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Agricultural field size is indicative of the degree of agricultural capital investment, mechanization and labor in-
tensity, and it is ecologically important. A recently published automated computational methodology to extract
agricultural crop fields fromweekly 30mWeb Enabled Landsat data (WELD) time serieswas refined and applied
to a year of Landsat 5 ThematicMapper (TM) and Landsat 7 Enhance ThematicMapper Plus (ETM+) acquisitions
for all of the conterminous United States (CONUS). For the first time, spatially explicit CONUS field sizemaps and
derived information are presented. A total of 4,182,777 fieldswere extractedwithmean andmedianfield sizes of
0.193 km2 and 0.278 km2, respectively. The CONUS field size histogramwas skewed; 50% of the extracted fields
had sizes greater than or smaller than 0.361 km2, and there were four distinct peaks that corresponded closely to
sizes equivalent to fields with 0.25 × 0.25mile, 0.25 × 0.5 mile, 0.5 × 0.5 mile, and 0.5 × 1 mile side dimensions.
Therewere discernible patterns between field size and themajority crop type as defined by theUnited States De-
partment of Agriculture (USDA) National Agricultural Statistics Service (NASS) cropland data layer (CDL) classi-
fication. In general, larger field sizes occurredwhere a greater proportion of the landwas dedicated to agriculture,
predominantly in the U.S. Wheat Belt and Corn Belt, and in regions of irrigated agriculture. The results were val-
idated by comparisonwith field boundaries manually digitized from Landsat 5 and Google-Earth high resolution
imagery. The validation was undertaken at 48 approximately 7.5 × 7.5 km sites selected across a gradient of field
sizes in each of the top 16 harvested cropland areas in U.S. states that together cover 76% of harvested U.S. crop-
land. Conventional per-pixel confusionmatrix basedmeasures that assess pixel level thematicmapping accuracy,
and object extraction accuracy measures, were derived. The overall per-pixel crop field classification accuracy
was 92.7% and the overall crop field producer's and user's accuracieswere 93.7% and 94.9%. Comparing all the ref-
erence and extracted field objects, 81.4% were correctly matched and the extracted field sizes were on average
underestimated by 1.2% relative to the reference field objects.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The spatial distribution of agricultural fields is a fundamental de-
scription of rural landscapes (White & Roy, 2015) and is related to a
number of ecological factors including habitat fragmentation, biodiver-
sity, cropland species diversity (Geiger et al., 2010; Green, Cornell,
Scharlemann, & Balmford, 2005; Krebs, Wilson, Bradbury, &
Siriwardena, 1999), the incidence of disease pathogens and pests
(Margosian, Garrett, & Hutchinson, 2009), and the regulation of agricul-
tural nutrient, herbicide and pesticide flows (Martin, 2011). Field sizes
are indicative of the degree of agricultural capital investment, mechani-
zation and labor intensity, and information on the size of fields is need-
ed to plan and understand these factors, and can help the allocation of
agricultural resources such as water, fertilizer, herbicide, and farming
equipment (Anderson, Allen, Morse, & Kustas, 2012; Johnson, 2013;

Kuemmerle et al., 2013; Rudel et al., 2009). In many locations, field
sizes are increasing due to agricultural intensification as farmers seek
to maximize profit and reduce risk through larger agricultural enter-
prises, with ecological and biogeochemical consequences that require
field size information to assess (White & Roy, 2015).

Research to use satellite data for agricultural monitoring has an
established heritage (Bauer, Hixson, Davis, & Etheridge, 1978;
Duveiller & Defourny, 2010; Moulin, Bondeau, & Delecolle, 1998;
Ozdogan, 2010; Wardlow & Egbert, 2008; Whitcraft, Becker-Reshef, &
Justice, 2015). However, research on extractingfield boundaries and de-
tectingfields has been relatively limited and typically has involved visu-
al identification and manual digitization of field boundaries. In the
United States, field boundaries digitized manually from a variety of air-
borne remote sensing sources are used by the United State Department
of Agriculture (USDA) (Boryan, Yang, Mueller, & Craig, 2011), but they
are not publically available since the 2008 Food Conservation and Ener-
gy Act (U.S. Department of Agriculture, 2008). Satellite land cover clas-
sifications that include agricultural classes, such as the United States

Remote Sensing of Environment 172 (2016) 67–86

⁎ Corresponding author.
E-mail addresses: lin.yan@sdstate.edu (L. Yan), david.roy@sdstate.edu (D.P. Roy).

http://dx.doi.org/10.1016/j.rse.2015.10.034
0034-4257/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2015.10.034&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.rse.2015.10.034
mailto:david.roy@sdstate.edu
http://dx.doi.org/10.1016/j.rse.2015.10.034
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/00344257


Geological Survey (USGS) National Land Cover Database (NLCD)
(Homer et al., 2015) and the USDA National Agricultural Statistics Ser-
vice (NASS) crop data layer (CDL) (Johnson & Mueller, 2010), are per-
pixel raster classification products that do not define field objects. Re-
cently, a global field size dataset was developed by spatial interpolation
of crowd-sourced categorizations of Google-Earth images into “very
small”, “small”, “medium” and “large” field size categories (Fritz et al.,
2015). However, although this dataset provides a useful synoptic and
qualitative global assessment of field sizes, it contains only ordinal
scalefield size information and its quality is limited by the small number
(13,963) of global samples used (Fritz et al., 2015).

This paper describes the refinements of a recently published
algorithm to extract agricultural crop fields from Landsat time series
(Yan & Roy, 2014). The refined algorithm integrates a variety of
computer vision based image processing techniques; it requires no
training data and no human interactions, and is sufficiently computa-
tionally efficient and structured to be scalable to continental application.
The refined algorithm is applied to one year of Landsat 5 ThematicMap-
per (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+) data
for all of the conterminous United States (CONUS). For the first time,
spatially explicit CONUS field size maps and derived information are
presented.

The Landsat data and then algorithm refinements are first described.
The algorithmwas demonstrated previously using five years of Landsat
7 ETM+data and coherent fields were shown to be extractedwith lim-
ited errors compared to contemporaneous USDA CDL classifications
(Johnson & Mueller, 2010) over three 150 × 150 km regions located in
Texas, California and South Dakota (Yan & Roy, 2014). In this paper,
the field extraction algorithmwas refined to incorporate the CDL to re-
duce commission errors. The algorithm was applied to one year of
Landsat 5 and 7 data to reduce ambiguity due to crop rotations that
can occur between years (Plourde, Pijanowski, & Peki, 2013) and to re-
duce the likelihood of physical field boundary changes thatwill increase
whenmore years of data are used (Yan& Roy, 2014). Other refinements
were alsomade to improve the algorithm's robustness for CONUS-wide
application. Spatially explicit field extraction results and histograms are
shown for all the CONUS and inmore detail for the state of Iowa that has
field distributions that are representative ofmuch of theCONUS. The ex-
tracted fields are validated by comparison with field boundaries manu-
ally digitized from 48 Landsat 5 TM and Google-Earth 7.5 × 7.5 km
subsets selected across the CONUS 16 states with the greatest docu-
mented harvested cropland areas. Conventional per-pixel accuracy clas-
sification statistics and quantitative object extraction accuracy statistics
are presented. The paper concludeswith a discussion of the implications
of this research and recommendations for future research.

2. Data

2.1. Landsat data

Landsat data sensed December 2009 to November 2010 were used.
Multi-temporal Landsat data were used to ensure sufficient opportuni-
ties for cloud-free, non-missing and atmospherically uncontaminated
surface observations and to capture variability in the state of the vegeta-
tion needed for reliable field extraction (Yan& Roy, 2014). As suggested
by previous studies, Landsat 5 TM and 7 ETM+ data, which nominally
sense the same location 8-days apart, were used rather than data from
a single Landsat to increase the availability of cloud free surface observa-

tions (Kovalskyy & Roy, 2013). A total of 6837 Landsat 7 ETM+ and
6829 Landsat 5 TM scenes processed to Level 1T were used. The Level
1T data processing includes radiometric correction, systematic geomet-
ric correction, precision correction using ground control, and the use of
a digital elevation model to correct parallax error due to local topo-
graphic relief with a CONUS geolocation error less than 30 m (Lee,
Storey, Choate, & Hayes, 2004).

Gridded atmospherically corrected Landsat mosaics of the contermi-
nous United States (CONUS) were generated using the Web Enabled
Landsat Data (WELD) processing system (Roy et al., 2010). The WELD
products are designed to provide consistent data that can be used to de-
rive land cover and geo-physical and bio-physical products. The WELD
data have been used previously for large area time series based land
cover and change mapping applications (Boschetti, Roy, Justice, &
Humber, 2015; Egorov, Hansen, Roy, Kommareddy, & Potapov, 2015;
Hansen et al., 2011; Hansen et al., 2014; Yan & Roy, 2015). The WELD
products are defined in the Albers equal area projection in
5000 × 5000 30 m pixel WELD tiles, and in this study 362 WELD tiles
were processed. The reflectance band data were converted to surface re-
flectance using the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) code (Masek et al., 2006) that uses aerosol character-
izations derived independently from each Landsat acquisition and as-
sumes a fixed continental aerosol type and uses ancillary water vapor
data. Weekly WELD composites for 52 weeks from week 49 of 2009 to
week 48 of 2010were used. The compositing algorithm used to generate
the weekly data is based on the maximum NDVI algorithm (Roy et al.,
2010). Adjacent pixels may be selected from either Landsat 5 or 7 data
sensed in the same week and so may be sensed one day apart. The sur-
face reflectance for the green (0.53–0.61 μm), red (0.63–0.69 μm),
near-infrared (0.78–0.90 μm) and two mid-infrared (1.55–1.75 μm and
2.09–2.35 μm) Landsat bands were used. The shortest wavelength
Landsat blue (0.45–0.52 μm) band was not used because the LEDAPS at-
mospheric correction is considerably less reliable than for the other
Landsat reflective wavelength bands (Ju, Roy, Vermote, Masek, &
Kovalskyy, 2012). The per-band radiometric saturation status and the
two cloud mask values stored in the WELD data (Roy et al., 2010) were
used to remove saturated and cloud contaminated pixels.

2.2. Cropland Data Layer

The United States Department of Agriculture (USDA) National Agri-
cultural Statistics Service (NASS) Cropland Data Layer (CDL) for 2010
was obtained from the CDL web site (http://nassgeodata.gmu.edu/
CropScape/). The CDL is generated annually using moderate resolution
satellite imagery and extensive agricultural ground truth via a super-
vised non-parametric classification approach and defines about 110
land cover and crop type classes at 30 m (Boryan et al., 2011; Johnson
& Mueller, 2010). The 2010 CDL was used in this study to help identify
agricultural regions and so provide more direct identification of crop
fields. This is needed in particular for this CONUS study as arable agricul-
ture can be hard to discriminate from pasture and other grasslands
using Landsat data (Johnson, 2013; Müller, Rufin, Griffiths, Barros
Siqueira, & Hostert, 2015;Wardlow & Egbert, 2008). For 2010 the over-
all CONUS CDL classification accuracy is reported as 84.3% and themajor
field crops have 85% to 95% classification accuracies (Johnson, 2013).
The CDL is defined in the same Albers Equal Area conic projection as
the WELD data.

3. Field extraction

3.1. Overview

The field extraction algorithm requires Landsat 30m time series in order to capture spectral differences between crop and non-crop phenologies
and to reduce the influence of missing, shadowed and atmospherically contaminated satellite observations. The methodology is described and illus-
trated in detail in Yan and Roy (2014) and can be summarized by five steps: 1) Maps of the probability of crop agriculture and crop field edge
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presence are generated from the Landsat time series to provide spatially explicit crop field identification information; 2) A variational region-based
geometric active contour (VRGAC) (Chan & Vese, 2001) segmentation method is applied to the two probability maps to derive candidate crop field
objects; 3) A watershed algorithm (Bleau & Leon, 2000) is applied to decompose connected candidate crop field objects belonging to multiple fields
into coherent isolated fields; 4) A geometry-based algorithm is used to detect and associate parts of circular fields together; 5) The field objects are
refined by independent application of a two-pixel dilation and then a one-pixel erosion morphological filter (Serra, 1988) to each extracted
field object.

The following refinements were made to the field extraction methodology described in Yan and Roy (2014): 1) Landsat 5 and 7 weekly at-
mospherically corrected WELD data were used rather than just Landsat 7 weekly WELD top of atmosphere data; 2) maps that describe crop
field edge linearity and edge saliency were used rather than a single edge intensity map; 3) The USDA NASS CDL was used to provide a
30 m binary harvested crop mask to replace the crop field probability map used in the original methodology; 4) The VRGAC segmentation
was refined to be more robust to within-field spectral variability including the use of new checks for interior field boundary presence and
field compactness; 5) Adaptive parameterization was used for bottleneck detection in morphological decomposition of field objects. Fig. 1
illustrates the processing flow of the refined methodology, and Fig. 2 illustrates the results of its application to a 500 × 500 30 m pixel subset
that includes a variety of crop fields with different crop types and spatial characteristics.

3.2. Edge intensity map generation

An edge intensity map is first generated (Fig. 2c) that is similar to the results of a contrast edge enhancement but enhances edges with
high NDVI contrast. It is defined considering at each pixel location the 52 weeks of eight adjacent pixel NDVI and reflectance values as:

Iedge i; jð Þ ¼

Xn
week¼1

eweek i; jð Þ

Xn
week¼1

NDVIweek i; jð Þð Þ2
ð1Þ

where

eweek i; jð Þ ¼ NDVIweek i; jð Þð Þ2 �

X8
k¼1

dρweek;k i; jð Þ �wk �wday
week;k

X8
k¼1

wk �wday
week;k

�

X8
k¼1

dNDVIweek;k i; jð Þ �wk

X8
k¼1

wk

dρweek;k i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
λ ∈ 2;3;4;5;7

ρweek;λ i; jð Þ−ρweek;λ iþ x kð Þ; jþ y kð Þð Þ� �2s

dNDVIweek;k i; jð Þ ¼ NDVIweek i; jð Þ−NDVIweek iþ x kð Þ; jþ y kð Þð Þj j

x k ¼ 1 :::8ð Þ ¼ 0;−1;−1;−1;0;1;1;1f g
y k ¼ 1 :::8ð Þ ¼ 1;1;0;−1;−1;−1;0;1f g
w k ¼ 1 :::8ð Þ ¼ f1;

ffiffi
2

p
=2;1;

ffiffi
2

p
=2;1;

ffiffi
2

p
=2;1;

ffiffi
2

p
=2g

wday
week;k i; jð Þ ¼ 1

dayweek i; jð Þ−dayweekðiþ x kð Þ; jþ y kð ÞÞj j þ 1

� �4

where Iedge(i,j) is the edge intensity image, and dweek,k
ρ (i,j) and dweek,k

NDVI (i,j) provide measures of the reflectance-based and NDVI-based
Euclidean distance respectively of a pixel located in the weekly WELD product for a given week at pixel location (i, j) with respect to
pixel k located in any of up to eight adjacent pixels defined by offsets x(k), y(k). If there are no data at (i, j) or no adjacent pixels with
data, denoted by a fill value in the weekly WELD products, then (1) is not defined. This formulation is similar to the crop field edge presence
probability estimation described in Yan and Roy (2014) but with the added refinement of wweek,k

day (i,j)that normalizes for differences in the
acquisition dates of neighboring pixels that occur as both Landsat 5 and 7 data are used. The formulation of wweek,k

day (i,j) is defined such
that if a neighboring pixel has the same acquisition date then the weight is one, but if the date is different by one day then the weight is
much smaller (1/16). In addition, the square of NDVIweek(i,j) is used to weight the NDVI as this was found to be useful to emphasize harvest-
ed crop field edges that have short growing periods.

The edge intensity image is also normalized to fall into the range [0, 1] as:

Îedge i; jð Þ ¼
1; if Iedge i; jð Þ N I1
Iedge i; jð Þ−I2

I1−I2
; if I2≤ Iedge i; jð Þ ≤ I1

0; if Iedge i; jð Þ b I2

8>><
>>: ð2Þ

where Îedgeði; jÞ is the normalized edge intensity image at pixel location (i, j). Edge intensity image values N I1 are likely edge members (nor-
malized value set to 1), values in the range [I2, I1] are possible edge members (normalized values set between 0 and 1), and values b I2 are
not likely edge members (normalized value set to 0). In this study, I1 and I2 were set to 4.0 and 2.0 respectively, which are aggressively low
thresholds to ensure weak edges are not missed. These two values were determined by manual inspection of the edge intensity values of
weak field boundaries at multiple CONUS locations.
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Fig. 1. Processing flow of the refined automated field extraction methodology; results for the letters in parentheses are illustrated in Fig. 2.

Fig. 3 illustrates a detailed example of the edge intensity image (Fig. 3a) and the normalized edge intensity image (Fig. 3b) and also illustrates the
corresponding edge linearity and saliency maps whose generations are explained below.

3.3. Edge linearity and saliency map generation

The edge intensity map is used to generate maps that quantify the degree of straightness of the intensity edges (edge linearity) and also the de-
gree to which intensity edges stand out locally relative to their neighbors (edge saliency). The edge linearity and saliency are derived only if a pixel

has Îedgeði; jÞ N 0. The edge saliency is input to the VRGAC and the edge linearity is used to refine the VRGAC output (Fig. 1).
The motivation for the edge linearity and saliency map generation reflects computer vision research that is focused on understanding

how humans correctly interpret visual images (Marr, 1982). Several computer vision edge and object extraction approaches model ob-
servations that human perception of an oriented stimulus is influenced by the presence of other similar surrounding stimuli, and that
only a single edge at a time is interpreted as passing through any given point in an image (Field, Hayes, & Hess, 1993; Geisler, Perry,
Super, & Gallogly, 2001; Papari & Petkov, 2011; Ramachandra & Mel, 2013). In particular, the response of the human visual system to
an oriented stimulus is reinforced from surrounding stimuli that are collinear with the central stimulus and inhibited by other stimuli
in the direction orthogonal to the edge direction (Papari & Petkov, 2011). For the purposes of this study, the oriented stimuli of interest
are field boundaries.

Previous field extraction research suggested that it is useful to detect and include linear field boundaries even though theymay beweakly detect-
ed (Rydberg & Borgefors, 2001). Detection weakness occurs because the field boundaries are often narrower than the Landsat 30m pixel dimension
(Ji, 1996;White & Roy, 2015) andwhen this occurs, neighboring fields with similar-phenologymay not provide high edge intensitymap values (Yan
& Roy, 2014). In addition, field boundaries in regions of persistent cloudmay be obscured and so have lower edge intensity values, particularly if the
cloud obscuration period coincided with the peak of the growing season.

In this study, field boundaries are assumed to be locally continuous and either straight or curved to reflect themechanized nature of most CONUS
farming. Fields with straight side boundaries smaller than length (l/2+ 1) pixels are assumed to not occur, or if they occur they will not be detected.
The parameter lwas set to 6 pixels so that fields with boundaries shorter than 4 pixels (i.e. about 120m)will not be detected. It was found that using
smaller l valueswas unreliable aswithin-field variations were increasingly detected as possible field boundaries and because of the difficulties of de-
fining a line over distances shorter than 4 pixels.

3.3.1. Edge orientation derivation
Before the edge linearity or saliency can be computed, the edge orientation, i.e., the direction relative to Cartesian image row and column coor-

dinates, must be defined. Fig. 3b depicts the optimal edge direction (red vectors) for each pixel relative to the neighboring normalized edge intensity
values and Fig. 4 illustrates the optimal edge direction search process that is undertaken by examination of the normalized intensity values where

Îedgeði; jÞ N 0. A diametral spatial search for different radial directions defining a circle centered on (i, j) is undertaken (Fig. 4a). In each direction

(Fig. 4b), search lines from (l/2 + 1) to (l+ 1) pixels that pass through (i, j) and that are composed of consecutive pixels with Îedgeði; jÞ N 0 are con-
sidered. For clarity, the adjacent pixels in a vertical search are illustrated in Fig. 4b; for non-vertical or non-horizontal search directions, the adjacent
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Fig. 2. Illustration of several of the steps in the refined automated field extraction methodology processing flow (Fig. 1) for a 500 × 500 30 m pixel region surrounding Scott City, Kansas,
USA. There were 438 extracted fields.

pixels along the closest approximation to the straight line through (i, j) are defined using a conventional Bresenham line algorithm (Bresenham,
1965).

The optimal edge direction is derived from the search process (Fig. 4) as the onewhere themetric ŝi is themaximumover all the different searches
(radial directions and search lines in each radial direction):

ŝi ¼
Xn
k¼1

Îedge ik; jkð Þ ð3Þ
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Fig. 2 (continued).

where ŝi is the summed normalized edge intensity of the consecutive set of n pixels along the search line referenced for convenience as{(ik,jk)|k=1...n},
and n can vary from (l+1)/2 to (l+1)pixels (Fig. 4b). The optimal edge direction, the number of pixels in the corresponding optimal search line,

and the value of ŝi, denoted αopt(i, j), nopt(i, j) and ŝioptði; jÞ respectively, are recorded. Occasionally there are “tied” cases when there are more

than one ŝi maxima; when this occurs another measure siw is computed:

siw ¼

Xn
k¼1

Iedge ik; jkð Þ �wsimilarity
k �wdist

k

Xn
k¼1

wsimilarity
k �wdist

k

wsimilarity
k ¼ 1

1þ Iedge ik; jkð Þ−Iedgeði; jÞ
�� ��

wdist
k ¼ 1

1þ k−koj j

ð4Þ

where siw is derived in a weighted manner from the edge intensity image and ko is the pixel index of (i, j) that falls on the search line. The

values of αopt(i, j), nopt(i, j) and ŝioptði; jÞ are then defined as before but from the search with the maximum siw. Note that siw rarely has tied
maximal values as it is derived from the intensity edge image and not the normalized version that has a smaller and bounded dynamic
range.

Finally, all theαopt(i, j) values are comparedwith their neighboringαopt values to ensure that the orientations are locally consistent. At each pixel
location (i, j), themean intersection angle (defined as an acute angle) betweenαopt(i, j) and each set of available neighboringαopt values defined from
one to no more than l consecutive pixels in direction αopt(i, j) is derived. If the minimum mean intersection angle is N15°, then local consistency is
considered to be lost and αopt(i, j) is removed from consideration. This 15° threshold was set conservatively as nearly twice the angle subtended
by a small 0.25 mile radius circular field over a distance of (l + 1) 30 m pixels. In our previous research, center-pivot irrigation circular fields with
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Fig. 3. Example of edge linearity and saliency map generation over straight and circular field boundaries for a 40 × 40 30 m pixel subset located near the south-east corner of the Fig. 2
image, (a) edge intensity map, (b) normalized edge intensity map overlain with estimated optimal edge direction vectors shown in red (see text for details), (c) edge linearity map,
(d) edge saliency map.

Fig. 4. Illustration of the optimal edge direction search process. (a) A diametral spatial search is undertaken for different radial directions defined as the angle α(i, j) with the image x-axis,
(b) in each radial direction search, lines from (l/2 + 1) to (l+ 1) pixels that pass through (i, j) and are composed of consecutive pixels with Iedgeði; jÞN0 are considered; in this example,
search lines for l = 4 pixels are illustrated that provides 12 possible search lines (colored) from three to five pixels in length.
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radii of 390m (about 0.25mile) and 790m (about 0.5mile)were detected (Yan& Roy, 2014) that corresponded to the radii required to irrigate quar-
ter section (0.5 × 0.5 mile) and full section fields (1 × 1 mile) common in the U.S. (Pitts & Badhwar, 1980).

3.3.2. Edge linearity derivation
The edge linearity is defined by consideration of the optimal edge direction pixel values for sequences of consecutive adjacent pixels that pass

through (i, j) in the direction defined by αopt(i, j) and searching in a similar manner as Fig. 4b. First, for each sequence of n pixels varying from
one to (2 l + 1) pixels, the following collinearity measure is derived:

c i; jð Þ ¼
Xn
k¼1

cos αopt ik; jkð Þ−αoptði; jÞ
�� ��� � ð5Þ

where c(i, j) is a collinearity measure bounded [0, 2l+ 1], αopt(ik, jk) define the optimal edge orientations derived at pixel location (i, j) at n consec-
utive pixel locations {(ik,jk)|k=1...n} and the search is terminated if αopt(ik, jk) is not defined or if more than (2l+ 1) pixels are examined. Then the
edge linearity is defined:

Ledge i; jð Þ ¼ cmax i; jð Þ
2lþ 1

ð6Þ

where Ledge(i,j) is the edge linearity at pixel (i, j), the denominator is included so that Ledge(i,j) has a value in the range [0, 1], and cmax is themaximum
of the collinearity measure (5) derived over the different sequences of consecutive adjacent pixels that pass through (i, j). Fig. 3c shows detailed ex-
ample edge linearity results. The straightest and longest connected edges have the greatest linearity values. The curved edges have lower values be-
cause they are not straight. If circular fields are sufficiently large then the degree of linearity of the field edge will still provide useful information.

3.3.3. Edge saliency derivation
The edge saliencymodels the response of the human visual system to an oriented stimulus that is reinforced from surrounding stimuli that

are collinear with the central stimulus and inhibited by other stimuli in the direction orthogonal to the edge direction (Papari & Petkov,
2011). Inhibition is quantified using a search considering different sets of consecutive pixels progressively further away from (i, j) in the or-
thogonal direction to αopt(i, j) until a pixel with an edge intensity value no less than Iedge(i,j) occurs or (v + 1) pixels are considered; this
search is similar to the search with l as illustrated in Fig. 4b. The parameter v was set as twice (l/2 + 1), i.e. v = 8 pixels, to reduce inhibition
from homogenous regions within this distance. Recall that fields with straight side boundaries smaller than length (l/2 + 1) pixels will not be
detected.

The edge saliency Sedge(i, j) is defined as:

Sedge i; jð Þ ¼
ŝiopt i; jð Þ
lþ 1

� nopt i; jð Þ
lþ 1

� n⊥opt i; jð Þ
vþ 1

; if Ledge i; jð Þ b 0:5

min
ŝiopt i; jð Þ
lþ 1

� cmax i; jð Þ
l

;1

 !
� nopt i; jð Þ

lþ 1
� n⊥opt i; jð Þ

vþ 1
; if Ledge i; jð Þ ≥ 0:5

8>>><
>>>:

ð7Þ

where ŝiopt ði; jÞ
lþ1 , noptði; jÞ

lþ1 and n⊥;opt ði; jÞ
vþ1 define the normalized edge intensity, reinforcement and inhibition terms, respectively, and the denominators

(expressed in terms of the l and v search parameters) are included so that the terms, and therefore the edge saliency, are defined in the range

[0, 1]. The variables ŝioptði; jÞ, nopt(i, j) and cmax(i, j) are, respectively, the summed normalized edge intensity (3), the number of pixels defining the
optimal edge direction search line, and themaximumof the collinearitymeasure (5) calculated from consecutive pixels in the optimal edge direction.
The variable n⊥opt(i, j) is themaximum number of consecutive pixels with an edge intensity value less than Iedgeði; jÞ found searching orthogonally to
the optimal edge direction.

The two cases to derive the edge saliency (7) are used to boost the edge saliency values for edges with relatively high linearity defined as

Ledge(i, j) ≥ 0.5; the term Cmaxði; jÞ
l is always greater than unity when Ledge(i, j) ≥ 0.5 such that it boosts the normalized edge intensity term ŝioptði; jÞ

lþ1 to
up to 1. This is needed as the normalized edge intensity can have low values (Fig. 3b) even for long straight edges with high linearity values
(Fig. 2g, Fig. 3c). Fig. 3d shows detailed example edge saliency results. High saliency values occur not only where there are straight and long
edges with high linearity values (Fig. 3c) but also for portions of the circular field edges that lie furthest from the bounding straight edges,
and much of the within-field noise is removed. This example illustrates why the edge saliency map rather than the normalized edge intensity
map is used as an input to the VRGAC field extraction (Fig. 1). The normalized edge intensity values are quite variable for the reasons discussed
at the beginning of this section, whereas the saliency values are relatively enhanced along real edge locations that are not close to other edges.

The edge saliency is not defined if Îedgeði; jÞ=0 or if αopt(i, j) is not defined at pixel location (i, j). The edge saliency is defined in the range [0, 1],
and with the parameters l = 6 and v = 8, typically field boundaries have edge saliency values N0.5.

3.4. Binary crop mask and candidate binary candidate crop field map generation

The USDA NASS CDL (Fig. 2b) is used to help identify agricultural regions and so provide more direct identification of crop fields. The 2010 CDL
was used, rather than other CDL years, to best match the December 2009 to November 2010 Landsat data acquisition period. Although previous re-
search has indicated a visual correspondence between the CDL data and extracted field objects (Yan & Roy, 2014, Yang, Wilson, & Wang, 2014), the
CDL does not define field objects.

The CDL is filtered to provide a 30 m binary harvested cropmask by assigning all the agricultural CDL classes as crop pixels and the remainder as
non-crop pixels (Fig. 2d). A binary candidate crop fieldmap is then generated from the binary cropmask using the edge saliencymap to reduce sen-
sitivity to CDL classification errors. A straightforward process is used. All the connected neighboringpixelswith Sedge=0(i.e., black in Figs. 2e and 3d)
are located, and those with a majority of binary crop mask pixels labeled as crop are considered as candidate crop field objects. A 2-pixel buffer
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around each binary candidate crop field is also defined, labeling in the buffer only pixels with Sedge N 0 (shown as gray in Fig. 2f). This buffer is used in
the VRGAC field extraction.

3.5. VRGAC field extraction

Crop fields are extracted by application of the VRGAC segmentation algorithm to the edge saliencymap and using the binary candidate crop field
map to initialize the VRGAC (Fig. 1). The VRGAC iswell established (Chan&Vese, 2001) and requires only a small number of parameters to iteratively
generate a segmentation with control over the smoothness of the segment boundaries and segmentation noise. A level set function approach is used
that enables numerical computations on a Cartesian image grid without having to parameterize segment curve and surface properties that can be
particularly complex to parameterize (Osher & Sethian, 1988). The level set function is a two dimensional matrix with each element corresponding
to a pixel location and with values storing the spatial distance to the closest object boundary. Signed distances are stored so that locations inside an
object are negative and increase in value for locations closer to the object boundary, and locations outside of the object have positive values. Object
boundaries are defined be zero-crossing locations in the level set function. This is illustrated in detail in Yan and Roy (2014) for field objects extracted
from Landsat data.

The VRGAC implementation was revised slightly from that used in (Yan & Roy, 2014) to reflect the different inputs as:

ϕ i; jð Þnþ1 ¼ ϕ i; jð Þn þ δε ϕ i; jð Þn
� � � μ � κ i; jð ÞÞ þ Sedgeði; jÞ−c

� � ð8Þ

where ϕ (i, j) is the level set function composed of signed distances at each pixel location (i, j) derived initially from the binary candidate
crop field map (Section 3.4), and ϕ (i, j)n + 1 is the updated version of ϕ (i, j)n, δε is an approximated Delta function, κ(i, j) is the curvature
map of ϕ (i, j)n (Caselles, Catte, Coll, & Dibos, 1993; Yan & Roy, 2014), μ and c are scalar constants that control the segmentation performance,
and Sedge(i,j) is the edge saliency defined as (7). The Delta function δε is configured to constrain the update of ϕ to an area within 1.5 pixels
from the current field object boundaries as described in Yan and Roy (2014). In this implementation, the update of ϕ is undertaken only at
pixel locations in the binary candidate crop field and the surrounding 2-pixel buffer region (white and gray respectively, Fig. 2f) to prevent
field objects from propagating into non-crop field areas (black, Fig. 2f). The constant μ is applied to κ(i, j) to control boundary smoothness
and is set as 0.03 (Yan & Roy, 2014). The constant c varies between 0 and 1 and is set as described below. It is used to moderate the edge
saliency Sedge(i,j) values; larger c increases the likelihood that pixels with low Sedge(i,j) are included into field objects, which tends to
make the extracted field objects more compact.

The level set function is updated as (8) until a pre-defined stable state is reached. In this study, as previously (Yan & Roy, 2014), the iteration is
stopped when less than 0.001% of the signed distance values change over 20 consecutive iterations. The extracted field objects are defined by appli-
cation of a simple local search and connected neighboring level set function pixels with negative signed distance values are labeled as belonging to
the same field object.

Each set of extracted field objects is checked for interior features with low average linearity, and if any are detected they are filled
(Section 3.6), and then the compactness of the resulting field objects are quantified (Section 3.7). Fields that are insufficiently compact are
presented to the VRGAC as a new version of the candidate crop field map (Fig. 1). This is repeated iteratively; each time c is varied with
0.1 increments from 0.25 to 0.85 to gradually strengthen the smoothening of the field object boundaries, and the fields that are found to
be compact are stored. As field boundaries typically have edge saliency values N0.5, iterating c from 0.25 to 0.85 ensures that they are cap-
tured. In this way, a total of seven iterations are undertaken, and the final field object extraction is defined by the union of the seven field ob-
ject extractions (Fig. 2h).

3.6. Filling interior features with low average linearity

Previous research has indicated the complexity of agricultural landscapes with interior ditches, hedges, tree lines, weed and grass swards, linear
poorly drained depressions, regions of infertile soil, ponds, and narrow tracks (Palmer, Kutser, & Hunter, 2015; Rydberg & Borgefors, 2001;White &
Roy, 2015; Yan & Roy, 2014). These kinds of features often cause the extracted fields to be complex and may introduce interior “hole”-like features
due to the VRGAC smoothing. The interior holes can be just one pixel wide. They are first identified by a neighborhood search across each extracted
field object and then themean edge linearity Ledge(i, j) of their pixels is derived. If themean edge linearity is less than 0.5, then all the pixels defining
the feature are converted into field pixels. This removes non-linear narrow internal features, and removes internal holes such as ponds, and so re-
duces the potential for subsequent over-segmentation of fields whereby larger fields are incorrectly subdivided into smaller ones. Considering the
edge linearity definition (6), a 0.5 linearity is equivalent to a 50%probability of a pixel lying on a (2l+1)pixel-long linear line, and therefore provides
a reasonable threshold.

3.7. Field compactness check

Measurement of object compactness is well established and a number ofmeasures have been proposed (Bogaert, Rousseau, VanHecke, & Impens,
2000; Groom & Schumaker, 1993; Li, Goodchild, & Church, 2013) and applied to satellite data (Chuvieco, 1999; Li & Yeh, 2004). The following
measure (Groom & Schumaker, 1993) is used:

compactness ¼ 4
ffiffiffi
A

p

P
ð9Þ

where A is the number of pixels defining the object (i.e., the object area) and P is the summed length of the interior and exterior perimeters of the
object. This measure is scale-invariant, is bounded from zero (not compact) to one (maximum compactness), and is suitable for two dimensional
image rasters as square (rather than circular) objects provide the maximum compactness value. Smaller values occur for irregularly shaped fields
and particularly for fields with holes and interior angles greater than 180°. Rather than using a fixed compactness threshold, an area-adaptive
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threshold is implemented, and objects with compactness values less than 0:6532−0:0073ð
ffiffiffi
A

p
Þ are considered to be insufficiently compact and are

further refined by theVRGAC. The parameters 0.6532 and 0.0073were derived by linear regression of compactness against
ffiffiffi
A

p
values considering 110

binary candidate field map objects manually selected to cover a range of field shapes and areas. This area-adaptive thresholding ensures that larger
field objects are more likely to be considered compact.

Objects further refined by the VRGAC may not be changed and so the aggressive implementation of the area-adaptive compactness
threshold is not critical. However, narrow fields that often have small compactness values (Li & Yeh, 2004) may also have low edge saliency
values if they are small, and so the VRGAC may merge them with adjacent field objects. To reduce this occurrence, the ratio of an field
object's area to the area of the minimum rectangular bounding box around the object (O'Rourke, 1985) is derived, and objects with ratios
greater than 0.8 are considered compact and not further refined by the VRGAC. The 0.8 threshold was determined empirically by examining
the object area and minimum rectangular bounding box area of binary candidate field map objects with minimum side dimensions less than
4 (i.e. l/2 + 1) pixels.

3.8. Crop field object morphological decomposition and post-processing

Object extractions may be imperfect with errors that include the incorrect subdivision of larger objects into smaller ones (termed over-split or
over-segmentation) and the consolidation of small adjacent objects into larger ones (termed under-split or under-segmentation) (Möller, Birger,
Gidudu, & Gläßer, 2013; Persello & Bruzzone, 2010). In the original algorithm implementation (Yan & Roy, 2014), the latter issue was found to be
common and was noted as occurring if the boundary between adjacent joining crop fields is indistinct or when a curved boundary just meets,
“kisses”, the curved or straight boundary of an adjacentfield. Consequently, amorphological decomposition algorithm is implemented to decompose
the connected segments belonging to multiple fields into isolated fields.

Similarly to the original algorithm(Yan&Roy, 2014), the level set functionϕ (i, j) derived from the extracted cropfields that pass the compactness
check (Fig. 2h) is used in the decomposition step. A standard watershedmethod (Bleau & Leon, 2000) is used to find regional minima in the level set
function, i.e. tofind the regionallymost negative signed distance value locations. Candidatefield objectswith level set functions containingmore than
one minimum are potential candidates for subdivision. They are decomposed into separate objects if the following condition within a field object
occurs:

minjϕ Skeleton m1; m2ð Þð Þj b α � min jϕ m1ð Þj jϕ m2ð Þjð Þ ð10Þ

where ϕ is the level set function derived from the extracted crop fields that pass the compactness check, Skeleton (m1, m2) denotes the
topological skeleton line (set of two-dimensional image coordinates) connecting two adjacent minima m1 and m2, and α is a coefficient in
the range (0, 1) set to 2/3 (Yan & Roy, 2014). The topological skeleton line, also referred to as the medial axis of an object, is the set of all
image coordinates occurring inside the object that have more than one closest point on the object's boundary (Lee, 1982). For most field
objects, the topological skeleton line is usually not straight. The left hand side of Eq. (10) defines the minimum distance to the boundary
from the image coordinate on the topological skeleton line that is closest to an object boundary (which is potentially a “bottleneck” loca-
tion). The right hand side of Eq. (10) defines the product of α and the smaller distance to the object boundary of m1 and m2. Greater α
values result in an increased likelihood of (10) occurring and thus the decomposition into two separate field objects associated with
m1 and m2. If α is greater than unity, then decomposition will always occur. In this study, α was implemented as an adaptive threshold
to reduce its value (compared with 2/3 originally used), and so reduce the amount of decomposition, except for cases when adjacent cir-
cular fields just meet as:

α ¼
0:5þ 5 max 0; circularity m1ð Þ−0:9ð Þ½ � if ϕ m1ð Þ ∈ 9;30½ � and ϕ m2ð Þ ∉ 9;30½ �
0:5þ 5 max 0; circularity m2ð Þ−0:9ð Þ½ � if ϕ m1ð Þ ∉ 9;30½ � and ϕ m2ð Þ ∈ 9;30½ �

0:5þ 5 max 0; circularity m1ð Þ−0:9ð Þ þ max 0; circularity m2ð Þ−0:9ð Þ½ � if ϕ m1ð Þ ∈ 9;30½ � and ϕ m2ð Þ ∈ 9;30½ �
0:5 otherwise

8>><
>>: ð11Þ

where circularity(m) is the two-dimensional correlation coefficient (Taylor, 1990) between a sub-matrix of ϕ defined with square dimensions
(2[ϕ(m)] + 1) × (2[ϕ(m)] + 1) pixels centered at the image location of m, with a level set matrix defined by a perfect circle with diameter of
2[ϕ(m)] + 1 pixels. This type of level set template matching is a commonly used technique for shape recognition ( Bresson, Vandergheynst, & Thiran,
2006; Cremers, Rousson, & Deriche, 2007; Tsai, Yezzi, Wells, & Tempany, 2003). The circularity has a value from 0 (no correlation) to 1 (perfect corre-
lation) and so α is usually 0.5, i.e. less than the 2/3 value used in the original implementation (Yan & Roy, 2014) but greater than 0.5 when one or
both minima have circularity values greater than 0.9. Thus the adaptive α threshold reduces over-splitting of non-circular field objects. If either of the
twominima occur less than 9 pixels (270 m) or more than 30 pixels (900 m) from the object boundary then α is set as 0.5; these distances are several
pixels smaller than the smallest and longest circular agriculture field radii observed in Texas, California and South Dakota (Yan & Roy, 2014) and also
observed in this CONUS study.

Finally, the extracted field objects are cleaned by application of dilation and erosion morphological filters (Serra, 1988). As in the original
paper (Yan & Roy, 2014), first a two-pixel dilation is applied and then a one-pixel erosion is applied to all the field objects together, to produce
field boundaries that spatially abut (Fig. 2i). Analysis of the application of the algorithm to the CONUS Landsat data indicated that fields great-
er in size than 20 pixels (0.018 km2) were sufficiently large to be extracted reliably, but below this size, depending primarily on the field
shape, the extraction was less reliable. Consequently, all extracted fields smaller than 20 pixels (0.018 km2) were discarded. Fig. 2j illustrates
the CDL-labeled field objects for visualization purposes only. The field extraction results appear visually reliable (e.g., Fig. 2i, j), but should be
validated quantitatively.
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4. Validation methodology

4.1. Validation site sampling

The accuracy of satellite products should be assessed by comparison
with higher accuracy independent reference data that are distributed
over a range of representative conditions or that are located using a sta-
tistical samplingmethodology (Justice et al., 2000;Morisette, Privette, &
Justice, 2002; Stehman, 2009). In this study the former approach was
used as no publically available CONUS map of field size distributions
from which to develop a sampling methodology exists.

The following validation site sampling procedure was used. The
CONUS was divided into 7.5 km × 7.5 km gridcells in the Albers
equal area projection, and each potential validation site was defined
by a gridcell. The 7.5 km gridcell dimension was greater than the
largest field dimensions reported in the literature that report
CONUS long-axis field dimensions as great as 6 km (Connor,
Loomis, & Cassman, 2011; Ferguson, Badhwar, Chhikara, & Pitts,
1986). The mean field size in each 7.5 km × 7.5 km gridcell contain-
ingmore than 50% crop classified CDL pixels and at least 50 extracted
fields was computed. The mean gridcell values were ranked in each
state and, in each state, the three gridcells containing the minimum,

median and maximum mean field sizes were selected as potential
validation sites. Given the large geographic extent of the CONUS
and the time consuming nature of the independent reference data
generation, 16 states were used to provide 16 × 3, i.e. 48 gridcells
where independent reference data were generated (Fig. 5). The 16
states were those with the greatest harvested cropland area (USDA
2012 Census), namely (listed in descending order of harvest crop-
land area) Iowa, North Dakota, Illinois, Kansas, Minnesota, Nebraska,
Texas, South Dakota, Missouri, Indiana, Ohio, Montana, Wisconsin,
Oklahoma, California, and Arkansas. These 16 states together cover
76% of the harvested U.S. cropland (USDA 2012 Census) and so we
can reasonably expect that the 48 selected sites encompass a range
of field size distributions that are representative of the CONUS. The
validation sites were defined with straight boundaries and their
boundary locations were shifted as needed to ensure that the bound-
aries only intersected a minority of fields; consequently several val-
idation sites encompassed state boundaries.

4.2. Independent reference data generation

Independent reference data that define the locations and bound-
aries of crop fields were defined by an interpreter using Landsat 5 TM

Fig. 6. CONUS extracted crop field size map for 2010. The mean field size in 7.5 km × 7.5 km gridcells is shown (colors) with state boundaries in black. The minimum non-zero (no agri-
culture) gridcell value is 0.035 km2 and gridcell values greater than 2.59 km2 (1 mile2) are set to 2.59 km2 for visual clarity. Note that 1 km2 = 100 ha = 247.1 acres.

Fig. 5.Distribution of the 48 7.5 km×7.5 kmvalidation sites (3 validation sites× 16 states)
superimposed over the CONUS statewise harvested cropland area (2012 USDAAgricultur-
al Census). The validation states are shown by red dots and the green dot shows the loca-
tion of the Alta, Iowa validation site illustrated in Fig. 13.

Fig. 7. Comparative CONUS 2010 CDL crop percentage map. The crop percentage in
7.5 km × 7.5 km gridcells is shown (grayscale colors, b10% shown in white) with state
boundaries in gray. The maximum gridcell percentage value is 98.4%.

77L. Yan, D.P. Roy / Remote Sensing of Environment 172 (2016) 67–86



data (Yan & Roy, 2014). In addition, Google-Earth imagery (http://
www.google.com/earth/) acquired close to the 2010 growing season
that included high spatial resolution satellite and airborne images
from a variety of commercial providers and US government agencies,
and the 2010 CDL were inspected. This is because although field
boundaries can be identified by visual inspection of appropriately
displayed Landsat data, differentiation among croplands, managed
grasslands and abandoned lands can be complex (Müller et al.,
2015; Prishchepov, Radeloff, Dubinin, & Alcantara, 2012). In addi-
tion, adjacent fields planted with the same crop and agricultural
management that are separated by a narrow boundary less than
one Landsat pixel wide are hard to discriminate as separate fields
(White & Roy, 2015; Yan & Roy, 2014).

Year 2010 Landsat 5 TM 30 m reflective wavelength bands and the
15 m panchromatic band panchromatic band (0.530–0.900 μm) were
displayed in different displays. Image-processing software that allowed
zooming, local contrast stretching, and rapid comparison of the Landsat

5 TM visible and panchromatic bands was used. An experienced
geospatial analyst identified the field boundaries visually and digitized
them into a standard polygon vector format with the 15 m pixel preci-
sion provided by the panchromatic band. A crop field was interpreted
as one that had a prominent and contiguous boundary and the same
crop type and agricultural management throughout its extent. The
2010 CDL was used to visually check that interpreted fields had the
same majority crop type(s) across the field. An empirical “tractor rule”
wasused to resolve caseswhere the boundaries between adjacentfields
were ambiguous to discern. In those cases, a boundary was defined if
the analyst judged that a tractor could not easily cross the boundary,
for example, if there was a tree line, hedge row, or fence, that were
not observable on Landsat 5 data but visible in the Google-Earth
imagery.

4.3. Accuracy measures

The independent reference field data for each of the 48 validation
site locations were projected into the WELD Albers projection and
rasterized at 30 m resolution for comparison with the extracted crop
fields. The independent reference field data and the extracted field
data were compared using conventional per-pixel and more recent ob-
ject based accuracy measures. The rasterization process labeled a pixel
as a crop field if the majority of the pixel was covered, and this com-
bined with CONUS Landsat sub-pixel geolocation errors (Lee et al.,
2004), will introduce some geolocation error between the data. Conse-
quently, only extracted and independent reference fields overlapping
each other by at least 5% were considered for the object-based accuracy
assessment. All extracted fields that intersected the validation area
boundaries were set to an unmapped status and excluded from the ac-
curacy assessment.

Conventional per-pixel confusion matrix based accuracy measures
were derived. A two-way confusion matrix populated with counts of
the number of 30 m pixels classified as crop field or non-crop field clas-
ses in the extracted and the independent reference data were used to
derive overall classification accuracy and field class user's and
producer's accuracy statistics (Foody, 2002). In addition, the total num-
ber of reference field pixels, the total number of extracted field pixels,

Fig. 8. Comparative CONUS 2010 CDL majority crop class. The majority CDL classes in
7.5 km× 7.5 km gridcells with ≥10% crop pixels are shownwith the original CDL color leg-
end for the major crops of corn, soybeans, alfalfa, winter wheat, spring wheat, durum
wheat, and cotton, and the other crops are shown in gray. Gridcells with b10% crop pixels
are shown in white and state boundaries are shown in black.

Fig. 9. CONUS field size histograms derived from all 4,182,777 extracted fields. (a) Histogram of number of fields, (b) Histogram of field area percentages (sum of all fields areas in each
histogram bin expressed as a percentage of total extracted CONUS field area). The x-axis histogram bins are set as an area of 0.0144 km2 i.e., equivalent to 16 Landsat 30m pixels. The first
histogrambin has no data plotted asfieldswith sizes less than 0.018 km2 (20 pixels)were assumed to be too small to be extracted reliably. Fields larger than 1×1mile (2.59 km2)were set
to 2.59 km2 for visual clarity. The vertical gray lines show the areas of hypothetical fieldswith side dimensions of 0.25 × 0.25mile (0.162 km2), 0.25 × 0.5mile (0.324 km2), 0.5 × 0.5mile
(0.646 km2), and 0.5 × 1 mile (1.295 km2).
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and the relative percentage difference in this total expressed as a per-
centage of the number of reference field pixels was derived.

The conventional per-pixel accuracy measures do not quantify the
extraction accuracy of individual fields. Object extractions may be im-
perfect with errors that include the incorrect subdivision of larger ob-
jects into smaller ones (termed over-split or over-segmentation) and
the consolidation of small adjacent objects into larger ones (termed
under-split or under-segmentation). To capture the accuracy of the
field extraction at the field, rather than pixel level, object extraction ac-
curacy measures (Möller et al., 2013; Persello & Bruzzone, 2010; Yan &
Roy, 2014) were used. The number of over- and under-split extracted
fields (i.e. that were smaller or larger, respectively, than the reference
fields) were defined. The number of one-to-one matched fields and
the correctly matched percentage expressed as the percentage of one-
to-one matched fields to the number of reference fields were derived.
The total number and mean size (in pixels) of the reference and the
extracted fields and the mean field size difference expressed as a per-
centage of the mean reference field size, were also derived.

Fig. 11. CONUS field size histograms for themajor crops: corn, soybeans, alfalfa, wheat (winter, spring and durum), and cotton. (a) Histogram of field area percentages of individualmajor
crops (sum of all crop type fields areas in each histogram bin expressed as a percentage of total extracted CONUS crop type field area), (b) cumulative field area percentage histogram of
individual major crops derived from (a). Only fields with more than 50% of its pixels labeled by the CDL 2010 crop type were considered providing a total of 1,107,224 (corn), 1,138,744
(soybeans), 238,654 (alfalfa), 557,431 (wheat) and 158,190 (cotton) CONUS extracted fields. For clarity, the x-axis histogram bins are set as an area of 0.0288 km2 i.e., equivalent to 32
Landsat 30 m pixels.

Fig. 10. The largest extracted CONUS field (12.955 km2) detected in Gaines, Texas (32.560920″ N, 102.312248″ W) (a) Extracted field, (b) Google-Earth imagery acquired August 18th
2010, (c) 2010 CDL data showing that the field is cotton (red) and the two primary surrounding land cover classes are grass/pasture (light lime) and shrubland (dark lime).

Fig. 12. Iowa extracted crop field size map for 2010. The mean field size in 3 km × 3 km
gridcells is shown (colors) with state boundaries in black. Gridcells with no fields
extracted (primarily urban areas and non-agricultural land uses) are shown in white.
Note that 1 km2 = 100 ha = 247.1 acres.
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5. CONUS results

Fig. 6 shows the extracted field sizes. Due to the spatial extent of the
CONUS, composed of more than 11,000,000,000 30 m pixels, the mean

field size in 7.5 km × 7.5 km gridcells is shown. To provide geographic
and agricultural context, two comparative maps were derived from
the 2010 CDL. Fig. 7 shows the percentage of each grid cell that was
classified by the 2010 USDA NASS CDL as an agricultural crop class,

Fig. 13. Example validation site results for an 8.3 × 8.3 km region surrounding the small city of Alta, Iowa (population less than 2000). (a) Extracted crop fields colored randomly to illus-
trate they are separate objects (black indicates not a crop field), (b) independent reference field data (i.e., digitized field boundary polygon vectors) colored as green = one-to-one field
match, red=extractedfield over-split, orange=extractedfield under-split, (c) Edge intensitymap, (d) Landsat 5 false color image (bands 5, 4, 3) sensed in July 13th 2010, (e) USDANASS
CDL 2010 image showing major classes of corn, soybeans, alfalfa, grass/pasture, and developed/open space, (f) Google-Earth true color image sensed September 15th 2010.
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and Fig. 8 shows the gridcell majority crop class with respect to the
CONUS major crops (corn, soybeans, alfalfa, winter wheat, spring
wheat, durum wheat, and cotton). The field size extraction results ap-
pear highly plausible. In general, larger field sizes tend to occur where
a greater proportion of the land is dedicated to agriculture (Fig. 7) and
there are discernible patterns between field size and the majority crop
type (Fig. 8).

Large field sizes (red tones, Fig. 6) occur in the Missouri and the
Souris-Red-Rainy/Upper Mississippi river basins where about 50% of
all U.S. cropland is located (U.S. Department of Agriculture, 2007) and
these regions are quite evident in the CDL crop percentage map
(Fig. 7). Large and intermediate field sizes (red and yellow tones,
Fig. 6) are evident along the western sides of the Great Plains states
from northern Texas to Montana, and also in the Columbia River basin
in the Pacific Northwest, and occur where wheat is predominant
(Fig. 8), sometimes termed the U.S. Wheat Belt (Hansen, Allen,
Baumhardt, & Lyon, 2012; Norris, 1903). Regions of predominantly
irrigated agriculture in eastern Colorado, western Kansas, western
Oklahoma and the Texas panhandle and central California (Brown
& Pervez, 2014) generally coincide with large field sizes. In particu-
lar, large field sizes are observed in the semi-arid Texas High Plains
and central California where agricultural production relies exten-
sively on irrigation. Large and intermediate field sizes occur around
the Wheat belt and also in U.S. Corn Belt (Auch & Laingen, 2014;
Chang, Hansen, Pittman, Carroll, & DiMiceli, 2007). Large fields in
the Corn Belt are particularly evident in central South Dakota, south-
ern Minnesota, and the northern parts of Iowa, Illinois, and Indiana.
The large field sizes observed in North Carolina correspond to fertile
historical wetland areas drained for agriculture (Poe, Piehler,
Thompson, & Paerl, 2003; Richardson, 1983).

Fig. 9 shows the field size histograms of all the CONUS extracted
fields. A total of 4,182,777 fields no less than 0.018 km2 (20 30mpixels)
were extracted with mean and median field sizes of 0.193 km2 and
0.278 km2, respectively. The size of each field was calculated by
counting the number of extracted field pixels and then multiplying by
the area of a 30 × 30 m pixel (0.0009 km2). The histograms show the
number of fields (Fig. 9a) and the field area percentage defined as the
sum of the fields areas in each histogram bin expressed as a percentage
of the total extracted CONUS field area (Fig. 9b). The histograms are
binned with an area equivalent to 16 Landsat pixels (0.014 km2) in
the same way as reported in (Yan & Roy, 2014). The four gray vertical
lines show the sizes of hypothetical fields with 0.25 × 0.25 mile,
0.25 × 0.5mile, 0.5 × 0.5mile, and 0.5 × 1mile side dimensions. The ex-
tracted CONUS fields frequently have areas similar to these dimensions.
This is not surprising as much of the CONUS was surveyed using a grid
survey system and land was allocated in equal subdivisions of a
1 × 1 mile grid (Meine, 2004; White, 1983). The four histogram peaks,
most evident in Fig. 9(b), were 0.154 km2, 0.311 km2, 0.625 km2 and
1.283 km2 and are only slightly smaller than the hypothetical mile sub-
division field areas (by 0.1%, 3.4%, 4.0% and 5.0% respectively) due to the
quantization imposed by the 30 m Landsat pixel resolution and due to
field extraction errors.

Of themore than 4.18million extractedfields, only 3209 (0.08%) had
areas greater than 1 × 1 mile (2.59 km2). There were eight extracted
fields with areas larger than 9 km2. Four of them were in Texas, and
the others were in Washington, Idaho, Colorado, and South Dakota.
Of these, the two largest fields were found to be under-split,
i.e., not separated into multiple fields, due to weak field boundaries
between fields of the same crop type, and an extracted field in Colo-
rado was found to not be a crop field but rather a grassland field due
to a CDL classification error that mislabeled grassland as alfalfa. After
discarding the three erroneous large fields, the largest remaining
extracted CONUS field was a cotton field in Texas with an area of
12.955 km2 (3200 acres) and a side length of approximately
4.25 km (Fig. 10). Examination of the available CDL data and
Google-Earth imagery revealed that the field boundaries had not

changed and that the field was planted continuously with cotton
from 2008 to 2014.

The CONUS is dominated by a few major crop types (Fig. 8, USDA
2012 Census). A total of 76.5% of the 4,182,777 extracted fields
contained more than 50% CDL pixels classified as one of five major
crop types, namely corn, soybean, alfalfa, wheat (winter, spring and
durum), or cotton. Fig. 11 shows the CONUS field size histogramand cu-
mulative field area percentage histogram derived independently for
each of thesemajor crops types. The frequent field size areas equivalent
to the different mile subdivision areas remain evident. For all the
CONUS, alfalfa fields are generally smaller than the other crop types,
and the soybeans and corn have similar distributions,which is expected
as these crops are often rotated between years (Plourde et al., 2013).
Wheat fields are generally larger than the other crop types for sizes
equivalent to between 0.5 × 0.5 mile (0.646 km2) and 0.5 × 1 mile
(1.295 km2); and the largest fields tend to be cotton (as Fig. 10).

6. Iowa results

Fig. 12 shows a 3 km resolution field size map for Iowa selected be-
cause it has the greatest statewise harvested cropland area (USDA 2012
Census), a range of extracted field sizes (Fig. 6), and lies in the U.S. agri-
cultural heart land (Fig. 7). Larger fields occur in north-west Iowa in a
region of predominantly corn and soybean production, and urban
areas and non-agricultural land uses are evident including Omaha on
the western state border, Des Moines near the center of the state, and
Waterloo, Ceder Rapids and Iowa City in the central eastern part of the
state, and the Mississippi river and the city of Dubuque on the eastern
state border. Examination of the 2010 CDL product indicates that the
southern and eastern parts of Iowa are less agricultural and are predom-
inantly covered by deciduous forest, grass, and pasture lands. The Iowa
field size histogram is quite similar to the CONUS histogram but with a
less pronounced field size peaks at sizes equivalent to 0.5 × 1 mile field
sizes (1.295 km2). A total of 308,917fieldswere extracted in Iowawith a
mean area of 0.330 km2 and with areas ranging from 0.018 km2 to
5.017 km2.

Fig. 13 shows detailed full resolution field extraction results for a val-
idation site in Iowawhose CONUS location is shown by the green dot in
Fig. 5. The site encompasses the 7.5 km × 7.5 km gridcell in Iowa that
had the median field size derived, as explained in Section 4.3, consider-
ing only state gridcells with more than 50% crop classified CDL pixels
and containing at least 50 extracted fields. The illustrated field sizes
and distributions are representative of the rest of Iowa, with variable
field sizes constrained by 1× 1mile road intersections and certain irreg-
ular non-rectangular field boundaries associated often with irrigation
features. The image is slightly larger than 5 × 5 miles (8.3 × 8.3 km)
and is bigger than a 7.5 km × 7.5 km gridcell in order to avoid overly
truncating fields along the image boundaries.

The results shown in Fig. 13 indicate generally good field extraction
accuracy. The regular grid of metalled roads, and Highway 7 that runs
from the North East to the South West, are apparent in the Landsat 5
(Fig. 13d) and Google-Earth (Fig. 13f) imagery and the extracted field
boundaries do not cross them (Fig. 13a). The small city of Alta and the
majority of the farm buildings (typically one to four farm houses and
outbuildings, located at field edges or corners, per 1 × 1 mile section)
are correctly detected with no extracted fields (Fig. 13a). The edge in-
tensity map is illustrated (Fig. 13c) because as one of the fundamental
intermediate results in the field extraction methodology (Fig. 1), it pro-
vides insights into how several of the field extraction errors occurred,
and in addition, it captures field boundary information over the year
of Landsat data that are not reflected in the single-date Landsat 5 and
Google-Earth images. The Landsat 5 and Google-Earth images were ac-
quired about two months apart, and the difference in the state of the
fields is apparent due to harvesting and phenology. As noted in Yan
and Roy (2014), the CDL product (Fig. 13e) does not capture field di-
mensions, which was not the purpose of the CDL product generation,
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and some CDL classification noise is apparent. The independent refer-
ence data (i.e., the digitizedfield boundary polygon vectors foundby ex-
amination of the Landsat 5, Google-Earth and the 2010 CDL data) are
shown (Fig. 13b) colored green to reflect correct correspondence, i.e.
one to one matching, with the extracted fields; colored red where the
extracted fieldswere too small, i.e., the extracted fieldswere incorrectly
over-split into more than one field; and colored orange where the ex-
tracted fields were too big, i.e., were incorrectly under-split.

The Iowa validation results illustrated in Fig. 13b indicate generally
good field extraction accuracy with 193 independent reference fields
and 179 extracted fields, of which 159 were correctly matched

providing an 82.4% matching percentage. There were a minority of
three incorrectly over-split extracted fields (red) and fourteen incor-
rectly under-split extracted fields (orange). In general, in this and for
the other validation sites, the over-split extracted fields occurred
where there were ephemeral within field linear boundaries associated
with flooding, seasonally inundated streams and ditches, and poorly
drained depressions, that either occurred across a portion of the field
or across all the field if it was small. The cause of the over-split field
on the southern border is due to the presence of a subtle field boundary,
seen with a weak edge intensity, that may or may not be real as is not
unambiguously evident in the Landsat 5 or Google-Earth image.

Table 1
Per-pixel accuracy metrics for the 48 validation sites (Fig. 5) referenced by the standard two letter U.S. state abbreviation where the number indicates if the site had the minimum (1),
median (2), or maximum (3) field size considering the 7.5 km × 7.5 km gridcells in each state. Thus, the Iowa validation site (Fig. 13) results, that has the median Iowa gridcell field size,
are reported as site IA2. The bottom table rows summarize the per-pixel accuracy results over all 48 sites.

Site Total number of independent
reference field 30 m pixels (a)

Total number of extracted
field 30 m pixels (b)

Percent field pixel
count difference
(b − a) / a × 100

Field producer's accuracy Field user's accuracy Percent correctly classified
as field or non-field pixels

IA 1 46,935 47,241 0.7% 94.5% 93.0% 91.6%
IA 2 65,804 63,781 −3.1% 96.3% 99.1% 95.8%
IA 3 97,031 91,968 −5.2% 93.6% 98.6% 93.1%
SD 1 52,440 50,934 −2.9% 92.4% 91.8% 89.5%
SD 2 59,533 57,643 −3.2% 94.6% 97.5% 93.6%
SD 3 86,103 84,084 −2.3% 96.4% 95.3% 93.3%
ND 1 38,853 38,780 −0.2% 92.6% 91.8% 91.7%
ND 2 55,988 53,820 −3.9% 94.7% 93.0% 92.8%
ND 3 84,375 82,630 −2.1% 97.1% 99.1% 96.4%
TX 1 47,418 44,002 −7.2% 89.2% 94.8% 89.2%
TX 2 59,622 58,397 −2.1% 94.0% 94.8% 92.5%
TX 3 111,223 108,921 −2.1% 97.5% 95.9% 95.6%
NE 1 37,887 36,400 −3.9% 88.4% 92.9% 87.6%
NE 2 57,946 58,688 1.3% 96.0% 94.1% 91.9%
NE 3 52,350 53,419 2.0% 96.3% 93.5% 96.0%
KS 1 23,320 22,401 −3.9% 88.8% 91.9% 90.2%
KS 2 37,936 35,988 −5.1% 89.9% 90.3% 89.2%
KS 3 60,862 58,356 −4.1% 94.2% 98.0% 94.8%
OK 1 33,484 30,536 −8.8% 85.5% 94.3% 88.9%
OK 2 38,866 37,049 −4.7% 92.4% 95.8% 93.8%
OK 3 52,443 51,119 −2.5% 96.3% 96.9% 94.7%
MO 1 27,568 25,998 −5.7% 90.6% 94.3% 94.2%
MO 2 39,327 38,800 −1.3% 94.7% 92.2% 92.3%
MO 3 62,292 59,966 −3.7% 94.8% 98.0% 94.1%
MN 1 32,405 32,259 −0.5% 94.0% 94.0% 94.5%
MN 2 69,843 70,626 1.1% 96.3% 93.9% 92.0%
MN 3 84,137 80,745 −4.0% 95.3% 99.3% 95.0%
IL 1 27,115 25,126 −7.3% 86.7% 92.2% 90.3%
IL 2 51,115 48,627 −4.9% 94.3% 98.9% 94.9%
IL 3 82,436 78,152 −5.2% 94.0% 97.8% 94.0%
IN 1 27,943 28,189 0.9% 89.4% 87.1% 87.5%
IN 2 48,953 48,009 −1.9% 93.5% 92.2% 92.0%
IN 3 56,675 55,542 −2.0% 94.9% 90.6% 88.4%
OH 1 27,427 26,565 −3.1% 93.4% 94.3% 91.5%
OH 2 32,452 31,575 −2.7% 90.9% 91.4% 91.9%
OH 3 78,039 76,660 −1.8% 95.9% 92.0% 91.6%
AK 1 27,373 25,950 −5.2% 92.8% 95.7% 90.9%
AK 2 40,917 39,376 −3.8% 94.0% 97.1% 93.3%
AK 3 66,228 66,083 −0.2% 96.0% 97.2% 95.2%
MT 1 24,923 24,887 −0.1% 91.9% 92.2% 90.6%
MT 2 53,199 49,982 −6.0% 90.0% 95.4% 94.1%
MT 3 69,054 63,681 −7.8% 89.4% 90.9% 92.1%
WI 1 22,611 21,351 −5.6% 86.5% 89.1% 89.4%
WI 2 28,321 27,179 −4.0% 92.8% 90.6% 88.4%
WI 3 39,694 37,720 −5.0% 93.4% 94.0% 91.1%
CA 1 28,564 27,836 −2.5% 92.1% 93.2% 91.2%
CA 2 51,315 47,040 −8.3% 90.5% 95.6% 92.0%
CA 3 90,702 88,080 −2.9% 94.7% 96.8% 94.9%

Summary statistics
Min. 22,611 21,351 −8.8% 85.5% 87.1% 87.5%
Max. 111,223 108,921 2.0% 97.5% 99.3% 96.4%
Mean. 51,897 50,253 −3.3% 93.0% 94.3% 92.3%
Std. 21,702 21,152 2.6% 2.9% 2.9% 2.4%
Sum. 2,491,047 2,412,161 – – – –
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However, the other two over-split extractedfields, near the eastern bor-
der, occur where there is no evidence that they should be split into two
fields when examining the Google-Earth image, although from inspec-
tion of the Landsat 5 image, the fields may be split where there is
some form of drainage feature that is weakly apparent in the edge in-
tensity image. Under-split extracted fields (orange) generally either
occur due to weak field boundaries, for example, because the same
crop type was planted in adjacent fields with narrow separations and/
or because the boundary had vegetation with similar phenology as the
crop, or where the fields contained smaller fields or other smaller fea-
tures. In the illustrated results, these two types of under-split errors
are quite apparentwith several smaller quite complex under-split fields
around the city of Alta and several large fields on the western and east-
ern borders that had the same CDL crop type and no clear internal edge

intensity boundary butwere evident as separatefields in both theGoogle-
Earth and Landsat 5 images. The empirical “tractor rule”was used to re-
solve cases where the boundaries between adjacent fields were ambigu-
ous to discern. However, these examples illustrate the difficulty in
unambiguously defining a field validation data set. Great efforts were
expended on making a reliable independent reference data set but with-
out the addition of high resolution satellite time series data, which were
not freely available within the same year for such a large validation site
sample, it would be hard to improve upon the validation data used.

7. Validation

Table 1 summarizes the conventional per-pixel accuracy statistics
for each of the 48 validation sites and over all the sites. These results

Table 2
Field object accuracy metrics for the 48 validation sites (Fig. 5).

Site Number of
independent
reference fields (a)

Number of
extracted
fields (b)

Number of
one-to-one
matched fields (c)

Correctly matched
percentage
(c / a) × 100

Number of
over-split
fields

Number of
under-split
fields

Mean independent
reference field size
(pixels)(d)

Mean extracted
field size
(pixels) (e)

Percentage mean field
size difference
(e − d / d) × 100

IA 1 158 156 127 80.4% 11 12 297.1 302.8 1.9%
IA 2 193 179 159 82.4% 3 14 341.0 356.3 4.5%
IA 3 135 140 120 88.9% 9 4 718.7 656.9 −8.6%
SD 1 190 189 139 73.2% 18 17 276.0 269.5 −2.4%
SD 2 171 157 132 77.2% 7 16 348.1 367.2 5.5%
SD 3 82 80 62 75.6% 6 6 1050.0 1051.1 0.1%
ND 1 111 117 85 76.6% 13 7 350.0 331.5 −5.3%
ND 2 108 105 89 82.4% 5 8 518.4 512.6 −1.1%
ND 3 118 113 96 81.4% 4 9 715.0 731.2 2.3%
TX 1 150 147 135 90.0% 5 4 316.1 299.3 −5.3%
TX 2 101 104 92 91.1% 6 0 590.3 561.5 −4.9%
TX 3 87 87 71 81.6% 6 6 1278.4 1252.0 −2.1%
NE 1 120 116 96 80.0% 8 6 315.7 313.8 −0.6%
NE 2 135 131 119 88.1% 3 6 429.2 448.0 4.4%
NE 3 70 72 61 87.1% 5 3 747.9 741.9 −0.8%
KS 1 117 116 100 85.5% 5 5 199.3 193.1 −3.1%
KS 2 105 110 95 90.5% 7 1 361.3 327.2 −9.4%
KS 3 74 69 60 81.1% 2 5 822.5 845.7 2.8%
OK 1 112 113 92 82.1% 8 3 299.0 270.2 −9.6%
OK 2 95 99 79 83.2% 7 4 409.1 374.2 −8.5%
OK 3 117 119 98 83.8% 10 7 448.2 429.6 −4.2%
MO 1 108 107 89 82.4% 7 5 255.3 243.0 −4.8%
MO 2 122 117 95 77.9% 7 12 322.4 331.6 2.9%
MO 3 134 134 96 71.6% 14 13 464.9 447.5 −3.7%
MN 1 99 99 76 76.8% 9 8 327.3 325.8 −0.5%
MN 2 137 138 119 86.9% 6 6 509.8 511.8 0.4%
MN 3 109 102 93 85.3% 1 7 771.9 791.6 2.6%
IL 1 122 114 105 86.1% 3 3 222.3 220.4 −0.8%
IL 2 122 119 107 87.7% 3 6 419.0 408.6 −2.5%
IL 3 114 112 91 79.8% 7 7 723.1 697.8 −3.5%
IN 1 107 116 81 75.7% 15 8 261.1 243.0 −6.9%
IN 2 146 139 114 78.1% 7 13 335.3 345.4 3.0%
IN 3 103 103 80 77.7% 9 7 550.2 539.2 −2.0%
OH 1 138 124 107 77.5% 3 11 198.7 214.2 7.8%
OH 2 109 112 86 78.9% 10 7 297.7 281.9 −5.3%
OH 3 128 128 101 78.9% 12 11 609.7 598.9 −1.8%
AK 1 133 124 100 75.2% 7 12 205.8 209.3 1.7%
AK 2 137 136 116 84.7% 7 8 298.7 289.5 −3.1%
AK 3 150 151 119 79.3% 11 10 441.5 437.6 −0.9%
MT 1 121 113 97 80.2% 6 8 206.0 220.2 6.9%
MT 2 99 102 81 81.8% 9 5 537.4 490.0 −8.8%
MT 3 76 77 58 76.3% 8 2 908.6 827.0 −9.0%
WI 1 117 110 91 77.8% 5 8 193.3 194.1 0.4%
WI 2 99 90 78 78.8% 2 9 286.1 302.0 5.6%
WI 3 78 75 65 83.3% 3 6 508.9 502.9 −1.2%
CA 1 215 205 175 81.4% 9 18 132.9 135.8 2.2%
CA 2 161 149 139 86.3% 1 8 318.7 315.7 −0.9%
CA 3 90 90 76 84.4% 4 4 1007.8 978.7 −2.9%

Summary statistics
Min. 70 69 58 71.6% 1 0 132.9 135.8 −9.6%
Max. 215 205 175 91.1% 18 18 1278.4 1252.0 7.8%
Mean. 121 119 99 81.5% 7 8 461.4 452.9 −1.5%
Std. 31 29 25 4.7% 4 4 253.1 247.2 4.4%
Sum. 5823 5705 4742 – 333 365 – – –
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indicate a high per-pixel crop field classification accuracy. The per-
cent correct values range from 87.5% to 96.4% with a mean of 92.3%
and a standard deviation of 2.4%, and the crop field producer's and
user's accuracies are all greater than 85.5% and 87.1% respectively.
These accuracies are high and comparable to reported 85% to 95%
major crop 2010 CONUS CDL classification accuracies (Johnson,
2013). This is expected as the CDL was used to make a binary crop
mask that was then used indirectly in the crop field extraction pro-
cess (Fig. 1).

Considering the relative number of 30 m pixels in the extracted and
in the independent reference fields provides insights into the areamap-
ping accuracy of thefield extraction. The percentage difference between
the number of 30 m pixels in the extracted crop fields and in the inde-
pendent reference fields vary over the 48 sites from −8.8% to 2.0%
with a mean of −3.3% and a standard deviation of 2.6%. Thus, on aver-
age across the 48 sites, the areas of the extracted fields were slightly
underestimated by about 3%. This is likely due to extraction errors in-
cluding, for example, the morphological decomposition and post-
processing steps (Fig. 1), the quantization imposed by the 30m Landsat
pixel resolution, and because of the rasterization of the independent ref-
erence data. The extracted field size area underestimation was also ev-
ident in Fig. 9b where the four CONUS field size histogram peaks were
smaller by 0.1%, 3.4%, 4.0% and 5.0% than the hypothetical mile subdivi-
sion field areas of 0.25 × 0.25 mile, 0.25 × 0.5 mile, 0.5 × 0.5 mile and
0.5 × 1 mile, respectively. Nevertheless, the results in Table 1 do not
quantify the extraction accuracy of individual fields, and they do not
capture field extraction over-splitting and under-splitting errors such
as those illustrated in Fig. 13.

Table 2 summarizes the object extraction accuracy measures for
each of the 48 validation sites and over all the sites. A total of 5823 inde-
pendent reference data fieldswere selected from the 48 validation sites,
with a mean of 121 fields and a range of 70 to 121 fields per site. Of the
5823 fields, a total of 4742 were correctly matched. Among the 48 vali-
dation sites, the correctly matched percentage varied from 71.6% to
91.1% with a mean of 81.5% and a standard deviation of 4.7%. These ob-
ject based accuracy results are quite high. The sites with the lowest cor-
rectlymatched percentage valueswere thosewith relativelymore over-
and under-split fields.

The mean size of the reference fields and the extracted fields are
quite similar among the 48 sites. The percentage mean field size differ-
ence varied from −9.5% to 7.8% with a mean of −1.5% and a standard
deviation of 4.4%. Considering only the correctly matched fields, the
sizes of the extracted and independent reference fieldswere highly cor-
related with an ordinary least squares linear relationship of the form:
mean extracted field size = 0.9711 × mean reference field size + 1.3880
(pixels) (R2=0.9730, n=4742). These results follow the same extract-
ed field underestimate pattern evident in the per-pixel accuracy results.

The absolute number of over- and under-split fields was generally
greater for sites with more independent reference fields. Among the
48 validation sites, seven sites (14.6%) had equal numbers of over-
and under-split fields, 21 (43.8%) had more over-split fields, and 20
(41.7%) had more under-split fields. For the sites with equal numbers
of over-split and under-split fields, the average percentage mean field
size difference was −1.7%, i.e., close to the −1.5% average for all the
sites. The average percentage mean field size difference for the sites
that had more over-split fields was −4.9%, and for the sites that had
more under-split fields was 2.2%. This is as expected because over-
split and under-split fields will result in smaller and larger fields (com-
pared with the independent reference fields), respectively.

Therewas no simple relationship between field size and the number
of over- or under-split fields, and the causes of the over- and under-split
fields were similar to those illustrated and explainedwith respect to the
Fig. 13 results. Considering all the validation data without respect to
which site they came from provided an overall accuracy assessment.
There were a total of 2,491,047 and 2,412,161 references and extracted
30 m field pixels, respectively, i.e., the extracted fields underestimated

the reference field pixel count by 3.2%. The overall per-pixel crop field
classification accuracy was 92.7% and the overall crop field producer's
and user's accuracies were 93.7% and 94.9%. Comparing all the reference
and extracted field objects, 81.4% were correctly matched and the ex-
tracted field sizes were on average underestimated by 1.2% relative to
the reference field objects.

8. Conclusion

This paper has presented the comprehensive results of an automat-
ed computational methodology to extract agricultural crop fields from
Landsat time series. For the first time, spatially explicit wall-to-wall
Conterminous United States (CONUS) crop field size information is pre-
sented. The CONUS field size extraction results were highly plausible
both geographically and with respect to the major U.S. harvested crop
types. In general, larger field sizes tended to occur where a greater pro-
portion of the landwas dedicated to agriculture and therewere discern-
ible patterns between field size andmajor crop type. A total of 4,182,777
fields no less than 0.0018 km2 were extracted with mean and median
field sizes of 0.193 km2 and 0.278 km2 respectively. The largest field
sizes predominantly occurred in the U.S. Wheat Belt and Corn Belt and
in regions of irrigated agriculture. The CONUS field size histogram was
skewed, which was observed in earlier field size studies considering
smaller regions of the U.S. and Canada (Ferguson et al., 1986), and 50%
of the extracted fields had sizes greater than or smaller than 0.361 km2.
The CONUSfield size histogramhad four distinct peaks that corresponded
closely to sizes equivalent to fields with 0.25 × 0.25 mile, 0.25 × 0.5 mile,
0.5 × 0.5mile, and 0.5 × 1mile side dimensions. These dimensions reflect
the historical land allocation of much of the United States. In this study,
because only one year of Landsat data were used, “pie slice” circular sec-
tors evident within circular pivot irrigation fields were extracted more
often than full circular fields. Consequently, the dimensions of circular
fields were not particularly apparent in the CONUS field size histogram.

The CONUS 2010 field extraction results were validated by compar-
ison with Landsat 5 TM and Google-Earth images. Considering all the
validation data at 48 sites, distributed across a gradient of field sizes in
each of the top 16 harvested crop land area U.S. states, high field extrac-
tion accuracieswere obtained. The overall per-pixel crop field classifica-
tion accuracy was 92.7% and the overall crop field producer's and user's
accuracies were 93.7% and 94.9%. Comparing all the reference and ex-
tracted field objects, 81.4% were correctly matched and the extracted
field sizeswere on average underestimated by 1.2% relative to the refer-
ence field objects.

Future work to consider the field size extraction results with respect
to crop type is suggested. In this study, a CONUS examination found that
76.5% of the 4,182,777 extracted fields contained more than 50% CDL
pixels classified as one of five major crop types, namely corn, soybean,
alfalfa, wheat (winter, spring and durum), or cotton. Of these, alfalfa
fields were generally smaller than the other crop types, and soybeans
and corn fields had similar distributions which is expected as these
crops are often rotated between years (Plourde et al., 2013). Wheat
fields were generally larger than the other crop types for sizes equiva-
lent to between 0.5 × 0.5mile and 0.5 × 1mile field sizes and the largest
fields tended to be cotton.

Future work to characterize the field extraction results with respect
to finer geographic units is recommended. For example, the field size
histogram for certain states such as Iowa were found to have less pro-
nounced field size peaks at sizes equivalent to 0.5 × 1 mile field sizes
(1.295 km2) compared to the CONUS histogram. Different states may
have different field size histograms reflecting quite different field size
patterns due to a variety of factors, such as different historical land
uses, soil fertility drainage, slope, and other geographic characteristics.
Similarly, future work to compare the CONUS field size distribution
with publically available farm size information is merited to see if
there is a general relationship. This is because, among other reasons,
large arable farms have been linked to mechanized farming practices
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that may allow for more efficient use of resources and large field sizes
but may lower crop diversity with detrimental environmental implica-
tions (Horrigan, Lawrence, & Walker, 2002; White & Roy, 2015).

The field extraction algorithm was refined based on the lessons
learned from an earlier version of the algorithm (Yan & Roy, 2014).
The major changes were to incorporate the CDL to reduce commission
errors, especially to help differentiate between crops and grasslands.
Also the algorithm was applied to one year of Landsat 5 TM and 7
ETM+data to reduce ambiguity due to crop rotations that can occur be-
tween years and to reduce the likelihood of physical field boundary
changes that will increase when more years of data are used. Other re-
finements were made to make the algorithm more robust for CONUS-
wide application; in particular, rather than use a simple edge intensity
image derived from the year of Landsat data, edge saliency and linearity
maps were derived following computer vision research to capture the
degree to which intensity edges stand out locally relative to their
neighbors and how linear the candidate edges were. The algorithm de-
velopment was facilitated by the use of the geometrically corrected,
preprocessed, and temporally composited Web Enabled Landsat Data
(WELD). As noted in Yan and Roy (2014), the field extraction method-
ology is computationally intensive compared to supervised classifica-
tion approaches that have been applied to CONUS WELD data (Egorov
et al., 2015; Hansen et al., 2014), but it is sufficiently efficient and struc-
tured to be scalable to continental application. Future work to apply the
algorithm to previous decades of Landsat data would help establish if
field sizes have changed as has been reported at sample global locations
(White & Roy, 2015). In addition, new moderate resolution satellite
data, such as those provided by the Multi Spectral Instrument (MSI)
on the planned Sentinel-2 satellite, which has Landsat-like bands but
at 10 m & 20 m resolution (Drusch et al., 2012), and data provided by
the Landsat 8 Operational Land Imager (OLI) that have better quantiza-
tion and signal/noise characteristics than previous Landsat sensors (Roy
et al., 2014), may provide improved field extraction capabilities espe-
cially in regions with smaller fields.
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