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ABSTRACT 

IDENTIFICATION, CALCULATION AND WARNING OF HORIZONTAL CURVES 

FOR LOW-VOLUME TWO-LANE ROADWAYS USING SMARTPHONE SENSORS 

SHAOHU ZHANG 

2017 

Smartphones and other portable personal devices that integrate global positioning 

systems, Bluetooth Low Energy, and advanced computing technologies have become 

more accessible due to affordable prices, product innovation, and people’s desire to be 

connected. As more people own these devices, there are greater opportunities for data 

acquisition in Intelligent Transportation Systems, and for vehicle-to-infrastructure 

communication. Horizontal curves are a common factor in the number of observed 

roadway crashes. Identifying locations and geometric characteristics of the horizontal 

curves plays a critical role in crash prediction and prevention, and timely curve warnings 

save lives. However, most states in the US face a challenge to maintain detailed and high-

quality roadway inventory databases for low volume rural roads due to the labor-

intensive and time-consuming nature of collecting and maintaining the data.  

This thesis proposes two smartphone applications C-Finder and C-Alert, to collect 

two-lane road horizontal curves data (including radius, superelevation, length, etc.), 

collect this data for transportation agencies (providing a low-cost alternative to mobile 

asset data collection vehicles), and for warning drivers of sharp horizontal curves, 

respectively. C-Finder is capable of accurately detecting horizontal curves by exploiting 

an unsupervised K-means machine learning technique. Butterworth low pass filtering was 
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applied to reduce sensor noise. Extended Kalman filtering was adopted to improve GPS 

accuracy. Chord method-based radius computation, and superelevation estimation were 

introduced to achieve accurate and robust results despite of the low-frequency GPS and 

noisy sensor signals obtained from the smartphone. C-Alert applies BLE technology and 

a head-up display (HUD) to track driver speed and compare vehicle position with curve 

locations in a real-time fashion. Messages can be wirelessly communicated from the 

smartphone to a receiving unit through BLE technology, and then displayed by HUD on 

the vehicle’s front windshield. The field test demonstrated that C-Finder achieves high 

curve identification accuracy, reasonable accuracy for calculating curve radius and 

superelevation compared to the previous road survey studies, and C-Alert indicates 

relatively high accuracy for speeding warning when approaching sharp curves. 
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1. INTRODUCTION 

1.1 Motivation 

Two-lane roadways are the predominant road type in most countries. There are 

more than 3 million two-lane highways in the United States, 90% of which carry traffic 

volumes less than 2,000 vehicles per day (1). According to the Fatality Analysis 

Reporting System (FARS) in 2014, 66.4% ( 29,796 out of 44,858) fatal crashes occurred 

on two-lane highways; and 20.1% (7,656 out of 38,046) of fatal crashes involved in 

single and two-vehicle crashes that occurred along horizontal curves (2). Therefore, 

knowledge of locations and geometric characteristics of the roadway curves on low-

volume roads play a crucial role on crash prediction and prevention. Although some 

states collect and store roadway curve data, including curve-related information (i.e., 

curve degree) on U.S. and state highways, it is typically incomplete curve information 

(e.g., lacking information such as superelevation) (3). There is high demand for this 

information on rural roads for use in engineering design, safety management, and 

determining appropriate advisory speeds. This is particularly important given that the 

Federal Highway Administration (FHWA) has mandated that all agencies (state, local, 

etc.) survey all roadway horizontal curves by December 31st, 2019 (4). 

All components of a smart transportation infrastructure need to be connected, 

monitored, and automated in order to work effectively and efficiently. Conventional one-

way communication between highway infrastructure and motorists through traffic control 

devices (TCDs) consists of pavement markings, traffic signs, and signals cautioning 

drivers about changes in lane configuration, geometric characteristics, and right-of-way 



2 
 

priority. A variety of TCDs are installed at horizontal curves to warn drivers of turning 

direction and reducing speed. These TCDs are typically not adapted to the driver’s 

position and speed, it is expected that drivers notice and heed these warnings. However, 

the ability of a driver to see a TCD can be compromised by inclement weather, low light 

conditions, and vandalized or missing signs. 

Horizontal curve-related crashes occur at an alarming rate. Thus, they are 

recognized as one of the top safety improvement focus areas by many state Departments 

of Transportation (DOTs). Many of these crashes can be attributed to human errors such 

as inattentiveness, recklessness, distraction, and driving under the influence. Human 

errors, however, can potentially be avoided if drivers receive advanced warnings. Active 

and effective communication between vehicle operators and roadway infrastructure may 

help to mitigate collisions. 

Mobile asset data collection vehicles equipped with sensors such as LiDAR, GPS 

and the inertial measurement unit (IMU) can provide transportation agencies with 

location information and roadway design elements, including horizontal curve properties. 

However, users are required to be familiarized with detailed and tedious device 

procedures, and post-data collection processes. In addition, the cost of a survey vehicle 

with equipment can be prohibitive for many agencies and researchers.  

As an emerging wireless technology, Bluetooth Low Energy (i.e. Bluetooth LE or 

BLE) gives a high performance regarding low power consumption and data throughput 

(4). The widespread use of BLE in mobile phones, laptops, automobiles, etc., has fueled 

novel applications in areas such as healthcare, fitness, security, home automation 
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industries and intelligent transportation systems (ITS) (4-9). Smartphones with BLE 

technology are an ideal choice for vehicle-to-infrastructure (V2I) communications. 

Smartphones that integrate GPS, IMU, BLE and advanced computing technologies have 

become more accessible due to affordable price, product innovation, and people’s desire 

to be connected. As more people own these devices, greater opportunities arise for data 

acquisition in Intelligent Transportation Systems (ITS) and for vehicle-to-infrastructure 

(V2I) communications, leading to low-cost and real-time mobile sensor platforms.  

1.2 Objectives 

The goal of this study is to provide an off-the-shelf smartphone based application 

to collect horizontal curve data in a low-cost manner and prevent crashes by providing 

drivers with timely information about road hazards, including sharp curves. The 

objectives are to design, test, and evaluate smartphone technologies and wireless 

communications for acquiring, processing, and analyzing sensor data and providing users 

with curve information. The main steps required to meet these objectives include: 

• Defining the system architecture and functional requirements, and 

• Evaluating the system reliability and integration  

These steps are described in further detail below. 

1) Define the System Architecture and Functional Requirements 

Smartphones have relatively low cost sensors chips. The low cost is associated 

with a reduction in accuracy, compared to more expensive sensors. Thus, when using 

these sensors, it is critical to improve the sensors’ accuracy. This requires a system that 1) 

accounts for and reduces sensor (e.g., gyro and accelerometer) measurement errors and 
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outliers; 2) reduces the location error caused by the weak GPS signals or GPS outage; 

and 3) provides a cost-effective real-time mobile system that detects horizontal curves 

and calculates their parameters accurately and reliably (e.g., radius and superelevation). 

The concept of providing drivers with direct warning of an approaching hazard is 

straightforward. However, its implementation requires a system that 1) minimizes in-

vehicle distractions to drivers; 2) provides timely, meaningful, and dependable messages; 

and 3) sustains reliable communication between the HUD and message generator (e.g., 

smartphone application). The key to the success requires the acquisition, delivery, and 

analysis of GPS data. 

2) Evaluate System Reliability and Integration  

Calculating accurate curve parameters is needed to account for sensor (e.g. gyro 

and accelerometer) measurement errors and outliers. Some filtering approaches (e.g. 

Butterworth filter and Kalman filter) can be adopted to reduce signal errors. Machine 

learning technique is applied to identify curves. 

In order for drivers to heed warnings from V2I communications, the system must 

be reliable. Reliable vehicle to roadside communication is dependent on the integration of 

multiple systems: GPS tracks vehicle path and measures the distance to the next point of 

interest; smartphone application stores location-specific information of curves and 

processes GPS signals; wireless communication transmits real-time message to the HUD; 

and the HUD projects clear and concise message to vehicle’s windshields. Matching 

technologies to functional requirements are an important consideration. 
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1.3 Contributions 

 1) This study proposed an automated low-cost mobile road inventory system (C-

Finder) for two-lane horizontal curve based on off-the-shelf smartphones. The proposed 

system is capable of accurately detecting horizontal curves by smartphone sensor data. 

This is accomplished by applying an extended Kalman filtering approach and a K-means 

machine learning technique to the data. 

 2) This thesis evaluated the radius and superelevation of curves using the low-cost 

smartphone. The experiment illustrated that the proposed approach has a relatively high 

accuracy. This provides a low-cost alternative to commercial data collection systems for 

obtaining the parameters of horizontal curves by the transportation agencies and 

researchers. 

3) This study also developed a prototype smartphone application (C-Alert) that 

tracks driver position, computes arrival time at an imminent hazard (e.g., sharp curve), 

and alerts drivers through HUD technology. The application may improve driver decision 

making. It may also reduce the need for the state departments of transportation to retrofit 

curves. 

1.4 Structure and Organization 

The rest of this thesis is organized into five sections. Section 2 starts with the 

review of previous research, including the tools and approaches to collect horizontal 

curves, V2I communication, and smartphone applications in ITS. Advantages and 

disadvantages of each method are discussed. 
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  Section 3 demonstrates the system architecture and design of C-Finder and C-

Alert, respectively. C-Finder consists of four modules including Data Collection, Data 

Correction, Curve Identification, and Curve Calculation. C-Alert is comprised of three 

modules including smartphone module, communication module, and HUD module. Each 

module is specified addressed. 

  Section 4 provides the methodology to filtering sensor data, identifying curves 

and calculating curves. Butterworth low filtering is used to reduce the sensor errors. K-

means machine learning technique is adopted to identify horizontal curves. Chord offset 

method is applied to calculate the averaged radius of curves. The proposed superelevation 

estimation approach is introduced. The approach of warning sharp horizontal curves is 

addressed. 

 Section 5 provides the field evaluation. The speed obtained from the smartphone 

and the identification accuracy of curves are assessed. Then, the radius and 

superelevation modules are evaluated. Finally, the curve warning of C-Alert is evaluated. 

Section 6 presents the summary, conclusions and recommended future work 

based on this study 
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2. LITERATURE REVIEW 

2.1 Introduction 

Many agencies and researchers have shown interests in the extraction and 

identification of horizontal curves since they are considered as hazardous roadway 

locations. Common curve identification techniques employed involve geographic 

information systems (GIS) based tools, satellite imagery processing, and the mobile asset 

data collection. This literature review includes the definitions, procedures, 

methodologies, and applications of identification, calculation and warning of horizontal 

curves used in previous studies.  

2.2 GIS Applications 

Three main GIS-based methods are used in the published literature: Curve 

Calculator (ArcGIS), Curvature Extension (5) and Curve Finder (6). Curve Calculator 

was developed by the Environmental Systems Research Institute (ESRI). It allows users 

to manually define the beginning and ending of a curve and input any two of four curve 

characteristics (i.e., chord length, angle, arc length, and radius) to each curve. This is 

accomplished by inputting the information for a single curve at a time. Curvature 

Extension was developed by the Florida Department of Transportation (FDOT). Similar 

to Curve Calculator, users must manually define the beginning and ending of a curve and 

input parameters of the curve for the individual curves. Curve Finder is a program 

developed by the New Hampshire Department of Transportation (NHDOT), which 

allows for an automated procedure that can be executed on a network of roadways. 

Curves are identified as the program moves through a series of points.in a GIS polylines 

file. 
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GIS-based tools (3; 7; 8) can extract and identify horizontal curves from GIS 

roadway maps in  large-scale networks. Recently Li et al. demonstrated that Curve Finder 

can be applied to low-volume rural roads from a selected roadway layer for classifying 

curves, computing curve geometries and creating a geographic information system for 

curve layers automatically (3). Li et al. showed that GIS tools provide an inexpensive and 

efficient way to obtain curve information. However, the GIS-based techniques require 

high-quality GIS data to reduce the identification errors from transverse measurement 

errors and low vertex resolution of the GIS roadway centerline as shown in Figure 2.1. In 

addition, it is not possible to evaluate the superelevation of horizontal curves based on 

GIS data and tools.  

 

Figure 2.1 Low Vertex Resolution of Roadway Alignment in the GIS Map 
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2.3 Image Processing based Approach 

 Image processing using high-resolution satellite imagery (9-12) can retrieve 

geometric characteristics of some typical curves. For instance, Easa et al. designed a 

method using IKONOS 1m spatial resolution imagery to extract simple circular and 

reversed curve information (13). Dong et al. applied the Hough Transform algorithm to 

develop an approximate method for extracting spiral horizontal curves using high-

resolution satellite imagery (14). Although these approaches can retrieve geometric 

characteristics of some typical curves by using an approximation algorithm, the 

limitations are that the accuracy relies on image resolution and that it requires processing 

of a large number of high-resolution images. Thus, these methods incur high 

computational costs. Also, none of these methods can extract information of the 

superelevation of the horizontal curves. 

2.4 Survey Vehicle 

A survey vehicle equipped with a GPS receiver, inertial system and other sensors 

(e.g., LiDAR) is a common way to collect data and construct roadway asset inventories. 

The collected raw GPS data are post-processed to extract horizontal curve components. 

Harkey et al. (15) discussed how the azimuth data obtained from the automated vehicle 

can be a useful tool for identifying curves and tangents on the roadway. However, the 

data collection and the post-processing methods need to be improved to measure the 

radius and length of horizontal curves accurately. Carlson et al. (16) identified and tested 

ten techniques (i.e. basic ball bank indicator (BBI), advanced BBI, chord length, 

compass, field survey, GPS, lateral acceleration, plan sheet, speed advisory plate, and 

vehicle yaw rate ) to obtain horizontal curve radii. Base on the results, in-vehicle GPS 
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method was recommended to record roadway alignment for field personnel. To evaluate 

the accuracy of horizontal alignment data from multiple commercial roadway inventories, 

Findley et al. (17) applied five different techniques (i.e., chord method, GIS method, 

vendor data, survey data, and design data) to obtain curve parameters. The results were 

compared with the vendors’ data, and the authors argued that agencies should consider 

the limitations of each technique to get appropriate data to meet their needs. Laser 

scanning technology (18) can provide highly accurate survey data, which can be utilized 

to extract the horizontal and vertical alignment of a curve. However, its cost is higher 

than that of other approaches, e.g., it was reported that the cost per mile to obtain the 

required highway inventory dataset for photo/video log, satellite/aerial imagery, and GPS 

data logger were $72, $107, and $700, respectively, while the mobile LiDAR was $915 

(19). In addition, users must be familiarized with operating instructions. Finally, the post-

processing of raw data from these systems is time consuming and labor intensive. 

2.5 Vehicle-to-infrastructure Communication 

The goals of improving safety, comfort, and efficiency of roadway systems 

motivate further development of wireless communications in ITS. The U.S. Department 

of Transportation (USDOT) has promoted the development of Wireless Access in 

Vehicular Environments (WAVE) based on IEEE 802.11p and IEEE 1609.x. A WAVE 

system consists of two classes of devices that allow bidirectional vehicle-to-vehicle 

(V2V) or vehicle-to-infrastructure (V2I) communication: roadside units (RSUs) and 

onboard units (OBUs) (20). V2I communications are an emerging technology based on 

wireless network protocol. Vehicles equipped with intelligent systems such as collision 



11 
 

warning systems (CWS) or lane-keeping assistance systems (LKAS) are designed for 

safety (21). 

To date, some V2I systems have been developed based on available wireless 

communication options such as Worldwide Interoperability for Microwave Access 

(WiMAX, IEEE 802.16), Wireless Fidelity (Wi-Fi, IEEE 802.11), and Dedicated Short-

Range Communication (DSRC, IEEE 802.11p ) (22). These wireless communication 

technologies have been designed for traffic data acquisition and dissemination systems, 

work zones, intersection collision warning systems, and incident detection (23-26). 

Designing ITS networks balance the goals of functionality, performance, reliability and 

cost. However, given the limits of communication infrastructure in rural areas, the 

selection of suitable V2I communication alternatives can be challenging. 

Typical V2I data are processed in the short-range distance with wireless 

communication systems. BT (Bluetooth) technology standardized as IEEE 802.15 is 

widely used in both industrial and commercial environments. BLE (Bluetooth Low 

Energy) is a new wireless technology developed by the Bluetooth Special Interest Group 

(SIG) for short-range communications, which use the low energy feature of the BT v4.0 

specification for controlling and monitoring applications. A BLE product can collect data 

and run for months or years on a tiny battery (27; 28). Given the widespread use of BT 

technology, it is likely that BLE will be widely used in smartphones in the near future 

(29). 

Drivers are constantly receiving information collected through in-vehicle sensors. 

The communication of this information could become a distraction if not presented and 

managed properly. Alerting drivers without creating an extra distraction is important for 
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the driver’s safety. HUD projects information on the front vehicle windshield without 

requiring the driver to take her/his eyes off the roadway. Due to its safe design, HUD has 

been gradually adopted in new vehicle models by manufacturers such as GM and BMW. 

Many HUD systems (30-32) and several smartphone applications (33; 34) have been 

designed or developed in recent years, and these driver-assistance devices provide 

navigation information such as current vehicle position, speed, traffic sign, lane 

configuration, etc. However, these commercially available HUD technologies are 

proprietary.  

2.6 Smartphone Applications for ITS 

Most smartphones are equipped with a series of sensors including an 

accelerometer, gyroscope, light, magnetic sensor, BLE and GPS. This richness in sensors 

enable support for roadway inventory in a low-cost manner. Recently, many studies have 

been prompted using smartphone sensing in vehicles. GPS related applications are 

applied to positioning capturing (35; 36) or to vehicle tracking (37). Accelerometers have 

been used in studies to measure potholes (38; 39) or pavement roughness (40; 41). Zhang 

et al. (42) presented a mobile system to detect horizontal curves by synthesizing 

smartphone sensor data and generate curve models by applying a support vector 

machines (SVMs) learning technique.  

Smartphones powered by BLE technologies are attracting more and more 

attention from transportation researchers and wireless service providers due to the traffic 

and travel information they can provide. Manzoni et al. (43) used smartphone and BT 

technologies to present an interaction system using a V2V, as well as a driver-to-

infrastructure communication system to improve motorcycle safety. The system interacts 
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with drivers through an audio system and is remotely maintained and monitored through 

a web server and HTTP communications. Rodrigues et al. proposed a system architecture 

designed for connected vehicles using sensor-embedded smartphones, BT, a GPS 

receiver and accelerometer to collect and process data in real-time (44). Similar 

smartphone system architecture can also be found for V2V and V2I applications (45). 

  



14 
 

3. SYSTEM ARCHITECTURE AND DESIGN 

3.1 Introduction 

This section details the system architecture and design of C-Finder and C-Alert, 

respectively. C-Finder consists four modules including: 

1) Data Collection,  

2) Data Correction,  

3) Curve Identification, and  

4) Curve Calculation. 

 C-Alert is comprised of three modules including: 

1) Smartphone module,  

2) Communication module, and  

3) HUD module.  

Each module is specified addressed in this chapter. 

3.2 C-Finder 

The basic idea of C-Finder is to use the rotation rate around z-axis of the 

gyroscope to identify a curved road when a vehicle negotiates a curve. The corrected 

GPS location can be applied to identify the PC (point of curvature) and PT (point of 

tangent) of a curve, which can then be used to calculate the curve radius. Figure 3.1 

illustrates the coordinate relationship between the vehicle and smartphone. As shown in 

Figure 3.2, The system has four main system modules: Data Collection, Data Correction, 

Curve Identification and Curve Calculation. 
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Figure 3.1 The Coordinate Systems of a Smartphone and a Vehicle 

 

 

Figure 3.2 System Architecture of C-Finder 

3.2.1 Data Collection Module  

This module takes as input real time sensor readings from a smartphone including 

the timestamp, GPS, accelerometer and gyroscope readings. GPS tracks the vehicle’s 

position and speed. The accelerometer is to obtain the acceleration rate on the lateral 

direction (𝑋 axis), the longitudinal direction (𝑌 axis), and the vertical direction (𝑍 axis). 

Gyroscope readings record the rotation rate around the lateral direction (𝑋 axis), the 

longitudinal direction (𝑌 axis), and the vertical direction (𝑍 axis). 
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3.2.2 Data Correction Module  

Data Correction Module reduces the noise of the raw input data. The Butterworth 

low filter is applied to smooth the acceleration rate (𝑚/𝑠2) and rotation rate (rad/s). GPS 

and speed data are corrected by applying the extended Kalman filter (EKF) algorithm. 

The curved road segments can be easily detected based on the smoothed rotation rate 

around 𝑍 axis. 

3.2.3 Curve Identification Module  

Once the filtered curved segment data is identified, the Curve Identification 

module implements the K-means machine learning algorithm to evaluate the segment 

data and then determine if it is the horizontal curve or not.  

3.2.4 Curve Calculation Module 

The obtained sensor data on the curves is imported to Curve Calculation Module. 

The filtered GPS data is used to identify the PC and PT of a curve, and then calculate the 

radius. Super elevation is calculated along with the obtained radius, speed and 

acceleration rate in the lateral direction.  

3.2 C-Alert 

C-Alert is comprised of three modules: smartphone module, communication 

module and HUD module (see Figure 3.3). Together, the three modules can track driver 

position, compute arrival time at an imminent hazardous location, and send alerts through 

HUD. In Figure 3.4, the necessary hardware includes a smartphone (iOS), a BLE shield, 

an Arduino, an LED matrix, and accessories (e.g., power source and cables). The work 

flow is designed as follows: the smartphone application sends a command to the BLE 
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shield, then the BLE shield converts the command into digital signals and forwards them 

to the Arduino UNO motherboard (i.e. an embedded microprocessor). Controlled by 

Arduino, the LED matrix displays messages through properly connected electronic wires 

and pins. Eventually, the LED matrix projects a message on the windshield. A cigarette 

power inverter with a USB converts 12 volts of vehicle power to an alternating current 

(AC) for the entire system. 

The rest of this section presents the detailed design and functions of each module. 
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Figure 3.3 System Architecture of C-Alert 
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Figure 3.4 Actual Hardware of C-Alert. 

3.2.1 Smartphone Module 

 

This module is concerned with the communication that takes place between the 

smartphone and the Arduino. The smartphone is the core of the system because it 

integrates the GPS, compass, digital map databases, and BLE communication interface. 

The GPS and compass provide vehicle location and orientation updates. The BLE 

interface allows the smartphone application to scan, connect, and communicate with the 

BLE through a universally unique identifier (UUID) (see Figure 3.5). Horizontal curve 

information (e.g., GPS coordinates, geometry, and description) can be stored in a spatial 

database that uses Google Maps or Apple iOS Maps as a navigational reference. For the 

convenience of operation, a mobile application based on Apple iPhone Operating System 

7 (iOS 7) was developed using the Xcode Version 5.0 Software Development Kit (SDK) 

for the iPhone 4s or later models.  
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Figure 3.5 BLE Interface Screenshots in iPhone 4s. 

3.2.2 Wireless Communication Module 

 

The Wireless communication module consists of the Arduino and BLE board. 

Arduino (40) is an open-source electronics prototyping platform. The Arduino Uno, a 

microcontroller board based on the ATmega328, can control physical objects. Arduino 

codes were developed using Arduino IDE to receive data from the BLE and send 

operations to control whether LED lights are on or off. 

Arduino Uno does not have built-in IEEE 802.15 connectivity; thus, the BLE is 

added to connect and configure commands from the smartphone. BLE shield version 2 

from RedBear product (46) was used in this research which is designed to work with the 

Ardunio board. The BLE shield connects to Arduino via a serial port that provides IEEE 

802.15 network connectivity. 

3.2.3 HUD Module 
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Figure 3.6 Inverted Curve Arrows. 

For the preliminary HUD, a 16×32 RGB color LED matrix panel (47) was used. 

This product has the capacity to show a variety of colors and provides a library with open 

source codes and a wiring tutorial (48) for developers. Once the display command is 

received by the BLE shield and the Arduino board, a program written for Arduino will 

control the message by sending electronic signals to the LED matrix. As illustrated in 

Figure 3.6, the LED matrix has such a strong light emitting intensity that the image can 

be clearly projected onto the windshield. Additionally, to display normal curve images, 

this module implements a mirroring function in the Arduino Uno program. Figure 3.6 

depicts several curve images.  
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4. METHODOLOGY 

4.1 Introduction  

 This chapter discusses the approaches to smoothing the noise sensor 

measurement. Butterworth low-pass filtering and extended Kalman filtering are 

introduced. A K-means machine learning technique is adopted to identify the horizontal 

curves. Then the radius calculation method based on a chord offset approach is describled 

and illustrated. The following superelevation estimation approach provides the equations 

this study applies. Finally, the principal method of waring horizontal curves is 

introduced. 

4.2 Sensor Measurement Smoothing 

4.2.1 Butterworth Low-pass Filter 

It is crucial to minimize measurement noise and outliers to achieve accurate curve 

detection and speed estimation. The Butterworth low-pass filter is well known for its 

effectiveness to reduce noise of high frequency measurements. This technique is adopted 

to remove the noise of raw accelerometer and gyroscope data collected using a 

smartphone. Figure 4.1 and Figure 4.2 plot measurements of rotation rate around the Z 

axis and acceleration rate on the X axis for a turning and a roadway curve, respectively. It 

is shown that the noise is effectively removed by applying the Butterworth low-pass 

filter. 
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Figure 4.1 Variation of the Angular Speed around Z Axis 

 

 

Figure 4.2 Variation of the Acceleration Rate on X axis 
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4.2.2 Extended Kalman Filtering 

This system requires accurate measurement of the vehicle’s GPS location and 

speed to derive the horizontal superelevation. The smartphone can acquire the speed 

reading from the embedded GPS module when the GPS signal is strong. Whereas the 

acceleration rate and rotation rate from IMU readings can be used to calibrate vehicle’s 

speed and locations when the GPS signal is weak or there is a signal outage.  

The extended Kalman filter (EKF) is the nonlinear version of the Kalman filter 

which linearizes an estimate of the current mean and covariance. The EKF has been 

considered the de facto standard in the theory of nonlinear state estimation, navigation 

systems, and GPS. Assuming the process has a state vector 𝑥𝑘, and letting 𝑓(. ) denote the 

non-linear function in process. The recursion equations for EKF are given as follows. 

 𝑥𝑘 = 𝑓( 𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1)    (1) 

 𝑧𝑘 = ℎ( 𝑥𝑘 , 𝑣𝑘)    (2) 

where  𝑢𝑘−1 is the control vector; 𝑤𝑘−1and  𝑣𝑘 represent the process and measurement 

noises which are both assumed to be zero mean multivariate Gaussian noises with 

covariance 𝑄𝑘  and 𝑅𝑘,  respectively. The non-linear function ℎ() relates to the state 𝑥𝑘 to 

the measurement 𝑧𝑘.  

A complete picture of the operation of the EKF is shown in Figure 4.3. 
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Figure 4.3 A Complete Picture of the Operation of the Extended Kalman Filter  

(* Welch,1995(49)) 

where 𝐴𝑘 , 𝑊𝑘 , 𝐻𝑘 and 𝑉𝑘are Jacobian Matrix. The state vector x is given in equation 3. 

 𝑥 = {𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑎𝑡𝑡, 𝑣𝑥, 𝑣𝑦 , 𝑣𝑧 , 𝑤𝑥, 𝑤𝑦, 𝑤𝑧, 𝑎𝑐𝑐𝑥, 𝑎𝑐𝑐𝑦, 𝑎𝑐𝑐𝑧 } (3) 

where 𝑣 is the speed, 𝑤 is the rotation rate and 𝑎𝑐𝑐 is the acceleration rate. When the 

GPS signal is weak or outage, the speed can be evaluated by the acceleration rate, and the 

GPS can be estimated by rotation rate and the speed. Figure 4.4 demonstrates that the 

GPS accuracy is improved by using EKF. 
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Figure 4.4 Raw GPS Locations (red) vs Smoothed GPS Locations (green) 

4.3 Identification of Horizontal Curves 

4.3.1 K-means 

K-means is one of the common “clustering” unsupervised machine learning 

techniques. It partitions 𝑛 observations into 𝑘 clusters in which each observation belongs 

to the cluster with the nearest mean. Suppose a data set 𝐷, contains 𝑛 objects in 

Euclidean space, which can be partitioned into k clusters. A centroid-based partitioning 

technique uses the centroid of a cluster, 𝐶𝑖, to represent the 𝑖𝑡ℎ cluster. The centroid can 

be determined by the mean of the clusters. 

The Euclidean distance, 𝑑𝑖𝑠(𝑝, 𝑐𝑖), measures the distance between the object 

point 𝑝 and the centroid 𝑐𝑖. The sum of squared error (SSE) between all objects in 𝐶𝑖 is 

used to determine the centroid of cluster 𝐶𝑖, which can be defined as  
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𝑆𝑆𝐸 = ∑ ∑ 𝑑𝑖𝑠(𝑝, 𝑐𝑖)
2

 

𝑝∈𝐶𝑖

𝑘

𝑖=1

                                                           (4) 

where 𝑝 represent a given object, and 𝑐𝑖 is the centroid of cluster 𝐶𝑖. 

4.3.2 Identifying Horizontal Curves 

In order to distinguish between horizontal curves and lane change or turning 

maneuvers, this study adopted K-means machine learning technique. With K-means 

clustering, a threshold is selected to remove the data from the tangent road sections. It 

was observed that the standard deviation and mean of the rotation rate around Z-axis have 

a set of clustering features. Consequently, this study was able to use K-means clustering 

to identify horizontal curves. K-means algorithm, with K=2, is applied to partition the 

training dataset into 2 clusters which represent curves and turns, respectively. 

Specifically, a centroid-based partitioning technique (50) was used to obtain the centroid 

of a cluster 𝐶𝑖 to represent clusters. As shown in Figure 4.5, 50 curves and 50 turns were 

used to train the clustering centroids. In order to identify horizontal curve displacement, a 

threshold (0.01 rad/s) of the rotation rate was set to obtain the points in array A which 

represent the curved section of the vehicle’s position (e.g., lane change, turns and curve). 

The array A, representing a curved road, is considered if the Euclidean distance with the 

centroid of curve clustering 𝑐𝑖is the smallest one based on Equation 5. 

 𝑑 = 𝑑𝑖𝑠(𝐴, 𝑐𝑖)                                                           (5) 

where 𝑑 is the Euclidean distance between A and the 𝑖𝑡ℎ centroid in terms of the mean 

and standard deviation of the rotation rate around the Z axis, and 𝐴 is an array of the 

filtered rotation rate around the Z-axis. 
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Figure 4.5 Cluster Assignments and Centroids 

4.4 Calculation of Horizontal Curves  

4.4.1 Chord Offset Method  

A chord offset method is adopted to calculate curve radius. To improve the 

accuracy, three measurements were recorded within the boundaries of PC and PT for 

each horizontal curve. In Figure 4.6, 𝑅 represents the radius of the circle in feet; 𝐶 is the 

chord length in feet; 𝐻 is the middle ordinate in feet. The radius in terms of 𝐻 and 𝐶 can 

be derived by using: 

 
𝐶2

4
+ (𝑅 − 𝐻)2 = 𝑅2                                                               (6) 

 𝑅 =
𝐻

2
+

𝐶2

8𝐻
±

𝐿𝑎𝑛𝑒 𝑊𝑖𝑑𝑡ℎ

2
                                                         (7) 
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 𝐷 =
5729.38

𝑅
                                                            (8) 

The GPS frequency rate is 1Hz in the majority of modern smartphones. Due to the 

slow rate, it cannot properly capture the locations of PC and PT of a curved road using 

GPS alone. The gyroscope has a much higher output rate, which can be used to identify 

the locations of PC and PT. More specifically, the count of samples in rotation rate over 

the threshold when the vehicle is traversing a curved road segment is used. This 

calculated proportion can be used to find the location between a point on the tangent and 

the next point on the curved road segment.  

The chord method can be sensitive to where middle ordinate measurements are 

taken. To improve the accuracy of curve radius estimates, the three neighboring GPS 

points around the PC and PT can be used to obtain 9 chord lengths (𝐶) and 9 middle 

ordinate (𝐻) measurements, respectively. Equation 9 was used to calculate the chord 

lengths based on the observed data. Then the calculated 𝑅𝑖  was averaged using the 

weighted average method shown in equation 10. 

 𝐶𝑖 =  𝑑𝑖𝑠(𝑃𝐶𝑗 , 𝑃𝑇𝑘)                                                           (9) 

 𝑅𝑎𝑣𝑔 =
1

9
∑

𝑅𝑖𝐻𝑖

𝐻𝑖

9

𝑖=1

                                                        (10) 
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Figure 4.6 Chord Offset Method for Curve Radius Measurement 

4.4.2 Superelevation Estimation  

The lateral acceleration and vehicle speed can be used to calibrate the 

superelevation. According to the AASHTO Green Book(51): 

 
0.01𝑒 + 𝑓

1 − 0.01𝑒𝑓
=

𝑣2

15𝑅
 ≈ 0.01𝑒 + 𝑓   (11) 

 𝑅 =
𝑣2

15(0.01𝑒 + 𝑓)
                                          (12) 

  𝑒 = 100 (
𝑣2

15𝑅
− 𝑓) (13) 

where 𝑒 is the superelevation in percent, 𝑓 is the side friction factor (which is equivalent 

to 𝑋𝑎𝑐𝑐/𝑔),  𝑋𝑎𝑐𝑐 is the acceleration rate on the side of the vehicle measured by the 

smartphone, and 𝑣 is the vehicle speed in mph;  
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 Thus, using the calculated radius, vehicle speed, and lateral acceleration from the 

smartphone sensors (i.e., to obtain an estimate of 𝑓), the procedure of computing 

superelevation is straightforward. 

4.5 Warning of Horizontal Curve 

In C-Alert system, horizontal curve data are split into two types of nodes (see 

Figure 5): clockwise curve node and counterclockwise curve node. Their locations are 

relative to the coordinates of the PC (point of curvature at the beginning of curve) or the 

PT (point of tangency at the end of curve). PC and PT are defined on increasing 

mileposts. 

Counterclockwise Curve Node

and  Advisory Speed

Clockwise Curve Node

and  Advisory Speed

Direction of Travel
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Figure 4.7 Horizontal Curve Scenario. 
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Each node is structured as shown in Equation 14. 

 Node = {𝑙𝑎𝑡, 𝑙𝑜𝑛, loc_des, G, type, dir, v, sd}  (14) 

where 𝑙𝑎𝑡  and 𝑙𝑜𝑛 are the coordinates of PC or PT, loc_des describes a curve node  

including roadway name, mileage, travel direction and city or county name (e.g., a curve 

node located in the eastbound 421.41 miles of  the highway 14 in Brookings, South Dakota, 

is described as “421.41 at Hwy 14 EB Brookings SD”); G is the roadway grade; type 

defines the horizontal curve type including simple curve, compound curve, reversed curve 

and spiral curve; dir represents the curve direction in the travel orientation; v is the advisory 

speed at the curve; and sd is the safe distance threshold. 

Drivers can receive multiple warning messages displayed through HUD when 

travelling through an area with many curves; hence, it is important that messages are 

displayed within the proper time-frame (i.e., not too early/ not too late). Assuming a 

constant deceleration, the advance distance it takes a driver to perceive, react, and 

decelerate to the advisory speed of a curve can be calculated in equation 15, which is 

based on the equation of motion using Newtonian physics law. 

 𝑆 = 1.47𝑉0𝑡 +
𝑉0

2 − 𝑉2

30 (
𝑎
𝑔

± 𝐺)
 (15) 

where 𝑆 is the minimum safe distance (feet), 𝑉0 is the vehicle operating speed on a 

straight roadway (mph); 𝑉 is the advisory speed at the curve (mph); 𝑡 is the driver 

perception-reaction time (second), typically 2.5 seconds for design; 𝑎 is the vehicle 

deceleration rate (ft/s2), with the recommended maximum deceleration of 0.34g used by 

the American Association of State Highway Transportation Officials (AASHTO); 𝑔 is 
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the gravitational constant (32.2 ft/s2), and 𝐺 is the roadway grade (+ for uphill, -for 

downhill) in decimal form. 

An alert is activated once the vehicle enters the distance threshold for a warning. 

For example, a warning threshold of 15 seconds for a vehicle traveling at 60 mph is 

approximately 0.25 miles. Various thresholds are provided for different types of curves 

(e.g. a curve radius of less than 1000 feet, a hidden curve without sufficient stopping 

sight distance, etc.). To detect a curve within the warning distance, the built-in GPS and 

compass in the smartphone identify a search radius based on the safe distance and 

compare it with vehicle location and travel direction. 

 

 

Figure 4.8 iOS Mobile Application Algorithm of Curve Warning 

To determine the nearest curve, the smartphone module implements a two-step 

search algorithm as shown in Figure 4.8. Search Rule I obtains curve data from the 

spatial database and identifies candidate curve locations. Search Rule II identifies the 

nearest curve location by distance, computes travel time, sends alert commands to HUD, 

and displays the proper warning. 
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Once the vehicle enters the safe distance range, a correspondent warning is shown 

on the front windshield. Different signs are designed to effectively warn drivers. If the 

vehicle is approaching a speed below the curve’s posted speed limit, HUD displays a 

constant green curve arrow. If the vehicle is operating at a speed within 5 mph above the 

posted speed limit, the system blinks a red curve arrow once per second. When the 

vehicle is exceeding the curve’s posted speed limit by 5-10 mph, the red curve sign blinks 

faster at two times per second. Lastly, if the vehicle’s speed is 10 mph above the posted 

speed limit, the red curve sign blinks at a faster rate, or four times per second. The sign 

disappears when vehicle has entered the curve.  
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5. FIELD EVALUATION 

A Samsung Galaxy S7 Edge running Android 5 OS and an iPhone 4s running iOS 

7 ware used to evaluate the system performance of C-Finder and C-Alert, respectively. 

The GPS frequency was collected at 1 Hz. Gyroscope and accelerometer were at 20 Hz. 

During these experiments, the smartphones were either mounted on the windshield, or 

placed in the cup holder. 

 

Figure 5.1 Test Site with Six Identified Horizontal Curves 

5.1 Speed Assessment  

Vehicle speed plays an important role in this system. In order to evaluate the 

speed accuracy, an On-board Diagnostics (OBD-II) sensor was applied to record the 

velocity from vehicle speedometer as reference. Figure 5.2 illustrates the profile of the 

calibrated (i.e. GPS) velocity 𝑉𝑡 and the reference (i.e. speedometer) velocity 𝑉𝑟 from 

OBD-II sensor. 
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Figure 5.2 Comparison of Vehicle Speed and Calibrated Speed 

As shown in Figure 5.2, the absolute difference between the two speed values is 

0-4.5 mph with a mean value of 3.24 mph. The Mean Absolute Percentage Error (MAPE) 

in equation 16 was used to evaluate the speed deviation. 

 𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

 𝑉𝑟 −  𝑉𝑡

 𝑉𝑟
|

𝑁

𝑛=1

                                                         (16) 

where 𝑁 is the number of samples. The MAPE results indicated that there was 

approximately 6% difference between the GPS and vehicle speeds. This suggests that the 

speed precision obtained from smartphone is acceptable. 

5.2 Curve Identification and Calculation 

100 miles long two-lane highway located on Brookings County and Kingsbury 

County, South Dakota ware selected as the test area for C-Finder. This study considered 

the curve grade greater than 1 degree of curvature as sharp curves. A total of 21 sharp 

horizontal curves covering different radii were conducted. For each of these curves, 

roadway inventory data from SDDOT was used to compare with the estimates. All 21 
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horizontal curves ware identified. That means C-Finder can archive 100% accuracy to 

identify sharp curves in this experiment.  

Three-runs surveys were measured to evaluate the stability of the proposed 

approach. Table 1 shows the radius measurements without adjusting for the lane width. 

The result indicated that the average radius difference of three runs is 3.10%, 3.44% and 

3.27%, respectively. The mean radius difference is 2.2%. 

Table 1. Radius Measurement without Lane Width Adjustment 

No Hwy G Radius 

Survey 1 Survey 2 Survey 3 Mean 

Radius Error Radius Error Radius Error Avg Error 

1 US13 5.5 1042 1180 13.24% 1001 3.91% 1040 0.19% 1073 3.05% 

2 US13 5 1146 1184 3.34% 1166 1.76% 1203 4.94% 1184 3.35% 

3 US13 1.5 3820 3601 5.73% 3676 3.75% 3582 6.21% 3620 5.23% 

4 US14 2.75 2083 2072 0.55% 2050 1.61% 2083 0.03% 2068 0.73% 

5 US14 2.5 2292 2296 0.18% 2306 0.61% 2291 0.02% 2298 0.26% 

6 US14 3 1910 1900 0.51% 1943 1.72% 1866 2.28% 1903 0.36% 

7 US14 11.25 509 455 10.67% 541 6.19% 544 6.87% 513 0.80% 

8 US14 2.5 2292 2263 1.26% 2268 1.03% 2280 0.49% 2271 0.93% 

9 US14 2.5 2292 2281 0.48% 2391 4.34% 2287 0.20% 2320 1.22% 

10 US14 2.75 2083 2083 0.02% 2096 0.60% 2105 1.06% 2095 0.55% 

11 US14 2.75 2083 2078 0.27% 2046 1.79% 2005 3.75% 2043 1.94% 

12 US14 2.75 2083 2073 0.50% 2036 2.25% 1956 6.13% 2022 2.96% 

13 US14 2.75 2083 1963 5.80% 1902 8.71% 1972 5.36% 1945 6.62% 

14 US14 2.75 2083 2108 1.20% 2155 3.45% 2058 1.22% 2107 1.14% 

15 US14 10 573 557 2.86% 594 3.65% 550 3.93% 567 1.05% 

16 US14B 3 1910 1895 0.77% 1961 2.66% 1876 1.77% 1911 0.04% 

17 US14E 3 1910 1904 0.33% 1947 1.95% 1909 0.07% 1920 0.52% 

18 US30 4 1432 1495 4.40% 1438 0.40% 1493 4.25% 1476 3.02% 



37 
 

19 US30 5 1146 1188 3.71% 1247 8.80% 1214 5.90% 1216 6.14% 

20 US30 2 2865 2928 2.22% 2961 3.36% 2549 11.03% 2813 1.82% 

21 US30 2 2865 2663 7.03% 2589 9.62% 2950 2.97% 2734 4.56% 

Average difference 3.10% 3.44% 3.27% 2.20% 

 

Table 2 shows the radius estimates with the adjustment of the lane width. The 

average radius difference of three runs is 2.89%, 3.06% and 3.06%, respectively. The 

mean radius difference is 2.06%. With the lane width adjustment, the accuracy of radius 

calculation is slightly improved. 

Table 2. Radius Measurement with Lane Width Adjustment 

No Hwy G Radius 

Survey 1 Survey 2 Survey 3 Mean 

Radius Error Radius Error Radius Error Avg Error 

1 US13 5.5 1042 1173 12.57% 1008 3.24% 1033 0.86% 1071 2.82% 

2 US13 5 1146 1177 2.73% 1159 1.15% 1196 4.33% 1177 2.74% 

3 US13 1.5 3820 3594 5.92% 3683 3.57% 3589 6.03% 3622 5.17% 

4 US14 2.75 2083 2078 0.26% 2056 1.32% 2089 0.26% 2074 0.44% 

5 US14 2.5 2292 2290 0.08% 2300 0.35% 2297 0.24% 2296 0.17% 

6 US14 3 1910 1906 0.20% 1937 1.41% 1872 1.96% 1905 0.25% 

7 US14 11.25 509 461 9.49% 535 5.01% 538 5.69% 511 0.41% 

8 US14 2.5 2292 2256 1.56% 2275 0.73% 2273 0.80% 2268 1.03% 

9 US14 2.5 2292 2288 0.17% 2384 4.03% 2294 0.11% 2322 1.32% 

10 US14 2.75 2083 2091 0.34% 2088 0.24% 2098 0.70% 2092 0.43% 

11 US14 2.75 2083 2085 0.09% 2054 1.43% 2013 3.39% 2051 1.58% 

12 US14 2.75 2083 2080 0.14% 2029 2.61% 1963 5.77% 2024 2.84% 

13 US14 2.75 2083 1970 5.44% 1910 8.35% 1979 5.00% 1953 6.26% 

14 US14 2.75 2083 2116 1.56% 2148 3.09% 2065 0.86% 2110 1.26% 

15 US14 10 573 564 1.55% 586 2.34% 558 2.62% 569 0.61% 

16 US14B 3 1910 1901 0.45% 1955 2.34% 1882 1.46% 1913 0.14% 
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17 US14E 3 1910 1898 0.64% 1953 2.26% 1915 0.25% 1922 0.62% 

18 US30 4 1432 1489 3.99% 1432 0.02% 1487 3.83% 1470 2.60% 

19 US30 5 1146 1195 4.28% 1240 8.23% 1220 6.47% 1218 6.33% 

20 US30 2 2865 2935 2.45% 2954 3.13% 2555 10.81% 2815 1.74% 

21 US30 2 2865 2670 6.80% 2596 9.39% 2943 2.75% 2736 4.48% 

Average difference 2.89% 3.06% 3.06% 2.06% 

 

This experiment indicated that drivers might reduce speed when the vehicle is 

approaching to a curve, which generates more sensor noise, while the vehicle status is 

more “smooth” when leaving out of a curve due to the reduced speed. This is consistent 

with previous research findings(52-54). For typical superelevation transitions, 90% of the 

transition occurs prior to the PC and after the PT. Thus, the majority of the horizontal 

curves have full superelevation. Figure 5.3 shows one case of a superelevation profile 

measurement with a smartphone. The design superelevation is 4% while the measured 

superelevation is 4.2%. Statistical analysis showed that the average of superelevation 

between the 15th and 90th percentile of the length of curve is consistent with the design 

superelevation from the SDDOT roadway inventory.  
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Figure 5.3 Comparison of Design Superelevation and Measured Superelevation 

Table 3 shows the superelevation measurements for the 21 curves. In three runs, 

the average difference between design superelevation and measured superelevation is 

1.32%, 1.56% and 1.59%, respectively. The overall superelevation difference is 0.66%. It 

should be noted that the comparison is between the smartphone measured superelevation 

and design superelevation(which may be slightly different that the as-built 

superelevation). However, as-built superelevation information was not available. 

Table 3 Superelevation Evaluation 

No 

Design  

e(%) 

Survey 1 Survey 2 Survey 3 Mean 

Radius e1 Error Radius e2 Error Radius e3 Error Avg Error 

1 5.8 1173 4.0 1.8 1008 7.3 -1.5 1033 5.7 0.1 5.7 0.1 

2 5.8 1177 6.8 -1.0 1159 6.2 -0.4 1196 4.1 1.7 5.7 0.1 

3 4.6 3594 3.8 0.8 3683 3.0 1.6 3589 5.5 -0.9 4.1 0.5 

4 5.6 2078 3.6 2.0 2056 3.2 2.4 2089 7.1 -1.5 4.6 1.0 

5 6 2290 6.8 -0.8 2300 7.1 -1.1 2297 3.9 2.1 5.9 0.1 
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6 5.8 1906 3.8 2.0 1937 7.0 -1.2 1872 3.2 2.6 4.7 1.1 

7 4 461 4.5 -0.5 535 5.0 -1.0 538 5.8 -1.8 5.1 -1.1 

8 5.8 2256 5.8 0.0 2275 2.9 2.9 2273 6.2 -0.4 4.9 0.9 

9 5.8 2288 3.9 1.9 2384 7.4 -1.6 2294 3.7 2.1 5.0 0.8 

10 6 2091 3.3 2.7 2088 8.5 -2.5 2098 2.7 3.3 4.8 1.2 

11 6 2085 6.8 -0.8 2054 2.4 3.6 2013 7.9 -1.9 5.7 0.3 

12 6 2080 3.8 2.2 2029 8.5 -2.5 1963 4.4 1.6 5.6 0.4 

13 6 1970 7.8 -1.8 1910 3.5 2.5 1979 8.0 -2.0 6.4 -0.4 

14 5.8 2116 3.6 2.2 2148 8.0 -2.2 2065 3.3 2.5 5.0 0.8 

15 2.6 564 4.8 -2.2 586 2.0 0.6 558 5.3 -2.7 4.0 -1.4 

16 5.6 1901 5.0 0.6 1955 6.2 -0.6 1882 5.1 0.5 5.4 0.2 

17 4 1898 4.2 -0.2 1953 3.2 0.8 1915 4.2 -0.2 3.9 0.1 

18 5.8 1489 7.0 -1.2 1432 5.3 0.5 1487 7.3 -1.5 6.5 -0.7 

19 6 1195 6.6 -0.6 1240 7.5 -1.5 1220 6.9 -0.9 7.0 -1.0 

20 4 2935 1.8 2.2 2954 2.6 1.4 2555 5.2 -1.2 3.2 0.8 

21 4 2670 3.7 0.3 2596 3.7 0.3 2943 2.0 2.0 3.1 0.9 

Average difference 1.32 1.56 1.59 0.66 

 

5.3 Assessment of C-Alert 

 

 
Figure 5.4 Field Test Route of C-Alert 
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Figure 5.4 shows a 30-mile test route on US Route 14 going from Brookings to 

Lake Preston in South Dakota used for the field test. This route has seven horizontal 

curves or 14 curve nodes, meaning 14 warning should be displayed during this two-way 

trip. Curve warning messages were recorded during two round trips. Table 4 shows that 

85% of the curves were detected in the field test. Missing alerts can be attributed to a 

BLE connection error. The “Invalid” column refers to incorrect alerts, for example, it 

should be left turning warning, but it displays right turning warning. Errors can be 

attributed to the smartphone’s built-in GPS which dynamically searches location 

information and identifies the nearest curve by distance. The GPS accuracy level differs 

among different environments which can also result in warning errors. Hence, the GPS 

inaccuracy can sometimes lead to the wrong sequence of curves, particularly when two 

curve locations are within 500 feet from one another. 

Table 4. Assessment Result of Curve Detection Algorithm 

Trip Journey Expected Alerts Valid Missed Invalid  

Trip 1 

JourneyAB 7 5 1 1 

JourneyBA 7 6 0 1 

Trip 2 

JourneyAB 7 7 0 0 

JourneyBA 7 6 0 1 

Total 28 24 1 3 
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6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

This study included the design, implementation and evaluation of the mobile 

systems for low-cost real time horizontal curve inventory and warning of horizontal 

curves. Two smartphone applications, C-Finder and C-Alert, were developed and 

evaluated. The following conclusions summarize the major findings of this study: 

1) Although the GPS frequency from smartphone is only 1 Hz, the field test 

demonstrated the proposed approach can achieve desirable radius measurement 

accuracy for sharp curves. The average error is approximately 3%. Since the 

highest accuracy of GPS is 2-5 meters, the adjusted lane width doesn’t have a 

significant effect on the accuracy of radii estimation. However, multiple runs can 

achieve higher accuracy. 

2) The accuracy of superelevation relies on the accuracy of curve radius, vehicle 

speed and acceleration rate from smartphone. Improving their accuracy can 

achieve more accurate superelevation measurements. 

3) The work outlined in this thesis proposed a smartphone-based horizontal curve 

warning system using GPS, BLE technology, and HUD. In this system, a 

smartphone application uses a vehicle’s real-time speed and position to warn 

drivers of imminent horizontal curves. The warning is projected on the vehicle’s 

front windshield, therefore improving safety by not requiring drivers to look away 

from the road. The GPS-equipped smartphone can exchange location information 

in a dynamic, real-time fashion through a 3G/4G/WiFi network. Moreover, the 
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curve warning system uses an economically affordable device (HUD) as well as 

open source wireless communications that can integrate, reconfigure, and 

customize various data sources (e.g., state DOT data sources). 

6.2 Future Work 

Off-the-shelf smartphone technology is a potential alternative tool for horizontal 

curve surveys due to its low-cost and easy of application. This research focused on 

applying this technology to measuring simple horizontal curves. Future work should 

include compound, reverse, and spiral curves using smartphone sensors. The GPS 

frequency from smartphone is only 1 Hz. Increasing the frequency of GPS could 

potentially improve the radius estimation. GPS/IMU sensor fusion could be applied to 

increase the frequency of GPS in the future work. 

C-Alert was tested via a 4G network on a selected highway route with seven 

curves where curve detection accuracy was evaluated. Future work should evaluate C-

Alert further under various scenarios and conditions, such as BLE data transmission, GPS 

accuracy in different conditions (e.g., with internet and without internet, mountainous 

road, high density road network in urban area), and the algorithm accuracy. Human 

factors evaluation should also be studied to ensure that the use of this system does not 

introduce unintended safety issues. While C-Alert is designed for highway horizontal 

curves, it could also be applied to other areas such as work zones, highway-rail grade 

crossings, and wrong-way traffic. 
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