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RAINBOW TROUT CAGE CULTURE AND BENTHIC PRODUCTION 

IN EAST-CENTRAL SOUTH DAKOTA DUGOUTS 

Abstract 

GLENN D. SCHULER 

3 Forty-five cages, encompassing 1. 0 m of water, distributed 

between three dugout ponds, were stocked with rainbow trout (Salmo 

gairdneri) fingerlings to determine the feasibility of raising annual 

fish crops. Growth rates were compared between feeding rate (0, 3, 

and 5% body weight/day [bwt/day]) and stocking rate (35, 52, and 70 

fish/cage). Growth was significantly (P"� 0.05) greater at feeding 

rates of 3 and 5% bwt/day than 0% bwt/day. The fish fed 0% bwt/day 

decreased in mean weight by 0.7 g; the weight gain for the 3 and 5% 

bwt/day feeding rates were 47. 2 and 45. 2 g, respectively. Significant 

differences (P � 0.05) in growth were detected between stocking rates. 

Mean survival for the three feeding rates was 98%. Natural 

food contribution was significantly lower (P < 0.05) for the 3 and 5% 

feeding rates, than the 0% bwt/day. Stomachs contained 2.6, 1. 3, and 

12.8 organisms/stomach for these respective treatments. While cage 

culture was not commercially feasible due to small harvest size, low 

stocking rate, and small cage size, trout were large enough for 

consumption. 
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INTRODUCTION 

Rainbow trout (Salmo gairdneri) have been cultured with variable 

success in dugout ponds in eastern South Dakota. Vodehnal (1982) 

stocked fingerlings in the spring and harvested them in the fall . This 

culture met with limited success, as survival was only 2.6%. The low 

survival was attributed to a combination of high water temperatures and 

low oxygen levels which occurred during July and August. Roell (1983) 

conducted spring cage culture and reported 98% survival; trout were 

harvested before critical water temperatures and oxygen levels occurred. 

Cage culture has potential since approximately 100,000 

dugout ponds have been excavated in South Dakota since the mid 1930s 

(Vodehnal 1982) and rainbow trout have been shown to survive and grow 

in dugouts (Vodehnal 1982; Roell 1983) . Because of the shallowness 

and eutrophic waters (DiLauro 1982) the optimal culture period occurs 

from mid April through late June or early July. Not all dugouts have 

adequate water depth, but those with a maximum depth of 2. 5 m or greater 

may have potential (Roell 1983). Fish could be produced in dugout 

ponds for commercial sale, as a family food source, and/or as a 

recreation for dugout landowners . 

Advantages of cage culture include improved environmental 

control, no predation problems, no interspecific competition for food, 

fish density regulation, and total recovery of fish (Hahn 1974). In 

addition,Schmittou (1969) considered close observation of feeding 

efficiency, general health of the fish, and manipulation of the 

harvest to fit market requirements to also be important benefits . 



Cages also eliminate trout emigration from dugout ponds adjacent to 

low-laying areas subject to seasonal flooding. 

The objectives of this study were: (1) to determine the optimal 

feeding and stocking rates for cage-reared rainbow trout, (2) to 

evaluate the contribution of  naturally produced food to the caged trout 

diet, (3) to evalute the economic feasibility of cage rearing rainbow 

trout on an annual basis, and (4) to determine the macrobenthic 

numerical abundance, biomass, and faunal composition in two dugouts 

(one three-years-old and one six-years-old) .  The objective concerning 

macroinvertebrate production was a separate objective which was not 

compared in this paper to trout production. 

2 



STUDY AREA 

The dugout ponds used in this study were located in Brookings 

County in east-central South Dakota. Three dugout ponds were used for 

the trout cage culture portion of the study. Pond selection was based 

on criteria described by Roell (1983) as favorable for trout growth and 

survival. Ponds were considered acceptable if (1) maximum depth was 

at least 3.0 m, and (2) cattle usage was no greater than one cow/hectare 

for the dugout pasture. Two additional dugout ponds were used for the 

benthic production portion of the study (Figure 1) . 

The study area was located in the Coteau des Prairies, a 

highland region of glacial origin between the Minnesota Red River 

Lowland and the James River Lowland (Westin and Malo 1978). Landowner 

names, dugout pond locations, and pond surface areas are provided in 

Appendix Table 1. 

3 

Chernozem soils predominate, and the region is classified as a 

cool-moist climate. The average temperature for the region is 6. 5 C with 

extremes of -40.5 to 42.7 C (Sphuler et al. 1971). Average annual 

precipitation is between 48 . 3  and 48 . 4  cm (Westin and Malo 1978) . 

Dugouts are rectangular depressions in an area where runoff 

water or groundwater seepage can be caught . They vary in size 

depending upon dugout use, source of water recharge, and construction 

method. Most dugouts have a surface area between 0 . 05 and 0 . 10 

hectares (Bue et al. 1964). Bottom widths and lengths are required 

to be at least 3.0 and 12.1 m, respectively (Soil Conservation 

Service 1978). In this region, minimum water depth in ponds built 

for livestock is 3.0 m .  



Figure 1. Distribution of cage and benthos production dugout ponds 
used to study the culture of rainbow trout (Salmo gairdneri) 
during 1982-83 in Brookings County, South Dakota. 

0 35 fish I cage 

* 52 fish I cage 

O 70 fish I cage 

6 Benthos 
production dugouts 

0 

--����������--
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One or both ends of a dugout are more gently sloped to permit 

access for cattle, while the sides are steeply sloped (Bue et al. 1964). 

The two side slopes will not be steeper than 2:1 nor flatter than 4:1, 

while either one or both ends have a 4:1 slope. The excavated material 

is usually uniformly placed along the long sides of the excavated hole. 

The material is placed such that its weight will not endanger the 

stability of the pond sides and where it will not be washed back into 

the pond by runoff. 

5 



MATERIALS AND METHODS 

Rainbow Trout Cage Culture 

A 3 x 3 x 5 factorial design with three feeding rates, three 

stocking rates, and five replications was used to determine if 

significant differences occurred in lengths, weights, and relative 

weight (Wt) of trout. A significant level of P � 0.05 was used to 

detect significant differences. Wege and Anderson (1978) conceived 

Wr as an index for fish condition. Trout feeding rates (five cages/ 

dugout/feeding rate) tested were 0, 3, and 5% body weight/day 

(bwt/day) .  Each stocking rate was randomly assigned to one dugout 

(35, 52, or 70 fish/cage) and tested. Following the initial analysis 

of variance of length, weight, and Wr, Waller-Duncan's K-ratio t-test 

for unequal observations was used if significant differences were 

detected (Steel and Torrie 1980) . This test is applicable to pairwise 

comparisons of means and used to determine where differences occur 

among treatments. 

Forty-five 0.5 x 1.0 x 2 . 0  m deep cages were built for the 

study. Two meter deep cages were needed to allow rainbow trout to 

select preferred water depth as temperature and oxygen concentrations 

became stressful. 

2 Frames were constructed of 3.3 cm pine lumber . Frames were 

held together by 5.5 cm number 10 aluminum wood screws. Black 1.1 cm 

mesh plastic vexar was fastened to the pine by 1.1 cm galvanized 

poultry staples . Black 0. 3 cm mesh plastic vexar was attached to the 

top 26.4 cm of the cage in the same manner as the 1.1 cm vexar. The 

smaller mesh was needed to prevent floating trout chow from drifting 

6 
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out of the cages; 0.3 cm mesh was 13.2 cm above and below the water 

level (Figure 2) . 

Cages were covered with 1.1 cm thick plywood lids. Holes were 

2 cut in the centers of the covers (20.0 cm ) to facilitate feeding. 

Feeding holes were covered with 1.1 cm mesh vexar. Two styrofoam 

bead blocks (26.4 x 26.4 x 52.8 cm) were fastened at the top of each 

cage to aid in floatation. Two 4 kg concrete blocks were attached 

to each cage bottom to maintain proper floatation. 

Fifteen cages were placed in the center of each trout 

dugout pond. Cages were arranged in three rows, five cages per row. 

The cages in each row were evenly spaced 1. 0 m apart and held together 

with 6 mm nylon rope. Rows were held in place at each end by 6 mm 

nylon rope attached to two 12 kg concrete blocks placed on the pond 

bottom. Rows were spaced 1. 5 m apart. Random allocation was used 

in assigning the feeding rates to the cages. 

Rainbow trout were obtained from the Cleghorn Springs State 

Fish Hatchery in Rapid City, South Dakota, on 20 April 1983. Mean 

total length and weight at time of stocking were 137.9 mm and 26.9 g, 

respectively. Trout mortality for the first two weeks was assumed to 

be due to handling stress. Dead trout were counted on 25 April 1983 

and 4 May 1983 with the aid of SCUBA gear. Dead trout were placed 

with live fish held in extra cages. 

Feeding began 23 April 1983 and continued daily throughout 

the study. Fish received Purina Floating Trout Chow, large fingerling 

size pellets. The food was 37.5% protein and contained all the 

essential nutrients and vitamins necessary for a complete diet. 
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Small mesh 0.3 cm 
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Figure 2. Cage design used to culture rainbow trout (Salmo gairdneri) 
in dugouts during 1983 . 



Fish were sampled at 10 - 12 day intervals to monitor growth. A 

28% sample (10, 15, and 20 fish from stocking rates of 35, 52, and 70 

fish/cage, respectively) of trout was captured with a dip net from one 

randomly selected cage for each treatment; the fish were weighed and 

returned to the cage. This sample size was felt to be large enough 

to accurately monitor trout growth. Daily growth rates were estimated 

for the sample period and were used to adjust daily feeding allotments 

until the next sampling date. When a feeding treatment exhibited 

negative growth, feeding rations were adjusted using the average daily 

growth for the entire culture period . Prior to the first sample period, 

daily rations were 0, 3, and 5% bwt/day of the mean stocking weight. 

During harvest on 22 - 23 June 1983, all fish were removed by 

pulling cages to shore and unloading the fish into pails. Final total 

lengths and weights were taken before trout were dressed. Stomachs of 

10 trout were randomly collected from each cage and preserved in 10% 

formalin for later laboratory analysis of stomach contents. The 

dressed trout were packed in ice and distributed to landowners and 

university personnel or were frozen. 

Trout stomachs (esophagus to the pylorus) were dissected to 

determine the contribution of naturally produced food to the caged 

trout diet. Analysis included the enumeration, identification, and 

volumetric quantification of the stomach contents. Stomachs with 

no identifiable items were considered empty. 

9 
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Chemical and Physical Parameters 

Chemical and physical parameters were monitored at approximately 

two-week intervals in the trout dugout ponds during the study. Sample 

stations were established in the center of each dugout. 

Phenolphthalein alkalinity, total alkalinity, and total 

hardness were measured using a Hach dr-el/1 kit, from water taken at 

a 1. 0 m depth with a Kenunerer water bottle. Dissolved oxygen samples 

were taken at surface, 1.0, and 2. 0 depths with a Kemmerer water 

bottle. Oxygen concentrations were determined using the modified 

Azide-Winkler method (APHA 1975). 

Temperature, salinity, and conductivity determinations were 

made using a YSI Model 3 3  S-C-T meter. Temperature, salinity, and 

conductivity readings were taken at surface, 1. 0, and 2.0 m depths. 

Conductivity readings were standardized and converted to 25 C (APHA 

1971). A Hach model 17-J test kit was used to measure surface water 

pH . Secchi disc transparency was also recorded. Water depth was 

measured using a weighted, calibrated line. 

Benthic Productivity Comparison 

Benthic productivity was compared between a three-year-old 

(Kurtz) and a six-year-old (Oppelt) dugout from 23 April 1982 to 

23 April 1983. Mid-afternoon samples were taken at approximately 

two-week intervals during open water periods. During ice cover, 

samples were taken at four to five week intervals. 



A random sampling scheme was used for sampling benthos. 

Utilizing a random grid technique within each dugout, a total of 288 

and 351 sampling stations, 1 . 0  m
2 in size, was established in the 

Kurtz and Oppelt dugouts, respectively. The number of sampling 

stations varied, due to different dugout sizes. Sample stations were 

not located within 2. 5  m of the shore due to dugout dimensions, water 

level fluctuations, steep slopes, and cattle activity. Three 

stations per dugout each sample period were selected from a random 

numbers table (Steel and Torrie 1980). Selected sites were not 

resampled for at least eight weeks. Benthic macroinvertebrates were 

sampled with a Ponar dredge (sampling area 289 cm2) .  

Benthic organisms were defined as bottom dwelling organisms 

large enough to be seen by the unaided eye and retained by a U.S. 

standard number 30 sieve (0. 595 mm openings) (EPA 1 973; APHA 1975) . 

Samples taken during open water were partially sieved through a 0. 5 mm 

mesh screened bucket immediately after collection in order to reduce 

sediment volume. Remaining substrate material was washed into jars 

containing 1 0% formalin and rose bengal. Rose bengal was used to 

increase benthos visibility during sorting (Mason and Yevich 1967) . 

During ice cover, samples were placed in 18 liter plastic bags. 

These samples were processed in the laboratory in the same manner as 

the open water samples. Samples were preserved in the rose bengal 

solution for at least 48 hours to ensure complete staining. 

Substrate material was resieved through a 1 liter plastic 

container with 0.5 mm mesh prior to sorting to further reduce sediment 

volume. Organisms were separated into taxonomic groups, counted, and 

11 
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placed in glass vials containing 70% ethanol. Organisms were identified 

to the lowest identifiable taxon. Permanent slides of chironomid 

larvae were made using CMC mounting media. Keys by Smith ( 1971) , Mason 

(1973) , and Simpson and Bode ( 1980) were used for chironomid larvae 

identification. Pennak ( 1978) was used for other organism group 

identification. 

Dry weight was determined to the nearest 1.0 mg using an 

analytical balance. Organisms were removed from the preservative, 

placed in previously weighed crucibles, and oven dried at 100 C for 

24 hours. Crucibles were removed from the oven, cooled to room 

temperature in a desiccator, and reweighed. 



Rainbow Trout Production 

Rainbow Trout Growth 

RESULTS AND DISCUSSION 

Evaluation of rainbow trout growth, with respect to the three 

feeding rates and three stocking rates, was based on harvest data 

(Table 1). Significant (P 2 0 . 05) differences in length, weight, and 

Wr occurred between treatments (Tables 2, 3, and 4). The results 

13 

of Waller-Duncan's K-ratio t-test for length, weight, and Wr indicated 

that the 0% bwt/day feeding rate was significantly (P 2 0.05) different 

from the 3 and 5% bwt/day feeding rates, but there was no significant 

difference between 3 and 5% bwt/day feeding rates (Table 5). Significant 

differences (P 2 0.05) were also detected by the Waller-Duncan's K-ratio 

t-test for the three stocking rates (Table 6) . A significant stocking 

rate x feeding rate difference existed in weight, length, and Wr, 

Mean individual weight gain per day for the 3 and 5% feeding 

rates were 0.82 and 0.79 g/day, respectively. The mean individual 

weight for the 0% bwt/day feeding rate decreased by 0.01  g/day. The 

Starkenburg south dugout had the highest gain of 0. 1 1, 1.02, and 0.97 

g/day for the 0, 3, and 5% feeding rates, respectively. The Schwartz 

dugout gain was intermediate at 0.90 and 0.87 g/day for the 3 and 5% 

feeding rates, respectively; the 0% feeding rate exhibited a weight 

loss of 0. 01 g/day. Gain per day was lowest in the Starkenburg north 

dugout at 0.55 and 0 . 52 g/day for the 3 and 5% feeding rates, 

respectively; the 0% feeding treatment had a weight loss of 0.06 g/day 

(Table J) Trout had a lower weight gain per day than growth rates 

������ 



Table 1. The least square mean values for length, weight, and relative 
weight (Wr) of cage cultured rainbow trout (Salmo gairdneri) 
during 1983, South Dakota. 

Feeding Average Average 
rate length weight 

Dugout (% bwtl/day) (mm) (g) (Wr) 

Schwartz 
(35 fish/cage) 0 1 36 . 1  2 1.  3 80.3 

3 187. 3 80.7 1 1 3. 1  

5 188 . 2  79. 1 108.2 

Starkenburg south 
(52 fish/ cage) 0 149.6 33. 7  94.6 

3 188.4 87.8 1 19 . 4  

5 186. 9 85. 0 1 19 .3  

Starkenburg north 
(70 fish/cage) 0 141. 3 23.6 76.6 

3 180.4 59.8 9 3. 1  

5 178.7 58. 1 92.8 

1 bwt body weight. 
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Table 2. Analysis of variance of rainbow trout (Salrno gairdneri) total 
length due to feeding rates in three cage culture dugouts 
during 198 3, South Dakota. 

Source d. £. SS MS F 

Stocking rate 
(SR) 2 28,974 14,487 26. 04* 

Feeding rate 
(FR) 2 869,338 434,669 841. 68* 

SR x FR 4 16, 979 4,245 8. 22* 

Rep (SR) 12 6,676 556 2. 92* 

FR x Rep (SR) 24 12, 394 516 2. 7 1* 

Residual 2,254 430, 127 191 

*Denotes significance (P 2 0. 05) . 
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Table 3. Analysis of  variance of rainbow trout (Salmo gairdneri) total 
weight due to feeding rates in three cage culture dugouts 
during 198 3, South Dakota. 

Source d. f. SS MS F 

Stocking rate 
(SR) 2 210, 516 105, 258 187. 77* 

Feeding rate 
(FR) 2 1,142, 629 571, 314 981 . 12* 

SR x FR 4 51, 948 12, 987 22. 30* 

Rep (SR) 12 6, 727 561 2.11* 

FR x Rep (SR) 24 13, 975 582 2 . 19* 

Residual 2, 254 598, 967 266 

*Denotes significance (P .2 0. 05). 
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Table 4. Analysis of variance of rainbow trout (Salmo gairdneri) 
relative weight (Wr) due to feeding rates in three cage 
culture dugouts during 1983, South Dakota. 

Source d. f. SS MS F 

Stocking rate 
(SR) 2 245, 780 122, 890 29 3 . 29* 

Feeding rate 
(FR) 2 272, 025 1 36, 0 1 3  254. 66* 

SR x FR 4 17, 89 1 4, 47 3 8 . 37* 

Rep (SR) 12 5, 028 419 5.74* 

FR x Rep (SR) 24 1 2, 8 18 534 7.32* 

Residual 2, 254 164, 469 73  

*Denotes significance (P  � 0. 05) .  

17 
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Table 5. Results of Waller-Duncan's K-ratio t-test using least square 
means for length, weight, and relative weight (Wr), respectively, 
for the three feeding rates used to study rainbow trout (Salmo 
gairdneri) cage culture during 198 3, South Dakota. 

Length (mm): 

Weight (g): 

(0% bwt/day) 
142. 9 

(0% bwt/day) 
26.4 

(0% bwt/day) 
8 3. 4  

(5% bwt/day) 
183.7 

(5% bwt/day) 
72 .1 

(5% bwt/day) 
105. 3 

(3% bwt/day) 
184. 7 

(3% bwt/day) 
74 . 1  

(3% bwt I day) 
106. 7 

*Underscored values denote no significant (P 2 0 . 05) difference. 

* 
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Table 6. Results of Waller-Duncan's K-ratio t-test using least square 
means for length, weight, and relative weight (Wr), respectively, 
for the three stocking rates used to study rainbow trout (Salmo 
gairdneri) cage culture during 1983, South Dakota. All were 
significant (P < 0.05). 

Length (mm): (52 fish/cage) (35 fish/cage) (70 fish/cage) 
175.0 170 . 6  166 . 5  

Weight (g): (52 fish/cage) (35 fish/cage) (70 fish/ cage) 
68 . 9  60 . 4  46.9 

W r: (52 fish/ cage) (35 fish/cage) (70 fish/cage) 
111. 1 100.6 87.3 



Table 7. Production data from rainbow trout (Salmo gairdneri) dugout cage culture during 1983 (present 
study) compared with growth data from previous studies. 

Average 
Length weight 

Stocking Harvest culture gain/ % daily 
size size period fish/day Conversion Survival Production weight 

Source (grams) (grams) (days) (grams) rate (%) (kg/m3) gain 

Present study 27 81 60a 0.90 1. 8 100.0 1. 9 3.33 

Schwartz 3% 

Present study 27 79 60 0.87 3.2 99.4 1.8 3.22 
Schwartz 5% 

Present study 27 88 60 1.02 1.6 100.0 3 . 2  3.78 
Starkenburg S 3% 

Present study 27 8 5  60 0.97 2.5 99.2 3.0 3.59 
Starkenburg S 5% 

Present study 27 60 60 0. 55 1. 5 94.0 2.2 2.03 

Starkenburg N 3;;; 

Present study 27 58 60 0.52 2.6 93.4 2.0 1. 92 
Starkenburg N 5% 

Buck et al. 1972 94 185 74 1.20 4.0 6 5 . 5 81.0 1. 27 

Collins 1972 8 5  340 ll5 2.20 1 .  5 96 .1 30 . 3 2.58 

Hahn 1974 4 75 126 0.56 3 . 2  59.6 8. 4 14.00 



Table 7. (Continued) 

Average 
Length weight 

Stocking Harvest culture gain/ % daily 
size size period fish/day Conversion Survival Production weight 

Source (grams) (grams) (days) (grams) rate (%) (kg/m3) gain 

Kilamb i et al. 150 297 138 1. 10 2. 6 99. 0 65. 3 0. 73 

1977 

Roell 1983 35 89 47b 1. 16 1. 0 98. 3 1. 9 3. 31 
(2% bwt/day) 

Roell 1983 35 102 47 1. 44 1. 8 96. 6 2. 3 4. 11 
(4% bwt/day) 

Tatum 1973 94 338 120 2. 00 3. 9  77. 2 64. 7 2. 12 

Whitaker and 8 1 53 122 1. 19  1.  5 54. 0 - 14. 87 
Martin 1974 

Whitaker and 14 200 1 30 1. 43 1. 5 54. 0 - 10. 21 
Martin 1974 

aFed 60 of 63 days in dugout. 

bFed 47 of 55 days in dugout. 
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reported by Buck et al. (1972) , Collins (1972) , Tatum (1973) , Kilambi 

et al. (1977) , and Roell (1983) (Table 7) . This slower growth appeared 

to be at least partially due to the small stocking size of 26.9 g. 

Roell (1983) stocked 35. 0 g fingerlings and reported weight gains of 

1.16 and 1.44 g/day at a feed ration of 2 and 4% bwt/day, respectively. 

Whitaker and Martin (1974) found daily weight gain to be greater for 

14 g fingerlings (Table 7) . 

Percent daily weight gain for the Schwartz and Starkenburg 

south dugouts, 3 and 5% feeding treatments, showed gains to be greater 

than those reported by Buck et al. (1972) , Collins (1972) , Tatum (1973) , 

and Kilambi et al. (1977) .  Daily gain for the Starkenburg north 

dugout 3 and 5% feeding rates, were lower than these respective 

studies. Daily gains reported by Hahn (1974) and Whitaker and Martin 

(1974) exceeded the present study; daily weight gain can be greater 

as stocking size increases (Whitaker and Martin 1974) . 

Mean conversion rates for the 3 and 5% feeders were 1.65 and 

2. 79, respectively. Feed conversion values for the 3% feeders in 

the Schwartz, Starkenburg south, and Starkenburg north dugouts were 

1.8, 1.6, and 1.5, respectively. Feed conversion for the 5% treatments 

were 3.2, 2.5, and 2.6 for the Schwartz, Starkenburg south, and 

Starkenburg north dugouts, respectively. The mean 3% feeding 

rate food conversion was more favorable than those documented by 

Buck et al. (1972) , Tatum (1973) , Hahn (1974) , and Kilambi et al. 

(1977) (Table 7) . More desirable conversion rates were reported by 

Collins (1972) , Whitaker and Martin (1974) , and Roell (1983) . The 

low mean conversion rate of 1.65 for the 3% feeding rate and no 



significant differences in harvest weight, length, and Wr between 3 and 

5% feeding rates indicated the 3% rate to be most favorable. Roell 

(1983) considered a 2% allotment to be an inadequate diet and a 4% 

ration to be slightly excessive. 

The 0% bwt/day fed fishes showed either a slight increase or 

weight loss. This would be expected since they were not fed and 

natural food was limited, due to the fish being confined to the cages. 

Mean net production for the 3 and 5% feeding rates was 

2. 3 kg/m3 with a range of 1.8 - 3.2 kg/m3 (Table 7). The present study 

net production was surpassed by Buck et al. ( 1972), Collins ( 1972), 

Hahn (1974), Kilambi et al. (1977), Tatum ( 1973), and Whitaker and 

3 Martin (1974) (Table 7), with values ranging from 8. 4 - 81. 0 kg/m , 

Small stocking size, low stocking rate, and short culture period 

_ __ w_ere factors _contri�uting to the low production. 

Stocking densities for the present study were lower than 

reported by Buck et al. (1972), Collins (1972), Tatum (1973), Whitaker 

and Martin (1974), and Kilambi et al. (1977). Collins (1972) reported 

3 that trout raised at densities of 260, 390, and 455/m showed no 
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differences in weight gain. Kilambi et al. (1977) found neither growth 

3 nor feed conversion to be affected by densities of 183 and 301/m . For 

dugout cage culture, stocking rates may possibly be increased if fewer 

3 1 m cages were placed in the dugout. The present study maximum 

stocking rate of 70/cage, with 15 cages, resulted in a density of 

17, 500 trout/hectare. Studies by Halverson et al. ( 1980) and Roell 

(1983), were conducted at a density of 8, 650 trout/hectare. Careful 

consideration must be given to the dugout size, stocking rate, and 



cage size and number so as not to surpass the dugout carrying capacity. 

Overstocking may result in ammonia excesses and/or oxygen deficits 

resulting in poor growth and survival. 

Due to the small stocking size and short culture period, trout 

were unable to attain a minimum marketable-size of 173 g (Whitaker and 

Hartin 1974). With a mean harvest size of 83. 1 g for the 3 and 5% 

feeding treatments in the Schwartz and Starkenburg south dugouts, 

trout were large enough to be considered of marginally edible size 

for landowners. If 40 - 80 g trout could be stocked and cultured for 

a feeding period of 60 days, an edible size and possibly a marketable-

sized trout might be produced. If growth was similar to the present 

study, with a feeding rate of 3% bwt/day and a feed conversion rate of 

1. 65, 40 - 59 g trout fingerlings would attain an edible size of 

116 - 170 g. If 60 - 80 g trout were stocked, fish would reach a 

marketable size of 173 - 232 g. 

Growth within each dugout appeared to be influenced by Secchi 

disc visibility. From 23 April to 14 May, Secchi disc readings in all 

dugouts equaled or exceeded 0.6 m (Appendix Table 3). Mean trout 

growth for this period was 0. 98 g/day for all 3 and 5% bwt/day feeding 

treatments (Figures 3, 4, and 5). Growth for this period was greatest 

in the Starkenburg north dugout at 1. 04 g/day. 

From 14 May to 17 May water clarity decreased in the 

Starkenburg north dugout from a Secchi disc reading of 0.9 to 0.3 m. 

24 

This decrease in water clarity may have been due to the introduction of 

cattle into the surrounding pasture on 16 May. The cattle introduction 

corresponded with an increase in suspended silt in the surrounding 
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Figure 3. Mean weight (g) of rainbow trout (Salmo gairdneri) at 
various feeding rates for culture period in Schwartz 
dugout pond . 
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Figure 4. Mean weight (g) of rainbow trout (Salmo gairdneri) at 
various feeding rates for culture period in Starkenburg 
south dugout pond . 
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Figure 5. Mean weight (g) of rainbow trout (Salmo gairdneri) at 
various feeding rates for culture period in Starkenburg 
north dugout pond. 
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watershed during a period of receding water levels. DiLauro (1982) 

found water clarity to be significantly (P � 0.05) lower in dugouts 

exposed to pasturing cattle. This low water clarity continued for the 

remainder of the study, (Secchi disk visibility of 0.3 - 0.4) and 

corresponded with a reduced mean growth rate for the 3 and 5% bwt/day 

treatments of 0.24 g/day (Figure 5) . Singler (1981) reported 

steelhead trout growth to be slower in turbid water. It is uncertain 

why the Sterkenburg south dugout water clarity remained at 1. 4 to 

1.7 m after 16 May as cattle exposure to the Sterkenburg dugouts was 

equal. Soil differences and/or denser terrestrial vegetation in the 

Starkenburg south dugout watershed are possible explanations. 

The Schwartz and Starkenburg south dugouts mean growth rate 
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for the same feeding rates during this period was 0.93 g/day (Figures 3 

and 4) . Since rainbow trout are obligate visual feeders (Ware 1972) , 

the low water clarity in the Starkenburg north dugout would have 

reduced the ability of trout to efficiently locate and consume food. 

Rainbow trout mean survival rates for the Schwartz, Sterkenburg 

south, and Sterkenburg north dugouts were 99.6, 99.5, and 95.1%, 

respectively. Survival was comparable to the value of 98.0% reported 

by Roell (1983) ; other survival rates are in Table 7. The slightly 

lower survival in the Starkenburg north dugout may be attributed to 

the high silt turbidity. Hahn ( 1974) found that a significant 

(P � 0.0005) correlation existed between high turbidity and rainbow 

trout mortality. 



Rainbow Trout Feeding Behavior 

Feeding with floating trout chow commenced 23 April, three 

days after stocking, and continued daily until 2 1  J une for a total of 

60 days. Fish were first observed taking sinking pellets on the 

second feeding day; approximately 25% of each feed allotment would 

sink within five minutes. By the fourth feeding day, trout were 

observed consuming prepared food in  all cages fed. 

Trout in the 3% bwt/day treatment fed more voraciously 

than the 5% bwt/day trout, frequently forcing water out through the 

feeding holes as they consumed floating feed . The 5% bwt/day trou t 

rarely forced out water ; they usually consumed pellets as they sank. 
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The 3% bwt/day trout in the Schwartz and Starkenburg south 

dugouts usually consumed all floating pellets prior to the next feeding . 

In contrast, small amounts of floating feed were usually seen in the 

5% bwt/day cages prior to a feeding. 

In the Starkenburg north dugout, trout in both feeding 

treatments consumed all the feed until the decrease in water clarity . 

Following the reduction in water clarity, feeding became subdued . 

Trout from both the 3 and 5% bwt/day feeding treatments never consumed 

the entire feed allotment during the low water clarity in this dugout. 

Physiochemical Evaluation 

The mean dissolved oxygen concentrations at surface, 1 . 0, and 

2 . 0  m for the cult ure period were 9. 3, 8.5, and 7.5 mg/liter, 

respectively . Dissolved oxygen ranges at  surface, 1.0, and 2 . 0  m for 

the culture period were 7.8 - 11 . 2, 5 . 4 - 10 . 4, and 0 . 6 - 10.2 mg/liter, 



respectively (Appendix Table 3) . Oxygen levels were not considered 

adequate for trout growth and survival if concentrations fell below 

6.0 mg/liter (Barica 1975) . On two occasions oxygen fell below this 

level. The Starkenburg north dugout had low oxygen at 2.0 m on 

3 June and the Schwartz dugout had low oxygen concentrations occur 

at 1.0 and 2.0 m depths on 18 June . On these occasions trout did not 

appear to be stressed as feeding occurred. 

Temperatures were adequate for trout growth and survival from 

20 April to 2 1  June. Mean temperatures for this period at surface, 

1. 0, and 2.0 m were 13.6, 13. 0, and 1 1 . 8  C (Appendix Table 3) . These 

mean temperatures fell below the value of 15 C reported by Buck et al. 

(1972) as the optimum temperature for growth and feed conversion for 

caged rainbow trout . Temperature ranges at surface, 1.0, and 2.0 m for 

the culture period were 3 .  2 - 29. 0, 3. 2 - 26. 5, and 3. 2 - 2 3. 1 C, 

respectively (Appendix Table 3) . 
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Fish were harvested on 21 - 22 June, after surface temperatures 

reached or exceeded the lethal temperature of 27 C (Cherry et al. 1977) . 

Mean temperatures on 2 1  June at surface, 1.0, and 2.0 m were 27.3, 24. 0, 

and 21.6 C ,  respectively. 

Oxygen and temperature profiles were taken on 23 June following 

harvest. All dugouts had lethal and sublethal temperatures at surface 

and 1.0 m, respectively. Dissolved oxygen concentrations were adequate 

at the surface and 1.0 rn, but were at lethal levels for all dugouts at 

2.0 m (Appendix Table 3) . 



Mean f:lecchi disc readings during the culture period for the 

Schwartz, Starkenburg south, and Starkenburg north dugouts were 1. 5, 

1. 3, and 0. 5 m, respectively. Water clarity probably accounted for 

the differences in growth between dugouts. 

All other chemical and physical parameters monitored were 

adequate for trout survival and growth. During the culture period pH 

levels ranged from 8. 1 - 8. 3 for all dugouts. Witschi and Ziebell (19 79) 

reported survival of rainbow trout fingerlings was 100% when stocked 

in ponds with a pH of 8. 5 

Conductivity levels ranged from 240 - 680 µmhos/ cm with an 
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average of 436 µ mhos/cm. Clodfelter (1982) found rainbow trout to 

survive in South Dakota ponds with conductivities of 150 - 1,856 µmhos/cm. 

Salinity readings ranged from 0. 1 - 0. 5 parts per thousand with 

a mean of 0. 3 parts per thousand. Tatum ( 1973) reported rainbow trout 

growth rates of 0 .  7 - 1. 2 g/day for trout cage cultured in brackish 

water with a salinity of 20 parts per thousand. 

The total hardness and alkalinity levels in all dugouts were 

above the 20 mg/liter (Boyd 19 74) considered necessary for optimal fish 

production . Total hardness levels ranged from 1 84 - 444 mg/liter with 

a mean of 328 mg/liter. Total alkalinity levels ranged from 148 - 264 mg/ 

liter with an average of 218 mg/liter. 

Maximum depth declined in all dugouts during the study period 

(Appendix Table 3). The greatest depths in the Schwartz, Starkenburg 

south, and Starkenburg north dugouts were 3. 2, 3. 0, and 4 . 0 m, 

respectively, occurring on 18 April. Minimum depths for these 

reseective dugouts were 2. 7, 2 . 9 ,  and 3.6 m, occurring on 18 June . 



These depths still allowed cages to maintain proper floatation above 

the dugout bottoms. 

Stomach Contents 

Stomach contents of 450 trout were analyzed following harvest 
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to obtain an estimate of the contribution of natural food to trout diets 

(Table 8). Stomachs contained a total of 2, 381  food organisms with 

a total volume of 23.6 ml. Conchostracods were the most numerically 

abundant food item accounting for 63 . 9% of all organisms consumed; 

aquatic insects were second totaling 33. 9% . 

Trout stomachs from the Schwartz dugout contained 182 

organisms with a total volume of 1 . 9 ml (Table 9). Chironomidae 
���� -

comprised the most numerically abundant (65. 4%) taxon in the trout 

stomachs, amphipods ranked second (17.6%), and anisopterans third (8.5%) . 

Food items were most abundant in the non-fed fish, accounting for 89.8% 

of all organisms consumed. Food item frequency of occurrence for the 0, 

3, and 5% bwt/day feeding rates were 3.16, 0. 22, and 0. 26 items/stomach , 

respectively (Table 9). 

Trout stomachs from the Starkenburg south dugout contained 

2, 169 organisms with a total volume of 21. 0 ml (Table 9). Conchostracods 

were the most numerically abundant (70.2%) organisms in the trout diet, 

chironomids ranked second (1 4.1%) , and corixids third (12.7%). 

Macroinvertebrates were consumed more frequently by the non-fed fish ; 

75 . 1% of the organisms were consumed by this group. Natural food item 

frequency of occurrence for the 0 ,  3, and 5% bwt/day feeding rates were 

32 . 56, 7.48, and 3.60 items/stomach, respectively (Table 8). 



Table 8. Mean number and volume of aquatic organisms from cage-reared 
rainbow trout (Salmo gairdneri) stomachs, for three dugouts 
during 1983, South Dakota. 

Feeding Mean Mean volume 
Dugout rate number (ml) 

Schwartz 0 3 . 16 0. 0318 
(35 fish/cage) 3 0. 22 0. 0022 

5 0. 26 0. 0024 

Starkenburg south 0 32. 56 0. 3222 
(52 fish/cage) 3 7 . 48 0. 0690 

5 3. 60 0. 0316 

Starkenburg north 0 0. 50 0. 0196 
(70 fish/cage) 3 0 . 06 0. 0010 

5 0. 04 0. 0004 
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Table 9. Stomach contents of rainbow trout (Salmo gairdneri) from cage culture, expressed as mean 
number of organisms per stomach, for three dugout ponds , during 1983, South Dakota. 

Schwartz Starkenburg S Starkenburg N 

0 3 5 0 3 5 0 3 5 
Feed rate Feed rate Feed rate 

Food item (% bwt 1/day) (% bwt l /day) (% bwt l /day) 

Nematoda - - - 0. 12 0. 04 

Conchostraca - - - 22. 20 5. 74 2. 50 

Arnphipoda 0.46 0. 06 0. 10  

Hydracarina - - - 0 . 02 

Dytiscidae 0. 06 - - 0. 20 0. 02 0. 04 

Haliplidae 0.02 - - 0. 26 

Chaoborinae 0. 08 - - 0. 02 0. 04 0. 04 

Chironomidae 2. 10 0. 16 0 . 12 5. 00 0. 82 0. 28 

Baetidae 0. 04 - 0. 04 0. 50 0. 02 0. 02 

Corixidae 0. 02 - - 4. 04 0.74 o .  72 0. 46 0 . 06 0. 04 

Notonectidae - - - 0. 08 

Pleidae 0. 04 



Table 9 . (Continued) 

Food item 

Anisoptera 

Physidae 

Planorbidae 

Pimephales promelas 

1 
bwt = bodyweight/day. 

Schwartz 

0 3 

Feed rate 
(% bwt 1 /day) 

0. 30 

0. 02 

0.02 

5 0 

Starkenburg S 

3 

Feed rate 
(% bwt 1 /day) 

0 . 04 0. 06 

0. 08 

0 

Starkenburg N 

3 

Feed rate 
(% bwt 1 /day) 

0. 04 

5 

(.,..) 
Vl 
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Natural food consumption in the Starkenburg north dugout was low 

(Table 9). Stomachs contained 30 organisms with a total volume o f  0.7 ml. 

Corixids were the most numerically abundant (93. 3%) taxon found. 

Fathead minnows (Pimephales promelas) were the only other organism 

consumed totaling 6.7% by number. Food items were most common in the 

non- fed fish, accounting for 83. 3% of all consumed organisms. Food 

item frequency of occurrence for the 0, 3, and 5% bwt/day feeding rates 

were 0.50, 0.06, and 0.04 items/stomach, respectively. 

The contribution of natural food items by number and volume 

were significantly (P .::_ 0. 05) different between dugouts, feeding rates, 

and feeding rates within dugouts. The mean consumption rates for the 

0, 3, and 5% bwt/day treatments by number were 12.71, 2.59, and 1.28 

items/stomach, respectively. Mean stomach content  volumes for these 

respective feeding rates were 1.205, 0.241, and 0.118 ml/stomach. 

A Waller-Duncan ' s  K-ratio t-test for stomach content natural 

food item number and volume showed the non-fed treatment to be 

significantly (P .::_ 0.05) greater than the 3 and 5% bwt/day treatments 

(Table 10). This test also revealed the natural food consumption 

rate, by number and volume, to be significantly (P .::_ 0.05) greater in 

the Starkenburg south dugout than the Schwartz and Starkenburg north 

dugouts (Table 11). The low consumption rate by the 3 and 5% bwt/day 

feed treatments indicated that nat 1Jral foods probably represented 

a minor portion to the diet. 



37 

Table 10 . The results of Waller-Duncan's K-ratio t-test for mean number 
and mean volume of natural food items in cage cultured 
rainbow trout (Salmo gairdneri) for three respective feeding 
rates during 198 3, South Dakota. 

Number : (0% a bwt /day) ( 3% a bwt /day) (5% bwta /day) 
12. 7 2. 59 1. 28 

* 

Volume : (0% a bwt /day) ( 3% bwta/day) (5% bwta/day) 
12. 05 2. 4 1  1. 18 

abwt = body weight/day. 

Underscored values denote no significance (P 2 0.05) difference. 
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Table 1 1 .  Results of Waller-Duncan ' s  K-ratio t-test for mean number and 
mean volume of natural food items in cage cultured rainbow 
trout (Salmo gairdneri) for the three respective dugouts 
during 1983, South Dakota. 

Number: Starkenburg s Schwartz Starkenburg N 
15. 16 1. 2 1  0.21 

* 

Volume : Starken burg s Schwartz Starkenburg N 
14 . 00 1. 25 0. 39 

Underscored values denote no significant (P < 0 . 05) difference. 



Palatability 

Trout palatability was not quantified by a taste panel, but 

personal communications with landowners and university personnel who 

consumed trout were favorable. All individuals considered the flavor 

as acceptable. One landowner consumed trout three to four times per 

week for approximately six weeks. The only criticism was the small 

trout size. 

Economic Evaluation 

The economics of a hypothetical dugout cage culture operation 

3 was developed for rainbow trout reared in 9.82 m ( 1.22 x 3.66 x 2.2 m 

deep) floating cages. Rectangular shaped cages with a high surface-

volume ratio were used to reduce the potential of water circulation 

problems from occurring at the cage center (Roell 1983) . Cages were 

constructed with 12. 7 mm mesh plastic netting. Roell ( 1983) reported 

plastic netting to be more durable and less prone to fouling from 

debris than nylon netting. 

With proper care, cages constructed with plastic mesh should 

last at least five years . Cages used in the present study were in 

their second year of use and exhibited no plastic mesh wear. 

Initial fingerling weight was assumed to be 66 g (178 mm) . 

A final harvest marketable weight of 190 g round weight (live weight) 

was projected from a feeding ration of 3% bwt/day , with a feed 

conversion rate of 1. 65 , such as in this study. The culture period 
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was assumed to be 60 days. The cost estimate of the fingerlings ($35/100) 

was obtained from Trout Aire fish hatchery, St. Paul, Minnesota. The 



transport charge was $1.00/mile one way, with a delivery capacity of 

818 kg (12, 400 fingerlings) , delivery distance is 350 miles. 

A stocking rate of 100 fish/m3 (one cage/dugout) was used for 

this evaluation . This stocking rate results in a density of 

approximately 14 , 900 trout/hectare (0.06 hectare dugout) , a density 

between the Sterkenburg south and north dugouts. 

The estimated costs (Table 12) per weight of fish reared 

(dressed weight) reveal the impact of cage cost if it is all included 

in first year figures. Cage cost would be relatively insignificant 

if it is prorated over several years. 

With current wholesale fresh trout prices at $5 . 03 - $5. 69/kg 

($2.29 - $2. 59/lb) (Capitol City Fish, personal communication) , a 

successful operation may be possible if cage cost is prorated over a 

period of five years. The production cost of rainbow trout would be 

$ 4. 26/kg ( $1. 93/lb) resulting in a profit of $0. 77 - $1 .  43/kg ( $0. 36 -

$0.66) . 

While rainbow trout cage-rearing is biologically feasible, 

economic success is uncertain. Hopefully continued research will 

provide landowners with the necessary data to enable rainbow trout 

to be cage-reared by dugout owners for a food and/or income source. 
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Table 12. Estimated costs of a hypothetical cage-rearing operation for 
rainbow trout (Salmo gairdneri) in a 9.82 m 3 rectangular cage 
within an eastern South Dakota dugout pond . 

Item 

Fingerlings (66 g each) 

$35 per hundred 
Stock at 100/m3 

Feed 
183 kg @ $0.88/kg 

Cage (plastic netting) 

2 Transportation 

Total 

89 3 fish 1 

3 Total (cage cost prorated) 

Harvest 

89 3 fish at 147 g (dressed) 4 each 
Less 2% mortality = 875 fish 
Cost per kilogram 

Cost (cage cost prorated) 
per kilogram 

18.9 3 m3 of  cage is submersed. 

2 Cost at capacity load. 

3Prorated over five years. 

4 Dressed weight approximately 75% round weight . 

Cost 

$ 3 13 

161 

248 

25 

$ 747 

$ 549 

$ 
( 

$ 
( 

5.80/kg 
2 . 63/lb) 

4 . 26/kg 
1 . 9 3/lb) 
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RAINBOW TROUT PRODUCTION CONCLUSION 

Cage-reared rainbow trout exhibited favorable growth and survival 

at feeding rates of 3 and 5% bwt/day . An optimal stocking rate (as it 

effects growth rate) was not, however, determined . Differences in 

dugout water chemistry in the ponds studied appeared to be a factor 

affecting growth rate . The low contribution of naturally produced 

food items consumed by the 3 and 5% bwt/day feeding rates, indicated 

natural food items probably represented a minor portion of the diet . In 

addition if natural food represented a maj or portion of the diet, 

non-fed fish would have experienced weight gain. 

While trout did no t obtain a marketable size, fish were large 

enough for consumption . A hypo thetical cage culture utilizing a feeding 

rate of 3% bwt/day and a feed conversion rate of 1 . 65, indicated that 

cage culture may be profitable if stocking size and stocking rate were 

increased and larger cages were used . 



Benthic Production 

An annual cycle of benthic macroinvertebrates in two dugouts , 

Kurtz (three-year-old) and Oppelt (six-year-old) (Appendix Table 1), 

was investigated to determine benthic production and fauna . Benthic 

communities can be used as indicators of aquatic system productivity 

and water quality (Tebo 1955; Anderson and Hooper 1956; Hayne and Ball 

1956; Carr and Hiltunen 1965; Cole and Underhill 1965; Mrachek and 

Bachman 1967). 

The mean annual biomass of benthos in the Kurtz and Oppelt 

dugouts were 3, 274 and 1, 320 mg/m2, respectively. Biomass peaked at 
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the Kurtz and Oppelt dugouts on 4 November 1982 and 4 June 1982, 

respectively (Figures 6 and 7). The mean numerical abundance in the 

Kurtz and Oppelt dugouts were 5, 2 75 and l,570/m2, respectively. Benthic 

macroinvertebrate numbers peaked in both dugouts on 4 June 1982. 

Mean annual invertebrate biomass and numerical abundance in the 

Kurtz dugout was significantly (P .::_ 0.05) greater than in the Oppelt 

dugout (Tables 13 and 14) . Significant differences (P .::. 0 . 05) were 

also observed between sample dates for biomass and numerical abundance. 

Kurtz Dugout Benthic Community 

The Kurtz dugout fauna was dominated by chironomids and aquatic 

worms (class Oligochaetae). Chironomids and oligochaetes averaged 48 

and 44%, respectively, of the total biomass found in the Kurtz dugout . 

These taxa comprised 35 and 62%, respectively, of the total Kurtz benthic 

fauna by number . 
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Figure 6. Abundance and biomass of benthic macroinvertebrates in a 
three-year-old (Kurtz) South Dakota dugout pond during 
1982-83. 
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Table 13 . The analysis of variance procedure showing significant 
differences in macrobenthic biomass between the three-year
old (Kurtz) and six-year-old (Oppelt) dugout ponds during 
1982-83, South Dakota . 

Source d. f .  SS MS F 

Dugout 1 125,951, 327 125,951, 327 28 . 87* 

Period 2 1  1 98, 546, 490 945, 459 2 .  17* 

Dugout X Period 21 232, 478, 421  1, 107, 040 2 . 54* 

Error 188 383, 906, 721 436, 258 

* 
Denotes significance (P 2. 0. 05) . 
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Table 14. The analysis of variance procedure showing significant 
differences in macrobenthic abundance between the three-year
old (Kurtz) and six-year-old (Oppelt) dugout ponds during 
1982-83, South Dakota. 

Source d.  f .  SS MS F 

Dugout 1 452, 753, 254 452 , 753, 254 42 . 12* 

Period 21 924, 497, 308 4, 402,368 4. 10* 

Dugout X Period 21 179,330, 604 853, 955 0 . 79 

Error 88 945, 855, 157 1, 074, 835 

* 
Denotes significance (P 2 0. 05) . 



The mean annual chironomid numerical abundance and biomass was 

2 2 1, 840/m and 1, 5 79 mg/m , respectively. Chironomus attenuatus and c. 

plumosus were the predominant dipterans present, comprising 83% of the 

dipterans by number. Chironomus attenuatus was the most numerically 

abundant dipteran species . Four other chironomid genera were rarely 

sampled (Table 15) .  Procladius spp . were the second most abundant 

dipteran genera, totaling 13%. Other dipterans infrequently sampled 

were Chaoborus spp . and Palpomyia tibialis. 

Chironomid numbers peaked on 4 June 198 2  (9, 2 73/m2) and biomass 

peaked on 4 November 1982 (2, 491 mg/m2) .  Numbers and biomass were 

lowest on 10 September 198 2  at 81/m2 and 66 mg/m2, respectively 

(Table 16);  this was due to the emergence of adults. Large numbers 

of empty pupae cases were observed during June and July . 

The Kurtz dugout dipteran production was found to be 

significantly (P ..:::_ 0.05) greater in mean biomass and mean numerical 

abundance than the Oppelt dugout . Biomass and number between sample 

dates were also significantly (P ..:::_ 0 . 05) different. 

Oligochaetes were the most numerous benthic macroinvertebrate 

2 
in the Kurtz dugout with a mean annual abundance of 3, 2 53/m . The mean 

2 annual biomass was 1, 4 5 8  mg/m . Biomass and numerical abundance were 

4 8  

variable throughout the study period (Table 17) . Highest biomass and 

number occurred 23 April 1983 at 4, 2 8 8  mg/m2 and 6, 908/m2, respectively .  

Oligochaete biomass and number were lowest on 23 April 198 2  at 

418 mg/m2 and 380/m2, respectively. Kurtz dugout oligochaete 

production was significantly (P ..:::_ 0 . 05) greater in mean annual biomass 

and number than the Oppelt dugout. 



Table 1 5. Macroinvertebrates collected from a three-year-old (Kurtz) 
dugout pond during 1982-83, South Dakota . 

Phylum - Nematodea 

Phylum - Annelida 
Class - Oligochaetae 
Class - Hirudinea 

Phylum - Arthropoda 

Helobdella stagnalis 
Erpobdella punctata 

Class - Crustacea 
Order - Amphipoda 

Hyalella azteca 
Order - Hydracarina 

Limnochares spp . *  
Class - lnsecta 

Order - Coleoptera 
Family - Dytiscidae 

Copelatus spp . *  
Order - Diptera 

Family - Chironomidae 
Tanypodinae 

Procladius spp.* 
Chironominae 

Chironomus spp . 
Chironomus attenuatus 
Chironomus plumosus 
Cryptochironomus spp . *  
Endochironomus spp . *  
Glyptotendipes spp. 

Orthocladiinae 
Tanytarsus spp.* 

Family - Ceratopogonidae 
Palpomyia tibialis 

Family - Chaoboridae 
Chaoborus spp . 

Order - Hemiptera 
Family - Corixidae 

Callicorixa spp. * 
Family - Notonectidae 

Notonecta spp . *  

*Not collected in six-year-old (Oppelt) dugout. 
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Table 16 . Mean abundance and biomass (mg) per square meter of 
Chironominae for a six-year-old (Oppelt )  and a three-year
old (Kurtz )  dugout pond during 19 82-83 , South Dakota . 

Date 

04 /23/82 

05/ 06/82  

05/20/ 82 

06/04/82 

06/ 1 8/82  

07/0 1 /82 

07/ 16/82 

07 /29/82  

08/ 1 3/ 82 

08/ 28/82 

09/ 10/82  

09/ 23/82 

10/07 /82  

10/ 2 2 /82 

1 1 /04/82 

1 1 / 1 7 /82  

1 2 / 1 3/82 

0 1 / 1 3 /83 

02/ 1 0/83  

03/ 1 5 /83 

04 /09/83 

04/ 23/83 

a 2 Number/m . 

b 2 mg/m . 

c Less than 1 .  0 .  

Six year 
Number 

l , 06 la 

4 1 5 

2 , 756 

1 3 , 5 75  

4 , 86 7  

104 

1 2  

0 

104 

0 

1 2  

0 

1 2  

0 

23 

69  

300 

2 3  

1 2  

1 2  

0 

23 

(OpEelt )  Three year (Kurtz)  
Biomass Number Biomass 

l , 16 2b 2 , 768 2 , 835 

625  588 965 

1 , 076 3 ,  149  84 1  

7 , 1 74 9 , 2 73  3 , 1 70 

1 ,  6 7 2  4 , 982  2 , 92 1  

48  3 , 264 1 , 872  

3 1 , 695 7 78  

0 1 , 1 99  1 , 6 2 1  

1 8  254  4 20 

0 1 38 1 7 5  

3 81  66 

0 957  450 

1 1 ,  9 26 2 , 688 

0 1 , 165 1 , 392  

Tc 1 , 984 3 ,  7 7 5  

4 1  1 , 55 7  2 , 9 58 

99 1 ,  234 1 , 874 

8 5 7 7  7 2 7  

2 9 1 1  1 , 354  

T 1 , 1 76 1 , 340 

T 7 15 1 , 1 70 

1 3  8 7 7  1 , 405 



Table 17. Mean ab undance and biomass (mg) per sq uare meter of 
Oligochaetae for a six-year-old (Oppelt) and a three-year-old 
(Kurtz) dugout pond during 1982-83, South Dakota. 

Date 

04/23/82 

05/06/82 

05/20/82 

06/04/82 

06/18/82 

07/01/82 

07/16/82 

07/29/82 

08/13/82 

08/28/82 

09/10/82 

09/23/82 

10/07 /82 

10/22/82 

11/04/82 

11/17/82 

12/13/82 

01/13/83 

02/10/83 

03/15/83 

04/09/83 

04/23/83 

�umber/m2 . 

b 2 mg/m . 

cLess than 1. 0 .  

Six year 
Number 

58a 

208 

1,476 

173 

830 

1, 753 

0 

81 

23 

150 

81 

81 

12 

12 

323 

208 

231 

0 

334 

58 

12 

334 

(01212elt) Three year (Kurtz) 
Biomass Number Biomass 

27b 381 419 

106 980 438 

155 3, 287 1, 171 

99 3,379 1, 143 

91 1, 845 204 

91 4,037 374 

0 669 163 

Tc 3,956 1, 009 

14 2,410 215 

T 2, 053 600 

65 3, 287 2,397 

10 7, 116 420 

T 2 , 941 1,404 

6 5, 213 2, 805 

4 5, 190 4,558 

T 1, 684 1,164 

1 6, 078 2, 527 

0 657 479 

10 2, 526 2,062 

T 3, 264 1,908 

1 3, 702 2,334 

40 6,908 4, 288 
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Other macroinvertebrates infrequently sampled in the Kur tz 

dugout were : Amphipoda, Hydracarina, Nematoda, three Insecta genera, 

and two Hirudinea species (Table 15). Hydracarina and Nematoda were 

not collected in the Oppelt dugout . 

Oppelt Dugout Benthic Community 

The Oppelt dugout was dominated by chironomids , oligochaetes, 

and hirudineans. These t axa averaged 41, 2, and 51%, respectively, of 

the total biomass. Chironomids, oligochaetes, and hirudineans comprised 

68, 19, and 10%, respectively, of the total benthic organisms by number . 

The mean annual chironomid numerical abundance and biomass was 

2 2 1, 063/m and 543 rng/m , respectively. Chironomus attenuatus and C. 

plumosus were the predominant dipterans present, accounting for 97% 

of the dipterans by number; _f. attenuatus was the most numerically 

abundant species. Four other chironomid genera were infrequently 

collected (Table 18) . Other dipterans present were Chaoborus spp. 

and Palpomyia tibialis. 

Chironomid biomass and number peaked on 4 June 1982 at 

2 2 7, 174 mg/m and 13, 575/m , respectively. Biomass and number rapidly 

decreased through 29 July 1982 when no chironomids were collected 

(Table 16) . Densities remained lov for the remainder of the study 

period, never exceeding 300/m2 . 

Oligochaetes were the second most common taxon collected. 

Mean annual numerical abundance and biomass were 293/m2 and 33  mg/m2, 

respectively. 
2 Highest biomass occurred on 20 May 1982 (155 mg/m ), 

2 while greatest number was on 16 July 198 2 ( 1, 753/m ). Lowest number 



Table l8 . Macroinvertebrates collected from a six-year-old (Oppelt) 
dugout pond during 1982-83 , South Dakota. 

Phylum - Annelida 
Class - Oligochaetae 
Class - Hirudinea 

Phylum - Arthopoda 

Helobdella stagnalis 
Helobdella nepheloidea* 
Erpobdella punctata 

Class - Crustacea 
Order - Amphipoda 

Hyalella azteca 
Class - Insecta 

Order - Coleoptera 
Family - Dytiscidae 

Coptotomus spp.*  
Agabus spp. * 

Order - Diptera 
Family - Chironomidae 

Chironominae 
Chironomus spp. 
Chironomus attenuatus 
Chironomus plumosus 
Glyptotendipes spp. 
Paralauterborniella spp.* 

Orthocladiinae 
Trissocladius spp.* 

Family - Ceratopogonidae 
Palpomyia tibialis 

Family - Chaoboridae 
Chaoborus spp . 

Phylum - Mollusca 
Class - Pelecypoda 

Family - Sphaeri idae 
Pisidium* 

*Not collected in three-year-old dugout (Kurtz) . 
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and biomass occurred on 29 July 1982 and 13 January 1982, respectively, 

when ol igochaetes were not collected (Table 17) .  

Hirudinae was the third most numerically abundant organism 

collected . Mean annual abundance and biomass were 161/m2 and 674 mg/m
2
. 

Erobdella punctata and Helobdella stagnalis were the predominant leeches 

present, comprising 65 and 34% ,  respectively, of the leeches by number. 

Helobdella nepheloidea was infrequently collected and constituted 1% of 

the sample. Highest biomass occurred on 23 September 1982 (2, 773 mg/m2) 

2 
and greatest numbers on 1 July 1982 (427/m ) .  The density low occurred 

4 June 1982 (12/m2) ,  while the biomass low as on 13 January 1982 

(13 mg/m2) (Table 19) .  The Oppelt dugout hirudinea mean annual biomass 

and abundance were significantly (P � 0. 05) greater than the Kurtz pond. 

Other benthic taxa infrequently collected were : Amphipoda, 

Pelecypoda, and three Insecta genera (Table 18 ) .  Pelsecypods were not 

found in the Kurtz dugout. 

Benthic Production Summary 

The newer (Kurtz) dugout was determined to have a significantly 

(P < 0.05) greater production than the older (Oppelt) dugout. This 

production evaluation is contrary to a recent study finding zooplankton 

production to be signficantly (P _2 0. 01) greater in the Oppelt dugout 

(DiLauro 1982) . DiLauro reported the greater production in the Oppelt 

dugout was due to longer cattle exposure, resulting in more organically 

rich waters. 

An explanation of the lower benthic production in the Oppelt dugout 

appears to be at least partially due to the differential cattle exposure 

between ponds. The Kurtz dugout cattle exposure never exceeded 15 
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Table 19 . Mean abundance and biomass (mg) per square meter of Hirudinea 
for a six-year-old (Oppelt ) and a three-year-old (Kurtz) 
dugout pond during 1982-83, South Dakota . 

Date 

04/23/82 

05/06/82 

05/20/82 

06/04/82 

06/18/82 

07/01/82 

07/16/82 

07/29/82 

08/13/82 

08/28/82 

09/10/82 

09/23/82 

10/07/82 

10/22/82 

11/04/82 

11/27/82 

12/13/82 

01/13/83 

02/10/83 

03/15/83 

04/09/83 

04/23/83 

1 2 number/m 

2 2 mg/m 

Six-1:ear 
Numbersl 

81 

46 

104 

12 

58 

423 

23 

35  

38 1 

242 

231 

381 

127 

254 

150 

254 

231 

23 

231 

3 5  

92 

138 

(OEEel t )  Three-1:ear (Kurtz) 
Biomass2 Numbers Biomass 

7 17 0 0 

74 0 0 

236 0 0 

27 0 0 

533 0 0 

1 , 3 1 5  12 6 

220 23 17 

316 12 13 

1,375 0 0 

337 0 0 

1,372 0 0 

2, 773 0 0 

617 0 0 

8 5 3  0 0 

ll5 0 0 

1,292 0 0 

674 3 5  63 5 

1 3  12 7 

292 0 0 

39 0 0 

939 0 0 

699 0 0 
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cattle, while in the Oppelt pasture the herd numbered 64 animals. Both 

dugouts were exposed to pasturing cattle from mid-June to November. 

Intensive cattle watering and wallowing in the Oppelt dugout resulting 

in a decrease in water clarity from a Secchi disc reading of 2.2 m on 

4 June 1982 to 0.3 m on 18 June 1982. This introduction of cattle 

corresponds with the decline of dipteran larvae (Figure 7) ; Hilsenhoff 

and Narf (1968) found Chironomus attenuatus larvae to be negatively 

correlated with high turbidity. The dipteran larvae decline did not 

appear to result from pupation since few pupae were collected (Appendix 

Table 4) and empty floating pupae cases were never observed. Oppelt 

Secchi disc readings remained low (0. 3 - 0. 4 m) from 28 June 1982 to 

ice-up, resulting in continued low dipteran densities. Kurtz dugout 

Secchi disc readings were never below 1 . 0  m. 

An explanation of the higher Hirudinea population in the Oppelt 

dugout appeared to be due to differential substrate composition between 

d Th O 1 d h f · 1 70 2 · · ugouts . e ppe t ugout as an area o approximate y m containing 

rocks ranging in size from 10 - 50 cm. The Kurtz dugout substrate 

contains few rocks. Solid substrate is necessary for proper functioning 

of the leech sucker . The suckers are used for locomotion, feeding, 

and reproduction and cannot function well in mud or sand. In addition, 

a solid substrate is required by most leeches for cacoon deposition 

(Sawyer 1981) . 

The lower oligochaete population in the Oppelt dugout may be 

due to a predator-prey relationship between oligochaetes and leeches. 

Helobdella stagnalis and Erobdella punctata feed predominately on 

oligochaetes (Moore 1912; Sapkarev 1963, 1968; Sawyer 1970) . 



Using benthic communities as an indicator of aquatic system 

productivity, the Kurtz and Oppelt dugouts can be considered highly 

productive for this region . The Kurtz and Oppelt dugouts were more 

productive in terms of mean annual benthic biomass and number than 

several eastern South Dakota lakes (Schmulbach and Sandholm 1962 ; 

Hartung 1968; Smith 1971; Sloane 1980) . 

The Kurtz dugout may be considered organically polluted. High 

chironomid and oligochaete densities are associated with organic 

pollution. Brinkhurst (1969) found that numbers of oligochaetes 

relative to chironomids increased in lakes as organic enrichment 

increased. In the Kurtz dugout, chironomids comprised 351:'. and 

oligochaetes 62% of the total number of organisms found. These 

values approximate the chironornid - oligochaetae composition of 35 and 

60% in Lake Erie during 1958. 

The Oppelt dugout also appeared to be organically rich. 

Sawyer (1981) found Helobdella stagnalis and Erobdella punctata to 

be consistently associated with organically polluted waters and 

may be considered " indicator species" of disturbed waters if numbers 

become unusually high (500/m2) .  While these two species were present 

in both dugouts, numbers were high only in the Oppelt dugout, 

exceeding 500/m2 
on three sample periods (Table 19) . 
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BENTHOS CONCLUSION 

Benthic fauna, biomass, and abundance were dominated by 

chironomids, oligochaetes, and hirudineans. These respective taxa, 

when found in large numbers, indicate eutrophic conditions. Production 

in terms of mean annual benthic macroinvertebrate biomass and 

numbers exceed several eastern South Dakota lakes. Benthic 

macroinvertebrate composition and production may be highly variable 

between dugout ponds due to dugout age, nutrient load, cattle usage, 

substrate type, and other possible factors. 
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APPENDI X 



Appendix Table 1. Physical description of cage and benthic production 
dugout ponds used to study the culture of rainbow 
trout (Salmo gairdneri) during 1982-83 in Brookings 
County, South Dakota. 

Legal DescriEtion 

67 

Name Section/Township/Range Hectares Stocking Rate 

Trout dugouts 

Schwartz SW 1/4 27 1.1 1-49 0 . 056 3 5  fish/cage 

Starkenburg 
South NE 1/4 33 1 11-51 0. 064 52 fish/cage 

S tarkenburg 
North NE 1/4 33 1 1 1-51  0. 062 70 fish/cage 

Benthos eroduction 
dugouts 

Kurtz NW 1/4 6 110-47 0 . 048 

Oppelt NW 1/4 1 110-48 0.054 
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Appendix Table 2. Rainbow trout (Salmo gairdneri) capture data during 
sampling dates of cage culture , 1983. 

Feeding x weight Weight range 
Date Dugout rate (grams) (grams) 

05-05 Schwartz oa 30. 5 24 - 39 
3 33. 3 26 - 42 
5 32. 9 25 - 46 

Starkenburg South 0 3 5. 0 28 51 
3 38. 2 27 - 51 
5 42. 0 30 - 62 

Starkenburg North 0 26. 4 22 - 34 
3 3 5 . 8  25 - 45 
5 44. 9 32 - 70 

05-14 Schwartz 0 28. 8 26 - 40 
3 48 . 0  36 - 65 
5 53. 7 41 - 73 

Starkenburg South 0 32. 9 27 - 40 
3 44. 0 33 - 52 
5 45. 8  25 - 66 

Starkenburg North 0 29 . 5  22 - 39 
3 49. 7  32 - 62 
5 so . a  31  - 84 

05-24 Schwartz 0 3 1. 6  26 - 38 
3 59. 6 24 - 92 
5 52. 7 41 - 66 

Starkenburg S outh 0 36. 8  3 0  - 54 
3 55. 9  36 - 7 1 

5 51 . 6 39 - 7 1  

Starkenburg North 0 28. 4 22 - 44 
3 48. 4  28 - 65 
5 54.5 36 - 7 7  

06-03 Schwartz 0 27.1 24 - 31 
3 60. 4 40 - 81 
s 68. 3 53 - 98 

Starkenburg Sou th 0 34. 9 27 - 60 
3 67.1 45 - 94 
5 73 . 1  54 -11 4 

S tarkenburg North 0 3 0. 8  25 - 50 
3 57. 1 37 - 76 
5 57 . 5  38 - 90 
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Appendix Table 2 .  (Continued) 

Feeding x weight Weight range 
Date Dugout rate (grams) (grams) 

06-15 Schwartz 0 30 . 0  25 - 4� 
3 90 . 1  75 -lO 'f 
5 80 . 4  61 -1 55 

Starkenburg South 0 31. 9 27 - 39 
3 83.0 52 -111 
5 80 . 1  57 -122 

Starkenburg North 0 27 . 3  23 - 43 
3 66.0 43 -1 1()  

5 57 . 4 34 - 89 

aExpressed as percent body weight/day . 



Appendix Table 3. Chemical-physical properties of rainbow trout (Salmo 
gairdneri) cage culture dugouts, during 1983. 
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Date Schwartz 
Starkenburg 

South 
Starkenburg 

North 

04- 18 Oxygen 
(mg/1) 

Temperature 
( C) 

Alkalinity 
(mg/1 CaC03) 

Hardness 
(mg/1 CaC0

3
) 

Salinity 
(parts/thousand) 

Specific 
conductivity 
(µmhos/cm) 

Maximum depth (m) 

Secchi disc (m) 

pH 

05-04 Oxygen 
(mg/1) 

Temperature 
(C)  

Alkalinity 
(mg/ 1 CaC0

3
) 

Hardness 
( mg I 1 Ca CO 

3
) 

Sal inity 
(parts/thousand) 

Specific 
conductivity 
(µmhos) 

Maximum depth (m) 

Secchi disc (m) 

pH 

0. 0 m 
1 . 0  m 
2. 0 m 

0. 0 m 
1 .  0 m 
2. 0 m 

C03 
HC0

3 

0 . 0  m 
1 .  0 m 
2. 0 m 

0.0 m 
1. 0 m 
2.0 rn 

co
3 

HC0
3 

9 . 4  
9. 2 
8. 6 

3.2 
3. 2 
3. 2 

0 

258 

440 

0. 2 

440 

3.2 

2. 0 

8. 3 

9. 4 
9 . 0  
7 .6  

10. 5 
1 0 . 2  

9. 9 

0 

209 

329 

0. 3 

470 

3. 1 

1 .  7 

8. 3 

10. 6  
10. 2  

8.8 

3. 8 
3 .8  
3. 8 

0 

148 

184 

0 . 1 

240 

3. 0 

0. 6 

8 . 3  

9 . 4  
8. 6 
8. 2 

1 1 .  6 
11 . 0  

9. 7 

0 

192 

258 

0 . 3  

350 

3. 0 

1. 0 

8. 2 

8. 2 
7.6 
7. 0 

3. 8 
3. 8 
3.8  

0 

205 

253 

0. 2 

310 

4. 0 

0. 7 

8. 2 

10. 0  
9.4 
8. 4 

13. 1 
1 1 .  5 
10. 2 

0 

261 

344 

0.3 

490 

3.9 

0. 9 

8 . 2  
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Appendix Table 3 .  (Continued) 

Starkenburg Starkenburg 
Date Schwartz South North 

05-17 Oxygen 0 . 0  m 9 . 0  8. 2 10 . 0  
(mg/1) 1 . 0 m 8 . 8 7 . 0  9 . 2 

2 . 0  m 8 . 2  7 . 0  7 . 8  

Temperature 0 . 0  m 14 . 1  14 . 2  14 . 5  
(C) 1 . 0 m 14 . 1  14 . 2  13 . 9  

2 . 0  m 12 . 1  12 . 1  11 . 9 

Alkalinity 0 0 0 
(mg/1 Caco3) 240 185 235 

Hardness 402 245 345 (mg/1 Caco3) 

Salinity 
(parts/thousand) 0 . 5  0 . 4  0 . 3  

Specific 
conductivity 680 
(µmhos/cm) 

400 520 

Maximum depth (m) 2 . 9  2 . 9  3 . 9  

Secchi disc (m) 1 .  4 1 . 6 0 . 3  

pH 8 . 2 8 . 2  8 . 1  

06-03 Oxygen 0 . 0  m 11 . 2  9 . 2 9 . 6  
(mg/1) 1 . 0 m 10 . 4  9 . 2 8 . 6  

2 . 0  m 10 . 2  6 . 8  5.8 

Temperature 0. 0 m 18 . 3  20 . 0  19 . 0  
(C) 1 . 0 m 17 . 9  18 . 0  18 . 3  

2 . 0  m 10 . 2  6 . 8  5 . 8  

Alkalinity C03 0 0 0 
(mg/1 Caco3 ) HC03 198 240 251 

Hardness 
(mg/1 Caco3 ) 444 290 360 

Salinity 0 . 4  0 . 3  0 . 3  
(parts/thousand) 

Specific 
conductivity 500 360 440 
(µmhos/cm) 

Maximum depth (m) 2 . 8  2 . 9  3 . 6 

Sec chi disc (m) 1 . 1  1 . 4 0 . 3  

pH 8 . 2  8 . 3  8 . 2  
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Appendix Table 3. (Continued) 

Starkenburg S tarkenburg 
Date Schwartz South North 

06-18 Oxygen 0. 0 m 9. 0 8. 6 7. 8 
(mg/1) 1. 0 m 5. 4 8. 0 7. 0 

2. 0 m 5. 0 7. 0 6.6 

Temperature 0. 0 m 20. S  19. 8 18. 1 
(C) 1. 0 m 19. 0 18. 9 17. 9 

2. 0 m 18. 3 18. 0 17. 1 

Alkalinity co3 0 0 0 
(mg/1 Caco3) HC03 146 240 264 

Hardness 379 296 353 
(CaC03) 

Salinity 0. 4 0. 3 0. 4 
(parts/thousand) 

Specific 
conductivity 480 380 480 
(µmhos/cm) 

Maximum depth (m) 2. 7 2. 9 3.6 

Sec chi disc (m) 1. 3 1. 7 0. 3 

pH 8. 3 8. 2 8. 2 

06-27 Oxygen 0. 0 m 9. 2 8. 0 8.2 
( mg/ 1) 1. 0 m 7. 2 6.6 5.4 

2. 0 m 5. 0 1.2 0. 6 

Temperature 0. 0 m 29. 0 29. 0 29. 1 
( C) 1.  0 m 25. 1 26. 5 26. 5 

2. 0 m 21. 9 23. 1 21. 2 

Alkalinity co3 
(mg/1 Caco3) HC03 
Hardness 
(mg/1 Caco3) 

Salinity 
(parts/thou sand) 

Specific 
conductivity 
(µmhos/cm) 

Maximum depth (m) 

Sec chi disc (m) 

pH 



Appendix Table 4. Abundance and biomass (mg) determinations of the macrobenthic organisms collected 
in a six-year-old (Oppelt) dugout pond during 1982-83. T = less than 1.0 mg . 

Chironominae 
Sample Chaoborus Chironominae pupae Tanypodinae Oligochaetae Rirudinidae Other Total 

OlA Number 3 46 - - 1 2 - 52 
Dry weight T 57 - - T 5 - 62 

OlB Number 1 1 3  - - 2 4 - 20 
Dry weight 1 13 - - T 56 - 70 

OlC Number 4 33 - - 2 1 2 40 
Dry weight T 3 1  - - 2 1 4 38 

OZA Number 8 15 - - - - - 23 
Dry weight 2 25 - - - - - 27 

02B Number 2 11 l - 8 - - 22 
Dry weight T 21 1 - 8 - - 30 

02C Number - 10 - - 10 4 - 24 
Dry weight - 9 - - 1 6 - 16 

03A Number - 22 - - 31 2 - 55 
Dry weight - 19 - - 1 14 - 34 

03B Number - 27 - - 86 6 - 119 
Dry weight - 8 - - 7 3 - 18 

03C Number - 190 10 - 11 1 1 213 
Dry weight - 66 14 - 5 4 T 89 

04A Number - 392 7 - 2 1 1 403 
Dry weight - 219 6 1 T 2 T 227 

04B Number - 386 3 - 11 - - 399 
Dry weight - 166 1 - 1 - - 168 

04 C Number 1 399 6 - 5 - 1 4 12 -..J 

Dry weight T 208 4 - 1 - 1 214 w 



Appendix Table 4. (Continued) 

Chironominae 
Sample Chaoborus Chironominae pupae Tanypodinae Oligochaetae Hirudinidae Other Total 

05A Number - 91 1 - 1 8  2 3 1 1 5  
Dry weight - 38 T - 5 1 1 45 

05B Number 3 1 01 - - 36 1 - 141 
Dry weight 2 32 - - 2 19  - 55 

05C Number 6 230 2 - 18 2 1 259 
Dry weight 3 8 3  T - T 26 T 1 12 

06A Number 3 3 - - 89 27 - 122 
Dry weight T T - - 5 79 - 84 

06B Number - 1 - - 59 10  - 70 
Dry weight - 2 - - 3 35  - 40 

06C Number 4 5 - - 4 - - 1 3  
Dry weight 2 2 - - T - - 4 

07A Number - - - - - 2 - 2 
Dry weight - - - - - 19 - 19 

07B Number 1 1 - - - - - 2 
Dry weight 2 T - - - - - 2 

07C Number 2 - - - - - - 2 
Dry weight 1 - - - - - - 1 

08A Number - - - - 2 - - 2 
Dry weight - - - - T - - T 

08B Number 
Dry weight 

08C Number - - - - 5 3 - 8 
Dry weight - - - - T 27 - 27 



Appendix Table 4 .  (Continued) 

Chironominae 
Sample Chaoborus Chironominae pupae Tanypodinae Oligochaetae Hirudinidae Other Total 

09A Number - - - - 2 28 - 30 
Dry weight - - - - 1 97 - 98 

09B Number - 3 - - - 3 - 6 
Dry weight - 1 - - - 19 - 20 

09C Number - 6 - - - 2 - 8 
Dry weight - 1 - - - 3 - 4 

lOA Number - - - - 1 7 1 9 
Dry weight - - - - T 4 15 19 

l OB Number - - - - 12 14 - 26 
Dry weight - - - - T 26 - 26 

lOC Number 
Dry weight 

llA Number - 1 - - 3 2 - 6 
Dry weight - T - - 4 8 - 12 

llB Number - - - - 2 9 - 1 1  

Dry weight - - - - 1 67 - 68 

llC Number - - - - 2 9 - 11 
Dry weight - - - - T 44 - 44 

12A Number - - - - - 7 - 7 
Dry weight - - - - - 41 - 4 1  

12B Number - - - - 2 22 - 24 
Dry weight - - - - T 14 7 - 147 

12C Number - - - - 5 4 - 9 
Dry weight - - - - 1 53 - 54 



Appendix Table 4. (Continued) 

Chironominae 
Sample Chaoborus Chironominae pupae Tanypodinae Oligochaetae Hirudinidae Other Total 

13A Number - - - - - 4 - 4 
Dry weight - - - - - 29 - 29 

13B Number - - - - - 3 - 3 

Dry weight - - - - - 8 - 8 

13C Number - 1 - - 1 4 - 6 
Dry weight - T - - T 16 - 16 

14A Number - - - - 1 12 - 13 
Dry weight - - - - 1 24 - 25 

14B Number - - - - - 8 - 8 

Dry weight - - - - - 28 - 28 

14C Number - - - - 4 2 - 8 
Dry weight - - - - T 22 - 22 

1 5A Number - 1 - - 6 2 - 9 

Dry weight - T - - T 3 - 3 

15B Number - - - - 2 - - 2 
Dry weight - - - - T - - T 

1 5C Number - 1 - - 20 1 1  1 33 

Dry weight - T - - T 8 T 8 

16A Number - 3 - - 3 9 1 16 
Dry weight - T - - T 91 27 118 

16B Number - 2 - - 2 - - 4 
Dry weight - 3 - - T - - 3 

1 6C Number - - - - 13 13 1 27 
Dry weight - - - - T 21 T 21  



Appendix Table 4. (Continued) 

Chironominae 
Sample Chaoborus Chironominae pupae Tanypodinae Oligochaetae Hirudinidae Other Total 

17A Number 2 25 - - 14 1 1  - 52 
Dry weight 2 6 - - T 28 - 3 6  

1 7 B  Number - 1 - - 3 4 - 8 
Dry weight - 3 - - T 12 - 15 

17C Number - - - - 3 5 - 8 
Dry weight - - - - T 18 - 18 

18A Number 
Dry weight 

18B Number 
Dry weight 

18C Number - 2 - - - 2 - 4 
Dry weight - 1 - - - 1 - 2 

19A Number - 1 - - 2 1  3 - 25 
Dry weight - T - - 1 2 - 3 

19B Number - - - - 5 7 - 13 

Dry weight - - - - T 18 - 18 

19C Number 1 - - - 3 10 - 14 
Dry weight T - - - T 6 - 6 

20A Number 
Dry weight 

20B Number - 1 - - 2 - - 3 

Dry weight - T - - T - - T 

20C Number - - - - 3 3 - 6 

Dry weight - - - - T 3 - 3 -..J 
-..J 



Appendix Table 4. (Continued) 

Chironominae 
Sample Chaoborus Chironominae pupae Tanypodinae Oligochaetae 

21A Number - - - - -
Dry weight - - - - -

21B Number - - - - 1 
Dry weight - - - - T 

21C Number - - - - -
Dry weight - - - - -

22A Number - 1 - - 10 
Dry weight - 1 - - T 

22B Number - - - - 8 
Dry weight - - - - 3 

22C Number - 1 - - 1 1  
Dry weight - T - - T 

Hirudinidae 

2 
17 

2 
4 9  

4 
16 

4 
23 

2 
20 

6 
18 

Other Total 

- 2 
- 17 
- 2 
- 4 9  
- 4 
- 16 
- 15 
- 24 
- 10 
- 23 
- 18 
- 18 

....., 
00 



Appendix Table 5 .  Abundance and biomass (mg) determinations of the macrobenthic organisms collected 
in a three-year-old (Kurtz) dugout pond during 1982-83 . T = less than 1 . 0  mg . 

Chironominae 
Sample Chaoborus Chironominae pupae Tanypodinae Oligochaetae Hirudinidae Other Total 

OlA Number - 163 - - 6 - - 169 
Dry weight - 193 - - 6 - - 199 

OlB Number - 29 - - 27 - - 56 
Dry weight - 24 - - 30 - - 54 

OlC Number - - - 48 - - - 48 
Dry weight - - - 29 - - - 29 

02A Number 2 5 1 - 6 - - 14 
Dry weight l 7 T - 5 - - 13 

02B Number 1 3 5  1 7 76 - 1 121 
Dry weight T 65 1 4 31 - 3 104 

02C Number 1 4 2 - 3 - 1 1 1  

Dry weight T 8 2 - 2 - 1 13  

03A Number - 35 6 14 225 - 2 282 
Dry weight - 12 4 9 79 - 1 105 

03B Number - 115 8 - 26 - - 149 
Dry weight - 21 33 - 17 - - 7 1  

03C Number - 109 3 - 34 - - 146 
Dry weight - 31 T - 5 - - 36 

04A Number 7 337 - 29 87 - - 4 60 
Dry weight 1 108 - 20 16 - - 145 

04B Number - 154 - 34 103 - 1 292 
Dry weight - 49 - 23 7 7  - 1 150 

04C Number 2 226 - 24 103 - - 355 """ 
Dry weight 1 59 - 16  6 - - 82 \0 



Appendix Table 5 .  (Continued) 

Chironorninae 
Sample Chaoborus Chironominae pupae Tanypodinae Oligochaetae Hirudinidae Other Total 

05A Number 12 243 4 - 106 - 7 355 
Dry weight 4 164 3 - 14 - 1 186 

05B Number 8 2 - - - - - 10 
Dry weight 1 3 - - - - - 4 

05C Number 7 187 1 - 54 - 17 266 
Dry weight 6 87 2 - 4 - 2 101 

06A Number - 67 3 67 250 1 3 391 
Dry weight - 76 6 8 24 1 2 1 17 

06B Number - 83 - - 7 1  - 1 156 
Dry weight - 58 - - 7 - 1 66 

06C Number 12 24 - 42 29 - 9 1 16 
Dry weight 3 6 - 14 1 - T 24 

07A Number 3 4  1 - 2 1 - 6 44  
Dry weight 17 T - 2 T - T 19 

07B Number 4 10 - - 13 - - 27 
Dry weight 1 7 - - 3 - - 1 1  

07C Number 1 46 - 88 44  2 - 181 
Dry weight T 43 - 16 12 2 - 73 

OBA Number 5 67 - 5 180 - 1 258 
Dry weight 1 92 - 3 26 - T 122 

08B Number 6 1 - 6 28 1 - 42 
Dry weight T 2 - T 2 1 - s 

08C Number 4 25 - - 135 - - 164 
Dry weight 1 43 - - 59 - - 103 



Appendix Table 5 .  ( Continued) 

Chironominae 
Sample Chaoborus Chironominae pupae Tanypodinae Oligochaetae Hirudinidae Other Total 

09A Number 5 - - 1 5 - 1 12 
Dry weight 1 - - T T - 9 10 

09B Number - 9 1 3 20 - - 33 
Dry weight - 18 1 T 13 - - 32 

09C Number - 8 - 1 184 - 1 194 
Dry weight - 18 - T 5 - T 23 

lOA Number - 3 - 4 123 - - 130 
Dry weight - 7 - T 40 - - 47 

lOB Number - 4 - - 43 - 1 48 
Dry weight - 8 - - 11 - T 19 

lOC Number - 1 - - 12 - - 13 
Dry weight - 1 - - 1 - - 2 

llA Number - 1 - - 81 - 1 83 
Dry weight - 2 - - 23 - T 25 

llB Number - 1 - - 22 - 1 24 
Dry weight - 1 - - 3 - T 4 

llC Number - 5 - - 182 - - 187 
Dry weight - 3 - - 182 - - 185 

12A Number - 2 - - 68 - - 7 0  
Dry weight - T - - 6 - - 6 

12B Number - 73 - 6 524 - 1 604 
Dry weight - 38  - T 23 - T 61 

12C Number 1 2 1 - 25 - 1 30 
Dry weight T T 5 - 7 - T 12 



Appendix Table 5. (Continued) 

Chironominae 
Sample Chaoborus Chironominae pupae Tanypodinae Oligochaetae Hirudinidae Other Total 

13A Number 1 38 - - 118 - 2 159 
Dry weight T 48 - - 51 - T 99 

13B Number - 126 - 1 136 - 1 264 
Dry weight - 185 - T 71 - 2 258 

13C Number 16 2 - - 1 - 1 20 
Dry weight 4 T - - T - 24 28 

14A Number 2 19 - - 92 - 1 114 
Dry weight 1 19 - - 66 - T 86 

14B Number 1 48 - - 125 - 2 176 
Dry weight 1 56 - - 57 - 1 115 

14C Number 3 34 - - 235 - 1 273 
Dry weight 2 46 - - 120 - T 168 

15A Number - 39 - 4 346 - - 379 
Dry weight - 85 - 1 24 7 - - 333  

15B Number - 128 - 1 102 - 2 233 
Dry weight - 242 - T 146 - 13 401 

15C Number - - - - 2 - 1 3 
Dry weight - - - - T - 39 39 

16A Number - 74 - 1 47 - 1 123 
Dry weight - 169 - T 17 - 1 187 

16B Number 1 17 - 1 75 - 1 95 
Dry weight T 27 - T 62 - T 89 

16C Number 11 39 - 1 24 - - 75 
Dry weight 3 61 - T 22 - - 86 



Appendix Table 5. (Continued) 

Chironominae 
Sample Chaoborus Chironominae pupae Tanypodinae Oligochaetae Hirudinidae Other Total 

17A Number 12 8 - - 4 - - 24 
Dry weight 8 18  - - T - - 26 

17B Number - 62 - - 180 1 - 243 
Dry weight - 114 - - 93 1 1  - 218 

17C Number - 35 - 2 343 2 - 382 
Dry weight - 3 0  - 1 126 45 - 202 

18A Number - 26 - - 52 - - 78 
Dry weight - 31 - - 42 - - 73 

18B Number 1 0  19 - - 4 - - 33 
Dry weight 7 2 8  - - T - - 35 

18C Number 2 5 - - 1 1 - 9 
Dry weight 3 4 - - T 1 - 8 

19A Number 4 9 - 5 9 6  - - 114 
Dry weight 2 15  - T 70 - - 87 

19B Number - 44 - 2 117 - - 163 
Dry weight - 61 - T 109 - - 170 

1 9C Number 6 17 - 2 6 - - 31 
Dry weight 2 40 - 1 T - - 43 

20A Number - 27 - - 225 - 1 253 
Dry weight - 22 - - 146 - 45 213 

20B Number 12 14 - - 6 - - 32 
Dry weight 9 25 - - 2 - - 36  

20C Number 3 58 - 3 52 - - 116 
Dry weight 4 68 - 1 17 - - 90 



Appendix Table 5. (Continued) 

Chironominae 
Sample Chaoborus Chironominae pupae 

21A Number 18 1 -
Dry weight 10 3 -

21B Number 2 41 1 
Dry weight 2 70 2 

21C Number 1 16 -
Dry weight 2 22 -

22A Number 3 36 1 

Dry weight 3 57 1 

22B Number 1 3 6  6 
Dry weight 1 62 1 8  

22C Number 4 - 1 
Dry weight 1 - 1 

Tanypodinae Oligochaetae Hirudinidae 

- s -
- 4 -

- 23 6 -
- 122 -

4 80 -
1 76 -

- 273 -
- 205 -

4 300 1 

3 158 -
- 26 -
- 9 -

Other Total 

- 24 
- 17 
- 280 
- 196 

- 101 
- 101 

4 3 18 
T 266 

1 348 
T 242 

2 33 
1 12 

00 
..:,.. 
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