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RAINBOW TROUT (Salmo gairdneri) CAGE CULTURE AND PRIMARY PRODUCTION 

IN EASTERN SOUTH DAKOTA DUGOUT PONDS 

Abstract 

MICHAEL JOHN ROELL 

Rainbow trout (Salmo gairdneri) reared in 1 m3 cages in a South 

Dakota dugout pond grew and survived as well or better than most cage­

cultured rainbow trout reported in the literature. Significant 

differences (P < 0.01) in mean length, weight, and food conversion, 

and similarity in relative weight between trout fed 2 and 4% of body 

weight daily, indicated that the optimum feeding rate was near 3% for 

this size range (3 5 - 100 g). Daily rations based on fish size and 

water temperature need to be developed for trout reared in a lentic 

environment. The high cost of fingerlings was the limiting factor 

in a hypothetical dugout culture operation. 

Greater water transparency seemed to be the major factor 

contributing to increased primary production, phytoplankton standing 

crop, and diel dissolved oxygen levels in comparisons between two 

unstacked dugout ponds. Suspension of sediments by wind action may 

have been greater in the older pond because it was 18% larger in surface 

area but only 66% as deep as the newer pond. 
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INTRODUCTION 

Salmonids in South Dakota are primarily restricted to the Black 

Hills, portions of the Missouri River mainstream reservoir system, and 

a few scattered ponds and streams of the state. Many residents do 

not have immediate access to these areas nor do they have the 

opportunity to purchase fresh trout. The majority of the lakes and 

streams east of the Black Hills will not support trout fisheries for 

more than a year due to winterkill and summerkill. Crops of rainbow 

trout (Salmo gairdneri) have been reared in the prairie pothole 

lakes of Canada and North Dakota (Miller and Thomas 1956; Johnson 

et al. 197 0; Sunde et al. 1970; Lawler et al. 1974; Myers and Peterka 

197 6) ,  but little has been done with trout in the lakes and ponds of 

eastern South Dakota and no work until recently has been done on 

dugout ponds. 

Over 100, 000 dugout ponds have been built in eastern South 

Dakota since the 1930s (Vodehnal 1982). These ponds could provide a 

medium in which landowners could rear crops of rainbow trout on an 

annual basis for food, sale, or recreation. Dugouts are primarily 

used for livestock watering but can also provide limited irrigation, 

fire control, wildlife use, and recreation (hunting and fishing). They 

have a high potential for winterkill and summerkill due to their 

shallow nature, small size, and nutrient loading from livestock and 

agriculture; therefore, annual fish crops appear to be the only feasible 

culture method. Not all dugouts would be suitable for rearing trout, 

but those with sufficient depth and water quality have potential. 



Seguin (1970) demonstrated that trout could be successfully 

reared in floating cages if water conditions were compatible with the 

species. Subsequently, the cage rearing of rainbow trout has been 

oriented toward determination of optimum stock densities, stock sizes, 

and feeding rates and frequencies for various rearing conditions. 

Advantages of the cage method over open-water culture include 

observation of feeding efficiency and fish health (Kilambi et al. 1977) , 

manipulation of the harvest to fit market requirements (Schmittou 1969), 

cage mobility within the body of water (Seguin 1970), harvest of live 

fish (Whitaker and Martin 1974) , not having to drain ponds for a 
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complete harvest, culture of two or more species simultaneously (Jensen 

1979) , control of bad flesh flavor, control of environment, control of 

rearing density, reduced capital investment, flexibility in regulation of 

the operation size (Hahn 197 4) ,  complete harvest, uniformity of 

environment, use of bodies of water unsuitable for open-water culture, 

easier treatment of diseased fish, reduced predator losses, and reduced 

flood losses. Disadvantages include fin wear (Collins 1972; Boydstun 

and Hopelain 1977) , inability of fish to seek a preferred location, 

vandalism (Tatum 1973; Newton et al. 1977) , limited use of the natural 

food base, and cage costs. 

Various limnological studies have been conducted in South Dakota 

dugout ponds. DiLauro (1982) , Vodehnal ( 1982) , and Schuler (personal 

communication) studied zooplankton productivity, water chemistry, and 

benthos productivity, respectively. Primary production, phytoplankton 

standing crop, and diel dissolved oxygen levels were monitored in this 

study to complement the above-mentioned work. 
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The objectives of this study were: (1) to determine if cage-

reared rainbow trout could effectively grow and survive in a South Dakota 

dugout pond, (2) to make inferences on the economic feasibility of cage 

rearing rainbow trout on an annual basis, (3) to compare to unfed control 

fish the growth of rainbow trout fed 2 and 4% of body weight daily, (4) 

to speculate on the potential of rearing rainbow trout to a marketable 

size, and (5) to determine an annual cycle of primary production, 

phytoplankton standing crop, and diel dissolved oxygen levels in two 

unstacked ponds, one newer (2 years old)·and one older (5 years old). 



STUDY AREA 

Rainbow Trout Cage Culture 

The pond site for cage culture was located approximately 6 km 

southeast of Brookings, South Dakota. The pond was chosen on the basis 

of the following criteria: representative of dugout ponds in eastern 

South Dakota, pond owner cooperation, high water level at the onset of 

the study, usable area of the pond (greater than 2.0 m deep to 

acconunodate the cages) , non-occurrence of other fish species, and a 

suitable distance from roads to prevent vandalism. 

The pond selected had a surface area of 0.0624 ha (39.0 x 16.0 m) 

a usable area of 0.0191 ha (22.5 x 8.5 m) , and a maximum depth of 2. 8 m. 

Dead carp (Cyprinus carpio) , black bullheads (Ictalurus melas) , and 

frogs were found after ice-melt before the study, but no fish were 

caught when the pond was seined indicating a complete winterkill prior 

to the study. The pond bottom had a silt composition and was free of 

macrophytic plant growth. The long axis of the pond was oriented north­

south with the soil from pond excavation located on the east and west 

sides. A small meandering creek, associated with a wetland, flowed past 

the pond approximately 25 m to the west. Water level was at a maximum 

in the pond at the onset of the study. 

Primary Production, Phytoplankton Standing Crop, and Diel Dissolved 

Oxygen Levels 

An annual cycle of primary production, phytoplankton standing 

crop, and diel dissolved oxygen levels was monitored within two 

unstacked dugout ponds located approximately 23 km east of Brookings, 

4 
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South Dakota. A relatively new pond excavated in 1980 and an older pond, 

dug in 1977, were chosen because they were located within 1.6 km of each 

other; the proximity of the ponds reduced the effects of differences in 

soil and weather, and minimized the time between measurements in each 

pond allowing for more valid comparisons. Both ponds had similar 

watersheds, moderate cattle use, and no aquatic macrophytes . The newer 

pond had a surface area of 0.0320 ha (21. 3 x 15.0 m) , a maximum depth of 

2.9 m, and a mean depth of 2.0 m, while the older pond had a surface 

area of 0.0378 ha ( 26.6 x 14. 2 m), a maximum depth of 1.9 m, and a mean 

depth of 1.3 m. 



METHODS AND MATERIALS 

Rainbow Trout Cage Culture 

A randomized experimental design with three treatments (fish fed 

0, 2, and 4% of body weight daily) of five replicates each was used. 

Three rows of five cages each were arranged parallel to the long axis of 

the dugout. The cages were anchored on their short sides with concrete 

blocks such that adjacent cages within a row had a common anchor. Cages 

were 2. 0  m apart within and between rows. 

The 1. 0 x 0. 5 x 2. 0  m deep cages (Figure 1) were constructed of 

12. 7  mm mesh plastic netting secured to a frame of 38 mm2 pine. 

Flotation consisted of two 0.305 x 0. 305 x 0 .610 m polystyrene blocks 

secured to the short sides of the cage. A 0. 305 m deep feeding ring of 

3. 2 mm mesh plastic netting was attached to the inside of each cage to 

retain the floating feed. The removable lid had a 0. 25 4  m2 feeding 

port covered with 12. 7 mm mesh plastic netting. 

Rainbow trout fingerlings were obtained on 27 April 1982 from 

Cleghorn Springs State Fish Hatchery in Rapid City, South Dakota. The 

34. 5 g (146 mm) fish arrived in vigorous condition and were stocked 

3 3 directly into the cages at a density of 35 per m (1. 225 kg/m ) .  

Beginning 4 May 1982, a floating ration containing no less than 37. 5% 

protein was fed to the fish once daily in the early evening. Wet 

weights of 10 fish were taken every two weeks from one representative 

cage of each feeding rate and amounts fed were adjusted accordingly. 

The trout were fed 47 of 58 days held and were harvested on 23 June 1982 

when dissolved oxygen levels became critical. Each cage was pulled to 

6 



2.0m 

12.7 mm Mesh 

0.5 

-� 

I 
0.3m 

-' 
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Figure 1. Cage design usea in the culture of rainbow trout (Salmo 
gairdneri) in an eastern South Dakota dugout pond between 
27 April and 23 June 1982. 
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the side of the pond and inverted to remove the trout. The fish were 

dressed and placed in ice-filled polystyrene coolers after measurement 

of total lengths (mm) and wet weights (g) . 

Relative weight (Wr) , which compares actual weight (W) with a 

standard weight (Ws) for fish of the same length, was used as an index 

8 

of condition. Wr values were calculated for each fish using the equation: 

where 

Wr (W/Ws) x 100 (Wege and Anderson 1978) 

Wr = relative weight as an index of condition, 

W = actual weight of the fish, and 

Ws = standard weight corresponding to the length of the fish. 

Ws values were calculated from the following length-weight equation: 

log Ws = -5 .194 + 3. 098 log L (Weithman, personal communication in 

Anderson 1980) 

where 

L total length of the fish. 

The Statistical Analysis System (SAS) at South Dakota State 

University was used for data analysis. Analysis of variance was used 

to detect significant differences among treatments (feeding rates) for 

the dependent variables of length, weight, relative weight, and food 

conversion, while chi-square analysis was used for percent survival. 

The Waller-Duncan k-ratio t test was used to determine which treatment 

or treatments were significantly different for the dependent variables 

of length, weight, and relative weight. A ratio of!:_= 100, which 



loosely corresponds to a significance level of a 

Torrie 1980), was used. 

0.05 (Steele and 

Particular water quality characteristics were monitored biweekly 

at three stations, one near the center and one at each end of the cage 

arrangement. Temperature and dissolved oxygen were measured at surface, 

1 m, 2 m, and bottom depths (these were monitored daily during the last 

week of the study). Temperature was measured with a Yellow Springs 

Instrument (YSI) Model 33 S-C-T meter, and the azide modification of 

the Winkler method (APHA et al. 1971) was used for dissolved oxygen 

measurement. In addition, water samples were collected at mid-depth, 

placed in 1.0 liter opaque Nalgene bottles, and kept in an ice-filled 

polystyrene cooler; from these samples, nitrogen-ammonia, nitrogen­

nitrate, total and phenolphthalein alkalinity, and total hardness were 

determined in the laboratory using a Hach DR-EL/1 kit. Salinity and 

specific conductivity determinations were taken at mid-depth with a YSI 

Model S-C-T meter, and pH was measured at the surface with a Hach pH 

test kit. Secchi disk visibility and water depth were also measured 

at the three stations. All water samples were collected with a 2.2 1 

PVC Kemmerer sampler . 

Primary Production, Phytoplankton Standing Crop, and Diel Dissolved 

Oxygen Levels 

9 

Primary production, phytoplankton standing crop, and diel 

dissolved oxygen levels were estimated concurrently in two unstocked 

dugouts, one newer (2 years old) and one older (5 years old), 

approximately every two weeks from July 1982 to July 1983. Determinations 



were made during relatively clear sky conditions, which helped avoid 

additional variation from date to date. 

Primary Production 

Various definitions of primary production terminology appear in 

the literature, therefore the following definitions (Eley 1970) were 

used in this study: 

Gross Productivity (Pg) - The rate of energy stored as reduced 

organic material or the liberation of oxygen as a by-product 

of photosynthesis by photoautotrophic organisms. 

Community Respiration (Rt) - The rate of oxidation of organic 

matter to provide energy for the life processes of the biota 

and the chemical oxygen demand of the abiotic components of 

the community. 

Net Productivity (Pn) - The net rate of energy storage by the 

community or the difference between Pg and Rt. 

Gross Productivity to Community Respiration Ratio (Pg/Rt) - The 

ratio of gross productivity to community respiration must be 

unity (Pg/Rt = 1.0) in a balanced steady state system, if no 

export or import occurs (Beyers 1963). If some event should 

disturb this ratio in such a manner that it becomes greater or 

less than unity, an increase or reduction of the biomass will 

take place. 

The light- and dark-bottle (L and D) method described by 

Vollenweider (1969) and Lind (1979) was used to estimate primary 

productivity. Determinations were made at one central location in each 

10 
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pond at the surface and one-half meter depth intervals. Standard 300 ml 

BOD bottles were used. Pg, Rt, and Pn values for a given depth were 

calculated from oxygen concentration differences between a water sample 

exposed to light in a transparent (light) bottle and a sample not 

exposed in an opaque (dark) bottle. The initial oxygen concentration, 

which was theoretically the same in both the light and dark bottles, 

was determined in a similar size bottle. This was accomplished by 

filling all three bottles (light, dark, and initial) with water from 

the same Kemmerer sample, measuring the oxygen concentration in the 

initial bottle, and suspending the paired light and dark bottles at 

the depth from which the original water sample was taken. The bottles 

were clamped horizontally on a metal rack and suspended in the pond from 

sunrise to midday. They were then retrieved and the oxygen concentration 

of their contents was determined. All water samples were collected with 

a 2.2 1 PVC Kemmerer sampler. The azide modification of the Winkler 

method was used for dissolved oxygen measurement; powder pillow reagents 

were found to be the most efficient means of oxygen determination in 

the field. Secchi disk visibility was measured after the bottles were 

retrieved and fixed with the reagents. 

Rates of community respiration (Rt) , net productivity (Pn) , and 

gross productivity (Pg) were calculated for each depth from oxygen 

concentrations as follows: 

Rt (mg o2/liter/hour) 

Pn (mg o2/liter/hour) 

Pg (mg 02/liter/hour) 

(I 

(L 

D) /hours, 

1) /hours, and 

Rt+ Pn (Lind 1979) . 
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Final production and respiration values were converted to per square meter 

of pond surface as described by Haertel (1977) followed by conversion to 

milligrams of carbon by the equation: 

mg C/hour = mg o2 evolved/hour x 0.37 5/PQ (Strickland 1960). 

A photosynthetic quotient (PQ) of 1.20 (Ryther 1956) was used. Pg and Rt 

values were converted to specific terms by dividing by mg chlorophyll a/m
2. 

2 3 Mg chlorophyll �/m was calculated by averaging mg chlorophyll �/m at all 

depths and multiplying by the mean depth of the pond. Specific values for 

Pn were calculated by subtracting specific Rt from specific Pg. 

The light- and dark-bottle method was abandoned during ice cover 

for two reasons. First, holes had to be drilled quickly in pre-dawn 

"light" which caused upper-level water at the sample site to become mixed 

and aerated, thus preventing accurate determination of dissolved oxygen 

at these levels. Second, weather conditions at times prevented quick 

access to one or both ponds making the time interval between determinations 

at both ponds too great for valid results and comparisons . 

Phytoplankton Standing Crop 

Chlorophyll� concentration, as a measure of phytoplankton standing 

crop, was determined by the chlorophyll extraction method. Water samples 

for chlorophyll analysis were collected at surface and one-half meter 

depth intervals in the center of each pond with a 2 . 2  1 PVC Kemmerer 

sampler and kept in 1 . 0  1 opaque Nalgene bottles on ice until laboratory 

analysis . The spectrophotometric methods of Burnison (1980) were used 

for determination of chlorophyll� and, since the pheopigment degradation 

products of chlorophyll� are also detected, the following equation was 

used to calculate the concentration of pheopigment-corrected chlorophyll a: 



Chl. a (mg/m3) 

where 

A x  K x (6640 - 664a) x v  
Vf x 1 

A absorption coefficient of chlorophyll�· 

(Lorenzen 1967) 

K 2.429, a factor to equate the reduction in absorbancy to 

initial chlorophyll concentration, 

6640 absorbance before acidification, 

664a absorbance after acidification, 

v = milliliters of acetone used for extraction, 

Vf = liters of water filtered, and 

1 = pathlength of cuvette in centimeters . 

The chlorophyll� extinction coefficient of Jeffrey and Humphrey (1975) 

was used to calculate the appropriate absorption coefficient. 

Absorbancies were measured with a Bausch and Lomb Spectronic 70. 

Diel Dissolved Oxygen Levels 

Diel fluctuations in dissolved oxygen concentrations at both 

ponds were monitored utilizing the community metabolism (diel curve) 

methods of Eckblad (1978) and Lind (1979). Dissolved oxygen 

concentrations were measured at one central location in each pond at 

surface and one-half meter depth intervals; these determinations were 

made on two consecutive evenings within one hour of sunset and on the 

interim morning within an hour of sunrise . The diel curves represent 

mean dissolved oxygen concentration from each of the three sampling 

periods . Water samples were collected with a 2.2 1 PVC Kemmerer 

sampler, placed in standard 300 ml BOD bottles, and fixed with powder 

13 
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pillow reagents. The azide modification of the Winkler method was used 

for dissolved oxygen measurement. The community metabolism (diel curve) 

method was abandoned during ice cover for the same reasons previously 

described in the primary production methods. 



RESULTS AND DISCUSSION 

Rainbow Trout 

Growth and Survival 

Differences in mean lengths, weights, and relative weights 

(Table 1) among treatments were significant (P ..2. 0. 01; Tables 2 - 4) . 

Analysis by the Waller-Duncan k-ratio t test revealed significant 

differences in mean lengths and weights among all three treatments; 

significant differences only occurred between mean relative weights 

of the unfed control fish and those fed (Table 5) . Percent survival 

15 

was significantly different (P ..2. 0. 05) among the treatments; however, 

since mortality was low, half of the expected values were less than 5. 0 

(Table 6) making the calculated chi-square value Cx
2 

= 6.10) biased. 

Also, the chi-square contingency table could not be collapsed to account 

for the bias, therefore the significance of the test should not be taken 

seriously. 

Rainbow trout growth and survival were as good or better than 

most cage culture studies reported in the literature. Growth comparison 

with some studies was difficult since many were conducted during winter 

months (November to March) in southern states (Alabama and Arkansas) . 

In cage studies with high final rearing densities, stock density 

influenced individual growth of fish before it affected survival. 

Trzebiatowski et al. (1981) were the only authors reviewed who achieved 

higher percent daily weight gain (% DWG) than in this study. Even so, 

their % DWG values (6. 58 - 8. 5 5) diminished with increasing stock density 

(3. 3 - 19. 8 kg/m3) ,  but survival was not affected. This good growth was 
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Table 1. Growth, survival, and production results from the cage culture 
of rainbow trout (Salmo gairdneri) in an eastern South Dakota 
dugout pond between 27 April and 23 June 1982. 

Feeding Rate 
(Percent of Body Weight Daily) 

Number of fish 
Initial 

Final 

Percent survival 

Mean length (mm) 
Initial a 

Final 

Mean weight (g) 
Initial a 

Final 

Mean relative weight (Wr) 

Food conversion 

Mean individual daily 
increment (g) b 

Percent daily weight gain 

Mean biomass gain per cage 
(kg/m3) 

0% 

175 

175 

100.0 

146 

160 

34. 5 

38.1 

88.2 

0.077 

0.22 

0.126 

2% 

176 

173 

98.3 

146 

193 

34 .5 

89.l 

113.4 

0.979 

1.162 

3.37 

1.877 

a Based on a sample of 200 fish measured prior to stocking. 

b Based on number of days fed (47 of 58 days held).  

4% 

175 

169 

96.6 

146 

202 

34 .5 

102 .4 

113 .4 

1.837 

1.445 

4.19 

2.25 3 
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Table 2. Analysis of variance for dependent variable length of rainbow 
trout (Salmo gairdneri) cage-reared in an eastern South Dakota 
dugout pond between 27 April and 23 June 1982. 

Source of 
Variation 

Feeding rate 

Degrees of 
Freedom 

2 

Between cages 12 
within treatments 

Between fish 
within cages 

502 

Mean 
Square 

85787. 43 

131. 54 

120. 67 

**Significant at 0.01 level of probability . 

F 

652 . 17>�* 

1. 09 
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Table 3. Analysis of variance for dependent variable weight of rainbow 
trout (Salmo gairdneri) cage-reared in an eastern South Dakota 
dugout pond between 27 April and 23 June 1982. 

Source of 
Variation 

Feeding rate 

Degrees of 
Freedom 

2 

Between cages 12 
within treatments 

Between fish 
within cages 

502 

Mean 
Square 

198882. 84 

27 1. 70 

263. 33 

**Significant at 0.0 1 level of probability. 

F 

1. 0 3  
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Table 4 .  Analysis of variance for dependent variable relative weight of 
rainbow trout (Salmo gairdneri) cage-reared in an eastern South 
Dakota dugout pond between 27 April and 2 3  June 1982. 

Source of 
Variation 

Feeding rate 

Degrees of 
Freedom 

2 

Between cages 12 
within treatments 

Between fish 
within cages 

502 

Mean 
Square 

36880.65 

7 3.13 

54.99 

**Significant at 0.01 level of probability . 

F 

504.34** 

1. 33 
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Table 5. Waller-Duncan k-ratio t test for the variables length, weight, 
and relative w�ight of-rainbow trout (Salmo gairdneri) cage­
reared in an eastern South Dakota dugout pond between 27 April 
and 2 3  June 1982. 

Feeding Rate 

0% 2% 4% 

Length (mm) 160 193 202 

Weight (g) 38. 1 89. 1 102. 4 

Relative weight (Wr) 88. 2 113. 4 113 . 4* 

*Underscored values denote no significant difference (1-ratio 100) . 



Table 6. Chi-square contingency table for dependent variable percent 
survival of rainbow trout (Salmo gairdneri) cage-reared in 
an eastern South Dakota dugout pond between 27 April and 
23 June 1982. 

Alive Dead 

Feeding Rate Observed Expected Observed Expected 

0% 17 5 172 0 3 

2% 173 17 3 3 3 

4% 169 172 6 2 

21 
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due in part to the raceway-like rearing conditions at their cage location; 

good water flow and near-optimum rearing temperatures (weekly means ranging 

10.1 - 17.3 C) of power station cooling water provided a quality growth 

environment for the trout. 

was 

Kilambi et al. (1977) found that growth of 149.5 g rainbow trout 

significantly better at densities of 27.4 and 45.0 kg/m3 than at 

78.2 kg/m3, but again survival was not aff�cted. Collins (1972) reported 

3 that 57 g rainbow trout stocked at three densities in 1.54  m cages had 

no significant differences in mean final weight ; the stock densities were 

probably not near a maximum for the particular rearing conditions 

(warmwater lake). 

Brauhn and Kincaid (1982) suggested that rainbow trout of 

different strains vary in their suitability for a particular use. If 

available, a strain selected for fast growth should be used in a cage 

culture operation. 

Production 

Mean biomass gain per cage for trout fed the low (2%) and high 

3 (4%) rates was 1.877 and 2.2 5 3 kg/m , respectively (Table 1). Stock 

densities (kg/m
3
) were based on a per hectare rate from the literature 

(Halverson et al. 1980) for a similar size pond because it was 

thought the fish would have a significant impact on the biochemical 

oxygen demand. It was later apparent that many more fish could have 

been stocked and a much higher production realized. 



Maximum final rearing densities (kg/m
3

) have not been reported 

in the literature for cage-reared rainbow trout. Final rearing 
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densities of 110 (Jensen 1979) , 143 (Kilambi et al. 1977) , and 170 kg/m3 

(Trzebiatowski et al. 1981) were reported but were not at a maximum. A 

maximum, corresponding to marketable-size (or landowner-usable) fish, 

may not manifest itself in reduced survival or reduced final production, 

but rather in reduced individual growth and poorer feed conversion rates. 

Trzebiatowski et al. (1981) reported a proportional increase in final 

production and food conversion with increasing stock density (fish/m3) ,  

but found increases in individual weight to be inversely proportional to 

stock density. This may have been near the optimum stock density 

because the smallest fish (corresponding to the highest stock density) 

were still marketable (194 g). Wedemeyer (1976) suspected that high 

stock density hinders movement and feeding causing food availability, 

even at maximum or excess ration, to be a limiting factor. Ivlev 

(1961) reported a reduction in the amount of food consumed with 

increasing stock density in his work with fish other than trout ; he 

suggested that there were probably behavioral effects on feeding due to 

stock density. 

Water Quality 

Physiocochemical values did not vary among the three monitoring 

stations within the cage arrangement, indicating that the trout had little 

affect on their immediate environment. Dissolved oxygen levels became 

critical before water temperatures did (Table 7) , thus an immediate 

harvest of the trout was required on 2 3 June 1982. Percent saturation 



Table 7. Mean physicochemical values of water quality characteristics monitored during the cage-rearing 
of rainbow trout (Salmo gairdneri) in a South Dakota dugout pond between 27 April and 23 June 
1982. 

Date 

4-30 5-16 6-2 6-14 6-17 6-18 6-19 6-20 6-21 6-22 6-23 

Temperature ( C) 
Surface 15.7 18.3 20 .1 20.5 23.2 22. 7 20.4 20 .1 20.9 20 .1 19.8 
1 m 12.9 18.0 17.3 19.5 22.1 22.3 20.3 20.2 20.5 19.7 19.8 
2 m 12.2 16.6 15.1 18.2 19.2 20.6 19 .1 19.7 20.0 18.9 18.7 
Bottom 10.9 15.6 14.3 15.2 15.0 15.2 15.3 15.3 15.4 15.6 15.6 

Dissolved oxygen (mg/1) 
Surface 9.5 6.6 5.7 4.9 7.4 7.2 6.0 6.0 6.0 5.2 4.4 
1 m 9.4 6.4 5.4 4.8 6.4 6.8 6.0 6.0 5.6 5.0 4.2 
2 m 9.7 6.8 4.7 3.9 5.2 5.6 6.0 5.8 4.8 3.8 3.4 
Bottom 8.2 6.1 2.8 2 .1 2.6 3.0 3.2 3.6 1.6 I. 2 0.8 

Nitrogen-ammonia (mg/1) 0.59 1.07 1.28 1.26 

Nitrogen-nitrate (mg/1) 2.5 0.7 0.5 0.5 

Total alkalinity 130 187 202 205 
(mg/1 Caco

3
) 

Phenolphthalein alkalinity 0 0 0 0 
(mg/ l Caco

3
) 

Total hardness 277 325 315 308 
(mg/ 1 Ca CO�) 

Salinity (
0 

/oo) 0.2 0.2 0.3 0.4 

Specific conductivity 453 540 523 610 
(µmhos/cm) 

Secchi disk (m) 1. 3 1.0 I. 5 1.6 

Depth (m) 2.6 2.7 2.7 2.7 

pH 8. 1 8.7 7.8 8.2 

N 
.s:--
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of dissolved oxygen ranged from approximately 3 5  - 50% in the water column 

at the time of harvest. Prolonged exposure to dissolved oxygen 

concentrations below 6 mg/1 is generally considered stressful to 

rainbow trout. Cherry et al. (1975) found that attempts to acclimate 

rainbow trout to temperatures above 24 C caused mortality ; a 7-day 

upper lethal temperature limit of 2 5  C was reported by Cherry et al. 

(1977) for rainbow trout. 

Economic Considerations 

Rainbow trout readily adapt to the cage environment (Collins 197 2) 

and currently represent the optimum coldwater species for rearing to a 

marketable size. Even so, careful economic considerations must be made 

to receive a favorable return on investment in any culture operation. 

Most cage culturists would probably agree that the high cost of feed and 

fingerlings and the low return from the marketed product are the major 

economic limitations of rainbow trout culture. Necessarily, optimum 

stock density and size, feeding, cage design, and other factors must be 

determined for particular rearing conditions to reduce the impact of 

high rearing costs. Since the goal of cage culture is to economically 

achieve maximum growth, production, and survival given the conditions, 

the interaction of these factors must be optimized. 

Although many of the cage culture studies reported in the 

literature were conducted in large natural lakes or impoundments, 

particular aspects of their results are applicable here ; studies 

pertaining to cage culture in small farm ponds of the northern Great 

Plains were not found. The importance of stock density in relation 



to growth, survival, and production was discussed in the previous 

sections. 
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Stock Size. -- Initial size of stocked fish affects the final 

individual weight, and can be particularly important for a short rearing 

period as in this study. During the seven weeks trout were fed, the 

mean final weight of the higher fed fish (102 g) did not attain a 

landowner-usable size from a 35 g initial stock size (Table 1). 

Landowners and others who received harvested trout from this study liked 

the flavor but preferred a slightly larger fish; hence, a minimum size 

of 120 g was assumed to be landowner-usable. 

In eastern South Dakota farm ponds the effective rearing period 

probably will not exceed ten weeks, hence a larger initial stock size 

may be required to attain a landowner-usable product. This, of course, 

will depend on availability of larger stock fish, and the additional 

cost of larger fish versus additional weight gained. Whitaker and 

Martin (197 4) found that increasing the initial stock size of rainbow 

trout in cages from 1.7 to 7.8 and 13.9 g produced marketable fish 

(173 g round weight) in 12 2 days. They concluded that, while fish 

stocked at 12 g will produce a heavier fish at harvest, their higher 

cost is not economically justified. They recommended an initial size 

of 8 g. 

Feeding. -- Food conversion (weight fed/weight gained ; Table 1) 

of fish fed the high rate (4% of body weight daily) was nearly twice 

(1 . 837 vs . 0.979) that of those fed the low rate (2%) and was significant 

(P < 0.01; Table 8). Tadpoles, zooplankton, and other macroinvertebrates 



Table 8. Analysis of variance for dependent variable food conversion 
of rainbow trout (Salrno gairdneri) cage-reared in an eastern 
South Dakota dugout pond between 27 April and 23 June 1982. 

Source of 
Variation 

Feeding rate 

Error 

Degrees of 
Freedom 

1 

8 

Mean 
Square 

1.84 

0.0 1  

**Significant at 0.0 1  level of probability. 

F 

167.27** 

27 
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were present throughout the study and may have contributed to the better 

food conversion of fish fed the low rate. The control fish gained no 

more than 4 g, so the effect of natural food on food conversion and 

growth may have been negligible. On the other hand, as the 2% fed fish 

became larger, they may have been able to utilize larger-sized natural 

food, thus improving food conversion values. 

Floatability of the pelleted feed and differences in feeding 

behavior of the fed fish indicated that the optimum feeding rate was 

between 2 and 4%. Approximately one-fourth of the daily food ration 

immediately sank when presented. Fish receiving the low rate immediately 

fed on both sinking and floating pellets. Those receiving the high rate 

consumed only sinking pellets initially, but eventually fed on floating 

feed when there was no pond disturbance from the author; some pellets 

usually remained after feeding activity ceased, but probably provided 

less nourishment (when consumed later) due to leaching effects. Trout 

fed the low rate were apparently underfed making it unnecessary for them 

to compete for food to be satiated. 

Mean relative weight similarities and food conversion differences 

(Table 1) of the fed fish also indicated that the maximum ration is 

between 2 and 4% for this size range of fish (35 - 100 g) , and is 

probably near the 3% rate. Compared to the low feeding rate, the 

high rate apparently did not contribute to better condition (Wr) but 

did add significant weight and length. A similar study conducted by 

Schuler in South Dakota (personal communication) and a study in 

Alabama (Tatum 197 3) revealed no significant differences in growth and 

survival between cage-reared rainbow trout fed 3 and 5% of body weight 

daily. 



The actual feeding rates (percent of body weight daily) in this 

study were estimated by back-calculation from growth records and found 
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to have means of 1. 88 and 3. 74% for the low and high rates, respectively, 

revealing the inaccuracy of predicting growth from periodic inventory 

of fish weights. Currently, there is no accepted methodology for feeding 

rainbow trout in a lentic environment. Cage culturists have utilized 

feeding charts from trout hatcheries (Whitaker and Martin 197 4 ;  Jensen 

1979) or have inventoried fish weights at intervals and adjusted amounts 

fed accordingly (Tatum 1973; Hahn 1974 ; Kilambi et al. 1977; Trzebiatowski 

et al. 1981; and this study) . Fish are either underfed resulting in 

lost growth or overfed contributing to higher feed costs. Papst et al. 

(1982) have developed a maximum growth rate model for rainbow trout fed 

at maximum ration (ration level at which maximum growth occurs) . They 

used the approach of Stauffer (1973) who described a growth model for 

hatchery-reared salmonids using a dome-shaped growth-temperature curve. 

A dome-shaped curve best describes the relationship between temperature 

and specific growth in salmonids (Brett et al. 1969 ; Elliott 1975 ;  

Hokanson et al. 1977) . The model of Papst et al. (1982)  requires only 

temperature and initial fish size for estimating growth of cultured 

rainbow trout. Furthermore, the model can be calibrated for a specific 

culture system by estimating a constant from past growth records. 

In general, fish reared in a lentic environment grow faster 

and have better food conversion values than similar-sized fish reared 

in a raceway at similar temperatures. Fish expend less energy in 

maintaining position in a lentic culture operation. Daily rations 

(as a percent of body weight) vary with fish size and rearing 



temperature. Ration tables similar to that used by Jensen (1979) need 

to be developed for rainbow trout reared in a lentic environment. 

Cage Design. -- The optimum cage should be designed for the best 

economic return in relation to well-being of the fish. Design should 
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be based on available material sizes to maximize return on the investment. 

The cages in this study were not designed to test economic feasibility 

of cage-rearing rainbow trout due to the small size of the pond and the 

number of replicates (cages) required for statistical analysis . 

Water circulation at the intended cage location should be 

considered in cage design because high stocking densities could make 

dissolved oxygen limiting. Whitaker and Martin (1974) thought that 

lack of water circulation at a shore location was partly responsible for 

poor feeding and growth of cage-reared rainbow trout following outbreaks 

of bacterial gill disease. A gradient in dissolved oxygen concentration 

in their 14. 5, 20. 4, and 136. 2 m3 cages probably occurred, causing 

stressful conditions near the cage center, and likely contributed to the 

disease outbreaks. When the fish were transferred to cages at a location 

with good water circulation (mid-lake) , feeding activity and growth rate 

improved for the remainder of the study. In  bodies of water with poor 

water circulation such as dugout ponds, a rectangular cage design might 

prevent the problem. The more rectangular the cage, the higher is its 

surface-to-volume ratio, and thus the greater potential for effective 

water circulation. The additional material cost of this advantage should 

be compared to the intended benefit. 
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The costs of different materials and the intended lifetime of the 

cage should be considered. The higher expense of good rigid netting and 

framing material may lead to a better return on investment if the cage 

cost can be amortized over more years of use. The appropriate netting 

material should minimize wear on the fish and maximize effective water 

circulation. 

Netting material is the greatest expense in cage construction, 

ranging approximately 48 to 77% of the total cage cost depending on the 

material. A cage constructed with 12.7 mm mesh nylon netting can be 4 3  

to 56% less expensive than a similar cage constructed with 12.7 mm mesh 

plastic netting. There are advantages and disadvantages applicable to 

both. Although the nylon netting is less expensive, it may not 

withstand repeated handling and submersion in water as could plastic 

netting, and nylon netting is more prone to fouling from fish wastes, 

debris, and periphyton. Although more expensive, plastic netting is 

more durable and is readily cleaned; the greater expense may be 

justified if more years of use are realized. 

The economics of a hypothetical dugout culture operation were 

developed for rainbow trout reared in a 7 m3 (1.22 x 2.44 x 2.44 m deep) 

rectangular floating cage and fed 3% of body weight once daily for 50 

days. Initial and final individual weights were assumed to be 35  and 

100 g, respectively, such as in this study. The cost of fingerlings, 

estimated from a survey of private trout culturists, was $60 per 

hundred. In general, most culturists quoted prices of $0.10 per inch 

for fingerlings with no transport charge for capacity deliveries. 
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Cage stocking rates in this study were based on a per hectare rate 

reported by Halverson et al. (1980) for a similar size pond because it was 

assumed the fish would have a greater impact on the biochemical oxygen 

demand . It soon became apparent that more fish could have been stocked , 

3 hence a stocking rate of 5 kg/m was assumed for this evaluation. 

The estimated costs (Table 9) per kilogram of fish reared (round 

weight) reveal the relative impact of cage cost if it is all included in 

first year figures. Cage cost is relatively insignificant to the 

operation if it is amortized over just five years even though the cages 

would last longer with proper care. In this context, the use of the 

more expensive plastic netting is justified. 

Water temperature in dugout ponds increases rapidly after 

ice-melt, but feeding in this study was not started until three weeks 

after this time. Hence, if feeding had started immediately following 

ice-melt, the fish could have conceivably reached a final individual 

weight of about 120 g based on growth records from this study. This 

would reduce the estimated rearing costs per kilogram by 14%. 

A well-organized cooperative effort by landowners would minimize 

costs and enhance chances of success. Although the results of this 

study appear to be a step in the right direction, other questions need 

to be answered to fully assess the probability of a successful operation. 

Primary Production, Phytoplankton Standing Crop , and Diel Dissolved 

Oxygen Levels 

Specific values (mg carbon/mg chlorophyll �/hour) of gross and 

net production were more highly correlated to Secchi disk visibility 

than to chlorophyll a concentration ( mg/m3) in both ponds (Table 10) . 



Table 9. Estimated costs of a hypothetical cage-rearing operation for 
rainbow trout (Salmo gairdneri) in a 7 m3 rectangular cage 
within an eastern South Dakota dugout pond. 

Item Cost 

Fingerlings (35 g each) 

$60 per hundred3 Stock at 5 kg/m 1, 000 fish 

Feed 
87 kg @ $0. 88/kg 

Cage (plastic netting) 

Harvest 

Total 

Total (less cage cost) 

1, 000 fish at 100 g each 
Less 2% mortality 980 fish 
Cost per kilogram 

Cost (less cage cost) per kilogram 

$600 

7 7  

1 7 7  

$794 

$677  

$ 8 . 10/kg 

(3.68/lb) 

$ 6. 91/kg 

(3. 14 lb) 

33 
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Table 10 . Simple regression estimates for specific forms of production 
(mg carbon/mg chlorophyll �/hour) versus Secchi disk 
visibility (m) and chlorophyll � concentration (mg/m3) in 
two unstacked dugout ponds in eastern South Dakota during 
the ice-free season between July 1982 and July 1983 . 

Parameter Regression Equation R2 R 

Specific gross production 

1 .  New pond v -0 . 46 + 11 . 26 log Sd . 73 .85 � 

2 . Old pond y -2 . 46 + 4 . 59 log Sd . 57  . 75 

3 .  New pond y 6 . 65  2 .92 log Chl a . 48 - . 69 

4 .  Old pond y 3 . 26 0 .92 log Chl a . 15 - . 39 

Specific respiration 

1 .  New pond y 0 . 44 + 1 .  79 log Sd . 13 . 36 

2 .  Old pond y 1 . 24 + 1 . 20 log Sd . 17 . 41 

3 .  New pond y 1 .  95 o .  72 log Chl a . 2 1 - . 46 

4 .  Old pond y 2 . 23 0 .82 log Chl a . 52 - .  72 

Specific net production 

1 .  New pond y -0 .90 + 9 . 46 log Sd . 84 .92 

2 .  Old pond y 1 .  22 + 3 . 39 log Sd . 34 . 58 

3 .  New pond y 4. 70 2 . 20 log Chl a . 45 - . 67 

4 .  Old pond y 1 .  04 0 . 11 log Chl a . 002 - . OS 
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Specific values of community respiration were more highly correlated with 

chlorophyll� concentration in both ponds although all of the correlations 

were fairly poor (R < l o. so l ) except for that of chlorophyll� 

concentration in the older pond (R = -0. 7 2). 

Haertel (1977) found that specific gross production was highly 

correlated with chlorophyll� concentration and density of algae in six 

eastern South Dakota prairie lakes ; specific respiration and net production 

were also significantly correlated with algae standing crop. Livestock 

activity around the dugouts may explain the differences between this study 

and that of Haertel (1977). Turbidity increases from livestock probably 

contributed to additional light attenuation over and above that of 

phytoplankton. Secchi disk visibility therefore became a more important 

independent variable and was highly correlated with both specific gross 

and net production. Turbidity (in addition to algal standing crop) was 

probably not as influential in the open prairie lakes as it was in this 

study. Specific respiration in this study and that of Haertel (1977) was 

more highly correlated with chlorophyll� concentration than with 

Secchi disk visibility suggesting that respiration was more independent 

of light than of algae concentrations. 

The Kurtz (newer) pond, in comparison to the Oppelt (older) pond , 

maintained higher dissolved oxygen concentrations (Figure 2), as well as 

higher gross production to community respiration ratios (Pg/Rt) and 

chlorophyll� concentrations (Figures 3 and 4) during the majority of 

the ice-free season. Water transparency differences between the two 

study ponds may explain these results, since the mean Secchi disk 

visibility of the Kurtz pond (1. 8 m) was double that of the Oppelt 
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Figure 2. Diel dissolved oxyge n curves by date in the Kurtz (newer) and 
Oppelt (older) ponds in eastern South Dakota during the 
ice-free season from July 1982 to July 1983. 
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pond (0.9 m). Hoyer and Jones (1983) suggested that if the phosphorus 

concentration of a lake is held constant, an increase in the concentration 

of inorganic suspended solids would cause the chlorophyll concentration 

to decrease. One hypothesis (Edzwald et al. 1976) is that phosphorus 

is adsorbed to inorganic suspended solids leaving less phosphorus 

available for biological processes. The Oppelt pond maintained higher 

total phosphorus concentrations than the Kurtz pond from July 1980 to 

July 1981 (Vodehnal 1982). If this was true during the course of this 

study, then inorganic suspended solids may have been the major factor 

contributing to differences in chlorophyll a concentrations b�tween the 

two ponds. 

Inorganic suspended solids also attenuate light and probably 

affect phytoplankton standing crop due to reduced photosynthesis. 

Hoyer and Jones (1983) found that the addition of inorganic suspended 

solids to their regression model of Secchi disk visibility versus 

chlorophyll� concentration accounted for 42% more variance (R
2 

= 0. 84) 

in water transparency. 

Suspension of sediments by wind action may have been greater in 

the Oppelt pond since it was 18% larger (58 m2) in surface area but 

only 66% as deep as the Kurtz pond . This may partially explain 

differences in turbidity between the two ponds. Livestock use seemed 

to be similar at both ponds (although it was not quantified), but also 

may have contributed to differences in turbidity between ponds. 

Hutchinson (1967) and Odum (197 1) described the early spring 

phytoplankton "blooms" characteristic of the lakes and ponds of the 

northern United States. In this study, mean chlorophyll� concentrations 
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(Table 11) indicated a phytoplankton bloom under the ice in both ponds 

prior to ice-melt. In addition, Pg/Rt ratios (Figures 3 and 4) and the 

specific forms of production and respiration (Table 12) revealed a 

bloom-type period following ice-melt during which accumulated nutrients 

were probably not limiting. Applegate et al. (1973) described the high 

algal concentrations of predominantly unicellular algae and the low 

species diversity occurring in late winter and early spring in a prairie 

lake of eastern South Dakota. 

Ponds and lakes in South Dakota are very productive and dynamic, 

thus they are more difficult to study at one trophic level without 

considering effects from other trophic levels. Nonetheless, a limited 

study can provide important information which can be useful in 

formulating hypotheses about interrelationships among dif ferent 

components of the community. 
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Table 11.  Mean chlorophyll a concentrations (mg/m3 ; mg/m2) by da te from 
July 1982 to July-1983 for the Kurtz (newer) and Oppelt 
(older) ponds in eastern South Dakota. 

Kurtz Oppelt 

Date mg/m 3 mg/ m 2 mg/m 3 mg/m 2 

07/27/82 49. 9 99 . 7  154. 9 201. 4 

08/26/82 88. 0 175 .9  72. 7 94. 5 

09/09/82 88. 9 177 . 8  15. 0 19. 5 

09/22/82 24. 9 49. 9 8. 3 10. 8  

10/19/82 55 .4  110. 8 9. 2 12. 0 

ll/09/82a 
3 0. 0 60. 0 20. 8 27. 0  

12/02/82 17. 3 34. 6 13.9  18. 0 

12/17/82 15. 0  30. 0 12. 1 15. 8  

0 1/02/83 19. 6 39. 2 6. 9 9. 0 

0 1/13/83 20. 8 41. 6 6.9  9. 0 

0 1/29/83 3 4. 6 69. 3 8. 7 11. 3 

02/10/83 177 . 8  355 .5  12. 1 15. 8 

02/28/83 39. 2 78. 5 3 . 5  4. 5 

03/14/83 16. 2 32. 3 26. 0  3 3. 8  

03/28/83 19. 6 39. 2 76. 2 99. 0 

04/19/83b 23 . 1  46. 2  22. 5 29. 3 

05/01/83 13 .9  27. 7 12. 1 15. 8  

05/15/83 10. 4 20. 8 12. 1 15. 8  

06/0 1/83 5.8 11. 5 1. 7 2. 3 

06/16/83 26. 5  5 3. 1  3. 5  4. 5 

07/10/83 3 3. 5  66. 9 15.6  20. 3 

07/3 1/83 65. 8 13 1. 6 121. 2 157 . 6  

aFirst date with ice cover. 

bLast  date with ice cover. 



Table 12 . Specific forms (mg carbon/mg chlorophyll  a/hour) of gross 
production (Pg) , community respiration (Rt) , and net 
production (Pn) in two unstocked dugout ponds in eastern 
South Dakota during the ice-free season between Jul y  1982 
and July 1983 . 

Kurtz OEEelt 

Date Pg Rt Pn Pg Rt Pn 

07/27/82 0 . 978 0 .  796 0 . 182 1 . 041 0 . 375 0 . 666 

08/26/82 0 . 707 0 . 473 0 . 234 1 . 236 1 . 020 0 . 216 

09/09/82 0 . 810 0 . 447 0 . 363 0 . 240 0 . 437 -0 . 197 

09/22/ 82 1 . 893 1 .  441 0 . 452 1 . 0 12 1 . 429 -0 . 417 

10/ 19/82 0 . 076 0 . 3 11 -0 . 235 0 . 078 0 . 553 -0 . 475 

05/0 1/83 3 . 102 0 . 564 2 . 538 1 .  726 0 . 85 1 0 . 875 

05/ 15/ 83 3 . 189 0 . 33 1  2 . 858 5 . 355 0 . 593 4 . 762 

06/01/83 4 . 657 1. 949 2 . 708 2 . 9 17 3 . 250 -0 . 333 

06/ 16 / 83 2 . 160 0 .  965 1 . 195 2 . 082 1 .  715 0 . 367 

07/ 10 /83 5 . 191 1. 914 3 . 277 5 . 153 1 . 624 3 . 5 29 

07/ 3 1/83 2 . 522 0 . 532 1 . 990 1 . 355 0 . 5 13 0 . 842 
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CONCLUSIONS 

Rainbow trout growth was excellent, however, if landowners wish 

to harvest a larger-sized fish (� 120 g) , trout would have to be 

stocked at a larger size or some method would have to be developed 

to increase the growing season. Earlier stocking is a possibility 

as is deeper cages placed in deeper ponds. The latter possibility 

would need additional field study to determine its feasibility. 

Trout survival was also excellent. This indicated that a 

landowner cage-culturing trout in a dugout could expect to harvest a 

large majority of the fish stocked if adequate care was taken to 

insure harvest before oxygen- or temperature-related mortalities 

occurred. 

The study demonstrated that a landowner, with only a 

relatively small cage, could produce a large poundage of trout of 

usable size (though not as large as desired) in a short period of 

ti.me . It also appeared that a greater stocking rate, maybe four times 

that of this study, could further increase production . 
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