South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange

Theses and Dissertations

1964

Characterization of Staphylococcus Species Isolated From Raw Milk with Special Reference to the Enterotoxigenic Coagulase-Positive Types

Adnan M. Ammouri

Follow this and additional works at: http://openprairie.sdstate.edu/etd Part of the <u>Dairy Science Commons</u>

Recommended Citation

Ammouri, Adnan M., "Characterization of Staphylococcus Species Isolated From Raw Milk with Special Reference to the Enterotoxigenic Coagulase-Positive Types" (1964). *Theses and Dissertations*. 1244. http://openprairie.sdstate.edu/etd/1244

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

CHARACTERIZATION OF <u>STAPHYLOCOCCUS</u> SPECIES ISOLATED FROM RAW MILK, WITH SPECIAL REFERENCE TO THE ENTEROTOXIGENIC

COAGULASE-POSITIVE TYPES

BY

ADNAN M. AMMOURI

A thesis submitted in partial fulfillment of the requirements for the degree Master of Science, Major in Dairy Science, South Dakota State College of Agriculture and Mechanic Arts

1964

SOUTH DAKOTA STATE UNIVERSITY LIBRARY

CHARACTERIZATION OF <u>STAPHYLOCOCCUS</u> SPECIES ISOLATED FROM RAW MILK, WITH SPECIAL REFERENCE TO THE ENTEROTOXIGENIC COAGULASE-POSITIVE TYPES

This thesis is approved as a creditable and independent investigation by a candidate for the degree, Master of Science, and is acceptable as meeting the thesis requirements for this degree, but without implying that the conclusions reached by the candidate are necessarily the conclusions of the major department.

Thesis Adviser

Date

2461

Head, Dairy Science Department

Date

ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to Dr. R. J. Baker for his assistance, valuable guidance and encouragement during the course of this investigation.

The generous and helpful suggestions of Dr. H. E. Calkins are gratefully acknowledged.

The author wishes to thank Dr. D. F. Breazeale and Dr. E. C. Berry for their comments and direction in the preparation of this thesis.

AMA

TABLE OF CONTENTS

	Page
NTRODUCTION	1
REVIEW OF LITERATURE	2
ATERIALS AND METHODS	9
Enumeration and Isolation	9
Physiological Tests	9
Coagulase Determination	9
Gelatin Hydrolysis	10
Mannitol Fermentation	10
Pigment Production	10
Hemolysis Production	10
Antibiotic Sensitivity	11
Bacteriophage Typing	12
Morphological Study	12
ESULTS AND DISCUSSION	13
UMMARY AND CONCLUSIONS	29
ITERATURE CITED	31

LIST OF TABLES

Mahla		De
Table		Page
1.	Characteristics of Staphylococcus species isolated	
	from raw milk	14
	the series of an address the series and the series of an address of the series of the	at in the
2.	Summary of the physiological characteristics of	
(CONTRACT)	Staphylococcus species isolated from raw milk	18
3.	Summary of the physiological characteristics of the	
	coagulase-negative Staphylococcus species	
	isolated from raw milk	19
4.	Physiological characteristics of coagulase-positive	
	Staphylococcus species isolated from raw milk	20
1.377	the solution is the characterization of these of the	
5.	Summary of physiological characteristics of the	
	coagulase-positive Staphylococcus species	Sec. 5
	isolated from raw milk	21
6	mb	
6.	The effect of antibiotics on coagulase-positive	24
	Staphylococcus species isolated from raw milk	24
7	Summary of antibiotic resistance of coagulase-	
	positive Staphylococcus species isolated from	
	raw milk	25
		-)
8.	Summary of coagulase-positive Staphylococcus species	
	highly sensitive to antibiotics	26
	ethan wilder minter we added to a superstation income	
9.	Bacteriophage sensitivity patterns of coagulase-	
10000	positive Staphylococcus species isolated from	
	raw milk	27
	prints and of furnituring Incontent is availantled the means	100

INTRODUCTION

Numerous reports from many parts of the world have described the occurrence of outbreaks of staphylococcus food poisoning. Some studies have incriminated raw milk as a reservoir of the staphylococcus organisms as the vehicle of transmission. Recently Cheddar cheese has been implicated as the contaminating agent in food poisoning outbreaks traced to dairy products.

The frequency of outbreaks of staphylococcus food poisoning has stimulated interest in the characterization of members of the staphylococcus genus. The strains particularly important are those capable of producing an enterotoxin.

In order to determine the strains of staphylococcus organisms isolated from raw milk which are a possible causative agent of food poisoning outbreaks, various physiological tests were systematically conducted. The physiological characteristics studied were coagulase production, gelatin hydrolysis, mannitol fermentation, pigmentation, hemolysis production, antibiotic sensitivity and bacteriophage typing. These tests are of particular interest in evaluating the organisms isolated from raw milk.

REVIEW OF LITERATURE

The staphylococci are members of a large group of micrococci, many species of which are saprophytes and are similar morphologically.

The organism that is primarily responsible for staphylococcal food poisoning is the enterotoxigenic <u>Staphylococcus</u> <u>aureus</u>. The classification as found in Bergey's Manual (2) is as follows:

Order IV:	Eubacteriales	Buchanan	1917
Family :	Micrococeaceae	1 (1) - 146	
Genus II:	Staphylococcus		
Species :	aureus	Gin alter	

The <u>Staphylococcus</u> species liquify gelatin and ferment carbohydrates, particularly mannitol, glucose, lactose, and sucrose with the production of lactic acid but no gas. These organisms do not form indole, but nitrates are reduced to nitrites and milk is acidified and sometimes coagulated. Strains of the <u>Staphylococcus</u> species develop a golden-yellow water-insoluble pigment while others are nonpigmented. Staphylococcus species are Gram positive spheres in pairs or irregular clusters. They are aerobic and facultatively anaerobic. The cells are non-sporeforming and usually are non-motile. Dack (8) indicated in his study that <u>Staphylococcus</u> species are among the more heat resistant of the non-sporeforming organisms. The thermal death point of the staphylococci is approximately 60°C for 30 to 60 minutes.

The nature of food poisonings may be chemical, parasitic or of bacterial origin. The bacterial type of food poisoning signifies

illness caused by the ingestion of some particle of food, containing sufficient numbers of organisms to produce a toxin.

Tanner and Tanner (28) indicated that food poisoning caused by <u>Staphylococcus</u> species is probably the most common of all food poisonings. The discovery of this organism as a cause of food poisoning explained many outbreaks of gastroenteritis. Diagnosis of these outbreaks was difficult because other agents were formerly sought. Staphylococcus organisms were found but were ignored because the search was being made for members of the Salmonella genus.

Dack (8) pointed out that <u>Staphylococcus</u> species are common microorganisms and are so prevalent that foods can not be protected against them. They are present in the throat, on the skin and in the air, thus having ready access to food. Staphylococcus organisms may grow rapidly in some foods and produce an enterotoxin when suitable temperatures are provided. Such foods as milk, cheese and cream are sometimes involved. Dolman (11) indicated that the term "enterotoxin" was adopted because the toxic substance produced seemed to exert its most conspicuous effects upon the gastrointestinal canal, or enteron, of man.

The number of <u>Staphylococcus</u> species that are capable of producing enterotoxigenic coagulase has been studied by Elek (13). He stated that there was no knowledge of the exact number of staphylococcus strains required in a food product to cause food poisoning. On the other hand, Frazier (20) found that the enterotoxin was produced only

after growth of <u>Staphylococcus</u> species to several million per gram. Dack (8) supported these observations and showed that various kinds of foods involved in staphylococcal food poisoning usually contained hundreds of millions of organisms per gram. Dewberry (9), and Jordon and Burrows (25), pointed out that there is now general agreement that food poisoning is caused by pathogenic coagulase-positive, hemolytic, pigmented <u>Staphylococcus</u> species. Enterotoxigenic strains are generally accepted as indicative of their pathogenicity. The results of experimental research by Evans and Niven (16) and Evans et al. (15) supported the conclusions that "all enterotoxigenic strains produce coagulase, but not all coagulase-positive strains produce enterotoxin."

Attempts have been made by many investigators to solve the problem of distinguishing enterotoxigenic <u>Staphylococcus</u> species from those that are not enterotoxigenic. Hussemann and Tanner (24) accepted the views put forward by many investigators that the physiological tests were not sufficient to separate food poisoning staphylococcus strains from others. Coagulase production and hemolytic properties were considered important.

Evans (14) found that the best indicator of pathogenic potentiality has been the ability to coagulate blood plasma. Other characteristics of some importance were mannitol fermentation, orange pigmentation, and the ability to grow in the presence of 7.5% sodium chloride. According to Pinner and Voldrich (26), pigment formation and its importance in determining the pathogenicity of Staphylococcus

species is apparently an unsound criterion. They were able to show that non-pathogenic <u>S. albus</u>, <u>S. citreus</u>, and <u>S. roseus</u> split off from highly pathogenic <u>S. aureus</u>. These changes in pigmentation occurred often and were a transient matter.

Stritar and Jordon (27) stated that it was difficult for an investigator to be certain of the previous history of a culture. A culture from incriminated food might not be the one which formed the enterotoxin. As a conclusion, pertaining to the physiological tests, Chapman et al. (5) considered the following points as important:

1. A knowledge of the hemolytic activity of staphylococci is insufficient as a simple serologic test of pathogenicity of species.

2. The coagulase activity is an important adjunct to the hemolysis test. Coagulase strains are usually pathogenic regardless of their hemolytic activity.

3. Coagulase-positive strains are usually pathogenic, regardless of the color produced on solid media.

4. On the other hand, the importance of the hemolysis test depends on an accurate determination of the color produced by the strain. Hemolytic non-coagulating albus strains are probably non-pathogenic but hemolytic aureus strains are usually pathogenic, regardless of their coagulase.

5. For the serologic recognition of toxic types of staphylococci, it is imperative to use at least the hemolytic, and coagulase activity tests and a careful determination of the color. With a combination of these three reactions it is possible to estimate the toxicity of a strain with a high degree of precision.

Continued studies of the staphylococcus strain characteristics and isolation methods have led to the development of selective plating media for the detection of staphylococci. Of special concern are those organisms suspected of being pathogenic or possibly involved in cases of food poisoning.

Chapman (3), (4) has proposed several selective media for Staphylococcus species that have some value in differentiating between coagulase-positive and coagulase-negative strains. The selective action of these media is based on a high sodium chloride content and the use of mannitol as an energy source. Zebovitz et al. (30) pointed out that Tellurite-glycine Agar had been developed and employed for the quantitative detection of coagulase-positive staphylococci. The medium is more selective than any medium that had been previously developed and proposed. The selectivity of this medium is based upon the use of potassium tellurite, glycine and lithium chloride as selective agents, and a final pH of 7.2. The major defect of Telluriteglycine Agar is the partial inhibition of some coagulase-positive strains, and the failure to inhibit all coagulase-negative strains. The pathogenic coagulase-positive cocci on Tellurite-glycine Agar usually form jet-black colonies within 24 to 36 hours. This medium inhibits the growth of most strains of coagulase-negative cocci and colonies which do develop are generally gray in color. Species of Proteus rarely grow on Tellurite-glycine Agar, but when they do a brown colony is produced. Other organisms as other cocci, coliforms and members of the genera Bacillus and Pseudomonas are inhibited.

Bacteriophages for strains of <u>S</u>. <u>aureus</u> were studied by investigators for the purpose of grouping or classifying the strains.

Fisk (17) (18) developed methods for isolating and cultivating bacteriophages from S. aureus.

Dubos (12) pointed out that

Phage typing is of especial value in the study of sets of cultures that have been isolated from related sources. Among other applications, the method has been employed to trace the source of staphylococci incriminated in food poisoning.

Phage typing is applicable to the study of coagulase-positive staphylococci, while coagulase-negative strains are not susceptible to the typing phages. A considerable degree of specificity exists among the three groups of phages. As an example, cultures that are susceptible to lysis by group II are not susceptible to lysis by groups I and III.

Foltz et al. (19) in some early studies on bacteriophage typing indicated that a great predominance of the <u>Staphylococcus</u> species isolated from milk, particularly those involving bovine mastitis, were lysed by bacteriophage pattern 42D. Bacteriophage typing has been a useful method to detect and trace the source of food poisoning in dairy and food products.

<u>Staphylococcus</u> species are to be given great consideration when found in milk. Clark et al. (7) found <u>Staphylococcus</u> species to be common in milk and milk products. Heinemann (21) reported that pasteurized skim milk or condensed skim milk have been known to serve as excellent media. Enterotoxigenic strains multiplied rapidly at 95°F and were found to grow over the range of 80°F to 115°F. Hobbs (23) reported that Cheddar cheese played an important role as a contaminating agent in food poisoning outbreaks. Most of the outbreaks have been caused by raw milk or by the handling of the manufactured products. Likewise, Walker et al. (29) pointed out that Colby cheese with its high moisture content, soft body and open texture appeared to be a good environment for the growth of enterotoxigenic Staphylococcus species.

According to Dack (8) the number of reported cases of food poisoning attributed to milk and its products has been low. Hendricks et al. (22) also stated that

In recent years, with improved supervision in sanitary production and processing of milk and dairy products and increased use of pasteurized milk, the number of reported cases attributed to milk and dairy products has been low.

MATERIALS AND METHODS

In this study the cultures tested were isolated from raw milk. The milk samples were collected from different sources. Fifty-five of the samples were taken from individual cows and thirty-two samples were collected from herds. The samples were taken aseptically, placed in sterile jars and cooled with ice until used.

Enumeration and Isolation

A 0.1 ml portion of milk was taken from the sample and spread over the dried surface of modified Tellurite-glycine Agar (30) in petri plates. After incubation at 37°C for 48 hours, coagulasepositive <u>Staphylococcus</u> species produced smooth, jet-black colonies. Typical colonies were picked from Tellurite-glycine Agar and streaked onto Staphylococcus Medium No. 110 (S-110) in petri plates (10). Pure cultures were transferred into Brain Heart Infusion and incubated at 37°C for 18 hours. These cultures were later used for the different physiological tests.

Physiological Tests

Coagulase Determination

The tube coagulase test was performed, using an 18 hour broth culture of each isolate. A volume of 0.5 ml of the broth culture was added to a serological tube containing 0.5 ml of fresh rabbit plasma, diluted 1:2 with Brain Heart Infusion. As a control, a tube was

inoculated with a known coagulase-positive <u>Staphylococcus</u> species and a tube of uninoculated plasma was included (10). The tubes were incubated at 37°C, and the coagulum was examined after 1, 2, and 3 hours; and re-examined after 18 hours.

Gelatin Hydrolysis

Staphylococcus Medium 110 plates were flooded with a saturated solution of ammonium sulfate. The plates were placed in the 37°C incubator for 15-20 minutes before gelatin hydrolysis was observed. Gelatinolytic colonies showed a clear zone around the colony.

Mannitol Fermentations

Phenol Red Mannitol Salt Agar was prepared from a dehydrated medium containing 7.5% sodium chloride. The plates were streaked across the surface with a loopful of the broth culture. The plates were incubated at 37°C and any yellow zone appearing around the colony within 48 hours was considered positive for acid production.

Pigment Production

The test was determined by observing the colonies on Staphylococcus Medium No. 110 plates. The production of a varying degree of pigmentation, ranging from a deep golden color to those which showed no pigment formation, was recorded.

Hemolysis Production

Sterile Blood Agar Base medium was cooled to 45-50°C and 5% sterile defibrinated rabbit blood was added aseptically. After careful

mixing to avoid the incorporation of air bubbles, the medium was poured into sterile petri plates. The Blood Agar plates were incubated 12 hours at 37°C to insure sterility. A loopful of the broth cultures was streaked across the surface of the plate prepared with the Blood Agar. The plates were incubated at 37°C for 24 hours and refrigerated for another 24 hours before the final examination of the hemolysis activities was recorded. Cultures which showed any hemolysis were considered to be positive.

Antibiotic Sensitivity

The test was performed by using 0.5 ml of a heavy suspension of an 18 hour broth culture poured into a petri dish with 10 ml of Brain Heart Infusion Agar. After the medium solidified, antibiotic sensitivity disks were placed on the surface of the medium. A flamed forceps was used to handle the disks to avoid contamination. The plates were incubated at 37°C for 12 hours or until growth was developed. Zones of inhibition of growth were examined and measured. The antibiotics and the concentrations used were designated by the following letters:

Bacteriophage Typing

Bacteriophage sensitivity was determined on Brain Heart Infusion Agar inoculated with sufficient bacterial broth culture of staphylococcus isolates to give heavy growth. A very small drop of diluted bacteriophage lysates were placed at designated positions on the surface of the agar plates. After incubation at 30°C for 12 hours, plates were examined for lysis with the aid of a dark background. The 20 typing bacteriophages used in this study were selected for typing staphylococci of human origin.

Morophological Study

The Gram stain was used and prepared slides were observed using the microscope.

RESULTS AND DISCUSSION

The 87 cultures of <u>Staphylococcus</u> species which were isolated from raw milk were tested for different physiological characteristics. A listing of these characteristics is presented in Table 1.

All isolates were Gram positive cocci occurring singly or in clumps. Slightly higher counts of <u>Staphylococcus</u> species were obtained from Staphylococcus 110 Agar than were obtained when Telluriteglycine Agar was used. On Staphylococcus 110 medium, the counts ranged from 22 to 30,000 per ml and had a logarithmic average of 1360 per ml. The results obtained on Tellurite-glycine Agar indicated a range of 90 to 21,000 per ml with a logarithmic average of 1150 per ml. This would indicate no real advantage for either medium as a means of enumerating staphylococci.

Zebovitz et al. (30) stated that Tellurite-glycine Agar is superior to other media currently in use for the quantitative detection of coagulase-positive <u>Staphylococcus</u> species. The results of an experiment comparing Tellurite-glycine Agar with Chapman-Stone Agar showed that the Tellurite-glycine Agar partially inhibited some of the coagulase-positive strains, but generally no more than the Chapman-Stone Agar. The majority of the coagulase-negative strains were suppressed by the Tellurite-glycine Agar, but this was not the case when a high salt medium, such as Chapman-Stone Agar, was used.

In this study the staphylococcus counts shown in Table 1 corresponded with the results of Zebovitz et al. (30). The slightly

165416

SOUTH DAKOTA STATE UNIVERSITY LIBRARY

	Staphylo	coccus counts		Physiol	ogical charac	teristics	
Sample	Difco	Tellurite-					
no.	S-110	glycine	Coagulase	Gelatin	Mannitol	Pigment	Hemolysis
101	2700	2100	-	+	_	White	-
201	1200	980	-	-	-	Golden	-
301	4800	2920	-	+	+	Golden	+
401	1900	980	+	+	+	Golden	+
501	1600	1200	-	+	+	Golden	-
601	700	500	-	-	+	Golden	-
701	16000	9300	-	+	+	Golden	-
801	6900	5100	+	+	+	Golden	+
1001	260	140	-	-	+	Golden	-
1101	1800	960	-	-	+	Golden	-
1201	1420	1020	-	-	+	White	-
1301	28000	17300	-	-	+	Golden	+
1401	170	950	-	+	+	Golden	+
1501	110	680	-	-	+	Golden	-
1601	620	390	-	+	+	White	-
1701	4510	3980	+	+	+	Golden	+
1801	2100	1100	-	-	-	Golden	-
1901	240	1600		-	+	White	-
2001	5200	4700	-	+	+	White	-
2101	270	190	-	-	+	White	-
2401	6210	12000	+	+	+	White	+
2502	540	410	-	+	+	White	-
2602	120	280	-	-	-	White	-
2702	980	1200	-	+	+	Golden	-
2802	270	320	-	-	-	Golden	-
2902	800	460	-	+	+	Golden	-
3002	3600	2310	-	-	-	Golden	-
3102	210	970	-	+	-	Golden	-

Table 1. Characteristics of <u>Staphylococcus</u> species isolated from raw milk

	Staphylo	coccus counts		Physiol	ogical charac	teristics	0004
Sample	Difco	Tellurite-		n an ann ann a' shall air ann an Air an Air ann ann ann an Air ann			
no.	S-110	glycine	Coagulase	Gelatin	Mannitol	Pigment	Hemolysis
3202	7000	1420	-	+	+	White	-
33C2	3000	2420	+	+	+	Golden	+
3402	2000	1900	-	-	+	Golden	-
3502	650	1280	-	+	+	Golden	-
3602	22	150	-	+	+	Golden	-
3702	22000	16000	+	+	+	Golden	+
3802	1200	1130	-	+	+	Golden	+
3902	320	910	+	+	+	Golden	+
4002	110	280	-	-	+	White	-
4102	240	210	-	+	-	White	-
4202	860	1420	-	-	-	Golden	-
4302	210	280	-	-	+	Golden	-
44C2	3200	1890	-	+	+	Golden	-
4502	650	450	+	+	+	Golden	+
4602	710	540	-	+	-	Golden	-
4702	240	560	-	+	+	Golden	-
4802	27000	19000	+	*	+	Golden	+
4902	30000	21000	+	+	+	Golden	+
5002	1900	2800	· .	*	4.	Golden	+
5102	1650	2500	_	-	-	White	-
5202	420	90	-		-	Golden	-
5402	680	800	+	+	+	Golden	+
5502	320	250	-	+	-	Golden	-
5602	25000	13000	-	+	+	Golden	-
5702	1900	2000	-	+	+	Golden	-
5802	390	680	-	+	+	Golden	-
5902	1120	160	-	+		White	-
60B	18000	3000	+	+	+	Golden	+

Table 1. (continued)

	Staphylo	coccus counts		Physiological characteristics									
Sample	Difco	Tellurite-											
no.	S-110	glycine	Coagulase	Gelatin	Mannitol	Pigment	Hemolysis						
61B	12000	15000	+	+	+	Golden	+						
62B	1400	1010	+	+	+	Golden	+						
63B	2010	1270	+	+	+	Golden	+						
64B	1750	1400	+	+	+	Golden	+						
65B	1140	750	+	* +	+	Golden	+						
66B	720	1900	-	+	+	White	-						
67B	650	1600	+	+	-	White	+						
68B	1200	800	+	+	+	Golden	+						
69B	380	460	+	+	+	Golden	+						
70W	1600	930	+	-	-	Golden	+						
71W	1370	860	+	+	+	Golden	+						
73W	260	740	-	-	÷	White	-						
74W	1800	1200	-	-	-	White	-						
75W	4340	2100	-	-	-	Golden	-						
76W	6000	4500	+		-	Golden	+						
77W	3040	1800	-	•	-	White	-						
79W	3200	4200	+	-1-	+	White	+						
80w	580	210	+	+	+	White	+						
81w	960	120	+	+	+	White	+						
82W	1210	920	+	-	+	Golden	+						
83W	1520	710	-	-	-	White	-						
84w	830	450	+	+	-	White	+						
85W	2900	3400	+	-	+	White	+						
86w	3000	820	+	+	-	White	+						
87W	600	110	+	+	+	Golden	+						
88w	380	1340	+	+	· •	Golden	+						
89W	5300	2000	-	-	-	Golden	+						

Table 1. (continued)

	Staplylo	coccus counts	Physiological characteristics								
Sample no.	Difco S-110	Tellurite- glycine	Coagulase	Gelatin	Mannitol	Pigment	Hemolysis				
90W	4200	8360	+	+	+	Golden	+				
91W	1010	410	+	+	+	White	+				
92W	4500	270	+	+	+	White	+				
93W	6540	2140	· +	+	+	White	+				

Table 1, (continued)

lower count obtained on Tellurite-glycine Agar was caused by the inhibiting agents which partially inhibited some of the selected coagulase-positive strains and most of the coagulase-negative strains. The selectivity of the Staphylococcus 110 Agar has been found to be satisfactory, however, it allows both coagulase-positive and coagulasenegative staphylococci to grow. For this reason the count of <u>Staphylococcus</u> species on Staphylococcus 110 Agar was slightly higher.

It is apparent from the results in Table 1 that appreciable variability exists among the 87 isolates of <u>Staphylococcus</u> species. This is particularly true with such qualitative tests as coagulase activity, gelatin hydrolysis, mannitol fermentation, pigment formation and blood hemolysis.

The physiological characteristics of the 87 isolates are summarized in Table 2. A large number of isolates varied in one or more of the physiological properties measured. Of the 87 isolates tested

the interview of the filt										
	Coag	lase	Gel	atin	Mannitol		Pign	Hemolysis		
eteritettiin teresterinettiin te	+	-	+	-	+		Golden	White	+	
Number of										
isolates	37	50	58	29	62	25	58	29	42	45
Percent of										
isolates	43	57	67	33	71	29	67	33	48	52

Table 2. Summary of the physiological characteristics of Staphylococcus species isolated from raw milk 37 or 43% were coagulase-positive and 50 or 57% were coagulasenegative. Gelatin was liquified by 67%, mannitol fermented by 71% and a golden pigment produced by 67% of the isolates. Regarding hemolysin production, 48% of the isolates showed hemolysis.

The data presented in Table 3 demonstrate that among the 50 coagulase-negative isolates, 48% gave positive results for gelatinolytic action, 60% were positive for mannitol fermentation, 64% produced a golden pigment but only 10% produced hemolysin. These results show a wade variability among the 50 isolates. The hemolysin test was a very weak criterion in this group of coagulase-negative <u>Staphylococcus</u> species. It appears that the classical tests, such as gelatin hydrolysis, mannitol fermentation and pigment formation are of limited value when the hemolytic action is negative.

-	Gela	atin	Mann	itol	.B.	Pign	Hemolysis		
	+		+			Golden	White	+	
Number of							41.0 an 11.2 a		
isolates	24	26	30	20		32	18	5	45
Percent of						: 6			
isolates	48	52	60	40		64	36	10	90

Table 3. Summary of the physiological characteristics of the coagulase-negative <u>Staphylococcus</u> species isolated

The physiological characteristics of 37 coagulase-positive Staphylococcus species are presented in Table 4. Of the 37 isolates,

Isolate		i general her en			Hemol	ysis
number	Coagulase	Gelatin	Mannitol	Pigment	Alpha	Beta
401	alot 3+	hearing .	+	Golden		+
801		+	+	Golden	+	+
1701	3+ 2+	tabl	 j 3.540 second 	Golden	2 36 - 2023	+
2401	3+	+	+	White	+	+
33C2	1.601.408 8.9%	produced y	alle state a state inte	Golden	tistiled 1	+
3702	4+	+	+	Golden	+	+
3902	4+	e third di Ali	ek estat sest	Golden	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+
4502	4+	+	+	Golden	+	+
4802	4+	\$3000 S75	espende of	Golden	ubal opurat	a transfer
4902	4+	+		Golden	+	+
5002	2+	Light still	ta ware chips:	Golden	a of the	
5402	4+	+	*	Golden		-
60B	4+	nest loss -loss	ward blog ra	Golden		
61B	4+	+	+	Golden		. T
62B	4+	sh ta Jost II	back for the	Golden	Leine	-
63B	4+	+	+	Golden		
64B	4+	henrolysin i	in dialices.	Golden	Laslates	aboj.
65B	4+	+	+	Golden		+
67B	2+	22 8 C	Fusiling to	White	all read the li	ar to
68B	<u>د+</u> 4+	+	-	Golden		+
69B	4+ 4+	tes ites is	hear in Table	Golden		+
		+	+	Golden		+
70W	2+	der status - conic	atten the ti	an an and the state		
71W	2+	+	+	Golden		+
76W	2+	(algorithmation	and a block	Golden	+	+
79W	2+	+	+	White	+	+
BOW	2+	+	+	White	+	+
Blw	2+	+ hard the second	*	White	+	+
B2W	2+	and this may have	+	Golden	+	+
B4W	2+	+		White		+
85W	2+	-	+	White	+	+
BGW	2+	+	and the state of the second second	White		+
87W	2+	+	+	Golden		+
88w	2+	+	+	Golden	+	+
90W	4+	+	+	Golden		+
91W	2+	+	+	White	+	+
92W	2+	+	+	White	+	
93W	3+	+	+ 8	White	+	+

Table 4. Physiological characteristics of coagulase-positive Staphylococcus species isolated from raw milk

70

17 showed definite visible clotting for the coagulase-positive test after two hours incubation at 37°C. Of the remaining 20 isolates, four showed clotting after 3 hours incubation and 16 demonstrated a definite clot after 4 hours.

The results shown in Table 5 indicate that of the 37 coagulasepositive isolates 89% produced gelatinase, however, 11% failed to hydrolyze gelatin even though they were coagulase-positive. The mannitol fermentation showed 87% capable of fermenting the carbohydrate within 48 hours. Negative results were obtained with 13% of the isolates. Pigment formation was variable, ranging from 70% which produced a golden color to 30% that produced a white color.

With regard to hemolysin production, 97% of the isolates showed definite hemolysis, with only 3% failing to produce hemolysin. Of the 36 coagulase-positive isolates shown in Table 4 which produced hemolysin, 3% of the strains exhibited the alpha pattern, 39% showed a beta pattern and 58% elaborated an alpha and beta pattern.

	Gela	atin	Mann	itol	Pigm	Pigment				
ANN DAN TRANSPORT AND AND AN	+	-	+		Golden	White	+			
Number of				utis x						
isolates	33	4	32	5	26	11	36	1		
Percent of										
isolates	89	11	87	13	70	30	97	3		

Table 5. Summary of physiological characteristics of the coagulase-positive <u>Staphylococcus</u> species isolated from raw milk In comparing Table 5 with Table 3 it is indicated that a more consistent relationship appeared to exist among the physiological characteristics and activities in Table 5 than existed in Table 3. It is apparent that the gelatin, mannitol and pigment activities are more important in interpreting the physiological tests for isolation of the coagulase-positive strains than for the coagulase-negative strains. This is particularly true when positive tests for hemolysin and coagulase are first employed for isolation and detection. Similar views can be expressed concerning the value of the coagulase-positive and the hemolysis tests. The value of the other physiological tests can be considered important when the coagulase and hemolysis characteristics are determined first.

Chapman et al. (5) (6) pointed out that for the serologic recognition of toxic types of <u>Staphylococcus</u> species it is necessary to use a combination of the results from the hemolysis reaction, the coagulase activity and a careful determination of chromogenesis. With the reactions from these three tests it is possible to estimate the toxicity of a certain strain. Hussemann and Tanner (24) pointed out that chromogenesis alone is of no value in determining the enterotoxigenic coagulase-positive strains.

The occurrence of antibiotic resistant <u>Staphylococcus</u> species in dairy products has been considered a great possibility. The antibiotic sensitivity discs used in this study are the following:

A-Penicillin - - - - - - 10 units B-Chlortetracycline - - - - 30 µg C-Oxytetracycline - - - - 30 µg D-Bacitracin - - - - - 20 units E-Chloromycetin - - - - 30 µg F-Dihydrostreptomycin - - - 100 µg

The sensitivity discs were read and classified by measuring the zone of inhibition. The limits set for this classification are as follows:

Highly	sensi	.ti	ve	-	-	-	-	-	-	-	11	to	17	millimeters
Sensiti	ve -	• ••	-	-	-		-		-		6	to	10	millimeters
Slightl	y ser	isi	tiv	<i>i</i> e	-	-	-	-	-	-	2	to	5	millimeters
Resista	nt -		-	-	-	•	-	-	-	-	less	thar	12	millimeters

The results in Table 6 indicate wide variation of antibiotic sensitivity by the coagulase-positive strains. Most of the isolates of <u>Staphylococcus</u> species studied were sensitive to antibiotics of higher concentrations.

Results shown in Table 7 indicate that 46% of the isolates were resistant to penicillin, 27% resistant to chlortetracycline, 35% resistant to oxytetracycline, 43% resistant to bacitracin, 27% resistant to chloromycetin and 32% resistant to dihydrostreptomycin.

It is important to note that the percentage of penicillin and bacitracin resistant <u>Staphylococcus</u> species was relatively high. Elek (13) pointed out that several factors may be involved in the increase of antibiotic resistant <u>Staphylococcus</u> species. The increased incidence of strains resistant to a given antibiotic is related to the extent to which that antibiotic is used. Antibiotics, such as penicillin and bacitracin, which have been used therapeutically in cattle,

	Antibiotic used								
Isolate number	A	В	C	D	E	F			
401	R	S	S	HS	HS	S			
801	HS	HS	HS	HS	HS	R			
1701	R	R	R	SS	SS	R			
2401	SS	HS	HS	HS	HS	R			
3302	. HS	SS	R	R	SS	S			
3702	HS	R	R	S	SS	S			
3902	HS	SS	S	S	R	H			
4502	SS	HS	SS		R	H			
4802				S R	R				
	SS	HS	SS			H			
4902	HS	HS	R	R	SS	R			
5002	SS	HS	R	SS	HS	H			
5402	HS	R	SS	R	HS	H			
60B	R	HS	HS	R	R	R			
61B	HS	HS	HS	S	HS	S			
62B	S	HS	HS	HS	S	S			
63B	R	R	HS	SS	HS	S			
64B	HS	HS	S	S	R	H			
65B	HS	HS	HS	S	R	S			
67B	SS	HS	S	R	HS	S			
68B	R	HS	R	HS	HS	S			
69B	R	HS	HS	R	R	H			
70W	SS	SS	SS	SS	SS	R			
71W	R	R	HS	SS	HS	R			
76W	SS	R	R	R	HS	H			
79W	S	R	R	S	HS	R			
Bow	R	R	HS	R	HS	R			
B1W	R	R	HS	R	S	R			
B2W	R	HS	R	R	HS	H			
84w	R	HS	SS	S	SS	H			
35W	SS	HS	SS	S	HS	S			
BGW	R		HS	HS		H			
		S			R				
87W	SS	S	S	S	R	R			
88W	R	SS	R	R	R	R			
90W	R	SS	R	R	SS	H			
91W	R	R	R	R	HS	H			
92W	R	S	R	R	SS	H			
93W	R	S	S	R	SS	H			

Table 6. The effect of antibiotics on coagulase-positive Staphylococcus species isolated from raw milk

HS - Highly sensitive

S - Sensitive

SS - Slightly sensitive R - Resistant

	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Isolates	resistan	t to ant:	ibiotics	
and any set of the set	Ā	B	C	D	E	F
Number of						
isolates	17	10	13	16	10	12
Percent of						
isolates	46	27	35	43	27	32

Table 7. Summary of antibiotic resistance of coagulase-positive Staphylococcus species isolated from raw milk

may have increased the resistance of the staphylococci isolated. Elek (13) also recorded that some penicillin resistant staphylococcus organisms owe their antibiotic resistance to the formation of penicillinase. This is an enzyme capable of destroying penicillin.

The results in Table 8 show that 24% of the isolates were highly sensitive to penicillin, 46% highly sensitive to chlortetracycline, 32% highly sensitive to oxytetracycline, 16% highly sensitive to bacitracin, 43% highly sensitive to chloromycetin and 41% highly sensitive to dihydrostreptomycin.

The coagulase-positive isolates in Table 8 showed variable response to being sensitive to the antibiotics used. Three of the antibiotics (chlortetracycline, chloromycetin and dihydrostreptomycin) proved to be quite effective by exhibiting wide zones of inhibition.

	Is	olates hi	ghly sens	itive to	antibioti	CS
	A	В	C	D	E	F
Number of						
isolates	9	17	12	6	16	15
Percent of	•					
isolates	24	46	32	16	43	41

Table	8.	Summar	y of	co	agulase.	-pos:	Ltive	Staphylo	coccus
· i p cd t i								ibiotics	

Bacteriophage patterns of the 37 coagulase-positive cultures are shown in Table 9. Twenty-one isolates were sensitive to bacteriophage types considered to be of human origin while 16 of the isolates were not lysed. Three of these 21 isolates were lysed by a single bacteriophage strain, three were lysed by two bacteriophage strains, and one was lysed by three bacteriophage strains. The remainder of the 21 isolates were lysed by more than three bacteriophage strains. Bacteriophage strains 54, 42E and 81 were the most active strains in this study. Fourteen strains of coagulase-positive staphylococci were lysed by bacteriophage 54, 12 strains were lysed by bacteriophage 42E and 11 strains were lysed by bacteriophage 81.

Blair (1) reported that a relationship existed between the hemolysin test and bacteriophage typing on the origin of staphylococcus strains. In the present investigation, a relationship between lysis by bacteriophage strains and the hemolysis pattern was not found. Hendricks et al. (22), and Hobbs (23) reported that

Isolate number	Bacteriophage sensitivity
401	No lysis
801	42E/54/80W/81
1701	3A/3B/3C/29/52A
2401	3A/42E/54/71/79/80/81
3302	42E/52/52A/54/79/80/81
3702	425/52/54/71/80/81
3902	42E/54/81
4502	3A/42E/54/79/80/81
4802	3A/3C/54/80
4902	52A/54/79/80
5002	55/71
5402	3A/3C/52/52A/54/55/71/79/80/81
60B	No lysis
61B	No lysis
62B	No lysis
63B	No lysis
64B	42E
65B	No lysis
67B	No lysis
68B	No lysis
69в	No lysis
70W	42E
71W	No lysis
76W	No lysis
79W	3A/3B/3C/54/79
80W	No lysis
81W	3A/54
82W	42E
84w	25/54/80/81
85W	No lysis
86w	42E/54/80/81
87W	No lysis
88w.	42E/81
90W	No lysis
91W	No lysis
921	6/7/42D/42E/47/75/81
93W	52/52A/54/81

Table 9. Bacteriophage sensitivity patterns of coagulasepositive <u>Staphylococcus</u> species isolated from raw milk coagulase-positive staphylococci lysed by bacteriophage strains 6, 42D, 47, 53, 54, 73, 75, 77 and 83 have been implicated in staphylococcus food poisonings by various workers. However, Clark et al. (7) pointed out that bacteriophage typing proved to be an unreliable basis for differentiating enterotoxigenic strains.

SUMMARY AND CONCLUSIONS

Eighty-seven raw milk samples were examined from which 50 isolates of coagulase-negative and 37 isolates of coagulase-positive staphylococci were obtained.

The 87 isolates were tested for various physiological tests, such as coagulase production, gelatin hydrolysis, mannitol fermentation, pigment formation, hemolysis, antibiotic sensitivity and bacteriophage typing.

The results showed that a large number of these isolates varied in one or more of the physiological characteristics measured. Of the 87 isolates tested 37 or 43% were coagulase-positive and 50 or 57% were coagulase-negative.

Representative strains of the 37 coagulase-positive <u>Staphylo-</u> <u>coccus</u> species have been studied. Their physiological activities showed a high level of comparison. The coagulase, gelatin, mannitol, pigment and hemolysis activities played an important part in interpreting the physiological tests for isolation of the coagulasepositive strains.

The coagulase activity and hemolysis tests yielded the only important information in determining the ability of the culture isolates to be coagulase-positive and possibly pathogenic.

Gelatin hydrolysis, mannitol fermentation and pigment formation were more useful for isolation than for differentiation, when they are not combined with the coagulase and hemolysis tests. Apparently all the coagulase-positive isolates studied were sensitive to antibiotics of higher concentrations.

Culture isolates of coagulase-positive staphylococci were typed by human staphylococcal bacteriophages. The comparison of bacteriophage patterns was discussed. A relationship between the bacteriophage pattern and hemolysis of the coagulase-positive isolates of staphylococci could not be shown in this study.

Raw milk may be a reservoir of staphylococcus types. Many of these types showed by their physiological characteristics that they are frequently associated with human origin.

LITERATURE CITED

- Blair, J. E. The Bacteriophage Typing of Staphylococci. J. Infect. Diseases, 93:1. 1953.
- Breed, R. S., Murray, E. G. D., and Smith, N. R. Bergey's Manual of Determinative Bacteriology. 7th ed. Williams and Wilkins Co., Baltimore, Md. 1957.
- Chapman, G. H. The Significance of Sodium Chloride in Studies of Staphylococci. J. Bacteriol., <u>50</u>:201. 1945.
- 4. Chapman, G. H. A Single Culture Medium for Selective Isolation of Plasma-Coagulating Staphylococci and for Improved Testing of Chromogenesis, Plamsa Coagulation, Mannitol Fermentation and the Stone Reaction. J. Bacteriol., 51:409. 1946.
- Chapman, G. H., Berens, C., Peters, A., and Curcio, L. Coagulase and Hemolysin Tests as Measures of Pathogenicity of Staphylococci. J. Bacteriol., <u>28</u>:343. 1934.
- Chapman, G. H., Lieb, C. W., and Curcio, L. G. Isolation and Cultural Differentiation of Food-Poisoning Staphylococci. Food Research, 2:349. 1937.
- Clark, W. S., Jr., Moore, T. D., and Nelson, F. E. Characterization of Coagulase-positive Staphylococci Isolated from Raw Milk. J. Appl. Microbiol., 9:195. 1961.
- Dack, G. M. Food Poisoning. 3rd Ed. University Press, Chicago, Ill. 1956.
- 9. Dewberry, E. B. Food Poisoning. Leonard Hill Ltd., London, England. 1959.
- Difco Laboratories, Inc. Difco Manual of Dehydrated Culture Media and Reagents. 9th ed. Detroit, Michigan. 1953.
- Dolman, C. E. Ingestion of Staphylococcus Exotexin by Human Volunteers, With Special Reference to Staphylococci Food Poisoning. J. Infect. Diseases, <u>55</u>:172. 1934.
- Dubos, R. J. Bacterial and Mycotic Infections of Man. 3rd ed. J. P. Lippincott Co., Philadelphia, Pennsylvania. 1958.
- Elek, S. D. <u>Staphylococcus pyogenes</u> and Its Relation to Disease.
 E. and S. Livingstone Ltd., London, England. 1959.

- 14. Evans, J. B. Studies of Staphylococci with Special Reference to the Coagulase-positive Types. J. Bacteriol., 55:793. 1948.
- 15. Evans, J. B., Buettner, L. G., and Niven, C. F., Jr. Evaluation of the Coagulase Test in the Study of Staphylococci Associated with Food Poisoning. J. Bacteriol., 60:481. 1950.
- Evans, J. B. and Niven, C. F., Jr. A Comparative Study of Known Food Poisoning Staphylococci and Related Varieties. J. Bacteriol., 59:545. 1950.
- Fisk, R. Studies on Staphylococci. I. Occurrence of Bacteriophage Carriers Among Strains of <u>S. aureus</u>. J. Infect. Diseases, <u>71</u>:153. 1942.
- Fisk, R. Studies on Staphylococci. II. Identification of <u>S</u>. <u>aureus</u> Strains by Means of Bacteriophage. J. Infect. Diseases, <u>71:161.</u> 1942.
- Foltz, V. D., Mickelson, R., Martin, W. H., and Hunter, C. A. The Incidence of Potentially Pathogenic Staphylococci in Dairy Products at the Consumer Level. II. Cheese. J. Milk Food Technol., 24:342. 1961.
- Frazier, W. C. Food Microbiology. McGraw-Hill Book Co., Inc., New York, N. Y. 1958.
- 21. Heinemann, B. Growth and Thermal Destruction of <u>Micrococcus</u> <u>pyogenes</u> var. <u>aureus</u> in Heated and Raw Milk. J. Dairy Sci., 40:1585. 1957.
- Hendricks, S. L., Belknap, R. A. and Hausler, W. J., Jr. Staphylococcal Food Intoxication Due to Cheddar Cheese. I. Epidemiology. J. Milk Food Technol., 22:313. 1959.
- Hobbs, B. C. Public Health Problems Associated with Manufacture of Dried Milk. I. Staphylococcal Food Poisoning. J. Appl. Bacteriol., 18:484. 1955.
- 24. Hussemann, D. L., and Tanner, F. W. A Comparison of Strains of Staphylococci Isolated from Foods. Food Research, 14:91. 1949.
- 25. Jordon, E. O., and Burrows, W. The Production of Enterotoxic Substance by Bacteria. J. Infect. Diseases, 57:121. 1935.
- Pinner, M., and Voldrich, M. Derivation of <u>Staphylococcus</u> albus, <u>citreus</u> and <u>roseus</u> from <u>Staphylococcus</u> <u>aureus</u>. J. Infect. Diseases, <u>50</u>:185. 1932.

- Stritar, J. and Jordon, E. O. Is a Special Variety of Staphylococcus Concerned in Food Poisoning? J. Infect. Diseases, <u>56</u>:1. 1935.
- Tanner, F. W., and Tanner, L. B. Food Borne Infections and Intoxications. 2nd ed. The Garrard Press. Champaign, Illinois. 1953.
- Walker, G. C., Harmon, L. G., and Stine, C. M. Staphylococci in Colby Cheese. J. Dairy Sci., 44:1272. 1961.
- 30. Zebovitz, E., Evans, J. B., and Niven, C. F., Jr. Tellurite-Glycine Agar: A Selective Plating Medium for the Quantitative Detection of Coagulase-positive Staphylococci. J. Bacteriol. 70:686. 1955.