.r solution o! Equation (41 ) ; 

it is also a limiting solution for all other solutions 

to Equation (41). · Notice· that the ooeff1o1 nt at th 

linear t rm in I is the same as that introduced by tingane 

and Loveridge. 

Matsude. ' s  Eqµ9rtion 

Matsuda ' s  concentration gradi nt at .£ = � is 

G�)r '" 0o Uo + ti J ' 
0 

( 46 )  

wh r the subsoript, m , denot s at uda. Equation (46) -
i .  comparable to Equation (31) if 
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( 47 )  

w�,re f compare s with �. 

he nonlinear equation deriv ed in 1 a.tsuda ' s th o.ry 

is 

( 48 ) 

naerting Equation ( 47)  int o  E.quation ( 48) and multi

plying through by 28/9 gives 

( 49) 

Substitutions ( 39 )  and (40) reduce Equation ( 49 )  to 

!i Ft2/3 ¢ + tl/3 �2J ,, i t2h [th + �J . ( 50)  

olutions for Equation (50) are obtain.ed in the same 

manner as befor • Only one 1nte ratio·n, of Equation 

( 50 ) . as performed. !!'he calculations 8.r$ listed in 

Table 2 with Run 4 .  

A series solution to Equation ( 50) oan b e  obtained 

in the same manner as Equation (45) ; it ie 

-f = �t + � t7/6 _ � ts/6 + • • • ( 51 ) 

Equation (51) is a limiting solution for all other 

solution .of Equation ( 50) ., 
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M�tauda gave � physical aign1ficanoe by stating 

t��t it i a  the d pleted layer thickness. ·zt 2. in the 

present theory has similar significance , then the solu

tions represented in Figure ; imply various initial 

oond.i ti one. 11 Those solutions below the series so·lution 

indicate that the solute is oonoentrated around the 

el ctrode. The diffusion o ccurs for a tim.e t before 
1 .... 

the solution beoomea homogeneous. Then dep.letion pro

c eds. The series solution im.plies _' that the concentra

tion distribution is homogeneous everywhere initially. 

Those solutions above the s ries solution imply that 

the concentration is low about th mercury drop ; fo·r 

.small time � is very large meaning that "t:he o·onoentra .. 

tion must be small .around the drop . 

llDuffey, G .  H.,  ( submitted for publ1 ca.tion) • 



:teduced Time ! 

1 ... 000 X 10 -9 

2 . 000 X 10-9 

4 . 000 X 10-9 

8 . 000 X 10 -9 

1 . 600 X 10-B 

2 . 160 X 10-B 

3 . 200 X 10-S 

4 . 240 X 10-S 

6 . 400 X 10-B 

8 . 640 X 10-S 
. -7 1 . 280 X 10 

-7 2 . 560 X 10 

5 . 120 X 10-7 

1 . 024 X 10-6 

-2 
able I . Variation of � with ! for Various Starting Values . 

Run 1 Run 2 

3 . 590 X 10-G 2 . 160 X 10 -6 

2 . 360 X 10-6 1 . 368 X 10-6 

1 . 455  X 10-6 8 . 040 X 10 -7 

8 . 26"0 X 10-7 4 . 340 X .10-? 

4 . 330 X 10 -7 2 . 190 X 10-7 

J . 2 20 X 10-7 1 . 621 X 10-7 

2 . 180 X 10-? 1 . 115 X 10 -7 

1 . 667 X 10-7 8 . 870 X 10-S 

1 . 198 X 10 -1 7 . 110 X 10-S 

1 . 023  X lOO? -a 6 . 790 X 10 

9 . 670 X 10-B 7 . 510 X 10 -8 

1 . 310 X 10 -7 1 . 217 X 10-7 

2 . 360 X 10 -·7 2 . 320 X 10-7 

4 . 620 X 10-7 4 . 610 X 10-? 

Run 3 

1 . 169 X 10 -6 

7 . 040 X 10-7 

3 . 910 X 10-7 

2 . 000 X 10-7 

9 . 910 X 10-S 

7 . 450 X 10 -a 

5 . 490 X 10 -8 

4 . 780 X 10-8 

. 
-s 4. 590 X 10 

5 . 040 X 10-S 

6 . 420 X 10-B 

1 . 170 X 10 -7 

2 . 300 X 10�? 

4 . 600 X 10 -7 

Run 4 Run 5 

5 . 380 X 10-7 7 . 910 X 10-B 

3 . 030 X 10-? 3 . 870 X 10 -8 

1 . 572 X 10-? 1 . 874 X 10 -8 

7 . 7 20 X 10-S 1 . 083 X 10-B 

3 . 990 X 10-B , 1 . 012 X 10-S 

3 . 240 X 10-8 

2 . 830 X 10 -8 

2 . 870 X 10-B 

3 . 430 X 10 -a 

4 . 240 X 10-S 
. -8 5 . 930 X 10 

1 . 149 X 10 -7 

2 . 290 X 10-? 

4 . 590 X 10-7 

1 . 162 X 10-B 

l . 5 39 X 10-B 

1 . 961 X 10 .. a 
2 . 880 X 10-S 

; . 8·60 x · 10-8 

.·. -8 5 . 700 X 10 

1 . 139 X 10 -7 

2 . 290 X 10 -7 

4 . 590 X 10 -7 



Table I .  ( continued ) 

Reduced Time I Run 6 

3 . 200 X 10-S 1 . 036  X 10-S 

. 240 X 10-S 1 . 607 X 10 -8 

6 . 400 X 10-B 2 . 670 X 10-S 

8 . 640 X 10-S 3 . 710 X 10-S 

1 . 280 X 10-? 5 . 610 X 10-S 

1 . 696 X 10 -7 7 . 480 X 10-B 

2 . 560 X 10 -7 1 . 135 X 10-? 

3 . 456 X 10 -7 1 . 538 X 10 -7 

5 . 120 X 10-? 2 . 290 X 10-7 

1 . 024 X 10-6 4 •. 590 X 10 -1 

Run 7 Run 8 

6 . 010 X 10-9 

2 • 300 X .10-S 

4 . 740 X 10-a 1 . 191  X 10-S 

6 ir 870 X 10 -8 4 . 370 X 10-B 

1 . 098 X 10 -7 9 . 470 X 10 -8 

1 .. 512  X 10-? -1 1 . 408 X 10 

2 .• 270 X 10 -7 2. 2oo · x 10�? 

4 . 580 X 10-7 4 . 550 X 10 -7 

nun 9 

6 . 660 X 10 -8 

1 . 214 X 10-? 

2 . 080 X 10 -7 

4 . 500 X 10 -7 

Hun 10· 

2. 390 X 10-B 

9 + 220 X 10-8 

1 .. 904 X 10-7 

4 . 420 :x: · 10-1 

I\) '° 
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Table 2 .  

Reduced Time I 

1 . 000 X 10-9 

2 . 000 X 10-9 

9 4 . 000 X 10-

8 . 000 X 10-9 

-8 1 . 600 X 10 

2 . 160 X 10•B 

3 . 200 X 10-B 

-8 4 . 240 X 10 

6 . 400 X 10-S 

-8 8 . 640 X 10 

-7 1 . 280 X 10 

-7 2 . 5 60 X 10 

5 . 120 X 10-? 

1 . 024 X 10
""'6 
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-2 -2 
Comparison of �· of · un 4 with � • 

02 ;2 
� 7 

5 . 380 X 10-7 5. 390 X 

'3 . 030 X 10·7 3. 040 X 

1 . 572 X 10-1 1 .• 575  X 

1 . 120  X 10-8 7 . 7;0 X 

3 . 990 X 10·8 3 . 988 X 

; . 240  X 10-8 :; . 230 X 

2 . 830 X 10-8 
2 . 810' X 

2 , 870 X 10·8 2 . 850 X 

3. 430 X 10-·8 3 . 400 X 

4 . 240 X 10·8 4 . 200 :x: 

5 . 930 X 10·8 5. 870 X 

· 1 . 149 X 10·7 1 . 138 X 

2 . 290 X 10·7 2 . 2 68 X 

4 . 590 X 10-7 4. 550 X 

10-7 

10-1 

10·7 

10-8 

10-8 

10-8 

10·8 

10·8 

10-8 

10·8 

10·8 

10·7 

10-7 

10-7 



CO ARISON OF THEO Y ITH EXPE. I 

�xperimental Cu;rye 

he expres ion for instantaneous current to a 

spheri cal electrode is , given by 

1 == nFD 4 11  r 2 (�) o o ar r , 
0 

32 

(5 2) 

where n is the number of electr·ons transferred in the -
reduction , .. the Faraday oonetant, � the diffusion ' 

coefficient , 411r
0

2 th� area of the 111eroury drop and 

( �C ) the gradi nt of the concentration at the drop �r r 
0 

surface . 

Inserting Equation (31 ) into Equation (52) gives 

1 = 4 nFD C r _ 2 11 + l ;f , (53 ) o o o Lro 1 1T  Do fE ( t ) J 
where the subscript , j, denotes experiment . 

olving for !E(t) yields 

f ( t ) = _l_ [ .  i . 2 
.E � 4-r{nFD O ; 

0 0 0 

l 
J

-2 . .. 
r • 

0 

Equation (54 )  ie multiplied by D
0

3/'(0
2 t o  give 

D 2 
[ 1 (t) = 0 . i 

E i( Y 2 4-.<nFD a r_ 2 
� 0 0 0 

- 1._ 

J

-2 

r • 0 

( 54 ) 

(55 ) 



tting expei .. imental values of 1 and 112 into Equation 

(55 )  gives a relationship bet veen -E (l) and I, a.a ahown 

wi:t;h points in Figure 4 . Table 3 gives va.�uea of l
E

(t) 

and I for the corresponding j. and !• ' he behavio·r of 

the experimental IE (t) , is quite similar to the theore

tical curves in igure 3 . 

Comparison �f urves  

igura 4 shows the comparison o f  un 4 v1i th experi-

ment. he starting value for Run 4 i s  u ed or Equation 

(50 ) and the resultin calculations ·ar listed in able 

2 . is solutio of Equation ( 54) is not plotted in 

Figur 4 b cause of the closeness of values with Run 4 .  

he a reement bet een xperiment and theory is 

v ry clo 8 for small ti es. For large times, the 

.experimental curve becomes linear with a slope of approxi• 

mat ly . 388. he theor tioal curve becomes linear also 

but ith a elope of . 444. Ma.tsuda • s  curve, if plotted , 

yields a slope of . 442 for lar e time . 

Equations (41 )  and ( 50 )  differ by the fa.otors 

and 28/9. These factors ac count for the clo-se a.gr ement 

between Matsuda ' s  theory and the present theory . 

K. , mi th , • E. , and Ooot er , • L . , 
Bur. t . da�dS ; .4..i., 387 (1949 ) . 
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Table 3 .  Variation of fE (t) wi th t. 

i t -
. YE (t) 

yAa) ( sec ) 

4 . 20 0 . 049 ,l . 110 X 10·8 5 . 5 59 X 10-S 

6 . 74 0 . 076  1 . 120 X 10·8 3. 500 X 10-B 

8 . 67 0 . 104 2. 350 X 10-8 3 , 100 X 10-8 

12 . 48 0 . 204 4 . 620 X 10-8 3 . 598 X 10-8 

14 . 42 0 , 296 6 . 700 X 10-8 4 . 383 X 10 .. 8 
... 

16 . 81 0 . 461 L, 043  X 10-'8 5 . 817 X lO•B 

18 , 47 0 . 6 35 1 . 437 X 10-7 7 . 400 X lO•S 

20 . 05 0 . 863 1 . 95;  X 10·7 9 . 491 X 10-8 

20 . 99 1 . 0 38 2 , 349 X 10 ... 7 1 . 111 X 10•? 

22 . 92 1 , 451 3. 283 X 10-7 1 . 463 Jt 10-7 

24 . 83  2 . 005 4, 538 X 10-1 1 . 929 X 10-7 

25 . 94 2 . 446 5 , 536 X 10•7 2 . 315 X 10•7 

26 . 81 2 . 932 6 . 635 X 10-7 2 . 776 X 10·7 

27 . 38 ; . 392 7 . 676 X 10·7 ; . 251  X 10 -7 
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The derivation of the diffusion equation gave the 

same partial differ ntial equation as in the literature. 

he way that the conv ction term is introduced in the· 

literature does account for diffusion ith re: peot to 

the medium although this is not imm&dia.tely evident . 

he derivation is general in ·the sense tha.t i and m are 

allo r1e.d to vary. 

The integro-differential equation ,  deriv d by 

tsuda ' method , allows for · variable m and .i• Ho ev· r ,  

reducing the integro-differential · equation to the non

linear different.ia.l equa.t.ion is not simple unl ss the. 

functional form for D is known. In other ords, the -
ohoioe for O would not be the convenient form given by ... . 

Equation (27); for variation in i will yield a diff r · nt 

relationship for Q i.n the stationary electrod ca.a � 

Variation of m with tim.e is still valid though. -
Solving the nonlinear equation was si.mplified by 

choosing . to be constant . Solutions. for the nonlinear 

equation imply certain physical int rpr tation . Those 

olutions repr sented by curves above the arias solutio.n 

( Ourves 1 ,  2 ,  3, 4 and 5) are for lo �1 ini tia.1 c·oncentra

tion about the mercury drop. The aeries solution implies 

that the conoentr tion is the same around the electrode 

initially , as it is throughout the electrolyte . Solutions 
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belo the series  solution ( Curves  6, 7 ,  8 ,  9 and 10) are 

for high initial ooncentration abou� the drop. 

' he results  show that the concentration function 

describing the diffusion does not need to be broken up 

into two parts. The choic for Q giv .n i?i this paper 

avoids 8Jly questionable boundary oo.ndi tions such ae 

those mployed by atauda . 1 The form for l(t) derived 

from this theory does have the same form ae lE(t) . �he 

imilarity 1n the behavior of !Ct) and IE('t) indicates 

that the choice for .Q.. is nea!lY correct . Perhaps if' 

!( t )  in 

th n -th 

better . 

quation (29) is allowed to vary with r e.lso , 

solutions for f(r , t) may agree with f( t ),  ev n - 0 -

It is obvious that the present theory does not 

d a oribe the experimental results completely . or ork 

has to be don . This paper does indicate that a new 

ohoice for .Q., wh re !Ct) is replac·ed by !(r , t) ,  may lead 

to the desired agreement b tween theory and exp rim nt . 

Choosing th deair d form for !(r , t )  and as igning physi• 

cal meaning to it is  the problem to  be solved next . 
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APPENDIX I 

Sol�tions of Equations ( 4 1 ) and ( 50) can be obtained 

by ·the following program: 1 3 

0 
C PROGRAM TO SOLVE A NONLINEAR DIFFERENfIAL EQUATION 
0 USING FOURTH ORDER RUNGE KUTTA 
C 

Gu ( 3 . *. 002305)/(4. *3 . 1 4 1 59265* 1 3. 55 )  
G•G** . 33333:533  
GG•G*G 
GGG G*GG 
PUBCH 500 . GGG 

500 FORMAT (E20 .a) 
0=8. *GG 
D-2 . *G 
E•C/4 
F•O 

1 000 READ 1 1 00, TS , YS .,DT ,N  , DC 
1 1 00 FORMAT (311 0 . 0, 1 5, 5XE20.8) 

A=6 . *DO*G 
A-A*J . 1 4 1 59265 
B-G*A 
RS=TS** ( . 1 6666667) 
R2=RS*RS 
R:, RS*R2 
R4:aR2*R2 
R8=R2*TS 
Y2•YS*YS 
Y3•YS*Y2 
IF(YS ) 1 1 50, 1 1 50, 1 1 75 

1 1 50 YP=O. 
GO fO 1 1 90 

1 1 75 YP• (A•TS*YS+B*R8•C*R2*Y2�D*Y3-F*R4*YS)/(E*R3*YS+ 
D*Y2*RS 

1 1 90 YTP•6 . *R2*R3*YP 
YSQ•YS*YS 
YSQ•YSQ/( _:, . 1 4 1 59265*DC ) 
PUNCH 1 200, TS,YS, YSQ , YTP 

,,Germain, :s . , r2f'9!&U The UM_ 1 620, Prantice
Hall, In.o . ,  Engl woo , . ew ersey, 1�, P •  1 02 .  



12 0 ( 3  10. 7, El6 . 8 ) 
RSS== ,S 

. 0 2000 =l,  
TS=TS+DT 
PS= ** ( . 1666 667) 
D = s- SS 

,lcD *Y 
AD�XMl/2. 
DI = /2. 
JUMP==-1 

1300 A."' S= S �/D lli 
2=ARS* . 1S 
3=A S* ·· 1 2 
4= 2*A 2 

A ;, 6= 3*A 3 
8=A 6* 2 

400 . AY =Y '(+ADD 
1450 AY2=AYS*AYS 

AY3=AYS*AY2 
Y = (  * 6*AY +B'*AR8-C*'Ait2*AY2-D*AY3-F*AR4*AYS) 
YP=YP/(E* 3*AYS+D*AY2*AR ) 
IF( JUMP ) 1500 , 1600 , 1700 

1500 J i::O 
2=DR*YP 

ADD= 2/2. 
GO TO 1400 

1600 J =l 
3=D *YP 
S= S 

'• 2= * S 
AR3= S* 2 

4== 2*.A.R2 
A 6c:TS  

8=T S* 2 
GO O 1400 

1700 IF(JUMP-1) 1800 , 1800, 1900 
1800 J ==2 

,4=D ·  *YP 
YS=Y + (XM1+2 . *XM2+2. * 3+ 4)/6 . 
AYS=YS 
GO TO 1450 

1900 YTP�6. *RS**5*YP 
Y ·Q=YS*YS 
YSQ=YSQ/(3 . 14159265*DC } 
PUNCH 1200 , TS , · ,  YSQ, YTP 

2000 RSS=RS 
GO TO 1000 
END 

40 



41 

For Equation ( 41) , the thi teenth card should read 

A=A*}. 14159265 and for Equation ( 50)  the thirteenth card 

should ead A=A*3 . llllllll. 
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