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Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance
anisotropy and the suitability of a general method to normalize MSI
reflectance to nadir BRDF adjusted reflectance
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The Sentinel-2A multi-spectral instrument (MSI) acquires multi-spectral reflective wavelength observations
with directional effects due to surface reflectance anisotropy and changes in the solar and viewing geometry. Di-
rectional effects were examined by considering two ten day periods of Sentinel-2A data acquired close to the
solar principal and orthogonal planes over approximately 20° × 10° of southern Africa. More than 6.6 million
(January 2016) and 10.6million (April 2016) pairs of reflectance observations sensed 3 or 7 days apart in the for-
ward and backscatter directions in overlapping Sentinel-2A orbit swaths were considered. The Sentinel-2A data
were projected into the MODIS sinusoidal projection but first had to be registered due to a misregistration issue
evident in the overlapping orbits. The top of atmosphere reflectance data were corrected to surface reflectance
using the SEN2COR atmospheric correction software. Only pairs of forward and backward reflectance values
that were cloud and snow-free, unsaturated, and had no significant change in their 3 or 7 day separation, were
considered. Themaximumobserved Sentinel-2A view zenith angle was 11.93°. Greater BRDF effectswere appar-
ent in the January data (acquired close to the solar principal plane) than the April data (acquired close to the or-
thogonal plane) and at higher view zenith angle. For the January data the average difference between the surface
reflectance in the forward and backward scatter directions at the Sentinel-2A scan edges increased with wave-
length from 0.035 (blue), 0.047 (green), 0.057 (red), 0.078 (NIR), to about 0.1 (SWIR). These differences may
constitute a significant source of noise for certain applications.
The suitability of a recently published methodology developed to generate Landsat nadir BRDF-adjusted reflec-
tance (NBAR) was examined for Sentinel-2A application. The methodology uses fixed MODIS BRDF spectral pa-
rameters and is attractive because it has little sensitivity to the land cover type, condition, or surface disturbance
and can be derived in a computationally efficientmanner globally. It was applied to the southern Africa Sentinel-
2A data and shown to reduce Sentinel-2A BRDF effects. The average difference between the reflectance in the for-
ward and backward scatter directions at the Sentinel-2A scan edgeswas smaller in theNBAR data than in the cor-
responding surface reflectance data. Residual BRDF effects in the Sentinel-2A NBAR data occurred likely because
of atmospheric correction and sensor calibration errors and inadequacies in theNBAR derivation approach. These
issues are discussedwith recommendations for future research including global and red-edge Sentinel-2A NBAR
derivation that were not considered in this study.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The potential for near daily medium spatial resolution optical wave-
length remote sensing has been advanced by the availability of Europe-
an Space Agency (ESA) Sentinel-2A data with continuity provided by
the Sentinel-2B satellite (Drusch et al., 2012), and NASA USGS
Landsat-8 data with continuity provided by a planned Landsat-9

satellite (Loveland and Irons, 2016). The combined utility of the Senti-
nel-2 multi spectral instrument (MSI) (Drusch et al., 2012) and
Landsat-8 and -9 Operational Land Imager (OLI) (Irons et al., 2012)
data for science and applications is well recognized (Roy et al., 2014).
Both remote sensing systems are in sun-synchronous low earth polar
orbits and acquire images at view angles ± 10.3° (Sentinel-2) and ±
7.5° (Landsat) from nadir that result in directional reflectance effects
over non-Lambertian surfaces. These effects, described by the bidirec-
tional reflectance distribution function (BRDF) (units of sr−1), should
be minimized to enable reliable sensor data comparison, mapping of
surface features, detection of surface change through space and/or
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time, and to provide consistent data. BRDF effects are relatively small
over the Landsat 15° sensor field of view (Roy et al., 2008, 2016a;
Flood et al., 2013; Gao et al., 2014) but are expected to be greater for
Sentinel-2 data due to the wider 20.6° sensor field of view.

This paper examines themagnitude of Sentinel-2Aview zenith BRDF
effects observed for a large amount of data acquired over two ten day
periods across southern Africa acquired in the solar principal and
orthogonal planes. Recently, an empirical c-factor approach was
published that provides consistent Landsat view angle corrections to
provide nadir BRDF-adjusted reflectance (NBAR) (Roy et al., 2016a).
Because the BRDF shapes of different terrestrial surfaces are sufficiently
similar over the narrow 15° Landsat field of view, a fixed global set of
MODIS BRDF spectral model parameters was found to be adequate
for Landsat NBAR derivation with little sensitivity to the land cover
type, condition, or surface disturbance (Roy et al., 2016a). The applica-
tion of this general methodology to Sentinel-2A data is evaluated.
Specifically, the reflectance differences between adjacent overlapping
Sentinel-2A swaths in the forward and backward scatter directions
are quantified for both before (surface reflectance) and after BRDF
correction (NBAR).

The satellite data and pre-processing are first described. The pre-
processing was challenging due to a Sentinel-2A misregistration issue
that was present in the first year of data and also due to the need to
reproject different overlapping orbits of data into the same coordinate
system. Both top of atmosphere (TOA) and atmospherically corrected,
i.e., surface reflectance data were considered. The evaluation methods,
that are similar to those described in Roy et al. (2016a), are then de-
scribed. This is followed by the results that include a quantification of
the magnitude of Sentinel-2A view zenith BRDF effects, the efficacy of
the NBAR derivation, and a qualitative demonstration of BRDF effects
in Sentinel-2A surface reflectance and the correction to surface NBAR.
The paper concludes with a discussion and recommendations for future
research.

2. Data

2.1. Sentinel-2A data

Sentinel-2A geolocated top of atmosphere (TOA) reflectance (L1C)
products were acquired from the Copernicus Open Access Hub that in-
cludes an interactive graphical user interface for searching and
quicklook visualization (https://scihub.copernicus.eu/). The Sentinel-
2A MSI has 13 reflective wavelength (433 nm to 2190 nm) spectral
bands; four 10 m visible and near-infrared bands, six 20 m red edge,
near-infrared and short wave infrared bands, and three 60 m bands
(Drusch et al., 2012). In this study the 10 m blue (490 nm), green
(560 nm), red (665 nm), near-infrared (NIR) (842 nm) and the 20 m
short wave infrared (SWIR) bands (1610 and 2190 nm) were used.

These bands were selected because they have spectrally similar
MODIS bands and so spectral BRDF model parameters (Table 1) needed
for the BRDF normalizationmethod. The three 60mMSI bandswere not
used because they are not designed for land surfacemonitoring (Drusch
et al., 2012). The red edge bands were not considered and the issues for
red edge band BRDF normalization are discussed in the conclusion.

The Sentinel-2A MSI has a 20.6° field of view and senses a 290 km
swath from a sun-synchronous 786 km polar orbit to provide global
coverage every 10 days (Drusch et al., 2012). To ensure that a range of
surface BRDFs were examined, Sentinel-2A data acquired over a large
area, approximately 20° × 10°, over southern Africa covering most of
Namibia and Botswana, the northern half of South Africa, the southern
half of Zimbabwe, and south western Mozambique, were used (Fig. 1).
BRDF effects are dependent on the physical arrangement and optical
properties of the surface components and may change with the land
cover type and condition (Roberts, 2001). Analysis of the Collection 5
MODIS land cover product, which classifies each 500 m pixel into one
of 17 International Geosphere-Biosphere Program (IGBP) classes
(Friedl et al., 2010) indicates that the study area is predominantly com-
posed of open shrublands (44.7%), savannas (24.2%), grasslands
(11.9%), and barren or sparsely vegetated (8.6%) land covers but also
contains all of the other IGBP land cover classes except for the evergreen
needleleaf and the snow and ice classes. The generality of the paper
findings with respect to land cover and condition are discussed further
at the end of this paper.

The Sentinel-2A data from adjacent laterally overlapping orbit
swaths are sensed in the forward and backward scatter directions and
this pattern alternates with longitude, i.e., the forward and backward
scattering orientation alternates between the red and blue orbits illus-
trated in Fig. 1. It is established, both theoretically and by direct mea-
surement, that BRDF effects over a uniform surface are greatest in the
solar principal and least in the orthogonal plane (Kimes, 1983; Hapke
et al., 1996; Hautecœur and Leroy, 1998; Sandmeier et al., 1998;
Chopping, 2000). Consequently, Sentinel-2A data acquired in two 10-
day periods in January and April 2016 were used as they were acquired
with quite different solar geometry close to the solar principal and or-
thogonal planes respectively (Fig. 2). In both months the Sentinel-2A
data were acquired with mean view azimuths of 101.43° (backscatter)
and 285.08° (forward scatter). For the January data the mean solar azi-
muth and zenith was 93.31° and 25.33°. For the April data the mean
solar azimuth and zenith was 40.55° and 42.41°. These months were
also selected because they occur in the southern hemisphere summer
and autumn when the vegetation is green and starting to dry respec-
tively but not when there is extensive biomass burning that produces
smoke aerosols that are hard to reliably atmospherically correct
(Swap et al., 2002; Archibald et al., 2010).

For each selected 10-day period eight orbit overpasses were used
(Fig. 1). The UTC sensor acquisition time for these orbits varied from

Table 1
Sentinel-2A and spectrally equivalent MODIS land bands (band central wavelengths in parentheses with bandwidths underneath) and the corresponding MODIS spectral BRDF model
parameters fiso(λ), fvol(λ) and fgeo(λ) (reproduced from Table 5 of Roy et al., 2016a).

Sentinel-2A band (Drusch et al., 2012) MODIS band (Barnes et al., 1998) fiso fgeo fvol

2 (blue, 490 nm)
65 nm

3 (blue, 469 nm)
20 nm

0.0774 0.0079 0.0372

3 (green, 560 nm)
35 nm

4 (green, 555 nm)
20 nm

0.1306 0.0178 0.0580

4 (red, 665 nm)
30 nm

1 (red, 645 nm)
50 nm

0.1690 0.0227 0.0574

8 (NIR, 842 nm)
115 nm

2 (NIR, 858 nm)
35 nm

0.3093 0.0330 0.1535

11 (SWIR, 1610 nm)
90 nm

6 (SWIR, 1641 nm)
24 nm

0.3430 0.0453 0.1154

12 (SWIR, 2190 nm)
180 nm

7 (SWIR, 2130 nm)
50 nm

0.2658 0.0387 0.0639
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07.42 to 09.03 (January) and from 07.25 to 08.50 (April). Over the study
area the Sentinel-2A orbit swath edges overlap every 3 or 7 days. The
solar zenith changed in the 3 or 7 day separation by no more than 4.23°
(January) and 9.67° (April) at the Sentinel-2A overpass time.

2.2. Global MODIS spectral BRDF model parameters

In this study the approach used to provide Landsat nadir BRDF-ad-
justed reflectance (NBAR) (Roy et al., 2008, 2016a) was applied to the
Sentinel-2A data. The NBAR is derived as the product of the observed
satellite reflectance and the ratio of the reflectances modeled using
Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF spec-
tral model parameters for the observed and for a nadir view and speci-
fied solar zenith geometry (Section 4.2). A fixed set of BRDF spectral
model parameters, derived by averaging a global year of all the highest
quality snow-free MODIS 500 m BRDF product values (N15,000 million
values), was provided so users may implement the described Landsat
NBAR generation method (Roy et al., 2016a). The same global parame-
ters are summarized in Table 1 with the corresponding Sentinel-2A
and MODIS bands shown for reference.

3. Data pre-processing

3.1. Atmospheric correction

The Sentinel-2A L1C data are provided as top of atmosphere (TOA)
reflectance. In this study, both TOA and surface reflectance data were
considered to examine differences in the observed BRDF. The Sentinel-
2A data were atmospherically corrected to surface reflectance using
the SEN2COR radiative transfer atmospheric correction code (Version
2.3.0, November 25th, 2016 release) run using the default parameter
settings applied independently to each L1C tile (Müller-Wilm, 2016).
The SEN2COR code also produces a 20 m scene and cloud classification
that was used to screen bad quality pixels. All Sentinel-2A pixels la-
belled as cloudy (either low, medium or high probability or thin cirrus),
saturated, or snow, were discarded. A quantitative validation of the
SEN2COR products has not been published.

3.2. Per-pixel solar and view geometry calculation

The Sentinel-2A L1C data are provided in the Universal Transverse
Mercator (UTM) map projection (ESA, 2015) in 109 × 109 km tiles

Fig. 1.Geographic locations of the Sentinel-2A data for January 1–10, 2016 (left) and April 10–19, 2016 (right) over southernAfrica. The blue and red colors show the different orbit swaths
(approximately 290 kmacross track)with the day of year of eachorbit shown by a three digit number. Laterally overlapping orbit swaths are always acquired in the forward and backward
scatter directions and were considered in the analysis. Some orbit data were discarded (they are not illustrated) by the data registration pre-processing (Section 3.4) due primarily to
persistent cloud cover.

Fig. 2. Polar plots illustrating the solar (orange) and view (green) geometry of the Sentinel-2A data for January 1–10, 2016 (left) and April 10–19, 2016 (right). The radial straight lines
show azimuth spaced every 30° and the circles show zenith spaced every 15°.

27D.P. Roy et al. / Remote Sensing of Environment 199 (2017) 25–38



(Roy et al., 2016b). The solar geometry and view geometry are stored in
XML metadata as 23 × 23 grids with a 5 km grid spacing. There is one
solar zenith and solar azimuth grid per tile. However, due to the push-
broom sensor design, a view zenith and view azimuth grid is defined
for each of the 12 MSI detectors and for each spectral band. In this
study the solar and view angleswere derived for any Sentinel-2 pixel lo-
cation by bilinear interpolation from the 5 km grid values.

3.3. Reprojection

Adjacent L1C tiles from the same MSI swath overlap spatially and
may be defined in different UTM zones, i.e., in separate map projections
(Roy et al., 2016b). In order to be able to compare the different overlap-
ping swaths of Sentinel-2A data each orbit was reprojected indepen-
dently into the MODIS land product equal area sinusoidal map
projection (Wolfe et al., 1998). The global Web Enabled Landsat
(WELD) product tiling system that nests 7 × 7 global WELD tiles within
each MODIS 10° × 10° tile was used (Roy et al., 2016b). To handle the
different Sentinel-2A band resolutions the data were resampled to
30 m resolution. Specifically, each 30 m pixel location (sinusoidal coor-
dinates) across a globalWELD tile was projected into the Sentinel-2 L1C
tiles (UTM coordinates) taking care to use the correct L1C tile UTM zone
(Roy et al., 2016b). Then the Sentinel-2A TOA reflectance, surface reflec-
tance, solar and viewing geometry angles, and the cloud, saturation, and
snow state information were resampled by nearest neighbor resam-
pling. This was undertaken independently for each orbit of data. Each
global WELD tile was composed of 5295 × 5295 30 m pixels.

3.4. Registration

The Sentinel-2A geolocation performance specification is 12.5 m
(3σ) (Languille et al., 2015). Our examination of Sentinel-2A L1C data
acquired every 10 days over the same location indicated that the data
were aligned within this performance specification. This was also
found in other studies (Huang et al., 2016). However, when the data
in the overlapping Sentinel-2 swath edges were compared, i.e., data ac-
quired 3 or 7 days apart, all the overlapping orbit swath datawere found
to be mis-registered by typically more than 30 m and up to 100 m. It
transpired that this was due to a Sentinel-2A satellite yaw orientation
knowledge error that was not rectified in the Sentinel-2A L1C data pro-
cessing until Summer 2016 (personal communication, December 5th,
2016, Ferran Gascon, ESA). Therefore the Sentinel-2A data were regis-
tered using the following steps.

The Global WELD tile projected NIR data for one set of orbit tiles
(orbit locations shown as blue in Fig. 1) were considered as the refer-
ence data and the adjacent overlapping orbit tiles (shown as red in
Fig. 1) were considered as the target data. The target data were regis-
tered to the reference data using an automated feature and area-based
least squares matching approach that provides sub-pixel precision
matching when applied to Sentinel-2A and Landsat-8 data (Yan et al.,
2016). A second order polynomial transformation was used:

xref ¼ a0 þ a1xtarget þ a2ytarget þ a3 � xtarget � xtarget þ a4 � xtarget � ytarget þ a5 � ytarget � ytarget
yref ¼ b0 þ b1xtarget þ b2ytarget þ b3 � xtarget � xtarget þ b4 � xtarget � ytarget þ b5 � ytarget � ytarget

ð1Þ

where (xref ,yref) are the column and row global WELD tile reference
pixel coordinates, (xtarget ,ytarget) are the corresponding target global
WELD tile pixel coordinates, and ai and bi are the polynomial transfor-
mation coefficients. If the root-mean-square error used to fit Eq. (1)
(see Yan et al., 2016) was N15 m then the data were not registered
and the tile pair was discarded; this occurred due to cloud obscuration.
Otherwise, the Sentinel-2A data were reprojected (Section 3.3) includ-
ing the tile pixel coordinate transformation adjustment provided by
Eq. (1). In this way the data used in this study were well registered
but were not resampled twice.

3.5. Data extraction

The Sentinel-2A sensor overlap region between adjacent orbits is ac-
quired in the forward scattering direction from one orbit and the back-
ward scattering direction from the other orbit. In this study, every pair
of sensor reflectance values defined in the overlap at the same sinusoi-
dal 30mpixel locationwas extracted. Only values thatwere not labelled
as cloudy (either low, medium or high probability or thin cirrus), satu-
rated, or snow (Section 3.1) were used. The 3 or 7 day separation be-
tween observations of the same pixel location is sufficiently long that
changes in the surface condition may have occurred and the atmo-
sphere is quite likely to have changed. To remove the effects of these
changes, and also any residual cloud or shadow contamination occur-
ring in either observation, the following filtering was applied to reject
pairs if:

j NDVIforward−NDVIbackward j
j NDVIforward þ NDVIbackward j

2

N0:15 OR
ρforward
blue −ρbackward

blue

���
���

ρforward
blue þ ρbackward

blue

���
���

2

N0:5

ð2Þ

where the superscripts denote the pair of observations of the 30mglob-
alWELD tile pixel sensed in the forward and backward scattering direc-
tions, the NDVI is the Normalized Difference Vegetation Index defined
as the difference between theNIR (band 8) and red (band 4) TOA reflec-
tance divided by their sum, and ρblue is the TOA blue (band 2) reflec-
tance. This filtering is the same as that used to compare overlapping
Landsat orbits sensed over the United States (Roy et al., 2016a). It
removes a large proportion of the data, but given the large amount of
data considered this is preferable to retaining Sentinel-2A overlapping
pairs that contain surface or atmospheric changes.

4. Analysis methodology

4.1. Quantification of Sentinel-2A directional reflectance effects

The reflectance difference between each pair of Sentinel-2A values
observed in the swath image overlap zone (i.e., where the red and
blue swaths in Fig. 1 overlap) were first examined to provide insights
into the magnitude of Sentinel-2A view zenith BRDF effects. Following
the same approach as Roy et al. (2016a) the mean absolute reflectance
difference, and also the relative absolute percentage reflectance differ-
ence, were derived for every pair of overlapping observations across
southern Africa as:

Δρλ ¼
Pn

i¼1 j ρforward;λ
i −ρbackward;λ

i j
n

ð3Þ

Δρλ
� ¼

Pn

i¼1
2jρforward;λ

i −ρbackward;λ
i j

.
jρforward;λ

i þρbackward;λ
i j

n

0
BB@

1
CCA� 100 ð4Þ

where Δρλ and Δρλ
�
are the mean absolute and the relative absolute

percentage reflectance differences respectively, ρiforward ,λ and ρibackward,λ

is a pair of forward and backward reflectance values and there are n
pairs for Sentinel-2A wavelength λ. As each pair is sensed with similar
solar geometry but different viewing geometry, specifically the reflec-
tance is sensed in the forward scattering direction from one swath
edge and the backward scattering direction from the other swath
edge, these measures provide an indication of view zenith Sentinel-2A
BRDF effects. This analysis was undertaken for the TOA and surface re-
flectance data separately.
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4.2. Sentinel-2A NBAR derivation

The reflectances for each pair of Sentinel-2A values observed in the
forward and backward scattering directions in the swath overlap zone
were normalized to nadir BRDF-adjusted reflectance (NBAR) equiva-
lents. The NBAR was derived as the product of the observed reflectance
and an adjustment c-factor defined by the ratio of reflectances modeled
using MODIS BRDF spectral model parameters for the observed and a
fixed nadir view geometry (Roy et al., 2008, 2016a) as:

NBARλ θν ¼ 0; θs ¼ kð Þ ¼ cλ � ρλ θν ¼ θSentinelv ; θs ¼ θSentinels

� �

cλ ¼ ρ̂MODIS
λ θν ¼ 0; θs ¼ kð Þ

ρ̂MODIS
λ θν ¼ θSentinelv ; θs ¼ θSentinels

� � ð5Þ

where ρλ is the Sentinel-2A reflectance (for either the forward or back-
ward scattering direction) sensed with view zenith (θvSentinel) and solar
zenith (θsSentinel) forwavelengthλ, andNBARλ is the nadir BRDF-adjusted
reflectance equivalent estimated for a solar zenith angle (θs=k set as
the average solar zenith of the pair of forward and backward scattering

observations) for a nadir view zenith (θν=0). The ρ̂MODIS
λ values in Eq.

(5)were estimated using the standardMODIS Ross-Thick/Li-Sparse-Re-
ciprocal model (Roujean et al., 1992; Schaaf et al., 2002) as:

ρ̂MODIS
λ Ω;Ω0� � ¼ f iso λð Þ þ f vol λð ÞKvolðΩ;Ω0Þ þ f geo λð ÞKgeoðΩ;Ω0

�
ð6Þ

where ρ̂MODIS
λ ðΩ;Ω0Þ is the MODIS spectral reflectance for wavelength

λMODIS, for viewing vector Ω (view zenith and azimuth angles) and
solar illumination vector Ω′ (solar zenith and azimuth angles), Kvol(Ω, -
Ω′) and Kgeo(Ω,Ω′) are volumetric scattering and geometric-optical
model kernels respectively, and fiso(λMODIS), fvol(λMODIS), fgeo(λMODIS)
are the fixed BRDF spectral model parameters derived from the global
year of highest quality snow-free MODIS BRDF product values defined
in Table 1. The kernels depend only on the sun-view geometry (Ω,Ω′)
(Roujean et al., 1992; Schaaf et al., 2002).

4.3. Sentinel NBAR evaluation

As noted in Roy et al. (2016a) if the BRDF normalization is reliable
then the NBAR values of each pair of Sentinel-2A observations in the
swath overlap zone should be similar. To examine this, the mean and
relative absolute percentage NBAR differences were derived in the
same way as Eqs. (3) and (4) as:

ΔNBARλ ¼
Pn

i¼1 j NBARforward;λ
i −NBARbackward;λ

i j
n

ð7Þ

ΔNBARλ
� ¼

Pn

i¼1
2jNBARforward;λ

i −NBARbackward;λ
i j

.
jNBARforward;λ

i þNBARbackward;λ
i j

n

0
BB@

1
CCA

� 100 ð8Þ

where ΔNBARλ is the mean absolute NBAR difference derived for spec-
tral band λ from n pairs of forward and back scatter NBAR values de-

rived as Eq. (5), and ΔNBARλ
�
is the mean absolute relative percentage

NBAR difference.
Following the analysis methodology described in Roy et al. (2016a)

spectral scatter plots and ordinary least squares (OLS) regression fits
of the differences between the observed reflectance pairs and also the
NBAR pairs as a function of the view zenith angle were generated inde-
pendently for each Sentinel-2A band considered (Table 1). The slopes of
the OLS regressions were derived to quantify the average spectral BRDF
effect across the Sentinel-2Afield of view. The significance of theOLS re-
gressions and their goodness of fit were defined by the regression

overall F-statistic p-value and the coefficient of determination (r2) re-
spectively. The average difference between Sentinel-2A reflectance in
the forward and backward scatter directions at the scan edges, termed
here for convenience as the B–F difference, was derived as the product
of the OLS slope term and the maximum observed view zenith range.

5. Results

5.1. Quantification of Sentinel-2A bi-directional reflectance effects

Fig. 3 shows scatterplots of Sentinel-2A TOA red reflectance differ-
ence (left column) and TOA NIR reflectance difference (right column)
as a function of view zenith for the January data. The plots were gener-
ated using all the data extracted from each overlapping swath over
southern Africa that were not labelled as cloudy (either low, medium
or high probability or thin cirrus), saturated, or snow. The TOA reflec-
tancedifferences for each pair of forward and backward scatter observa-
tions were derived as the blue minus the red orbit data (Fig. 1 left) and
plotted as function of the blue orbit view zenith angles. Fig. 4 shows the
same scatterplots as Fig. 3 but generated after application of the Eq. (2)
filtering to remove the effect of land and/or surface changes in the 3 or
7 day separation between each pair of pixel observations. The Eq. (2) fil-
tering removed 32% of the January data, from 9,779,119 (Fig. 3) to
6,600,685 (Fig. 4) pairs of forward and back scatter reflectance values,
and reduced the scatter in the plotted data (the r2 values increased
from approximately 0.5 to 0.7). Similarly, the Eq. (2) filtering removed
24% of the April data, from 14,062,474 to 10,656,197 pairs of forward
and back scatter reflectance values, and reduced the scatter in the plot-
ted data. For both months, the Eq. (2) filtering only marginally changed
the OLS regression lines, with differences in the OLS slope terms occur-
ring in the fourth decimal place only. Consequently, the filtering does
not overly influence the results reported in this paper. The rest of the re-
sults are for the data subject to all thefilteringdescribed in Section 3, i.e.,
after removing Sentinel-2A data labelled as cloudy (either low, medium
or high probability or thin cirrus), saturated, or snow, and after applica-
tion of Eq. (2).

In Figs. 3 and 4 (and subsequent figures) there are no plotted
data with absolute values of view zenith b 7.61°. This is due to the
Sentinel-2A orbit and sensing geometry over the study area that cause
only the swath edges to overlap (Fig. 1). The maximum view zenith
for both the January and April data was 11.93° and the maximum
observed view zenith range was 23.86° (which is greater than the
20.6° field of view due to earth curvature). There is an evident Senti-
nel-2A view zenith BRDF effect across the field of view with a pro-
nounced OLS regression line slope in both the red and NIR bands that
is quantified below.

Fig. 5 shows the same results as Fig. 4 but for the surface reflec-
tance. The impact of the atmospheric correction is to increase the
figure y-axes data range, i.e., increase the reflectance differences
between the forward and backward scatter observations. This is
expected. Atmospheric correction has been observed to increase
the scatter in reflectance relative to TOA reflectance in large area
Landsat atmospheric correction studies (Ju et al., 2012; Roy et al.,
2014; Claverie et al., 2015) and occurs primarily because Rayleigh
and aerosol backscatter increase the TOA reflectance over dark
surfaces and aerosol absorption decreases the TOA reflectance over
bright surfaces (Kaufman and Sendra, 1988; Tanre et al., 1981). The
slope of the OLS regression lines is slightly greater in the atmospher-
ically corrected data, i.e., after atmospheric correction the surface
BRDF is slightly more pronounced. This is known and is because
atmospheric constituents usually smooth the angular dependence
of non-Lambertian surface reflectance (Lee and Kaufman, 1986;
Rahman, 1996; Hu et al., 1999; Franch et al., 2013).

Fig. 6 shows the same type of plots as Fig. 5 but for the April data and
for a total of 10,656,197 pairs of forward and back scatter reflectance
difference values. Comparing the January (Fig. 5) and April (Fig. 6)
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scatterplots clearly indicate that the BRDF effects are greater in January
than April. This may reflect surface differences between the two
months, for example, associated with changes in the vegetation cover
and condition from Summer to Autumn that have different BRDF, but
more likely reflect the different sun-surface-sensor orientation between
the two months of Sentinel-2A data. The January data were sensed
close to the solar principal plane (Fig. 2. left) and the April data

were sensed close to the orthogonal plane (Fig. 2. right) where BRDF
effects are more and less pronounced, respectively. The range of reflec-
tance differences (y-axis values) are more dissimilar either side of nadir
in January (Fig. 4) than in April (Fig. 5). This is likely because the differ-
ent land covers and conditions across the study area exhibit a greater
range of surface reflectance anisotropy closer to the solar principle
plane.

Fig. 3. Scatterplots of Sentinel-2A top of atmosphere (TOA) red (left) and NIR (right) reflectance differences in the southern Africa January swath image overlap zones plotted against view
zenith. Differences for a total of 9,779,119 pairs of forward and back scatter TOA reflectance values (blue orbit minus red orbit reflectance) plotted against blue orbit view zenith angles
(positive/negative view zenith angles correspond to forward/backward scattering in the blue orbit, see Fig. 1). These data were not filteredwith Eq. (2) to remove the effect of land and/or
surface changes in the 3 or 7 day separation between each pair of pixel observations. The plot colors show the relative frequency of occurrence of similar difference values (with a log2
scale). The solid lines show ordinary least squares (OLS) linear regression fits of these data.

Fig. 4. Scatterplots of Sentinel-2A top of atmosphere (TOA) red (left) and NIR (right) reflectance differences in the southern Africa January swath image overlap zones plotted against blue
orbit view zenith angles. Results as Fig. 3 but for the data filtered by Eq. (2) to remove the effect of land and/or surface changes in the 3 or 7 day separation between each pair of pixel
observations. Differences for a total of 6,600,685 pairs of forward and back scatter TOA reflectance values.
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Tables 2 and 3 summarize the mean absolute (Δρλ defined by Eq.

(3)) and relative absolute percentage (Δρλ
�
defined by Eq. (4)) differ-

ences between the pairs of forward and backward scatter surface reflec-
tance values for the Sentinel-2A bands. Table 2 shows the results for the
TOA reflectance and Table 3 shows the results for the surface reflectance
differences. The January data have systematically greater differences

than the April data because the BRDF effects are greater in January
than April. The mean absolute difference values, Δρλ , are smaller for
the visible bands and greater for the other bands. The mean relative ab-

solute difference values,Δρλ
�
, are normalized by the reflectancemagni-

tude which changes with wavelength, for example, healthy vegetation
has high NIR but low red surface reflectance, and so are more

Fig. 5. Scatterplots of Sentinel-2A surface red (left) andNIR (right) reflectance differences in the southernAfrica January swath image overlap zones (Fig. 1 left) plotted against view zenith.
Differences for a total of 6,600,685 pairs of forward and back scatter surface reflectance values (blue orbit minus red orbit reflectance) plotted against blue orbit view zenith angles
(positive/negative view zenith angles correspond to forward/backward scattering in the blue orbit, see Fig. 1 left). The plot colors show the relative frequency of occurrence of similar
difference values (with a log2 scale). The solid lines show ordinary least squares (OLS) linear regression fits of these data (see Table 4).

Fig. 6. Scatterplots of Sentinel-2A surface red (left) and NIR (right) reflectance differences in the southern Africa April swath image overlap zones (Fig. 1 right) plotted against view zenith.
Differences for a total of 10,656,197 pairs of forward and back scatter surface reflectance values (blue orbit minus red orbit reflectance) plotted against blue orbit view zenith angles
(positive/negative view zenith angles correspond to forward/backward scattering in the blue orbit, see Fig. 1 right). The plot colors show the relative frequency of occurrence of similar
difference values (with a log2 scale). The solid lines show ordinary least squares (OLS) linear regression fits of these data (see Table 4).
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straightforward to compare among bands than the Δρλ values. For the

TOA reflectance data (Table 2) the Δρλ
�
values vary among the bands

from 12.5% to 14.4% (January) and 6.5% to 8.3% (April). TheΔρλ
�
values

are always greater for the surface reflectance data (Table 3) than for the
TOA reflectance data (Table 2) reflecting errors introduced by the atmo-

spheric correction. In particular, the surfaceΔρλ
�
values aremuch great-

er than the TOAΔρλ
�
values in the blue and green bands and this reflects

known atmospheric correction errors at these shorter visible wave-
lengths (Ju et al., 2012). For the surface reflectance data (Table 2) the

Δρλ
�
values vary among the bands from 12.8% to 23.2% (January) and

8.1% to 17.0% (April). The remainder of the results are shown for the sur-
face reflectance data.

Table 4 summarizes the OLS regression fits of the differences between
the surface reflectance pairs as a function of view zenith (illustrated by
solid lines for the red and NIR bands in Figs. 5 and 6). For all the bands
the OLS regressions have negative slope terms, r2 N 0.5, and are statistical-
ly significant (p b 0.0001). The magnitudes of the slopes are greater for
January than April reflecting the greater BRDF effects in the January
data. The B–F difference, i.e., the OLS slope term multiplied by the maxi-
mum observed view zenith range (23.86°) quantifies the average differ-
ence between surface reflectance in the forward and backward scatter
directions at the sensor scan edges. In January the B–F differences increase
with wavelength from 0.035 (blue), 0.047 (green), 0.057 (red), 0.078
(NIR) to about 0.1 (SWIR bands) and are approximately a third smaller
for the April data. These Sentinel-2A view zenith BRDF effects are signifi-
cant and are discussed in the conclusion.

5.2. Evaluation of Sentinel-2A NBAR derived using theMODIS BRDF spectral
parameter c-factor approach

Figs. 7 and 8 shows scatterplots of the surface NBAR differences for
the January and April data respectively. Comparing these figures with
the corresponding surface reflectance difference images (Figs. 5 and 6)
illustrate that normalization of the surface reflectance to NBAR reduces
the BRDF effects. However, the BRDF normalization is not perfect. Al-
though the April NBAR exhibit almost no residual BRDF effects with
OLS regression lines that are near horizontal (Fig. 8), the January
NBAR data have evident small residual BRDF effects (Fig. 7).

Table 5 summarizes the mean absolute NBAR differences (ΔNBARλ)

and themean relative absolute percentage NBAR differences (ΔNBARλ
�
)

for all the Sentinel-2A bands. Comparison of these difference statistics
with the corresponding surface reflectance sensor difference statistics
reported in Table 3 reveals that, for all bands and for both months, the
NBAR differences are smaller than the corresponding surface reflec-
tance differences. The ΔNBARλ

�
(Table 5) values, like the Δρλ

�
values

(Table 3), are greatest for the visible bands, reflecting known atmo-
spheric correction errors at shorter visible wavelengths (Ju et al.,
2012). The NBARdifferences reported in Table 5 are not zero-valued be-
cause of factors including atmospheric correction errors, imperfect sen-
sor calibration, and inadequacies in the c-factor normalization
approach. These factors are discussed in the conclusion.

Table 6 summarizes the OLS regression fits of the differences be-
tween the surface NBAR pairs as a function of the view zenith angle.
The NBAR B–F differences are small varying among the bands from
0.016 to 0.028 (January) and from 0.001 to 0.007 (April). The OLS
slopemagnitudes and r2 values, and themagnitude of the B–F NBAR dif-
ferences (Table 6) are, for all bands and for both the January and April
data, smaller than the corresponding values for the surface reflectance
data (Table 4). Evidently, the MODIS BRDF spectral parameter c-factor
approach systematically reduces Sentinel-2A BRDF effects in the study
data.

5.3. Qualitative examination

Figs. 9 and 10 demonstrate qualitatively the BRDF effects in Sentinel-
2A true color (red, green, blue) surface reflectance (top left) and the cor-
rection to surface NBAR (top right). The arithmetic difference between
these data for the red Sentinel-2A band is also shown (bottom left). Re-
sults for a WELD tile (Fig. 9) and a detailed spatial subset (Fig. 10) gen-
erated by the registration and reprojection (Section 3) of two adjacent
Sentinel-2A orbits are shown. The Sentinel-2A data were acquired
over a shrubby savanna grassland area encompassing the Botswana
and South Africa border and were sensed three days apart in January
2016 (orbits 004 and 001, Fig. 1. left). The data were not temporally
composited, rather, to enable clear visualization of the BRDF effects,
the western Sentinel-2A swath data were written over the eastern
swath data where they overlapped. The western swath was sensed

Table 2

Mean absolute reflectance differencesΔρλ (Eq. (3)) andmean absolute relative percentage differencesΔρλ
�
(Eq. (4)) between the pairs of forward and backward scatter Sentinel-2A top of

atmosphere (TOA) reflectance values for January (6,600,685 pairs) and April (10,656,197 pairs) in the southern Africa overlapping orbit swaths (locations shown in Fig. 1). All data subject
to the filtering described in Section 3.

Sentinel-2A band January April

Δρλ Δρλ
� Δρλ Δρλ

�

2 (blue) 0.0184 14.4220 0.0080 7.1498
3 (green) 0.0196 14.3857 0.0078 6.7799
4 (red) 0.0230 13.0344 0.0085 6.5259
8 (NIR) 0.0312 12.4212 0.0164 6.5919
11 (SWIR) 0.0428 12.4745 0.0168 6.9216
12 (SWIR) 0.0347 13.0716 0.0146 8.3013

Table 3
Results as Table 2 but for the surface reflectance data.

Sentinel-2A band January April

Δρλ Δρλ
� Δρλ Δρλ

�

2 (blue) 0.0174 23.2417 0.0086 16.9727
3 (green) 0.0212 17.6659 0.0084 9.6825
4 (red) 0.0254 14.8178 0.0102 10.8389
8 (NIR) 0.0358 12.9200 0.0201 8.2893
11 (SWIR) 0.0483 12.8443 0.0193 8.0719
12 (SWIR) 0.0446 14.0765 0.0176 8.7148
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January 4th, 2016 in the forward scatter direction and the eastern swath
was sensed January 1st, 2016 in the back scatter direction.

Surface reflectance BRDF effects are evident with a pronounced dis-
continuity (Figs. 9 and 10 top left) along the swath boundary that is ori-
ented approximatelyNNE to SSWdue to the Sentinel-2Aorbit geometry
(Fig. 1). The eastern Sentinel-2A swath was sensed in the back scatter
direction and so has higher surface reflectance, due primarily to shad-
ow-hiding (Hapke et al., 1996), than thewestern swath that was sensed
in the forward scatter direction. The BRDF effects between the forward
and backward scattering directions in the two swaths of surface reflec-
tance are reduced in the NBAR data (Figs. 9 and 10 top right). The arith-
metic differences between the red band NBAR and red surface
reflectance data (Figs. 9 and 10 bottom left) illustrate how the western
and eastern orbit NBAR is systematically greater and smaller than the
equivalent surface reflectance values respectively and also illustrate
the degree of BRDF adjustment provided by the c-factor approach. The
mean and standard deviation of the absolute value of this difference
across the tile is 0.0074 and 0.0024 respectively. The differences in-
crease closer to the swath boundary as BRDF effects become more pro-
nounced with greater view zenith. Considering all the tile data (Fig. 9
bottom left) the maximum red (NBAR-surface reflectance) value is
−0.0624 (Eastern swath) and 0.0395 (Western swath) and occur over
the highly reflective clouds due to themultiplicative adjustment provid-
ed by Eq. (5).

Fig. 10 shows the same results as Fig. 9 but for a detailed subset. The
BRDF effects between the forward andbackward scatteringdirections in
the two swaths of surface reflectance (top left) are reduced in the NBAR
data (top right). However, the swath boundary is still evident in the
NBAR data. The western and eastern Sentinel-2A swaths were sensed
with 24.10° and 26.02° solar zenith angles (at the tile center) respec-
tively and the NBAR differences across the swath boundary are not like-
ly to be due to such a small (b2°) solar view zenith difference. The
illustrated data were not subject to the filtering (Eq. (2)) used to reduce
the impact of surface and atmospheric change and so these are likely to
be present as the two Sentinel-2A swaths were acquired three days
apart. The illustrated subset encompasses an along-track boundary be-
tween two Sentinel L1C tiles (oriented WNW to ESE) sensed in the
same western orbit. The along-track boundary is not due to surface
change but rather is due to residual SEN2COR atmospheric correction
errors that are different in the two L1C tiles. These residual atmospheric
correction errors are comparable in magnitude to the residual BRDF ef-
fects evident in the NBAR data.

6. Conclusion and discussion

The results of this paper demonstrated pronounced Sentinel-2A
BRDF effects in the visible, near-infrared and short wave infrared
bands. Two ten day periods of Sentinel-2A data over approximately

Table 4
Summary of the ordinary least squares (OLS) linear regressions of the surface reflectance differences illustrated in Figs. 5 and 6 and for the other Sentinel-2A bands. A total of 6,600,685
(January) and 10,656,197 (April) valueswere used to derive theOLS regressionswhereΔ=blue orbitminus red orbit surface reflectance and θv=blue orbit view zenith angle (see Fig. 1).
The OLS regression coefficient of determination (r2), the OLS regression F-test p-value, and the B–F difference are shown.

Sentinel-2A band January April

OLS equation OLS r2 (p-value) B-F difference OLS equation OLS r2 (p-value) B-F difference

2 (blue) Δ = −0.0015 θv + 0.0002 0.5295 (b0.0001) 0.0354 Δ = −0.0002 θv − 0.0008 0.0374 (b0.0001) 0.0053
3 (green) Δ = −0.0020 θv + 0.0011 0.6968 (b0.0001) 0.0468 Δ = −0.0005 θv − 0.0002 0.1892 (b0.0001) 0.0122
4 (red) Δ = −0.0024 θv − 0.0000 0.7030 (b0.0001) 0.0566 Δ = −0.0006 θv − 0.0011 0.2018 (b0.0001) 0.0153
8 (NIR) Δ = −0.0033 θv + 0.0044 0.7190 (b0.0001) 0.0783 Δ = −0.0016 θv − 0.0008 0.3673 (b0.0001) 0.0377
11 (SWIR) Δ = −0.0044 θv + 0.0072 0.6902 (b0.0001) 0.1044 Δ = −0.0016 θv − 0.0020 0.3885 (b0.0001) 0.0376
12 (SWIR) Δ = −0.0041 θv + 0.0043 0.6826 (b0.0001) 0.0967 Δ = −0.0014 θv − 0.0024 0.3746 (b0.0001) 0.0336

Fig. 7. Scatterplots of Sentinel-2A surface NBAR red (left) and NIR (right) differences in the southern Africa January swath image overlap zones (Fig. 1 left) plotted against view zenith, i.e.,
the same as Fig. 5 but for NBAR derived from the surface reflectance. The solid lines show ordinary least squares (OLS) linear regression fits of these data (see Table 6).
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20° × 10° of southern Africa were considered. This provided more than
6.6 million (January) and 10.6 million (April) pairs of forward and back
scatter reflectance observations extracted from eight overlapping orbits
in each period. Following the methodology described in Roy et al.
(2016a) spectral scatter plots and ordinary least squares (OLS) linear re-
gressionfits of the differences between the observed reflectancepairs as
a function of the view zenith angle were generated for each Sentinel-2A
band. The B–F difference, derived by multiplying the OLS regression
slope term by the maximum observed view zenith range, quantified
the average difference between reflectance in the forward and back-
ward scatter directions at the Sentinel-2A scan edges. For the January
data (acquired close to the solar principal plane) the surface reflectance
B–F differences increased with wavelength from 0.035 (blue), 0.047
(green), 0.057 (red), 0.078 (NIR), to about 0.1 (SWIR bands). For the
April data (acquired close to the orthogonal principal plane) the surface
reflectance B–F differences were approximately three times smaller.
These values are greater than reported with respect to conterminous
United States Landsat data (Roy et al., 2016a) most likely because the
Landsat data were acquired over a smaller field of view and further
from the solar principal plane. Evidently, research examining Sentinel-
2 BRDF, or testing BRDF normalization methods, should consider a rep-
resentative variation in solar and viewing geometry and include data

acquired close to the solar principal plane. The Sentinel-2A BRDF effects
described in this paper are quite large and may constitute a significant
source of noise for certain applications. For example, the average
0.057 red band difference between the Sentinel-2A swath edge forward
and backward scatter directions is comparable tomore than half the red
reflectance range among different vegetation types.

TheMODIS BRDF spectral parameter c-factor approach, developed to
derive Landsat NBAR (Roy et al., 2016a), was applied to the Sentinel-2A
data and reduced BRDF effects. Notably, the Sentinel-2A NBAR B–F dif-
ferences were, for all bands and for the January and April data, smaller
than the corresponding surface reflectance difference values. The differ-
enceswere greater for the January data (that hadmore pronounced sur-
face reflectance BRDF effects) and varied amongbands from aminimum
of 0.016 (red) to 0.028 (SWIR) and were less than 0.01 for all bands of
the April data. The BRDF normalization was not perfect because of fac-
tors including inadequacies in the c-factor normalization approach
and atmospheric correction and sensor calibration errors that are
discussed below.

Several factors may reduce the efficacy of the MODIS BRDF spectral
parameter c-factor normalization approach for Sentinel-2A application.
First, the approach is based on the shape and not the magnitude of the
BRDF and relies on there being little variation in the BRDF shape of

Fig. 8. Scatterplots of Sentinel-2A surface NBAR red (left) and NIR (right) differences in the southern Africa April swath image overlap zones (Fig. 1 right) plotted against view zenith, i.e.,
the same as Fig. 6 but for NBAR derived from the surface reflectance. The solid lines show ordinary least squares (OLS) linear regression fits of these data (see Table 6).

Table 5

Mean absolute surface NBAR differencesΔNBARλ (Eq. (7)) andmean absolute relative percentage surface NBAR differencesΔNBARλ
�
(Eq. (8)) between the pairs of forward and backward

scatter Sentinel-2A surface reflectance values for January (6,600,685 pairs) and April (10,656,197 pairs) in the southern Africa overlapping orbit swaths (locations shown in Fig. 1) nor-
malized to NBAR.

Sentinel-2A band January April

ΔNBARλ ΔNBARλ
� ΔNBARλ ΔNBARλ

�

2 (blue) 0.0122 16.8068 0.0082 16.5316
3 (green) 0.0109 9.3809 0.0071 8.4644
4 (red) 0.0122 7.6665 0.0088 8.2555
8 (NIR) 0.0151 5.5458 0.0144 5.3160
11 (SWIR) 0.0197 5.3856 0.0128 6.0531
12 (SWIR) 0.0200 6.6386 0.0119 6.7008
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terrestrial surfaces in the near-nadir region. The approach was devel-
oped for Landsat NBAR derivation based on observations that BRDF
shapes are sufficiently similar over the narrow Landsat field of view
that a fixed set of MODIS BRDF spectral model parameters can be used
(Roy et al., 2016a). This may not be the case for all land surfaces at the
higher view zenith angles observed by Sentinel-2A (20.6° field of view
compared to the Landsat 15° field of view). Second, the fixed set of
BRDF spectral model parameters, derived from a global year of highest
quality snow-free MODIS 500 m BRDF product values (Table 1), may

not provide a sufficient representation of the surface reflectance anisot-
ropy at Landsat or Sentinel-2A scale (Zhang and Roy, 2016). The spatial
scale dependency of BRDF is complex and an on-going area of research
(Pinty et al., 2002; Román et al., 2011). Third, although the Sentinel-2A
and MODIS bands have similar central wavelengths their bandwidths
are not the same (Table 1) and it is established that reflectance derived
from sensors with different bandwidths is usually different (Steven et
al., 2003; Teillet et al., 2007). However, as the c-factor used to adjust
the Sentinel-2A reflectance to NBAR is derived as the ratio of MODIS

Table 6
Summaryof the ordinary least squares (OLS) linear regressions of the surfaceNBARdifferences illustrated in Figs. 7 and8 and for the other Sentinel-2A bands. A total of 6,600,685 (January)
and 10,656,197 (April) values were used to derive the OLS regressions where Δ = blue orbit minus red orbit surface NBAR and θv = blue orbit view zenith angle (see Fig. 1). The OLS
regression coefficient of determination (r2), the OLS regression F-test p-value, and the B–F difference are shown.

Sentinel-2A band January April

OLS equation OLS r2 (p-value) B-F difference OLS equation OLS r2 (p-value) B-F difference

2 (blue) Δ = −0.0008 θv − 0.0001 0.2432 (b0.0001) 0.0188 Δ = 0.0001 θv − 0.0009 0.0035 (b0.0001) 0.0016
3 (green) Δ = −0.0007 θv + 0.0006 0.2266 (b0.0001) 0.0166 Δ = 0.0000 θv − 0.0005 0.0020 (b0.0001) 0.0011
4 (red) Δ = −0.0007 θv + 0.0005 0.1624 (b0.0001) 0.0159 Δ = 0.0000 θv − 0.0018 0.0005 (b0.0001) 0.0007
8 (NIR) Δ = −0.0007 θv + 0.0024 0.1193 (b0.0001) 0.0178 Δ = −0.0002 θv − 0.0006 0.0080 (b0.0001) 0.0043
11 (SWIR) Δ = −0.0010 θv + 0.0041 0.1002 (b0.0001) 0.0230 Δ = −0.0001 θv − 0.0029 0.0026 (b0.0001) 0.0024
12 (SWIR) Δ = −0.0012 θv + 0.0024 0.1605 (b0.0001) 0.0283 Δ = −0.0003 θv − 0.0035 0.0273 (b0.0001) 0.0071

Fig. 9. True color Sentinel-2A Top Left: surface reflectance (i.e., before BRDF correction), Top Right: surface NBAR (i.e., after BRDF correction), Bottom Left: Red surface NBAR – Red surface
reflectance (positive values shown by white tones). The data are over a 158 × 158 km (5295 × 5295 30 m pixel) global WELD tile encompassing the Botswana and South Africa border
(centered at 26.008369°E, 25.000132°S, defined in the MODIS sinusoidal projection) derived from two overlapping Sentinel-2A swaths sensed January 4th, 2016 (western orbit,
forward scatter direction) and January 1st, 2016 (eastern orbit, back scatter direction) (i.e., orbits 004 and 001, Fig. 1. left). The true color data (top row) are illustrated with the same
red, green and blue display stretch parameters to enable their meaningful visual comparison.
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predicted reflectance for observed and normalized geometry (Eq. (5))
this is less important. Because of the ratio formulation,multiplicative re-
flectance differences between Sentinel-2 and MODIS spectral reflec-
tance will cancel. Fourth, it is unknown if the Sentinel-2A MSI
calibration or SEN2COR atmospheric correction have significant angular
dependencies that would affect the study results. The Sentinel-2A MSI
has an absolute calibration knowledge uncertainty performance goal
of 3% and a specification of 5% (Drusch et al., 2012) which is comparable
to the Landsat-8 OLI (Markhamet al., 2014). Recent Sentinel-2A calibra-
tion validation activities indicate that the 3% goal has been satisfied ex-
cept for the MSI blue bands (Gascon et al., 2016). The atmospheric
correction accuracy of the SEN2COR code is unknown but will be vari-
able and depend on the surface and atmospheric conditions. Qualitative
inspection of sample January NBAR data indicate that residual BRDF ef-
fects in the NBAR data are comparable in magnitude to residual
SEN2COR atmospheric correction errors.

Visually, the Sentinel-2A NBAR images illustrated in this paper, and
also evident in publically available global coverage 30 m Landsat 5 and
7 NBAR surface reflectance data sets (http://globalweld.cr.usgs.gov/
collections/), indicate that the MODIS BRDF spectral parameter c-factor
approach provides only a generalized normalization and that certain lo-
cations and times may have greater reflectance anisotropy than cap-
tured by the BRDF spectral model parameters. This is difficult to
unambiguously ascertain from visual inspection of large area NBAR
data due to differences among the date of acquisition of the input

satellite data and so the presence of confounding reflectance differences
due to changes in the surface and residual atmospheric contamination.

This study did not consider the Sentinel-2A red edge bands (705,
740, 783 nm central wavelengths). This is because there are no MODIS
red edge BRDF spectral model parameters available to undertake the
Sentinel-2A red-edge band NBAR derivation. MODIS has red edge
bands configuredwith gain settings and signal-to-noise ratios designed
for ocean monitoring that are not suitable for land surface monitoring
(Esaias et al., 1998). The red edge encompasses the abrupt increase in
leaf reflectance from red wavelengths, where leaf reflectance is low
due to chlorophyll absorption, to NIR wavelengths where leaf reflec-
tance is high due to leaf internal scattering (Gates et al., 1965; Clevers
and Gitelson, 2013). Some form of spectral interpolation between the
MODIS red and NIR land band BRDF model parameter values (Table 1)
may provide a solution. However, we note that the red and NIR wave-
lengths have quite different BRDF characteristics; typically red wave-
lengths have higher relative reflectance variation with respect to view
and solar angle than the NIR (Johnson, 1994; Sandmeier and Strahler,
2000; Gao et al., 2002). Furtherwork to investigate the BRDF normaliza-
tion of the Sentinel-2A red edge bands is recommended.

The quantitative results reported in this paper, i.e., concerning the
degree of BRDF effects observed in Sentinel-2A data and the efficacy of
the MODIS BRDF spectral parameter c-factor normalization approach
applied to Sentinel-2 data, may not be globally representative. Although
more than 17 million pairs of forward and back scatter reflectance

Fig. 10. Detail showing a 18 × 18 km spatial subset of the Fig. 9 data. The subset is located near the tile (Fig. 9) center and over the western and eastern Sentinel-2A swath boundary
(oriented NNE to SSW). The western orbit encompasses an along-track boundary between two Sentinel L1C tiles that is oriented WNW to ESE and evident in the true color data from
the subset center to the subset edge.
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observationswere extracted across southern Africa they did not include
evergreen needleleaf and snow and ice land covers. Moreover, the sur-
face condition, and not just the land cover, may influence the surface
BRDF. The reported analyses of two 10-day periods of Sentinel-2 data
are unlikely to capture all surface condition changes, for example,
changes in the BRDF of deciduous forests under leaf-on and leaf-off con-
ditions. In addition, although observations sensed close to the solar
principal and orthogonal planes were considered, observations sensed
with solar zenith N 50°, where BRDF effects become particularly pro-
nounced, were not considered.

The recent 2017 launch of Sentinel-2B will provide two Sentinel 2
satellites with global observation coverage every 5 days (Drusch et al.,
2012). Research to consider the variation in Sentinel-2 solar geometry
is needed to determine the appropriate solar zenith angle for global Sen-
tinel-2 NBAR derivation (Zhang et al., 2016). In this study the Sentinel-
2ANBARwas derived for a nadir view and setting the solar zenith to the
mean of the observed solar zenith angles of the forward or backward
scattering pixel observations sensed 3 or 7 days apart. The extrapolation
from the observed to themodeled NBAR solar zenith was nomore than
half the change in solar zenith over the 3 or 7 day separation, no more
than 2.1° (January) or 4.8° (April), and was not significant compared
to the variation in the view zenith. Thismaynot be the case for other lat-
itudes and times of year.

The future availability of several Sentinel-2 and Landsat satellites
may provide sufficient cloud-free observations to enable reliable local
parameterization of the surface reflectance anisotropy over Sentinel-2
observation conditions. This may preclude the need for the MODIS
BRDF spectral parameter c-factor normalization approach to derive Sen-
tinel-2A NBAR. Future work to investigate this and the challenges in
harmonizing the different sensor data, including the solar zenith varia-
tion among sensors, for this purpose are recommended.
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