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ABSTRACT 

GENETIC FACTORS ASSOCIATED WITH THERMAL TOLERANCE IN GROW-

FINISH PIGS AS MEASURED BY FEEDING BEHAVIOR 

AMANDA JEANNE CROSS 

2017 

The objectives of this study were: one, use electronic monitoring to determine 

feeding behavior patterns of grow-finish pigs throughout the year and to identify changes 

that occurred during heat stress events, and second, identify genetic markers associated 

with changes in feeding behavior due to heat stress. Pigs were placed in a grow-finish 

barn at approximately eight to ten weeks of age in 6 pens of 40 animals and monitored 

for 4-months. Gilts and barrows were from three different sire breeds, Duroc, Landrace, 

and Yorkshire.   Each pen had one feeder, designed to feed 5 animals at a time. Feeders 

were fitted with an antenna and a multiplexer. Data were collected from antennas every 

20 seconds. Outside temperature and humidity were obtained from a National Weather 

Station and used to calculate temperature humidity index (THI). Days in the study were 

partitioned into groups based on their maximum temperature humidity index (THI), 

where a THI less than 23.33°C was classified as “Normal”, a THI between 23.33°C and 

26.11°C was classified as “Alert”, a THI between 26.11°C and 28.88°C was classified as 

“Danger”, and a THI greater than 28.88°C was classified as “Emergency”. Feeding 

behavioral differences among breeds and sex were observed across all THI categories. 

Landrace-sired pigs had fewer feeder visits compared to Duroc- and Yorkshire-sired pigs. 

Gilts had fewer feeder visits than barrows in all THI categories. A genome-wide 

association study for an animal’s change in feeding behavior between different THI 
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categories was also conducted. Heritabilities for the difference in a pig’s feeder visits 

between each of the THI categories were low to moderate (0.136 to 0.406).  Greater than 

71% of genetic variation was explained by regions within eight chromosomes in the 

comparison between Danger and Emergency THI. Biological processes related to sensory 

perception and detection of chemical stimuli were over-represented in the set of genes 

located in these regions. Differences in feeding behavior patterns between THI categories 

demonstrate that heat stress affects sire breeds and sexes differently. Also genetic 

markers identified in this study may facilitate genetic selection for improved grow-finish 

performance during elevated ambient temperatures.  

  



1 
 

 

CHAPTER 1 

 REVIEW OF LITERATURE 
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INTRODUCTION 

 Pork is a widely consumed protein source throughout the world. In order for pork 

to remain competitive, production efficiency must improve. Certain types of stressors 

encountered throughout production negatively impact production efficiency. Heat stress 

is a major stressor affecting pork production.  Although there have been advances in 

nutrition, production management, and barn cooling systems, production efficiency 

continues to suffer during summer months. Heat stress is an economic concern as well as 

an animal welfare concern. Little is known about thermal neutral zones for different 

breeds of pigs during the finishing phase or the impact heat stress has on those different 

breeds. In order to predict thermal neutral zones, it is important to understand feeding 

behavioral patterns throughout the year. Therefore, the areas that will be covered in this 

literature review are feeding behavior patterns and factors affected by heat stress. 

 

FEEDING BEHAVIOR 

 Several different systems are available to study feeding behavior through 

measuring feed intake, but most of these systems only allow one pig to feed at a time 

(Brown-Brandl et al., 2013). While these systems provide important information on feed 

intake and behavior, it is not a true representation of grow-finish commercial production, 

where animals eat from group feeders.  A system that records meal length, meal interval, 

number of meals per day, and total time spent eating for pigs in a grow-finish commercial 

setting was created by Brown-Brandl and Eigenberg (2011).  Moderate heritabilities have 

been estimated for feeding behavior in individually housed pigs (Chen et al., 2010).  

Rohrer et al. (2013) reported heritabilities for feeding behavior ranging from 0.157 to 
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0.604 in group-housed pigs using the system developed by Brown-Brandl and Eigenberg 

(2011). 

Several factors influence feeding behavior in pigs. These factors include but are 

not limited to age, sex, growth rate, type of housing (group versus individual), and type 

of feeder. As pigs increase in age they will need to spend more time at feeders to 

consume enough feed to meet growth requirements. For example, average time spent at 

the feeder on day 65 of age was 24 minutes per day and increased to 76.7 minutes per day 

at 107 days of age (Brown-Brandl et al., 2013). Time spent eating increased roughly 1.28 

minutes per day (Brown-Brandl et al., 2013). In contrast, several studies have reported no 

change in time spent at the feeder, but rate of feed intake increased (Labroue et al., 1994; 

Quiniou et al., 2000) as age increased. Hyun et al. (1997) reported an average time of 75 

min per day spent at the feeder. Rohrer et al. (2013) reported a slightly lower average 

feeder time of 68 minutes per day for grow-finish pigs, with an average meal length of 

360 seconds.  

Heritability estimates for meal characteristics were moderate to highly heritable 

(0.315 to 0.604) (Rohrer et al., 2013). A heritability of 0.38 (± 0.08) for daily feeding 

time has been reported (Chen et al., 2010). Rohrer et al. (2013) reported a similar 

heritability for daily feeding time (0.37 ± 0.08). However, de Haer and de Vries (1993) 

reported a lower daily feeding time heritability of 0.24  (± 0.20). A quantitative trait locus 

located on chromosome 6 has been discovered for daily feeding time (Houston et al., 

2005). Zhang et al. (2009) reported 2 quantitative trait loci, located on chromosomes 7 

and 9, for number of meals per day. Time spent at the feeder eating and length of meal 

were both positively correlated, genetically, to weight and fat at 154 days of age (Rohrer 
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et al., 2013). Feeding behavior is moderate to highly heritable and correlated to 

performance traits. 

 In a feeding behavior study, Brown-Brandl et al. (2013) reported barrows spent 

more time at feeders than gilts between 91 and 158 days of age.  Barrows spent 

approximately 85 minutes per day at feeders, while gilts only spent around 71 minutes 

per day at feeders (Brown-Brandl et al., 2013).  In contrast, Hyun et al. (1997) reported 

no difference between sex and time spent at feeders.  If barrows and gilts are in mixed 

pens, barrows could spend more time at feeders than gilts, increasing competition 

between gilts and barrows.  

 Animals that have a higher growth rate spend more time at feeders.  High gaining 

pigs had the highest average time spent at the feeder (79.1 ± 0.45 min d-1) and low 

gaining pigs had the lowest average time spent at the feeder (63.6 ± 0.35 min d-1) 

(Brown-Brandl et al., 2013). Separation between the high and low gain groups occurred 

by day 7 (Brown-Brandl et al., 2013). Once high gain pigs were removed from pens, low 

gain pigs increased their time at the feeder (Brown-Brandl et al., 2013) demonstrating 

how group housing imposes a stress of competition for feed among pigs.  

Stressors impact behavior in pigs. Several methods are used to determine a pig’s 

ability to handle stressful situations.  To test how a pig copes with a perceived stressful 

situation researchers have used the backtest (Hessing et al., 1993; Cassady, 2007; Velie et 

al., 2009). Heritabilities for total time spent struggling was 0.49 and total attempts to 

struggle was 0.53 (Velie et al., 2009). Rohrer et al. (2013) reported smaller heritabilities 

for total time spent struggling (0.154) and total attempts to struggle (0.155).  Higher 

heritabilities reported by Velie et al. (2009) could be due to performing the backtest on 
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each pig twice during the suckling period, therefore reducing environmental variance. 

Age was also a difference between the two studies. Rohrer et al. (2013) performed the 

backtest 2 days after weaning, while Velie et al. (2009) performed the backtest between 7 

and 14 days of age.  Performing the backtest after the pigs were removed from the sow 

eliminates environmental effects of the sow’s reaction suggesting that behavior is both a 

genetic and environmental trait.   

 Another mechanism to examine how a pig handles a stressful situation is to look 

at temperament scores while in the chute (Holl et al., 2010). Animals are scored on a 

scale of 1 to 5, with a score of 1 representing calm and little movement and 5 

representing continuous movement, vocalizations, and attempts to escape (Holl et al., 

2010).  Of the pigs studied, 58.1% of the pigs were in category 1, 28.5% in category 2, 

8.9% in category 3, 4.0% in category 4, and only 0.5% of the pigs were in category 5 

(Holl et al., 2010). Females had lower activity scores than males (Holl et al., 2010). 

Activity score had a heritability of 0.23 (Holl et al., 2010). When using a threshold 

model, reported heritability of activity score increased to 0.30 (Holl et al., 2010). Animals 

with greater activity in the chute had decreased feed intake (Nkurmah et al., 2007). 

Behavioral traits are heritable and are correlated with performance traits (van Erp-

van der Kooij et al., 2000). Velie et al. (2009) reported a negative phenotypic correlation 

between time spent struggling and number of struggle events with growth in the 

farrowing house. Total number of struggle attempts was positively correlated 

(phenotypic) to backfat (Velie et al., 2009). Therefore, animals that were less responsive 

to the backtest were leaner. Similar results were reported by Cassady (2007). Activity 

score is genetically correlated with 154-day weight (Holl et al., 2010). As activity score 
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increased, growth became slower, but backfat increased (Holl et al., 2010).  Decreasing 

activity score and time spent struggling, is expected to result in more docile and less 

stressed animals, therefore, maintaining leanness and increasing growth performance. 

 Backtest and feeding behavior are genetically correlated (Rohrer et al., 2013). 

Time until first struggle on the backtest had a positive genetic correlation with number of 

meals per day and a negative genetic correlation with average meal length (Rohrer et al., 

2013). Therefore, as time until first struggle increased, number of meals increased and 

average meal length decreased.  Pigs that spent more time struggling had longer average 

meal lengths, and spent less time at the feeder each day (Rohrer et al., 2013). Animals 

that had more struggle attempts and spent more time struggling preferred to consume 

meals on the gate-side of the feeder (Rohrer et al., 2013).   

Animals which had a more reactive response to stressors consumed fewer meals 

of longer length and ate when fewer animals were at the feeders (Rohrer et al., 2013). 

This correlation could be due to these higher stress animals avoiding other animals while 

eating. In order to improve animal performance, a decrease in number of stressful events 

needs to occur. Selection on an animal’s ability to cope with stressful events would also 

increase performance.   

 

HEAT STRESS 

 Stress is the reaction to stimuli disrupting physiological equilibrium or 

homeostasis (Khansari et al., 1990). Heat stress is an environmental stressor imposed on 

animals during warm months. As temperature increases, animals need to remove heat 

from their bodies. Pigs experience heat stress when they produce more heat than they can 
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dissipate.  Heat production in pigs comes from feed consumption, maintenance, and 

physical activity (Kerr et al., 2003). Unlike other animals, pigs have a limited capacity to 

use water evaporation to lose heat (Ingram, 1965). In order to adapt to warm 

environments pigs decrease heat production by reducing the amount of heat that needs to 

be eliminated (Nienaber and Hahn, 1982; Collin et al., 2001b; Quiniou et al., 2001).  

As global climate continues to change ambient temperature continues to rise, and 

complications due to heat stress will increase in pork production (Renaudearu et al., 

2011).  Heat stress occurs in tropical regions for extended periods of time as well as 

temperate regions during warmer summer months (Collin et al., 2002).  Large 

commercial production units with advanced production management and barn cooling 

systems as well as smaller production systems without advanced cooling systems are all 

impacted negatively by heat stress. Although most commercial swine production has 

barns with engineered ventilation systems, variations in air temperature still occur (Bond 

et al., 1967). These variations in air temperature can be caused by poor temperature 

control, poor building design, changes in animal heat loss, and outside temperatures 

(Bond et al., 1967).  

Pigs have a zone of thermal comfort in which they are most productive. This 

thermal comfort zone is dependent on several different factors, including genetics, 

physiological status, relative humidity, and velocity of ambient air (NRC, 1981; Nyachoti 

et al., 2004). High temperatures and humidity negatively impact all stages of pork 

production.  Decreased industry production includes, but is not limited to reduced 

growth, poor sow performance, increased morbidity and mortality, inconsistent market 

weights, altered carcass composition, increased days to slaughter, and increased 



8 
 

 

production costs (Collin et al., 2002; Brown-Brandl et al., 2004; Baumgard and Rhoads, 

2013, Gabler and Pearce, 2015).  

Heat stress has a large impact on production loss for the swine industry. 

Economic losses, due to heat stress, for the United States pork industry are estimated at 

$300 million a year (St-Pierre et al., 2003).  This loss is from all aspects of production 

from farrow to finish. Heat stress decreased dry matter intake, milk yield, and increased 

body weight loss during lactation in sows as well as decreases growth of market pigs 

(McGlone et al., 1988; Johnston et al., 1999; Collin et al., 2001a; Renaudeau and Noblet, 

2001; Renaudeau et al., 2001). Of this estimated economic loss, a majority of it ($202 

million per year) occurs during the grow-finish phase (St-Pierre et al., 2003).   

 

IMPACT OF HEAT STRESS 

Respiration Rate 

 A pig’s initial response to heat stress begins with increased respiration rate 

(Huynh, 2005). Increasing respiration rate allows the pig to try to remove some of the 

excess heat from its body.  Respiration rate increased from 49 ± 2 breaths per minute in 

thermoneutral (21.5°C) pigs to 94 ± 2 breaths per minute in heat stressed (34.1°C) pigs 

during the growing phase (Johnson et al., 2015a). Another study, conducted during the 

finishing phase, reported respiration rates increased from 58 ± 2 breaths per minute to 92 

± 2 breaths per minute in thermoneutral versus heat stressed pigs (Johnson et al., 2015b).  

It is important to note that respiration rate will change depending on time of day. 

At night during hot summer months, temperature will cool down, giving pigs a break 

from heat. Respiration rate for heat stressed pigs in a hot, diurnal environment went from 
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41.0 breaths per minute in the morning to 69.3 breaths per minute in the afternoon, while 

respiration rate for thermoneutral pigs went from 28.6 breaths per minute in the morning 

to 37.6 breaths per minute in the afternoon (Lopez et al., 1991). Increased respiration rate 

in thermoneutral pigs could be due to an increase in activity level during the afternoon. 

Overall, there was a larger increase in respiration rate in the heat stressed pigs compared 

to thermoneutral pigs.  Therefore, as temperature increases, respiration rate will increase 

in order to dissipate heat being produced by the pig.  

 

Voluntary Feed Intake 

 If ambient temperature continues to increase and pigs are still producing more 

heat than they can remove from their body, a voluntary decrease in feed intake occurs 

(Nienaber et al., 1987a; Quiniou et al., 2000; Le Bellego et al., 2002b; Nyachoti et al., 

2004; Huynh, 2005). As voluntary feed intake decreases in order to help alleviate heat 

stress, decreased production efficiency results.  In young pigs (20 kg), maximum 

voluntary feed intake occurs between 19 and 25°C (Collin et al., 2001b). As temperature 

increases from 25 to 33°C, voluntary feed intake decreases and when temperature is 

above 33°C a sizeable decrease in feed intake occurs (Collin et al., 2001b). This change 

suggests that the upper limit of the thermal comfort zone for pigs weighing 20 kg is 25°C. 

Several studies have reported upper critical limits for voluntary feed intake between 22.9 

and 25.5°C (Le Bellego et al., 2002a; Huynh et al., 2005; Quiniou et al., 2001).  

As a pig surpasses the upper critical limit of their thermal neutral zone, a 

reduction of heat production must occur. As temperature increased from 23°C to 33°C, 

voluntary feed intake was reduced by 30% in young pigs (20 – 30 kg) (Collin et al., 
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2001a).  Nienaber et al. (1996) found a slightly smaller (26%) reduction in feed intake at 

33°C for grow-finish pigs (40 – 100 kg). Feed intake decreases about 2.6 to 3.0% for 

every one-degree increase in temperature. Quiniou et al. (2000) reported a similar 

decrease of 3.4% for every one-degree increase in temperature in heavier pigs.  Other 

studies have reported lower (12 – 19%) reductions in feed intake (Stahly et al., 1979; Le 

Bellego et al., 2002b; Kerr et al., 2003). Several authors have reported the effects of 

temperature on feed intake are quadratic (Nienaber and Hahn, 1983; Quiniou et al., 

2000). Nienaber et al. (1996) reported an increase in temperature above thermoneutrality, 

causes a nonlinear decrease in feed intake. Therefore, pigs experiencing higher 

temperatures will have a larger reduction of feed intake. 

Pigs exposed to long-term heat stress for 3 weeks had a reduced feed intake of 

771 g, which was a decrease of about 32% in feed intake (Renaudeau et al., 2013). In a 

commercial setting, constant heat stress over a long period of time is not likely, due to 

decreasing temperatures at night. However, grow-finish pigs experiencing a diurnal 

pattern of heat stress had reduced average daily gain and 26% feed intake reduction over 

a one-month period (Song et al., 2011). Even if temperatures are reduced at night, feed 

intake will still suffer due to heat stress experienced during the day. 

Decreasing feed intake causes a decrease in metabolic heat production, allowing 

pigs to maintain a normal body temperature during hot conditions (Quiniou et al., 2001; 

Renaudeau et al., 2011; Renaudeau et al., 2013). Heat stressed finishing pigs, with a 13% 

reduction in feed intake, had lower total heat production than thermoneutral pigs with the 

same reduction in feed intake (Brown-Brandl et al., 2000).  A decrease in voluntary feed 
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intake from 23°C to 33°C resulted in a 14% lower fasting heat production (Collin et al., 

2001a).  

Most of the reported studies have measured heat stress on individually housed 

pigs or on a small scale (Nienaber et al., 1990; Quiniou et al., 2000; Brown-Brandl et al., 

2001; Collin et al., 2001a). Little is known on the impact of heat stress on voluntary feed 

intake in a commercial setting (Nyachoti et al., 2004).  When animals are in commercial 

settings, barn temperature will fluctuate with outside temperature and humidity. 

Voluntary feed intake was significantly reduced in grow-finish pigs when temperature 

was 28°C and humidity went from 65 to 75% (Massabie et al., 1997).  Even when a 

thermoneutral temperature of 24°C was maintained and humidity increased from 45 to 

90%, a significant reduction in voluntary feed intake occurred (Massabie et al., 1997).  A 

32 g d-1 decrease in feed intake occurred following a 10% increase in humidity while 

holding temperature constant at 33°C (Morrison et al., 1969).  Feed intake reduction was 

magnified as relative humidity exceeded 80% (Morrison et al., 1968). Therefore, in a 

commercial setting, humidity will affect the impact of heat stress on pigs.   

Differences in feed intake reduction could be due to body weight, genotype, sex, 

diet composition, housing, humidity, and temperature.  Higher temperatures will affect 

feed intake in heavier pigs more so than lighter pigs. Interactions between temperature 

and body weight on feed intake occur (Quiniou et al., 2000). Renaudeau et al. (2011) 

reported constant feed intake levels below 23.6°C, but once temperature increased over 

23.6°C feed intake was reduced by 25 g d-1 °C-1 in 50 kg pigs. Voluntary feed intake 

decreased by 9 g d-1 °C-1, 32 g d-1 °C-1, and 55 g d-1 °C-1 for animals weighing 25 kg, 50 

kg, and 75 kg respectively as temperature increased from 20 to 30°C (Renaudeau et al., 
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2011). This difference could be due to heavier pigs having an increased metabolic rate at 

thermoneutrality (Renaudeau et al., 2011).  Heavier pigs also have a lower ratio of 

surface area to mass and have more insulation than smaller pigs (Bruce and Clark, 1979), 

thus decreasing their ability to dissipate heat. Since heavier pigs cannot dissipate heat 

well, they must decrease feed intake at a higher rate than smaller animals in order to 

decrease total heat production. 

A reduction of feed intake, due to heat stress, could also be caused by certain feed 

ingredients. Some feed ingredients have higher heat increments. Fibrous feedstuffs have 

higher heat increments than fat sources (Just, 1982).  Diets high in fiber increase the 

impact of heat stress on pigs, while diets higher in fat decrease the impact of heat stress 

(Schoenherr et al., 1989). Protein has a heat increment of 36%, carbohydrates have a heat 

increment of 22%, and fats have a heat increment of 15% (Brown-Brandl et al., 2004).  

Different diets could be the cause of variation seen in decreased feed intake during heat 

stress. Diets high in fiber or protein would more than likely cause a higher reduction in 

feed intake than diets higher in fat.   

 Although a reduction in voluntary feed intake decreases heat production, it also 

has a negative impact on growth performance. Body weight gain decreased from 987 g   

d-1 to 621 g d-1 as temperature increased from 23°C to 33°C (Collin et al., 2001a), 

resulting in a 37 g d-1 decrease in body weight for every one-degree Celsius increase in 

temperature. This decrease in body weight is slightly higher than other studies reported 

(Sugahara et al., 1970; Rinaldo and Le Dividich, 1991). Differences in the decrease in 

body weight could be due to different initial body weights or different housing systems 

(group versus individual housing).   
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Exposure to high ambient temperature does not have to be prolonged (2 – 24 

hours) before pigs will start losing significant body weight (Pearce et al., 2013; Pearce et 

al., 2014).  Body weight reduction was almost 3 kg after only 24 hours of heat stress in 

grow-finish pigs (Pearce et al., 2013). In contrast, Collin et al. (2001a) reported a 1 kg 

loss of body weight over a 6-day period of heat stress (33°C) in young pigs (20 – 30 kg). 

Even during diurnal heat stress, a 16.3% decrease in body weight gain was observed over 

pigs housed in thermoneutral conditions (Lopez et al., 1991).  

 Heat stress decreases feed intake and growth performance in pigs. However, the 

impact of heat stress on feed efficiency is inconsistent. Heat stress is reported to have no 

effect on feed efficiency (Collin et al., 2001a) or decreased feed efficiency (Nienaber et 

al., 1987a; Johnson et al., 2015b). Pigs become less efficient under heat stress conditions, 

due to an increase in the feed conversion ratios (Renaudeau et al., 2011). Housing pigs in 

33°C reduced feed efficiency compared to pigs housed at 23°C (Kerr et al., 2003). 

Johnson et al. (2015b) reported a 9% decrease in feed efficiency for heat stressed pigs 

compared to thermoneutral pigs during the finishing phase. In contrast, no change in feed 

efficiency was reported in pigs housed in 22°C versus 29°C environments even though 

feed intake decreased 15% (Le Bellego et al., 2002b). Nienaber et al. (1987a) reported 

similar findings, of no difference in feed efficiency, for pigs housed in 20°C versus 25°C 

environments. These differences could be due to the amount and duration of heat stress 

experienced by pigs. Mild heat stress slightly decreases feed intake and activity, thus 

resulting in similar feed efficiency. However, severe heat stress results in a greater 

decrease of intake, possibly causing weight loss. Also, severely heat stressed pigs will use 
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energy to actively release heat (increased respiration rate), thus having a greater impact 

on feed conversion. 

 

Feeding Behavior 

 As previously stated, feeding behavior is affected by age, sex, growth rate, and 

housing. Temperature is another variable that affects feeding behavior. When 

temperatures increased, heat stressed pigs spent less time feeding than thermoneutral pigs 

(Hicks et al., 1998), demonstrating an association between eating activity and the rise in 

heat production (Nienaber et al., 1999). As ambient temperature increased, physical 

activity decreased. Decreasing physical activity is another method pigs use to reduce 

body heat when exposed to high ambient temperatures (Kerr et al., 2003).  Brown-Brandl 

et al. (2000) reported a decrease in physical activity in heat stressed pigs. Pigs spent more 

time laying and less time eating during high ambient temperatures (Hicks et al., 1998; 

Brown-Brandl et al., 2001). Decreasing the number of feeder visits will decrease physical 

activity and body heat production. In contrast, Nienaber et al. (1996) reported that rate of 

eating was age and weight dependent, but not temperature dependent. Nienaber et al. 

(1993) and Quiniou et al. (2000) also reported temperature had no effect on daily number 

of meals in group-housed pigs.  

As discussed in the previous section, heat stress reduces feed intake. Changes in 

eating behavior, mealtime, and meal size are associated with decreased feed intake 

(Collin et al., 2001b).  Reducing meal size as well as number of meals per day, helps 

reduce the effect high ambient temperatures have on heat production (Nienaber et al., 

1999) by decreasing physical and metabolic activity. Consumption time was shorter at 
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33°C (Collin et al., 2001a). Pigs in thermoneutral environments spent more time at the 

feeder eating than pigs in heat stress environments. Consumption time decreased from 5.9 

min to 3.9 min when temperature increased to 33°C (Collin et al., 2001a). Quiniou et al. 

(2000) reported decreased ingestion time (64 versus 46 min d-1) when temperature 

increased from 19 to 29°C. Although consumption time decreased, Quiniou et al. (2000) 

reported no change in number of meals per day.  

Feeder visits ranged from 9 to 11 meals per day (Nienaber et al., 1996; Quiniou et 

al., 2000). Collin et al. (2001a) reported a higher number of daily meals (15 meals d-1).  A 

diurnal feeding behavior is seen in pigs, with two-thirds of daily meals consumed during 

the day (Nienaber et al., 1990; Collin et al., 2001a; Labroue et al., 1994; Quiniou et al., 

2000). Nienaber et al. (1990) reported eating activity was greatest between early morning 

hours (0701 to 0900 h) when 14% of total feed was consumed and late afternoon hours 

(1301 to 1600 h) when 25% of total feed was consumed. Pigs, under thermal neutral 

conditions, consume 74.8% of their daily feed between 0900 to 1900 hours (Nienaber et 

al., 1990). It has been reported temperature does not affect the number of daily meals 

(Quiniou et al., 2000), which is possible due to the fact that pigs shift meals to the 

evening or early morning when temperatures have decreased (Xin and DeShazer, 1992; 

Nienaber et al., 1996; Quiniou et al., 2000). A decrease from 65% of meals to 55% of 

meals consumed during the day occurred when temperature increased from 19 to 29°C, 

respectively (Quiniou et al., 2000).  Although meals may shift to cooler portions of the 

day, feed intake compensation is hardly ever reached (Xin and DeShazer, 1992).   

Carcass Characteristics and Quality 
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Prenatal heat stress affects piglet body composition and postnatal growth 

(Foxcroft et al., 2006; Johnson et al., 2015b).  Heat stress during gestation is detrimental 

to protein synthesis in growing fetuses. Piglets that experienced in utero heat stress had a 

95% increased lipid to protein accretion rate during the finishing phase (Johnson et al., 

2015b). In utero heat stress affects future nutrient metabolism independent of postnatal 

environmental exposure (Johnson et al., 2015b).  

Heat stress reduces feed intake, decreasing nutrients available for tissue synthesis, 

thus reducing growth rates (Le Bellego et al., 2002b; Kerr et al., 2003; Johnson et al., 

2015b). In young animals, lipid accretion was reduced by 15%, but protein accretion was 

not affected in heat stressed pigs compared to thermoneutral pigs (Johnson et al., 2015a).  

However, heat stress during the finishing phase reduced average daily gain, protein 

deposition, and fat accretion (Johnson et al., 2015b). Both carcass fat and backfat were 

reduced in heat stressed pigs (Le Bellego et al., 2002b). Although reduced feed intake 

occurred in younger pigs, they consumed enough to allow for protein deposition (van 

Millgen and Noblet, 2003), but the larger pigs were not consuming enough for fat 

accretion or protein deposition.   

Under normal conditions during decreased nutrient intake, muscle growth is 

favored at the expense of adipose accretion (van Milgen and Noblet, 2003). However, 

during heat stress, typically adipose tissue is increased in carcasses (Collin et al., 2001b).  

Conversely, reductions in body fat of heat stressed pigs have been reported (Nienaber et 

al., 1987b; Renaldo and Le Dividich, 1991).  Pigs housed in a heat stress environment 

that caused a 26% reduction in feed intake had lower backfat at slaughter compared to 

thermoneutral pigs (Nienaber et al., 1996).  Backfat deposits decreased under heat stress, 
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while leaf-pad fat increased during heat stress (Le Dividich et al., 1987; Rinaldo and Le 

Dividich, 1991; Katsumata et al., 1996). Depositing more leaf-pad fat instead of backfat 

allows pigs to dissipate more heat through their skin (Katsumata et al., 1996).  Decreased 

backfat could also be a result of pigs not consuming enough nutrients for lipid accretion.  

Differing results have been reported for concentrations of ash, lipid, protein, and 

water in carcasses from heat stressed pigs versus thermoneutral pigs (Stahly et al., 1979; 

Nienaber et al., 1987b; Kerr et al., 2003). Heat stressed pigs had higher concentrations of 

water, lower concentrations of protein, and lower concentrations of ash (Kerr et al., 

2003).  In contrast, Stahly et al. (1979) reported no difference in concentrations of water, 

protein, or ash in carcasses from heat stressed pigs versus thermoneutral pigs.  Pigs 

housed in 30°C environments had greater concentrations of water, protein, and ash than 

thermoneutral pigs (Nienaber et al., 1987b).  

Several factors impact carcass quality, including carcass weight, fat (depots and 

firmness), and weight of primal cuts (White et al., 2008). Changes in carcass quality of 

heat stressed pigs included changes in meat color, decreased carcass weights, and 

changes in fat depots (Zeferino et al., 2013). Increasing heat load tended to reduce 

carcass weight, which was due to heat stress experienced 2 to 3 months prior to slaughter 

(Zumbach et al., 2008). Of the primal cuts, bellies are in high demand and are of high 

economic value to packers (Moarcous et al., 2007). Bacon from heat stressed pigs had 

decreased raw and cooked slice weights, and increased lean percentage (White et al., 

2008). Heat stressed pigs also had more collagen in belly fat than thermoneutral pigs 

(White et al., 2008), thus negatively affecting the quality of bacon. Overall, carcass 

quality is negatively affected by heat stress.  
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Visceral Changes 

 Visceral organs produce a larger amount of metabolic heat than the carcass 

(Baldwin et al., 1980). Heat production of the digestive tract and liver account for 20 to 

25% of total heat production (Yen and Nienaber, 1993). Heat stressed pigs are able to 

reduce total heat production by reductions in visceral mass (Johnson et al., 2015a) and 

visceral blood flow (Lambert et al., 2002; Leon and Helwig, 2010).  Reductions in 

visceral mass were caused by heat stress (Rinaldo and Le Dividich, 1991; Gabler and 

Pearce, 2015) and reduced feed intake (Koong et al., 1982). Reduced feed intake and 

organ size (including digestive tract and liver) are positively correlated (Koong et al., 

1982). Heat stressed pigs have a lower total visceral mass and liver weight compared to 

thermonerutral pigs during the finishing phase (Rinaldo and Le Dividich, 1991; Johnson 

et al., 2015b).  At slaughter, liver, heart, and spleen weights were less in heat stressed 

pigs (33°C) compared to thermoneutral pigs (23°C) (Collin et al., 2002). Heat stressed 

pigs had a 7.7% decrease in total visceral weight compared to thermoneutral pigs 

(Johnson et al., 2015a).  

As discussed earlier, feed efficiency may be decreased in heat stressed pigs 

(Johnson et al., 2015b). Decreased feed efficiency could be due to decreased viscera 

(Johnson et al., 2015b), instead of a reduction in the conversion of nutrients to weight 

gain. Due to the decrease in visceral mass during heat stress, heat production is decreased 

as well as maintenance costs (Johnson et al., 2015b).  Kerr et al. (2003) reported a 

decreased weight of the large intestine and stomach, which affected reduced feed intake.  

Although decreasing blood flow and feed intake decreased total heat production 

during heat stress, it also compromised the integrity of the intestinal barrier (Pearce et al., 
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2013). Alterations in tight junction proteins during heat stress led to increased 

permeability of the intestines (Gabler and Pearce, 2015).  Due to the increase in intestinal 

permeability, endotoxemia and pathogen loads also increased (Gabler and Pearce, 2015).  

Increased ambient temperature, decreased blood flow and feed intake, cause a decrease in 

intestinal integrity, therefore, increasing the potential for illness in heat stressed pigs. 

 

Hormones 

 During heat stress, biological systems are altered.  Decreasing feed intake and 

energy metabolism impacts hormones (Rinaldo and Le Dividich, 1991; Collin et al., 

2002). Hypothalamic and neuropeptide hormone changes appear to have an effect on the 

reduction of feed intake (Pearce et al., 2014). Thyroid weight was not affected by 

ambient temperature (Collin et al., 2002); however, a reduction in circulating thyroid 

hormone concentrations has been reported in heat stressed animals (Prunier et al., 1997). 

Concentrations of T3 and T4 were significantly lower in heat stressed pigs (Collin et al., 

2002). Thyroid hormones are thermogenic (Collin et al., 2002); therefore, decreased heat 

production is consistent with decreasing thyroid hormone concentrations at high ambient 

temperatures (Macari et al., 1986; Rinaldo and Le Dividich, 1991). Heat stressed pigs 

also have decreased concentrations of circulating glucose and insulin (Johnson et al., 

2015b). After 12 hours of heat stress, insulin concentrations began to decrease (Gabler 

and Pearce, 2015).  Insulin is a lipogenic and antilipolytic hormone (Vernon, 1992). 

Decreased concentration of insulin in heat stressed pigs could be the cause of decreased 

lipid accretion.       
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Genetics 

 Over the past decade, genetic selection has increased the amount of lean tissue in 

pigs, thus increasing basal heat production (Brown-Brandl et al., 2004). Leaner pigs 

require more metabolic energy than fatter pigs (Tess et al., 1984). From 1984 to 2002, 

fasting heat production increased 18.1% (Brown-Brandl et al., 2004). Harmon et al. 

(1997) reported a 33% difference in total heat production in current production versus the 

standard. During the finishing phase, total heat production is 26% higher (Brown-Brandl 

et al., 1998) than the standard obtained from ASAE (1999).  

Increased total heat production is due to the increase in leanness of pigs. As 

percent muscle increases, a linear increase in fasting heat production occurs (van Milgen 

et al., 1998). Increasing lean tissue by 2.1% increased fasting heat production by 18.7% 

(Tess et al., 1984).  Therefore, current selection for increased production reduces heat 

tolerance in pigs and genetics does impact heat stress.  Genetic selection for increased 

growth has decreased a pig’s ability to handle heat stress (Renaudeau et al., 2011).  

Heat stress affects faster growing animals more than slower growing animals 

(Renaudeau et al., 2011). High growth genetic lines are more vulnerable to heat stress 

than moderate growth genetic lines (Nienaber et al., 1998), as metabolic heat increases, 

an animal’s ability to cope with heat stress decreases. Newer, leaner genetic lines have a 

critical temperature limit that is 4°C lower than fatter genetic lines (Nienaber et al., 

1997). Sire lines that are leaner and faster growing will be more susceptible to heat stress 

than maternal lines that are slower growing and fatter. In nursery pigs the critical 

temperatures change depending on breed Duroc sired animals had a critical temperature 
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of 26.1°C, Landrace sired animals had a critical temperature of 28.8°C, and Yorkshire 

sired animals had a critical temperature of 27.9°C (Brown-Brandl et al., 2015).   

Since leaner genetic lines are more susceptible to heat stress (Nienaber et al., 

1998) and heat stress affects growth rates (Collin et al., 2001a), then leaner genetic lines 

should experience a larger decrease in growth rates compared to conventional lines.  

Nienaber et al. (1997) studied the interaction of genetics and heat stress on finishing pigs. 

Environmental temperatures for the two treatments of heat stressed pigs were adjusted 

daily to cause a voluntary feed intake reduction of 13 or 26% (Nienaber et al., 1997). 

Each heat stress treatment group contained both high lean growth and moderate growth 

pigs (Nienaber et al., 1997). High-lean composite growth rates were significantly reduced 

by 34 and 25% in heat stressed pigs which were representative of the reduced feed intake 

treatments of 26 and 13% (Nienaber et al., 1997).  Meal size decreased as temperature 

increased for all genetic lines, but the high lean growth line experienced a greater 

decrease in meal size than any other line (Nienaber et al., 1997). Selection under heat 

stress could be used to increase heat tolerance.  

Increasing ambient temperature decreased protein deposition (nearly 50%) in the 

high lean composite, whereas protein deposition in moderate growth composites was not 

affected by temperature (Nienaber et al., 1997). In heat stressed lean pigs, backfat and 

leaf fat were increased by 10 to 25% (Nienaber et al., 1997). As fat increased, heat 

production decreased (Tess et al., 1984). Although protein deposition decreased, fat 

accretion increased in lean pigs exposed to high ambient temperatures.  

Under thermoneutral conditions, organs were on average heavier in lean 

composite pigs than moderate growth pigs, indicative of higher maintenance 
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requirements (Nienaber et al., 1997). However, under heat stressed conditions, lean pigs 

experienced a larger decrease in liver, kidney, heart, stomach, and intestine weights than 

moderate growth composites (Nienaber et al., 1997). It was concluded that heat stress has 

a larger impact on high lean growth pigs than moderate growth pigs.   

 

CONCLUSION 

 Stress impacts feeding behavior of pigs, thus affecting optimal growth 

performance. The backtest, used to determine an animal’s ability to handle stressful 

situations, was correlated with feeding behavior. Calmer pigs are better at handling 

stressful situations, causing their time until first struggle to increase. Time until first 

struggle during the backtest was positively genetically correlated with number of meals 

per day and negatively genetically correlated with average meal length.  

Heat stress is a major stressor impacting performance and production efficiency 

during warm months. As ambient temperature increases, pigs need to decrease total heat 

production in order to maintain homeostasis. Pigs have limited ability to use evaporation 

to remove heat. Therefore, in order to remove heat, pigs first increase respiration rate and 

then as temperatures continue to increase decreased feed intake occurs. Reducing feed 

intake allows pigs to decrease metabolic heat production, resulting in an overall decrease 

in total heat production.  A reduction in feed intake due to heat stress also caused a 

change in carcass characteristics. Heat stressed pigs have reduced protein deposition and 

variable fat accretion, due to their inability to consume enough feed during the grow-

finish phase of production.  
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Changes in feeding behavior occurred along with changes in feed intake.  Heat 

stressed animals spent less time at feeders and more time lying down during the heat of 

the day. This decrease in feeder visit activity is similar to pigs that were more stressed or 

reactive to the backtest. Pigs react to stressors, whether the backtest or heat stress, with 

changes in feeding behavior. 

Many breeding programs have focused on increasing lean growth in commercial 

pigs. Increasing lean growth also increases total heat production. Therefore, heat stress 

has a greater impact on high growth lines.  Heat stress of leaner breeds should be a 

concern for producers. Before producers can increase production efficiency, a better 

understanding of feeding behavior during heat stress and breed impact on thermal neutral 

zones during the finishing phase needs to occur. Therefore, a study on feeding behavioral 

patterns in grow-finish pigs throughout the year needs to occur in order to determine 

changes in feeding behavior of different breeds during heat stress.  
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CHAPTER 2  

FEEDING BEHAVIOR OF GROW-FINISH SWINE AND THE IMPACTS OF HEAT 

STRESS 
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ABSTRACT 

Heat stress has negative impacts on pork production, particularly in the grow-finish 

phase.  During heat stress events, feeding behavior of pigs is altered to reduce heat 

production. Several different systems have been developed to study feeding behavior. 

Those systems are not an accurate representation of grow-finish commercial production, 

as feed intake is monitored for only one pig at a time. The objective of this study was to 

utilize a feed monitoring system, representative of commercial conditions, to determine 

feeding behavior patterns of grow-finish pigs throughout the year and to identify changes 

that occurred during heat stress events. Feeder visit data were collected on barrows and 

gilts (n = 1653) from 3 different sire breeds, Landrace, Yorkshire, and Duroc, between 

July 2011 and March 2016. Days in the study were partitioned into groups based on their 

maximum temperature humidity index (THI), where a THI less than 23.33°C was 

classified as “Normal”, a THI between 23.33°C and 26.11°C was classified as “Alert”, a 

THI between 26.11°C and 28.88°C was classified as “Danger”, and a THI greater than 

28.88°C was classified as “Emergency”. Feeding behavioral differences among breeds 

and sex were observed across all THI categories. Landrace-sired pigs had fewer feeder 

visits compared to Duroc- and Yorkshire-sired pigs. Gilts had fewer feeder visits than 

barrows in all THI categories. Differences in feeding behavior patterns between THI 

categories demonstrate that heat stress affects sire breeds and sexes differently. 

 

INTRODUCTION 

Swine feeding behavior monitoring enables producers and researchers to better 

understand factors that influence feed intake. Feeding behavior has been studied using 
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several different systems that measure feed intake, but most of these systems only allow 

one pig to feed at a time (Brown-Brandl et al., 2013a). This is not an accurate 

representation of grow-finish commercial production, where animals are fed from group 

feeders. Brown-Brandl and Eigenberg (2011) created a monitoring system representative 

of a typical grow-finish commercial setting. This system consists of a 5-slot feeder fitted 

with a multiplexor and antennas for each feed slot and records meal length, meal interval, 

number of meals per day, and total time spent eating.  

 Several factors influence feeding behavior in pigs, including but not limited to 

breed, gender, season, and stressors. Stressors are stimuli disrupting physiological 

equilibrium or homeostasis (Khansari et al., 1990). During warm months, pigs are subject 

to heat stress. Due to their limited capacity to use water evaporation to lose heat (Ingram, 

1965), pigs decrease heat production during times of elevated ambient temperature by 

decreasing activity, decreasing feed consumption, and increasing respiration rate 

(Nienaber and Hahn, 1982; Nienaber et al., 1999; Collin et al., 2001; Quiniou et al., 

2001; Huynh et al., 2005).  

Many advances have been made in production management and barn cooling 

systems; however, production efficiency continues to decline during warm months. 

Economic losses for the United States pork industry due to heat stress are estimated at 

$300 million a year (St-Pierre et al., 2003). This loss covers all aspects of the swine 

industry from farrow to finish, but a majority of these losses occur during the grow-finish 

phase.  In order to gain a better understanding of feeding behavior changes during heat 

stress events, it is important to understand normal feeding patterns throughout the year.  

The objective of this study was to determine feeding behavior patterns of different breeds 
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and sexes of pigs throughout the year and to identify changes that occurred during heat 

stress events using a feed monitoring system representative of feeding conditions in 

commercial grow-finish operations. 

 

MATERIAL AND METHODS 

All measurements recorded were approved by the U.S. Meat Animal Research Center’s 

Animal Care and Use Committee and conformed to the Guide for Care and Use of 

Agricultural Animals in Research and Teaching (FASS, 2010). Data were collected on 

grow-finish pigs (n = 1653) from July 2011 to March 2016 (Table 2.1). At approximately 

8 to 10 weeks of age, barrows and gilts were placed in a grow-finish barn equipped with 

sprinkle cooling.  Feeding behavior was monitored over a four-month grow-out period. 

Grow-finish groups (n = 240) were distributed across six pens with 40 pigs per pen. Each 

pen had nearly equal representations of each sex and breed. Sire lines included Duroc, 

Landrace, and Yorkshire. All pigs were produced from Landrace-Yorkshire composite 

sows. Upon entry, pigs were tagged with electronic identification tags.  

 Pens were fitted with an electronic feeding system to monitor feeding behavior 

(Brown-Brandl et al., 2011). All feeders had five slots, allowing more than one animal to 

eat at any given time. A corn-soybean meal diet was provided ad libitum to all pigs. Feed 

was formulated to meet or exceed all nutritional requirements of the growing pigs. 

Feeders were fitted with a multiplexor and antennas for each feed slot, allowing the 

animals’ low-frequency radio frequency electronic identification (LF-RFID) tags to be 

read while the animals were at the feeder. Data were collected every 20 seconds from all 

antennas during the 4-month period. 
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Outside temperature (°C) and relative humidity (RH) were obtained from the 

National Weather Station located three miles northwest of the grow-finish barn and were 

used to calculate temperature humidity index (THI) (NOAA, 1976): 

  THI (°C) = T(°C) – [0.55 – (0.0055 x RH)] x [T(°C) – 14.5]. 

THI were calculated in one-hour increments because outside temperatures were reported 

every hour. Feeder visits were averaged over each one-hour time period. Here, feeder 

visits in time period 1 were recorded between 12:00:00 AM and 12:59:59 AM, those in 

time period 2 were recorded between 1:00:00 AM and 1:59:59 AM, and so on.  

Using the outline of Brown-Brandl et al. (2013b) for THI categories, days were 

partitioned into temperature groups (Table 2.2), according to their maximum observed 

THI, in to order examine feeding behavior during extreme heat events. A THI less than 

23.33°C were classified as Normal, THI between 23.33°C and 26.11°C were classified as 

Alert, THI between 26.11°C and 28.88°C were classified as Danger, and THI greater than 

28.88°C were classified as Emergency.  Feeding behavior data were then summarized 

based on each animal’s sex, breed of sire, time of day, and the THI category for the day. 

Significance was determined using a paired t-test for breed and sex feeder visit activity 

means.  

 

RESULTS 

Of the 1653 pigs, 309 were Duroc sired, 791 were Landrace sired, and 553 were 

Yorkshire sired. There were 729 barrows and 924 gilts. Grow-finish groups G1 and G3 

consisted of only Landrace-sired pigs, group G2 was comprised of only Yorkshire-sired 

pigs, and groups G4 – G7 contained an equal number of Duroc, Landrace, and Yorkshire-
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sired pigs (Table 2.1). Maximum outside daily THI ranged from -8.36 °C to 30.52 °C for 

groups G4 – G7, while maximum THI for all of the groups ranged from  -9.06 °C to 

34.50 °C. Groups G1 – G3 experienced more extreme heat than the last four groups. 

Therefore, we conducted two separate feeding behavior analyses: (1) groups G4 – G7 

which consisted of equal numbers of animals from each of the three sire breeds and (2) 

the Landrace- and Yorkshire-sired pigs from all seven groups. 

 

Analysis I: Groups G4 – G7 

Of the 932 grow-finish pigs used in this analysis, 309 were Duroc sired, 312 were 

Landrace sired, and 311 were Yorkshire sired. There were 459 barrows and 473 gilts.  

Average daily feeder visit counts for all sire breeds during all THI categories are shown 

in Table 2.2. Significant differences in feeding behavior were observed among sire 

breeds. Yorkshire-sired pigs visited the feeder more often throughout the day than both 

Duroc- and Landrace-sired pigs in all THI categories (P < 0.001). Although Yorkshire 

sired pigs had the highest average feeder visit count, they still decreased in activity from 

Normal to Alert THI (P < 0.001) and then increased activity from Alert to Danger THI (P 

< 0.001). Landrace sired pigs experienced their highest feeder visit counts during Normal 

THI compared to the other THI categories (P < 0.001). A decrease in feeder visit activity 

was observed as THI increased from Normal to Alert (P < 0.001) and Danger to 

Emergency (P < 0.001) for Landrace-sired pigs. Duroc-sired pigs had daily average 

feeder visits that were between those of Yorkshire and Landrace-sired pigs for all THI 

categories (P < 0.001). As THI increased from Normal to Danger average feeder visit 

activity increased for Duroc-sired pigs (P < 0.001).  
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Daily feeding behavior patterns for each of the three breeds is shown in Figure 

2.1. The profile of the feeding behavior plots for Landrace- and Yorkshire-sired pigs 

were similar for Normal, Alert, and Emergency THI, but differed in the behavior during 

Danger THI. A bimodal feeding pattern was observed in Normal and Emergency THI, 

while the Alert THI exhibited three peaks in feeder visit activity.  In Danger THI, 

Yorkshires had a bimodal pattern, while Landrace had constant activity throughout the 

morning, an afternoon decrease, and an evening peak.  In all THI categories, Landrace- 

and Yorkshire-sired pigs both experienced a decrease in activity during the afternoon 

followed by increased activity in the evening.  On average, Landrace-sired pigs had the 

largest afternoon decrease followed by the largest evening increase in feeder visit activity 

for all THI categories. 

In all THI categories, Duroc-sired pigs’ feeding behavior differed from that of 

Landrace- and Yorkshire-sired pigs. They did not have the same pronounced mid-day 

decrease in feeder visit activity observed in the other two sire breeds. Duroc-sired pigs 

had an initial increase in activity in the morning and either plateaued and increased in the 

evening (Normal THI), continued to gradually increase until a maximum was reached in 

the evening (Alert and Danger THI), or varied throughout the day until a maximum was 

reached in the evening (Emergency THI).  

As mentioned, the maximal daily peak in activity was always observed in the 

evening. For Duroc-sired pigs, this maximum typically occurred at time period 18, except 

during Emergency THI where it was high for the time periods 17 and 19, but dipped 

during time period 18. Yorkshire- and Landrace-sired pigs both showed similar patterns 
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as THI increased, where their peak activity was shifted two hours later in the day when 

THI exceeded Normal.  

Throughout all THI categories, the feeder visit profiles of barrows and gilts were 

quite similar (Figure 2.2), although barrows on average had higher feeder visit counts 

than gilts (P < 0.001, Table 2.3). As THI increased above normal, the barrows’ feeder 

activity remained nearly constant while feeder activity of gilts decreased.  A bimodal 

behavior pattern was observed during most THI categories for both barrows and gilts. 

When THI reached Emergency range, both sexes had dramatically fewer feeder visit 

counts between time periods 1 and 6. During Emergency THI, a sharp increase in feeder 

visits was observed in the barrows during the morning hours, while feeder visits of the 

gilts gradually increased over a longer period of time. Both sexes had an afternoon 

decrease in activity.   

 

Analysis II: Landrace- and Yorkshire-sired pigs from all groups  

Of the 1344 grow-finish pigs analysis 2: 791 were Landrace sired, 553 were 

Yorkshire sired, 574 were barrows, and 770 were gilts. Average daily feeder visit counts 

for Landrace- and Yorkshire-sired pigs by THI category are shown in Table 2.4. 

Significant differences were observed between the two breeds. Yorkshire-sired pigs had 

fewer feeder visits than Landrace-sired pigs in Normal THI (P < 0.001), but exceeded 

Landrace-sired pigs in feeder activity in all other THI categories (P < 0.001). Yorkshire-

sired pigs increased in feeder visit count for each increase in THI category (P < 0.001). 

Landrace-sired pigs decreased feeder visit count for each increase in THI category (P < 
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0.001). Landrace-sired pigs reached their lowest feeder visit count, while Yorkshire-sired 

pigs reached their highest feeder visit count during Emergency THI (P < 0.001). 

Feeding behavior profiles of the two breeds were similar for Alert and Danger 

THI, but differed during Normal and Emergency THI (Figure 2.3). In Alert THI, a 3-peak 

increase in feeder visit activity occurred and in Danger THI a bimodal pattern was 

observed. During Alert and Danger THI, both Landrace- and Yorkshire-sired pigs had an 

afternoon decrease in feeder visit activity, followed by an evening increase in activity. 

This observation is consistent with what was observed in the first analysis. Landrace-

sired pigs had a bimodal pattern during Normal THI, while Yorkshire feeder visits 

increased during an early time period and plateaued until the evening decrease was 

observed. In Emergency THI Yorkshire pigs displayed a bimodal feeding behavior. In 

contrast, Landrace feeder visits increased in the morning, plateaued during the day, and 

then increased slightly in the evening.   In general, during Normal THI Landrace-sired 

pigs were more active than Yorkshire-sired pigs. The opposite was observed during 

Emergency THI, with Yorkshire-sired pigs being more active than Landrace-sired pigs.   

 The observed peaks in daily feeding behavior in this data set were quite similar to 

those from the first analysis, with maximum activity occurring in the evening hours. The 

maximum activity for Yorkshire-sired pigs was at time period 18 for Normal conditions, 

time period 19 for Alert THI, and time period 20 for Danger and Emergency conditions. 

Landrace-sired pigs peaked later in the day at time period 20 for Normal conditions, time 

period 22 for Alert and Danger THI, and at time period 21 for Emergency conditions.  
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DISCUSSION 

Environmental temperatures are known to affect swine feeding behavior. Ideally, barn 

temperatures would have been used in our analyses. Barn temperatures were collected 

during a portion of our study, using one thermometer at the north end and one at the south 

end of the barn. However, barn temperatures were only measured for the last four groups. 

THI was used to approximate the thermal conditions inside the barn due to its strong 

statistical relationship with barn temperature (R2 = 0.848; Figure 2.4) 

Landrace-sired pigs had fewer average daily feeder visit counts compared to the 

Yorkshire- and Duroc-sired pigs (P < 0.001) in Analysis I for all THI categories (Table 

2.2). However, in Analysis II, Landrace-sired pigs had higher feeder visit counts than 

Yorkshire-sired pigs during Normal THI (P < 0.001), but then dropped below the 

Yorkshire-sired pigs for the remainder of the THI categories (P< 0.001, Table 2.4).  

Compared to Analysis I, Landrace-sired pigs had the lowest feeder visit counts during 

Emergency THI in Analysis II (P < 0.001). This drastic decrease in feeder visit activity 

was more than likely due to Landrace-sired pigs experiencing more consecutive days of 

extreme heat. Feed intake has been shown to be reduced in pigs that experience long-term 

heat stress (Song et al., 2011; Renaudeau et al., 2013). Increasing consecutive days of 

extreme heat has a more drastic impact on feeding behavior than when pigs experience 

one day of heat stress followed by a cooler day to recuperate. 

Daily maximum feeder visits for Landrace- and Yorkshire-sired animals was 

observed earlier in the day for Normal THI compared to higher THI categories. The same 

pattern was also observed in the analysis of gilts and barrows. Although this shift was not 

observed in Duroc sired pigs for all higher THI categories, they did have a shift of 
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maximum feeder visit activity to later in the day during Emergency THI. Switching the 

maximum peak of feeder visit activity to later in the evening could be a coping 

mechanism that pigs implement to avoid heat stress.  

Heat production in pigs comes from feed consumption, maintenance, and physical 

activity (Kerr et al., 2003). In order to decrease heat production from physical activity 

and consumption of feed as THI increased, Landrace- and Yorkshire-sired pigs decreased 

feeder visit activity during the heat of the day and increased activity once THI decreased 

later in the afternoon and early evening. Pigs decrease physical activity in order to reduce 

body heat when exposed to high temperatures (Kerr et al., 2003), and therefore pigs 

would spend more time laying down and less time eating during high ambient 

temperatures (Hicks et al., 1998; Brown-Brandl et al., 2001). This shift in feeder visit 

activity would allow pigs to adapt to warm environments by decreasing heat production 

in order to reduce the amount of heat that needs to be eliminated (Nienaber and Hahn, 

1982; Collin et al., 2001; Quiniou et al., 2001).  

As THI increased, a shift to early morning feeder visit activity was observed. 

Yorkshire-sired pigs’ feeder visit activity between Danger and Emergency shifted to an 

earlier time period. This shift was also observed in Duroc sired pigs between Alert to 

Danger THI.  Increased feeder visit activity in the early morning could be a coping 

mechanism to avoid visiting feeders during the heat of the day. Quiniou et al. (2000) 

reported no effect on number of daily meals due to temperature, which could be due to 

pigs shifting meals to the evening or early morning when temperatures are lower (Xin 

and DeShazer, 1992; Nienaber et al., 1996; Quiniou et al., 2000).   
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A mid-day decrease in feeder visit activity was observed for both Landrace and 

Yorkshire sired pigs in the first analysis in all THI categories. This mid-day decrease may 

be due to feeder visit competition with Duroc-sired pigs or it may be a normal feeding 

behavior pattern for the two breeds, as a mid-day decrease was also observed in the 

second analysis for both breeds during most THI categories.  

 Sex differences were also observed. On average barrows had higher feeder visit 

activity than gilts. However, during Normal THI Duroc-sired gilts visited the feeder more 

than Duroc-sired barrows (P < 0.001). Brown-Brandl et al. (2013a) reported that barrows 

spent more time at the feeders than gilts. However, Hyun et al. (1997) reported no 

difference between sex and time spent at feeders. These conflicting results may be due to 

differences in feed monitoring systems. Hyun et al. (1997) used an electronic feeding 

system that allowed only one pig to eat, while Brown-Brandl et al. (2013a) used an 

electronic feeding system consisting of one feeder with five feeding spaces.  

 Differences were observed among sire breeds; however, gilts and barrows 

followed similar feeding behavior patterns. Feeder visit activity for breed by sex is shown 

in Figures 2.5 – 2.8. Duroc-sired barrows, Yorkshire-sired barrows, and Landrace-sired 

barrows were similar to the feeding behavior profile for that of all barrows. Yorkshire-

sired gilts and Landrace-sired gilts had similar profiles as that of all gilts. However, the 

feeding activity profile of the Duroc-sired gilts was more similar to the profile of all 

Duroc-sired pigs, where feeder visit activity increased steadily throughout the day during 

Alert and Danger THI. During Normal and Emergency THI, Duroc sired gilts feeding 

activity profile was similar to that of all gilts. 
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General differences observed in feeder visit activity between the two sexes and 

three sire breeds could be a result of normal feeding behavior or due to competition.  

Gilts followed the same feeding behavior profile as barrows, but had fewer numbers of 

feeder visits. This difference in number of feeder visits may be because gilts do not visit 

the feeder as frequently as barrows or because there was competition at the feeder. In this 

same manner, Landrace- and Yorkshire-sired pigs had similar feeding patterns, but 

Landrace-sired pigs, in general, visited the feeder less frequently than Yorkshire sired 

pigs. Also, during times that the feeder visits of Duroc-sired pigs were increasing to their 

peak, activity of Landrace- and Yorkshire-sired pigs was decreasing to their afternoon 

low. Again this observation could be normal feeding behavior, where Duroc-sired pigs 

eat throughout the day or it could be due to competition, leading Duroc-sired pigs to have 

increased feeder visit activity when the Landrace- and Yorkshire-sired pigs are having 

their mid-afternoon decrease. In addition to heat stress, competition could also affect how 

pigs from different breeds and different sexes displayed their feeding behavior patterns.  

Future studies will focus on altering factors associated with competition at the feeder in 

barrows and gilts sired by commercial Duroc, Landrace, and Yorkshire boars.  
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Table 2.1: Barn entry and exit dates and sire breeds used for each grow-finish group 
Group Barn Entry  Barn Exit Sire Breed 

G1 July 2011 December 2011 Landrace 

G2 March 2012 July 2012 Yorkshire 

G3 October 2013 March 2014 Landrace 

G4 May 2014 October 2014 Landrace, Yorkshire, and Duroc 

G5 December 2014 April 2015 Landrace, Yorkshire, and Duroc 

G6 June 2015 October 2015 Landrace, Yorkshire, and Duroc 

G7 December 2015 May 2016 Landrace, Yorkshire, and Duroc 
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Table 2.2: Average daily feeder visit counts (mean ± standard error) for Analysis I 

(Groups G4 – G7) by sire breed and sire breed-sex at each Temperature-Humidity Index 

category 

  THI Category 

Sire Breed Sex Normal Alert Danger Emergency 

  x < 23.33 °C 23.33 ≤ x < 

26.11 °C 

26.11 ≤ x < 

28.88 °C 

x ≥ 28.88 °C 

Duroc  14.9 ± 0.031 15.2 ± 0.046 15.4 ± 0.058 15.2 ± 0.14 

 Barrow 14.8 ± 0.041 16.2 ± 0.069 16.5 ± 0.087 16.4 ± 0.21 

 Gilt 15.1 ± 0.041 14.2 ± 0.061 14.4 ± 0.077 14.0 ± 0.19 

Yorkshire  16.5 ± 0.029 16.0 ± 0.051 16.3 ± 0.063 16.3 ± 0.16 

 Barrow 17.0 ± 0.046 16.7 ± 0.076 17.1 ± 0.095 17.3 ± 0.24 

 Gilt 16.1 ± 0.042 15.2 ± 0.067 15.5 ± 0.083 15.4 ± 0.22 

Landrace  12.8 ± 0.028 12.2 ± 0.042 12.1 ± 0.051 11.5 ± 0.12 

 Barrow 13.5 ± 0.042 12.7 ± 0.063 12.6 ± 0.077 12.1 ± 0.18 

 Gilt 12.0 ± 0.038 11.7 ± 0.056 11.6 ± 0.067 10.9 ± 0.16 
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Table 2.3: Average daily feeder visit counts (mean ± standard error) for Analysis I 

(Groups G4 – G7) by sex for each Temperature-Humidity Index category 

 THI Category 

Sex Normal Alert Danger Emergency 

 x < 23.33 °C 23.33 ≤ x < 26.11 °C 26.11 ≤ x < 28.88 °C x ≥ 28.88 °C 

Barrows 15.1 ± 0.025 15.2 ± 0.041 15.4 ± 0.051 15.3 ± 0.13 

Gilts 14.4 ± 0.023 13.7 ± 0.036 13.8 ± 0.044 13.4 ± 0.11 
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Table 2.4: Average daily feeder visit counts (mean ± standard error) for Analysis II by 

sire breed for each Temperature-Humidity Index category  

 THI Category 

Sire Breed Normal Alert Danger Emergency 

 x < 23.33 °C 23.33 ≤ x < 26.11 °C 26.11 ≤ x < 28.88 °C x ≥ 28.88 °C 

Yorkshire 13.6 ± 0.020 14.6 ± 0.038 15.0 ± 0.049 15.5 ± 0.15 

Landrace 14.8 ± 0.018 11.3 ± 0.029 9.7 ± 0.030 6.3 ± 0.036 
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Figure 2.1: Feeding behavior patterns for Normal (x < 23.33°C) THI, Alert (23.33 ≤ x < 

26.11°C), Danger (26.11 ≤ x < 28.88°C), and Emergency (x ≥ 28.88°C) in Analysis I 

(Groups G4 – G7) by sire breed. 
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Figure 2.2: Feeding behavior patterns for Normal (x < 23.33°C) THI, Alert (23.33 ≤ x < 

26.11°C), Danger (26.11 ≤ x < 28.88°C), and Emergency (x ≥ 28.88°C) in Analysis I 

(Groups G4 – G7) by sex. 

 

 

 

 



43 
 

 

 

Figure 2.3: Feeding behavior patterns for Normal (x < 23.33°C) THI, Alert (23.33 ≤ x < 

26.11°C), Danger (26.11 ≤ x < 28.88°C), and Emergency (x ≥ 28.88°C) in Analysis II 

(Groups G1 – G7) by sire breed.  
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Figure 2.4: THI (°C) versus average barn temperature (°C) 3rd degree polynomial 

regression.  
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Figure 2.5: Feeder visit activity for breed by sex interaction during Normal THI 
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Figure 2.6: Feeder visit activity for breed by sex interaction during Alert THI. 
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Figure 2.7: Feeder visit activity for breed by sex interaction during Danger THI. 
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Figure 2.8: Feeder visit activity for breed by sex interaction during Emergency THI. 
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CHAPTER 3 

FEED-FORWARD AND GENERALIZED REGRESSION NEURAL NETWORKS IN 

MODELING FEEDING BEHAVIOR OF PIGS IN THE GROW-FINISH PHASE  
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ABSTRACT 

Feeding patterns in group-housed, grow-finishing pigs have been investigated for use in 

management decisions, identifying sick animals, and determining genetic differences 

within a herd. Development of models to predict swine feeding behavior has been limited 

due to the large number of potential environmental factors involved and complex 

relationships between them. Artificial neural networks have been proven to be an 

effective tool for mapping complicated, nonlinear relationships between inputs and 

outputs. However, they have not been applied to swine feeding behavior prediction. In 

this study, we compared the use of feed-forward neural networks and generalized 

regression neural networks in forecasting feeding behavior of pigs in the grow-finishing 

phase throughout the year, using time of day and temperature humidity index as inputs. 

The fruit fly optimization algorithm was applied in order to automatically select optimal 

parameters for each network. Models were calibrated on electronic feeder visit data from 

1,923 pigs, captured using electronic monitoring in a grow-finish facility from 2008 to 

2014. These animals consisted of gilts and barrows from three sire breeds: Duroc, 

Landrace, and Yorkshire. After model calibration, predictive ability of each model was 

tested using feeder visit data from four additional grow-finish groups reared in the same 

facility from 2014 to 2016. Based on our findings we concluded that neural networks can 

be used to predict swine feeding behavior. Feed-forward neural networks trained with the 

Levenberg-Marquardt and scaled conjugate gradient algorithms were shown to be the 

most accurate forecasting models. 
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INTRODUCTION 

Feeding behavior of grow-finish pigs can be used to inform producers of both 

health status and stress level. Many parameters have been studied to better understand 

swine feeding behavior, including feed intake, meal length, meal interval, number of 

meals, and total time spent eating (Nienaber et al., 1990; Nienaber et al., 1991; Morgan et 

al., 2000; Quiniou et al., 2000).  Most of these measurements have been obtained from 

feeding systems that allow only one pig to feed at any given time, which is not 

representative of commercial production where pigs typically feed in a group setting 

(Brown-Brandl et al., 2013). 

 Feeding behavior is dependent on several environmental and genetic factors, 

including but not limited to temperature, humidity, gender, breed, and time of day. 

Deviations from normal feeding behavior may indicate that grow-finish pigs are 

experiencing a stressful event, such as illness, issues with feed quality, or heat related 

stress. Models of feeding behavior could be used as a management tool to assess stress 

levels within a population and to identify sick animals.  

Several different approaches have been used to analyze and model swine feeding 

behavior. Linear regression and analysis of variance models have been used extensively 

(Nienaber et al., 1990; Nienaber et al., 1991; Quiniou et al., 2001; Brown-Brandl et al., 

2013). However, application of these methods is limited due to complex, non-linear 

relationships among multiple input variables (Comrie, 1997). Gaussian models (Morgan 

et al., 2000), three process random models (Berdoy, 1993), and logistic models (Tolkamp 

et al., 1999) have also been applied to predict feeding behavior. There are two major 

drawbacks to these types of models. They tend to be very complex, and they require prior 
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knowledge of relationships between input variables, i.e. a predefined functional form for 

the model. 

Artificial neural networks (ANN) have emerged as a powerful tool in applications 

where complexity of relationships between inputs and outputs makes formulating a 

comprehensive mathematical model nearly impossible (Hecht-Nielsen, 1989). An ANN 

is a set of computing systems that imitates learning abilities of neurons in the brain. 

Artificial neural network models have the ability to handle large amounts of noisy data, 

without requiring prior information of model form. An additional advantage of ANN 

models over other statistical methods is that they require less training data (Paola & 

Schowengerdt, 1995). The ability to learn by example makes a neural network a very 

flexible and powerful tool.  

This study focused on application of ANN models for prediction of feeding 

behavior patterns of pigs during the grow-finish phase. Abilities of feed-forward neural 

networks (FFNN) and generalized regression neural networks (GRNN) to predict feeding 

behavior of grow-finish pigs throughout the year, using time of day and temperature 

humidity index (THI) as inputs, were compared.  

 

MATERIAL AND METHODS 

Feed-forward neural network (FFNN) 

Feed-forward neural networks are one of the most popular ANN models used in 

engineering applications. The network architecture and learning algorithm of a FFNN can 

be viewed as a generalization of the well-known least-mean-square (LMS) algorithm 

(Haykin, 2007). Figure 3.1 shows the architecture of a typical FFNN. It is comprised of 
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three layers; an input layer, a hidden layer which is responsible for performing 

intermediate computations, and an output layer. The input signal propagates through the 

network layer-by-layer in a feed-forward fashion until it reaches the output layer. 

 There are three important parameters in a FFNN: the number of hidden layers, the 

transfer function used in the hidden layers, and the number of neurons in the hidden 

layers. The number of hidden layers in a FFNN is dependent on the complexity of 

relationships between inputs and target outputs. Using two or more hidden layers 

increases the chance of obtaining local minima during the training phase, and therefore it 

becomes crucial to use many different random initializations to ensure that global 

optimization is achieved (Svozil et al., 1997). Adding additional hidden layers can also 

make the gradient more unstable, in turn dramatically slowing training. It has been 

proven that a FFNN with one hidden layer and non-polynomial transfer function is 

sufficient to approximate any continuous function to any degree of accuracy (Leshno et 

al., 1993). Therefore, in this study we chose to use one hidden layer with a sigmoid 

transfer function in the FFNNs. 

 Choosing the optimal number of neurons in the hidden layer is the other major 

component of FFNN design. A general ‘rule of thumb’ for selecting the number of 

neurons is that the size of the hidden layer should be somewhere between input and 

output layer sizes (Blum, 1992). Employing too few hidden layer neurons can limit the 

network’s ability to learn associations between inputs and outputs. On the other hand, 

using a large number of neurons in the hidden layer often leads to a network that can 

make successful predictions for the training data, but does not generalize to other data 

sets (Abraham, 2005). We employed the fruit fly optimization algorithm, described 
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herein, to determine the optimal number of neurons in the hidden layer of our FFNNs. 

Each FFNN was generated and trained using the Matlab Neural Network Toolbox 

(MATLAB 2016a, The MathWorks, Inc., Natick, MA).  

 

Training algorithms for FFNN 

Training a neural network refers to the process of finding a set of weighted 

connections between neurons so that predicted outputs closely match known outputs for a 

collection of training data. In terms of optimization, training a neural network is 

equivalent to minimizing a global error function. That is, during the training process the 

vector of connection weights, 𝑤, is iteratively computed and adjusted in order to 

minimize the mean square error between observed and predicted outputs:  

𝐸(𝑤) = (𝑦! − 𝑡!)!!
!!! , (1) 

where 𝑁 is the number of input-output pairs in the training data set, 𝑦 is the vector of 

predicted outputs from the ANN using weight vector 𝑤, and 𝑡 is the vector of observed 

outputs. This minimization is a local iterative process that uses the following general 

strategy: 

1) Choose an initial weight vector, 𝑤!, and initialize the iteration count, i.e. set 

𝑘 = 1. 

2) Determine a search direction 𝑑!   and a step size 𝛼!   such that 𝐸 𝑤! + 𝛼!𝑑! <

𝐸 𝑤! . 

3) Update the weight vector: 𝑤!!! = 𝑤! + 𝛼!𝑑!. 

4) If 𝐸! 𝑤! ≠ 0,  then set 𝑘 = 𝑘 + 1 and repeats steps 2-4. Otherwise, return 

𝑤!!!, the desired minimizer. 
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Training of FFNN was performed using three distinct algorithms: scaled conjugate 

gradient (SCG), Levenberg-Marquardt (LM), and Bayesian regularization (BR).  

Conjugate gradient methods are a class of optimization algorithms that use the 

general optimization strategy outlined above, where the positive step size 𝛼! is obtained 

using a line search, and search direction 𝑑! is generated by the rule: 

𝑑!!! = 𝑟!!! + 𝛽!𝑑! ,        𝑑! = 𝑟!. (2) 

Here 𝛽!   is the conjugate gradient update parameter and 𝑟! = −∇𝐸 𝑤! ! ,  where the 

gradient ∇𝐸(𝑤!) is a row vector and 𝑟! is a column vector. Different conjugate gradient 

methods correspond to different choices for the scalar 𝛽! .  SCG is a conjugate gradient 

algorithm, whose major advantage over others is that it avoids the computationally 

expensive line search to determine step size at each iteration (for details see Moller, 

1993). 

The LM algorithm (Hagan & Menhaj, 1994) is a modification of the classic 

Newton algorithm for determining optimal solutions to minimization problems. At each 

iteration, weights are updated using the following approximation to the Hessian matrix: 

𝑤!!! =   𝑤! −   𝐽!!𝐽! + 𝜇𝐼
!!𝐽!!𝑒! (3) 

where 𝐽 is the Jacobian matrix of output errors, 𝐼 is the identity matrix, 𝜇 is a scalar that 

controls the learning process, and 𝑒 is the residual error vector. When 𝜇 = 0, Eq. (3) is 

exactly Newton’s method, using the approximate Hessian matrix. If 𝜇 is large, the LM 

method becomes a gradient descent with small step size.  

 Training using the BR framework takes into account uncertainty in the weight 

vector by assigning a probability distribution to the weights that represents the relative 

degrees of confidence for the weight values. After an initial prior distribution has been 
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set, Bayes’ theorem is employed to generate a posterior distribution for the weight 

probabilities. Optimal network weights can then be found by maximizing the posterior 

probabilities (MacKay, 1992). Foresee and Hagan (1997) showed that this is equivalent 

to minimizing a regularized objective function, which combines the conventional sum of 

the least squares error function with an additional term called “regularization”: 

𝐸!" 𝑤! =   𝛾!𝐸 𝑤! + 𝜌!𝑃 𝑤! . (4) 

Here the terms 𝛾! and 𝜌! are regularization parameters, 𝐸(𝑤!) is as defined in Eq. (1), 

and 𝑃 𝑤! = 𝑤!!
!!

!!!  is a penalty term, which penalizes large weight values. In this 

framework, weights in the network are updated using the same approach as the LM 

algorithm (Eq. (3)). 

 

Generalized regression neural network (GRNN) 

A GRNN is a type of radial basis function network which is based on a statistical 

technique called kernel regression (Specht, 1991). Figure 3.2 shows the architecture of a 

GRNN. It is comprised of four layers: an input layer, a pattern layer, a summation layer, 

and an output layer. The pattern layer is a hidden layer where each neuron is a training 

pattern, and the output of each neuron, 𝑝!, is a measure of the distance between the input 

and the stored pattern given by: 

𝑝! =   exp  [−
𝑎 − 𝑎! ! 𝑎 − 𝑎!

2𝜎! ] (5) 

where 𝜎 is a smoothing parameter, 𝑎 is the input to the network, and 𝑎! is the pattern 

vector for neuron 𝑖. 
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 Outputs from the pattern layer are passed into the summation layer, which 

executes two different summations. First, the simple summation 𝑆! computes the sum of 

pattern layer outputs: 

𝑆! = 𝑝!!
!!! . (6) 

 

Next, the weighted summation 𝑆! computes a weighted sum of the pattern layer outputs: 

𝑆! = 𝑤!𝑝!!
!!! , (7) 

where 𝑤!   is the connection weight of pattern neuron 𝑖 to the neuron in the summation 

layer. 

 Outputs from the summation layer are then fed into the output layer, and the 

output 𝒚 of the GRNN is computed as follows: 

𝑦 = !!
!!

. (8) 

Note that a GRNN has only one parameter, 𝜎, that needs to be determined. This 

parameter, called the spread parameter in Matlab, was determined using the fruit fly 

optimization algorithm. Each GRNN was generated and trained using the Matlab Neural 

Network Toolbox. 

 

Fruit fly optimization algorithm (FOA) 

 The fruit fly optimization algorithm (FOA), proposed by Pan (2012), is a novel 

swarm intelligence optimization algorithm based on foraging behaviors of the fruit fly. 

Fruit flies are able to distinguish various aromas to identify food sources as far as 40 km 

away. Additionally they use vision to identify food sources based on flocking locations of 
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other fruit flies. A fruit fly forages as follows. It first locates a food source by smelling 

through its osphresis organ and then flies toward that location. Once it arrives at its 

destination, it determines the fitness of that location via tasting. The entire swarm of flies 

sends and receives information in order to determine a location with optimal fitness. 

Once this location has been identified, the fly moves to this new location by utilizing its 

sight to assess the flocking pattern of others in the swarm.  

The following steps in the algorithm are carried out for a user-specified number of 

iterations: 

1) Initialize parameters. Main parameters that need to be initialized are the 

number of iterations (maxgen), population size (popsize), initial fruit fly 

swarm location (X_axis, Y_axis), and forage range. Table 3.1 shows 

parameter initializations for each of the models tested.  

2) Assign flight direction and distance for each fly. Each of the i fruit flies is 

assigned a random direction and distance from the swarm by adding a random 

value from the forage range: 

𝑋! = 𝑋!"#$ + 𝑅𝑎𝑛𝑑𝑜𝑚  𝑉𝑎𝑙𝑢𝑒 

𝑌! =   𝑌!"#$ + 𝑅𝑎𝑛𝑑𝑜𝑚  𝑉𝑎𝑙𝑢𝑒 
(9) 

 

3) Population evaluation. Distance of each fly’s position to the origin is 

computed, and smell concentration judgment value for each fly is assigned to 

be the reciprocal of the distance: 

𝐷𝑖𝑠𝑡! = 𝑋!! + 𝑌!! !/! (10) 
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𝑆! = 1
𝐷𝑖𝑠𝑡! 

The smell concentration of each fly is computed by evaluating the fitness 

function at 𝑆! (the parameter being tested), and the fruit fly with the maximal 

smell concentration is identified. In this study, the ANN with optimal 

parameters was defined to be that which produced the maximum correlation 

coefficient between predicted and observed values for the testing data set. 

Hence, parameter value 𝑆! was used to generate an ANN, outputs were 

predicted for each inputs in the testing set, and the Pearson correlation 

coefficient (r) between predicted and observed outputs was computed. 

4) Swarm behavior. If the maximal smell concentration (i.e. the maximal 

correlation coefficient) is greater than the previous iteration’s maximal smell 

concentration, the swarm moves to the location that produced this new 

maximum. Otherwise repeat steps 2-3.  

 

Data collection 

All animal protocols conformed to procedures outlined in Guide for Care and Use 

of Agricultural Animals in Agricultural Research and Teaching (FASS, 2010) and were 

approved by the U.S. Meat Animal Research Center Institutional Animal Care and Use 

Committee. 

Data were collected on grow-finish barrows and gilts (n = 2,856) from four 

different sire lines, including purebred Duroc, Landrace, and Yorkshire and a 1/2 

Landrace, ¼ Duroc, and ¼ Yorkshire composite, reared at the U.S. Meat Animal 
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Research Center from 2008 to 2016. Grow-finish groups (n = 240) were placed in the 

barn at approximately eight to ten weeks of age and monitored over a 4-month period. 

Animals were distributed into six pens with 40 pigs per pen, with gilts and barrows 

comingled.  

Each pen was fitted with an electronic system to monitor feeding behavior 

(Brown-Brandl et al., 2011). Each feeder had five slots, allowing multiple animals to eat 

at a given time. Pigs were provided a corn-soybean meal diet ad libitum designed to meet 

or exceed nutrient requirements. All feeders were fitted with an antenna at each feed slot 

and a multiplexer. Upon entry into the barn, animals were tagged with electronic 

identification tags, which could be read by the antennas while animals were at the feeder. 

Data were collected from all antennas (n = 30) every 20 seconds during the 4 month 

period.  

Outside temperature (T, °C) and relative humidity (RH, %) were obtained from 

the National Weather Station located approximately 3 miles northwest of the grow-finish 

facility and used to calculate the temperature humidity index (THI). Since outside 

temperatures were only reported every hour, each day was incremented into 1-hour time 

periods, where time period 1 represents 12:00:00 a.m through 12:59:59 a.m. THI was 

calculated for each time period as follows (NOAA, 1976): 

 𝑇𝐻𝐼 ℃ = 𝑇 ℃ − 0.55− 0.0055  𝑥  𝑅𝐻   𝑥   𝑇 ℃ − 14.5 . (11) 

As mentioned above, feeder visits were recorded by the electronic system every 

20 seconds throughout the study. Total feeder visit count for each 1-hour time period in 

each day was computed. Then total number of feeder visits for each observed time 
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period-THI pair were calculated by summing across days. These time period-THI pairs 

served as inputs to the neural network. 

 

Training data 

Neural networks were developed to predict number of feeder visits based on THI 

and time period (time of day).  Feeder visit data collected from 9/27/08 to 3/11/14 on 

1,923 animals was used to build and train each ANN (Table 3.2). This data set consisted 

of 22,582 unique time period-THI observations, which was partitioned randomly so that 

80% of the data was used for training and 20% used for testing. Testing data points were 

used in the FOA process to determine optimal parameters for the ANN.    

 

Performance evaluation of the ANN models 

Feeder visit data from four additional grow-finish groups, collected from 5/23/14 

and 5/11/16, were used to assess performance of each ANN (Table 3.2). Performance was 

assessed using three statistical measures, root mean square error (RMSE), Pearson 

correlation coefficient (𝑟), and coefficient of determination (𝑅!). These are given in Eqs. 

(12), (13), and (14), respectively. 

For a given validation data set, let 𝒐 denote a vector of observed feeder visits, 𝑝 a 

vector of predicted feeder visits, and 𝑁 the total number of data points. Then 

RMSE =   
1
𝑁 𝑜! − 𝑝! !

!

!!!

 (12) 
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𝑟 =
𝑁 𝑜!𝑝! − 𝑜! 𝑝!!

!!!
!
!!!

!
!!!

𝑁 𝑜!! − ( 𝑜!!
!!! )!!

!!! 𝑁 𝑝!! − ( 𝑝!!
!!! )!!

!!!

 (13) 

  

𝑅! = 𝑟! (14) 

  

Root mean square error quantifies how near the line of best fit is to the data points, where 

the smaller the RMSE the nearer the fit is to the data. The Pearson correlation coefficient 

takes values in the range [-1,1] and quantifies strength and direction of the linear 

relationship between predicted and observed values. Values close to 0 indicate weak 

linear relationships, while values near -1 and 1 indicate strong linear relationships with 

negative and positive slopes, respectively. Goodness of fit of the model was quantified by 

𝑅!, where values close to 0 and 1 indicate poor and strong model fit, respectively. 

 

RESULTS AND DISCUSSION 

Neural network training and parameter optimization 

Temperature humidity index and time of day (time period) were used as inputs in 

development of several ANN models to predict feeding behavior of grow-finish pigs. 

Environmental temperatures are known to affect swine feeding behavior. Ideally, barn 

temperatures would have been used in the development of our ANN models. However, 

barn temperature data was only available for part of this study. Thermal conditions inside 

the barn were approximated by THI due to its strong statistical relationship with barn 

temperature (R2 = 0.848; Figure 3.3). 
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The 22,582 data points in the training data set were randomly partitioned into 

training (80%) and testing (20%) sets. Training data were used to train each ANN model, 

while testing data points were used in the FOA process to estimate predictive ability of 

the model and determine optimal parameters. Four different ANN models were 

developed: (1) FFNN trained with SCG algorithm (FFNN-SCG), (2) FFNN trained with 

LM algorithm (FFNN-LM), (3) FFNN trained with BR algorithm (FFNN-BR), and (4) 

GRNN. Results for model generation and parameter optimization are shown in Table 3.3. 

In each of the FFNN models, the optimal number of hidden neurons was 

dynamically determined using FOA. The number of iterations was set at 100, and swarm 

size was set to be 40 flies. Figure 3.4 (A)-(C) shows the iterative correlation coefficient 

trends of the FOA search for the optimal number of hidden neurons in each FFNN. For 

the FFNN-SCG model, convergence was observed at iteration 5 with correlation 

coefficient and number of hidden neurons 0.6586 and 7, respectively. Convergence of the 

FFNN-LM model occurred at iteration 29 with a correlation coefficient of 0.6641, and its 

optimal number of hidden neurons was 11. In the FFNN-BR model the FOA converged 

at iteration 10 with correlation coefficient and number of hidden neurons 0.6635 and 16, 

respectively. 

The optimal spread parameter for the GRNN was also identified using FOA. The 

initial spread parameter was set to be in the range [0, 1], swarm size was set to be 40 

flies, and the number of iterations was set to 100. Figure 3.4 (D) shows the correlation 

coefficient at each iteration of the FOA search for the optimal spread parameter. 

Convergence occurred at iteration 75 with a correlation coefficient of 0.66417. The 

optimal spread parameter for the GRNN was 1.033. 
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Model performance testing 

 Once the four ANN models had been trained using their optimal parameters, 

performance of each model was assessed using data from four additional grow-finish 

groups, Group A, Group B, Group C, and Group D (Table 3.2). The 𝑟, 𝑅!, and RMSE 

statistics for each testing set are presented in Table 3.4. In general, the four models 

exhibited similar performance across the data sets, with FFNN-LM and FFNN-SCG 

having consistently higher performance than the other two models. The FFNN-LM model 

exhibited superior performance in two of the four data sets (Groups A and C), while the 

FFNN-SCG model performed best in the other two data sets (Groups B and D). However, 

the difference in correlation coefficients for FFNN-LM and FFNN-SCG is smaller in 

Groups A and C (0.004 and 0.003, respectively) than in Groups B and D (0.006 and 

0.012).  

 The ANN models tested in this study appear to be robust models for predicting 

feeding behavior across breeds. Training data was comprised of 62.5% composite 

animals, 12.5% Yorkshire sired animals, and 25% Landrace sired animals. Duroc sired 

animals were only present in the four validation sets. Even with these breed differences, 

the ANN models were able to generate acceptable predictions. As the similarity of 

training and validation germplasm increases, the models should generate even better 

predictions. 

  Large deviations between predicted and observed feeding behaviors in Group A 

may be due to an outbreak of pneumonia. While Group A was in the grow-finish barn, 

22% of the animals were treated at least once for pneumonia.  Although a large portion of 

animals received treatment for pneumonia, it is likely that there were additional pigs in 
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the barn that experienced mild pneumonia symptoms that were not treated. In the other 

three groups, the percentage of animals treated for pneumonia was much lower; 7% in 

Group B, 2% in Group C, and 5% in Group D. This example highlights the potential for 

ANN models to be used in the automated detection of disease outbreak and other stress 

events. Future work will focus on the development of ANN model systems that can be 

used as early predictors of illness and stress events at the individual animal level. 

 

CONCLUSIONS 

 Artificial neural network models have become increasingly popular in many 

different fields due their ability to elucidate complex, non-linear relationships between 

parameters. The focus of this study was to identify an accurate and efficient neural 

network model for predicting swine feeding behavior based on time of day and THI. Four 

different ANN models were trained using electronic feeder data from 1,923 grow-finish 

pigs, and their performance was assessed using data from four additional grow-finish 

groups reared in the same facility. The results of this study demonstrate that feeding 

behavior predictions are viable using both the FFNN-LM and FFNN-SCG models. 

Selection of the number of hidden neurons is an important task in both of these models. 

In this work we applied FOA to automatically select the appropriate number of hidden 

neurons to improve feeding behavior forecasting accuracy. In general, neural networks 

are a useful prediction tool in feeding behavior. Use of machine learning to generate 

feeding pattern predictions in group-housed grow-finishing pigs could play an important 

role in management decisions, identifying sick animals, and determining genetic 

differences within a herd. 
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Table 3.1 Initial fruit fly optimization algorithm parameters for each of the four artificial 

neural network models tested in this study. 

Modela maxgenb popsizec (X_axis, Y_axis)d Forage Range 

FFNN-SCG 40 100 [0, 1] [-1, 1] 

FFNN-LM 40 100 [0, 1] [-1, 1] 

FFNN-BR 40 100 [0, 1] [-1, 1] 

GRNN 40 100 [0, 1] [-10, 10] 

a Models tested included feed-forward neural networks trained with scaled conjugate 
gradient algorithm (FFNN-SCG), Levenberg-Marquardt algorithm (FFNN-LM), 
Bayesian regularization algorithm (FFNN-BR), and generalized regression neural 
network (GRNN). 
b Number of fruit fly optimization algorithm iterations. 
c Number of flies in the swarm.  
d Initial range of values for x- and y-axis locations of the fruit fly swarm.  
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Table 3.2 Grow-finish groups used for model testing and validation of feeding behavior. 
 Study Start 

Date 
Study End 

Date 
Number of 
Animals 

Breeda Validation 
or Training 

Group 1 9/27/08 1/25/09 252 C Training 

Group 2 3/19/09 7/19/09 252 C Training 

Group 3 1/20/10 6/1/10 237 C Training 

Group 4 7/8/10 10/14/10 237 C Training 

Group 5 1/6/11 5/10/11 223 C Training 

Group 6 7/14/11 12/21/12 240 L Training 

Group 7 3/12/12 7/8/12 242 Y Training 

Group 8 10/24/13 3/11/14 240 L Training 

Group A 5/23/14 10/22/14 237 D, Y, L Validation 

Group B 12/18/14 4/30/15 232 D, Y, L Validation 

Group C 6/11/15 10/7/15 232 D, Y, L Validation 

Group D 12/23/15 5/11/16 232 D, Y, L Validation 

a D = Duroc, Y = Yorkshire, and L = Landrace, C = Composite (1/2 Landrace, ¼, Duroc, 
¼ Yorkshire) 
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Table 3.3 Optimal parameters for each of the artificial neural network models determined 

using the fruit fly optimization algorithm (FOA). 

Modela # Hidden Neurons Spread Value 𝑟 # FOA Iterations Until 
Convergence 

FFNN-SCG 7 n/a 0.6586 5 

FFNN-LM 11 n/a 0.6641 29 

FFNN-BR 16 n/a 0.6635 10 

GRNN n/a 1.0925 0.6641 9 

a Models tested included feed-forward neural networks trained with scaled conjugate 
gradient algorithm (FFNN-SCG), Levenberg-Marquardt algorithm (FFNN-LM), 
Bayesian regularization algorithm (FFNN-BR), and generalized regression neural 
network (GRNN). 
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Table 3.4 Statistical performance of artificial neural network models for test groups A-D. 

Group/Modela 𝑟 𝑅! RMSE 

Group A    

FFNN-SCG 0.483 0.233 653 

FFNN-LM 0.487 0.237 651 

FFNN-BR 0.472 0.223 657 

GRNN 0.470 0.221 658 

Group B    

FFNN-SCG 0.744 0.554 506 

FFNN-LM 0.738 0.544 511 

FFNN-BR 0.733 0.538 515 

GRNN 0.733 0.537 515 

Group C    

FFNN-SCG 0.623 0.390 692 

FFNN-LM 0.626 0.392 691 

FFNN-BR 0.610 0.372 702 

GRNN 0.611 0.3734 702 

Group D    

FFNN-SCG 0.754 0.569 494 

FFNN-LM 0.742 0.550 504 

FFNN-BR 0.737 0.543 509 

GRNN 0.738 0.545 507 

a Models tested included feed-forward neural networks trained with scaled conjugate 
gradient algorithm (FFNN-SCG), Levenberg-Marquardt algorithm (FFNN-LM), 
Bayesian regularization algorithm (FFNN-BR), and generalized regression neural 
network (GRNN). 
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Figure 3.1 Typical feed-forward neural network (FFNN) architecture. The FFNN is 

comprised of three layers. These layers include an input layer, a hidden layer, and the 

output layer. 
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Figure 3.2 Generalized regression neural network (GRNN) architecture. The GRNN is 

comprised of four layers. These layers include an input layer, a pattern layer, a 

summation layer, and the output layer.  
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Figure 3.3. Results for temperature humidity index (THI) versus barn temperature 3rd 

degree polynomial regression. Here, 𝑅! = 0.848. 
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(A) 

 
 
(B) 
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(C)  

 
 

(D) 

 
Figure 3.4. Correlation coefficients obtained during the fruit fly optimization algorithm 

process for (A) feed-forward neural network trained with scaled conjugate gradient 

algorithm (FFNN-SCG), (B) feed-forward neural network trained with Levenberg-

Marquardt algorithm (FFNN-LM), (C) feed-forward neural network trained with 

Bayesian regularization algorithm (FFNN-BR), and (D) generalized regression neural 

network (GRNN). 
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Chapter 4  

GENOME WIDE ASSOCIATION OF CHANGES IN SWINE FEEDING BEHAVIOR 

DUE TO HEAT STRESS 
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ABSTRACT 

Heat stress negatively impacts pork production, particularly during the grow-finish phase. 

As temperature increases, feeding behavior changes in order for pigs to decrease heat 

production. The objective of this study was to identify genetic markers associated with 

changes in feeding behavior due to heat stress. Feeder visit data were collected on 1154 

grow-finish pigs using an electronic feeding system from July 2011 to March 2016. Days 

in the study were partitioned into groups based on temperature humidity index (THI), 

where a THI less than 23.33°C was classified as “Normal”, a THI between 23.33°C and 

26.11°C was classified as “Alert”, a THI between 26.11°C and 28.88°C was classified as 

“Danger”, and a THI greater than 28.88°C was classified as “Emergency”. All animals (n 

= 1154) were genotyped using Illumina BeadChip products and were imputed to the 

NeoGen Porcine GGPHD chip. A genome-wide association study (GWAS) for an 

animal’s change in feeding behavior between different THI categories was conducted. 

Heritabilities for the difference in a pig’s feeder visits between each of the THI categories 

were moderate to high (0.136 to 0.406).  Strikingly, more than 71% of genetic variation 

was explained by regions within eight chromosomes in the comparison between Danger 

and Emergency THI. Gene ontology (GO) enrichment analysis showed that biological 

processes related to sensory perception and detection of chemical stimuli were over-

represented in the set of genes located in these regions. Genetic markers identified in this 

study may facilitate genetic selection for improved grow-finish performance during 

elevated ambient temperatures. 
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INTRODUCTION 

Heat stress is a major economic concern in the swine industry.  In the United States, 

economic losses due to heat stress are estimated at $300 million a year, and a majority of 

these losses occur during the grow-finish phase (St-Pierre et al., 2003). Production losses 

due to heat stress may result from decreased growth of market hogs, reduced feed intake, 

and mortality (Nenaber et al., 1996; Collin et al., 2002; Gabler and Pearce, 2015).  

Swine feeding behavioral patterns change as temperatures increase. Pigs spend 

less time eating and more time lying down during high temperatures (Hicks et al., 1998; 

Brown-Brandl et al., 2001). Changes in eating behavior, mealtime, and meal size are 

associated with increased temperatures (Hicks et al., 1998; Collin et al., 2001).  A study 

by Nienaber et al. (1999) showed that reducing meal size as well as number of meals per 

day can reduce the effects of high temperatures on heat production by decreasing 

physical and metabolic activity.  

Although advances in production management and barn cooling systems have 

occurred, production efficiency continues to suffer during warm months. Pigs have a 

thermal comfort zone in which they are most productive. Thermal comfort zone is 

dependent on several different factors including sex, genetics, relative humidity, and 

velocity of ambient air (NRC, 1981; Nyachoti et al., 2004). Genetic selection for 

increased growth has been associated with a decrease in pigs’ ability to handle heat stress 

(Renaudeau et al., 2011). Genetic markers that are associated with heat stress could be 

used to select and breed for more heat resilient pigs. The objective of this study was to 

identify genetic markers associated with changes in feeding behavior due to heat stress in 

grow-finish pigs.  
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MATERIAL AND METHODS 

Data Collection  

All animal protocols conformed to procedures outlined in Guide for Care and Use of 

Agricultural Animals in Agricultural Research and Teaching (FASS, 2010) and were 

approved by the USMARC Institutional Animal Care and Use Committee. 

 Data were collected on grow-finish pigs (n = 1154) reared at the U.S. Meat 

Animal Research Center from July 2011 to March 2016. Pigs were placed in the barn in 

grow-finish groups (n = 240) at approximately eight to ten weeks of age.  Barrows and 

gilts were comingled and distributed into six pens with 40 pigs per pen. Three different 

sire lines, Duroc, Landrace, and Yorkshire, were represented. Animals were tagged with 

a low-frequency electronic identification tag upon entry into the grow-finish barn.  

Pens were fitted with an electronic feeding system that monitored feeding 

behavior as described by Brown-Brandl et al. (2011). Briefly, each pen had one feeder 

with five slots, allowing up to five animals to eat at any given time. Pigs were provided 

ad libitum access to a corn-soybean meal diet designed to meet or exceed an animal’s 

nutrient requirements. Each feeder slot was fitted with an antenna and a multiplexer.  

Data were collected from antennas every 20 seconds over a 4-month period. 

Temperature humidity index (THI) was calculated (NOAA, 1976) using outside 

temperature (°C) and relative humidity (RH) as follows: 

THI(°C) = T(°C) – [0.55 – (0.0055 x RH)] x [T(°C) – 14.5] 

Outside temperatures were reported every hour; therefore to obtain the THI for a given 

day, the day was partitioned into 1-hour increments and the maximum THI was used to 

categorize each day. Days were classified into THI categories as outlined by Brown-
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Brandl et al. (2013b). THI categories included “Normal” (< 23.33°C), “Alert” (23.33°C ≤ 

x < 26.11°C), “Danger” (26.11°C ≤ x < 28.88°C), and “Emergency” (≥ 28.88°C). It 

should be noted that not all animals experienced every THI category. 

For each animal, the total number of feeder visits was computed for each day, and 

the animal’s average number of daily feeder visits was computed for each THI category. 

Similarly, an average number of daily feeder visits was computed for each breed and sex 

combination in each THI category.  Then for each individual animal, the difference 

between its observed average number of feeder visits and the appropriate breed-sex 

average was computed and standardized (µ = 0, σ = 1) for each THI category. Differences 

in feeding behavior between two THI categories (e.g. Alert-Normal) were quantified by 

calculating the difference in standardized feeder visits between the two categories. 

 

Genotyping 

Tail samples were collected on pigs and stored at -20°C. Genomic DNA was extracted 

using a WIZARD genomic DNA purification kit according to the manufacturers protocol 

(Promega Corp., Madison, WI, USA). Genotyping was conducted using three different 

platforms: the NeoGen Porcine GGPHD chip (GeneSeek, Lansing, USA), the Illumina 

Porcine SNP60 V2 chip (Illumina, Inc., San Diego, USA), and the GGP-Porcine chip 

(GeneSeek, Lansing, USA). As a quality control, genotypes were filtered to include only 

those with minor allele frequency ≥ 5% and that had a unique map position in the 

Sscrofa10.2 genome assembly (Groenen et al., 2012). After quality control, 58,096 single 

nucleotide polymorphisms (SNP) from the GGPHD chip, 38,598 SNP from the Porcine 

SNP60 V2 chip, and 6,882 SNP from the GGP-Porcine chip were retained for use in 
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subsequent analyses. In total, 1,118 pigs were genotyped using the GGPHD chip, 2 pigs 

were genotyped using the SNP60 V2 chip, and 34 pigs were genotyped using the GGP-

Porcine chip. Genotypes for animals genotyped on the Porcine SNP60 V2 chip and GGP-

Porcine chip were imputed to the NeoGen Porcine GGPHD chip using FImpute v2.2 with 

a pedigree imputation (Sargolzaei et al., 2014).  

 

Genome-wide association study (GWAS) 

Priors for genetic and residual variances and the prior proportion of SNP that are assumed 

to have no effect on differences in feeding behavior, within an iteration of the Monte 

Carlo Markov Chain (MCMC) for each trait were obtained by running Bayes-Cpi using 

GenSel (Fernando and Garrick, 2008).  Genomic regions associated with each trait were 

identified and quantified using a Bayes-C variable selection method using GenSel 

software (Fernando and Garrick, 2008). Pi values used in Bayes-C analyses are shown in 

Table 4.1. A chain of 41000 iterations was used with the first 1000 cycles discarded as 

burn-in.  Each trait was analyzed with sex and sire breed as fixed effects, and farrowing 

group as a contemporary group effect. Effects were sampled every 40 iterations to obtain 

a posterior distribution for the genetic variance. Genomic regions associated with each 

trait were identified using 1-Mb genome windows.  

 

Functions of genes in significant genomic regions 

Genes located in significant genomic regions were obtained using the NCBI annotation of 

Sscrofa10.2 (Release 104).  The PANTHER classification system (version 11.1; Mi et al., 

2016; http://www.pantherdb.org/) was used to determine functions of these genes. 
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Enrichment analysis of gene function was performed using PANTHER’s implementation 

of binomial test of overrepresentation. Significance of gene ontology (GO) terms was 

assessed using the default Ensembl Sus scrofa GO annotation as background for the 

enrichment analysis. Data from PANTHER was considered statistically significant at a 

Bonferroni corrected P-value < 0.05.  

 

RESULTS 

Breed-sex feeding behavior patterns 

Of the 1154 grow-finish pigs (507 barrows and 647 gilts) used in the study, 305 were 

Duroc sired, 335 were Landrace sired, and 514 were Yorkshire sired. In all three sire 

breeds, feeding activity of barrows exceeded that of gilts in all THI categories (Table 

4.2). It was also observed that Yorkshire and Duroc sired pigs had greater feeder visit 

activity than Landrace sired pigs across all THI categories (Table 4.2). Feeder visit 

activity in Yorkshire and Duroc sired pigs increased as THI increased, while the opposite 

trend was observed for Landrace sired pigs, which had a drastic decrease in feeder visits 

as THI increased from Danger to Emergency THI. 

 

GWAS 

Heritabilities from GenSel for each of the THI category comparisons are shown in Table 

4.3 and detailed results for each window that explained a significant percentage of 

genetic variation (≥ 1.0%) are shown in Table 4.4. Normal-Alert behavior changes 

showed a strong heritability of 0.337 and more than 78% of the genetic variance was 

explained by regions within twelve chromosomes. Two regions on chromosome 15 
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accounted for 16.14% and chromosome 7 had six regions that accounted for 13.78% of 

genetic variance.  

 Feeding behavior changes between Normal and Danger THI were found to be 

most heritable (heritability = 0.406). Over 45% of genetic variance was explained by 

regions within ten chromosomes. Four regions on chromosome 7 accounted for 11.31% 

of the total genetic variance, while chromosome 1 had two significant regions accounting 

for 7.25%.  Heritability for the Normal-Emergency comparison was considerably less 

(0.268), with approximately 49% of genetic variance explained by regions within twelve 

chromosomes. Chromosome 7 accounted for the largest percentage of variance (9.43%).  

 Alert-Danger feeding behavior changes were moderately heritable (0.189) and 

60% of genetic variance was explained by regions within nine chromosomes. 

Chromosome 1 had two regions that explained 29.67% and chromosome 7 had four 

regions that explained 7.09 % of genetic variance. Heritability for Alert-Emergency THI 

comparison was 0.178 and 70% of genetic variance was explained by regions within 

seven chromosomes. Chromosome 13 had two regions that accounted for 36.04% and 

chromosome 1 had three regions that accounted for 15.57% of genetic variation.  Greater 

than 71% of genetic variation was explained by regions within eight chromosomes for the 

Danger-Emergency THI comparison. Chromosome 13 explained the most genetic 

variance (43.19%). The heritability for this comparison, 0.136, was the lowest of the six 

THI comparisons.  
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Functions of genes in significant regions 

The PANTHER classification system was used to analyze overrepresentation of GO 

terms for the set of genes located in significant genomic regions from each of the six 

GWAS. Significant GO term over-representation was identified in gene sets from only 

two of the GWAS, Alert-Danger and Danger-Emergency THI. Biological process terms 

detection of chemical stimulus involved sensory perception of smell, detection of 

chemical stimulus involved in sensory perception, detection of chemical stimulus, 

detection of stimulus involved in sensory perception, sensory perception of chemical 

stimulus, detection of stimulus, sensory perception, neurological system process, G-

protein coupled receptor signaling pathway, system process, response to chemical, signal 

transduction, single organism signaling, signaling, cell communication, cellular response 

to stimulus, and response to stimulus were significantly over-represented in the set of 

genes comparing changes in feeder visit activity between Danger versus Emergency THI 

(Table 4.5).  In this gene set, molecular function terms olfactory receptor activity, G-

protein coupled receptor activity, transmembrane signaling receptor activity, 

transmembrane receptor activity, signaling receptor activity, receptor activity, molecular 

transducer activity, and signal transducer activity were significantly over-represented. 

Additionally, over-represented cellular component terms included plasma membrane, cell 

periphery, integral component of membrane, intrinsic component of membrane, 

membrane part, and membrane.   

Biological process terms organic substance catabolic process and response to 

chemical were significantly over-represented in the set of genes comparing changes in 

feeder visit activity between Alert versus Danger THI (Table 4.6).  Molecular function 
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terms glutathione transferase activity, transferase activity (transferring alkyl or aryl 

groups), aspartic-type endopeptidase activity, aspartic-type peptidase activity, and 

odorant binding were significantly over-represented, while synaptic membrane was the 

only over-represented cellular component term.   

 

DISCUSSION 

Environmental temperatures are known to affect swine feeding behavior. In this study, 

THI was computed using outdoor temperature. Ideally, barn temperatures would have 

been utilized. During the feed trials, barn temperatures were collected from two 

thermostats, one located on the north end of the barn and the other on the south end for 

some of the groups of pigs studied. However, there were many missing data points due to 

thermometer failure and other technical issues. Temperature humidity index was thus 

used in our analyses, since it was found to be a good predictor of barn temperature 

(adjusted R2 = 0.848; Figure 4.1).  

 In this study, barrows from all three sire breeds had higher average daily feeder 

visit counts than gilts in each THI category. This is consistent with findings of a previous 

study, where Brown-Brandl et al. (2013a) reported that barrows spent more time at 

feeders than gilts. However, a different study Hyun et al. (1997) reported no difference in 

time spent at feeders between sexes. In the study of Hyun et al. (1997) the electronic 

feeding system allowed only one pig to eat at a time, while Brown-Brandl et al. (2013a) 

used an electronic feeding system, like the one in our study, consisting of one feeder with 

five spaces for pigs to eat at, which is representative of current production systems. This 
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observed difference in feeder activity between barrows and gilts may be due to space 

competition or differences in how each sex handles heat stress.  

 We found that heat stress appears to impact feeding behavior differently in pigs 

from different breeds. Feeding activity of Duroc and Yorkshire sired pigs increased as 

THI increased, while activity of Landrace sired pigs decreased as THI increased. Several 

different approaches have been used to determine a pig’s ability to handle stressful 

situations. To test how a pig copes with a perceived stressful situation researchers have 

used the backtest, in which piglets are placed on their backs to determine time until first 

struggle or time spent struggling (Hessing et al., 1993; Cassady, 2007; Velie et al., 2009; 

Rohrer et al., 2013). Therefore, as animals are calmer and handle stressful situations 

better their time until first struggle will increase. Time until first struggle during the 

backtest has been shown to be positively genetically correlated with number of meals per 

day and negatively genetically correlated with average meal length (Rohrer et al., 2013). 

As THI increased, Landrace sired pigs spent less time visiting the feeder, while Yorkshire 

and Duroc sired pigs increased feeder visit activity. Hence, the decrease in number of 

feeder visits when temperature increases in Landrace sired pigs may indicate a decreased 

ability to handle stressful situations, in particular, heat stress.  

 Genome-wide association study for various THI category comparisons identified 

similar significant genomic regions. The Normal-Alert THI comparison and the Normal-

Danger THI comparison had ten regions on seven different chromosomes that were the 

same (SSC 2_24, SSC 2_26, SSC 6_15, SSC 7_10, SSC 7_46, SSC 7_53, SSC 10_54, 

SSC 14_138, SSC 15_19, SSC 18_1). Chromosome 7 had a region, SSC 7_53, that 

appeared in four of the six analyses (Normal-Alert, Normal-Danger, Normal-Emergency, 
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and Alert-Danger). Evaluation of this region identified a heat shock protein (DNAJA4), 

located at 53.2 Mb. Heat shock proteins are proteins that protect cells from stressors 

(Basiricò et al., 2011). In particular, DNAJA4, was shown to be expressed at higher levels 

after heat stress in chicken testes (Wang et al., 2013). This region also contains members 

of the acetylcholine receptor subunit family. Two of these genes, CHRNA3 and CHRNB4, 

form a complex that activates POMC neurons which stimulate MC4R and regulate eating 

behavior (Online Mendelian Inheritance in Man, 2017). Thus, all three of these genes 

(DNAJA4, CHRNA3, and CHRNA4) warrant further investigation. 

A second region on SSC 7, ranging from 44 to 47 Mb, was present in every 

comparison with Normal THI. This region contains two heat shock proteins, HPS90AA1 

and HSP90AB1, located at 45.1 Mb. HSP90AA1 is an inducible protein that is expressed 

during times of cellular stress. This gene was also found to be more highly expressed in 

testes of heat stressed chickens (Wang et al., 2013). Polymorphisms in HSP90AA1 have 

been associated with adaptation to thermal conditions in sheep (Marcos-Carcavilla et al., 

2010), while polymorphisms in HSP90AB1 have been associated with heat tolerance in 

cattle (Charoensook et al., 2012). 

 Five windows were present in two analyses (SSC 1_228, SSC 9_103, SSC 15_19, 

SSC 18_1, and SSC X_2). One of these regions SSC18_1, harbored a heat shock protein, 

DNAJB6, and nearby (SSC 18:1.27 Mb) was PTPRN2 which is involved in ghrelin 

regulation. Ghrelin plays a role in meal initiation and feed intake. The gene KIAA1324L, 

located in SSC 9_103, may have a role in cellular response to stress.   

 Three genomic regions were associated with feeding behavior changes for the 

Alert-Emergency THI and Danger –Emergency THI comparisons (SSC 1_18, SSC 
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12_58, SSC 13_176). Moreover, these regions explained a large portion of genetic 

variance in each of the analyses: 48.03% of genetic variance in Alert-Emergency and 

49.25% Danger-Emergency. 

 The most significantly enriched GO terms identified in the PANTHER analysis 

for Danger-Emergency comparison were sensory to olfactory stimuli, sensory perception, 

and response to stimulus. One of the genes involved in response to stimulus was TRPV3 

(SSC 12_51.5), a member of the transient receptor potential (TRP) protein family. 

Proteins in this family are cation channels that function in a variety of processes 

including temperature sensation and vasoregulation (Caterina et al., 1997; Xu et al., 

2002). Expression of TRPV3 in mice occurred mainly in skin keratinocytes, but appear 

also in neurons (Peier et al., 2002; Xu et al., 2002). In TRPV3 knockout mice, sensory 

reactions remained the same, except for their response to increased temperatures 

(Moqrich et al, 2005), indicating that it plays a role in thermosensation. Temperatures 

reported in the study of Moqrich et al. (2005) were greater than temperatures experienced 

by grow-finish pigs during Danger and Emergency THI. Pigs, unlike most other 

mammals, have a limited capacity to use water evaporation to lose heat (Ingram, 1965); 

hence, TRPV3 activation may occur at lower temperatures in pigs compared to other 

mammals.   

Another member of the TRP family, TRPV1, was located in the same genomic 

window as TRPV3. Activation of TRPV1 can occur due to increased temperature or due 

to chemical agonists such as capsaicin (Caterina et al., 1997; Caterina, 2007). Once 

nerves detect increased heat, a signal is sent to the hypothalamus causing warmth-

sensitive neurons to trigger a heat-loss reflex, either by vasoconstriction or behavioral 
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mechanisms (Caterina, 2007). Hence, a change in behavioral mechanisms could be 

observed through changes in feeder visit activity in grow-finish pigs when exposed to 

increased temperatures. 

Changes in feeder visit activity are indicative of grow-finish pigs’ response to 

heat stress. Candidate genes for heat stress were identified using feeder visit activity 

differences between THI categories. Genes involved in sensory to olfactory stimuli, 

sensory perception, and response to stimuli were among those over-represented in the set 

of genes comparing changes in feeder visit activity between Danger and Emergency THI. 

Genes involved in response to stimulus included a gene family, TRP, that impacts 

thermosensation. Candidate genes and genetic markers identified in this work may 

facilitate genetic selection for improved grow-finish performance during increased 

temperatures. Selection for heat tolerant grow-finish pigs would lead to increased 

production efficiency. 
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Table 4.1: Pi values obtained from Bayes-Cpi analyses and used in Bayes-C analysis in 

GenSel for each of the Temperature-Humidity Index (THI) category comparisons. 

THI category 
comparisona 

pi 

  
Normal - Alert 0.999916 
Normal - Danger 0.999847 
Normal - Emergency 0.999898 
Alert - Danger 0.999938 
Alert - Emergency 0.999938 
Danger - Emergency 0.999942 
  
a Normal (x < 23.33°C), Alert (23.33°C ≤ x < 26.11°C), Danger (26.11°C ≤ x < 28.88°C), 
and Emergency (x ≥ 28.88°C) 
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Table 4.2: Average total number of daily feeder counts (mean ± standard error) by sire 

breed and sire breed-sex at each Temperature-Humidity Index category. 

Breed Sex Normal Alert Danger Emergency 
  x < 23.33 °C 23.33 ≤ x < 

26.11 °C 
26.11 ≤ x < 

28.88 °C 
x ≥ 28.88 °C 

      
Duroc      
 All 153.4 ± 0.5 168.9 ± 0.9 172.7 ± 1.1 182.6 ± 3.0 
 Barrow 154.8 ± 0.7 179.0 ± 1.4 183.5 ± 1.7 194.3 ± 4.4 
 Gilt 152.0 ± 0.6 159.1 ± 1.2 162.1 ± 1.4 171.1 ± 4.0 
Yorkshire      
 All 140.9 ± 0.4 145.3 ± 0.7 150.0 ± 0.9 157.8 ± 3.1 
 Barrow 156.5 ± 0.7 160.5 ± 1.3 170.7 ± 1.6 188.4 ± 4.7 
 Gilt 130.9 ± 0.5 135.5 ± 0.8 137.5 ± 1.0 137.2 ± 3.6 
Landrace      
 All 134.3 ± 0.3 122.5 ± 0.6 108.5 ± 0.7  65.8 ± 1.0 
 Barrow 140.3 ± 0.4 131.7 ± 0.9 118.0 ± 1.1  71.2 ± 1.7 
 Gilt 129.3 ± 0.3 115.6 ± 0.7 101.7 ± 0.8  62.4 ± 1.1 
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Table 4.3: Estimates of heritabilities from Bayes-C analyses in GenSel for changes in 

feeding behavior of each Temperature-Humidity Index (THI) category comparison.  

THI category 
comparisona 

h2 

Normal - Alert 0.337 
Normal - Danger 0.406 
Normal - Emergency 0.268 
Alert - Danger 0.189 
Alert - Emergency 0.178 
Danger - Emergency 0.136 
  
a Normal (x < 23.33°C), Alert (23.33°C ≤ x < 26.11°C), Danger (26.11°C ≤ x < 28.88°C), 
and Emergency (x ≥ 28.88°C) 
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Table 4.4: Identified windows from GenSel that explain more than 1.0% of genetic 

variation for each Temperature-Humidity Index (THI) category comparisons. 

THI category 
comparisona 

Chromosome Positionb 
(Mb) 

% of genetic 
variance 

explained 

Number 
of SNPs 

Frequency 
of iterations 
with (P > 0) 

Normal - Alert 
 15 19 14.19 33 0.88 
 19 2 7.79 44 0.66 
 18 1 5.76 31 0.46 
 17 2 4.87 32 0.40 
 7 53 4.71 28 0.44 
 13 85 4.65 7 0.43 
 5 107 4.29 31 0.37 
 17 3 3.66 29 0.29 
 2 24 3.65 34 0.26 
 18 14 2.51 28 0.27 
 5 68 2.39 26 0.31 
 10 54 2.28 24 0.26 
 7 46 2.17 23 0.21 
 7 10 2.09 32 0.20 
 7 1 2.00 41 0.19 
 15 152 1.95 33 0.20 
 7 52 1.49 28 0.17 
 5 108 1.47 28 0.16 
 6 15 1.46 39 0.13 
 7 45 1.32 26 0.17 
 2 26 1.25 30 0.13 
 14 138 1.03 42 0.09 
 12 37 1.02 19 0.14 
      
Normal - Danger 
 7 53 6.10 28 0.62 
 1 228 6.04 13 0.62 
 15 19 3.58 33 0.44 
 14 138 3.43 42 0.42 
 6 15 2.99 39 0.34 
 2 26 2.99 30 0.34 
 4 10 2.96 34 0.39 
 10 44 2.27 24 0.33 
 7 10 1.84 32 0.23 
 2 24 1.83 34 0.22 
 7 47 1.69 20 0.23 
 18 1 1.69 31 0.21 
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 7 46 1.68 23 0.24 
 10 54 1.61 24 0.24 
 18 55 1.36 24 0.20 
 1 230 1.21 11 0.16 
 13 46 1.06 20 0.15 
 15 135 1.05 44 0.15 
      
Normal - Emergency 
 7 53 5.99 28 0.30 
 9 103 4.89 9 0.25 
 5 98 4.25 32 0.23 
 12 12 4.15 35 0.25 
 19 2 4.06 44 0.27 
 5 10 3.17 36 0.20 
 11 21 2.81 30 0.21 
 1 117 2.40 16 0.18 
 13 7 2.33 36 0.16 
 7 43 2.1 21 0.15 
 17 49 1.81 31 0.15 
 11 22 1.77 26 0.14 
 5 100 1.71 26 0.11 
 4 103 1.43 26 0.12 
 2 103 1.38 18 0.10 
 7 44 1.29 22 0.09 
 2 102 1.27 14 0.09 
 6 15 1.15 39 0.08 
 19 3 1.10 63 0.09 
      
Alert – Danger 
 1 228 28.66 13 0.95 
 17 17 6.23 22 0.31 
 4 93 4.05 20 0.24 
 7 53 3.54 28 0.20 
 18 23 3.44 24 0.18 
 18 42 1.89 15 0.11 
 2 9 1.43 38 0.07 
 2 11 1.28 28 0.08 
 7 52 1.27 28 0.09 
 15 131 1.21 38 0.09 
 4 10 1.20 34 0.09 
 7 134 1.19 32 0.08 
 7 62 1.09 18 0.06 
 2 143 1.07 43 0.06 
 8 140 1.04 33 0.07 
 14 138 1.04 42 0.07 
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 1 286 1.01 27 0.07 
      
Alert - Emergency 
 13 176 33.73 16 0.92 
 1 16 11.03 38 0.37 
 12 58 10.82 34 0.41 
 9 103 3.97 9 0.18 
 1 18 3.48 26 0.11 
 13 197 2.31 32 0.10 
 11 22 1.89 26 0.09 
 6 68 1.46 35 0.06 
 14 13 1.13 27 0.06 
 1 210 1.06 9 0.04 
      
Danger - Emergency 
 13 176 43.19 16 0.94 
 12 51 5.51 28 0.14 
 12 58 5.01 34 0.19 
 19 126 4.24 28 0.17 
 6 149 3.15 28 0.12 
 7 104 3.05 21 0.13 
 2 71 3.04 8 0.11 
 16 78 1.93 48 0.06 
 7 133 1.27 13 0.06 
 1 18 1.05 26 0.03 
      
a Normal (x < 23.33°C), Alert (23.33°C ≤ x < 26.11°C), Danger (26.11°C ≤ x < 28.88°C), 
and Emergency (x ≥ 28.88°C) 
b Positions are based on build 10.2 of the swine genome. 
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Table 4.5. List of ontology terms that were significantly over- and underrepresented in 

the set of genes located in 1 Mb windows identified for Danger-Emergency Temperature-

Humidity Index category comparison. 

 
 Gene Set (n genes)    
     
Ontology 
Term 

Annotated 
genesa 

(21398) 

Genesb 
(101) 

Genes 
expected 

Over (+) 
or 

Under (-) 

P-value 

Biological Process      
Detection of chemical 
stimulus involved in sensory 
perception of smell 

1039 29 5.05 + 6.13E-11 

Sensory perception of smell 1055 29 5.13 + 9.02E-11 
Detection of chemical 
stimulus involved in sensory 
perception 

1062 29 5.16 + 1.07E-10 

Detection of chemical 
stimulus 

1079 29 5.24 + 1.59E-10 

Detection of stimulus 
involved in sensory 
perception 

1091 29 5.30 + 2.10E-10 

Sensory perception of 
chemical stimulus 

1109 29 5.39 + 3.17E-10 

Detection of stimulus 1152 29 5.60 + 8.20E-10 
Sensory perception 1308 29 6.36 + 1.87E-08 
Neurological system process 1482 30 7.20 + 6.89E-08 
G-protein coupled receptor 
signalling pathway 

1625 30 7.90 + 6.56E-07 

System process 1788 30 8.69 + 6.42E-06 
Response to chemical 2894 37 14.07 + 7.09E-05 
Signal transduction 4081 42 19.83 + 2.51E-03 
Single organism signalling 4336 43 21.07 + 4.76E-03 
Signalling 4339 43 21.09 + 4.85E-03 
Cell communication 4394 43 21.36 + 6.90E-03 
Cellular response to stimulus 4960 48 24.11 + 1.37E-03 
Response to stimulus 5795 54 28.17 + 4.22E-04 
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Molecular Function 
     

Olfactory receptor activity    1039 29 5.05 + 1.98E-11 
G-protein coupled receptor 
activity 

   1427 29 6.94 + 4.93E-08 

Transmembrane receptor 
activity 

   1777 31 8.64 + 3.84E-07 

Transmembrane signalling 
receptor activity 

   1745 30 8.48 + 1.17E-06 

Signalling receptor activity    1829 31 8.89 + 7.79E-07 
Receptor activity    1988 32 9.66 + 1.35E-06 
Molecular transducer activity    1988 32 9.66 + 1.35E-06 
Signal transducer activity    2084 32 10.13 + 4.33E-06 
      
Cellular Component      
Plasma membrane 3670 42 17.84 + 2.01E-05 
Cell periphery 3761 42 18.28 + 4.13E-05 
Integral component of 
membrane 

5563 50 27.04 + 1.15E-03 

Intrinsic component of 
membrane 

5609 50 27.26 + 1.49E-03 

Membrane part 6303 53 30.63 + 3.55E-03 
Membrane 7806 59 37.94 + 2.15E-02 
a Number of genes in the background Sus scrofa annotation set with given GO term. Total 

number of annotated genes is shown in parentheses. 

b Number of genes with given GO term. Total number of genes with annotations in the 

background Sus scrofa annotation set is shown in parentheses. 
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Table 4.6. List of ontology terms that were significantly over- and underrepresented in 

the set of genes located in 1Mb windows identified for Alert-Danger Temperature-

Humidity Index category comparison. 

 Gene Set (n genes)    
     
Ontology 
Term 

Annotated 
genesa 

(21398) 

Genesb 
(158) 

Genes 
expected 

Over (+) 
or 

Under (-) 

P-value 

Biological Process      
Organic substance catabolic 
process 

980 22 7.42 + 3.33E-02 

Response to chemical 2894 45 21.91 + 8.37E-03 

Molecular Function 
     

Glutathione transferase 
activity 

23 6 0.17 + 5.92E-05 

Transferase activity, 
transferring alkyl or aryl 
groups 

48 6 0.36 + 4.18E-03 

Aspartic-type endopeptidase 
activity 

39 5 0.30 + 2.68E-02 

Aspartic-type peptidase 
activity 

40 5 0.30 + 3.03E-02 

Odorant binding    230 15 1.74 + 7.06E-07 
      
Cellular Component      
Synaptic membrane 94 7 0.71 + 9.09E-03 
a Number of genes in the background Sus scrofa annotation set with given GO term. Total 

number of annotated genes is shown in parentheses. 

b Number of genes with given GO term. Total number of genes with annotations in the 

background Sus scrofa annotation set is shown in parentheses. 
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Figure 4.1: Temperature-Humidity index (THI; °C) versus average barn temperature (°C) 

using a 3rd degree polynomial regression for all time periods when both measures were 

available. 
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