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ABSTRACT 

POWER MANAGEMENT OF REMOTE MICROGRIDS  

CONSIDERING BATTERY LIFETIME 

SANTOSH CHALISE 

2016 

 Currently, 20% (1.3 billion) of the world’s population still lacks access to 

electricity and many live in remote areas where connection to the grid is not economical 

or practical. Remote microgrids could be the solution to the problem because they are 

designed to provide power for small communities within clearly defined electrical 

boundaries. Reducing the cost of electricity for remote microgrids can help to increase 

access to electricity for populations in remote areas and developing countries. The 

integration of renewable energy and batteries in diesel based microgrids has shown to be 

effective in reducing fuel consumption. However, the operational cost remains high due 

to the low lifetime of batteries, which are heavily used to improve the system's efficiency. 

In microgrid operation, a battery can act as a source to augment the generator or a load to 

ensure full load operation. In addition, a battery increases the utilization of PV by storing 

extra energy. However, the battery has a limited energy throughput. Therefore, it is 

required to provide a balance between fuel consumption and battery lifetime throughput 

in order to lower the cost of operation.  

 This work presents a two-layer power management system for remote microgrids. 

The first layer is day ahead scheduling, where power set points of dispatchable resources 

were calculated. The second layer is real-time dispatch, where schedule set points from 
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the first layer are accepted and resources are dispatched accordingly. A novel scheduling 

algorithm is proposed for a dispatch layer, which considers the battery lifetime in 

optimization and is expected to reduce the operational cost of the microgrid. This method 

is based on a goal programming approach which has the fuel and the battery wear cost as 

two objectives to achieve. The effectiveness of this method was evaluated through a 

simulation study of a PV-diesel hybrid microgrid using deterministic and stochastic 

approach of optimization. 
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CHAPTER 1: INTRODUCTION 

1.1. Background 

Microgrids are a small scale power supply network designed to provide power for 

small communities within clearly defined electrical boundaries [1]. To be called 

microgrid, the network must have its own sources, storages, load, monitoring, and control 

techniques to keep the system running with or without a grid support [2]. Based on the 

availability of a grid, microgrids are divided into two types: Grid connected and remote. 

Grid connected microgrids mostly operates in the presence of the grid but can be 

disconnected and work by itself during a grid failure or emergency. Nevertheless, remote 

microgrids always operate by themselves and has no access to grid. One major distinction 

between these microgrids is the design approach. In case of a remote microgrid, the 

generation sources must have the capacity to serve the entire load along with a required 

reserve capacity for contingency management [3], which is not necessarily required for 

the grid connected system. According to the recent Navigant research study, remote 

microgrids are the example of an isolated system applicable for village electrification, 

commodity extraction, physical islands (remote telecommunication) and remote military 

[4]. This dissertation focuses on the microgrid used for the remote village electrification 

purpose.   

Currently, 20% (1.3 billion) of the world’s population still lacks access to 

electricity and many live in remote areas where connection to the grid is not economical 

or practical [5]. Those areas lack access to modern energy services, which is a serious 

hindrance to economic and social development. One of the aims of the United Nations 
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Secretary General’s Sustainable Energy for All (SE4ALL) initiative is to help achieve the 

goal of universal access to modern energy services by 2030 [6]. This effort in village 

electrification increases the remote microgrid market in current years. According to a 

Navigant Research, the global remote microgrid market will expand from 349 megawatts 

of generation capacity in 2011 to more than 1.1 gigawatts by 2017, with the majority of 

this growth expected in the developing world [7]. A large portion will also take place in 

the rapidly developing, and often remote, the island nations of the world. These nations 

are inherently deprived of many resources, sometimes importing 100% of the fuel needed 

to meet energy demands [8]. 

 

Fig. 1.1. Total remote microgrid capacity [7]. 

There are many potential locations for remote microgrid across the world in both 

developed and underdeveloped countries. In developed countries like the USA, this type 

of microgrids is mostly found in Alaska and Hawaii. In Canada, there are about 292 

remote communities. In underdeveloped countries like Nepal, India, and Bangladesh, 

most remote part of the country can be considered as the potential location. 
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The ideal remote community power system is a hybrid that combines one or more 

renewable energy technologies (RETs) and a fossil-fueled system as shown in Fig. 1.2. 

Diesel generators are the primary source of energy in those remote areas due to lower 

initial investment, readily available and easy transportability to the remote areas [9]. 

However, due to high fuel procurement, transportation, and storage expenses, the true 

energy cost can be as high as $2.5/kWh [9, 10]. Although isolated from urban areas, 

renewable energy resources such as solar and the wind can be integrated with the 

microgrid’s diesel generators to reduce overall fuel consumption. This is because the key 

driver for this type of microgrid is to displace diesel fuel with available renewable 

sources [4]. Today, photovoltaic (PV) technology is widely used in microgrids and the 

trend is continuously increasing. This is mostly because of the declining cost of 

electricity generated from solar $1/watts and still declining. With technology to 

compensate the PV output variability, it will be the primary source of electricity. In 2010, 

almost 40 MW of off-grid PV capacity was added in the US through systems that use PV 

arrays as a single generator or with a genset or small wind turbine in hybrid systems, 

reaching a total installed capacity of 440 MW of off-grid PV systems [11]. In principle, 

the integration of renewables into a genset-based system is relatively simple. These 

integrated systems operate as passive generation units, with no participation in the control 

strategy of the microgrid [3, 12]. 
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Fig. 1.2. Typical remote microgrid with renewable energy sources, storage, load 

and natural gas (NG)/diesel generator. 

Remote microgrids have loads with high peak to average ratios [13] and 

generators are typically sized to meet the peak load requirements. Diesel generators have 

characteristics that the efficiency decreased when loading decreases. Thus, the generator 

often operates at low loading with resulting poor fuel efficiency [14]. In addition, 

frequent low-load operation below recommended by the manufacturer (usually 30%) 

causes wet stacking, carbon buildup, fuel dilution of lube oil, water contamination of lube 

oil, and damaging detonation [15, 16]. The addition of PV to the microgrid further 

reduces the load on the generator and causes even poorer fuel efficiency. Further, the PV 

resource does not correlate with load demand and the full potential of PV cannot be 

achieved. The traditional approach to maintain minimum loading of a generator is either 

dump load or PV power curtailment [17]. In either case, there is a loss of energy. 

Therefore, to overcome the aforementioned issues with the introduction of PV in the 

diesel microgrid, a storage system can be used [9].  
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Various storage technologies such as lead-acid batteries, Nickel-cadmium 

batteries, lithium-ion batteries, supercapacitors, flywheels are applicable for the remote 

microgrids [18]. In addition, new technologies such as fuel cells and hybrid energy 

storage techniques (e.g., battery and capacitor) [19] are making their way to the 

microgrids. Although the lithium-ion battery technology has many advantages over lead 

acid such as higher voltage, greater energy density, reduced weight, faster recharge time, 

more discharge cycles and deeper discharge tolerance [20], lead acid is mostly used in 

case of remote microgrid because of low capital cost. The cost of Li-ion battery is about 5 

times of the lead acid battery. Another advantage of using a lead acid battery is its 

maturity [21]. Manufacturers have a long history of manufacturing these types of 

batteries and change is reluctantly accepted [22].  

Energy storage systems have been added to microgrids to enable dispatch of the 

generators to meet load requirements [9]. The battery can act as a source to augment the 

generator or a load to ensure full load operation of the generator. In addition, a battery 

increases the utilization of PV by storing extra energy. However, the battery represents a 

significant cost component of the microgrid and requires proper disposal or recycling. 

Further, the battery has a limited energy throughput [23, 24] and maximum calendar 

lifetime which is also called float life. Float life is typically 10 years for a lead-acid 

battery [25]. For the full value of the battery to be realized, the maximum energy 

throughput must be consumed before the float life has been met.  

There is a compromise between battery life and fuel consumption in microgrid 

operation. For example, generator fuel consumption can be minimized by heavy use of 

the battery which drastically decreases the battery lifetime. Since the battery has a high 
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initial cost and difficult transportation to remote areas, frequent replacement is 

impractical. On the other hand, if battery use is constrained to extend lifetime, generator 

efficiency decreases which increase fuel consumption. Thus, fuel reduction and battery 

lifetime improvements are two conflicting objectives of a microgrid power management 

system (PMS) as demonstrated in Fig. 1.3.  

Microgrid 

Operational 

Cost

Microgrid Power 

Management 

System

Generator 

Use

Battery 

Use

 

Fig. 1.3. Balance between battery and generator use cost. 

 Traditionally, the lower fuel consumption was achieved by running the generators 

in a high efficiency region at maximum load; using the battery as needed [15]. However, 

the battery was quickly consumed. While the system could be redesigned with a larger 

capacity battery, this would require a higher initial investment and may not reduce the 

operational costs. The battery lifetime management (BLM) strategy in the PMS algorithm 

helps to prolong the battery life. This paper tests the hypothesis that the use of BLM 

strategy not only extends the battery lifetime but also decreases the microgrid operational 

cost. Now, the PMS has two distinct objectives to achieve: minimize fuel consumption 

(obj1) and minimize battery throughput (obj2) to extend the battery lifetime. To achieve 

both of the objectives simultaneously, which also considers the float life of the battery, a 

novel PMS algorithm is required. Detail of the method is presented in Chapter 3.  
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1.2. Previous work 

 This section makes a review of the literature on remote microgrid systems, which 

is mostly used for village electrification purpose using various sources making them 

hybrid small-scale power supply system. The first part provides the detail of two remote 

microgrid operation strategies, namely: i) simple traditional (rule-based), and ii) complex 

(consist of schedule and dispatch algorithms), used for power management. These 

strategies focus on the reduction of the diesel fuel consumption, which is the primary cost 

of a remote microgrid. Advantages and disadvantage of each of those strategies along 

with how battery is utilized in the operation are provided. In addition, the importance of 

considering battery lifetime in the microgrid is presented. The second part of this section 

introduces the battery lifetime and how it is measured. 

1.2.1. Remote microgrid operation 

1.2.1.1. Traditional methods 

Traditional methods of power management are motivated by the idea of reducing 

diesel consumption while satisfying the customer load. It is not necessarily required that 

the hybrid system must have storage to compensate for the fluctuations caused due to the 

stochastic nature of PV output. For such hybrid systems without storage, the diesel 

generator compensates intermittency. In one of the currently running examples of such 

systems, Nemiah valley microgrid [9], generator follows the net-load (load minus PV) 

demand of the system. The problem with such system is reduced loading of the generator, 

which causes less efficient operation and increased fuel consumption per kWh of energy 

[14]. There is no linear relationship between energy supplied by the PV and fuel 

displacement. In case of a Nehemiah Valley system, PV system supply about 14% of the 
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yearly energy needs of microgrid resulted in an only 5% reduction in the fuel saving. The 

similar study shows only 3% reduction in the fuel saving [26]. Such batteryless system 

requires a dump load or PV power curtailment methods to satisfy the minimum loading 

suggested by the manufacturer. This reduced the maximum benefit from the installed 

photovoltaic system.  

Similar study without storage in isolated microgrid was conducted by Beyer et. al. 

in 2002 [27]. This study presents the results of simulation calculations and the analysis of 

the performance of a pilot project in the Brazilian Amazon. Fuel saving about 250 – 300 

kg per kW of PV installed can be expected, but the restrictions are: PV rating close to the 

average daytime load and diesel generator should size reasonably in relation to the load.  

Studies suggest that, in case of the batteryless or with the battery system, 

generator cycling can be used to match the appropriate generator size to load [9, 28, 29]. 

Generators are individually switched ON or OFF according to the load requirements and 

PV resources available. This ensures the operation of the generator(s) close to their 

maximum efficiency regions, improving fuel utilization, and decreasing energy costs. 

However, in order to maintain the generators operating near their maximum efficiency 

zone, curtailment of PV power output may be required or the use of the dump load to 

absorb excess PV generation.  

Some other key notable examples of currently running microgrid without storage 

are provided in the study [30].  Studies suggest that without storage, there is a limitation 

on renewable sources that can be connected and required dump load or active power 
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curtailment techniques for voltage and frequency balance. Without the storage, 

advantages of PV integration cannot be fully realized.  

The most common approach to control microgrid with storage (typically a 

battery) is a “rule-based” or “set-points” [15, 31, 32]. In this method, the ON/OFF control 

of generators, battery charger operation, dump load, and curtailment of power all based 

on battery state of charge (SOC). Four mostly used set-points are maximum SOC, 

minimum SOC, SOC when generator stops, and SOC when generator starts. When 

generator starts, it keeps supplying the load and charge the battery until the SOC reach to 

a generator stop set point. This generator stops set-point is lower than the maximum SOC 

of battery to provide sufficient room to store excess energy generated by PV. Otherwise, 

energy generated by PV goes wastage. After generator stops, battery acts as a master unit 

to form a grid [30]. Generator again starts when SOC goes below the generator start set-

point. This generator start set-point is slightly higher than the minimum SOC. This type 

of battery charging is also called cycle charging [25]. When to curtail non-critical load (if 

available) and turn on dump load are based on the predefined rules or set points. 

Therefore, finding the best set points is key to improve performance [15]. 

A study [32] presents an optimal set point results from their Dongfushan Island 

microgrid, China. The optimization problem was solved using the non-dominated sorting 

genetic algorithm (NSGA-II). The authors found that the 61% SOC as a generator stops 

set- point in case abundant renewable resources and of 90% in case of short of renewable 

resources. This shows that the higher availability/penetration of renewable lower down 

the generator stop set-point. Similarly, in the study [33] conducted in South Dakota State 
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University microgrid research lab, 17% reduction in cost of energy was reported with 

50% and 80% as generator start and stop points respectively.  

 Some other examples of running microgrids including famous microgrid system 

such as Kythnos, SSM mini-grid on Kapas Island, Malaysia with their detailed operation 

strategies are presented in [30]. Example of kythnos microgrid presents the operation of 

single phase isolated microgrid electrifying 12 houses in a small valley in Kythnos 

situated in the middle of the Aegean Sea. It consists of three sunny-island battery 

inverters, each with a maximum capacity of 3.6 kW in a master-slave configuration. 

Microgrid consist of 10 kW of Photovoltaics system, battery nominal capacity of 53 kWh 

with f-P and V-Q droop control schemes, and diesel genset of 5 kVA output. Generator 

start SOC is not mentioned in the study, but mentioned that the generator starts at times 

when the battery needs to be charged, the grid frequency is lowered. Similarly, in Kapas 

Island, Malaysia, the generator starts when the battery SOC less than 30% and stops 

when greater than 80%. The overall objective of these microgrids control strategies is to 

minimize the use of diesel fuel and diversify the resources. 

These set-point methods are simple and easy to implement. In addition, this 

technique does not require the PV forecasting techniques to operate. However, one key 

drawback is frequent charging and discharging of a battery, which reduces the lifetime 

drastically. In addition, since no forecasting is implemented, renewable energy is 

curtailed. One simple example is if there will be the sun next hour, no need to charge 

battery now. If battery fully charged now, renewable needs to be curtailed next hour. 

Therefore, forecasting is implemented in optimization in order to fully utilize the 

effectiveness of renewable. The system is optimized in two different time steps. First is 
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scheduling and the second is dispatching. Forecasting method can help to reduce the 

stress on the battery for its longer life and smaller size. It will decrease the unnecessary 

stress from the battery.  

1.2.1.2. Schedule and dispatch methods 

This method is commonly used in the system capable of forecasting the load and 

variable sources [3]. In this double layer strategy, the schedule layer selects the resources 

(also called unit commitment in big electric grids) in day ahead timescale using the 

forecasted value of PV and load and dispatch layer performs economic dispatch in real-

time. A day ahead scheduling is to obtain economic and environment friendly operation 

[34] whereas real-time dispatching is for reliability and power quality. 

Proper scheduling of microgrid components is the key to achieve the goal of 

reducing fuel consumption. Since PV power output is variable in nature, forecasting helps 

to reduce the uncertainty while solving the problem and it also helps to maximize the use 

of renewable power sources. Several studies are presented in the literature on the topic of 

microgrid scheduling and dispatch.  

In the study [35], a two-stage power management system using multi-agent 

system was proposed. Day ahead schedule set points are obtained in hourly basis and 

real-time set-points were in every 5 min basis. A real-time digital simulator (RTDS) was 

used to model the microgrid in real-time. The study presents the results in both grid 

connected and isolated mode of operation. In real-time operation, demand side 

management was also applied which curtails load to decrease the power consumption by 

controllable loads whenever required. The authors present the result of 5% reduction in 

operational cost by load shifting and stable microgrid operation. However, no further 
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study was performed to improve the battery lifetime and battery wear cost is not included 

in the optimization.  

A study [36], showed the schedule and dispatch approach for microgrid energy 

management to method to provide smooth dispatch and minimize error between schedule 

and dispatch layer. Presented results are for both grid connected and isolated microgrids. 

Similarly, in [37], triple layer control (schedule, dispatch, and interaction with other 

microgrids) with decomposition approach in the dispatch layer increased speed was 

presented. A similarly, in [38], a novel energy management system, rolling horizon 

strategy using consumer based demand side management (DSM) scheme increased 

dispatch efficiency with 1-hour refresh rate of sliding window for microgrid schedule and 

dispatch was presented. Although most of these methods present novel algorithms for 

schedule and dispatching of microgrid, none of them presents analysis regarding battery 

use and lifetime in both schedule and dispatch algorithm.   

Battery wear cost is the significant cost in case of remote microgrid operation and 

without battery wear cost; it is not possible to obtain the true operational cost. Few 

studies have considered both fuel and battery lifetime objectives during problem 

formulation and optimization. Studies [24, 39, 40] have used battery wear cost in an 

optimization model but no effort has been made to further decrease the operational cost. 

It is not studied that whether or not simply adding battery wear cost increases the fuel 

consumption and operational cost. In addition, effect of varying SOC on battery lifetime 

has not been studied.  
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Few studies have considered both fuel and battery lifetime objectives during 

problem formulation and optimization. A recent study presented a multi-objective 

optimization formulation using Genetic Algorithm (GA) to minimize power generation 

cost and to maximize the useful life of lead–acid batteries [32]. A weighted sum method 

was used to combine two objectives into a single optimization objective. However, both 

objectives were assumed equally important and given equal weight. Furthermore, the 

lifetime assumption was only applicable to the specific battery under consideration. 

Similar study presented in [41] presents the results of scheduling considering the battery 

life. Multi-objective optimization was used but with equal weightage (0.5 for each) 

similar to the previous study. Results show the slight increment in fuel consumption 

when the battery lifetime model was included. However, sensitivity analysis of weights 

was not performed. In addition, effect of an SOC on battery throughput was not 

considered.  

Above methods of scheduling are based on the deterministic approach. One major 

drawback of such deterministic method is an assumption of perfect forecasting of solar 

irradiance [35]. Any variability caused by the PV is compensated by providing sufficient 

spinning reserve in microgrid operation. Power quality and availability are maintained 

mainly by operating with large reserves in gensets, leading to low energy conversion 

efficiency. In order to overcome the drawbacks of deterministic approach, a stochastic 

method of optimization can be used. In this method, a variability of PV is explicitly 

incorporated in the optimization [42] (see Section 2.1). 

 In study [34] scheduling of building microgrid components which include PV 

system, battery, combined heat and power (CHP) unit, and electrical loads were 
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performed using CPLEX solver. This paper presents both deterministic and stochastic 

approach of the optimization. Scenarios tree were developed in order to address the 

variability in PV and load requirement. Optimization was performed for only grid-

connected system and no attempts were made for the isolated microgrid optimization. 

Researchers did not provide forecasting method. Further, the error distribution of load 

and forecasted PV system were assumed as a percentage of the mean (forecasted) value. 

Battery optimization was not considered not either attempts were made to increase 

battery life.    

 In the study [39], energy scheduling in microgrid is presented using both 

stochastic and deterministic optimization methods. Expected operational cost results were 

compared to demonstrate the superiority of stochastic method over deterministic. This 

study does not present the multi-objective optimization but battery degradation (wear) 

cost was considered in the objective function. The limitation of this study is lack of 

battery lifetime improvement studies and more importantly, effect of battery SOC during 

the operation is not considered. The maximum SOC for a day was 35%. In this low SOC, 

wear cost should be very high, which is not considered. Therefore, presented results 

cannot be justified.   

 Similarly, a study [43] presents stochastic and deterministic results in isolated 

microgrid using particle swarm optimization (PSO) method. The microgrid model 

consists of PV generation (30 kW), wind generation (20 kW), diesel generator (30 kW) 

and battery (300 kWh). It was presented in the study that with stochastic optimization, 

use of battery is slightly reduced but studies regarding lifetime improvement were not 

provided. In fact, the wear cost of battery was not considered in the objective function.   
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1.2.2. Battery lifetime 

According to the United States Advanced Battery Consortium (USABC), battery 

life is a time by which the battery capacity reduces to 80% of its rated value [44]. Various 

approaches were presented in [23, 45, 46] for the prediction of lead acid battery lifetime. 

One study suggested that a lead-acid battery with Q Ah capacity provides approximately 

390×Q effective Ah throughput during its service life [24]. The limitation of this 

approximation is that it is useful only for the specific lead-acid battery under 

consideration. However, this study uses the data provided by the battery manufacturer so 

the method is applicable to other types of batteries. Similarly in [45], three different 

approaches: i) Physico-chemical ageing model, ii) Weighted Ah ageing model, and iii) 

Event-oriented ageing model, were compared based on their complexity, precision and 

calculation speed. Among the aforementioned methods, the weighted Ah ageing model 

predicted the most accurate result compared to others [46]. This model is based on the 

fact that a battery can provide a fixed amount of lifetime throughput (Ah or kWh) in its 

useful life. When the cumulative sum of throughput provided by a battery is equal to the 

lifetime value, the battery’s capacity is considered to be reduced to 80% [23].   

The lifetime information in the battery datasheet is for the standard laboratory test 

conditions such as rated DOD, fixed discharge rate and temperature. However, the real-

time operation of the battery with stochastic PV sources is much different from the 

standard, therefore, prediction of the battery lifetime is a complex task.  

1.3. Summary of previous work  

 In summary, it was found on literature that the most of the studies were mostly 

focused on the grid connected microgrid but few for the completely isolated remote 
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microgrids. In addition, none of the literature has presented the optimal weights based on 

the battery lifetime and operational cost. In addition, studies do not consider the effect of 

battery SOC during the selection of the weights. Thus, a proper power management 

scheme providing effective means to address microgrid functionalities is necessary.  

1.4. Motivation 

Need a remote microgrid power management system that can reduce the operational 

cost while extending battery lifetime. 

1.5. Objectives  

The research objective of this project is to develop a novel PMS for PV-diesel 

hybrid microgrids that will coordinate distributed energy resources, diesel generators and 

loads in order to minimize operational costs of the microgrid. The tasks identified to 

accomplish the objective were 

Task 1: Develop remote microgrid benchmark and optimization framework to 

prolong battery life and minimize fuel consumption. 

Task 2: Develop a two-layer novel power management system algorithm and 

implement new irradiance forecast method based on Markov witching method. 

Task 3: Validate developed PMS in remote microgrid test cases using deterministic 

and stochastic approaches.  
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1.6. Contributions 

The original contributions of the dissertations are: 

 Proposed a novel PMS algorithm considering battery lifetime and float life of the 

battery.  

 Provides comprehensive analysis of battery lifetime using Ah-weightage method 

and implemented in the proposed PMS.  

 The effectiveness of the proposed method was validated using a currently 

working remote microgrid as a test case.   

 Provides a detailed method to validate the use of PV power forecasting by 

Markov switching model using real-time analysis of the remote microgrid.  

1.7. Dissertation outline 

The structure of this dissertation follows: 

Chapter 2 discusses the various known theories related to microgrid operation 

and control. This includes mathematical modeling of the microgrid components, various 

PMS control architecture, optimization methods and solar irradiance forecasting method.   

Chapter 3 presents the remote microgrid optimization framework. This includes a 

development of microgrid benchmark and the detailed process how the optimal operation 

is achieved. Furthermore, developments of various test cases are discussed. 

Chapter 4 discusses the simulation results obtained during the study using a PMS 

proposed in this dissertation. Daily and yearly simulation results are discussed to validate 

the effectiveness of the proposed method.  
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Chapter 5 presents the summary and key finding of the research. A brief 

description of future work that can be performed based on this research and limitation of 

the study are presented at the end of the chapter.  
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CHAPTER 2: THEORY 

 This chapter discusses the various know theories related to microgrid operation 

and control upon which this dissertation is based on. Section 2.1 describes the 

mathematical modeling of the typical remote microgrid components and their operational 

characteristics. These typical components include mainly diesel generators, batteries, and 

PV systems. Section 2.2 describes the various power management strategies for 

microgrids with high penetration of renewable. This includes a single and multi-master 

operation of remote microgrid and PMS control architecture such as central, distributed, 

and hybrid. Section 2.3 describes the scheduling and optimization approaches followed 

by a solar irradiance forecasting method in Section 2.4 and methods to compensate the 

variability in PV output in Section 2.5.  

2.1. Remote microgrid components 

 A typical remote microgrid consists of a diesel generator, battery, and renewable 

energy sources (PV is considered in this study) as shown in Fig. 1.2.   

2.1.1. Diesel generator 

 Diesel generators are primarily used electric power source in remote microgrids. 

These diesel generators possess a unique operational characteristic of the relationship 

between loading and efficiency. Operation at low load results in lower fuel efficiency 

[16, 47] and maximum efficiency can be obtained only when operates near the full load 

capacity. A Kohler 30 kW diesel generator efficiency curve is shown in Fig. 2.1. The 

amount of fuel consumption in an hour by the diesel generator is based on the power 

output, which can be approximated using the quadratic relation as given in Eq. 2.1 [48].  
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Fig. 2.1. Generator loading vs. efficiency. 

 2_ (vol/ hr)              Fuel Consumption a P b P c    
 

(2.1) 

where a, b and c are the fuel curve coefficients, P is the generator power output. The 

operation of the generator typically specified by the minimum required power output 

(Pmin) to prevent the carbon buildup and to improve the life of the generator as given in 

Eq. 2.2.  

min max  tP P P 
 

(2.2) 

where Pt is the power output of the generator at any time t, which is always in between 

the minimum and maximum power output limit.  

 For any power system network, the generated power must match the demand and 

voltage must be within the specified limits. In order to provide this match, the rotating 

diesel generator can operate in isochronous or droop mode. The isochronous mode has a 

fixed steady state frequency and applicable in an isolated system when a single generator 

is running. Governor of the generator is responsible for changing the power output to 

meet the demand and automatic voltage regulator is responsible for the voltage control. 

When generation is less than load, the frequency drops. The governor detects this drop in 
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frequency and the control system increases the opening of the fuel valve to increase the 

power output of the generator. The governor attempts to maintain the same frequency 

regardless of the load it is supplying up to the full load capabilities of the generator set as 

shown in Fig. 2.2. In addition, operating most generators below 30% of rated capacity 

can lead to reduced life or engine failure due to liner glazing [49] and wet stacking [40, 

50] so dump loads are often employed to ensure minimum loading [11].  

 

Fig. 2.2. Isochronous mode of operation. 

 Droop mode is applicable when two or more generators are running in parallel 

and need to share the load. Typically, in such a case, one generator (bigger) operates in 

an isochronous mode and another (smaller) in droop mode. If both generators operate in 

isochronous mode, there will be conflict to control the system frequency.  
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 In droop mode, active power output from the generator changes as the frequency 

deviates as shown in Fig. 2.3 with droop slope [30], [51]. In another word, speed 

decreases by a fixed percentage from no-load to full load and provides a stable working 

point for each load in case of parallel operation [52]. A typical droop slope setting is 

between 2 to 4% (usually 4%), which means a power output changes by 100% (no-load 

to full-load) with 4% change in frequency [53]. Power output at certain frequency can be 

changed by shifting up or down the droop curve or by setting no-load frequency.  

 

Fig. 2.3. Frequency droop control technique. 

2.1.2. Battery 

Batteries are the key component of the remote microgrid, which helps to improve 

the microgrid system performance by increasing the renewable energy utilization and 

improving the generator efficiency [41]. Its dynamics can be represented by state of 
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charge (SOC) parameter. SOC provides the information regarding how much energy is 

stored in the battery and can be expressed as Eq. 2.3 and 2.4 [34]. 

 During charging event, next hour state of charge (Eq. 2.3), SOC(t+1), depends 

upon the current SOC(t), current charging power (Pb,t), time interval between two 

consecutive measurement (∆t), battery capacity (BattCapkWh), and charging efficiency 

(ηcrg). 

   
, 

1
 

crg b t

kWh

p t
SOC t SOC t

BattCap

  
  

 
  (2.3) 

 Similarly, during discharging event next hour SOC (Eq. 2.4) depends upon 

current discharging power (Pb,t) and discharge efficiency (ηdcrg). Other parameters are 

same as defined for Eq. 2.3.  

    , 
1

 

b t

dcrg kWh

p t
SOC t SOC t

BattCap


  


 

(2.4) 

In order to protect from deep discharge, SOC operating range is defined between 

the maximum and the minimum values. 

min max     tSOC SOC SOC t T   
  (2.5) 

 Similarly, the maximum charge and discharge rate of a battery are also defined in 

the allowable range.  

, , ,     b mcrg b t b mdcrgP P P t T   
 

 (2.6) 

2.1.3. Photovoltaic (PV) system  

 A photovoltaic system is a type of distributed generation where solar panels are 

used to convert solar radiation into direct current (DC) electricity. Since the characteristic 
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IV (current-voltage) curve of the panel is not linear, the power produced from the panel 

depends upon the operating voltage and maximum power (Pmpp) occurs at the knee of the 

I-V curve as shown in Fig. 2.4. The voltage where maximum power is obtained is called 

the maximum power voltage (Vmpp), and the current at this voltage is called the maximum 

power current (Impp). The power Pmpp is simply the product of Vmpp and Impp (P = VI). Voc 

is a maximum voltage available from the panel, which occurs at the zero current 

condition (i.e., no load) and Isc is a current through the solar panel when the solar cell is 

short circuited (i.e., zero voltage). 

 

Fig. 2.4. I-V characteristic of PV panel. 

 The electrical characteristics of PV modules (Voc, Isc, Vmpp, Impp, Pmpp) are rated at 

standard irradiance and temperature (STC) conditions. The standard conditions are the 

AM1.5 spectrum, 1000 W/m2 and 25 °C, but in practice, a PV panel does not operate 

under these conditions most of the time. The short circuit current is proportional to the 

irradiance as shown in Fig. 2.5 and has a small temperature coefficient. The open circuit 



25 

 

voltage has a negative temperature coefficient and depends logarithmically on the 

irradiance. Therefore, the open circuit voltage, short circuit current and maximum power 

point change with a change in irradiance or temperature. Typically, a PV system utilizes a 

maximum power point tracker (MPPT), an electronic device to continuously track the 

maximum power point on the I-V curve regardless of environmental conditions and solar 

irradiance [54]. For the sake of simplicity, effect of temperature neglected and PV power 

output depends primarily on solar irradiance (Gt). Therefore, the maximum power output 

from the PV system of nominal capacity (PVnom) is given in Eq. 2.7 as presented in [25]. 

fPV represents the photovoltaic derating factor.  

,

t

PV t PV nom

STC

G
P f PV

G


 

   (2.7) 

 

Fig. 2.5. I-V curve for a typical PV panel at different irradiance levels [55]. 
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2.2. Microgrid operation and control 

2.2.1. Microgrid operation   

 Microgrid operation can be classified based on the architecture and how 

frequency and voltage are maintained [56, 57]. Based on the number of master units 

available in the remote microgrids, operation can be classified in to the single and multi-

master operation.  

2.2.1.1. Single master operation 

Single master operation is characterized by one power generation unit (PG1) at a 

time which is responsible for maintaining the frequency and voltage. Since remote 

microgrid can consist of diesel generators and sometime battery backup with inverter, 

grid forming unit (master) can be either of them. For low penetration of renewable energy 

sources, typically a rotating generator operates as a master unit [30], but for high 

penetration with long-term storage, battery inverter can operate as master unit and allows 

the rotating generator to be switched OFF. Further, the presence of storage reduces the 

need for dump loads [58]. The excess available power is used to charge the batteries, 

which keeps the rotating generator operating at rated load (high efficiency). When the 

battery is fully charged, the generator is turned OFF and the battery system becomes the 

master. This method is suited for applications where the load profile is not well known. 

2.2.1.2. Multi master operation 

 In a multi master system, the rotating machine and the electronically interfaced 

units share the task of maintaining the frequency and voltage through power sharing 

methods such as droop control [59]. As numerous DG units contribute to maintain system 

stability, coordinating the control of the units becomes challenging. This technique is 
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usually applied in a microgrid with high penetration of RES combined with long-term 

storage.  

2.2.2. Microgrid control 

 A PMS provides microgrid control necessary for the efficient operation and 

optimum utilization of the RES. The PMS coordinates with microgrid resources and 

provides an effective means to meet load requirements. The management of non-

dispatchable RES (e.g. PV, wind) is one of the main challenges in the operation of 

microgrid [60]. The choice of a control technique depends upon the distance separating 

the sources and loads, resource characteristics (dispatchable/non-dispatchable), and load 

requirements. Due to the difference in resources availability and location as well as load 

requirements, one single control technique is not applicable to all microgrids. Mainly 

three control techniques are available.  

2.2.2.1. Centralized control 

 The centralized control method utilizes a central controller communicating to 

microgrid resources. The central controller contains all the relevant information of the 

microgrid components. This information includes: forecasted values of the non-

dispatchable sources, load, operational limits (maximum, minimum and most efficient 

region) of dispatchable sources, SOC of the battery, and the state of the components (ON 

or OFF) [60]. Control strategies to obtain optimal operation can be accomplished by 

supervisory control and data acquisition (SCADA) systems [61, 62]. A fast and reliable 

communication link is required for real-time operation and optimization of the system. 

The required communication between MCC and component can be obtained through 

telephone lines, power line carriers, or a wireless medium. However, it could be 
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prohibitively expensive if a long distance transmission is needed. This type of control is 

most suitable for situations where all components are located in one central station. 

 An advantage of central control is the ability for central monitoring and the 

availability of a large amount of system data that can be used to optimize microgrid 

operation. Since, the entire microgrid system depends upon a single controller, the failure 

of that controller will cause system failure. Other disadvantages include the inability to 

support plug and play flexibility and the high computational power and memory 

requirements necessary for manipulating a large number of data points. 

 A typical architecture for the central control method is shown in Fig. 2.6. Each 

component accepts the command and performs the operation accordingly. Example 

commands could include active and reactive power dispatching values and load shedding. 

Studies [57, 60, 61, 63-65], presents various test cases using this type of control 

technique.  

P

Forecasted RES 

output and Load

Objectives / 

Requirements

PMS

Microgrid 

Central 

Controller 

(MCC)

Rotating 

Generator
RES Battery Load

 

Fig. 2.6. Microgrid central control architecture with various resources including 

renewable energy sources (RES) [66]. 
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2.2.2.2. Distributed control 

 In a distributed control, the local controllers (LC) independently manage the 

microgrids components. Distributed control can be divided into two types depending on 

whether or not the LCs communicates with each other. First is droop-based 

communication-less control. In this type of control, local measurement of voltage and 

frequency, which does not require a communication link as shown in Fig. 2.7 is used for 

load sharing among the generators [67-69]. Frequency droop is typically used to control 

the active power and voltage droop to control the reactive power [51]. When there is 

change in load or generation, frequency changes and master unit (battery or generator) 

adjust the power accordingly. In this type of control, no regular update on droop setting is 

provided. This method is useful when the resources are dispersed across the microgrid 

[70]. Droop control also enables plug and play flexibility to expand the system with 

additional DGs [71]. 

LC
Rotating 

Generator

LC

RES Battery

LC LC

Load

 

Fig. 2.7. Typical LC-based microgrid. 

 Second type of distributed control is multi-agent system (MAS). A limitation of 

communication-less system is the inability to optimize the utilization of microgrid 

resources. The addition of a communication link between the LCs enables the optimal 

dispatching of DGs to better utilize RES and reduce fuel consumption [60, 72-74]. A 
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typical architecture for MAS is shown in Fig. 2.8 where each component is assigned to 

the respective agent and all agents communicate with each other. 

Observer Rotating Generator

RES

Battery

Load

LC

LC

LC

LC

Fig. 2.8. Typical MAS architecture for PV hybrid microgrid. 

2.2.2.3. Hybrid control 

Hybrid control is a method where a central controller is used to modify droop 

parameter of LCs via low cost, slow communication link [75]. A typical architecture for 

the hybrid control method is shown in Fig. 2.9. The central controller sets steady state 

parameters while the LC provides transient response without relying on communication 

[59, 71]. An example of a hybrid system is the one used in the Consortium for Electric 

Reliability Technology Solution (CERTS) microgrid. In another example [76], a method 

utilizing frequency partition instead of droop control was presented. 
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Load
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Battery

LC

RES  

Fig. 2.9. Hybrid control method. 

Summary of aforementioned control techniques are presented in Table 2.1 [66]. 

Table 2.1. Major characteristics of different control techniques 

Methods Control Pros Cons Application 

Central 

PMS 

Central Broad observability, 

Higher control over 

resources, 

Increasing energy 

efficiency 

Fast and reliable, 

communication 

channels required, 

Reduce flexibility, 

Low PMS system 

reliability 

Single master operation, 

Co-location of microgrid 

components, 

High penetration of non-

dispatchable RES 

Distributed 

PMS 

LC 

Based 

No communication 

channel required, 

Low cost solution, 

Increasing 

flexibility, Support 

Plug and play feature 

Low energy 

efficiency 

Multi-master operation, 

Microgrid components are 

dispersed throughout the 

network, 

When plug and play feature 

required 

Multi 

Agent 

System 

High reliability, 

Increasing energy 

efficiency 

Communication 

between agents 

required 

 

Multi-master operation, 

Microgrid components 

dispersed throughout the 

network, 

High penetration of non-

dispatchable RES 

Hybrid 

PMS 

Central 

+ LC 

Higher system 

reliability, 

Increasing energy 

efficiency 

Slow 

communication 

channels 

 

Single master or multi-

master operation, 

Microgrid components 

dispersed throughout the 

network, 

High penetration of non-

dispatchable RES 
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2.3. Scheduling and optimization  

 Scheduling is the process of allocating resources ahead of time to achieve certain 

required objective. Typically, a day ahead scheduling is performed to achieve economic 

and environmental benefits and real-time (also called economic dispatch or 15 minutes 

ahead scheduling [35]) is to achieve the reliability as shown in Fig. 2.10. For scheduling, 

it is required to have time ahead prediction of the uncertain variable with some degree of 

confidence such as PV power output and load demand. Scheduling provides the power 

output set points of each generator for scheduling horizon.    

 

Fig. 2.10. Microgrid optimization timeframe. 

 The day ahead schedule module gathers the 24-hour load and PV resource 

forecast as well as information about the system architecture and constraints. In typical 

microgrids, this information is used to determine the schedule for each generator and 

storage device which results in the lowest fuel consumption [77]. The schedule is then 

sent to the real-time dispatching module, which implements the schedule and 

compensates for any deviations from the forecast to ensure the power balance. The 
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dispatching module also ensures the effectiveness of the scheduling module by 

compensating the deviation from the forecasted.  

 Microgrid scheduling is an optimization problem where the presence of both 

continuous and discrete decision variables exists. Continuous variables are power output 

from individual generating resources and discrete variables are ON/OFF status of those 

generating sources. These problems also have some equality and inequality constraints. 

In addition, microgrid scheduling has to deal with the inclusion of stochastic variables 

such as PV power output and load demand. Furthermore, microgrid must be capable of 

handling the uncertainties. Such an optimal scheduling problem mostly handled using 

two different approaches described next.  

2.3.1. Deterministic approach 

 In the deterministic approach, it is assumed that the real values of PV power 

output and loads are equal to their forecasted values. However, PV power and load 

demand are stochastic in nature and cannot be forecasted accurately. Therefore, the 

power management system must have a means to address the variability in PV power 

generation. One way to address variability is by scheduling a spinning reserve for each 

hour and assuming the PV output equal to the forecasted value [78].  

One important aspect of the power system that needs to be considered for reliable 

power is a short-term power and a long-term energy balance. Long-term energy balance 

is considered in the planning phase of the microgrid, including, but not limited to, 

selection of size and type of storage, characteristic of distributed generation units. Short-

term power balance requires sufficient spinning reserve during the time of operation, 

which is critical in case of remote microgrid since it is running without any grid support. 
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Furthermore, remote microgrids are typically operated with the large penetration of the 

non-dispatchable energy sources, spinning reserve plays an important role to compensate 

the uncertainty. In typical remote microgrids, main causes of uncertainty are: i) due to 

equipment failure, and ii) due to load and renewable uncertainty. The probability of 

equipment failure is not considered in this study. Therefore, allocation of the proper 

spinning reserve during the scheduling process is important to provide quick 

compensation required due to an uncertainty of load and renewable source.  

As presented in [78], two main approaches are available in the literature to 

determine the required spinning reserve capacity, they are deterministic and probabilistic. 

Deterministic is a traditional approach, where reserve capacity equal to the largest unit 

running or the certain percentage of the load demand is allocated as spinning reserve. 

Whereas in probabilistic approach, probability measures were used to determine the 

spinning reserve such as standard deviation and confidence interval.  

2.3.2. Stochastic approach  

 The deterministic method does not include variability of PV generation in 

optimization, which might lead to underutilization of the sources and does not realize the 

scenarios that could happen in real-time. As the exact realization of PV power output was 

not available at the scheduling stage, the decisions must be flexible enough to cope with 

uncertainties. Therefore, stochastic optimization approach can be used to further improve 

the system performance. One method to incorporate the uncertainties is developing a 

number of scenarios those likely to happen in the future and minimizing the expected 

value of the objective function over all scenarios, which is the operational cost of a 

remote microgrid in this dissertation. In another word, instead of minimizing function f(x) 
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for one single scenario, the algorithm will try to minimize E[f(x)] over all developed 

scenarios. 

 Scenarios are the set of possible future alternatives based on some sort of 

probability. Development of the realistic scenarios is the critical to capture the variability 

in the system. Unrealistic scenarios could lead system to the wrong direction and 

reliability and the benefits of the optimization process can be compromised. In a case of 

the system where optimization which is performed under the influence of uncertainty of 

PV system output, probability distribution function of the irradiance forecasting errors 

plays an important role while developing the scenarios. 

2.3.2.1. Scenario generation 

 For the development of the scenario with the available forecasting error pdf, 

various methods can be used ranging from statistical methods to the random sampling 

and the Monte Carlo method. In the literature, a large number of studies talks about the 

various methods of scenario generation. Four main methods are presented in [79], those 

are: Sampling, Statistical approaches, Simulation, and Hybrids. Similarly, in the study 

[80] authors presented the various other scenario generation methods available namely: 

Bound-based constructions, Monte Carlo sampling, optimal quantization of probability 

distributions, Quasi-Monte Carlo based discretization methods, probability metric based 

approximations and EVPI-based sampling and reduction within decomposition schemes.  

 Since the infinite number of scenarios can be developed using the Monte Carlo 

with the available continuous PDF, studies limit the number of sampling either by 

internal sampling or with the procedure, which discretized the continuous PDF to the 
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small set of discrete outcomes [81]. The previous study also collectively presents the 

various methods available in the literature to discretize the continuous PDF and keeping 

the characteristic. The standard approach is “bracket mean” method, where the outcome 

regions is divided into N equally probable intervals and mean value is selected in each 

interval with a probability of 1/N. Since this method assumes equal probability for each 

of the sample points, this certainly underestimates the probability of occurrence near the 

mean value. For this types of issues, either previous experience [82] or other methods 

such as presented in the literature review [81] is used.  Once the PDF is discretized, 

scenario tree can be developed based on the discretized samples. Fig. 2.11 shows a 

simple example of scenario tree with continuous PDF was discretized into the three 

samples. For the 24-hour period, extremely large number of scenarios (324) can be 

developed using this tree, which requires large computational power and might not be 

feasible sometimes. Therefore, the various scenario reduction techniques are used to 

develop a manageable number of scenarios [83].  

Time Period = 1 

Time Period = 2

Time Period = 3
 

Fig. 2.11. Multi stage scenario tree. 

 Scenario generation in power system were roughly divide into two categories. 

Selection of the scenario generation is based on the requirement of their particular study.  
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i) Use of continuous PDF: Although an infinite number of scenarios are required to 

represent the exact distribution, good estimation can be obtained with a large number of 

scenarios. These large number scenarios later reduced to a manageable number using a 

scenario reduction algorithm. In [84], 3000 scenarios are developed using  Latin 

hypercube sampling (LHS) method and  assuming a continuous normal distribution for 

the wind power generation around forecasted value. Later, generated scenarios were 

reduced to 10, which provides the acceptable result. Similarly, in [34] error probability 

distribution was used to generate the 100 equally probable scenarios and used in 

optimization without any reduction. Scenarios were developed assuming a normal 

distribution and forecasted demand as a mean value. The study assumes that the 100 

scenarios will approximate the normal distribution. Scenarios can be generated in the 

prediction interval (PI) which covers the required percentage (eg. 95%) of the 

probabilistic confidence interval. Assuming the error distribution follows the normal 

distribution N(μerror, σerror), maximum and minimum fluctuations in certain period of time 

can be given by: 

( )error errorfluctuation z    
 

(2.8) 

where, z-score represents the degree of confidence (1.96 for 95% confidence) and σ is the 

standard deviation of the forecasting error. Adding and subtracting fluctuation in the 

forecasted value will provide the 95% confidence range.   

ii) Use of Discrete PDF: A large number of study talks about this approach. For 

example, in the study [85], scenarios were developed using forecasted value, forecasted 

error mean and standard deviation, which covers 90% of  the probabilistic confidence 

interval. The underlying distribution was discretized into the five samples and scenario tree 
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was developed. After that the scenarios reduction technique is used to limit the number of 

scenarios.   

2.3.2.2. Scenario reduction  

 It was seen in the previous example that, even with the 3 discrete samples 

extremely number of scenarios could be developed then realize how many scenarios can 

be developed using continuous PDF, which is infinite. Therefore, it is extremely 

important to use scenario reduction during the optimization process. There is a tradeoff 

between generated scenario numbers and approximately representing the underlying 

distribution. A higher number of scenarios are required to approximate the distribution, 

but require high computational power. This provides the importance of the scenario 

reduction techniques. In addition, not all of them are important because of the probability 

of occurrence is low and some scenarios are equivalent to another. Therefore, in order to 

eliminate the low probability scenarios and merge similar ones scenario reduction 

techniques are important [83]. This method makes the system computationally efficient 

and viable by selecting only the realistic ones. During the scenario reduction process, the 

first step is to perform clustering of the scenarios which are close to each other before the 

application of the scenario reduction algorithm. Some of the well-known methods as 

mentioned in [83] are fast backward, fast forward/backward and the fast forward method. 

One example of the fast forward technique is Kantorovich distance scenario reduction 

method. The following section provides a simplified Kantorovich distance scenario 

reduction method algorithm. Detailed descriptions of the methods with examples are 

provided in the studies [86-88]. 
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 Kantorovich distance scenario reduction method algorithm 

 Ns represents the number of scenarios, Nt represents the number of optimization 

steps (if optimization is for 24 hours then nt is 24), yt represents the scenario value at time 

t, 𝑑𝑡
𝑖,𝑗

 represents the distance between ith and jth scenario at time t, and 𝜋𝑛𝑠represents the 

probability of nth scenario.   

Step 1: Find the distances between scenarios at time t 
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Step 2: Calculate cost function 

1, 1,1,1 1,1 1,2 1,2

1 1 1

2, 2,2,1 2,1 2,2 2,2

1 1 1,

1

,1 ,1 ,2 ,2 , ,

1 1 1

( ) ( ) )

( ) ) .. )

( ) ) ..

s s

t t t

s st

t t t

s s s s s s s s

t t t

N N

N N N

N NN
N N Ni j

t

t

N N N N N N N N

N N N

d +..+d  d +..+d  ...(d d

d +..+d  (d +..+d  ...(d d
c d

....

d +..+d  (d +..+d  ...(d d



 

  

  


 









 


 (2.10) 

Step 3: Calculate the Kantorovich distance of scenarios  
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 (2.11) 

Step 4: Determine scenario with minimum Kantorovich distance and update the elements 

of cost function (c) matrix. If Kd2 is found minimum, the second scenario is the first one to 

get selected. The cost function elements are updated as: 
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( , ) min( ( ,2), ( , ))
i j

c i j c i c i j


  (2.12) 

Step 5: Use Step 3 to determine the next scenario to be selected 

Step 6: Repeat process until the required number of scenarios are selected  

Step 7: Transfer probability of non-selected to selected scenarios. Each non-selected 

scenario probability will be transferred to the nearest selected scenario based on initial cost 

function matrix. 

2.4. Irradiance forecasting 

In order to define the schedule that will lead to optimal performance of a 

microgrid, an estimate is necessary of how much energy will be consumed by the loads 

and how much will be available from renewable resources like PV system. Detailed 

method regarding the solar forecasting is given in the study [89]. This is simple and 

easily implementable solar forecasting method developed using the Markov Switching 

Model.  It uses available historical data for the region and local measurements. The case 

for solar irradiance forecasting will be shown as an example of how this method will be 

applied.  

Regional, hourly data from the past three consecutive years is collected from a 

database like solaranywhere.com. In order to capture the variability, two Fourier basis 

expansions are fitted. The first expansion accounts for monthly and seasonal irradiance 

trends. Summer months are expected to have more daily solar irradiance than winter 

months. The second expansion accounts for daily irradiance trends. Mornings and 

evenings have less irradiance than middays. Clear sky irradiance, radiation under a 

cloudless sky as a function of the solar elevation angle, site altitude, aerosol 

concentration, water vapor, and various atmospheric conditions [90], are calculated for 
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the area. Linear model, y(t) is fitted to forecast the hourly irradiances using least-squares. 

𝑦(𝑡) = 𝛽1𝐶𝑆𝐼(𝑡) +∑𝛽1𝑖𝜙1𝑖(𝑡)

𝑚1

𝑖=1

+∑𝛽2𝑖𝜙2𝑖(𝑡)

𝑚2

𝑖=1

+ ε(t) (2.13) 

where 𝐶𝑆𝐼(𝑡) is the clear sky irradiance value for time t, ∑ 𝛽1𝑖𝜙1𝑖(𝑡)
𝑚1
𝑖=1  is the yearly 

Fourier component, ∑ 𝛽2𝑖𝜙2𝑖(𝑡)
𝑚2
𝑖=1  is the daily Fourier component, and ε(t) is a random 

noise component.  

The irradiance available at time point t has a latent state variable. This latent 

variable confounds the linear model and creates large discrepancies between the 

forecasted and observed irradiance. Therefore, three different irradiance forecast models 

were developed: high, medium and low energy regimes using the Markov Switching 

Model. Knowing the standard deviation of the forecasting error, we can generate a 

variety of scenarios for stochastic optimization. This model can forecast based on the first 

four hours of data to determine the rest of the day’s irradiance and uses publicly available 

environmental information to train the system. Fig. 2.12 shows the three different energy 

regimes with forecasted and actual irradiance data for two different days. The first day 

was predicted as a high-energy day and the second was predicted as a medium energy 

day. Identifying changes in energy regime are challenging when using this method. In 

order to address this problem, we are developing an algorithm in the real-time dispatch 

unit to readjust set points when regime switching is detected. This simple method mostly 

applies to remote areas where sophisticated forecasting techniques such as those based on 

a satellite image, numerical weather prediction, and artificial neural networks are 

unavailable.  
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(a) 

 

(b) 

Fig. 2.12. Solar forecasting using Markov switching model: (a) high energy prediction 

day and (b) medium energy prediction day. 

 Error in the forecast can be measured by using a mostly used metric called 

average root mean square error (RMSE). RMSE was calculated by averaging the errors in 
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each forecasting period. RMSE gives the measure of the largest deviation, which gives 

the measure of the largest error.  

RMSE = (
1

M
×∑en

2

M

n=1

)
1
2 (2.14) 

2.5. Real-time power balancing 

 Because the PV system has a varying power output, a real-time power 

management (short term power balancing) is required to ensure the reliability and to 

provide continuous matching of supply and demand system [91]. Such power 

management is also required to keep the effectiveness of the scheduled layer [35]. Real-

time power balancing in large power network and remote microgrid is a different process. 

In case of a system with large number of generators and transmission lines, automatic 

generator control changes the power set points of the generators to provide the best 

economic dispatch. This is because, different generator power output goes through 

different transmission line and transmission line could be congested. Therefore, typically 

in each five minutes (in real- time), power set points are adjusted [92]. This is also to 

maintain the tie line flow. However, in case of the small remote microgrids where only 

radial system is working and either generator or the battery is running as a master unit, 

this method is quite hard to implement and sometime does not have any practical 

meaning. Most generators are running on isochronous mode of operation; PV is not 

dispatchable and only component to control is battery with the inverter. Use of available 

reserve is the primary method to keep the reliability in the system. Master unit (generator 

or battery) compensates the variability with running on isochronous or droop mode of 

operation. This is not always possible in two situations:  
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i) When operational constraints do not meet or required power goes outside the 

master unit’s capacity range.  

ii) When operation is not economical or disregards the effectiveness of the 

scheduling unit.  

 In order to provide the short-term power balancing in microgrid, various load 

management techniques can be used to bring the forecasted net-load close to the 

predicted one. Such techniques include: 

a) Power curtailment: When PV real-time generation is higher than the scheduled and 

operational constraints of the units (battery and generator) are violated, power 

curtailment method is used. PV power output can be curtailed completely [9] or 

partially [26]. During complete disconnection, PV output is wasted. Another method 

of power curtailment presented in study [93], where maximum peak power point of 

the PV is controlled as required. 

b) Load management/Demand response: For the real-time operation of the microgrids in 

isolated mode, load shifting and load curtailment are the essential means to deal with 

sudden power fluctuations [36]. Typically, microgrids consist of two types of load: 

critical and non-critical. Non-critical load can be shifted from peak to non-peak hours 

and can be disconnected if required to maintain the power balance [35]. Similarly, 

end-users can be encouraged to make short-term reductions in energy demand in 

response to signal initiated by the microgrid operator, which is called demand 

response [94].  
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CHAPTER 3: PROCEDURE 

The chapter describes detailed procedures to complete the three tasks defined 

previously in the Chapter 1. Section 3.1 describes the development of remote microgrid 

benchmark for the study. The benchmark description includes characteristics and 

parameters of the resources. For example, efficiency of the generators, load and PV 

profile, battery and generator cost model. In addition, a procedure to calculate the lifetime 

throughput and battery throughput cost is described in Section 3.1. Once the benchmark 

is developed, the implementation of the developed PMS using both deterministic and 

stochastic approach is described in the Section 3.2. Furthermore, the real-time dispatch, 

which consist of various real-time power balancing strategies are presented in the Section 

3.2.3. Section 3.3 describes the various cases studied to verify the developed algorithm. 

3.1. Remote microgrid benchmark 

A 75 kW PV-diesel hybrid remote microgrid similar to that described in [9] has 

been adopted for analysis as shown in Fig. 3.1. This microgrid consists of 30 kW and 75 

kW diesel generators running in isochronous mode and a 27 kW PV system. Minimum 

operation of the generators were limited to 30% of their rated capacity. A 170 kWh lead-

acid battery with 80% round-trip efficiency and a maximum 50% DOD was added to 

improve reliability, fuel efficiency and renewable utilization. The battery was sized to 

supply an average load for four hours, which is typical in case of remote microgrid 

systems [33]. The hybrid power management system was used to control the microgrid 

components. Batteries, generators and load should follow the instructions from the 

central controller. Low communication bandwidth was sufficient enough for this type of 

operation and suitable for the remote microgrids. It is assumed that the communication 
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link exists in the microgrid. Other assumptions for the study are: i) Voltage levels are 

considered to be the same at different part of the microgrid, ii) Power losses have been 

ignored in the model, and iii) Reactive power flows are not considered. 

30 kW Generator

75 kW Generator

Remote Microgrid 

PMS

Load

Battery Inverter

Load Forecast

PV Forecast

            Control signal

Power    

LC

LC

Central 

Controller

LC

LC

170 kWh Lead-acid 

27 kW Photovoltaic
LC

 

Fig. 3.1. Remote microgrid layout. 

Fuel consumption curves for KOHLER 30 kW (model 30REOZJC) and 75 kW 

(model KT75) diesel generators were developed using product specification sheets 

provided by the manufacturer as shown in Fig. 3.2. Similarly, the efficiency curve for the 

selected generators is shown in Fig. 3.3. It was observed that the efficiency of a 30 kW 

generator was higher during the low load condition.  
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Fig. 3.2. Generator fuel consumption curves. 

 

Fig. 3.3. Generator efficiency vs loading. 

The annual load profile shown in Fig. 3.4 and PV output shown in Fig. 3.5 used in 
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25 kW. The peak load was 2.56 times the average load. The total load was divided into 

critical which includes residential and important commercial loads such as a health clinic 

and non-critical loads such as water heater and water pumps. In reality, PV is distributed 

throughout the network but for the simplicity, it is assumed that all PV are connected at 

the same POC (aggregated as a 27 kW) and experience the same irradiance level. The PV 

derating factor for the system was 0.77. 

 

Fig. 3.4. Yearly load demand. 

 

Fig. 3.5. Yearly PV irradiance. 
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 Since generator and battery are the two main components, the cost model for each 

one of them were developed and presented in the section 3.1.1 and 3.1.2.   

3.1.1. Generator cost model  

 Generator related cost includes fuel cost, generator hourly replacement cost, 

maintenance cost and emission cost (not included in this study). Fuel consumption can be 

calculated using the simple quadratic equation. The nth generator’s daily fuel cost was 

estimated by multiplying fuel volume with fuel cost per unit volume as given in Eq. 3.1. 

The operation of generators was limited to a minimum of 30% of their rated capacity in 

order to prevent wet stacking, carbon buildup, fuel dilution of lube oil, water 

contamination of lube oil, and damaging detonation. A 75 kW generator was allowed to 

operate in the range of 22.5 kW to 75 kW and a 30 kW generator was limited to 9 kW to 

30 kW as given in Eq. 3.2. 

   
24

2
, , ,

1

               n n diesel n n t n n t n n t

t

C P C a P b P c U



       (3.1) 

, ,min , , ,max     ,  n t n n t n t nU P P U P t T n N         (3.2) 

where, Un,t is the generator ON/OFF status at that particular hour.  

Generator's lifetime hours was estimated to obtain the hourly replacement cost.  

Generator lifetime hours depends on various factors such as proper maintenance and 

frequency of use [95]. From examples of real working microgrids and the manufacturer’s 

documents, 40,000 hours is typically the accepted value for a diesel generator lifetime 

between two major overhauls or replacements [25, 95, 96]. Using this approximation, the 

generator's hourly replacement cost ($/hr) was calculated by dividing initial investment of 



50 

 

generator ($) by lifetime hours. It shows that higher generator running hour leads to the 

higher operation cost. Maintenance cost was assumed constant and equals to $8000.00 

per year. Remote microgrid generators are typically small; therefore, startup and 

shutdown costs were neglected in the study [39]. The generator’s minimum up and down 

time were 1 hour. In the study, total generator use cost is the sum of fuel cost and hourly 

replacement cost, which is the first objective (Obj1) that needs to be minimized.  

3.1.2. Battery wear cost model 

To determine the battery wear cost ($/kWh), it is necessary to approximate the 

lifetime throughput of the battery. The lifetime throughput can be calculated using 

information in the battery specification sheet, but this is only applicable to the laboratory 

standard test conditions such as fixed discharge rate, rated DOD, and temperature. 

However, the real working condition is completely different from the standard in case of 

remote microgrids with high penetration of stochastic PV system. Studies [45, 46, 97] 

presented additional factors upon which the lifetime Ah-throughput varies such as no. of 

battery life cycle, partial state of charge cycling, incomplete or rare full charging, 

temperatures, the complex interaction between the various ageing processes, and the 

operating conditions. Therefore, an amount of throughput in real-time is not equivalent to 

the same as determined on the standard test conditions (i.e. actual 1 Ah is not equal to 1 

Ah at standard test condition). Therefore, throughput continuously needs to be weighted 

during real-time operation and when the total weighted throughput is equivalent to the 

throughput calculated from the manufacturer datasheet, the battery is considered to have 

reached its lifetime. In this study, a weighted Ah method originally presented by Schiffer 

in [97], was used to calculate actual Ah throughput and battery lifetime. 
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3.1.2.1. Calculate datasheet lifetime throughput 

Usually, a manufacturer specification sheet provides the information required to 

approximate battery lifetime in the form of battery cycle life vs depth of discharge 

(DOD). Example of Sun Xtender PVX-2580L is shown in Fig. 3.6 (a) [98]. Here, the 

DOD of a battery can be expressed in terms of SOC and vice versa (DOD = 1-SOC).  

  

 

Fig. 3.6. Battery characteristics curves: (a) battery life cycle vs depth of discharge (b) 

lifetime Ah throughput vs DOD. 

 The total Ah lifetime of a battery at rated depth of discharge (DODR) and Ah 

capacity (BattCapAh) is given by Eq. 3.3 [23]. 
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, lifetime c DOD R AhAh L DOD BattCap    (3.3) 

 One simple example illustrates the method to calculate lifetime throughput using 

Eq. 3.3.  

Assuming,  

 Rated battery capacity (BattCapAh) = 258 Ah  

 Battery rated voltage (BatteryVolt) = 12 Volt 

 Cycle life @0.5 DOD (Lc,DOD) = 1000 

 Ahlifetime = 1000 × 0.5 × 258 = 129000 Ah  

 kWhlifetime = (1000 × 0.5 × 258 × 12)/1000 = 1548 kWh 

 Since the DOD can vary in between the allowable range (0 to 50% DOD for this 

study), corresponding life cycle (LC, DOD) also varies as shown in Fig. 3.6 (b). Here, the 

life cycle represents the total complete discharge cycle (discharging after complete 

charging) that the battery can provide in that particular DOD. Therefore, the average total 

Ah lifetime is calculated by averaging the lifetime throughputs between allowable DODs 

as shown in Eq. 3.4. Similarly, battery lifetime in terms of average kWh throughput is 

given in Eq. 3.5.  

min

max

, 

,    
           

DOD

c DOD

lifetime avg

Ah DOD DOD

L DOD
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Battery wear cost is given by [25]: 
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3.1.2.2. Calculate weighted lifetime throughput 

 The first step in finding weighted lifetime TP is to calculate battery throughput 

weighting factor. Actual throughput was multiplied by a weighting factor in each time step 

to determine the weighted throughput. When weighted throughput equals the throughput 

calculated in Eq. 3.5, the battery was considered to be dead. The weight factor was 

calculated using Schiffer’s weighted model [97]. This model calculates the capacity loss 

by corrosion and degradation. However, for simplicity, only the effect of SOC on battery 

life is considered in this study, which is the most important parameter. The Wsoc factor 

(SOC weighting factor) as shown in Eq. 3.7 takes into account the SOC influence [46]. 

Degradation increases with decreasing SOC of the battery. This process will address 

impacts due to low SOC and large time gap between two full charges. Both events will 

increase mechanical stress on the active masses and increase the size of sulfate crystals. It 

is set to 1 at each full charge and increases with time since the last full recharge (t0).  

0,0 ,min min

0

( ) 1 ( (1 ( ) | )

                  ( , ) ( ))

t
SOC SOC SOC t

I b

W t C C SOC t

W I n t t

     

 
 

(3.7) 

 In Eq. 3.7, constant slope for SOC factor (CSOC,0) and the impact of the minimum 

SOC (CSOC,min) on the SOC factor were adapted from [97]. The current factor (I,n )I bW  

describes the influence of the current as given in Eq. 3.8 where, Iref is the 10 hr current 

(I10=C10/10). The number of bad charges (nb) depends on the maximum SOC obtained 
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during the charging process. Charging lower than 0.9 SOC will not affect the number of 

crystals at all and should therefore not be counted as a bad charge. However, charging 

higher than 0.9 and lower than 1 is considered as a bad charge because the number of 

crystals decreases but their size increases. So the current factor is also affected by nb. When 

fully charged it is zero, but when charged in between 0.9 to 1, it is calculated as in Eq. 3.9. 

3
( )

( , ) exp
3.6

ref b
I b

I n t
W I n

I
   

(3.8) 

2
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0.0025

b b
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 
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(3.9) 

 Once the Wsoc for each time period calculated, weighted throughput was calculated 

by multiplying with the discharged battery power (Pbdisc,t) with Wsoc factor at every time 

step. During charging period, Pbdisc,t was zero. Since, hourly optimization was considered, 

∆t represents one-hour period. Total weighted throughput was the sum of the values for 

scheduling horizon (24 hour in this study) as shown in Eq. 3.10. Daily battery wear cost 

was calculated using Eq. 3.11.  

24

24 ,

1

( )hr disc t SOC

t

kWh Pb W t



   
(3.10) 

  , 24hr ,  24batt batt perkWh hrC C kWh   
(3.11) 

 In order to calculate life in years, the total actual weighted kWh was calculated for 

one year and compared with the total average lifetime kWh from the datasheet calculated 

in the Eq. 3.5. Total wear cost of the battery for a particular period was calculated by 

multiplying total weighted actual throughput with the battery wear cost calculated in the 

Eq. 3.6.  
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Since, both objectives can be expressed in terms of cost, the PMS will not only 

extend battery lifetime, but also decrease the microgrid operational cost. A weighted sum 

method [99, 100] was used where a single objective is developed from a weighted sum of 

functions representing the two objectives of the problem as given in Eq. 3.12. The goal of 

this objective is to minimize the cost of operation. These weights determine the priority 

of each objective. If both weights are equal (0.5), the objectives are equally important. If 

one is higher than the other is, it indicates that the objective with the higher weight is 

more important to achieve the overall goal. 

1 1 2 2 (      )obj W obj W obj     
(3.12) 

In this study, the average lifetime throughput of the battery was calculated using a 

DOD range of 0 to 0.5, which is typical for lead acid batteries. In this study, the battery 

maximum charge and discharge power output was limited to -45 kW and +45 kW, 

respectively. This range could be different for different types of battery and microgrid 

configuration. Further, the range is also subjected to the limitation imposed by a battery 

charger/inverter. The initial investment cost of the battery and the generators (Table 3.1) 

were determined based on current market price [101]. The average lifetime throughput of 

the battery was equal to 90,384 kWh. The fuel cost was $9.00/gallon based on a remote 

community electric utility [102].  

Table 3.1. Battery wear cost and generator hourly replacement cost 

Component Initial cost ($) Wear and hourly replacement cost 

Battery 40,000 $0.5/kWh 

Generator (30 kW) 14,000 $0.35/Hr 

Generator (75 kW) 20,000 $0.5/Hr 



56 

 

3.2. Two layer power management system algorithm 

The proposed PMS consists of two distinct modules (day ahead schedule and real-

time dispatch) which schedule and control the operation of the generators and battery as 

shown in Fig. 3.7.  

 

Fig. 3.7. Two distinct modules of remote microgrid PMS. 

3.2.1. Day ahead schedule 

First task of the PMS is day ahead scheduling. Forecasted value of PV and load 

along with the information of the system architecture and constraints were provided to 

the day ahead schedule module. The Markov switching method was used to obtain the 

forecasted PV power [89]. Microgrid operation was optimized using the IBM ILOG 

CPLEX v12.6.1 solver. This product is developed by IBM ILOG, which is a high 

performance solver for Linear Programming (LP), Mixed Integer Programming (MIP) 



57 

 

and Quadratic Programming (QP/QCP/MIQP/MIQCP) problems [103]. A 3.20 GHz 

processor desktop with 8 GB RAM was used to solve the problem. The computational 

time for each yearly simulation was about 4 minutes.   

Generation set points for the optimal operation of the microgrid were obtained 

using both deterministic and stochastic optimization approaches. In these approaches, the 

diesel generators and the battery both can be the master unit of the microgrid. For our 

study, when battery is acting as a master unit, it is operated similar to a synchronous 

generator with active power vs frequency and reactive power vs voltage droop 

characteristic. For remote microgrid, frequency control is more important. Table 3.2 

shows the master unit of the microgrid in various scheduled condition.  

Table 3.2. Master unit selection 

Resources Scheduled Master Unit 

A single diesel generator Diesel generator (isochronous mode) 

Multiple diesel generators Largest diesel generator  

PV + Battery Battery inverter 

PV + Generator Diesel generator in isochronous mode 

Battery Battery inverter 

 

3.2.1.1. Deterministic approach 

While using deterministic approach, a spinning reserve equal to 20% of the 

forecasted load was used based on a study [78] to compensate the variability in PV power 

output and load. The deterministic objective function is: 
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(3.13) 

In addition, operational constraints are: 

i) Power balance   
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(3.14) 

ii) Battery State of charge  

min max     tSOC SOC SOC t T     (3.15) 

iii) Maximum charge and discharge rate of a battery are limited to: 

, , ,     b mcrg b t b mdcrgP P P t T     
 (3.16) 

iv) Generator power output limit 

,min , ,max     ,  n n t nP P P t T n N        (3.17) 

v) Reserve requirement 
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where,  

t Time index, t = {1, 2, ..T} 

n Generator index, n = {1, 2, ..N} 

Un,t Generator ON/OFF control at t (1=ON, 0=OFF) 
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Pn,t Power output of nth generator at t (kW) 

Cn(Pn,t) nth generator cost at t ($/hr) 

Pn,min Min. power output of nth generator (kW) 

Pn,max Max. power output of nth generator (kW) 

Cn,hrc nth generator hourly replacement cost ($/hr) 

PPV,t Photovoltaic power output at t (kW) 

Pb,t Battery input/output power at t (positive for charging and 

negative for discharging) 

Pb,mcrg Battery maximum charge rate (kW) 

Pb,mdcrg Battery maximum discharge rate (kW) 

SOCmin Minimum battery state of charge  

SOCmax Maximum battery state of charge 

SOCt Battery state of charge at t 

ηcrg Battery charging efficiency  

ηdcrg Battery discharging efficiency 

Cbatt Battery wear cost ($/kWh) 

PL,t Load demand at t (kW) 

Reservet Required spinning reserve at t  

3.2.1.2. Stochastic approach 

 In this approach, instead of spinning reserve allocation, multiple scenarios with 

respective probabilities were generated, which explicitly considers the effect of 

uncertainty [42]. Uncertainties are incorporated with the objective function that better 

helps to realize and optimize the variability. This approach will consider a large number 
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of possible power output scenarios of variable sources that likely to happen in the future 

and provides an average best result over all scenarios [34]. Realistic scenarios were 

developed using probability density function (pdf) of the renewable output forecasting 

errors, which was derived from the historical data of the renewable power generation. 

Quality of forecasting method reduces the error. Since the forecasting error is random in 

nature and there are large amount of random data for the yearly analysis, its distribution 

can be assumed normally distributed. 

 Scenario generation process starts with finding the distribution of the forecast 

error and its parameters (standard deviation and mean). Monte Carlo sampling method 

considering the forecasted error distribution was used to develop the required number of 

scenarios. The detailed scenario generation procedure is as follows:  

Step 1: Obtained forecasted and actual PV power and calculate forecast error 

distribution. Assuming PV forecasting error follows normal distribution, standard 

deviation (σ) and mean (μ) were calculated. For normally distributed error, the standard 

deviation of the error can be approximated by the square root of the MSE. 

Mean square error (MSE) of the forecasted PV 

2(| |)Actual Forecast
MSE

N




 

 (3.19) 

Step 2: Prediction interval (PI) of the forecasted value at each time step was determined 

using Z score, forecasted value and MSE. The Z score represents the degree of 

confidence (1.96 for 95% confidence). This range between lower and upper value 

provides the information that forecasted value will be in this range 95% of the time.  
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( )Lower F t z MSE  
 

 (3.20) 

( )Upper F t z MSE  
 

 (3.21) 

Step 3: Monte Carlo simulation method was used to generate 1000 numbers of scenarios 

for a day. Each scenario is independent and has an equal probability of 0.1. While using 

lower and upper bound, it was noticed that the upper limit sometime exceeds the PV 

system rating. In such case, the upper limit was set to the maximum PV rating. Similarly, 

if lower limit goes below, it was set to zero. In order to reduce the computational power 

required to solve 1000 scenarios, fast forward method using Kantorovich distance 

scenario reduction was used. The output of this method was 10 most probable scenarios 

with their respective scenarios.  

For the stochastic optimization, two-stage decision framework will be used [39, 

42]. It is also called two stage recourse models. In first stage, generator ON/OFF decision 

is made before the realization of the uncertainty in a PV system. These are called first-

state decision variables [104]. In second stage power output of generator and battery will 

be decided. These are the recourse decisions made after the realization of the uncertainty. 

In such multi-framework optimization, decisions made in first stage will be same for all 

developed scenarios.  

The stochastic objective function is  
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(3.22) 
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where, S is the probability of the individual scenarios respectively, ,
s

n tP is the 

power output of the nth generator at time t in scenario s, 
,24batt hr

sC is the battery wear cost of 

scenario s. Other variables are same as explained in the deterministic section. Operational 

constraints are same as deterministic and reserve requirement constraint (Eq. 3.18) was 

not used for the stochastic optimization method.   

3.2.2. Determining weights W1 and W2 

The best set of weights W1 and W2, which determines the proper use of generator 

and battery was determined by yearly analysis using deterministic approach. The annual 

hourly average load and the PV power output, shown in Fig. 3.4 and 3.5 respectively, 

were applied to the test microgrid. The initial SOC for the first day of the year was 

assumed to be 0.8 (80%). For every other day, the initial SOC was equal to the final SOC 

from the previous day. The total battery lifetime throughput was allocated equally for a 

10-year float life which was equal to 9038 kWh/year. If the yearly throughput was found 

to be less than the allocated, the battery was not fully utilized and a float life cost equal to 

the difference between allocated and utilized throughput multiplied by the battery wear 

cost was calculated.   

It is an iterative simulation process where the initial set of weights W1 = 1 and W2 

= 0. This is the case when the battery wear cost was not considered in the objective 

function. In this case, yearly operational cost was determined and set of weight changes 

to W1 = 0.9 and W2 = 0.1. This is the case when battery wear cost was considered with 

low weightage. Yearly operational cost was calculated and weight changes to W1 = 0.8 

and W2 = 0.2. In a similar fashion value of W1 and W2 varied and operational cost 

calculated. It is important to note W1 + W2 = 1. Comparing the operational costs obtained 
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from different sets of weights, set with lowest operation cost was selected.  

3.2.3. Real-time dispatch 

A real-time dispatch module is a collective form of all local controllers available 

in microgrid, which accepts set-points from scheduled unit. Once, real-time module 

obtains set-points, it implements them and support required deviation from set- points to 

ensure all constraints were satisfied during the operation of microgrid. Since real-time 

dispatch is based on locally available information, it is a primary control of microgrid 

operation and secondary control is a schedule module.  

Generator/Battery Scheduled Set-Points
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Power curtailment

Gen. within 
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compensate?
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Fig. 3.8. Real-time microgrid operation algorithm. 
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In this study, since generators are running in isochronous mode, primary control is 

governors in the diesel generators and droop control in the battery inverter. In order to 

keep the effectiveness of the scheduled layer, when net-load deviates and allocated 

reserve cannot compensate the change, the dispatch module performs a corrective action 

as shown in Fig. 3.8. This corrective action includes PV power and load curtailment, 

dump load, and rescheduling (if required). Real-time module behaves differently in the 

following cases.  

A) Less PV power 

 If generator is acting as a master unit, it will compensate the variability until its 

maximum operational limit reached. If generator is not sufficient then battery provides 

the power within its limit. If still not sufficient, non-critical load will be curtailed. It is 

assumed that at any hour there is at least 25% non-critical load available. Similarly, in 

case when battery is acting as a master unit, non-critical load will be curtailed if battery 

cannot compensate the variability. If still not sufficient, one of the generator starts based 

on the load requirement.  

B) Excess PV power 

 If generator is acting as a master unit, it will compensate the variability until its 

minimum operational limit. If net-load goes less than the minimum limit, battery store the 

power within its capacity. If still not sufficient, dump load (10 x 1 kW) will be used to 

maintain the generator loading. Here, dump load is different from the non-critical. When 

battery acting as a master unit and cannot store the excess PV power, then dump load will 

be used to keep the power balance.   
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3.2.4. Coordination between day-ahead schedule and real-time dispatch 

The required coordination between a day ahead schedule and real-time dispatch 

module is provided using hybrid PMS control structure. In this structure, a low bandwidth 

communication link was used to update the droop parameter of the battery inverter when 

required [66]. The complete coordination between these two layers is as follows: 

1. Solve objective function and determine day ahead generator and battery operating 

set-points based on: i) day ahead hourly forecasted load (PL,t), ii) PV (PPV,t) 

output, iii) microgrid system architecture information, and iv) constraints.   

2. Set-points are provided to the real-time dispatch module using a low bandwidth 

communication channel. 

3. Dispatch module controls the sources using pre-determined set points obtained 

from the day ahead module.  

4. The dispatch module follows the dispatch algorithm as described in Section 3.2.3.  

5. If the operation is not acceptable, (described in section 3.2.3) a reschedule alarm 

will be sent.  

6. New optimal set-points are calculated and provided to local controller and 

operation resumes starting the next hour. 

3.3. Solar forecast validation 

 The required solar forecast for the study was obtained from the study [89], which 

uses Markov based switching model. The effectiveness of the PV forecast method used in 

this dissertation was validated using yearly and daily analysis. This validation is to 

determine whether the forecast method available is sufficient for use or required to have a 

better method for more accurate forecasting. 
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 First step in this validation is to calculate the forecasting error for each of the 

8760 hours in a year. The error was calculated by subtracting actual PV power (PA) with 

forecasted value (PF) as given in Eq. 3.23. Once the difference is calculated, forecasted 

power with reduced error (PFR) was calculated for each interval of time using the Eq. 

3.24, where ER is the percentage of error reduction. 

–F AP  P  P   (3.23) 

(1 )FR A RP  P P E=     (3.24) 

 In this error reduction method, forecast error reduction was conducted 

proportionally in the step of 20% (i.e. ER = 0.2, 0.4, 0.6, 0.8, 1), making the forecasted 

result more accurate. When forecasted PV output is equal to the actual value, it is called 

100% reduced error. 

  The second step in the validation process is to perform five yearly simulation 

studies using the obtained forecasting results obtained. First simulation is using 

forecasted value; second using 20% reduced forecasted value and so on. Results in each 

simulation were compared to determine the effectiveness of the available forecasting 

method. 
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CHAPTER 4: RESULT AND ANALYSIS  

This chapter presents the detailed analysis of the results obtained to achieve the 

objective of this study. Section 4.1 describes the method to determine the proper 

objective weights which ensures the minimum operational cost. This includes yearly 

simulation analysis of a developed microgrid benchmark. Section 4.2 presents the 

deterministic approach to solve the battery lifetime problem. In this approach, the results 

with and without battery lifetime management approach were compared and discussed. 

Section 4.3 presents the stochastic approach to solve the battery lifetime issue. In 

addition, the comparison between deterministic and stochastic method will be discussed. 

4.1. Determination of weights  

 Weights W1 and W2 were determined from yearly analysis and optimized to 

provide the lowest yearly operational cost which includes fuel cost, generator hourly 

replacement cost, battery wear cost, and battery float life cost. Battery wear and generator 

replacement costs were calculated and presented in Table 4.1.  

Table 4.1. Battery wear cost and generator hourly replacement cost 

Component Initial cost ($) Wear and hourly replacement cost 

Battery 40,000 $0.5/kWh 

Generator (30 kW) 14,000 $0.35/Hr 

Generator (75 kW) 20,000 $0.5/Hr 

Since reducing fuel consumption is the first priority in case of a remote microgrid, 

weight W1 ranged from 1 to 0.5 (W1≥W2) and W2=1-W1. These weights determine the use 

of batteries and generators. For example, when W1 = 1 and W2 = 0, large battery 
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throughput was used, leading to shorter battery lifetime. Similarly, with increased W2, 

battery throughput decreases and cost of operation changes as well. However, the effect 

of Wsoc was significantly different in these cases as shown in Fig. 4.1. For W1 = 1, 

although the battery throughput was higher, the effect of Wsoc was found to be less than 

all other cases. Since the average Wsoc was about 1, weighted throughput (64,132 kWh) 

was not that much different from the actual throughput (58,822 kWh). This is because of 

the regular charge/discharge cycles that the battery underwent. However, when W1 = 0.7, 

the effect of Wsoc was significant and the average value was about 5. This means that the 

weighted throughput was about 5 times the actual throughput. In such a case, even though 

the actual battery throughput seems less (6,905 kWh) and longer battery life, effect of 

Wsoc increases the weighted throughput to 35,299 kWh and reduces the battery lifetime. 

This higher Wsoc was due to the lack of regular charge/discharge cycles obtained from the 

simulation (only one full charge was observed during a year of simulation). Similarly, 

when W1 = 0.5, the effect of Wsoc was significant (average value was 3.61) also due to the 

lack of regular charge/discharge cycles and large time gap between two full charges. The 

SOC histogram in Fig. 4.2 shows the reason behind the different value of Wsoc for 

different weights. For W1 = 1, it is seen that the batteries were running on comparatively 

higher SOC. The worst condition was when W1 = 0.7 and W2 = 0.3, where batteries were 

running at minimum SOC most of the time. Therefore, it is very important to have a 

regular full charge to improve battery life. In addition, the actual comparison between 

different sets of W1 and W2 can be made only when battery gets regular full charges. 
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Fig. 4.1. Effect of Wsoc when cycling is not considered: (a) W1 = 1, (b) W1 = 0.7, and (c) 

W1 = 0.5. 
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Fig. 4.2. Battery SOC histograms: (a) W1 = 1, (b) W1 = 0.7, and (c) W1 = 0.5. 

The best set of weights was determined by considering the battery gets a regular 

full charge on a weekly basis. It is obtained by running the microgrid system in a cycling 

charge strategy which fully charges the battery. Once the battery is fully charged, the 

system will return to normal operation of scheduling and dispatching. While doing so, it 

was observed that the average value of Wsoc was found between 1 and 2 as shown in Fig. 

4.3.  
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Fig. 4.3. Effect of Wsoc on throughput with battery cycling approach: (a) W1 = 1, (b) W1 = 

0.7, and (c) W1 = 0.5. 

 When the weekly charging strategy was used, the effect of Wsoc was greatly 

reduced. However, it is still a little higher in case of W1 = 0.7 and W2 = 0.3. For the sake 

of simplicity, other factors such as battery self-discharge and losses due to the 

temperature were not considered during the study. A yearly optimal scheduling analysis 

was performed for range of weights and the results are presented in Table 4.2. Similarly, 

graphical representation of the operational cost and battery lifetime is shown in Fig. 4.4.  
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Table 4.2. Yearly simulation results with 170 kWh battery 

W1 

(fuel) 

Fuel 

(gallons) 

Weighted Battery 

Throughput 

(kWh) 

Float 

Life 

Cost 

($) 

Maximum 

Battery Life 

(years) 

Total Cost 

of Operation 

($) 

1 11,978 63,788 0 1.42 141,744 

0.9 12,334 39,871 0 2.27 133,658 

0.8 12,684 28,522 0 3.17 131,471 

0.7 13,089 17,125 0 5.28 129,550 

0.6 13,411 11,712 0 7.72 129,782 

0.5 13,841 5,265 1,886 10.00 132,380 
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Fig. 4.4. Performance with varying weights: (a) yearly operational cost vs weight (b) total 

lifetime vs weight. 

When W1 = 1, fuel consumption was the only factor in the optimization process. 

The generator load histogram (Fig. 4.5) shows that when W1 = 1, the 75 kW generator 

operated at full load and maximum efficiency while the lower efficiency 30 kW generator 

was unused. Since the battery life was not a factor (W2 = 0) in this case, high throughput 

resulted in a 1.42 year battery lifetime. Thus, frequent and impractical battery 

replacement is indicated.  
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Fig. 4.5. 75 and 30 kW diesel generator loading histograms: (a) W1 = 1, (b) W1 = 0.7, and 

(c) W1 = 0.5. 

As W1 was decreased (Table 4.2), more consideration was given to battery cost 

which result in increased fuel consumption but longer battery life due to reduced 

throughput. In addition, use of the 30 kW generator became cost effective (Fig. 4.5). The 

lowest operational cost, due to a balance between fuel and battery costs, was with W1 = 

0.7. The battery lifetime was estimated to be 5.28 years and the yearly operational cost 
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was 9% lower compared to W1 =1 and W2 = 0. As W1 was further decreased, operational 

costs increased due to greater fuel consumption and lower utilization of the battery within 

its float life.  

The optimal weight W1 varies slightly as the battery wear cost increases or 

decreases from the original $0.50/kWh as shown in Fig. 4.6. For lower wear cost, higher 

W1 is required to obtain minimum cost of operation. For example, minimum operational 

cost was found at W1 = 1 when wear cost was low (0.1$/kWh).  

 

Fig. 4.6. Effect of battery wear cost on operation. 

 The effect of fuel cost variations was also analyzed for a fixed battery wear cost 

of $0.50/kWh (Fig. 4.7). For a fuel cost of $12/gallon, the lowest operational cost was 

found at W1 = 0.6. However the optimal weight for $3/gallons was W1 = 0.8. This 

indicates that when fuel cost is high, the PMS tends to decrease the use of battery. This is 

because the battery itself is not a source and either generator or PV needs to charge it. 

 0.5 0.55  0.6 0.65  0.7 0.75  0.8 0.85  0.9 0.95    1
115000 

120000 

125000 

130000 

135000 

140000 

145000 

150000 

155000 

Weight (W1)

Y
e

a
rl

y
 o

p
e

ra
ti
o

n
a

l 
c
o

s
t 
($

)

 

 

BattCost = $0.10/kWh

BattCost = $0.30/kWh

BattCost = $0.50/kWh

BattCost = $0.70/kWh



76 

 

Since the fuel cost is high, the generator is not charging unless the efficiency of the 

generator can be increased. In addition, capacity of PV is not sufficient to impact on this 

regard.  

 

Fig. 4.7. Effect of diesel cost on operational cost. 

 Results in this Section 4.1 showed that increasing the battery lifetime can reduce 

the operational cost of the microgrid, even though fuel consumption is increased. The 

method is not highly sensitive to variations in fuel and battery wear cost. A wide range of 

weights (0.65 < W1 < 0.8) showed to be effective in reducing the operational. The rest of 

the study will consider W1 = 0.7 and W2 = 0.3 for the battery lifetime management 

algorithm.  

 In order to validate the results  in daily analysis, a typical summer day (July 7) 

with a highly fluctuating load was selected for the simulation. PV and load demand are as 

shown in Fig. 4.8. 
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Fig. 4.8. PV output and load demand of July 7 for daily analysis. 

 The scheduled power outputs (battery and generator set points) using W1=0.7 are 

shown in Fig. 4.9. Since the use of the battery was controlled, both generators were 

scheduled to provide power. The 75 kW generator was turned on when load demand for 

the first hour and charge the battery. The 30 kW generator was turned on at hours 2, 3, 5, 

14, 16, 20, 22 and 24 during low load condition. The battery gets charged when large 75 

kW generator was supplying power. At hours 11, 12, 13, 18, and 19 when the load was 

small, the battery inverter was acting as a master unit and the both generators were turned 

off. Total battery throughput during this time was 43 kWh and fuel consumption was 25 

gallons. 

 For the sake of comparison, daily analysis without BLM algorithm was also 

simulated and result is shown in Fig. 4.10. Comparing results shows that running without 

BLM improves the loading of the generator. A 75 kW generator was running at around 

60 kW. The battery was heavily used to improve the efficiency due to which throughput 

use was drastically increased to 187 kWh and fluctuation in battery SOC was as shown in 

Fig. 4.11. Total fuel consumption was 21 gallons. The system did not utilize the 30 kW 
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generator. When the load requirements could be met with the PV and battery, the 75 kW 

generator was turned off and the battery inverter became the master unit (hours 2, 3, 5, 6, 

7, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23 and 24). 

 

Fig. 4.9. Daily schedule with BLM (W1=0.7). 

 

Fig. 4.10. Daily schedule without BLM (W1=1). 
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Fig. 4.11. SOC without BLM algorithm. 

 The comparison of two cases with and without BLM, including fuel consumption, 

battery throughput and estimated microgrid operation cost is given in Table 4.3. The 

results show 4 gallons increase in fuel consumption when scheduled with W1=0.7. 

However, battery throughput was reduced by 77% which reduced the operational cost by 

12% and validates the use of BLM in scheduling.  

Table 4.3. Results with and without BLM 

Scheduling Cases Fuel Consumption 

(gallons) 

Battery Throughput 

(kWh) 

Daily Cost of 

Operation ($) 

Without BLM 21 187 280 

With BLM 25 43 247 

4.2 Real-time operation of microgrid 

 The test microgrid was analyzed using forecasted and actual power output from 

Brooking, SD. PV output is forecasted using historical data using Markov switching 
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model described in Section 2.3. The difference between forecasted result and actual 

output is shown in Fig. 4.12. RMSE was calculated using only daytime values because at 

night, all values are zero and 100% correct forecasted results can be obtained which 

provides a false result. The calculated root mean square error value was 3.62 kW, which 

approximates the standard deviation of the error.  

  

Fig. 4.12. Yearly forecast error. 
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and for stochastic approach, 1000 scenarios with equal probability were generated and 

reduced to 10.  

 

Fig. 4.13. PV output and load demand. 

4.2.1.1. Deterministic daily analysis  

 Table 4.4 presents the detailed analysis result of the deterministic approach with 

BLM algorithm. The result shows how forecast error affects the actual operation of the 

microgrid and how much it is different from the scheduled one. Scheduled and actual 

output power output from generators and battery are presented. The net-load changes in 

real-time condition because of the stochastic nature of PV output. These variability must 

be compensated by the running units, according to the real-time dispatch strategy 

presented in Section 3.44.  
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Table 4.4. Daily analysis using deterministic approach 

Hour Scheduled set-points Actual output 

Net-

load 

Gen. 1 

(kW) 

Gen. 2  

(kW) 

Battery 

(kW) 

Net- 

load 

Gen. 1 

(kW) 

Gen. 2  

(kW) 

Battery 

(kW) 

1 10.00 0.00 22.50 12.50 10.00 0.00 22.50 12.50 

2 9.41 9.41 0.00 0.00 9.41 9.41 0.00 0.00 

3 9.16 9.16 0.00 0.00 9.16 9.16 0.00 0.00 

4 9.59 0.00 22.50 12.91 9.59 0.00 22.50 12.91 

5 9.13 9.13 0.00 0.00 9.13 9.13 0.00 0.00 

6 7.35 0.00 0.00 -7.35 8.85 0.00 0.00 -8.85 

7 16.29 0.00 22.50 6.21 18.98 0.00 25.19 6.21 

8 22.14 0.00 22.50 0.36 27.22 0.00 27.58 0.36 

9 21.61 0.00 22.50 0.89 26.91 0.00 27.80 0.89 

10 16.21 0.00 22.50 6.29 14.08 0.00 22.50 8.42 

11 8.64 0.00 0.00 -8.64 9.21 0.00 0.00 -9.21 

12 4.03 0.00 0.00 -4.03 4.44 0.00 0.00 -4.44 

13 7.06 0.00 0.00 -7.06 6.21 0.00 0.00 -6.21 

14 12.99 14.94 0.00 1.94 10.32 12.27 0.00 1.94 

15 13.79 0.00 22.50 8.71 14.02 0.00 22.73 8.71 

16 10.92 10.92 0.00 0.00 13.12 13.12 0.00 0.00 

17 14.47 0.00 22.50 8.03 16.89 0.00 24.92 8.03 

18 8.99 0.00 0.00 -8.99 11.66 0.00 0.00 -11.66 

19 6.76 0.00 0.00 -6.76 8.52 0.00 0.00 -8.52 

20 10.42 10.42 0.00 0.00 10.06 10.42 0.00 0.00 

21 11.32 11.32 0.00 0.00 11.32 11.32 0.00 0.00 

22 12.72 12.72 0.00 0.00 12.72 12.72 0.00 0.00 

23 11.62 11.62 0.00 0.00 11.62 11.62 0.00 0.00 

24 10.28 10.28 0.00 0.00 10.28 10.28 0.00 0.00 
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 Table 4.4 shows that when the net load is reduced and generator is already 

running at its minimum limit, the battery consumes more power from generator to 

maintain its minimum load (10th hour). Most of the hour when generators were running as 

a master unit, they were able to compensate the PV fluctuation. During times when the 

battery was acting as a master unit (e.g., hour 6, 11, 12), SOC changes due to the change 

in power output from the scheduled value.  

 Actual and scheduled SOC varies as shown in Fig. 4.14. For the simulation, initial 

battery SOC was 0.5, and scheduled to be 0.53 at the end of the day. However, in actual 

operation SOC at the end of the day was 0.5. Total fuel consumption, throughput and 

operational cost changes from the scheduled value. Summary of scheduled and actual 

operation is presented in the Table 4.5.  

Table 4.5. Daily operation summary  

Case Fuel Consumption 

(gallons) 

Battery Throughput 

(kWh) 

Daily Cost of 

Operation ($) 

Scheduled 25 43 247 

Actual 23 49 232 

 As seen in the Table 4.5, actual fuel consumption slightly decreases compared to 

the scheduled value. This is because of the slight overestimation of PV output for that 

particular day. When load increases, generator efficiency increases. Although there is a 

slight increment in battery throughput, total operational cost decreases.  
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Fig. 4.14. Scheduled and actual SOC variation. 

4.2.1.2. Stochastic daily analysis 

 In order to generate the required number of scenarios, the RMSE of the solar 

forecast was used to determine the forecasted upper and lower boundary. 95% prediction 

interval of the forecasted values at each interval is calculated. Total 1000 scenarios with 

equal probability were generated, which were shown in Fig. 4.15 along with the upper 

and lower limit. The RMSE was 3.61 kW, error mean was - 0.19 kW, and Z-value was 

1.95 (for 95 % prediction interval). The upper and lower limit for each interval were 

calculated using:  

 Upper-limit = (forecasted value - 0.19 + 1.95 × 3.61) 

 Lower-limit = (forecasted value - 0.19 – 1.95 × 3.61) 

 Initial probability = 1/1000  
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Fig. 4.15. Generated scenarios (1000 scenarios with equal probability) for stochastic 

optimization. 

 The generated scenarios were reduced to the final 10 most likely scenarios shown 

in Fig. 4.16. The probabilities of the remaining scenarios were different from the initial. 

Final probability values were:  

 Probability = [0.001 0.042 0.91 0.001 0.001 0.001 0.003 0.003 0.016 

   0.022] 
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Fig. 4.16. Reduced number of scenarios (10 remaining scenarios). 

 Table 4.6 presents the detailed analysis result of a stochastic approach with BLM. 

The result shows how forecast error affects the actual operation and scheduled and actual 

output power output from the generators and battery.  
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Table 4.6. Real-time analysis using stochastic approach 

Hour Scheduled set-points Actual output 

Gen. 1  

(kW) 

Gen. 2  

(kW) 

Battery 

(kW) 

Net- 

load 

Gen. 1 

(kW) 

Gen. 2  

(kW) 

Battery 

(kW) 

1 0.00 22.69 12.69 10.00 0.00 22.69 12.69 

2 0.00 22.50 13.09 9.41 0.00 22.50 13.09 

3 0.00 0.00 -9.16 9.16 0.00 0.00 -9.16 

4 0.00 22.50 12.91 9.59 0.00 22.50 12.91 

5 0.00 0.00 -6.42 9.13 0.00 0.00 -9.13 

6 0.00 0.00 -7.70 8.85 0.00 0.00 -8.85 

7 0.00 22.50 5.75 18.98 0.00 24.73 5.75 

8 0.00 23.23 0.25 27.22 0.00 27.47 0.25 

9 0.00 22.72 2.19 26.91 0.00 29.10 2.19 

10 0.00 22.51 7.76 14.08 0.00 22.50 8.42 

11 0.00 0.00 -5.49 9.21 0.00 0.00 -9.21 

12 0.00 0.00 -4.45 4.44 0.00 0.00 4.44 

13 0.00 0.00 -8.79 6.21 0.00 0.00 -6.21 

14 13.93 0.00 1.92 10.32 12.24 0.00 1.92 

15 0.00 22.50 8.13 14.02 0.00 22.50 8.48 

16 11.77 0.00 0.14 13.12 13.26 0.00 0.14 

17 0.00 22.50 6.77 16.89 0.00 23.66 6.77 

18 0.00 0.00 -8.21 11.66 0.00 0.00 -11.66 

19 0.00 0.00 -7.25 8.52 0.00 0.00 -8.52 

20 10.41 0.00 0.00 10.06 10.06 0.00 0.00 

21 11.32 0.00 0.00 11.32 11.32 0.00 0.00 

22 12.72 0.00 0.00 12.72 12.72 0.00 0.00 

23 11.62 0.00 0.00 11.62 11.62 0.00 0.00 

24 10.28 0.00 0.00 10.28 10.28 0.00 0.00 
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 The real-time operational strategy is similar to the deterministic approach, where, 

when a net-load reduced and generator is already running at its minimum limit, battery 

consumes some power to maintain generator minimum load as in the hour 10. Most of the 

hour when generators were running as a master unit, compensate the PV fluctuation. 

During times when the battery was acting as a master unit (e.g., hour 11, 12, 13), SOC 

changes from scheduled due to the change in PV power output.  

 Actual and scheduled SOC varies as shown in Fig. 4.17. For the simulation, same 

initial battery SOC was used as in the deterministic case. Total fuel consumption, 

throughput and operational cost changes from the scheduled value. Summary of 

scheduled and actual operation is as presented in the Table 4.7. It is seen that battery 

throughput was higher compared to the deterministic case, but the fuel consumption and 

total operational cost are less in both scheduled and actual operations.  

Table 4.7. Daily operation summary with stochastic approach  

Case Fuel Consumption 

(gallons) 

Battery Throughput 

(kWh) 

Daily Cost of 

Operation ($) 

Scheduled 21 64 222 

Actual 22 69 228 
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Fig. 4.17. Scheduled and actual SOC variation. 

4.2.2. Yearly real-time analysis  

 The yearly schedule of microgrid is same as described in the Section 4.1. The 

real-time operation of microgrid is analyzed in this section. It is highly possible that the 

SOC at the end of the day is different in schedules and actual operation because of the 

stochastic PV output. Therefore, in order the make the results comparable, SOC at the 

end of the day is maintained equal to the scheduled one using s generator after PV hours. 

This makes actual initial SOC of the day is equal to the scheduled one. This ensures that 

the same scheduled set-points are calculated for that day.  

 Fig. 4.18 shows actual battery SOC if no any control action is taken during the 

operation. SOC goes below 0.5 and above 1 for some hours. SOC below 0.5 happened 

due to the overestimation of the PV power. Because of which, both generators were 

turned off and the battery did not have sufficient capacity to provide power. This requires 
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a control action. Action could be either curtailment of the non-critical load or start a 

generator. Similarly, SOC above the 1.0 (overcharging) was due to the underestimation 

of the PV output. In such a case, either PV can be curtailed or dump load can be used. 

Fig. 4.18. Hourly battery SOC variation for a year. 

Since SOC goes beyond the limit in the deterministic case, one of the worst day 

(September 28) was taken for the analysis with stochastic approach. Initial SOC of the 

day was 0.503. Forecasted PV power was the same as used in the deterministic case. 

Generated and reduced scenarios are as shown in Fig. 4.19 and 4.20 respectively.  
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Fig. 4.19. Generated scenarios for stochastic optimization approach. 

 

Fig. 4.20. Reduced number of scenarios.  

0 5 10 15 20 25
0

5

10

15

20

25

Hour

F
o

re
c
a

s
te

d
 p

o
w

e
r

0 5 10 15 20 25
0

5

10

15

20

25

Hour

F
o

re
c
a

s
te

d
 p

o
w

e
r



92 

 

Probability of last 10 scenarios = [0.001 0.001 0.047 0.93 0.002 0.002 0.003 

          0.004 0.001 0.009] 

 With the stochastic approach, battery SOC during actual operation was found 

within the limit, which is shown in Fig. 4.21. This shows that stochastic approach reduces 

the power mismatch compared to the deterministic approach. This is because the 

stochastic approach covers large fluctuation using a large number of scenarios. However, 

the scenarios are developed using 95% of confidence intervals and rest 5% of the time, 

scenarios does not cover the fluctuation of PV output. An example of such case is shown 

in Fig. 4.22, where the actual PV output does not fall in the confidence interval. In 

addition, it is required to optimize a large number of scenarios to reduce the power 

mismatch, which requires large computational resource.  

 

Fig. 4.21. Hourly SOC variation in deterministic and stochastic approaches. 
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Fig. 4.22. Example of bad forecast day. 

4.3. Forecast validation 

 Yearly and daily validation analysis were performed using the same Microgrid 

benchmark, actual and forecasted PV power output were used.  

4.3.1. Yearly validation analysis 

 Table 4.8 presents the real-time battery throughput, fuel consumption, and 

operational cost when forecasted error was reduced by 20%, 40%, 60%, 80% and 100% 

respectively. These results were obtained by using the weights W1 = 0.7 and W2 = 0.3 

with deterministic approach.  
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Table 4.8. Scheduled microgrid operation with a reduced forecast error 

Error 

reduction (%) 

Throughput 

Use (kWh) 

Fuel 

Consumption (Gal) 

Operational 

Cost ($) 

0 14,016 12,623 123,815 

20 14,016 12,616 123,753 

40 13,980 12,607 123,649 

60 14,064 12,597 123,595 

80 14,322 12,581 123,567 

100 14,519 12,570 123,564 

 Results from Table 4.8 shows that there is a slight reduction in fuel consumption 

by 55 gallons, but increment by 503 kWh in the throughput when error reduced by 100%. 

However, the difference in total operational cost is low, which is $251/year. These were 

the results when battery lifetime management was considered. This is because the 

average forecasted error is small and generators were able to mitigate the power 

mismatch issue with small change in their power output from the scheduled set points. 

For the sake of analysis and to determine whether the reduction in forecast has a large 

effect on the operational cost without considering battery lifetime, simulation were 

conducted and the results are as shown in Table 4.9. 
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Table 4.9. Real-time microgrid operation with reduced forecast error and no battery 

lifetime management 

Error 

reduction (%) 

Throughput 

Use (kWh) 

Fuel 

Consumption (Gal) 

Operational 

Cost ($) 

0 88,354 11,289 148,281 

20 88,203 11,292 148,229 

40 88,808 11,237 148,037 

60 88,038 11,278 148,019 

80 84,956 11,439 147,932 

100 88,833 11,221 147,907 

 The results show there is only about $374/year saving when forecasting was 

100% accurate. This shows that the current forecasting results have less effect when 

battery lifetime was not considered in the optimization. This is because the battery was 

fully utilized to charge from PV and discharge to load.   

4.3.2. Daily validation analysis 

 Forecasted and actual PV outputs of the same day used in previous analysis (July 

7) selected for the analysis. For this day, both deterministic and stochastic approaches 

were used to determine the effect of improved forecast accuracy on microgrid operation.  

 Fig. 4.23 shows the operational cost, battery throughput and fuel consumption 

results when forecast accuracy improved from zero to hundred percent. In deterministic 

case, full improvement in forecast resulted only $7 reduction in the total operational cost 

of that day. Total operational cost at full improvement in solar forecast was $233. 

Similarly, battery throughput was increased by 5 kWh, but fuel consumption was reduced 
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by 1 gallon. The result was slightly better with stochastic approach. Total operational cost 

at full improvement in solar forecast was $228, which is $5 less than the deterministic 

approach. Throughput was increased by 16 kWh and fuel consumption was reduced by 2 

gallons when forecast improved to 100%.  

  

Fig. 4.23. Real-time operation analysis of microgrid on July 7 with % of error reduction: 

(a) battery throughput, (b) fuel consumption, and (c) operational cost. 
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accuracy. However, the required forecast accuracy to significantly affect the operational 

cost depends on the flexibility of the system, which can compensate the forecast error 

without significant effect in the system. Flexibility of the system depends upon the various 

other parameters and varies as the parameter changes. Such parameters are size of the PV, 

average load, resource capacity, and operational constraints.  

 Therefore, yearly and daily analysis of microgrid validates that the accuracy of 

PV forecasting would not matter much in case of typical remote microgrid described in 

this study. For such microgrid, the Markov switching based solar forecast is sufficient 

operation, which is based on the typical parameters of currently running microgrid.  
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1. Summary 

 Reducing the cost of electricity for remote microgrids can help to increase access 

to electricity for populations in remote areas and developing countries. The integration of 

renewable energy and batteries in diesel based microgrids has shown to be effective in 

reducing fuel consumption. However, the operational cost remains high due to the low 

lifetime of batteries, which are heavily used to improve the system's efficiency. In 

microgrid operation, a battery can act as a source to augment the generator or a load to 

ensure full load operation. In addition, a battery increases the utilization of PV by storing 

extra energy. However, the battery represents a significant cost component of the 

microgrid and contains toxic materials that require proper disposal or recycling. Further, 

the battery has a limited energy throughput. Therefore, it is required to provide balance 

between fuel consumption and battery lifetime throughput in order to lower the cost of 

operation.  

 This work presents a two-layer power management system for remote microgrids. 

First layer is day ahead scheduling, where power set points of dispatchable resources 

were calculated. Second layer is real-time dispatch, where schedule set points from the 

first layer are accepted and resources are dispatched accordingly. A novel scheduling 

algorithm is proposed for a dispatch layer, which considers the battery lifetime in 

optimization and is expected to reduce the operational cost of the microgrid. This method 

is based on a goal programming approach which has the fuel and the battery wear cost as 

two objectives to achieve. The effectiveness of this method was evaluated through a 

simulation study of a PV-diesel hybrid microgrid using deterministic and stochastic 
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approach of optimization. This test microgrid consists of 30 kW and 75 kW diesel 

generators, a 27 kW PV system, and 170 kWh lead acid batteries. The microgrid load was 

mostly residential. The results demonstrate the effectiveness of the proposed approach, 

where battery lifetime is improved from 1.42 to 5.28 years and the operational cost is 

reduced by 9%.  

5.2. Conclusion 

A novel two layer (schedule and dispatch) power management system has been 

developed which prolongs battery life and reduces the operational cost. The method was 

based on a goal programming approach that assigns different weights for fuel and battery 

use cost. Deterministic and stochastic approaches were used to evaluate the effectiveness 

of the developed method. Results showed that increasing the battery lifetime can reduce 

the operational cost of the microgrid, even though fuel consumption is increased. The 

method is not highly sensitive to variations in fuel and battery wear cost. A wide range of 

weights (0.6 < W1 < 0.8) showed to be effective in reducing the operational cost over 

relatively wide variations in fuel and battery costs for this case study. In addition, results 

with a stochastic approach shows the less power mismatch than the deterministic 

approach and lower operational cost. Although the analysis was limited to lead-acid 

batteries, the method is expected to be effective with other types of batteries. By using 

this method, the cost of energy for remote microgrids is expected to be reduced and 

increase the utilization and effectiveness of renewable sources. In addition, the cost 

effectiveness of the available solar power forecast model has been validated using the 

developed microgrid benchmark. Results show that improvement in the forecast towards 
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the accurate does not have a significant difference in the operational cost for the specific 

days considered.    

5.3. Future work  

 Future work should include the following:  

1. Incorporating a hybrid battery system, which includes a capacitor and battery can 

be utilized instead of using battery only system.  

2. Use of a hybrid approach (deterministic + stochastic) PMS to improve the 

reliability of the system. This can be an approach with a fixed, optimized reserve 

requirement with stochastic approach.  

3. Study on battery-less microgrid system considering fuel cell, renewable source 

and super capacitor  

a. PV or wind to generate hydrogen gas  

b. Variability compensated by fuel cells 

c. Uncertainty compensated by super capacitor  

4. Detailed study of effect of flexibility of the microgrid system and solar forecast 

accuracy.  
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