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The Landsat 5 Thematic Mapper (TM) sensor provided the longest singlemission terrestrial remote sensing data
record but temporally sparse station keepingmaneuversmeant that the Landsat 5 orbit changed over the 27 year
mission life. Long-term Landsat 5 TM reflectance inconsistencies may be introduced by orbit change induced
solar zenith variations combined with surface reflectance anisotropy, commonly described by the Bi-directional
Reflectance Distribution Function (BRDF). This study quantifies the local overpass time and observed solar zenith
angle changes for all the Landsat 5 TM images available at two latitudinally separated locations along the same
north-south Landsat path (27) in Minnesota (row 26) and Texas (row 42). Over the 27 years the Landsat 5
orbit changed by nearly 1 h and resulted in changes in the Landsat 5 observed solar zenith angle of N10°. The
Landsat 5 orbit was relatively stable from 1984 to 1994 and from 2007 to 2011, but changed rapidly from
1995 to 2000, and from2003 to 2007. Rather than directly examine Landsat 5 TMreflectance time series amodel-
ling approach was used. This was necessary because unambiguous separation of orbit change induced Landsat
reflectance variations from other temporal variations is non-trivial. The impact of Landsat 5 orbit induced ob-
served solar zenith angle variations on the red and near-infrared reflectance and derived normalized difference
vegetation index (NDVI) values were modelled with respect to different Moderate-Resolution Imaging
Spectroradiometer (MODIS) BRDF land cover types. Synthetic nadir BRDF-adjusted reflectance (NBAR) for the
Landsat 5 TM observed and a modelled reference year 2011 solar zenith were compared over the 27 years of ac-
quisitions. Ordinary least squares linear regression fits of the NBAR difference values as a function of the acquisi-
tion date indicated an increasing trend in red and near-infrared NBAR and a decreasing trend in NDVI NBAR due
to orbit changes. The trends are statistically significant but small, nomore than 0.0006 NDVI/year. Comparison of
certain years of Landsat 5 data may result in significant reflectance and NDVI differences due only to Landsat 5
orbit changes and cause spurious detection of “browning” vegetation events and underestimation of greening
trends. The greatest differences will occur when 1995 Landsat 5 TM data are compared with 2007 to 2011
data; NDVI values could be up to 0.11 greater in 1995 than in 2011 for anisotropic land cover types and up to
0.05 greater for average CONUS land cover types. A smaller number of Landsat 5 TM images were also examined
and provide support for themodelled basedfindings. The paper concludeswith a discussion of the implications of
the research findings for Landsat 5 TM time series analyses.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The Landsat 5 satellite, carrying the Thematic Mapper (TM) and
Multispectral Scanner (MSS) sensors, provided the longest operating
Earth remote sensing satellite mission in history. Landsat 5 was
launched in March 1984 into an approximately 710 km sun-synchro-
nous polar orbit and was decommissioned in June 2013. The need for
consistent Landsat time series is well established and the nearly three
decades of Landsat 5 TM data are sufficiently resolved to enable

chronicling of anthropogenic and natural change in an erawhen climate
change has become evident (Roy et al., 2014). Considerable effort was
expended on ensuring a reliable and consistently calibrated Landsat
TM 5 data record (Markham and Helder, 2012) and for many parts of
the world, particularly the United States, the geolocation of Landsat 5
data was well characterized and stable (Storey and Choate, 2004).
Over themission life of a polar orbiting satellite the orbit altitude and in-
clination may drift due to a number of factors, predominantly gravita-
tional ones, and station keeping maneuvers (orbit burns) are needed
to maintain the orbit (Wertz, 2001). Unfortunately, irregular station
keeping maneuvers meant that the Landsat 5 orbit drifted more than
usual and so the solar illumination geometry changed. This is a concern
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aswe demonstrate in this paper that the orbit changesmay result in the
spurious detection of surface changes, or conversely masking of surface
changes, observed in Landsat 5 TM reflectance time series.

The majority of terrestrial surfaces reflect optical wavelength radia-
tion anisotropically with a directional dependence that varies as a func-
tion of the sun–target–sensor geometry, commonly described by the
Bi-directional Reflectance Distribution Function (BRDF). The BRDF is
controlled by several factors including the type, amount, structure and
spacing of the vegetation and the background soil reflectance. Typically,
the BRDF of terrestrial surfaces can be described by domeor bowl aniso-
tropic reflectance shapes with a retro-reflectance peak (hot spot)
(Jackson et al., 1990; Li and Strahler, 1992; Roujean et al., 1992;
Rahman et al., 1993; Pinty et al., 2002). The Landsat acquisition view
zenith angle is usually less than the solar zenith angle and so Landsat
reflectance hot-spot effects do not occur (Zhang et al., 2016). For a
nadir view the red reflectance usually decreases with increasing solar
zenith because the direct solar irradiance enters the vegetation canopy
more obliquely and so has a higher probability of interacting with
foliage elements and because of increased shadow effects; whereas,
the near-infrared (NIR) reflectance may not increase due to multiple-
scattering within the canopy and if the soil reflectance is lower than
the vegetation reflectance (Chen and Leblanc, 2001; Privette et al.,
1997). Spectral band ratio based vegetation indices, such as the com-
monly used normalized difference vegetation index (NDVI), typically
have less sensitivity to view and solar geometry variations than the
red and NIR reflectance, although the nadir viewNDVI usually increases
with solar zenith (Huete, 1987; Goward and Huemmrich, 1992; Pinter,
1993; Deering et al., 1994; Epiphanio and Huete, 1995; Leblanc et al.,
1997; McDonald et al., 1998; Gao et al., 2002; Ishihara et al., 2015).

Directional reflectance artifacts will be introduced over non-
lambertian surfaces if the orbit of a sun-synchronous satellite changes
and the local overpass time, and so observed solar zenith angle, change.
The impact of orbit drift on reflectance time series from sun-synchro-
nous satellite sensors has been examined in particular with respect to
the Advanced Very High Resolution Radiometer (AVHRR) sensors that
have well documented orbit drifts that changed the solar observation
geometry and so retrieved reflectance over the sensor mission life
(Privette et al., 1995; Kaufmann et al., 2000; Tucker et al., 2005). The
impact of solar variations on Landsat directional reflectancewas consid-
ered byNagol et al. (2015)whoestimated relative red and near-infrared
reflectance reductions of N30% between the peak and the end of the
growing season at mid-latitudes. Recently, BRDF effects due to the
change in the Landsat 5 orbitwere analyzed using a BRDFmodel param-
eterized with field and airborne directional reflectance measurements
of different land covers (Gao et al., 2014). The Gao et al. (2014) study
found that changes in the Landsat 5 orbit were greatest in the mid-
1990s and resulted in a modelled change in nadir view reflectance of
about 0.01–0.02 in the Landsat 5 TM red and NIR bands respectively.
However, no detailed quantification of Landsat 5 orbit changes consid-
ering the over pass time and solar zenith angles, or study of the impact
of these changes on the temporal consistency of Landsat 5 reflectance
and NDVI time series, has been undertaken.

This paper quantifies the orbital changes present in the 27 year
Landsat 5 TM record in terms of the nadir overpass time and solar zenith
angle, and examines if the changes have significant impact on red, NIR,
and NDVI time series. The nadir solar zenith angle and local overpass
time at the center of every available Landsat 5 TMacquisition at two lat-
itudinally separated locations are examined. A modelling approach is
used as differentiation of orbit change induced reflectance time series
effects from seasonal and land cover surface changes, and from other
factors such as residual atmospheric and cloud contamination, is com-
plex. Twenty seven years of Landsat 5 solar zenith and acquisition
time metadata information are used in conjunction with Moderate
Resolution Imaging Spectroradiometer (MODIS) BRDF spectral model
parameters to estimate the nadir BRDF-adjusted reflectance (NBAR)
for the observed solar zeniths and a modelled reference year 2011

solar zenith. Fixed BRDF spectral model parameters, defined by exami-
nation of a year of conterminous United States (CONUS) MODIS BRDF
product values and for different CONUS land covers, are considered to
quantify orbit drift induced reflectance changes over typical CONUS sur-
faces. The reported BRDFmodelling results are expected to be quite con-
servative as there is a significant scale difference between Landsat 30m
and MODIS 500 m pixels. In addition, the fixed MODIS BRDF spectral
model parameters are smoothed by taking the mean parameter values
over twelve months. Therefore, it is likely that at Landsat 30 m resolu-
tion certain geographic locations and timeswill have greater reflectance
anisotropy than captured by the fixed BRDF spectral model parameters
and so a greater sensitivity to Landsat 5 TM orbit change. To gain more
confidence and insights into the BRDF modelling results actual
30 m pixel reflectance and NDVI extracted from a small number of ex-
ample Landsat 5 TM images are compared with the acquisition solar
zenith.

The paper is structured as follows. First the Landsat 5 TMorbit geom-
etry and then the Landsat 5 TM metadata and MODIS BRDF and land
cover product data, and the example Landsat 5 TM images are de-
scribed. This is followed by description of the Landsat 5 overpass time
calculation, including the models used to derive reference year 2011
overpass times and solar zeniths, and then the MODIS based NBAR
modelling approach. The results are followed by concluding remarks
that include a discussion of the implications of the research findings
for Landsat 5 TM time series analyses.

2. Data

2.1. Landsat 5 TM orbit characteristics

Satellites in polar circular sun-synchronous orbits, such as Landsat 5,
have an inclination and altitude configured so that the local overpass
time is approximately the same each time the satellite passes overhead
(Wertz, 2001, Ignatov et al., 2004). Landsat 5 was launched in 1984 into
a 705 km polar orbit with a 98.2° inclination that provided a sun-syn-
chronous orbit with a Mean Local Time of Descending Node (MLTDN)
(i.e., mean sunlit equatorial north to south crossing time) of 9:45 a.m.
(Hassett and Johnson, 1984). This was the same as the Landsat 4 orbit
but was phased to ensure a combined Landsat 4 and 5 8-day full Earth
coverage cycle. Initially the Landsat 5 orbit was maintained by periodic
station keeping maneuvers to maintain the ground track and orbit
phase with Landsat 4, and the MLTDN was required to not vary by
more than±15min from 9:45 a.m. (Hassett and Johnson, 1984). Unfor-
tunately, the Landsat 5 orbit was not maintained consistently. This was
due to the unforeseen longevity of the Landsat 5mission, and to the dif-
ferent federal agency and commercial company operators over themis-
sion life (Goward et al., 2006). In particular, there were fewer station
keeping maneuvers undertaken in the mid 1990s when Landsat 5 was
operated commercially, and then after the return of Landsat 5 opera-
tions to the Federal government more routine orbit maintenance was
resumed to ensure a combined 8-day full Earth coverage cycle with
Landsat 7 (launched in 1999) and to reflect the needs of the increasingly
occupied 705 km polar orbit space (Levi and Palmer, 2011; Vincent,
2012; Goward et al., 2016).

2.2. Landsat 5 TM metadata used

The Landsat 5 TM acquired 30 m pixel reflective wavelength obser-
vations from March 1984 until November 2011. The Landsat 5 TM
data are available in approximately 180 km × 170 km scenes defined
in aWorldwide Reference System (WRS) of path (ground track parallel)
and row (latitude parallel) coordinates with associated descriptive
metadata (Arvidson et al., 2006). The global Landsat data are held at
the United States Geological Survey (USGS) Earth Resources Observa-
tion and Science (EROS) Center and the archived Landsat 5 TM data
have variable acquisition coverage (Kovalskyy and Roy, 2013; Wulder
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et al., 2016). This is primarily because the Landsat 5 data were acquired
with no systematic global acquisition plan, reflecting thedifferent feder-
al agency and commercial operators, and also different international
ground station collections, and several technical down-link transmis-
sion issues that occurred later in the Landsat 5 mission life (Goward et
al., 2006; Chander et al., 2007; Loveland and Dwyer, 2012).

Themetadata, not the images, for every available day time Landsat 5
TM acquisition in the U.S. Landsat archive over path/row 27/26 (cen-
tered on 91.9363°W 48.8687°N, Minnesota) and 27/42 (centered on
98.9661°W 26.0011°N, Texas) were used (henceforth referred to for
brevity, asMinnesota and Texas). These two locationswere selected be-
cause they fall within the CONUS, which globally has the richest tempo-
ral Landsat 5 TM data collection (Wulder et al., 2016), and because they
are on the same Landsat orbit path but span a large latitudinal range. Lo-
cations with different latitudes are of interest because nominally the
Landsat local overpass time changes only with latitude and because
the solar zenith angle for a given local time changes with latitude
(Zhang et al., 2016).

The following metadata for all the available Minnesota and Texas
Landsat 5 acquisitions were used: “sceneStartTime”, “sceneStopTime”,
“sunElevation”, “sceneCenterLatitude”, and “sceneCenterLongitude”.
These metadata and their use are described in more detail in
Section 3. In 1984 and 1985 seven acquisitions had “sunElevation”
metadata values that were defined imprecisely (±0.5° precision)
and so the metadata for those acquisitions were discarded. The
metadata for a total of 567 (Minnesota) and 447 (Texas) acquisitions
sensed fromMarch 16, 1984 to November 14, 2011 were used in this
study.

2.3. MODIS land cover product

The Collection 5 annual 500 m MODIS land cover product
(MCD12Q1) (Friedl et al., 2010) for 2010 was used to define land
cover information for the Landsat 5 TM NBAR modelling analysis. The
MCD12Q1 International Geosphere-Biosphere Program (IGBP) classifi-
cation scheme, which classifies each 500 m pixel into one of 17 classes
and has a reported 75% overall land cover classification accuracy
(Friedl et al., 2010) was used. The MCD12Q1 product is defined in
10° × 10° MODIS Land tiles defined in the equal area sinusoidal projec-
tion (Wolfe et al., 1998), a total of 11 tiles covering the CONUS were
used.

2.4. MODIS BRDF/Albedo product

The 500 m Collection 5 MCD43A1 and MCD43A2 MODIS BRDF
spectral model parameter product suite was used (Schaaf et al.,
2011). These products define Ross-Thick/Li-Sparse-Reciprocal BRDF
spectral model parameters (determined as those that best fit all of the
cloud-cleared, atmospherically-corrected MODIS Terra and Aqua re-
flectance values observed at each gridded 500m pixel location over a
16 day period) and associated per pixel quality information. The
Ross-Thick/Li-Sparse-Reciprocal BRDF model defines reflectance as a
weighted sum of an isotropic parameter and two functions (or kernels)
of viewing and illumination geometry (Roujean et al., 1992), where one
kernel is derived from radiative transfer models (Ross, 1981) and the
other is based on surface scattering and geometric shadow casting
theory (Li and Strahler, 1992). The products are used to compute
the directional reflectance at any desired viewing and solar geome-
try as:

ρ λMODIS ;Ω; Ω0� � ¼ f iso λMODISð Þ þ f vol λMODISð Þ Kvol Ω;Ω0� �
þ f geo λMODISð Þ Kgeo Ω;Ω0� �

: ð1Þ

where ρ ðλMODIS;Ω; Ω0Þ is the MODIS spectral reflectance for wave-
length λMODIS , for viewing vector Ω (view zenith and azimuth an-
gles) and solar illumination vector Ω' (solar zenith and azimuth

angles), Kvol(Ω,Ω′) and Kgeo(Ω,Ω′) are the volumetric scattering
and geometic-optical model kernels respectively which depend
only on the sun-view geometry (Ω,Ω′) , and fiso(λMODIS),
fvol(λMODIS), and fgeo(λMODIS) are the spectral BRDF model parameters
(Schaaf et al., 2002).

The MODIS BRDF/Albedo quality product (MCD43A2) was used to
remove all but the highest quality spectral BRDF model parameter
500 m pixel values (Ju et al., 2010). In addition, only snow-free param-
eters as labeled in the MCD43A2 product were used. All of the MODIS
MCD43A1 and MCD43A2 products for 2010 over the CONUS were
used. This corresponded to a total of 11 MODIS Land 10° × 10° product
tiles defined every 8-days for all of 2010.

2.5. Example Landsat 5 TM images

In this study a modelling approach (Section 3) was used to investi-
gate Landsat 5 TM orbit change induced reflectance change rather
than direct examination of Landsat 5 TM reflectance. This is because re-
liable identification of locations that have remained unchanged over the
Landsat 5 mission life, and have not been subject to gradual or abrupt
land cover and surface condition changes (Vogelmann et al., 2012;
McManus et al., 2012; Melaas et al., 2013; Sexton et al., 2013; Gray
and Song, 2013; Boschetti et al., 2015), is non-trivial. In addition, even
for an “unchanged” location, seasonal and inter-annual variations in
the surface state (e.g., soil moisture and vegetation condition changes)
may be conflatedwith orbit change induced reflectance effects. Conven-
tionally, seasonal variations in the surface state and the position of the
sun mean that anniversary date Landsat images are compared for time
series analyses. However, anniversary date images are not always avail-
able or cloud-free. Landsat time series analyses are complicated further
by factors including sensor saturation, residual cloud and atmospheric
contamination and shadows that perturb retrieved surface reflectance
(Roy et al., 2016a).

Despite these limitations, a small number of example Landsat im-
ages were examined. Landsat 5 TM L1T cloud-free summer anniversary
date images sensed over Crater Lake National Park, Oregon (WRS-2
path/row 45/30) acquired on September 2, 1991, August 28, 1995,
August 30, 1996, September 2, 1997, September 5, 1998, August 28,
2001, August 31, 2002, September 5, 2004, August 29, 2007, August
31, 2008, September 3, 2009, and September 6, 2010, were examined.
Three 3 × 3 30 m pixel subsets were extracted from each image over
sites that are described in Vogelmann et al. (2016). The sites are over
pumice desert that had largely unchanged Landsat NDVI and two conif-
erous forest areas that had only gradual NDVI increases and decreases.
The Landsat 5 TM L1T images were converted to top of atmosphere re-
flectance and then atmospherically corrected to surface reflectance
using the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) code (Masek et al., 2006). Two per-pixel cloud masks were
used, the heritage Landsat project automatic cloud cover assessment
algorithm (ACCA) (Irish et al., 2006) and a decision tree cloud mask al-
gorithm that generally performs better than ACCA for Landsat 7 ETM+
over the CONUS (Roy et al., 2010). The pre-processed Landsat data were
projected with nearest neighbor resampling into fixed geolocated tiles
in the MODIS sinusoidal equal area projection using the Web Enabled
Landsat Data (WELD) processing software (Roy et al., 2010) so that
they could be compared through time. Only cloud-free and unsaturated
pixel values were considered.

3. Analysis methodology

3.1. Landsat 5 TM acquisition local overpass time and solar zenith
derivation

The solar zenith angle and local overpass time at nadir at the center
of each Landsat 5 TM acquisition were taken from the metadata. The
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solar zenith angle is the angle subtended between the sun and the local
normal to the earth's surface, derived as:

θobserved ¼ 90Å−sunElevation ð2Þ

where θobserved is the solar zenith angle at the center of the acquisition
and “sunElevation” is the acquisition center solar elevation metadata
value. For a given day of the year the solar zenith angle at Landsat
nadir is approximately the same along a line of latitude but the solar ze-
nith changes over the yearwith the seasonal progression of the position
of the sun in the sky (Blanco-Muriel et al., 2001; Ignatov et al., 2004;
Zhang et al., 2016).

The local overpass time was derived from the Landsat metadata in
the same way as described in Zhang et al. (2016) as:

tlocal ¼
tUTC þ λ=15þ 24 i f tUTC þ λ=15ð Þ b0
tUTC þ λ=15 i f 0⩽ tUTC þ λ=15ð Þ⩽ 24
tUTC þ λ=15−24 i f tUTC þ λ=15ð Þ N24

8<
: ð3Þ

where tlocal is the local overpass time (decimal 24-hour units), tUTC is the
Coordinated Universal Time (UTC) of the acquisition center derived as
the mean of the two “sceneStartTime” and “sceneStopTime” metadata
values for each acquisition, and λ is the acquisition center longitude
stored in the “sceneCenterLongitude” metadata. The “sceneStartTime”
and “sceneStopTime”metadata values define theUTC timewith a preci-
sion of five decimal places, and also include the year, and the day of the
year (1 to 365 or 366) of the acquisition.

3.2. Landsat 5 TM year 2011 reference local overpass time and solar zenith
derivation

The following model of the Landsat overpass time for global climate
year 2011 (December 2010 to November 2011) was used to provide a
reference benchmark to compare the 27 years of overpass times
against:

tre f erence ¼ 1:36292� 10−9α5−3:15403� 10−8α4

−3:15819614� 10−6α3 þ 0:0000652685643α2

þ0:0120604786763α þ 10:06

ð4Þ

where treference is the referencemodelled Landsat local overpass time for
2011 and α is the Landsat acquisition center latitude defined by the
“sceneCenterLatitude”metadata value. Themodel was derived in a pre-
vious study (Zhang et al., 2016) by ordinary least squares regression
(r2 = 0.988, mean absolute error of 2.34 min) considering the local
overpass time and latitudes of all the global non-Antarctic Landsat 5
TM and Landsat 7 ETM+ acquisitions in the Landsat U.S. archive for cli-
mate year 2011 (147,358 acquisitions for December 1, 2010 to Novem-
ber 30, 2011). Climate year 2011 was used because it is the last year of
the Landsat 5 TM data record, and in that year the Landsat 5 and 7
local overpass times were similar with a mean difference of 4.236 min
(Zhang et al., 2016) and the orbit was relatively stable compared to pre-
vious years.

The solar zenith angle at treference, termed θreference, was computed
using an astronomical model parameterized with the Landsat acquisi-
tion center latitude, longitude, date (year and day of the year), and the
treference value, for each Texas and Minnesota acquisition. The astronom-
ical model is described by Blanco-Muriel et al. (2001) and is sufficiently
accurate for thepurposes of this studywith a reported average and stan-
dard deviation solar zenith prediction error of 0.001 and 0.114 min of
arc.

3.3. Landsat 5 TM overpass time and solar zenith variation analysis

To examine the Landsat 5 satellite orbit drift, and the temporal oc-
currence of periodic station keeping maneuvers, the 27 years of local

overpass times (tlocal) and 2011 reference times (treference) were plotted
and summary statistics (mean, standard deviation, and range) were
computed independently for the Texas and Minnesota data.

To examine the seasonal variation of the observed solar zenith angle,
and the impact of the Landsat 5 satellite drift, the θobserved and (θobserved−
θreference) was plotted for 1985, 1990, 1995, 2000, 2005, and 2010. Sum-
mary statistics of the difference (θobserved− θreference) were derived inde-
pendently for each Landsat 5 TM acquisition over the 27 years of Texas
andMinnesota data. The angles θobserved and θreference should be similar in
2011 with only small differences due to the fifth degree polynomial fit
error used to derive treference, in other years greater differences between
θobserved and θreference will be indicative of Landsat 5 orbit differences rel-
ative to year 2011. Conventional ordinary least squares (OLS) linear re-
gression fits of the differences (θobserved − θreference) as a function of the
date of the Landsat acquisitionwere generated for the Texas andMinne-
sota data. The regression slopes were examined as they quantify the
first-order solar zenith trend introduced by the Landsat 5 orbit drift.
The goodness of fit of the OLS regressions were assessed by the coeffi-
cient of determination (r2) and the significance of the OLS regressions
assessed by examination of the regression overall F-statistic p-value.

3.4. Landsat 5 TM reflectance and NDVI time series modelling using a semi-
empirical BRDF model

3.4.1. MODIS BRDF spectral model parameter derivation
A number of models have been developed to simulate reflectance

and how it varies with the optical properties of the surface components
and their structural variability and physical arrangement (Gobron et al.,
1997; Jacquemoud et al., 2009; Disney et al., 2011; Yin et al., 2015). In
this study however, as we are interested only in the change in surface
reflectance due to solar geometry changes, an established semi-empiri-
cal BRDF model is sufficient. The Ross-Thick/Li-Sparse-Reciprocal BRDF
spectralmodelwas used to derive synthetic nadir BRDF-adjusted reflec-
tance (NBAR) independently for the 27 years of Landsat 5 TM Texas and
Minnesota data. To reduce reporting complexity, only the NBAR values
for the red and near-infrared (NIR), and also the NDVI (derived as NIR
minus red NBAR divided by their sum), were estimated. The red and
NIR NBAR values were derived, as Eq. (1), setting the view zenith to 0°
and setting the solar zenith angle to either θobserved or to θreference and
using fixed spectral BRDF model parameter values. Definition of the az-
imuthal angles is unimportant because at nadir view the reflectance is
independent of the azimuthal geometry.

Fixed BRDF spectralmodel parameterswere used so that only the ef-
fects of the Landsat 5 orbit drift on the solar zenith were modelled, i.e.,
surface temporal changes were not modelled. Average CONUS and
also average CONUS land cover specific parameters were used as reflec-
tance anisotropy is expected to be different among land cover classes
(Barnsley et al., 1997; Roberts, 2001; Gao et al., 2003). The CONUS
mean red and the mean NIR parameter values were derived from the
MODIS MCD43 data considering only the highest quality snow-free
CONUSMCD43500mpixel values defined every 16days for 2010 as de-
scribed in Roy et al. (2016b). Similarly, the mean 12month red and NIR
spectral BRDFmodel parameters for each of theMODIS land cover clas-
seswere derived. AnyMCD43 pixels that were located where the corre-
sponding 2010MODIS land cover pixels were classified as snow and ice,
permanent wetland, or water, were not considered. The snow and ice,
permanent wetland, and water classes were not considered because
BRDF inversion over snow covered surfaces and water may be less reli-
able (Schaaf et al., 2002, Roy et al., 2016b) and because wetlands are
known to be classified unreliably (Friedl et al., 2010).

3.4.2. Landsat 5 TM NBAR reflectance and NDVI time series modelling
For each Landsat 5 TM acquisition, the red, NIR and NDVI NBAR

values were derived for the θobserved and for the θreference solar zenith an-
gles; denoted ρred observed and ρred reference, ρNIR observed and ρNIR reference,
and NDVIobserved and NDVIreference. Summary statistics of ρred observed −
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ρred reference, ρNIR observed − ρNIR reference, and NDVIobserved − NDVIreference,
were derived independently for the 27 years of Texas and Minnesota
Landsat 5 TM data. Conventional OLS linear regression fits of the NBAR
differences as a function of the date of the Landsat acquisitionwere gen-
erated and the regression slopes were examined as they quantify the
first-order reflectance trend introduced by the Landsat 5 orbit drift.
The goodness of fit of the OLS regressions were assessed by the coeffi-
cient of determination (r2) and the significance of the OLS regressions
assessed by examination of the regression overall F-statistic p-value.
This analysis was undertaken independently using the NBAR values de-
rived using the different sets of 12 month mean BRDF spectral model
parameters.

4. Results

4.1. Landsat 5 TM local overpass time variation

Fig. 1 shows the 27 years of local overpass times (tlocal in decimal
24-hour time) for the Minnesota and Texas data. There is an evident
temporal pattern of increasing and then decreasing overpass times as
the Landsat orbit was adjusted by periodic station keeping maneuvers.
Over the 27 years the mean tlocal was 10.3840 and 10.0535 h for
Minnesota and Texas respectively (horizontal black lines, Fig. 1). The
mean values are different between the two locations because tlocal in-
creases with latitude (Ignatov et al., 2004; Zhang et al., 2016). Impor-
tantly, and quite clearly, the local overpass time varied over the
27 years. In the mid-1990s there were evidently fewer station keeping
maneuvers, this corresponded to the period when Landsat 5 was oper-
ated commercially, and the greatest Landsat 5 overpass time drifts
occurred. The local overpass times increased after 2002 and reflected
the Federal government's efforts to begin to adjust the Landsat 5 orbit
to match that of Landsat 7. Over the 27 years the range (maximum
minus minimum) and standard deviations of the overpass times were
0.9153 and 0.2110 h respectively (Minnesota) and 0.9174 and
0.2275 h respectively (Texas).

The illustrated reference modelled Landsat local overpass time for
2011 (treference) (red dots, Fig. 1) have 27 year mean values of 10.6367
and 10.3640 h for Minnesota and Texas respectively. The treference values
are derived only as a function of latitude (Eq. (4)) and so should be con-
stant over the 27 years. However, there is a small temporal variation
(maximum tominimum ranges of 0.0025 h and 0.0005 h for Minnesota
and Texas respectively) due to latitudinal shifts in the Landsat path/row
locations (Kovalskyy and Roy, 2013). This variation has no impact on

solar zenith value differences computed as (θobserved − θreference) that
are examined in the following sections. Evidently, after 2005 the local
overpass times are close to the treference times; they are not exactly the
same because the Landsat 5 orbit still drifted and because of the statis-
tical fitting error used to derive Eq. (4) (mean absolute difference of
2.34 min) (Zhang et al., 2016).

4.2. Landsat 5 TM solar zenith angle variation

Fig. 2 (top) shows six example years (every five years since 1985) of
θobserved plotted as a function of the day of year of image acqusition for
Minnesota (left) and Texas (right). The expected seasonal variation in
θobserved is apparent with the smallest solar zenith angles occurring in
the northern hemisphere summer when the sun is most directly over-
head at the time of Landsat overpass. The evident difference in θobserved
among the years is due predominantly to the Landsat 5 orbit drift.
Over the 27 years (not plotted) the maximum and minimum θobserved
values occurred on December 20, 1995 (77.5731°) and June 12, 2007
(29.7330°) respectively for Minnesota and on January 5, 1996
(61.3363°) and May 27, 2007 (22.1039°) respectively for Texas.

Fig. 2 (bottom) shows the difference between the observed solar ze-
nith and the modelled 2011 reference solar zenith. The greatest differ-
ences are N5° (Minnesota) and 10° (Texas). Among the illustrated
years the differences are greatest for 1995 when tlocal was particularly
different from treference (Fig. 1). The differences are greater for Texas
than Minnesota because over a day the sun moves more rapidly across
the sky (i.e., solar zenith angle changesmore rapidly) at lower latitudes.
Thus, the same tlocal− treference differencewill result in greater θobserved−
θreference differences at lower latitudes (i.e., Texas). The seasonal timing
of the differences also varies among years and, for example, the greatest
difference for year 2000 is in the spring and not in the summer as for the
other illustrated years.

Fig. 3 shows the 27 year solar zenith angle differences (θobserved −
θreference) plotted as a function of the date of Landsat 5 TM image acqui-
sition for Minnesota (top) and Texas (bottom). For visual reference the
green dots show the Summer Landsat acquisitions. Summer is defined
as the period spanning six weeks before and after June 21 when the
summer solstice occurs. As observed in Fig. 2, the solar zenith angle dif-
ferences exhibit a pronounced seasonal variation and in each year there
are greater differences in summer than in winter. Over the 27 years the
mean absolute differenceswere 1.3727° and 3.2328°, and themaximum
differences were 5.8885° (occurring on July 13, 1995) and 11.2415°
(July 29, 1995), for Minnesota and Texas respectively.

Fig. 1. 27 years of Landsat 5 TM local overpass times (tlocal Eq. (3)) (black dots) and 2011 reference overpass times (treference Eq. (4)) (red dots) for Minnesota (path/row 27/26, left) and
Texas (path/row 27/42, right). The 27 year mean tlocal is shown by the horizontal black lines.
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4.3. Landsat 5 TM reflectance and NDVI time series modelling

4.3.1. Mean MODIS BRDF model parameters
The 12 month mean CONUS and CONUS land cover class specific

BRDF spectral model parameter values are summarized for the red
and NIR bands in Table 1. The fvol and fgeo parameters weight the volu-
metric scattering and geometric-optical BRDF kernels respectively and
have no direct physical meaning, although they can be conceptualized
as describing the directional reflectance effects of inter-leaf and inter-
crown canopy gaps respectively (Lucht et al., 2000). The fiso parameter
provides an additive reflectance term that reflects nadir viewing and
solar geometry, and so can be considered as average BRDF-independent
(i.e., isotropic) reflectance value (Roy et al., 2016b).

Fig. 4 illustrates the use of the different BRDF spectral model param-
eter and the impact of solar zenith changes on themodelledNBARNDVI.
The predictedNBARNDVI derived for each fixed set of land cover specif-
ic (colored lines) and for the CONUS (black line) BRDF spectral model
parameters for solar zenith angles from 20° to 80° are shown. This
range of solar zenith angles is illustrated because theminimumsolar ze-
nith angle at the time of Landsat overpass is N20° for non-Antarctic ac-
quisitions and although at high latitudes the Landsat solar zenith can be
N80° (Bindschadler et al., 2008, Zhang et al., 2016), the MODIS BRDF

retrieval and atmospheric correction techniques are unreliable at such
high solar zenith angles (Schaaf et al., 2002; Lee and Kaufman, 1986).

Fig. 4 illustrates that the modelled NBAR NDVI increases with solar
zenith angle, particularly above about 60°, and that the increases are dif-
ferent among the land cover classes. This NDVI dependency on solar ze-
nith has been observed and modelled by other researchers as described
in the Introduction. The most pronounced solar zenith sensitivity is for
the structurally dominated (geometric-optically governed) land cover
types, particularly the closed shrubland and the evergreen needleleaf
forest classes, which has been observed and investigated previously
(Gao et al., 2003). The barren or sparsely vegetated class has the least
NDVI NBAR sensitivity to solar zenith, which is perhaps due to the low
NDVI amplitude and not particularly due to low reflectance anisotropy
(Huete, 1987; Deering et al., 1990). The CONUSmeanNBARNDVI values
exhibit average solar zenith sensitivity. These results indicate that a
change in the solar zenith due to orbit drift may cause significant
NBAR NDVI changes, particularly at latitudes and times of the year
when the solar zenith is high at the nominal Landsat overpass time.
This is investigated in the following section, considering NBAR derived
for the 12 month mean CONUS and the closed shrubland BRDF spectral
model parameters as surrogates for average and particularly anisotropic
surfaces respectively.

Fig. 2. Landsat 5 TM observed solar zenith angle (θobserved) (top) and solar zenith angle difference (θobserved− θreference) (bottom) plotted as a function of the acquisition day of the year for
Minnesota (path/row 27/26, left) and Texas (path/row 27/42, right). The colors show different acquisition years spaced five years apart from 1985 to 2010. The black dots shows the
θreference plotted every 16 days for the 2011 Landsat acquisitions dates. The vertical lines show the days of the year six weeks before and six weeks after the June 21 summer solstice.
Note, there were no available 1990 Landsat 5 TM data over the Texas site (Fig. 1).
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4.3.2. Modelled Landsat 5 TM reflectance and NDVI
Figs. 5 and 6 show the modelled ρred observed, ρNIR observed, and

NDVIobserved NBAR values derived using the 12 month mean CONUS
(blue) and closed shrubland class (red) spectral BRDF model

parameters for the 27 years ofMinnesota and Texas Landsat 5 TMacqui-
sitions. The NBAR variations evident in these figures are driven by
θobserved temporal changes only, no phenological, snow cover, or land
cover changes are modelled (the BRDF spectral model parameters are

Fig. 3. 27 years of Landsat 5 TM solar zenith differences (θobserved − θreference) plotted as a function of acquisition date for Minnesota (path/row 27/26, top) and Texas (path/row 27/42,
bottom). The green colors show the summer (June 21 ± six weeks) difference values.

Table 1
Red and NIR CONUS and land cover specific BRDF spectral model parameter values, n is the number of 500m highest quality and snow-free MODIS BRDF spectral parameters pixel values
considered and varies spectrally because of the number of high-quality parameters in the MODIS BRDF/Albedo quality product (MCD43A2) varies spectrally.

Class Red NIR

n fiso fvol fgeo n fiso fvol fgeo

Evergreen needleleaf forest 73,420,769 0.0546 0.0260 0.0159 72,945,739 0.2369 0.1775 0.0431
Evergreen broadleaf forest 3,140,442 0.0467 0.0278 0.0106 3,132,896 0.2663 0.1909 0.0292
Deciduous needleleaf forest 510,881 0.0571 0.0287 0.0114 495,839 0.2074 0.1405 0.0291
Deciduous broadleaf forest 65,759,474 0.0592 0.0296 0.0134 65,458,441 0.3241 0.1708 0.0508
Mixed forest 164,334,382 0.0493 0.0292 0.0114 163,281,787 0.2767 0.1695 0.0410
Closed shrublands 4,330,303 0.0875 0.0327 0.0258 4,317,408 0.2222 0.1654 0.0381
Open shrublands 166,861,668 0.2110 0.0624 0.0492 166,439,481 0.3052 0.1531 0.0518
Woody savannas 86,114,510 0.0751 0.0281 0.0185 85,815,927 0.2780 0.1803 0.0378
Savannas 6,309,508 0.0917 0.0436 0.0212 6,289,387 0.2579 0.1890 0.0320
Grasslands 336,410,414 0.1469 0.0656 0.0322 335,348,665 0.2704 0.2059 0.0296
Croplands 185,851,048 0.1140 0.0505 0.0217 184,466,616 0.3182 0.2083 0.0274
Urban and built-up 16,384,025 0.1149 0.0357 0.0248 16,305,600 0.2772 0.1623 0.0377
Cropland and natural vegetation mosaic 145,990,196 0.0812 0.0335 0.0173 145,170,752 0.3262 0.1931 0.0379
Barren or sparsely vegetated 18,160,663 0.3151 0.0918 0.0439 17,949,742 0.3784 0.1411 0.0416
CONUS mean 1,273,578,283 0.1131 0.0462 0.0247 1,267,418,280 0.2869 0.1833 0.0367
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fixed). For both sites, the CONUS mean NBAR NDVI values are smaller
than the closed shrubland equivalent values as observed in Fig. 4.

A seasonal NBAR variation is very evident, a similar modelled sea-
sonal NBAR variationwas foundbyGao et al. (2014). Each year themax-
imum and minimum modelled NBAR NDVIobserved values occur in the
northern hemisphere winter and summer respectively. This is because
the solar zenith angles at the time of Landsat overpass are maximal
and minimal in the winter and summer respectively (Fig. 2) and NBAR
NDVI increases with solar zenith (Fig. 4). The 27 year maximum
modelled NBAR NDVIobserved values occurred when the θobserved was
maximal, specifically, for the Minnesota and Texas Landsat 5 TM acqui-
sitions sensed on December 20, 1995 (θobserved=77.5731°) and January
5, 1996 (θobserved = 61.3363°) respectively. Over the 27 years the intra-
annual (i.e., seasonal) range of the modelled NBAR NDVIobserved values
for the CONUS BRDF parameters (Figs. 5 and 6 bottom, blue) is about
0.1 (Minnesota) and 0.05 (Texas) and for the CONUS closed shrubland
BRDF parameters (Figs. 5 and 6 bottom, red) is nearly twice as large.
This annual variation may have implications for Landsat NDVI based
phenological studies where solar zenith effects are assumed to be neg-
ligible (Fisher and Mustard, 2007; Kovalskyy et al., 2012; Bhandari et
al., 2012; Melaas et al., 2013).

4.3.3. Evaluation of modelled Landsat 5 TM reflectance and NDVI variation
Themodelled reflectance changes due to Landsat 5 TMorbit changes

are apparent in Figs. 5 and 6 but are largely obscured by seasonal
θobserved driven NBAR variations. Comparison of the modelled NBAR
values derived with solar zenith set to θobserved and set to θreference re-
duces the seasonal solar zenith variation (Fig. 2) and reveals the change
in modelled reflectance due to Landsat 5 TM orbit changes relative to
year 2011. This comparison is illustrated in Figs. 7 and 8 for Minnesota
and Texas respectively. These figures show the 27 years of modelled
red, NIR and NBAR differences (Δred = ρred observed − ρred reference,
ΔNIR = ρNIR observed − ρNIR reference, ΔNDVI = NDVIobserved − NDVIreference)
generated using the closed shrubland class spectral BRDF model

parameters. Tables 2 and 3 summarize the 27 year ΔNDVI NBAR variation
illustrated in Figs. 7 and8 and also for the results generatedusing the land
cover specific BRDF parameters. The mean absolute ΔNDVI NBAR differ-
ences over the 27 years are very small, typically only several thousandths
of an NDVI unit, and no greater than 0.0072 (Minnesota) and 0.0060
(Texas) for the closed shrubland class. The mean values do not capture
the temporal trends in the differences which are investigated below.

The straight lines in Figs. 7 and 8 show the OLS regression fits of the
ΔNDVINBAR values as a function of the date of acquisition and so capture
the first-order 27 year reflectance trends introduced by the orbit drift.
The NBARΔred andΔNIR values have an increasing trend (top andmiddle
of Figs. 7 and 8) and the NBAR ΔNDVI values have a decreasing trend
(bottom of Figs. 7 and 8) as the solar zenith and NDVI are positively cor-
related (Fig. 4). The regressions fits are all significant although the r2

values are not high (b0.6 Minnesota and b0.7 Texas) due to the influ-
ence of periodic station keeping maneuvers that are most apparent in
the NBAR ΔNDVI results (bottom rows of Figs. 7 and 8).

Long term analyses of Landsat greening trends often consider only
peak-vegetation conditions (McManus et al., 2012, Fraser et al., 2012;
Ju and Masek, 2016), and therefore the OLS regressions considering
only the northern hemisphere summer acquisitions are also examined.
The modelled Minnesota NBAR ΔNDVI OLS regression slopes (Fig. 7. bot-
tom) and their goodness of fit (Table 2) are quite differentwhen consid-
ering only the summer data (r2 ~0.5) compared to considering all the
data (r2 ~0.2). This is because the Minnesota winter solar zenith angles
are high, often N60° (Fig. 2) and under these conditions the NBAR NDVI
increases particularly rapidly with respect to solar zenith (Fig. 4) and so
even small differences between θobserved and θreference may cause large
NBAR ΔNDVI values. Conversely, the Texas OLS regressions lines consid-
ering all the data and only the summer data (Fig. 8, Table 3) are similar
because the Texaswinter solar zenith angles are lower and b60° (Fig. 2).
The slopes of the illustrated modelled NBAR ΔNDVI regression lines for
Minnesota are 0.0005NDVI/year (all data) and 0.0002 NDVI/year (sum-
mer data), and for Texas are 0.0006NDVI/year. The equivalent slopes for

Fig. 4.Modelled NBAR NDVI plotted as a function of solar zenith; derived from red and NIR NBAR values computed as Eq. (1) setting the view zenith to 0°, solar zenith angles from 20° to
80°, and using fixed 12month mean CONUS (black line) and 12month mean CONUS land cover specific (colored lines) spectral BRDFmodel parameters. The legends are shown ordered
from top to bottom in descending order of NBAR NDVI value at 20° solar zenith.
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the CONUS and the land cover specific BRDF spectral models are smaller
(Tables 2 and 3). The slopemagnitudes are small, for example, for Texas
they imply that themodelled NDVI at Landsat 5 launchwas about 0.016
greater than in 2011. Clearly, different trends will be obtained by

considering periods of stable overpass times (e.g., from approximately
1984 to 1994, or from 2007 to 2011) and periods of rapidly changing
overpass times (e.g., from approximately 1995 to 2000, or from 2003
to 2007) (Fig. 1).

Fig. 5. 27 years of Landsat 5 TMMinnesota (path/row 27/26)modelled NBAR red (ρred observed), NIR (ρNIR observed) and NDVI (NDVIobserved) values computed using the fixed 12monthmean
CONUS (blue) and closed shrubland class (red) spectral BRDF model parameters and setting the view zenith to 0° and the solar zenith to θobserved.
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Figs. 7 and 8 (and Tables 2 and 3) illustrate that temporal compari-
son of Landsat 5 data acquired on approximately the same (i.e., anniver-
sary) dates from certain different years will result in large reflectance
and NDVI differences due only to orbit changes. In particular, the maxi-
mum and minimum modelled NBAR ΔNDVI values occurred, for any of

the BRDF parameters, in 1995 and 2007 respectively and correspond
to the early tlocal values in 1995 and when tlocal and treference were most
similar in 2007 (Fig. 1). The smallest of the tabulated modelled NBAR
ΔNDVI ranges were 0.0161 (Minnesota) and 0.0045 (Texas) for the bar-
ren or sparsely vegetated class (which has the lowest NBAR NDVI

Fig. 6. 27 years of Landsat 5 TM Texas (path/row 27/42) modelled NBAR red (ρred observed), NIR (ρNIR observed) and NDVI (NDVIobserved) values computed using the fixed 12 month mean
CONUS (blue) and closed shrubland class (red) spectral BRDF model parameters and setting the view zenith to 0° and the solar zenith to θobserved.
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modelled sensitivity to solar zenith (Fig. 4)). The CONUS BRDF parame-
ters had intermediate modelled NBAR ΔNDVI ranges of 0.0505 and
0.0132 for Minnesota and Texas respectively. As expected, the greatest

modelled NBAR ΔNDVI ranges were for the closed shrubland class and
were 0.1085 (Minnesota) and 0.0208 (Texas). The magnitude of these
differences is not insignificant and is discussed in Section 5.

Fig. 7. 27 years of modelled Landsat 5 TM Minnesota (path/row 27/26) NBAR difference values for Δred = ρred observed − ρred reference, ΔNIR = ρNIR observed − ρNIR reference, and ΔNDVI =
NDVIobserved − NDVIreference computed using the fixed 12 month mean closed shrubland class spectral BRDF model parameters and setting the view zenith to 0° and the solar zenith to
θobserved and θreference. The black lines show the OLS regression lines of these data. The green colors show the summer (June 21 ± six weeks) NBAR difference values and their
regression lines.
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4.4. Example Landsat 5 TM images

Fig. 9 shows the NIR reflectance, NDVI, and solar zenith extracted
from twelve Landsat 5 TM images. The values for three documented

sites (Vogelmann et al., 2016) selected over areas of coniferous forest
with only gradual Landsat NDVI increase (green) and decrease (or-
ange), and an unchanging pumice desert with dispersed small herba-
ceous plants (blue) are illustrated. Pixel values for nine adjacent

Fig. 8. 27 years ofmodelled Landsat 5 TMTexas (path/row 27/42) NBAR difference values forΔred= ρred observed− ρred reference,ΔNIR= ρNIR observed− ρNIR reference, andΔNDVI=NDVIobserved−
NDVIreference computed using thefixed 12monthmean closed shrubland class spectral BRDFmodel parameters and setting the view zenith to 0° and the solar zenith to θobserved and θreference.
The black lines show the OLS regression lines of these data. The green colors show the summer (June 21 ± six weeks) NBAR difference values and their regression lines.
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Table 2
Summary statistics of the 27 years of modelledMinnesota (path/row 27/26) NDVI NBAR differences (ΔNDVI= NDVIobserved− NDVIreference) and OLS regression parameters derived consid-
ering different 12monthmeanBRDF spectral parameters. The 27 year range ofΔNDVI values and themean absolute (ΔNDVI) over the 27 years are definedwith NDVI units; the occurrence of
themaximum (ΔNDVI) andminimum (ΔNDVI) values are shown as decimal years. The results are tabulatedwith a row order ranked by decreasing Range (ΔNDVI). The values in parentheses
are for the summer months (June 21 ± six weeks) only. All of the regressions were significant with p-values b0.0001.

12 month mean BRDF spectral
parameter source

Range (Δ) = Max. (Δ) – Min. (Δ) Mean/Δ/ Date of
maximum (Δ)

Date of
minimum (Δ)

OLS coefficients m and c where
regression is Δ = m date + c

OLS
regression r2

Closed shrublands 0.1085
(0.0112)

0.0072
(0.0030)

1995.967
(1995.573)

2007.005
(2007.356)

Δ = −0.0005 date +1.0710
(Δ = −0.0002 date +0.4929)

0.1337
(0.5563)

Evergreen needleleaf forest 0.0667
(0.0074)

0.0046
(0.0020)

1995.967
(1995.573)

2007.005
(2007.356)

Δ = −0.0003 date +0.6804
(Δ = −0.0002 date +0.3336)

0.1416
(0.5572)

Grasslands 0.0623
(0.0095)

0.0050
(0.0026)

1995.967
(1995.573)

2007.005
(2007.356)

Δ = −0.0004 date +0.7561
(Δ = −0.0002 date +0.4269)

0.1794
(0.5611)

Open shrublands 0.0619
(0.0062)

0.0041
(0.0017)

1995.967
(1995.573)

2007.005
(2007.356)

Δ = −0.0003 date +0.6130
(Δ = −0.0001 date +0.2734)

0.1324
(0.5567)

Woody savannas 0.0550
(0.0079)

0.0043
(0.0022)

1995.967
(1995.573)

2007.005
(2007.400)

Δ = −0.0003 date +0.6409
(Δ = −0.0002 date +0.3597)

0.1712
(0.5604)

Savannas 0.0517
(0.0081)

0.0042
(0.0022)

1995.967
(1995.573)

2007.005
(2007.356)

Δ = −0.0003 date +0.6282
(Δ = −0.0002 date +0.3654)

0.1817
(0.5611)

All CONUS 0.0505
(0.0075)

0.0040
(0.0021)

1995.967
(1995.573)

2007.005
(2007.356)

Δ = −0.0003 date +0.5980
(Δ = −0.0002 date +0.3377)

0.1746
(0.5606)

Urban and built-up 0.0493
(0.0065)

0.0037
(0.0018)

1995.967
(1995.573)

2007.005
(2007.356)

Δ = −0.0003 date +0.5604
(Δ = −0.0001 date +0.2874)

0.1614
(0.5582)

Croplands 0.0404
(0.0079)

0.0036
(0.0022)

1995.967
(1995.573)

2007.005
(2007.356)

Δ = −0.0003 date +0.5480
(Δ = −0.0002 date +0.3629)

0.2140
(0.5643)

Cropland/Natural Vegetation mosaic 0.0339
(0.0058)

0.0028
(0.0016)

1995.967
(1995.573)

2007.005
(2007.575)

Δ = −0.0002 date +0.4291
(Δ = −0.0001 date +0.2656)

0.1941
(0.5635)

Evergreen broadleaf forest 0.0319
(0.0065)

0.0028
(0.0018)

1995.967
(1995.573)

2007.005
(2007.356)

Δ = −0.0002 date +0.4295
(Δ = −0.0001 date +0.2989)

0.2166
(0.5650)

Mixed forest 0.0247
(0.0044)

0.0020
(0.0012)

1995.967
(1995.573)

2007.005
(2007.400)

Δ = −0.0002 date +0.3032
(Δ = −0.0001 date +0.1995)

0.1912
(0.5628)

Deciduous needleleaf forest 0.0237
(0.0035)

0.0019
(0.0009)

1995.967
(1995.573)

2007.005
(2007.400)

Δ = −0.0001 date +0.2845
(Δ = −0.0001 date +0.1548)

0.1749
(0.5565)

Deciduous broadleaf forest 0.0227
(0.0037)

0.0018
(0.0010)

1995.967
(1995.573)

2007.005
(2007.400)

Δ = −0.0001 date +0.2670
(Δ = −0.0001 date +0.1684)

0.1794
(0.5654)

Barren or sparsely vegetated 0.0161
(0.0026)

0.0013
(0.0007)

1995.967
(1995.573)

2007.005
(2007.356)

Δ = −0.0001 date +0.2017
(Δ = −0.0001 date +0.1163)

0.1854
(0.5613)

Table 3
Summary statistics of the 27 years ofmodelled Texas (path/row27/42) NDVINBAR difference (ΔNDVI=NDVIobserved−NDVIreference) and theOLS regression parameters derived considering
different 12 month mean BRDF spectral parameters. All of the regressions were significant with p-values b0.0001.

12 month mean BRDF spectral
parameter source

Range (Δ) = Max. (Δ) − Min. (Δ) Mean/Δ/ Date of
maximum (Δ)

Date of
minimum (Δ)

OLS coefficients m and c where
regression is Δ = m date + c

OLS
regression r2

Closed shrublands 0.0208
(0.0179)

0.0060
(0.0059)

1996.142
(1995.573)

2007.137
(2007.356)

Δ = −0.0006 date +1.1421
(Δ = −0.0006 date +1.1256)

0.6160
(0.6678)

Grasslands 0.0168
(0.0157)

0.0051
(0.0052)

1996.142
(1995.573)

2007.137
(2007.356)

Δ = −0.0005 date +0.9642
(Δ = −0.0005 date +0.9945)

0.6239
(0.6715)

Savannas 0.0141
(0.0134)

0.0043
(0.0045)

1996.142
(1995.573)

2007.137
(2007.356)

Δ = −0.0004 date +0.8193
(Δ = −0.0004 date +0.8573)

0.6243
(0.6716)

Woody savannas 0.0140
(0.0132)

0.0043
(0.0044)

1996.142
(1995.573)

2007.137
(2007.356)

Δ = −0.0004 date +0.8075
(Δ = −0.0004 date +0.8407)

0.6239
(0.6713)

Croplands 0.0138
(0.0135)

0.0042
(0.0046)

1995.616
(1995.573)

2007.181
(2007.356)

Δ = −0.0004 date +0.7951
(Δ = −0.0004 date +0.8681)

0.6235
(0.6754)

Evergreen needleleaf forest 0.0136
(0.0122)

0.0040
(0.0040)

1996.142
(1995.573)

2007.093
(2007.356)

Δ = −0.0004 date +0.7626
(Δ = −0.0004 date +0.7658)

0.6197
(0.6689)

All CONUS 0.0132
(0.0124)

0.0040
(0.0041)

1996.142
(1995.573)

2007.093
(2007.356)

Δ = −0.0004 date +0.7593
(Δ = −0.0004 date +0.7905)

0.6243
(0.6718)

Open shrublands 0.0120
(0.0100)

0.0034
(0.0033)

1996.011
(1995.573)

2007.093
(2007.356)

Δ = −0.0003 date +0.6396
(Δ = −0.0003 date +0.6253)

0.6136
(0.6672)

Urban and built-up 0.0118
(0.0105)

0.0035
(0.0035)

1996.011
(1995.573)

2007.093
(2007.356)

Δ = −0.0003 date +0.6612
(Δ = −0.0003 date +0.6646)

0.6201
(0.6703)

Evergreen broadleaf forest 0.0114
(0.0112)

0.0034
(0.0038)

1995.616
(1995.573)

2007.137
(2007.356)

Δ = −0.0003 date +0.6449
(Δ = −0.0004 date +0.7191)

0.6183
(0.6759)

Cropland/Natural Vegetation mosaic 0.0101
(0.0098)

0.0031
(0.0033)

1995.616
(1995.573)

2007.137
(2007.356)

Δ = −0.0003 date +0.5870
(Δ = −0.0003 date +0.6304)

0.6246
(0.6744)

Mixed forest 0.0075
(0.0074)

0.0023
(0.0025)

1995.660
(1995.573)

2007.181
(2007.356)

Δ = −0.0002 date +0.4293
(Δ = −0.0002 date +0.4759)

0.6179
(0.6749)

Deciduous broadleaf forest 0.0065
(0.0063)

0.0019
(0.0021)

1995.616
(1995.573)

2007.225
(2007.400)

Δ = −0.0002 date +0.3642
(Δ = −0.0002 date +0.4010)

0.6200
(0.6731)

Deciduous needleleaf forest 0.0062
(0.0057)

0.0019
(0.0019)

1996.142
(1995.573)

2007.181
(2007.356)

Δ = −0.0002 date +0.3529
(Δ = −0.0002 date +0.3597)

0.6212
(0.6705)

Barren or sparsely vegetated 0.0045
(0.0043)

0.0014
(0.0014)

1996.142
(1995.573)

2007.093
(2007.356)

Δ = −0.0001 date +0.2622
(Δ = −0.0001 date +0.2750)

0.6253
(0.6729)
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30mpixels (colored circles) and themedian values (colored solid lines)
at each site are shown. The red surface reflectance values are not illus-
trated because the vegetated site red reflectance values are three
times lower than the desert values making it hard to illustrate them
on a single graph.

Due to the careful Landsat 5 image selection and processing (Section
2.5) the values in Fig. 9 should reflect only actual surface changes and
the impacts of Landsat 5 solar zenith changes. Summer anniversary im-
ages acquired nomore than ten days apart were used and so nominally
the surface was sensed under similar solar conditions given a constant
Landsat orbit. However, the images span the period with the greatest
Landsat 5 TM satellite overpass time change. The illustrated maximum
solar zenith (44.6332°) and minimum solar zenith (38.5769°) occurred
for images sensed in 1995 and 2007 respectively which was also the
years with maximum and minimum solar zenith observed in the
Texas and Minnesota metadata time series (Fig. 1).

The Fig. 9 results show actual Landsat 5 TMdata and provide support
for the modelled based findings of this paper. The maximum and mini-
mum NDVI values for the site with decreasing NDVI (orange), and the
minimum and maximum and reflectance values for both vegetation
sites, occurred in 1995 and around 2007 respectively which match the

years of maximum andminimum solar zenith respectively. The Landsat
5 TM NIR and NDVI time series appear temporally correlated with the
solar zenith angle. There are insufficient data to reliably de-trend the re-
flectance and NDVI values and so interpretation of correlations between
these data and the solar zenith angles should be treated with caution.
However, the median NDVI values have correlations with solar zenith
of 0.81 for the decreasing vegetation (orange),−0.20 for the increasing
vegetation (green), and 0.13 for the desert (blue) data. The small abso-
lute correlation value for the increasing vegetation data is because the
solar zenith is decreasing with year and so the correlation is reduced.
The desert correlation is small (0.13) likely because the desert NDVI is
less anisotropic, and certainly this is apparent for the BRDF modelled
“barren or sparsely vegetated” class NDVI results shown in Fig. 4. The
median vegetation NIR reflectance values have correlations with solar
zenith of −0.66 and −0.87 for the orange and green data respectively
and the red reflectance values have correlations of −0.82 and −0.45
for the orange and green data respectively. This negative correlation
was also apparent in the BRDF modelled results whereby red and NIR
NBAR reflectance decreased with increasing solar zenith (Figs. 5 and 6).

These results provide support for themodelled basedfindings of this
paper. However, as noted earlier, even for anniversary date

Fig. 9. Landsat 5 TM surface NIR reflectance and NDVI values for twelve summer anniversary date images sensed from 1991 to 2010 (open circles) andmedian values (solid colored lines)
and the corresponding Landsat 5 TM solar zenith angles (solid black lines). Results shown for 3 × 3 30 m pixels located at three sites around Crater Lake National Park, Oregon, USA. The
three sites are described in Vogelmann et al. (2016) and are for areas of coniferous forest with gradual NDVI increase (green), coniferous forest with gradual NDVI decrease (orange), and
sparsely vegetated pumice desert (blue).
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observations, inter-annual variations in the surface state (e.g., between
year soil moisture and vegetation condition variations) may be conflat-
ed with Landsat 5 TM orbit change induced reflectance effects. Further,
as noted by Vogelmann et al. (2016), what exactly is happening at the
sites over the Landsat 5 TM record is unknown.

5. Discussion and conclusion

In this paper irregular Landsat 5 station keeping maneuvers (orbit
burns) are shown to have resulted in local overpass time changes
much greater than ±15 min from the original specified 9:45 a.m.
mean sunlit equatorial crossing time. Over the 27 years of Landsat 5
TM observations (March 1984 to November 2011) the range (maxi-
mum minus minimum) of the overpass times were 0.9153 and
0.9174 h for Landsat path/rows located in Minnesota (centered on
91.9363°W 48.8687°N) and Texas (centered on 98.9661°W 26.0011°
N) respectively. These nearly 1 hour changes resulted in changes in
the Landsat 5 observed solar zenith angle of N10°.

The observed solar zenith angles were compared with a reference
year 2011 solar zenith considering a total of 567 (Minnesota) and 447
(Texas) acquisitions. The reference year 2011 solar zenith was derived
using anastronomicalmodel (Blanco-Muriel et al., 2001) parameterized
with the Landsat acquisition center latitude, longitude, date of acquisi-
tion, and the modelled 2011 local overpass time at that latitude. The
modelled 2011 local overpass time was defined as a function of the
Landsat acquisition center latitude using a published statistical model
(Zhang et al., 2016). Over the 27 years of Landsat 5 acquisitions the
mean absolute solar zenith angles differences between the observed
and the 2011 modelled solar zenith angles were 1.4° and 3.2°, and the
maximum differences were 5.9° and 11.2°, for Minnesota and Texas re-
spectively. The Texas mean absolute and maximum solar zenith angle
differences of 3.2° and 11.2° are about half of themaximum7.5° Landsat
viewing zenith angle and are nearly comparable to the 15° Landsat field
of view respectively. Thus, assuming the principal of reciprocity, where-
by switching the solar and viewing geometry will provide similar direc-
tional reflectance (Kriebel, 1996; Snyder, 1998), the orbit induced solar
zenith changes are expected to cause Landsat directional reflectance
artifacts comparable to those associated with Landsat view zenith vari-
ations (Gao et al., 2014; Roy et al., 2016b).

Long term analyses of Landsat greening trends and responses of
vegetation to climate and anthropogenic influences are expected to be
increasingly undertaken to take advantage of the growing multi-sensor
Landsat data record (Roy et al., 2014). Considerable effort has been
expended on developing vegetation index time series fitting functions
to detect trends and seasonal changes in satellite time series (Tucker
et al., 2001; Jönsson and Eklundh, 2004; Verbesselt et al., 2010;
Fensholt et al., 2012). In this study the change in reflectance due to
Landsat 5 orbit changes relative to year 2011were isolated by quantify-
ing the difference between modelled NBAR derived independently for
the Landsat 5 observed and the reference year 2011 solar zenith angles.
The modelled NBAR values were derived using the MODIS Ross-Thick/
Li-Sparse-Reciprocal BRDF model and fixed 12 month mean CONUS
and land cover specific BRDF spectral model parameters. Ordinarly
least squares (OLS) linear regression fits of the modelled NBAR differ-
ence values as a function of the acquisition date indicated an increasing
trend in red and near-infrared NBAR and a decreasing trend in NDVI
NBAR due to orbit changes. The OLS regressions fits were not high due
to the influence of periodic station keeping maneuvers but were signif-
icant (p-values b0.0001). The trends may cause spurious detection of
“browning” vegetation events and underestimation of greening trends
over the (near climate length) 27 year data record. However, the mag-
nitude of the trendswere small, nomore than 0.0006 NDVI/year, equiv-
alent to about a 0.016 NDVI change over the Landsat 5 TM data record.

The most important finding of this study is that comparison of cer-
tain years of Landsat 5 data may result in significant reflectance and
NDVI differences due only to Landsat 5 orbit changes. The greatest

differences will occur when 1995 Landsat 5 TM data are compared
with 2007 to 2011 data as in these periods the Landsat 5 local overpass
times were nearly 1 h different. The reported analysis found that NDVI
values could beup to 0.1085 greater in 1995 than in 2011 for anisotropic
land cover types and up to 0.0505 greater for average CONUS land cover
types. This difference in magnitude is not insignificant and is compara-
ble or greater than other non-surface perturbations. For example, the
mean atmospheric correction residual error for Landsat NDVI was
found to be 3.1% and 6.3% using state of the practice radiative transfer
based atmospheric correction methods (Ju et al., 2012) and the Landsat
5 TM absolute calibration error is 7% (Markham and Helder, 2012).

This study did not consider Landsat 5 orbit change impacts on
Landsat 5 MSS reflectance. This was because the Landsat 5 local over-
pass time was relatively stable in the period 1984 to 1992 (due to regu-
lar station keeping maneuvers) when the greater majority of Landsat 5
MSS data were acquired. However, given the increasing focus on
Landsat time series analyses that include both MSS and TM data
(Pflugmacher et al., 2012; Gómez et al., 2011; Fickas et al., 2016; Lobo
et al., 2015), caution in the temporal comparison of Landsat 5 TM data
acquired from 1995 onward with earlier Landsat 5 MSS data is sug-
gested. Similarly, caution in the comparison of Landsat 5 TM data with
Landsat data from other Landsat satellites is suggested. For example,
the Global Land Survey (GLS) Landsat data set provides relatively
cloud-free single date acquisitions for 1975, 1990, 2000, 2005, and
2010, and includes Landsat 5 TM data for 1990, 2005 and 2010
(Tucker et al., 2004; Gutman et al., 2008).

There are a number of factors thatmay have influenced the results of
this study. First, even for a well maintained satellite orbit, system de-
pendent and independent factors perturb the orbit and so the sensor at-
titude and position varies (Moreno and Meliá, 1993; Wolfe et al., 2002;
Lee et al., 2004). Uncertainties in the position and attitude of the sensor
may result in viewing and solar geometry errors (Roy and Singh, 1994).
The solar zenith over mountainous terrain may be greater or smaller
than for a flat horizontal surface (Teillet et al., 1982) and this is not
reflected in the Landsat solar elevation metadata used in this study.
However, no definitive Landsat study of these issues has been undertak-
en, and we did not consider them. Second, the Landsat 5 TM and the
MODIS red and NIR bands have slightly different spectral response dif-
ferences (Steven et al., 2003) but this is unimportant for the main find-
ings of this study as they are based on comparison of the difference
between the NBAR derived for the observed and for the reference year
2011 solar zenith angles. Third, the reported statistical fitting error of
the 2011 local overpass timemodel, although low (r2=0.988,mean ab-
solute error of 2.34 min) may cause small errors in the reference solar
zenith calculation, although the solar zenith angle subtended in a few
minutes is typically b0.5°. These errors will have little effect on the re-
ported NBAR reflectance and NDVI ranges and trends because they are
calculated based on the relative temporal difference between the
NBAR for the observed and 2011 reference solar zenith values and so
in two time periods the reference solar zenith angle errors will largely
cancel. Fourth, the MODIS BRDF spectral model parameters may not
provide a sufficient representation of the surface reflectance anisotropy.
The spatial scale dependency of BRDF and its parameterization from re-
motely sensed observations is an on-going area of research (Widlowski
et al., 2001; Pinty et al., 2002; Román et al., 2011). Certainly, there is a
significant scale difference between Landsat 30 m and MODIS
500m pixels and also the CONUS fixedMCD43 500m spectral BRDF pa-
rameter values are smoothed by taking the mean values over twelve
months. For these reasons certain geographic locations and times will
have greater reflectance anisotropy than captured by the BRDF spectral
model parameters and consequently greater Landsat 5 orbit induced re-
flectance changes than reported in this study.

It is well established that in order to extract information from
Landsat time series reliably the data should be pre-processed to remove
or minimize remote sensing variations due to non-surface changes, for
example, due to factors including sensor degradation and calibration
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changes (Markham and Helder, 2012), atmospheric and cloud contam-
ination (Masek et al., 2006), and ideally any data processing issues
found in the systematic generation of satellite products (Roy et al.,
2002). Further research is recommended to minimize the reflectance
impacts of the Landsat 5 orbit changes. One solution is to derive Landsat
NBAR for a constant solar zenith angle (Flood et al., 2013), however,
semi-empirical BRDFmodels perform less reliably when used to predict
reflectance at solar and view angles that are different to those of the re-
flectance data used to derive the BRDF model parameters (Lucht and
Lewis, 2000). The resulting BRDF solar zenith angle extrapolation errors
can be significant given the very large annual variation in Landsat solar
zenith observed in this and other studies (Zhang et al., 2016). Another
approach suggested by Gao et al. (2014) is to use a pre-existing land
cover map and a spatially and temporally explicit look up map of
MODIS BRDF parameters indexed by land cover class and NDVI value
to normalize BRDF effects. However, this approach is not feasible for
global time series application because no multi-temporal 30 m global
land cover product exists. Recently, Roy et al. (2016b) found that be-
cause the BRDF shapes of different terrestrial surfaces are sufficiently
similar over the narrow 15° Landsat field of view, a single fixed set of
MODIS BRDF spectral model parameters may be adequate to normalize
Landsat view zenith BRDF effects. This NBAR adjustment approach has
been implemented using a 2011 solar zenith definition (Zhang et al.,
2016) to generate global coverage 30 m Landsat 5 and 7 NBAR surface
reflectance data sets that are now available at (http://globalweld.cr.
usgs.gov/collections/). Importantly, although the resulting Landsat
view zenith NBAR adjustment has little sensitivity to the land cover
type, condition, or surface disturbance, and so is suitable for application
to the entire Landsat data record, it is not recommended for correction
of data to a constant solar illumination angle across a wide range of
sun angles (Roy et al., 2016b). Further research to develop a Landsat
BRDF normalization approach for both view and Landsat 5 orbit drift
solar geometry changes is recommended. Meanwhile, users of Landsat
5 TM time series are encouraged to consider the image acquisition
solar zenith information with respect to these issues, and pay particular
cautionwhen comparing images acquired over anisotropic surfaces that
have large solar zenith acquisition differences.
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