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WORLDWIDE OPTIMAL PICS SEARCH 

RUCHIRA TABASSUM 

2017 

ABSTRACT 

Pseudo Invariant Calibration Sites (PICS) have proven to be a dependable 

calibration source for determining degradation of visible and infrared sensor response due 

to their temporal stability and spatial uniformity. One limit of PICS is that only a handful 

have been identified, primarily in desert areas of North Africa, Saudi Arabia, and 

elsewhere.  A large number of PICS would not only facilitate calibration of existing and 

future sensors, but also provide an alternative to internal on-board calibrator data, 

resulting in significant cost savings and simplification in sensor design. As a result, the 

process to efficiently identify additional PICS is highly desirable. 

A relatively straightforward algorithm and processing flow to identify candidate 

PICS throughout the world has been developed. One goal of the algorithm is to identify 

PICS with reflectance levels covering more of the sensor dynamic range. As currently 

implemented, the algorithm makes use of Google Earth Engine to simplify the required 

image data pre-processing, analysis, and storage, and implements a filtering technique to 

enhance contiguity of pixels identified as invariant. Application of the proposed 

algorithm identified not only existing North Africa and Middle East sites with 2% to 

2.5% temporal uncertainty, but also sites on other continents with 5% to 6% uncertainty, 

which can be improved with application of BRDF correction. In general, the algorithm 

shows potential in providing a means for automated PICS identification.
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CHAPTER1. INTRODUCTION 

1.1 An overview of Pseudo Invariant Calibration Sites  

The use of Pseudo Invariant Calibration Sites (PICS) is one of the most popular 

post launch calibration techniques for earth observing satellite sensors with respect to 

long term radiometric stability, cross calibration and absolute calibration. PICS offer an 

advantage of lower cost and open up the possibility of not needing an on-board 

calibration source due to similar (or better) levels of accuracy in sensor performance 

measurement [1] [2].  

PICS located in the North Africa Saharan desert and Saudi Arabian desert are 

especially attractive due to their large sizes, stable atmosphere and temporal and spatial 

uniformity [3]. Larger sized PICS are preferred when calibrating the entire focal plane of 

a sensor efficiently within an optimal amount of time [3]. Additionally, the desert sites 

are considered for use because of the highly reflective ground surface resulting in higher 

signal to noise ratio. On the other hand, less reflective regions, such as Lake Tahoe, 

California, USA [4], can also be useful because of their temporal and spatial stability.  

Nevertheless, there are some limitations to using these sites, due to limited 

acquisition of each site by satellite sensors having a particular overflight time interval, 

resulting in limited surface radiance/reflectance characteristics data available for analysis. 

To overcome these limitations, efforts have been made to locate suitable PICS in each of 

the continents. Identification of a library of world-wide PICS will facilitate both sensor 

calibration and monitoring of radiometric response via an exhaustive world-wide search. 
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1.2 Remote sensing 

1.2.1 Definition of remote sensing  

Remote sensing involves measurement or observation of object properties or 

events at a remote distance. For example, the human eye and brain can gather information 

about objects without direct contact with them; hence those can be considered as a remote 

sensing system.  Remote sensing of the Earth involves measurement of reflected or 

emitted solar radiation.  These measurements can be acquired at the Earth’s surface, from 

a sensor flying in an aircraft above the Earth’s surface, or from a sensor onboard a 

satellite orbiting the Earth [5].  

1.2.2 Applications of remote sensing 

Remote sensing of the earth’s surface offers multidisciplinary applications for 

exploring unanswered questions about the earth's land, water, atmosphere, vegetation 

health, pollution levels and many more topics in a temporal perspective over long periods 

of time using a number of transmission bands or windows, shown in Figure 1.1, for 

appropriate sensing technology [5]. 
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Figure 1.1 Atmospheric transmission spectra showing windows available for earth 

observation [5] 

Some particular applications of remote sensing are listed below:  

 Monitoring and assessing change or damage of the Earth’s surface due to natural 

disasters such as floods, volcanic activities, cyclones, hurricanes, tornadoes etc. 

 Planning for urbanization or deforestation by mapping ecological zones. 

 Predicting future availability of water resources by monitoring snow, rainfall or 

other water sources. 

 Measuring atmospheric parameters such as temperature, barometric pressure or 

wind velocity. 

Among the general applications, an important characteristic is having a long term 

temporal data set of each and every measurement by providing repetitive coverage of the 

earth, which makes the resulting remotely sensed data useful in change detection over the 

planet [5]. 
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1.3 Radiometric calibration  

Radiometric calibration can be defined as accurately determining the output of an 

optical remote sensing instrument based on known input radiance values; this is 

necessary to use the output image data to derive reliable and accurate quantitative 

measurements of the ground surface’s radiance/reflectance, and also to enable 

comparison of image data obtained from different satellite sensors [6]. A few of the 

radiometric calibration techniques applicable for satellite sensor calibration are described 

briefly here. 

1.3.1 Pre-launch calibration 

Pre-launch calibration refers to the process of testing the operational accuracy of 

the sensor and the satellite instruments before integration with the satellite platform. 

Using the known output of standardized calibration sources, the sensor output is 

calibrated and the corresponding calibration coefficients are determined. The known 

well-characterized sources can be any one of the following: a lamp, a diffuser panel, a 

sphere with Lambertian characteristics illuminated by a lamp, or external blackbodies for 

sensor thermal band calibration. To reduce uncertainty, the calibration of the sources 

should be highly accurate and determined as close to launch as possible [6]. 

1.3.2 Relative calibration 

Ideally, each detector in a sensor detector array should exhibit the same output 

response as a result of coming from the same bulk material. In practice, each detector’s 

response is different from the others, causing an artifact in the imagery called “striping”. 

The “striping” is removed using relative calibration, which typically involves 
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determining the ratio of an individual detector’s response to the average response of all 

detectors in the array.  This process is also known as flat fielding. 

1.3.3 Absolute calibration 

Absolute calibration involves the conversion of image digital numbers (DN) into 

values with units of spectral radiance [7]. The relation equation between DN to radiance 

is provided below. 

               𝑫𝑵 = 𝑮 ∗ 𝑳 + 𝑩 (1.1) 

 

Where, DN=Digital Number, L= Radiance of the known source, G=Sensor Gain and 

B=Sensor Bias. Using this equation, the bias can be determined in the absence of an input 

signal; once the bias is determined, the gain can then be determined. Absolute calibration 

begins with pre-launch calibration in the laboratory and continues with a variety of post-

launch calibration methodologies [7]. 

1.3.4 Calibration via internal calibrator 

Post launch, on-board calibration of the sensor’s reflective bands can involve use 

of a solar diffuser and/or lamp based approaches. Blackbodies are used for thermal band 

calibration [6]. A lamp based approach was used for the Landsat TM sensor using three 

lamps [6]. The on-board calibration is advantageous as the temporal frequency is high 

and may be stable for a long period of time, but this technique is quite expensive. 

1.3.5 Vicarious calibration 

Vicarious calibration using the surface reflectance method involves conversion of 

measurements of surface radiance/reflectance at a test target into the corresponding top-

of-atmosphere (TOA) values using radiative transfer code calculations and it can be 
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either a reflectance-based or radiance- based approach. There are some significant 

differences between the two approaches.  In general, reflectance-based techniques have 

proven to be more reliable, as they use additional measurements of diffuse and global 

down-welling irradiances for finer atmospheric characterization [6]. To reduce 

uncertainties, this process is performed using desert sites with high surface reflectance 

and less atmospheric contamination. However, this approach is possible only when the 

satellite overpasses the test site; with typical sensor repeat schedules (e.g. 16 days for the 

Landsat series sensors), a limited number of calibrations are possible. It is also a highly 

labor-intensive process, which increases the cost. 

1.3.6 Cross calibration 

For consistent image data acquisition regardless of different sensors, an 

independently well characterized sensor can be used as a reference for calibrating one 

sensor’s performance by equalizing to the reference sensor’s performance and this 

approach is called cross calibration. It is quite efficient, easily available, generally a 

lower-cost alternative to the other calibration methods, and also meets the purpose of 

maintaining consistency for different sensor to a common radiometric scale. To compare 

radiometric performance between two sensors, it is necessary to have the same input solar 

energy level at the same or nearly coincident time to avoid variation in input due to 

atmospheric changes over the target site. For that purpose, a homogeneous and 

temporally stable pseudo-invariant ground surface is preferred. Greater numbers of input 

data points for this approach tends to produce a more reliable calibration result. 

Consequently, it would be highly desirable to increase the number of useable PICS 

around the world, in order to facilitate the cross calibration approach. 
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1.4 Landsat and Google Earth Engine data to find PICS for sensor calibration 

PICS are sufficiently useful for most sensor calibration purposes so that efforts to 

identify as many stable sites as possible are justified. To identify more PICSs some of the 

sensors in the Landsat series, such as, the TM, ETM+ and OLI, can be very useful, as 

they are considered well calibrated with demonstrated temporally stable performance. 

Though these sensors are supposed to show the same output response, because of 

different design characteristics, the resultant PICS image might not be the same. The 

description of the mentioned sensors is given in following section. 

1.4.1 Landsat 5, 7 and 8 satellite sensors 

Landsat 5 was launched on March 1, 1984. It carried two sensors, the Thematic 

Mapper (TM) and the Multispectral Scanner (MSS), each with an expected operational 

life of three years; however, the TM operated for over 25 years post-launch, and the MSS 

was considered obsolete 10 years post-launch [8]. Images of a given location acquired by 

the TM consist of 185 km long ground swaths, with a repeat cycle of 16 days. The 

spectral range of 0.45 to 2.35 µm is divided into 6 VNIR and SWIR bands; a thermal 

band covers the spectral range between 10.40 to 12.50 µm. The VNIR/SWIR band focal 

planes use 16 detectors, and the thermal band focal plane uses 4 [9]. The TM’s 

performance well beyond its expected lifetime is due to many redundant onboard 

systems. The result is a well characterized image dataset archived in USGS EROS [8].  

Landsat 7, launched on April 15, 1999, carried the Enhanced Thematic Mapper 

(ETM+) sensor.  It is a whiskbroom scanning instrument similar to the TM sensor, using 

a 16-detector array to image a similar 185 km long ground swath every 16 days. It 

measures the same general portions of the electromagnetic spectrum. It differs from the 
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TM primarily through the addition of a panchromatic band, and the ability to set “high” 

or “low” gains. The ETM+ sensor has been called the most stable, best characterized 

earth observation instrument ever placed in orbit [9]. The scan line corrector component 

failed in 2003; it aligns the forward and reverse data scans of the sensor. This failure 

caused a 22% loss of data; fortunately, the remaining data is still geometrically corrected 

and qualified for use [8]. 

Landsat 8 carries two instruments, the Operational Land Imager (OLI) and the 

Thermal Infrared Sensor (TIRS).  Both the OLI and TIRS sensors are pushbroom 

instruments; the OLI images with an array of several thousand detectors, while the TIRS 

images with an array of 256 detectors. The OLI covers the same general spectral bands as 

the ETM+, and includes two additional bands: a deep blue band for coastal/aerosol 

studies, and a shortwave infrared band for cirrus cloud detection; the TIRS provides two 

distinct thermal bands. Both the OLI and TIRS provide improved signal-to-noise (SNR) 

radiometric performance quantized over a 12-bit dynamic range, as compared to the 8-bit 

dynamic range associated with the TM and ETM+ [9].  

1.4.2 Google Earth Engine 

Google Earth Engine (GEE) is an online environment monitoring platform that 

makes available, to the entire world, a dynamic digital model of the Earth that is updated 

daily. Two interfaces are available: a “playground” interface allowing easy 

experimentation with new algorithms, and a Python-based Application Programming 

Interface (API), which allows applications direct access to a complete cluster of data, 

scientific algorithms and computation power from remote systems [10]. It provides the 

tools and computational power necessary to analyze the vast amounts of warehoused 

http://landsat.usgs.gov/ldcm_vs_previous.php
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data. GEE has the contents of the entire Landsat archive on its “spinning disk” which 

defines the memory drive for data storage. The dark areas shown in Figure 1.2 describes 

the global coverage of Lansat-5, Landsat-7, and Landsat-8 image data processed for this 

thesis work that was available through GEE [10]. 

 

Figure 1.2. GEE data completion map for Landsat 5, 7 and 8 
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CHAPTER2. LITERATURE REVIEW 

For at least two decades, PICS have been used for monitoring the long-term 

radiometric stability of Earth imaging sensors. Various criteria have been used in the 

process of identifying candidate sites throughout the world. This chapter provides a 

summary review of the literature describing research conducted to identify and evaluate 

such sites. It also provides summary results of selected radiometric calibrations using 

these sites. 

2.1 Candidate invariant sites in Saharan and Arabian Deserts 

Cosnefoy, et al (1996) performed an analysis using 20 desert sites in North Africa 

and Saudi Arabia [3]. The site selection was based on the following criteria: 

 minimal Bidirectional Reflectance Distribution Function (BRDF) effects 

 minimal cloud cover 

 minimal atmospheric variability 

The spatial uniformity for 100 km x 100 km areas from Meteosat-4 visible band 

image data was estimated. When BRDF effects were accounted for, Cosnefoy’s analysis 

estimated a spatial variability within 3% and a temporal variability between 1% and 2%.  

As a result, they concluded that desert sites would be suitable PICS candidates. Such 

stable sites were also intended for use in radiometric calibration of sensors employing 

charge-coupled device (CCD) detectors such as the ADEOS POLDER, the SPOT-4 

Vegetation, the EOS MISR, and the Envisat MERIS [3]. 

Rao and Chen (1995) [11] performed an analysis of post-launch response 

degradation in the visible (0.58 to 0.68 µm) and near infrared (0.72 to 1.11 µm) channels 

of the NOAA 7, 9, and 11 Advanced Very High Resolution Radiometer (AVHRR), using 
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the southeastern portion of the Libyan desert, which was considered to be the most stable 

region. Basically, the desert site was used for establishing inter-satellite calibration 

linkages among the AVHRR sensors of NOAA 7, 9, and 11 by setting up NOAA 9 as 

reference calibrated sensor. Temporal gain variation of NOAA 9 sensor was evaluated 

using absolute calibration of each sensor with the congruent path aircraft/satellite 

radiance measurements over the White Sands area, New Mexico, USA in conjunction 

with the determined relative degradation rates of the sensors.  An exponential model 

suggested by Staylor (1990) [11], was used for calculating the radiance over the 

calibration target depending on the solar zenith and sensor zenith angles. This experiment 

was an example for how the desert sites can be useful for measuring the relative 

degradation of sensors. 

2.2 Candidate invariant sites in Australia 

Mitchell et al. (1997) considered the importance of bright calibration targets for 

radiometric sensor calibration and validation, and estimation of aerosol optical depth and 

surface reflectance [12]. Six candidate sites located throughout the Australian continent 

were compared on the basis of surface brightness, temporal and spectral stability, and 

spatial uniformity using time series datasets generated from NOAA Advanced Very High 

Resolution Radiometer (AVHRR) imagery. The sites fell into three categories of 

Australian sites: 

 salt lakes 

 Continental Integrated Ground Sites Network (CIGSN) 

 desert sites 
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One of the desert sites, the Tinga Tingana region of the Strzelecki desert in 

southern Australia, was found to exhibit sufficient temporal and spectral stability to be 

considered as a PICS. The site consistently demonstrated excellent spatial uniformity due 

to low, light-colored sand dunes with less than 5% vegetation coverage. 

2.3 Candidate invariant sites in Greenland and other Deserts 

Smith et al. (2002) used image data acquired from desert sites in Algeria, Arabia, 

China, Libya, Mexico, and Peru, as well as the ice sheets of Greenland, to calibrate the 

visible and near-infrared channels of the Along-Track Scanning Radiometer (ATSR-2) 

[13], as well as to monitor long term radiometric stability of the onboard visible 

calibration system (VISCAL). A long time-series dataset was generated from the image 

data to reduce the impact of statistical fluctuations in the scene radiances and to help 

identify scenes to use in the analysis. The results of Smith’s analysis indicated annual 

radiometric variability rates of 0.3%, 1.1%, 1.1%, and 1.6% for the 1.6, 0.87, 0.66, and 

0.56 µm bands, respectively. In addition, suitability of these sites for long-term 

radiometric calibration was discussed. The study results essentially confirmed that the 

Saharan and Saudi Arabian deserts were suitable PICS candidates, and also showed the 

Greenland icecap was a suitable PICS candidate.  The results of the analysis suggested 

that the Sonoran desert in Mexico and the Sechura desert in Peru had limited PICS 

suitability. 

2.4 Candidate invariant sites in Antarctica  

Six, et al (2004) [14] studied the full swath of VGT  SPOT-4 Vegetation sensor 

images of the Dome Concordia area, located in eastern Antarctica, an area of 

approximately 760 X 760 𝑘𝑚2, the full swath of VGT was analyzed as a uniform site. 
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Their characterization attempted to determine whether the site would be a suitable PICS, 

by estimating the inter-annual variation in surface reflectance of the snow surface, in 

terms of sensor drift. The site was shown to be capable of the analysis because of the 

following properties, 

 Extremely flat and homogeneous with a very slow snow accumulation rate and low 

wind. 

 Very low albedo variability of the high plateau snow surface at visible wavelengths 

resulting in small temporal variability (less than 2%). 

 Clear atmospheric conditions with a very low aerosol and water vapor content due 

to high altitude (>3000m above sea level) and long distance from the coast 

(>1000km). 

BRDF characterization was done to prepare the ground reflectance data set of 

austral summer (4 months) of 4 years image data using the range of solar zenith angles 

between 50 to 82 degrees, and view zenith angle of nadir to +60 and nadir to -60 degree 

ranges depending on the relative azimuth of sun and sensor. The reflectance variation was 

found to be small, within 3% for almost all solar angles and less than 1.5% for viewing 

angles within 30 degrees of nadir, which is advantageous for sensor calibration. Seasonal 

analysis was also done to consider changes in reflectance within the four months of 

summer itself, and spatial analysis was done to know the surface variation, smooth or 

rough in the particular region of interest. After considering the directional reflectance, the 

estimated inter-annual variation was on the order of 2% or less. 
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2.5 Candidate invariant sites in China 

Li and Guo, (2005) performed a cross-calibration between the Terra Moderate 

Resolution Imaging Spectroradiometer (MODIS) and the Chinese Moderate Resolution 

Imaging Spectroradiometer (CMODIS) using image data acquired over an area near 

Dunhuang, China  known for its consistent reasonably clear weather conditions and low 

aerosol loading [15], as well as sufficient reflectance stability due to surface 

homogeneity.  The requirements of the process were to choose coincident pairs of the test 

site to minimize the variation due to changes in solar and viewing zenith angles, and to 

adjust spectral band differences between the two sensors. The use of a large common area 

with the Dunhuang site in cross calibration for MODIS and CMODIS reduced image 

misregistration error successfully. The calibration coefficients obtained from the cross-

calibration approach were then compared to the coefficients of reflectance-based 

approach and the resultant relative error was 9%.  

2.6 Derivation of absolute calibration models using PICS 

Helder et al. (2008) proposed an update to the calibration model for Landsat-5 

TM [1] using all possible calibration sources including PICS.  Image data from a 90 X 90 

km central region of the Libya-4 PICS and the Altar region of the Sonoran desert site 

were used in this analysis.  The trend in radiometric gain using data from these sites was 

estimated to an accuracy of 5%. 

Mishra et al. (2013) developed an empirical absolute calibration model based on 

Terra MODIS image data over the Libya-4 PICS for the visible to shortwave infrared 

regions [16].  A simple BRDF model was derived from Terra MODIS image data, and 

validated against Aqua MODIS and Landsat-7 ETM+ nadir-viewing image data.   The 
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model was tested on ETM+, Aqua MODIS, UK-2 DMC, ENVISAT MERIS, and 

Landsat-8 Operational Land Imager (OLI) image datasets. Despite differences in relative 

spectral response, overpass times, temporal revisit times and spatial resolution between 

the tested sensors, the model demonstrated an accuracy of 3% with an uncertainty level 

of up to 2%. The reason for choosing Libya-4 was the low temporal uncertainty of the 

site. Figure 2.1 shows the range of temporal uncertainties in the various North African 

PICS, as estimated from the available ETM+ image data. Although the Niger-1 and 

Libya-4 PICS were considered the most optimal with respect to temporal uncertainty, 

Libya-4 was preferentially selected due to significantly greater availability of image data 

acquired by the sensor. 

 

Figure 2.1. Temporal uncertainties of various Saharan PICS [16] 
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2.7 Selection of PICS due to availability of scenes 

Morstad et al. (2008) consider that even though the Saharan desert PICS have 

proven to be ideal pseudo-invariant sites, exhibiting consistent spatial and temporal 

stability with higher surface reflectance, their ultimate usefulness is limited to the extent 

they have relatively few available datasets, and in addition lack sufficient on-site 

vicarious characterization data due to limited site accessibility. To address these 

limitations, they suggested an approach to extend the use of pseudo-invariant sites of 

smaller area as well [17].  One such small pseudo-invariant site is the Sonoran desert site 

on the US-Mexico border. Their work attempted to replicate the accepted Landsat-5 TM 

calibration curve derived from analysis of a larger Saharan desert PICS. Identifying a 200 

X 200 pixel region-of-interest (ROI) that was the most invariant for each band (with 

respect to the estimated standard deviation of the image pixels in the region) the most 

invariant ROIs for each band resulted in uncertainties of 0.93%, 1.32%, 2.11%, 1.71%, 

3.14% and 3.38% for bands 1-5 and 7 respectively.  Overall, the calibration curve derived 

from the reduced dataset was quite consistent with the initial calibration curves for bands 

1 and 2; the remaining bands had calibration curves that were essentially flat. 

2.8 Basic characteristics for defining PICS 

Chander et al. (2009), focused on monitoring long-term on-orbit calibration 

stability of the Terra MODIS and the Landsat-7 ETM+ using the Libya-4, Mauritania-

1(2), Algeria-3, Libya-1 and Algeria-5 PICS [18]. To achieve better characterization of 

both sensors, homogeneous sites with a very high reflectance and higher signal to noise 

ratio were chosen to have reduced uncertainties for the derived calibration coefficients. 

The percentage differences in the intercepts from the long-term stability of the sensors 
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range from 2.5% to 15% due to the RSR of each sensor, BRDF, spectral signature of the 

ground targets and atmospheric composition. 

Chander et al. also considered a number of characteristic parameters that could 

serve to define a baseline set of requirements for assessment of PICS suitability for 

accurate, long term monitoring of satellite sensor calibration [19].  These parameters 

include the following, which were assessed with ETM+ and EO-1 Hyperion image data 

acquired over the selected PICS: 

 Top-of-Atmosphere (TOA) reflectance 

 TOA brightness temperature 

 Consistent temporal stability and spectral stability 

 Ground measurements of the site’s spectral profile 

The Committee on Earth Observation Satellites (CEOS) Working Group on 

Calibration and Validation Infrared Visible Optical Sensors (IVOS) sub-group worked 

with researchers in the calibration community and established a set of globally 

distributed, reference standard test sites. The set of these sites is shown in Figure 2.2. 

They were used to identify biases and data gaps in measurement continuity due to a lack 

of co-existent image data acquired by multiple in-flight sensors Assessment of the 

parameters for each PICS required a significant effort. 
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Figure 2.2. Distribution of the CEOS reference standard test sites [12] 

 

An overall consensus has been reached for a set of criteria that can be used to 

assess PICS suitability.  As proposed beginning with Thome (2001) and continuing with 

Teillet et al. (2007) and Chander (2008), the suitability criteria may be summarized as 

follows [20] [21] [22]:  

 High surface reflectance, allowing an increased signal-to-noise ratio (SNR) 

 Consistent temporal stability 

 Consistent spatial uniformity 

 Lambertian surface characteristics, to minimize BRDF effects 

 Flat surface spectral reflectance 

 Located at high altitudes and away from large water bodies and industrial areas to 

minimize atmospheric effects 
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 Arid regions such as deserts, salt flats, and playas (dry lakebeds) with a low 

probability of cloud cover and minimal surface vegetation. 

2.9 An optimized algorithm for worldwide PICS identification 

Bikash et al. (2010) developed an invariant site identification algorithm to locate 

optimal temporally and spatially stable sites [23]. They defined a series of grid-based 

Regions of interest (ROIs) and calculated the temporal standard deviation of each ROI; 

the ROIs with the smallest temporal standard deviations were considered to be the most 

stable; Levene’s equal variance statistical test was applied to identify the most optimal 

ROI to represent the site.  The algorithm was applied to previously identified PICS 

locations in the Middle East, Saharan desert and North America to assess their suitability 

with 12 stable sites as a result. Six of the Sahara and Middle East PICS were found to 

exhibit variabilities as low as 2% in the visible and near infrared (VNIR) bands and 2%–

3% in the shortwave infrared (SWIR) bands. The Sonoran Desert PICS exhibited 2%–3% 

variabilities in the VNIR bands and 4%–5% in the SWIR bands. Dunhuang in China, the 

Simpson Desert in Australia, and the Barreal Blanco in Argentina demonstrated 

significant potential for long-term radiometric stability monitoring.   

2.10 Summary 

The results from the analyses presented throughout this chapter clearly support 

the use of radiometrically stable pseudo invariant sites as a data source for accurate 

characterization monitoring of satellite sensor response and radiometric calibration.  

Many of these sites, especially the Saharan PICS, provide low levels of uncertainty in the 

range of 2% to 5%.  It is also apparent that issues relating to site accessibility and image 

data availability are still limiting factors to the widespread use of these sites. The 
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concepts and ideas for identifying and validating usability for various candidate PICS 

presented in this chapter form the basis for the work presented in later chapters of this 

thesis. It is hoped that this work will be found to be broadly useful to the greater satellite 

sensor calibration community. 
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CHAPTER3.   METHODOLOGY 

3.1 Introduction  

The objective of this work was to do the first ever exhaustive search for the “best” 

candidate PICS covering the dynamic and spectral range of the majority of Earth imaging 

sensors. As mentioned in Chapter 1, PICS, due to their spatial and temporal radiometric 

stability, are used to monitor an individual sensor’s radiometric performance; they can 

also serve as an alternative calibration approach when an on-board calibrator is not 

present. Image data from PICS are also used for absolute calibration of a single sensor 

and/or a cross-calibration between two or more sensors. 

An algorithm was developed to identify candidate optimal invariant regions for 

visible and infrared earth imaging sensors. The hope is the project would increase the 

frequency at which any given system can be calibrated via increasing the number of 

known PICSs, and to evaluate a sensor’s performance across its dynamic range using 

PICS varying intensity levels. 

3.2 Thesis objective 

The goal was to detect the best possible Pseudo Invariant Calibration Sites (PICS) 

worldwide. Landsat 5, 7 and 8 sensor images were used to identify the most spatially and 

temporally invariant PICS around the world. Additional factors such as atmospheric 

effects, cloud cover, and image data availability of the sites were also considered. A 

description of the algorithm is presented in this chapter. 
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Figure 3.1. Process flow block diagram of the worldwide PICS search 

algorithm 

 

3.3 Processed input data from Google Earth Engine  

Given the size of the Landsat 5/7/8 data archive and the spatial resolution of 30 X 

30 meters for each sensor, analyzing the image data would have been prohibitive in terms 

of time and computer resources.  Fortunately, Google Earth Engine (GEE) provides a 

platform to extend the capability to process a global data set in a more efficient and less 

time consuming way. GEE has a significant portion of the Landsat lifetime image archive 

on an online and actively accessible disc array directly attached to a large cluster of data 

and scientific algorithms, allowing for efficient analysis and the ability to perform a 

global PICS search.   
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Images in GEE’s copy of the USGS archive were screened for cloud cover, water, 

cloud shadow, and fill data, pixel by pixel. Then the images were resampled to a spatial 

resolution of 300 X 300 meters, and the temporal mean, standard deviation, and 

uncertainty (defined as the ratio of the temporal standard deviation to the temporal mean) 

for each 300 X 300 m pixel were calculated. Once this processing was completed, the 

image data was extracted from GEE as 1 degree by 1 degree Latitude and Longitude 

GEOTIFF (georeferencing information to be embedded within a TIFF file) formatted 

“chip” files containing the visible and infrared spectral bands, and the cirrus band for 

further analysis in the SDSU IP lab.  Included with the image data were the band average 

temporal means and standard deviations, temporal uncertainties, and the total number of 

pixels used in the statistics calculations. 

3.4 Evaluation of spatial dynamic range and temporal uncertainty for PICS 

definition 

One of the key needs of this work was to reduce the time required to process 

every single pixel of Landsat data on the planet from April, 2013 to mid 2016 using the 

current computational power available to the SDSU Image Processing lab which would 

take months. So an effort to ‘throw away’ obvious non-PICS locations quickly was 

devised by selecting some basic criteria while processing the initial raw data. 

3.4.1 Selection of temporal uncertainty 

As mentioned in Chapter 2, the current best estimates of temporal and spatial 

uncertainty in calibration for the Landsat sensors, with respect to PICS, are between 2% 

and 5%. Therefore, the goal of the research is to be as good as previous results. The 

temporal uncertainty threshold for each pixel was therefore set at 3% maximum.  

https://en.wikipedia.org/wiki/Georeference
https://en.wikipedia.org/wiki/TIFF
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Another criterion for pixel selection was the number of dates for each pixel 

location remaining after filtering for contamination or other artifacts.  For the purposes of 

this work, at least 10 uncontaminated dates over approximately 3 years had to remain for 

the analyses to proceed. The maximum number of pixel dates for a single pixel during 

that time period was approximately 57. 

The purpose was not only focused on identifying sufficiently bright regions as PICS 

candidates, it was also on identifying dark regions as suitable PICS candidates which is a 

unique aspect of this work.  With both dark and bright PICS considered, more of the 

dynamic range for each sensor can be considered, which allows for a more accurate 

calibration and understanding of sensor linearity. 

3.4.2 Selection of dynamic range 

One of the key features of this work was to keep the resultant sites within a 

dynamic range of reflectance intensity levels. Each site was supposed to be categorized 

with one intensity level for each band. The reasons for following this approach are listed 

below: 

 Ability to choose the site for its specific intensity level for a particular band 

directly for the specified calibration purposes. 

 Having different sites with both dark and bright ground surface reflectance levels, 

to allow for a more detailed evaluation of the sensor’s characteristics. 

 Having more data points for evaluating more accurate calibration coefficients, as 

more data points of different range of reflectance facilitates finer line fitting for 

determining sensor gain. 
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 Less dependency on the same set of sites for different band calibration of a 

sensor. 

3.4.3 Selection of spatial uncertainty 

As a mandatory requirement to define a PICS, spatial uniformity was another 

matter of concern to minimize the effect of misregistration error while scaling the 

radiometric data of the test site relative to the pixel size. It also helps to reduce 

atmospheric adjacency effects for light scattering outside of the invariant region of 

interest during sensor calibration [20]. To meet that criterion, a threshold on spatial 

uncertainty was also selected along with the temporal uncertainty. The phenomenon 

followed the characteristics of spatial uniformity of the previously selected PICSs. But, in 

this case instead of the typical way to determine uncertainty, as a ratio of standard 

deviation to mean, the change in true reflectance value will be utilized. The range of 

intensity levels was selected and was defined to have a ±3% tolerance range. The 

tolerance window was in an ‘absolute’ sense in order to account for the deviation in real 

reflectance for each pixel. For example, at the 5% intensity level, pixels with intensity 

levels between 2% and 8% were considered to be equivalent to the 5% intensity level. 

The purpose of this phase was to aggregate the regions which were grown 

following the temporal and spatial uncertainty. Each of the aggregated regions had a 

unique intensity level and spectral range. The aggregated regions were designated as 

candidate PICS. 

3.5 Uncertainty determination for path overlap regions 

Each Landsat sensor has a ±7.5 degree field of view off nadir. For this reason, the 

resultant images for a single WRS2 (Worldwide Reference System) path have some 
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overlapped regions in common with the next/previous WRS2 path. The overlapped 

regions have different reflectance with respect to the non-overlapped form due to slightly 

different viewing angles. WRS2 is a global notation system for Landsat data which 

enables a user to inquire about satellite imagery over any portion of the world by 

specifying a nominal scene center designated by PATH and ROW number [24], as shown 

in Figure 3.2. The overlapping regions are concerned because of the image arrangement 

mechanism GEE uses in its initial data processing. This difference in reflectance for the 

common overlapped regions is a matter for concern when processing data from GEE as it 

increases the uncertainty of pixels in the overlap areas compared to the uncertainty of 

pixels from non-overlapping regions. So, a correction or adjustment factor for overlap 

regions needs to be determined. 

 

Figure 3.2. WRS2 path arrangement through the Globe [24]. 
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An initial method to estimate the uncertainty for pixels from overlapping regions 

was applied to images from two consecutive paths. The steps in the method are given 

below. 

 Select an ROI from the overlapping region 

 Locate that ROI in each individual image  

 Histogram the ROI pixels in each individual image and calculate the means, 

standard deviations and spatial uncertainties 

 Combine the pixels from both ROIs and calculate the overall mean, standard 

deviation and spatial uncertainty 

 Calculate the difference in spatial uncertainty between the combined distribution 

and the distributions for each path, and then average the differences 

 Average the spatial uncertainty differences across all spectral bands (visible and 

infrared) because the difference in uncertainty should be the same across all 

bands. The resultant additional uncertainty is considered an uncertainty 

adjustment factor added to the temporal uncertainty threshold (3%) and used for 

the overlapped regions. 

3.6 Application of adaptive filtering for improved clustering of invariant regions 

The aggregation of invariant pixels into well-defined contiguous regions is the 

most important requirement to ensure that a PICS exhibits spatial uniformity. In this case, 

most invariant pixels were not concentrated in well-defined contiguous regions. An 

adaptive filtering method was implemented to combine enough pixels together to form 

candidate regions. Each contiguous region resulting from the filtering operation was 
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expected to represent one intensity level. The filtering operation is described in the 

following sections. 

3.6.1 Purpose of the filtering operation 

The filtering operation is applied to the intensity maps, which are binary maps 

with the invariant pixels represented by ones (1s) and the variant pixels represented by 

zeros (0s). The filtering operation has two purposes: 

 When there is a sparsity or hole within a region of invariant pixels, the region will 

be filled by including as few variant pixels as possible that are inside it. 

 When there is a sparsity or gap in the edges of an invariant region, as few 

invariant pixels as possible at the edges will be excluded. 

The filtering operation also had to ensure that the spatial uncertainty in each 

region remained within the accepted range. 

3.6.2 Filter design and implementation 

The mechanism for filtering was a convolution process with a defined kernel size 

that would facilitate pixel aggregation. Following the convolution process, if any center 

pixel was surrounded by a sufficient number of neighboring invariant pixels, it was to be 

treated as invariant regardless of its true condition (1 or 0). The number of neighboring 

invariant pixels around the pixel of interest was denoted as the ‘threshold’. The main 

factors to be considered when designing the filter are described below.  

3.6.2.1 Filter size 

The filters were implemented with square kernels, with sizes ranging initially 

from 3x3 to 15x15.  The coefficients were all set to 1. The optimal filter kernel size was 
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determined through an initial qualitative visualization of the resulting outputs. The 

threshold value was also dependent on the kernel size. As the kernel size was increased, 

the regions filled in more effectively; as the threshold value increased, more invariant 

pixels were kept. Considering these circumstances and applying different filter sizes, a 

kernel size of 11 X 11 was chosen which produced visually consistent results. 

3.6.2.2 Filter type 

3.6.2.2.1 Handling the edges of non-contiguous regions 

To fill in irregular edges of a possible invariant region, one filter was 

implemented thinking of the scenario of the input data shown in Figure 3.3(a). The idea 

was that if the center pixel is 0 it is turned to 1 depending on its threshold value (count of 

1s around the center pixel), thus the edge of an invariant region would be filled in. 

The threshold value was selected based on the kernel size and pixel arrangements 

of the input binary data such that discontinuous boundaries would be connected. For the 

11x11 kernel, taking the center pixel as the pixel of interest, resulted in a potential 

threshold value of 65 (number of 1s), as shown in Figure 3.3(a). 

After a threshold value was chosen for a kernel, the second concern was to 

optimally avoid excluding invariant pixels. The scenario of input data shown in Figure 

3.3(c) represents the case where the center pixel is at the edge of the contiguous region 

and should not be excluded as it is considered invariant, even though it does not meet the 

threshold criterion mentioned earlier. To facilitate this circumstance (avoid exclusion of 

the invariant pixel), a weight value was added to the center pixel of the kernel. The 

weighting value is the threshold value minus the count of 1’s around the center pixel. For 

the 11 X 11 kernel shown in Figure 3.3(c), the weight was considered as 30 for the 
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threshold value 65 ,(the weight value (30) + count of 1s around the center pixel=65), 

shown in Figure 3.3(d). The resulting 11x11 filter kernel is shown in Figure 3.3(f), with a 

center weight of 30 given the threshold value of 65. 

3.6.2.2.2 Connecting the adjacent invariant regions 

In addition to the scenario mentioned in the previous section, another 

circumstance of the input data was considered which allowed connecting adjacent 

invariant regions to make smaller invariant regions into larger ones. The data scenario is 

shown in Figure 3.3(b), where the 11 X 11 filter kernel was implemented; the resulting 

threshold value for this case is 50 (number of 1s). 

 As in the previous section, the scenario in Figure 3.3(c) was considered (i.e. 

avoid exclusion of the invariant pixel); for this scenario, given the threshold value of 50, 

a weight value of 15 was added to the center pixel (the weight value (15) + count of 1s 

around the center pixel=50),  as shown in Figure 3.3 (e). The filter representing this 

scenario is shown in Figure 3.3 (g). 

  

(a) (b) 
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(c) 

  

(d) (e) 

  

(f) (g) 

Figure 3.3. Kernel size 11 X 11 with threshold value 65 and 50 with center weight 30 

and 15 respectively 
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3.6.2.3 Filter application 

The description of the filters in sections 3.6.2.2.1 and 3.6.2.2.2 suggests that either 

threshold value can be used for the same kernel size. However, the resulting filters serve 

different purposes, so both must be implemented. Additional filtering scenarios can be 

considered, resulting in increased or decreased threshold values (for the same kernel 

size); only the mentioned scenarios shown in Figure 3.3 were implemented for this work. 

Here, visual inspection was adopted for assessing the resultant contiguous regions using 

both thresholds.  

 Another important factor was to determine an optimal number of convolutions 

required for the filter operation. As the convolution was quite effective at maintaining 

continuity of the invariant regions, performing more convolutions was expected to make 

the filter more useful for ‘filling’ large/small gaps and ‘removing’ small islands of 

invariant pixels. 

First, visually acceptable connection of adjacent invariant regions was achieved 

with one application of the 11 X 11 filter with threshold value of 50 and center weight of 

15. Additional applications of this filter resulted in inclusion of variant pixels, which 

could potentially increase the spatial uncertainty to an unacceptable level. Next, the 11 X 

11 filter with threshold value of 65 and center weight of 30 was applied once to the 

previously filtered maps.  Additional applications of this filter resulted in greater 

smoothing of the edges, as a result of inclusion of variant pixels. The most visually 

acceptable results in terms of inclusion of small numbers of variant pixels and exclusion 

of small numbers invariant pixels were obtained using three applications of this filter. 
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The filter selection was verified with a final quantitative validation process by 

determination of temporal and spatial uncertainty of the candidate regions. 

3.6.3 Handling the edge effects 

As mentioned before, each chip was processed separately due to the large data 

volume. To avoid edge effects due to the convolutions, neighboring chips were 

considered for each target chip, and corresponding portions of the neighboring chips were 

added to the edges of the target chip, with the size of the portions depending on the filter 

kernel size. Once the convolution process was completed, the actual target image was 

cropped from the center of the oversized convolution image. For example, if successive 

convolutions were performed using an 11 X 11 filter, the row and column number of the 

neighboring chips were selected as either 5 X 5 (for the corners), 5 rows X the number of 

columns of the target image (at the upper and lower edges), and the number of rows of 

the target image X 5 columns (at the left and right edges), keeping the target image at the 

center. The approach was quite straightforward and worked well for accounting for chip 

edge effects during the convolutions. 

3.7 PICS border aggregation, detection and validation 

The purpose of the filter operation was to aggregate the invariant pixels into 

contiguous regions geographically definable as a candidate PICS. As it was not possible 

to process all the chip images at one time, the filters were applied on individual chips of 

each continent and the resulting outputs mosaicked to a continent-level image map after 

processing. For mosaicking the chips, the Python open source script ‘gdal_merge.py’ 

from the GDAL (Geospatial Data Abstraction Library) was used [25]. This program 
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could connect each chip and produce a resultant GEOTIFF-formatted mosaicked map 

which was quite helpful to see the locations of the aggregated invariant regions. 

To have newly created candidate PICS as the preliminary results, it was necessary 

to keep track of the geometric locations of those invariant regions. For this purpose, 

shape data files in the “KML” format were created from the mosaicked maps using the 

GDAL Python script ‘gdal_polygonize.py’. The function of this script was to polygonize 

the continuous regions of pixels into vector polygons [26].The program detected the 

border of well-shaped regions as a polygon and returned the list of latitude and longitude 

coordinates that defined boundaries of a ‘useful’ PICS. From the KML maps, some of the 

smaller polygons were ignored by choosing a threshold number of latitudes and 

longitudes, below which the region was considered to be too small in extent. 

In general, ‘gdal_polygonize.py’ produced reasonable results with respect to 

providing sufficient geometric location information. In some cases, however, polygons 

were not imported properly into Google Earth, particularly in the case of very large 

invariant regions. This was determined to be a limitation of Google Earth/Google Earth 

Engine environment due to the limit on the number of latitudes/longitudes the system can 

handle. For those reasons, the GDAL utility program ‘OGR2OGR’ was used to reduce 

the number of latitude/longitude coordinates for each polygon which keeps the same 

format of input file for the simplified/processed file [27]. The reduced coordinates had 

very minimal effects on the shape of the resulting geometric boundaries due to the fact 

that the coordinate reduction was based on coordinate distance and coordinates less than 

the threshold distance were removed. 
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3.8 Data validation with threshold uncertainties 

As the process used the temporally averaged GEE data from the Landsat archive, 

the temporal trending data extracted using GEE provided a way to validate the polygons 

identified with the algorithm. This step involved calculation of the temporal and spatial 

uncertainty from the temporal trend data, and deciding whether the uncertainty value met 

the criteria for consideration as invariant. 

For this purpose, a Python script was implemented to extract individual candidate 

PICS from the “KML” files providing the geometric coordinates of each polygon. Then 

additional regions were input to the GEE system to calculate the spatial mean/standard 

deviation/uncertainty, and write the results to a “CSV” file. This process did the 

evaluation for each band and reflectance level for each individual continent/continental 

region.  

The raw data used in the processing, in the GEE environment for each polygon, 

was quite similar to data used in the initial processing of temporally averaged global data. 

In that, the Landsat archive was cloud/contamination free images, which were stacked 

together with the latitude/longitude coordinates. The statistical metrics (spatial mean and 

standard deviation) were then evaluated for each of the aggregated polygons. The product 

(a processing algorithm) used for data extraction was 

‘LANDSAT/LC8_L1T_8DAY_TOA', which deals with the data composite using Level 

L1T data with the conversion of image DN to TOA Reflectance [28]. The data composite 

includes a stack of available scenes during an 8 day period starting from the first day of 

the year and the process continues till the 360th day, but the last composite starts from 
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361st day and overlaps with first three days of the first composite of the next year [29]. If 

no scenes happened to be available within that period, no metric was found for that time. 

After generating the temporal trends, an outlier detection scheme was used. The 

scheme was to take data points greater than 1.5 times the inter-quartile range, treat them 

as outliers, and exclude them from the temporal trends. This outlier removal technique 

was applied twice, once with respect to the temporal stability by applying it to the 

temporal mean values and again to the spatial standard deviations, to remove outliers 

from the spatial stability trend. 

The next step was to validate the spatial uncertainty of each polygon on the basis 

of the tolerance window of the real spatial reflectance selected at the beginning of the 

process, which was ±3%. The percentage spatial uncertainty was different for each 

intensity level, and determined from the straightforward formula of percentage ratio of 

spatial standard deviation and spatial mean. For example, if the intensity level was set to 

5% with ±3% tolerance then the spatial uncertainty would be [(3/5)*100], or 60% for 

those polygons. The possible percentage spatial uncertainties for all the intensity levels 

are given in Table 3.1. 

In addition, the temporal uncertainty needed to meet the 3% threshold used in the 

processing of the initial results. For generating reasonably shaped regions, the filtering 

process described earlier was used; however, the spatial and temporal uncertainties might 

significantly increase due to inclusion of variant pixels in the filtering process. 

Consequently, an analysis was performed to identify only the polygons having spatial and 

temporal uncertainties within the specified threshold values; these were selected as 

potential PICS candidates. 
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Table 3.1. Possible spatial uncertainties for each intensity level 

Intensity Levels (%) 
Spatial Uncertainties 

(%) 

5 60.00 

11 27.27 

17 17.65 

23 13.04 

29 10.34 

35 8.57 

41 7.32 

47 6.38 

53 5.66 

59 5.08 

65 4.62 

71 4.23 

77 3.90 

83 3.61 

89 3.37 

95 3.16 

 

Following the validation analysis, the regions which had the least spatial and 

temporal uncertainties were visualized with respect to size, location and number 

providing a better idea of the optimal PICS usable for calibration purposes. The results of 

this analysis are presented in Chapter 4. 

3.9 Drift analysis for OLI using stable sites 

Stability of a satellite sensor can be determined by observing the drift of the 

temporal trending of any stable source measured by the sensor. To find out the drift of a 

sensor, multiple independent sources can be useful, such as on-board lamps or diffusers. 
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PICS, the Moon or other celestial objects [2], or Deep Convection Clouds (DCC) can be 

used as vicarious sources. Work has already been done on sensor drift analysis using 

different stable sources and comparing their usefulness [2].  

OLI is a push-broom instrument having a high integration time for each pixel 

resulting in improved Signal to Noise (SNR). It has multiple lamps and diffusers as on-

board calibrators. The average response from the lamps and diffusers is obtained through 

subtraction, linearization and normalization in processing performed by the USGS Image 

Assessment System (IAS) [2]. From the analysis of OLI onboard calibrators, changes in 

instrument responsivity can be measured on a smaller time scale. From previous analyses, 

it has been observed that the results using the on-board calibrators are quite dependable 

and the trends exhibit consistent patterns in the same direction. So, the analysis using any 

other source can be compared to the on-board calibrators that are considered to be stable 

and accurate. 

In this project, OLI data has been used as a well-calibrated source to find the most 

stable PICS regions. As an experimental application and validation of invariant sites, drift 

analysis of the OLI sensor has been performed using the ten most stable regions in North 

Africa, and the estimated drift has been compared to the results obtained from the on-

board lamps and diffuser. The purpose of this comparison is to assess the accuracy of 

drift analysis of the sensor using PICS or invariant regions and to determine whether 

PICS data can be used as a lower-cost alternative to data from the on-board calibrators. 

Along with the calculated yearly drifts for each of the ten most stable PICS, a 

weighted average analysis has also been done using all the sites together. The preference 

for the weighted average instead of normal average was to weight the average drift 
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greater with respect to sites with the least uncertainty. The equation required for the 

weighted average is provided below [30]. 

 

               
𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒, 𝑥𝑤𝑎𝑣𝑔 =  

∑ 𝑤𝑖𝑥𝑖
𝑁
1

∑ 𝑤𝑖
𝑁
1

 
(3.1) 

 

Here, i = 1 to N, where N is the number of sites and 𝑥𝑖 is the yearly drift value for 

each of the sites. The weight 𝑤𝑖 can be evaluated with the equation below. 

               
𝑊𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖 =  

1

𝜎𝑖
2
 

(3.2) 

 

Here, 𝜎𝑖 represents the uncertainty for the drift using each site which is twice the 

standard error. The uncertainty equation for the weighted average drift is, 

               𝜎 =  √
∑ 𝑛𝑖𝜎𝑖

2𝑁
1 + ∑ 𝑛𝑖 (𝑥𝑖 − 𝑥𝑤𝑎𝑣𝑔)2𝑁

1

∑ 𝑛𝑖
𝑁
1

  (3.3) 

 

It was expected from this analysis that the uncertainty for the weighted average of 

the drifts would be less than the individual drift uncertainty. After calculating the drifts 

using PICS, results were compared to drifts obtained using on board calibrators to 

determine the usefulness of the PICS. 
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CHAPTER4.    RESULTS & ANALYSIS 

4.1 An overview of initial results  

The algorithm described in Chapter 3 was used to process all of the available 

Landsat data in the Google Earth Engine.  The results from processing these data are 

described and analyzed in this chapter. The resultant plots represent the true reflectance 

value meeting the criteria of 3% temporal and ±3% spatial uncertainty. For some 

continents, the temporal uncertainty criterion has been increased to 5%, due to the 

following reasons: 

 Different surface properties; bright and dark desert areas, snow surface or 

invariant areas surrounded by vegetative land with significant atmospheric 

variability. 

 More seasonal effects; due to the geographical location with respect to the sun 

having large changes in surface reflectance due to changes in sun position. 

 Increased cloud coverage  

This allowed for greater consideration of less optimal sites. However, this may 

lead to lower grade ‘uncorrected sites’, but some additional corrections, such as 

developing a simple BRDF model, can improve the results for those sites. It should be 

noted that all results presented here have been generated for Landsat 8 OLI sensor data 

only. Landsat 5 TM and Landsat 7 ETM+ sensors will be processed with the same 

algorithm as future work. 

4.1.1 Histograms for selection of dynamic range 

The dynamic reflectance range assumed to be applicable to the entire Earth was 

initially generated from histograms for each band of Landsat 8 image chips (a similar 
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approach would also work for other sensors). The number of pixels at each intensity level 

was accumulated from all the chips, as shown in Figure 4.1 with the green plots. The 

range was roughly chosen to be within 5% and 95% points on the histogram results. 

The green histograms in Figure 4.1 provided an overall estimate for a global 

reflectance range, but it was not necessarily applicable to any given PICS. A second set 

of histograms was generated just from potential PICS pixels, as represented by the red 

plots shown in Figure 4.1. The red histograms represent invariant regions having 

temporal uncertainty of 3% or less and also indicated an approximate reflectance range of 

5% to 95%. 
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Figure 4.1. Spectral histograms used to determine globally applicable reflectance 

range (green) vs reflectance range applicable to invariant regions (red) 
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4.1.2 Evaluating additional uncertainty due to overlapping  

To give a sense for the amount of overlap, Figure 4.2 shows the overlapping ROIs 

from images of the Niger-1 PICS, Landsat WRS2 path 189 and 188, row 46, where the 

red box shows the same physical location of the planet. Figure 4.3 shows the 

corresponding individual and combined histograms of the overlapping regions with a 

slight bimodal feature. Table 4.1 gives the average additional uncertainty calculated by 

the method for 5 sites, two of which were PICS. Given the datasets analyzed, and the 

simplicity of the initial method described above, a 1% additional uncertainty factor 

appears to be reasonable. 

  

Figure 4.2. Red box indicating the overlapped region for path 189, row 46 (left) and 

path 188, row 46 (right) scene pair 
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Figure 4.3. Bimodal characteristics for common overlapped regio
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Table 4.1. Computation of resultant uncertainty for overlapped regions 

Landsat 8 

Bands 

Name of 

Continent  

Path & Row Number of 

the Selected Scene Pairs 

Additional Spatial Uncertainty 

for the Overlapped Region (%) 

Average Additional 

Uncertainty of All Bands 

(%) 

Coastal/Aerosol 

North Africa 
Path, 179 & 180; Row, 

41 (Egypt1) 

1.44 

0.71 

Blue 0.94 

Green 0.6 

Red 0.49 

NIR 0.38 

SWIR 1 0.53 

SWIR 2 0.58 

Coastal/Aerosol 

South Africa 
Path, 176 & 177; Row, 

77 

1.72 

1.04 

Blue 1.65 

Green 1.29 

Red 0.47 

NIR 0.99 

SWIR 1 0.64 

SWIR 2 0.52 

Coastal/Aerosol 
Australia 

Path, 104 & 105;  Row, 

77 

1.95 
1.47 

Blue 1.66 



46 

 

Green 1.2 

Red 0.69 

NIR 0.48 

SWIR 1 0.61 

SWIR 2 0.86 

Coastal/Aerosol 

Middle-East 
Path, 164 & 165; Row, 

47 

1.16 

0.88 

Blue 1.08 

Green 0.77 

Red 0.43 

NIR 0.35 

SWIR 1 0.33 

SWIR 2 0.29 

Coastal/Aerosol 

North 

America 
Path, 38 & 39; Row, 38 

0.51 

1.09 

Blue 0.65 

Green 0.97 

Red 1.22 

NIR 1.44 

SWIR 1 1.45 

SWIR 2 1.39 



47 

 

4.1.3 Limitations of the overlapping uncertainty adjustment factor evaluation 

process 

At least initially, the main purpose of the uncertainty adjustment evaluation 

process described above was to estimate a globally applicable value to account for 

uncertainty of the pixels in the desert PICS overlapped areas. Averaging the uncertainties 

across all bands was simple and seemed to produce reasonable results. However, it was 

not possible to apply the same value for locations in other continents for the following 

reasons.  

 Variations in surface response due to differing surface material (e.g. dark soils in 

Australia, snow/ice in Greenland, vegetation textures in Russia, etc.). These areas 

contain more atmospheric absorption than the uniform desert areas, which will 

impact the performance of this approach.  

 BRDF (Bidirectional Reflectance Distribution Function) effects were not 

accounted for prior to the analysis and some sites have a large BRDF contribution 

adding to the uncertainty. 

Consequently, additional analysis was needed to determine an accurate 

uncertainty adjustment factor. However, these limitations will be accounted for in future 

USGS processing and GEE data availability. For the purposes of this work, the value of 

1% obtained from the uncertainty evaluation described in this chapter was considered 

sufficient. The 1% value was added to the 3% / 5% temporal uncertainty and applied to 

the overlapped regions. 
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4.1.4 Color maps with 3% temporal uncertainty 

In this section, the initial raw data of North Africa filtered for 3 % or better 

temporal uncertainty are shown in Figure 4.4. Each reflectance level is represented by 

one color. The color shades selected for each level are shown in Table 4.2. Color maps 

for South Africa and the Middle East filtered for 3 % or better temporal uncertainty are 

shown in in Appendix A. 

Table 4.2. Color shades representing each intensity level 

Color 

Shades                                 

Intensity 

Level (%) 
5 11 17 23 29 35 41 47 53 59 65 71 77 83 89 95 

 

  

Coastal/Aerosol Blue 

  

Green Red 



49 

 

  

Near Infrared Short Wave Infrared 1 

 

Short Wave Infrared 2 

Figure 4.4. Color plots for each OLI band representing invariant pixels in North 

Africa 

 

4.1.4.1 North / South Africa 

Vast regions of the desert in North Africa are invariant according to the 3% or 

less temporal spatial uncertainty criterion. These regions are within the countries of 

Mauritania, Mali, Niger, Algeria, Chad, Sudan, Egypt and Libya. It is obvious that North 

Africa can be a great source for candidate PICS, much larger and more extensive than 

traditionally known PICS in the region. 
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On the contrary, in South Africa a much smaller number of regions meet the PICS criteria 

compared to North Africa, being primarily in Namibia. Other areas are highly variant due 

to predominantly being vegetative regions. 

4.1.4.2 Middle East 

In the Middle East, most of the ground surface is covered with desert, and also 

proved to be invariant to an extent comparable to North Africa. Areas meeting the 

temporal and spatial uncertainty threshold were identified in portions of Oman and 

Yemen, the Syrian Desert, and most of the eastern and northern portions of Saudi Arabia. 

The invariant regions for South Africa and the Middle East for Coastal/Aerosol 

band are shown in Figure 4.5. 

  

South Africa Middle East 

Figure 4.5. Color plots for Coastal/Aerosol OLI band representing invariant pixels 

in South Africa and Middle East 

4.1.5 Color maps with 5% temporal uncertainty 

As data have been processed throughout the world, potentially invariant regions in 

other countries and continents should also be considered. So, following the initial 
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visualization process, color maps for Australia, Europe, Greenland, North America, 

Russia, South America and Southeast Asia have been generated. Color maps for Australia 

are shown in Figure 4.6; the other maps are shown in Appendix B. The maps shown in 

Figure 4.6 and Figure A.2 are considered in greater detail in the following sections. 

  

Coastal/Aerosol Blue 

  

Green Red 
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Near Infrared Short Wave Infrared 1 

 

Short Wave Infrared 2 

Figure 4.6. Color plots representing invariant pixels using Landsat 8 OLI seven 

bands image data of Australia 

4.1.5.1 Australia 

For Australia the Coastal/Aerosol band has many invariant regions, but the other 

bands do not. The Coastal/Aerosol band is highly sensitive to atmospheric aerosols (due 

to greater scattering at shorter wavelengths) and detects them efficiently. The aerosol 

components and concentrations are sufficiently stable to allow detection at the temporal 

uncertainty threshold. Another reason could be that the soil surfaces in Australia showed 
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decreased reflectance with greater uncertainty at longer wavelengths. Most of the 

invariant boundaries in South Australia were surrounding lakes Eyre, Torrens and 

Gairdner, with some split regions in the Simpson Desert, Strzelecki Desert, Great 

Victoria Desert and Gibson Desert. 

4.1.5.2 Europe 

In Europe, no regions were identified as invariant across all bands. However, the 

Europe datasets acquired through GEE contained portions of western and central Asia, 

including the countries of Turkmenistan, Uzbekistan and Kazakhstan. Regions within 

these countries were identified as invariant in all bands; those regions are essentially 

deserts. 

4.1.5.3 Greenland 

Large snow surfaces have been found to be invariant in Greenland in the 

Coastal/Aerosol, Blue, Green and Red bands at the 5% uncertainty threshold, with 

observed reflectance levels between 89% and 95%. Consistent with the spectral signature 

of snow/ice, the reflectance decreased at longer wavelengths, failing to meet the 5% 

temporal uncertainty threshold. 

4.1.5.4 North America/South America 

In North America, the Sonoran Desert was found as invariant and has already 

been established as a PICS. Additionally, Arizona showed some regions as invariant, 

with significantly smaller boundaries. In South America, the Atacama Desert plateau in 

Chile was identified as invariant. A number of other sparse and very small regions were 

also identified in the Patagonian Desert in Argentina and Chile. 
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4.1.5.5 Russia 

No invariant regions were identified in either the European or Asian portions of 

Russia. The GEE dataset produced for Russia includes portions of Mongolia and China, 

which were identified as invariant. Other areas south of the Russian border were also 

identified as invariant, and are likely among the areas previously identified in 

Turkmenistan, Uzbekistan, and Kazakhstan, these regions are primarily desert in nature, 

containing sands exhibiting higher reflectance. 

4.1.5.6 Southeast Asia 

Several invariant regions were identified in Southeast Asia.  In Pakistan, these 

included regions of the Thar and Kharan deserts, the Central Bruhui range and the Kirther 

Mountains. Invariant regions were identified in the Rigestan and Margo deserts in 

Afghanistan and also in the South Khorashan area of Iran. There were many other 

findings about these invariant ROIs which will be described in greater detail later in this 

chapter. 

The invariant regions for Europe, Greenland, North America, Russia, South 

America and South East Asia for coastal/aerosol band are shown in Figure 4.7. 

  

Europe Greenland 
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North America Russia 

  

South America South East Asia 

Figure 4.7. Color plots representing invariant pixels using Landsat 8 OLI 

Coastal/Aerosol band image data of Europe, Greenland, North America, Russia, 

South America and South East Asia 

 

4.2 Implementation of a simple adaptive filter 

After generating the intensity color maps for each continent, it was necessary to 

determine whether the identified pixels could be connected into polygons that would 

constitute a PICS. Unfortunately, the pixels were typically quite spread out, and it was 

hard  to aggregate the sparse pixels into solid polygons. For this reason, the simple 

adaptive filtering approach presented in Chapter 3 was applied to the processed binary 

maps for each band in an attempt to create more contiguous regions. The chosen kernels 
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with four successive convolutions filled in regions while sufficiently minimizing 

inclusion of variant pixels, which would increase the spatial uncertainty. 

The resulting colormap outputs for North Africa, showing three of the most 

commonly occuring reflectance intensity levels in each band, are given in Figure 4.8 as 

an example demonstrating the usefulness of this approach. Table 4.3 specifies the 

common intensity levels. Results of applying the filter approach to regions in the other 

contintents are shown in Appendix C. By comparing Figure 4.8 with Figure 4.4, it is 

apparent that the sparse pixels have been efficiently aggregated into reasonably sized 

polygons, some of which were common to all bands. 

  

Coastal/Aerosol Blue 

  

Green Red 
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Near Infrared Short Wave Infrared 1 

 

Short Wave Infrared 2 

Figure 4.8. Resultant color maps by applying filtering process on North Africa OLI 

data 

 

Table 4.3. Intensity level represetation with defined colors in Figure 4.8 

Color Blue Green Red 

Band Intensity Level (%) 

Coastal/Aerosol 17 23 29 

Blue 17 23 29 

Green 23 29 35 

Red 35 41 47 

Near Infrared 47 53 59 
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Short Wave Infrared 

1 

59 65 71 

Short Wave Infrared 

2 

47 53 59 

 

As descibed in Chapter 3, the basic purpose of the filtering was to create 

optimally defined contiguous regions. The filtered maps were processed to detect 

boundaries defined by a series of latitudes and longitudes for each polygon. The invariant 

regions described by the polygons were easily displayed in Google Earth, as shown for 

North Africa in Figure 4.9. Data for each reflectance intensity level for each band were 

processed and recorded in individual files; this approach was adopted to aid the process 

of result validation. The colors representing the corresponding intensity levels of the 

invariant regions shown in Figure 4.9 are given in Table 4.3; these are the same 

color/intensity level mappings used with Figure 4.8. Only the largest resulting invariant 

regions are shown in Figure 4.9, as smaller polygon regions were avoided to minimize 

the processing time because validation and larger spatial uniformity is preferred for PICS 

definition. The same procedure was applied to the data from other continents, as well, to 

have the list of latitude/longitude coordinates for each of the aggregated regions. 
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Short Wave Infrared 2 

Figure 4.9. Invariant region representation by band obtained from boundary 

detected data 

 

4.3 Validation process 

Once the invariant regions were identified, validation was needed to confirm the 

identification. Temporal trending statistics for the regions, derived from the Boundary 

detected polygon data, were retrieved from GEE initial processing. The temporal 

uncertainty was recalculated for the polygon data and compared to the GEE estimate. If 

the uncertainties met the criteria for being a PICS, the GEE processing was considered to 

be correct and the region was confirmed to be invariant. The time interval for the 

temporal trend data were from April, 2013 to November, 2016 (Landsat 8). 

4.3.1 Expected results 

The calculated temporal uncertainties from the invariant ROI data were expected 

to be near the 3% and 5% thresholds, with a small variance due to the filtering process 

including some variant pixels in the regions. The spatial uncertainties for each reflectance 

level in those regions were also calculated and given in Table 3.1. The spatial uncertainty 

or spatial standard deviation was also an important factor for a site to be considered a 
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PICS, it must exhibit both spatial stability within a defined boundary and temporal 

stability. 

To demonstrate the validation process, Figure 4.10 shows the temporal series data 

of example invariant polygons located in North Africa and the Middle East having an 

intensity level of 17% for the Coastal/Aerosol Band. Figure 4.10 shows that the temporal 

uncertainty, spatial uncertainty and standard deviation with time can be evaluated 

conveniently with this process. Clearly, the temporal average of spatial mean values for 

these particular polygons are within ±3% of the intensity level, indicating that these 

polygons could be considered as candidate PICS. So, this kind of temporal trend can be a 

good approach to learn about the temporal drift of each of the generated polygons and to 

decide the capability to be considered as PICS. 

  

North Africa Middle East 

Figure 4.10. Temporal plot of individual invariant ROIs in North Africa and Middle 

East 
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4.3.2 Most stable regions of interest 

As a result of the filtering process with inclusion of variant pixels, not all the 

bounded regions were invariant. So, the ten most stable regions have been identified and 

analyzed. 

4.3.2.1 Optimal large invariant regions (North Africa & Middle East) 

Using the temporal data from the validation process, the ten most stable regions in 

North Africa which met the criteria of being temporally and spatially invariant are shown 

in Figure 4.11. It is observed that some of the invariant regions overlap in all bands. 

Though the reflectance levels are not the same for all regions across all of the bands, 

those regions are still useable for calibration for those bands meeting the uncertainty 

requirements. The temporal and spatial uncertainties have been tabulated in Table 4.4, 

where it is observed that the uncertainties are quite low. The temporal uncertainty and 

spatial uncertainty values are within the threshold values, consequently defining the 

polygons as candidate PICS. 

  

Coastal/Aerosol Blue 
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Green Red 

  

NIR SWIR1 

  

SWIR2 All Bands 

Figure 4.11. Ten most stable regions (temporal uncertainty within 3%) of North 

Africa for seven bands and the last one all bands together 
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Figure 4.12 shows the temporal stability of the ten regions for each band. Aside 

from residual seasonal variation, the plots are quite flat, indicating good spatial stability; 

this demonstrates that the North Africa desert surface is a good candidate for PICS. 
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Table 4.4. Characteristics of ten most stable polygons in North Africa 

Polygons Bands Reflectance 

Intensity Level 

(%) 

Temporal 

Uncertainty 

(%) 

Spatial 

Uncertainty 

(%) 

Central 

Longitude 

Central 

Latitude 

Size 

(area, 

𝐾𝑀2) 

1 Coastal/Aerosol 17 1.645 2.832 18.315 23.537 4809 

Blue 17 1.325 2.796 29.732 19.974 1494 

Green 23 0.917 4.719 30.173 22.926 1518 

Red 29 1.328 4.153 4.461 19.591 2708 

NIR 41 0.815 4.680 17.341 24.545 1925 

SWIR1 47 1.495 4.245 17.155 24.448 2538 

SWIR2 41 1.854 4.449 17.289 24.53 2107 

2 Coastal/Aerosol 17 1.475 5.999 28.305 28.029 6204 

Blue 23 1.549 4.993 7.445 27.442 655 

Green 29 1.293 6.237 6.651 27.716 3583 

Red 29 1.330 5.210 17.564 17.754 3145 

NIR 47 1.123 4.668 14.376 19.768 3840 

SWIR1 47 1.615 4.931 17.242 17.442 1421 
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SWIR2 47 1.877 4.304 17.289 23.142 3454 

3 Coastal/Aerosol 17 1.573 4.809 30.876 21.694 12437 

Blue 23 1.555 5.711 13.444 19.194 31160 

Green 29 1.186 6.981 19.770 16.907 26688 

Red 35 1.174 6.730 30.526 18.082 18258 

NIR 47 1.071 4.474 28.353 18.610 1334 

SWIR1 53 1.619 3.938 17.258 17.897 3679 

SWIR2 53 1.997 3.446 16.775 24.925 5883 

4 Coastal/Aerosol 17 1.450 3.815 31.779 24.968 1467 

Blue 23 1.451 6.271 15.424 26.768 36898 

Green 29 1.066 8.844 22.273 21.424 89946 

Red 35 1.299 4.042 19.104 17.515 4976 

NIR 53 0.878 3.532 14.994 17.333 175543 

SWIR1 53 1.611 4.052 17.335 23.372 7695 

SWIR2 53 1.908 3.545 17.012 22.715 6105 

5 Coastal/Aerosol 23 1.273 4.376 5.263 27.489 881 
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Blue 23 1.552 5.915 19.323 23.108 1268 

Green 35 1.293 7.700 12.813 17.501 187733 

Red 41 1.324 7.403 19.893 24.100 1428 

NIR 53 1.082 4.441 16.183 18.379 13614 

SWIR1 59 1.414 4.541 15.887 23.191 2656 

SWIR2 53 1.889 4.499 19.927 21.772 2211 

6 Coastal/Aerosol 23 1.504 6.125 6.115 28.412 1696 

Blue 23 1.358 3.147 30.904 22.161 4395 

Green 35 1.126 3.269 15.821 22.647 2121 

Red 47 1.063 6.422 13.075 17.894 183146 

NIR 53 1.051 3.368 16.900 22.607 3843 

SWIR1 59 1.615 3.191 16.037 17.474 3413 

SWIR2 53 2.091 5.642 19.999 22.758 3888 

7 Coastal/Aerosol 23 1.606 5.104 15.986 27.345 18512 

Blue 23 1.508 9.279 31.547 25.021 50953 

Green 35 1.287 1.872 16.468 23.572 5716 
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Red 47 1.234 1.882 16.275 23.577 1578 

NIR 53 1.113 6.976 19.875 24.055 964 

SWIR1 59 1.308 3.447 17.036 22.717 5250 

SWIR2 53 1.913 5.38 25.522 21.347 2250 

8 Coastal/Aerosol 23 1.430 5.413 25.406 18.772 30267 

Blue 29 1.564 3.957 14.595 18.521 5696 

Green 35 1.128 3.226 25.122 18.283 16042 

Red 47 0.856 2.618 26.822 21.258 3995 

NIR 59 1.137 3.648 6.150 20.305 2331 

SWIR1 59 1.640 5.374 19.865 22.122 8541 

SWIR2 53 1.862 6.246 25.995 22.811 3278 

9 Coastal/Aerosol 23 1.621 4.252 28.136 22.632 72062 

Blue 29 1.577 3.325 20.131 25.457 8322 

Green 35 1.215 4.200 25.958 26.540 30463 

Red 47 1.328 2.538 27.626 23.489 1572 

NIR 59 1.119 5.780 12.743 17.901 2483 
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SWIR1 59 1.563 3.813 29.921 18.330 1492 

SWIR2 53 2.021 3.089 26.455 20.237 14352 

10 Coastal/Aerosol 29 1.635 6.834 31.526 24.193 4087 

Blue 29 1.361 5.756 22.156 29.250 18399 

Green 41 0.883 3.275 14.298 18.509 6301 

Red 53 1.183 4.648 12.483 17.452 74222 

NIR 59 1.066 2.135 26.861 21.444 2455 

SWIR1 65 1.548 2.500 29.801 17.264 2272 

SWIR2 53 1.941 5.979 26.941 24.220 6471 
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Figure 4.12. Temporal trends for top ten invariant regions in North Africa for seven 

spectral bands 

Figure 4.13 shows the resulting temporal uncertainties for the stable regions 

defined earlier. The range of uncertainties is within 2% overall, with greater uncertainty 

in the SWIR2 band, potentially due to a significant water vapor absorption feature in this 

band.  

 

Figure 4.13. Temporal uncertainties of top ten invariant regions in North Africa for 

7 spectral bands 
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A similar scenario can be obtained for regions in the Middle East with respect to 

optimal temporal and spatial uncertainty. The ten most stable regions identified for this 

area and summarized with respect to temporal uncertainty are shown in Figure 4.14. The 

corresponding regions with Google Earth plots are shown in Appendix D, where the 

larger sites are visible.  The temporal trending plots for each band are given in Appendix 

E. 

 

Figure 4.14. Temporal Uncertainties of top ten invariant regions in Middle East for 

7 spectral bands 

 

4.3.2.2 Candidate PICS with high directional effects (Greenland) 

Ten potentially invariant regions were identified for Greenland from the same 

analysis. Appendix D shows the Google Earth maps for these regions. The corresponding 

temporal trend plots are shown in Figure 4.15, and the temporal uncertainty of the regions 

have been represented in Figure 4.16. 
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Figure 4.15. Temporal trends for top ten invariant regions in Greenland for four 

spectral bands 
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Figure 4.16. Temporal Uncertainties of top ten invariant regions in Greenland for 

four spectral bands 

 

In this case, no significant invariant regions meeting the 5% uncertainty threshold 

could be identified, due to the very low reflectance in longer wavelengths. The temporal 

uncertainty even at the shorter wavelengths is very high, as shown in Figure 4.16. A 

strong bidirectional reflectance characteristic, observed in Figure 4.16, results in large 

variation in surface reflectance. This variation is caused by extreme changes in solar 

zenith angle due to Greenland’s far northern geographic location. As no correction has 

been done during the initial processing of data, it is quite possible that BRDF correction 

will improve the estimated temporal and spatial stability such that it can be considered as 

a candidate PICS. 

4.3.2.3 Candidate invariant sites in the other continents 

As a primary concern of this project, the most temporally and spatially stable sites 

were to be identified, having any particular size, number or reflectance level. Still, in the 

other continents, invariant regions have been identified that are much smaller in 
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geographic coverage than the regions identified in North Africa and the Middle East, but 

the smaller sites in these continents with high stability were also accepted and considered 

as candidate PICS. From Table 4.4, it can be observed that, the area of most of the stable 

sites in North Africa is within the range of 1500 to 5000 𝐾𝑀2 and some of them are 

higher than that; the largest area is 187,733 𝐾𝑀2 for the green band, polygon 5. 

Compared to those regions, sites in the other continents can be considered as small sites 

having an area of ~100 𝐾𝑀2 with a few larger regions (~1500 𝐾𝑀2 ) as the exception. 

The Google Earth maps and the temporal plots for these regions are included in Appendix 

D and E, respectively. 

The ten most invariant regions for North America with respect to temporal 

uncertainty are shown in Figure 4.17. All bands except the SWIR2 band meet the 5% 

uncertainty threshold.

 

Figure 4.17. Temporal uncertainties of top ten invariant regions in North America 

for 7 spectral bands 
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For Europe, Australia and Russia, the stable regions, shown in Appendix D, have 

uncertainties almost within the threshold value for the spectral bands, as seen in the 

temporal trending and uncertainty plots included in Appendix E. However, the temporal 

trending shows some seasonal pattern for both continents, which indicates the possibility 

of temporal uncertainty improvement after BRDF correction. For South Africa and South 

America very few invariant regions have been found, but those can be useful for 

calibration if it becomes preferable to use such small regions in those areas. 

 

Figure 4.18. Temporal uncertainties of top ten invariant regions in South East Asia 

for 7 spectral bands 

 

Figure 4.18 shows the temporal uncertainties for the ten most invariant regions in 

South East Asia. Overall, very few regions were found with sufficient temporal stability 

across all bands; some regions showed significant temporal uncertainty, especially for the 

blue band. The reason for this exceptionally high uncertainty can be the effect of the filter 

operation that has included highly variant pixel data with a few number of invariant 
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pixels. From Appendix E, it can be seen that the regions having lower uncertainty contain 

desert area and the higher uncertainty are coming from vegetative areas. The temporal 

trends of the highly variant regions show significant scattering in the data, indicating 

significant temporal change; few invariant pixels could be identified, as shown in the 

temporal plots in Appendix E. Looking at this phenomenon, those variant regions found 

in South East Asia cannot be considered as candidate PICS. 

The smaller sites (~100 𝐾𝑀2 ) were found in the following regions: near the 

Simpson Desert in Australia along with a few regions in Western Australia, in some parts 

of desert areas in Turkmenistan just beside the European border, in snow surfaces of 

Greenland with significant BRDF effects, in some Northern Mexico regions and the 

Sonoran Desert area, in the Taklimakan Desert and around Dunhuang Desert in China, 

some regions in Mongolia (particularly for the Coastal Aerosol band), along with a large 

part of the Namibia Desert in South Africa, in some parts of Atacama Desert in Chile and 

tremendously small regions in Pakistan Desert. 

4.3.3 Common features observed in results 

Summarizing the reflectance maps and plots, the following points have been 

observed for every continental region of different dynamic and spectral properties. 

 In general, a number of invariant regions were identified in the same geographic 

location in multiple bands.  

 As the wavelength increases, the number of invariant regions tends to decrease. 

One of the reasons for this characteristic may be the way in which the percentage 

uncertainty is calculated. The percentage uncertainty was calculated as the ratio 

of standard deviation to mean reflectance, indicating that if the mean reflectance 
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is low, the resulting uncertainty would be high. It is also possible that as 

atmospheric absorption increases in longer wavelengths, the reflected energy is 

reduced, causing higher uncertainty in each pixel. 

4.4 Drift analysis for OLI using stable sites in North Africa 

From previous analysis, [2] the drift OLI has been found as approximately 0.3% 

per year for the Coastal Aerosol band and within the range of 0.05% to 0.1% per year for 

the Blue to SWIR2 bands using on-board calibrators. The analysis showed good stability 

of the sensor (these values are 2 sigma uncertainties). The OLI sensor drift results using 

the ten most invariant regions in North Africa obtained from the current analysis were 

compared with the drifts estimated from the on-board calibrators in Figure 4.19.  

 

Figure 4.19. Drifts of OLI sensor multispectral bands using 10 most invariant 

regions in North Africa comparing to the on-board drifts and weighted average 

drifts 
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Table 4.5. Yearly % drifts with 2-sigma uncertainty for 10 most stable regions in North Africa 

Polygons Bands Coastal 

/Aerosol 

Blue Green Red NIR SWIR1 SWIR2 

1 Yearly Drift (%) 0.16 -0.04 0.06 0.06 0.06 -0.10 -0.23 

2-sigma SE (%) 0.32 0.33 0.22 0.27 0.14 0.24 0.29 

p value 0.33 0.82 0.58 0.66 0.38 0.40 0.12 

2 Yearly Drift (%) -0.19 -0.40 -0.03 -0.31 -0.36 -0.23 -0.08 

2-sigma SE (%) 0.25 0.38 0.32 0.19 0.18 0.32 0.32 

p value 0.13 0.04 0.86 0.00 0.00 0.15 0.63 

3 Yearly Drift (%) 0.05 -0.01 -0.04 0.11 -0.31 -0.18 0.00 

2-sigma SE (%) 0.30 0.28 0.21 0.34 0.17 0.33 0.46 

p value 0.76 0.94 0.70 0.51 0.00 0.29 0.99 

4 Yearly Drift (%) 0.15 0.16 0.11 0.24 -0.03 0.05 -0.03 

2-sigma SE (%) 0.27 0.25 0.17 0.24 0.22 0.27 0.31 

p value 0.28 0.21 0.20 0.05 0.75 0.73 0.83 

5 Yearly Drift (%) -0.01 -0.25 0.25 -0.33 -0.01 0.10 -0.22 
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2-sigma SE (%) 0.23 0.37 0.22 0.27 0.18 0.24 0.35 

p value 0.92 0.18 0.02 0.02 0.90 0.40 0.21 

6 Yearly Drift (%) -0.22 0.16 0.11 0.07 0.13 -0.20 -0.27 

2-sigma SE (%) 0.28 0.26 0.19 0.17 0.17 0.28 0.39 

p value 0.11 0.22 0.28 0.41 0.14 0.17 0.17 

7 Yearly Drift (%) 0.19 -0.21 -0.09 -0.08 -0.47 0.12 -0.32 

2-sigma SE (%) 0.27 0.28 0.21 0.28 0.23 0.21 0.30 

p value 0.15 0.14 0.42 0.56 0.00 0.24 0.04 

8 Yearly Drift (%) 0.09 0.04 0.00 -0.16 -0.20 0.07 0.03 

2-sigma SE (%) 0.24 0.27 0.20 0.19 0.26 0.31 0.29 

p value 0.46 0.78 0.97 0.10 0.12 0.66 0.86 

9 Yearly Drift (%) -0.25 0.26 0.16 0.06 0.01 -0.43 -0.13 

2-sigma SE (%) 0.26 0.26 0.20 0.22 0.18 0.30 0.48 

p value 0.06 0.05 0.11 0.57 0.87 0.01 0.59 

10 Yearly Drift (%) -0.12 -0.13 0.00 -0.01 -0.20 -0.03 -0.20 

2-sigma SE (%) 0.30 0.23 0.15 0.19 0.23 0.32 0.30 
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p value 0.44 0.26 0.98 0.93 0.09 0.83 0.19 

Weighted Average of drifts Yearly Drift (%) -0.04 -0.01 0.06 -0.04 -0.10 -0.05 -0.15 

2-sigma SE (%) 0.32 0.34 0.23 0.29 0.27 0.33 0.36 

Working Lamp Approximate Yearly Drift (%) -0.2 0.15 0.15 0.1 0.1 0.05 0.1 

Working Diffuser Panel Approximate Yearly Drift (%) -0.3 0.15 0.2 0.2 0.2 0.2 0.2 
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Referring to the temporal trends of the top 10 regions for North Africa, shown in 

Figure 4.12, the drifts of the sensor for multispectral bands are expected to be quite small; 

these are shown in Table 4.5. To reduce noise associated with measurement uncertainties 

over the invariant regions, weighted averages have been evaluated (described in Chapter 

3). Figure 4.19 shows these weighted averages as orange circles. Figure 4.19 and Table 

4.5 show that the drifts are approximately within 0.3% for all the bands, except for a few 

polygons with ~0.4% drift estimated for NIR and SWIR1 bands. The red bordered blue 

and green squares represent drifts for the working lamp and working diffuser panel as on-

board calibrators; their values are within the uncertainty range of the drifts derived from 

the invariant regions. The p-values of the slope significance hypothesis test for each of 

the polygons are larger than the significance level (0.05), indicating insufficient evidence 

for non-zero slope. The drift values for those regions are also comparable to the values 

found in previous analysis using Libya 4, Libya 1, Sudan 1, Niger 2, Niger 1 and Egypt 1 

[2]. So, the present analysis shows the fine stability of the OLI sensor which can be 

measured using stable calibration sources and also indicates that the new invariant sites 

can be used to estimate drifts on the order of 0.4%.  
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CHAPTER5. CONCLUSION & FUTURE DIRECTIONS 

5.1 Summary of the algorithm 

The objective of this thesis work was to identify candidate PICS using well-

calibrated Landsat 8 image data, of varying dynamic range and spectral characteristics 

throughout the world, for use in post-launch calibration of satellite sensors to assure long 

term stability and accuracy in performance. With a larger number of available PICS 

locations covering more of a sensor’s dynamic range, calibration for all satellite sensors 

will be more flexible and reliable. The primary advantage of using these sites is to use 

them as low cost calibration data sources. 

The algorithm of PICS invariant analysis presented in this thesis has the capability 

of identifying optimal invariant regions anywhere in the world for visible and infrared 

remote sensing instruments. The algorithm was automated to a significant degree due to 

the necessity of processing large amounts of data. The primary step to accomplishing the 

task was to utilize the large amount of data available from Google Earth Engine, which 

has made the whole work possible. However, other factors such as atmospheric 

contamination, cloud cover and data availability of the site were also considered. A 

critical part of this work involved visualization of the evaluated regions throughout the 

Earth based on the specified criteria in the simplest and most convenient way possible, 

and to acquire knowledge of the locations of the estimated PICS region. Validation was 

another mandatory part of this work, in order to make sure that the identified regions 

were acceptable as PICS. 

Due to the limited amount of time available for performing this work, only 

Landsat 8 OLI data were utilized to identify and analyze the optimal regions. Most of the 
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identified stable and potential sites were located in North Africa and the Middle East, 

consistent with results obtained from previous analyses for other sensors. Other regions 

have been identified as invariant in other countries/continents as well, such as North 

America, Europe, Australia, Russia, South Africa, South America, Greenland and South 

East Asia. Although the sites are smaller in size than the Saharan or Arabian sites, they 

still possess sufficient stability for use as a calibration data source. 

As this work dealt with image data not corrected for atmospheric or BRDF 

effects, the seasonal effect was quite apparent in many of the results, especially for the 

non-desert and non-uniform areas. It would be expected that more invariant regions may 

be identified by performing the corrections on image data from other locations. Improved 

long term sensor monitoring should be possible in this case. 

The algorithm presented in this work was also effective at identifying a number of 

acceptable darker sites. These sites increase the potential of having the calibration 

represent a wider region of sensor dynamic range. At the very least, they can add to the 

number of available data points, which can result in a more accurate sensor calibration.  

The algorithm presented in this thesis provides a way to represent a site or 

polygon with a single reflectance intensity level.  This eliminates the need to determine 

an optimal ROI, which significantly simplifies the required processing. In addition, by 

allowing identification of regions in only a few bands, the algorithm can expand the 

number of sites able to be used for calibration for those bands.     

The temporal and spatial uncertainty criteria to ensure the stability of the potential 

sites were followed and as a result the ten most invariant regions for each continent were 
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obtained and validated. The most optimal sites in North Africa and Middle East were 

found to be within the range of 2% to 2.5% temporal uncertainty, where the initial criteria 

was allotted to be within 3% for those continents. The temporal criteria was increased to 

5% for the other continents, and most of the resultant optimal regions were within that 

range.  

Using this method, and with the help of the GEE data archive, many more analyses can 

be done for different purposes. For example, an analysis could identify the most stable 

pixel(s) in a region or even identify the most stable region, which can be very useful for 

PICS normalization processing. The possible analyses depend on how the PICS data are 

intended to be used. 

5.2 Future work 

The algorithm as implemented for this thesis work was able to identify worldwide 

candidate PICS. However, work needs to be done to refine the algorithm and perform 

additional quantitative validation of its results. Some of these areas of additional work are 

described below. 

 In this analysis, only OLI sensor data have been utilized to visualize the possible 

PICS, but it was intended to identify invariant sites for all the continents using 

TM and ETM+ sensor data; for that reason the initial image data have been 

processed and obtained from GEE for those sensors as well. Future work will 

compare the results among the sensors and decide which sites can be useful for 

any sensor regardless of different sensor specifications. A potential practical limit 

on which sensor datasets can be used is that they must be part of the USGS 

archive, so that GEE can access it. 
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 As discussed in Chapter 4, the raw data did not have any initial BRDF or 

atmospheric correction applied for any continent; it is quite possible that more 

defined invariant regions can be identified with greater accuracy by applying 

these corrections to the raw data.  The corresponding spatial and temporal 

uncertainties should be better able to classify a candidate site as invariant. 

 A critical step in the algorithm is converting the non-contiguous invariant pixels 

(through the image data) into contiguous regions; for that purpose an adaptive 

filtering operation was applied, as described in Chapters 3 and 4. After testing 

with many filter criteria, two filters were accepted for use in this operation. 

Hence, the filter analysis was more qualitative than quantitative, depending on 

visualization of the results. Additional quantitative analysis is needed to 

determine if the initial filter parameters used in this work are in fact the “best” set 

of values, and that the results obtained here are also the “best possible”.  

 The resultant sites are currently not easily definable with respect to size or 

location. The coordinate latitudes/longitudes of each site can be listed in a 

systematic way, but the number of invariant pixels identified for each site is not 

being tracked. The algorithm should be modified to use this information to define 

the site.  

 As an application of the most stable North Africa sites identified with this 

algorithm, a drift analysis using OLI data was performed. The overall quality of 

these sites could be established by using the data in absolute and/or cross 

calibration.  
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 As the sites have been categorized with respect to dynamic range, the low or high 

reflective sites should be classified as “dark” or “bright” candidate PICS in a 

more defined way. One way to do this would be to establish threshold reflectance 

levels for the dark and bright sites.  

Overall, the algorithm developed for this thesis work has demonstrated its ability 

to identify candidate PICS throughout the world. The efforts suggested above can 

increase its effectiveness in this area, and also potentially enable the algorithm to be used 

in new analyses and calibration-related applications. 
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APPENDICES 

Appendix A Color maps for 3% temporal uncertainty 

A.1 South Africa 

   

Blue Green Red 

   

NIR SWIR1 SWIR2 

Figure A. 1. Color plots representing invariant pixels using andsat 8 OLI image data 

of six bands (Blue, Green, Red, NIR, SWIR1 and SWIR2) for South Africa 
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A.2 Middle East 
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NIR SWIR1 SWIR2 

Figure A. 2. Color plots representing invariant pixels using Landsat 8 OLI, seven 

bands image data of Middle East 
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Appendix B Color maps for 5% temporal uncertainty 

B.1 Europe 

  

Blue Green 

  

Red NIR 

  

SWIR1 SWIR2 

Figure B. 1. Color plots representing invariant pixels using Landsat 8 OLI, seven 

bands image data of Europe 
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B.2 Greenland 
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Figure B. 2. Color plots representing invariant pixels using Landsat 8 OLI, seven 

bands image data of Greenland 
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B.3 North America 
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Figure B. 3. Color plots representing invariant pixels using Landsat 8 OLI, seven 

bands image data of North America 
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B.4 Russia 
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Figure B. 4. Color plots representing invariant pixels using Landsat 8 OLI, seven 

bands image data of Russia 
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B.5 South America 
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Figure B. 5. Color plots representing invariant pixels using Landsat 8 OLI, seven 

bands image data of South America 
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B.6 South East Asia 
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Figure B. 6. Color plots representing invariant pixels using Landsat 8 OLI, seven 

bands image data of South East Asia 
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Appendix C Color maps after applying adaptive filtering 

C.1 South Africa 

  

Coastal/Aerosol Blue 

  

Green Red 

  

NIR SWIR1 
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SWIR2 

Figure C. 1. Invariant pixels after filter application using Landsat 8 OLI image data 

of seven bands (Coastal/Aerosol, Blue, Green, Red, NIR, SWIR1 and SWIR2) for 

South Africa 
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Figure C. 2. Invariant region representation by band, obtained from boundary 

detected data for South Africa 
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Table C. 1 Intensity level representation with defined colors for South Africa 

Color Blue Green Red 

Band Intensity Level (%) 

Coastal/Aerosol 11 17 23 

Blue 11 17 23 

Green 17 23 29 

Red 23 29 35 

Near Infrared 29 35 41 

Short Wave Infrared 

1 

35 41 47 

Short Wave Infrared 

2 

29 35 41 

C.2 Australia 
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Figure C. 3. Invariant pixels after filter application using Landsat 8 OLI image data 

of seven bands (Coastal/Aerosol, Blue, Green, Red, NIR, SWIR1 and SWIR2) for 

Australia 
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Figure C. 4. Invariant region representation by band, obtained from boundary 

detected data for Australia 

Table C. 2 Intensity level represetation with defined colors for Australia 

Color Blue Green Red 

Band Intensity Level (%) 

Coastal/Aerosol 11 17 23 

Blue 11 17 23 

Green 11 17 23 

Red 17 23 29 

Near Infrared 29 35 41 

Short Wave Infrared 

1 

35 41 47 

Short Wave Infrared 

2 

29 35 41 
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C.3 Europe 
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Figure C. 5. Invariant pixels after filter application using Landsat 8 OLI image data 

of seven bands (Coastal/Aerosol, Blue, Green, Red, NIR, SWIR1 and SWIR2) for 

Europe 
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Figure C. 6. Invariant region representation by band, obtained from boundary 

detected data for Europe 

Table C. 3 Intensity level represetation with defined colors for Europe 

Color Blue Green Red 

Band Intensity Level (%) 

Coastal/Aerosol 11 17 23 

Blue 11 17 23 

Green 17 23 29 

Red 23 29 35 
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Near Infrared 29 35 41 

Short Wave Infrared 

1 

35 41 47 

Short Wave Infrared 

2 

29 35 41 

 

C.4 Greenland 
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Figure C. 7. Invariant pixels after filter application using Landsat 8 OLI image data 

of five bands (Coastal/Aerosol, Blue, Green, Red, and NIR) for Greenland 
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Figure C. 8. Invariant region representation by band, obtained from boundary 

detected data for Europe 

Table C. 4 Intensity level represetation with defined colors for Greenland 

Color Blue Green Red 

Band Intensity Level (%) 

Coastal/Aerosol 77 89 95 

Blue 77 89 95 

Green 77 83 89 

Red 83 89 95 

Near Infrared 71 83 89 
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C.5 Middle East 
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Figure C. 9. Invariant pixels after filter application using Landsat 8 OLI image data 

of five bands (Coastal/Aerosol, Blue, Green, Red, and NIR) for Middle East 
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Figure C. 10. Invariant region representation by band, obtained from boundary 

detected data for Middle East 

Table C. 5 Intensity level represetation with defined colors for Middle East 

Color Blue Green Red 

Band Intensity Level (%) 

Coastal/Aerosol 17 23 29 

Blue 17 23 29 

Green 23 29 35 

Red 35 41 47 
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Near Infrared 41 47 53 

Short Wave Infrared 

1 

53 59 65 

Short Wave Infrared 

2 

47 53 59 

 

C.6 North America 
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Figure C. 11. Invariant pixels after filter application using Landsat 8 OLI image 

data of seven bands (Coastal/Aerosol, Blue, Green, Red, NIR, SWIR1 and SWIR2) 

for North America 
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Figure C. 12. Invariant region representation by band, obtained from boundary 

detected data for Middle East 
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Table C. 6 Intensity level represetation with defined colors for North America 

Color Blue Green Red 

Band Intensity Level (%) 

Coastal/Aerosol 11 17 23 

Blue 11 17 23 

Green 17 23 29 

Red 23 29 35 

Near Infrared 29 35 41 

Short Wave Infrared 

1 

35 41 47 

Short Wave Infrared 

2 

29 35 41 

 

C.7 Russia 
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Figure C. 13. Invariant pixels after filter application using Landsat 8 OLI image 

data of seven bands (Coastal/Aerosol, Blue, Green, Red, NIR, SWIR1 and SWIR2) 

for Russia 
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Figure C. 14. Invariant region representation by band, obtained from boundary 

detected data for Russia 

Table C. 7 Intensity level represetation with defined colors for Russia 

Color Blue Green Red 

Band Intensity Level (%) 

Coastal/Aerosol 11 17 23 

Blue 11 17 23 

Green 17 23 29 

Red 17 23 29 

Near Infrared 23 29 35 

Short Wave Infrared 

1 

29 35 41 

Short Wave Infrared 

2 

29 35 41 
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C.8 South America 
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Figure C. 15. Invariant pixels after filter application using Landsat 8 OLI image 

data of seven bands (Coastal/Aerosol, Blue, Green, Red, NIR, SWIR1 and SWIR2) 

for South America 
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Figure C. 16. Invariant region representation by band, obtained from boundary 

detected data for South America 

Table C. 8 Intensity level represetation with defined colors for South America 

Color Blue Green Red 

Band Intensity Level (%) 

Coastal/Aerosol 11 17 23 

Blue 11 17 23 

Green 11 17 23 

Red 17 23 29 

Near Infrared 23 29 35 
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Short Wave Infrared 

1 

23 29 35 

Short Wave Infrared 

2 

23 29 35 

 

C.9  South East Asia 
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Figure C. 17. Invariant pixels after filter application using Landsat 8 OLI image 

data of seven bands (Coastal/Aerosol, Blue, Green, Red, NIR, SWIR1 and SWIR2) 

for South East Asia 

  

Coastal/Aerosol Blue 



124 

 

  

Green Red 

  

NIR SWIR1 

 

SWIR2 

Figure C. 18. Invariant region representation by band, obtained from boundary 

detected data for South East Asia 
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Table C. 9 Intensity level represetation with defined colors for South east asia 

Color Blue Green Red 

Band Intensity Level (%) 

Coastal/Aerosol 11 17 23 

Blue 11 17 23 

Green 17 23 29 

Red 23 29 35 

Near Infrared 23 29 35 

Short Wave Infrared 

1 

29 35 41 

Short Wave Infrared 

2 

29 35 41 
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Appendix D Ten most stable regions of interest 
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Figure D. 1. Ten most stable regions of Australia for seven bands and all bands 

together 
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Figure D. 2. Ten most stable regions of Europe for seven bands and all bands 

together 
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Figure D. 3. Ten most stable regions of Greenland for four bands and all bands 

together 
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Figure D. 4. Ten most stable regions of Middle East for four bands and all bands 

together 
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Figure D. 5. Ten most stable regions of North America for seven bands and all 

bands together 
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Figure D. 6. Ten most stable regions of Russia for seven bands and all bands 

together 
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Figure D. 7. Ten most stable regions of South America for seven bands and all 

bands together 
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All bands together 

Figure D. 8. Ten most stable regions of South Africa for six bands and all bands 

together 
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Figure D. 9. Ten most stable regions of South East Asia for seven bands and all 

bands together 
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Appendix E Temporal trending of ten most stable sites 

E.1 Australia 
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All bands together 

Figure E. 1. Temporal trends for top ten invariant regions in Australia for seven 

spectral bands 

 

Figure E. 2. Temporal uncertainties of top ten invariant regions in Australia for 

seven spectral bands 
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E.2 Europe 
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Figure E. 3. Temporal trends for top ten invariant regions in Europe for seven 

spectral bands 

 

Figure E. 4. Temporal uncertainties of top ten invariant regions in Australia for 

seven spectral bands 
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E.3 Middle East 
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Figure E. 5. Temporal trends for top ten invariant regions in Middle East for seven 

spectral bands 

E.4 North America 
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Figure E. 6. Temporal trends for top ten invariant regions in North America for 

seven spectral bands 
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E.5 Russia 
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Figure E. 7. Temporal trends for top ten invariant regions in Russia for seven 

spectral bands 

 

Figure E. 8. Temporal uncertainties of top ten invariant regions in Russia for seven 

spectral bands 
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E.6 South Africa 

  

Coastal/Aerosol Blue 

  

Green Red 

  

NIR SWIR1 

Figure E. 9. Temporal trends for top ten invariant regions in South Africa for seven 

spectral bands 
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Figure E. 10. Temporal uncertainties of top ten invariant regions in South Africa for 

seven spectral bands 

E.7 South America 
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Figure E. 11. Temporal trends for top ten invariant regions in South America for 

seven spectral bands 
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Figure E. 12. Temporal uncertainties of top ten invariant regions in South America 

for seven spectral bands 

E.8 South East Asia 
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Figure E. 13. Temporal trends for top ten invariant regions in South East Asia for 

seven spectral bands 
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Figure E. 14. Temporal uncertainties of top ten invariant regions in South East Asia 

for seven spectral bands 
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Appendix F Temporal and spatial information of the top most invariant sites 

F.1 Australia 

Table F. 1 Characteristics of ten most stable polygons in Australia 

Polygons Bands Reflectance 

Intensity Level 

(%) 

Temporal 

Uncertainty (%) 

Spatial 

Uncertainty (%) 

Central 

Longitude 

Central 

Latitude 

Size (area, 

𝐾𝑀2) 

1 Coastal/Aerosol 17 1.627 5.951 115.636 -24.900 199.215 

Blue 11 3.526 6.470 139.705 -20.441 503.443 

Green 11 3.244 8.363 119.429 -20.163 346.572 

Red 29 5.475 9.978 138.913 -23.904 235.763 

NIR 35 3.563 6.235 141.448 -27.073 228.303 

SWIR1 47 5.599 7.681 139.729 -25.876 299.452 

SWIR2 35 6.532 7.934 139.167 -25.311 274.391 

2 Coastal/Aerosol 17 1.633 6.720 115.403 -24.179 242.504 

Blue 11 3.542 5.748 139.826 -19.987 440.964 

Green 11 3.474 7.274 128.723 -25.489 453.025 

Red 35 5.695 10.019 139.541 -25.697 201.730 
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NIR 29 4.345 10.105 115.626 -24.638 579.478 

SWIR1 53 5.704 8.682 139.293 -24.678 394.472 

SWIR2 41 7.973 7.671 139.320 -25.284 162.623 

3 Coastal/Aerosol 17 1.664 5.016 115.579 -24.624 297.277 

Blue 11 3.680 8.552 143.763 -20.351 342.805 

Green 11 3.474 5.119 131.532 -26.594 233.164 

Red 29 6.127 9.739 139.554 -25.205 751.772 

NIR 41 4.405 8.880 138.623 -24.292 824.380 

SWIR1 47 5.813 7.763 139.115 -24.002 1710.406 

SWIR2 29 12.120 7.460 137.367 -30.746 304.871 

4 Coastal/Aerosol 17 1.737 9.129 140.687 -23.036 479.398 

Blue 11 3.739 4.952 140.029 -19.840 229.529 

Green 11 3.524 8.681 120.016 -20.190 2401.584 

Red 29 6.411 10.302 139.300 -25.252 524.232 

NIR 35 4.550 9.382 138.943 -23.921 459.335 
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SWIR1 53 6.102 6.658 138.490 -25.444 525.059 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 

5 Coastal/Aerosol 17 1.925 5.894 140.355 -21.548 210.516 

Blue 11 3.793 4.731 133.718 -18.077 603.034 

Green 11 3.754 7.603 118.684 -25.341 218.218 

Red 29 6.440 7.684 138.430 -24.381 667.446 

NIR 29 4.551 6.399 129.403 -22.396 516.859 

SWIR1 53 6.228 7.667 138.563 -24.118 253.462 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 

6 Coastal/Aerosol 17 1.972 4.689 139.176 -21.906 607.437 

Blue 11 3.849 4.588 134.014 -18.505 154.699 

Green 11 3.792 6.297 119.412 -20.652 514.392 

Red 29 7.274 11.054 139.823 -25.282 291.282 

NIR 29 4.567 6.183 129.116 -21.440 317.379 

SWIR1 47 6.300 8.059 139.480 -23.978 287.941 
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SWIR2 0 0.000 0.000 0.000 0.000 0.000 

7 Coastal/Aerosol 23 2.104 7.050 139.586 -25.728 496.912 

Blue 23 3.892 8.061 139.183 -24.710 359.137 

Green 11 3.985 8.396 139.424 -21.822 191.441 

Red 23 7.575 11.168 118.184 -25.880 602.619 

NIR 41 4.636 9.356 139.287 -24.614 788.280 

SWIR1 47 6.355 8.558 139.109 -25.185 2704.747 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 

8 Coastal/Aerosol 17 2.249 8.728 113.848 -23.994 1216.928 

Blue 11 3.916 3.434 129.900 -20.092 431.240 

Green 11 4.038 10.411 118.123 -25.471 581.330 

Red 23 8.482 10.049 137.443 -29.890 274.289 

NIR 29 4.855 8.423 118.173 -25.918 769.884 

SWIR1 47 6.403 8.916 139.494 -25.568 303.736 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 
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9 Coastal/Aerosol 23 2.550 6.466 139.585 -26.384 668.010 

Blue 11 3.946 2.082 130.384 -21.802 269.756 

Green 11 4.068 6.041 127.397 -27.405 278.235 

Red 41 8.527 10.163 137.505 -28.044 252.611 

NIR 41 4.867 7.864 139.131 -24.016 187.020 

SWIR1 47 6.410 8.252 139.662 -25.221 1755.599 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 

10 Coastal/Aerosol 23 2.654 7.224 139.914 -25.057 211.475 

Blue 11 4.000 2.528 129.860 -21.581 2778.202 

Green 11 4.083 7.550 117.745 -25.722 199.159 

Red 23 8.581 9.881 137.620 -29.589 225.137 

NIR 41 4.891 8.641 139.547 -26.160 180.241 

SWIR1 47 6.440 6.105 138.969 -24.984 335.417 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 
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F.2 Europe 

Table F. 2 Characteristics of ten most stable polygons in Europe 

Polygons Bands Reflectance 

Intensity Level 

(%) 

Temporal 

Uncertainty (%) 

Spatial 

Uncertainty (%) 

Central 

Longitude 

Central 

Latitude 

Size (area, 

𝐾𝑀2) 

1 Coastal/Aerosol 17 3.619 4.307 45.064 38.401 29.472 

Blue 23 3.596 10.475 56.215 39.894 113.466 

Green 17 4.396 9.541 59.896 41.529 46.020 

Red 23 4.347 10.965 59.951 41.480 39.209 

NIR 29 3.783 8.185 59.093 38.457 107.999 

SWIR1 29 2.766 2.641 58.444 38.843 116.468 

SWIR2 35 4.249 6.593 59.253 38.494 79.204 

2 Coastal/Aerosol 23 3.704 6.619 58.828 38.706 63.753 

Blue 29 4.320 8.395 56.123 39.954 159.653 

Green 17 4.459 2.392 59.329 38.978 93.353 

Red 29 4.375 9.663 56.223 39.859 267.436 

NIR 29 4.032 11.367 45.106 38.026 18.227 
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SWIR1 41 3.111 4.919 56.075 39.884 22.419 

SWIR2 29 4.629 4.129 58.092 39.295 54.429 

3 Coastal/Aerosol 23 3.725 9.791 56.338 39.946 405.316 

Blue 23 4.442 10.432 56.447 39.914 67.711 

Green 17 4.804 2.748 59.231 39.212 393.217 

Red 23 4.637 5.948 59.326 38.950 129.052 

NIR 29 4.074 8.726 58.590 38.569 57.491 

SWIR1 29 3.377 4.316 58.959 39.015 1420.454 

SWIR2 29 4.671 5.325 59.139 38.519 62.269 

4 Coastal/Aerosol 23 3.738 6.908 58.926 38.649 55.479 

Blue 23 4.659 8.178 59.368 38.585 31.541 

Green 23 4.991 2.260 59.020 39.408 154.179 

Red 41 4.871 5.382 56.095 39.960 89.405 

NIR 29 4.154 3.137 58.136 39.319 63.874 

SWIR1 35 3.417 2.922 58.661 39.260 83.478 
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SWIR2 29 4.791 3.446 58.646 39.251 75.056 

5 Coastal/Aerosol 17 4.440 8.162 44.981 38.454 69.745 

Blue 29 5.488 2.817 56.837 41.226 35.979 

Green 23 5.027 5.308 59.728 43.948 36.052 

Red 23 4.902 3.860 58.131 39.318 36.056 

NIR 41 4.482 3.612 59.420 41.069 362.374 

SWIR1 41 3.496 3.501 59.938 41.358 93.045 

SWIR2 29 4.825 2.897 58.505 39.132 100.557 

6 Coastal/Aerosol 17 4.447 1.079 58.439 39.222 26.529 

Blue 29 5.496 8.060 57.297 40.724 69.287 

Green 17 5.224 2.426 58.613 38.968 100.552 

Red 23 4.930 2.806 58.525 39.145 64.060 

NIR 41 4.622 3.791 59.175 41.629 31.491 

SWIR1 35 3.644 8.225 54.700 39.415 29.825 

SWIR2 29 5.072 5.185 58.058 38.936 77.011 
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7 Coastal/Aerosol 17 4.572 9.955 45.295 38.321 78.127 

Blue 23 5.665 8.731 58.873 41.393 43.681 

Green 23 5.443 2.425 58.540 39.161 47.495 

Red 23 5.542 3.117 59.132 39.171 21.494 

NIR 41 4.642 7.545 58.579 40.200 6185.242 

SWIR1 35 3.876 9.436 58.515 38.723 1456.967 

SWIR2 29 5.118 10.233 58.887 38.994 5574.508 

8 Coastal/Aerosol 29 4.613 6.687 56.066 39.997 139.076 

Blue 23 5.794 8.785 58.620 40.126 60.594 

Green 35 5.899 6.534 56.105 39.961 100.872 

Red 23 5.572 5.737 55.456 40.145 35.938 

NIR 41 4.714 2.965 59.510 41.270 63.663 

SWIR1 35 3.921 3.147 58.119 39.315 108.632 

SWIR2 29 5.182 12.724 54.414 39.121 550.511 

9 Coastal/Aerosol 23 4.670 3.713 56.284 42.065 64.708 
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Blue 23 5.841 6.845 58.963 40.114 32.484 

Green 23 5.937 3.600 58.133 39.319 36.161 

Red 23 6.095 4.167 58.582 39.442 876.835 

NIR 47 4.745 6.829 56.081 39.984 112.447 

SWIR1 29 4.215 4.135 58.274 38.824 68.443 

SWIR2 29 5.474 3.281 58.200 38.978 111.335 

10 Coastal/Aerosol 17 4.828 12.247 -1.587 38.025 198.693 

Blue 23 5.875 8.936 58.343 40.131 39.001 

Green 23 6.100 6.688 58.131 38.708 56.723 

Red 29 6.104 10.877 55.117 39.680 235.566 

NIR 41 4.747 7.376 58.684 41.198 1544.261 

SWIR1 35 4.272 2.608 58.132 38.814 37.986 

SWIR2 29 5.638 5.163 59.857 39.124 429.489 
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F.3  Greenland 

Table F. 3 Characteristics of ten most stable polygons in Greenland 

Polygons Bands Reflectance 

Intensity Level 

(%) 

Temporal 

Uncertainty (%) 

Spatial 

Uncertainty 

(%) 

Central 

Longitude 

Central 

Latitude 

Size (area, 

𝐾𝑀2) 

1 Coastal/Aerosol 95 6.588 2.033 -47.159 70.338 18.246 

Blue 95 5.758 2.079 -37.936 67.298 16.052 

Green 83 5.957 2.075 -40.574 67.077 32.674 

Red 89 4.975 1.819 -40.235 66.669 81.203 

2 Coastal/Aerosol 95 7.297 4.842 -36.768 67.053 36.877 

Blue 95 7.085 2.620 -47.153 70.341 18.947 

Green 83 6.741 2.692 -40.114 67.547 114.170 

Red 89 5.322 6.363 -36.764 67.049 16.887 

3 Coastal/Aerosol 95 7.360 4.714 -37.322 67.099 420.555 

Blue 95 7.233 4.116 -37.072 67.051 74.597 

Green 83 6.970 2.336 -40.223 67.147 27.968 

Red 89 5.364 2.503 -39.649 67.005 57.112 
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4 Coastal/Aerosol 95 7.418 1.883 -37.940 67.299 20.786 

Blue 95 7.393 5.224 -37.448 67.081 250.914 

Green 83 8.639 2.762 -39.559 67.811 115.074 

Red 89 6.474 2.780 -39.213 66.817 41.850 

5 Coastal/Aerosol 95 7.975 1.637 -38.805 66.836 13.872 

Blue 95 8.334 2.201 -38.800 66.833 16.186 

Green 83 8.713 1.636 -39.053 67.042 14.181 

Red 89 6.523 3.579 -38.501 66.975 50.986 

6 Coastal/Aerosol 95 8.823 1.945 -37.244 67.323 45.068 

Blue 95 9.277 2.345 -37.243 67.320 42.975 

Green 83 8.946 2.542 -38.498 67.067 27.762 

Red 89 6.591 5.082 -39.753 67.312 6580.166 

7 Coastal/Aerosol 95 9.380 2.513 -37.455 67.278 25.082 

Blue 95 9.509 2.510 -36.517 67.024 30.402 

Green 83 9.721 2.919 -40.023 67.774 50.671 
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Red 89 6.964 3.371 -39.683 66.875 23.489 

8 Coastal/Aerosol 95 9.415 6.314 -49.573 73.056 41128.780 

Blue 95 9.527 2.572 -37.449 67.279 13.813 

Green 83 14.112 2.066 -39.630 67.623 24.149 

Red 89 7.110 2.569 -37.582 67.507 27.040 

9 Coastal/Aerosol 95 9.672 3.841 -36.491 67.025 104.170 

Blue 95 10.312 1.484 -40.291 66.482 26.062 

Green 83 14.854 2.208 -47.743 71.565 26.014 

Red 89 7.152 5.805 -37.396 67.111 59.027 

10 Coastal/Aerosol 95 9.716 3.494 -44.503 71.203 1720.518 

Blue 95 10.395 6.743 -48.608 72.367 27283.505 

Green 83 15.743 2.204 -47.700 71.660 16.973 

Red 89 7.929 3.142 -39.520 66.898 23.152 
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F.4 North America 

Table F. 4 Characteristics of ten most stable polygons in North America 

Polygons Bands Reflectance 

Intensity Level 

(%) 

Temporal 

Uncertainty (%) 

Spatial 

Uncertainty (%) 

Central 

Longitude 

Central 

Latitude 

Size (area, 

𝐾𝑀2) 

1 Coastal/Aerosol 23 2.508 5.582 -117.435 36.415 64.443 

Blue 29 2.699 4.531 -115.950 32.922 54.244 

Green 29 2.416 5.192 -114.987 32.862 369.253 

Red 35 1.990 6.854 -115.037 32.904 493.674 

NIR 41 1.830 6.065 -115.231 33.064 114.573 

SWIR1 47 1.686 5.480 -115.176 33.000 24.991 

SWIR2 41 4.213 8.119 -117.931 34.823 63.835 

2 Coastal/Aerosol 23 2.560 3.364 -114.450 34.104 41.591 

Blue 17 2.786 7.400 -114.604 32.220 3025.569 

Green 29 3.146 6.592 -106.400 31.276 85.022 

Red 29 3.079 6.899 -114.953 32.716 57.313 

NIR 41 2.003 8.001 -114.965 32.811 414.569 
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SWIR1 53 2.544 5.312 -114.940 32.808 62.987 

SWIR2 47 4.622 2.776 -115.896 33.019 39.621 

3 Coastal/Aerosol 23 2.634 8.454 -117.893 36.824 37.535 

Blue 29 2.803 3.943 -115.851 32.878 83.566 

Green 23 3.320 5.197 -115.126 32.926 44.174 

Red 35 3.127 3.755 -115.057 32.749 36.608 

NIR 47 2.739 3.575 -115.805 32.887 91.202 

SWIR1 47 3.244 5.052 -114.888 32.820 38.355 

SWIR2 41 4.677 3.008 -115.054 34.373 58.098 

4 Coastal/Aerosol 17 2.636 5.381 -114.936 32.711 54.380 

Blue 23 2.849 12.458 -117.922 34.839 94.929 

Green 23 3.427 10.043 -115.288 33.122 56.294 

Red 35 3.617 6.685 -115.540 34.406 344.158 

NIR 41 2.796 6.110 -115.063 32.755 56.951 

SWIR1 47 3.261 4.910 -115.065 32.769 50.798 
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SWIR2 35 4.793 11.679 -117.912 34.719 109.748 

5 Coastal/Aerosol 17 2.747 7.123 -115.894 31.685 88.383 

Blue 23 3.050 9.618 -117.835 37.231 183.532 

Green 29 3.635 3.031 -115.085 34.358 87.536 

Red 29 3.901 7.363 -117.855 37.258 79.669 

NIR 41 2.994 5.556 -115.453 34.440 253.317 

SWIR1 47 3.292 4.979 -115.387 34.397 140.078 

SWIR2 41 4.849 9.748 -118.094 34.761 30.467 

6 Coastal/Aerosol 23 2.747 9.061 -117.694 35.807 145.988 

Blue 23 3.123 10.965 -118.124 34.790 155.644 

Green 23 3.652 10.527 -115.133 34.333 86.674 

Red 29 3.973 7.685 -115.135 34.322 51.348 

NIR 41 3.488 6.520 -115.853 32.747 250.493 

SWIR1 47 3.328 6.130 -115.953 32.922 46.036 

SWIR2 41 5.075 3.750 -117.422 34.809 68.297 
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7 Coastal/Aerosol 23 2.810 11.061 -117.965 34.844 295.626 

Blue 23 3.163 10.000 -117.723 35.774 132.061 

Green 29 3.789 7.277 -115.900 32.937 1677.807 

Red 29 4.034 9.132 -117.929 34.800 39.960 

NIR 41 3.515 5.593 -115.065 34.365 174.990 

SWIR1 47 3.764 6.395 -116.236 34.384 50.977 

SWIR2 47 5.117 6.482 -114.950 32.843 83.792 

8 Coastal/Aerosol 23 2.913 5.153 -117.332 36.181 68.880 

Blue 29 3.228 4.597 -116.038 33.111 214.173 

Green 23 3.826 9.308 -117.725 35.774 87.551 

Red 35 4.091 3.611 -115.073 34.361 76.192 

NIR 41 3.551 5.223 -117.758 35.171 226.937 

SWIR1 47 3.822 3.110 -115.160 32.778 33.052 

SWIR2 41 5.221 4.517 -115.580 34.490 38.367 

9 Coastal/Aerosol 17 3.046 9.614 -115.308 33.853 73.736 
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Blue 23 3.285 6.795 -115.058 32.907 1423.263 

Green 23 3.838 7.985 -115.073 32.738 447.147 

Red 35 4.170 6.066 -115.742 34.158 21.172 

NIR 29 3.557 5.756 -114.989 34.198 65.428 

SWIR1 47 4.031 7.403 -117.964 34.859 92.990 

SWIR2 47 5.309 3.392 -115.400 34.238 33.696 

10 Coastal/Aerosol 23 3.050 6.900 -117.550 37.187 52.706 

Blue 17 3.291 10.689 -117.929 34.647 314.099 

Green 23 3.846 10.577 -117.937 34.757 134.543 

Red 35 4.178 6.301 -115.887 32.923 1359.260 

NIR 41 3.621 8.577 -115.752 34.173 39.632 

SWIR1 47 4.108 5.865 -115.908 33.002 1152.072 

SWIR2 41 5.566 6.608 -115.854 32.815 52.867 
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F.5 Russia 

Table F. 5 Characteristics of ten most stable polygons in Russia 

Polygons Bands Reflectance 

Intensity Level 

(%) 

Temporal 

Uncertainty (%) 

Spatial 

Uncertainty 

(%) 

Central 

Longitude 

Central 

Latitude 

Size (area, 

𝐾𝑀2) 

1 Coastal/Aerosol 23 7.642 7.156 60.869 44.466 1187.731 

Blue 17 7.890 6.508 104.023 40.139 968.944 

Green 17 3.480 6.944 104.968 41.493 2528.715 

Red 29 3.807 5.658 104.538 41.231 1099.488 

NIR 35 3.119 7.441 105.708 41.395 2721.171 

SWIR1 41 3.836 6.397 105.970 41.449 696.977 

SWIR2 41 5.212 7.348 79.240 38.079 1055.989 

2 Coastal/Aerosol 23 8.236 8.928 60.265 43.951 1099.190 

Blue 17 8.926 7.391 60.428 42.173 1070.409 

Green 23 4.603 6.026 104.406 41.140 1429.912 

Red 29 4.089 6.442 104.107 40.096 799.014 

NIR 35 3.121 7.367 104.102 40.151 1413.320 
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SWIR1 41 4.007 7.421 104.400 41.135 1375.444 

SWIR2 29 5.418 4.751 60.169 39.124 614.029 

3 Coastal/Aerosol 23 10.463 7.124 97.123 40.570 1125.473 

Blue 23 10.041 8.082 97.158 40.563 1102.146 

Green 23 4.918 5.931 61.098 42.148 1506.626 

Red 23 4.137 11.886 60.920 41.190 547.271 

NIR 35 3.383 5.931 104.433 41.164 1236.508 

SWIR1 35 4.262 14.682 102.279 40.395 18735.425 

SWIR2 35 5.493 7.792 82.205 37.214 785.860 

4 Coastal/Aerosol 23 10.956 6.318 93.672 40.205 1175.312 

Blue 23 12.287 10.122 84.241 40.962 1100.156 

Green 23 5.019 5.547 104.119 40.130 719.415 

Red 29 4.438 7.664 106.059 41.651 6131.914 

NIR 29 3.871 8.311 104.926 41.424 872.736 

SWIR1 41 4.520 7.894 105.407 41.248 1632.642 
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SWIR2 35 5.497 14.384 84.754 39.697 112193.753 

5 Coastal/Aerosol 23 12.045 7.522 98.098 40.439 1086.512 

Blue 17 12.609 11.249 97.402 43.059 1552.745 

Green 29 5.733 6.944 60.815 44.489 614.842 

Red 29 5.123 6.990 60.542 40.907 3558.628 

NIR 35 3.921 6.010 103.745 38.856 1485.421 

SWIR1 35 5.098 7.489 82.444 37.936 685.108 

SWIR2 35 5.748 8.873 84.883 39.905 673.484 

6 Coastal/Aerosol 23 12.141 8.929 84.211 40.946 1156.387 

Blue 23 12.856 8.594 98.130 40.423 1011.068 

Green 23 7.075 9.608 109.155 43.904 1931.661 

Red 29 5.195 4.557 60.935 40.903 908.395 

NIR 35 4.366 9.584 106.264 40.162 3527.251 

SWIR1 35 5.361 11.301 103.426 38.090 4868.841 

SWIR2 35 5.909 8.918 78.975 37.656 3594.418 
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7 Coastal/Aerosol 17 13.210 7.896 110.508 43.306 1166.244 

Blue 17 12.972 11.356 99.537 40.030 1882.398 

Green 23 7.097 8.527 96.947 40.609 935.414 

Red 29 5.226 5.493 61.057 42.188 1294.787 

NIR 35 4.691 5.131 61.125 42.176 1196.951 

SWIR1 35 5.367 9.554 83.244 38.168 3662.079 

SWIR2 41 6.026 7.949 60.218 41.135 1859.094 

8 Coastal/Aerosol 17 14.085 13.117 94.716 42.117 3253.850 

Blue 17 13.262 7.772 106.578 40.172 828.815 

Green 23 7.146 7.830 103.664 38.859 1498.282 

Red 23 5.290 4.114 60.726 40.882 916.566 

NIR 41 4.894 6.092 106.743 42.008 550.455 

SWIR1 41 5.371 11.182 106.353 39.974 5534.454 

SWIR2 35 6.191 7.396 107.781 40.541 572.663 

9 Coastal/Aerosol 17 16.082 48.462 102.701 42.464 376736.377 
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Blue 17 13.984 10.005 94.618 42.222 1045.407 

Green 17 7.267 10.429 105.989 40.433 554.559 

Red 29 5.385 7.230 103.777 38.941 1205.253 

NIR 35 4.904 7.956 103.993 39.434 832.584 

SWIR1 41 5.535 7.956 97.970 40.461 582.037 

SWIR2 35 6.222 11.697 81.865 37.987 5975.347 

10 Coastal/Aerosol 17 16.399 7.954 93.767 39.963 450.294 

Blue 17 14.934 10.843 99.869 41.299 1662.096 

Green 23 7.358 9.604 60.880 40.604 16191.015 

Red 29 5.660 7.440 105.676 40.633 956.870 

NIR 35 5.581 8.862 106.355 41.732 2295.493 

SWIR1 41 5.599 7.115 106.264 41.956 1025.612 

SWIR2 35 6.244 11.918 104.312 39.462 4049.460 
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F.6 South Africa 

Table F. 6 Characteristics of ten most stable polygons in South Africa 

Polygons Bands Reflectance 

Intensity Level 

(%) 

Temporal 

Uncertainty (%) 

Spatial 

Uncertainty 

(%) 

Central 

Longitude 

Central 

Latitude 

Size (area, 

𝐾𝑀2) 

1 Coastal/Aerosol 17 1.996 4.938 15.605 -23.389 931.283 

Blue 17 3.114 10.897 15.434 -26.351 13963.765 

Green 17 1.191 9.480 15.376 -25.375 3748.402 

Red 29 1.664 5.135 15.327 -26.165 1588.817 

NIR 29 2.158 7.587 15.740 -27.515 713.633 

SWIR1 41 1.494 5.207 15.240 -26.124 1168.266 

2 Coastal/Aerosol 17 3.000 6.780 15.264 -22.650 4711.535 

Blue 11 4.492 9.230 18.503 -29.600 1046.894 

Green 17 1.354 9.998 15.102 -24.109 4240.561 

Red 23 3.863 5.842 16.018 -27.682 827.163 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 41 2.143 4.779 15.049 -25.313 1339.092 
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3 Coastal/Aerosol 17 3.074 6.025 18.666 -28.566 1568.744 

Blue 0 0.000 0.000 0.000 0.000 0.000 

Green 17 2.023 8.280 16.007 -27.503 3024.408 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 

4 Coastal/Aerosol 17 3.245 10.211 15.856 -27.004 14284.142 

Blue 0 0.000 0.000 0.000 0.000 0.000 

Green 23 2.935 7.838 15.217 -25.929 5085.315 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 

5 Coastal/Aerosol 17 3.367 6.530 18.202 -25.625 1794.990 

Blue 0 0.000 0.000 0.000 0.000 0.000 

Green 0 0.000 0.000 0.000 0.000 0.000 
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Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 

6 Coastal/Aerosol 17 3.456 5.957 15.997 -25.281 841.082 

Blue 0 0.000 0.000 0.000 0.000 0.000 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 

7 Coastal/Aerosol 11 4.079 5.893 18.351 -29.664 2289.583 

Blue 0 0.000 0.000 0.000 0.000 0.000 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 
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8 Coastal/Aerosol 17 4.349 6.469 14.965 -25.020 2433.159 

Blue 0 0.000 0.000 0.000 0.000 0.000 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000   0.000 0.000 

9 Coastal/Aerosol 17 4.452 6.827 19.697 -29.106 10026.660 

Blue 0 0.000 0.000 0.000 0.000 0.000 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 

10 Coastal/Aerosol 17 4.695 6.570 18.425 -29.244 3266.879 

Blue 0 0.000 0.000 0.000 0.000 0.000 

Green 0 0.000 0.000 0.000 0.000 0.000 
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Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 
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F.7 South America 

Table F. 7 Characteristics of ten most stable polygons in South America 

Polygons Bands Reflectance 

Intensity Level 

(%) 

Temporal 

Uncertainty (%) 

Spatial 

Uncertainty 

(%) 

Central 

Longitude 

Central 

Latitude 

Size (area, 

𝐾𝑀2) 

1 Coastal/Aerosol 11 1.911 10.727 -69.171 -25.531 3822.323 

Blue 11 2.610 11.651 -69.154 -25.474 2609.766 

Green 17 4.395 11.629 -68.841 -24.630 1613.226 

Red 17 5.506 9.252 -70.048 -26.150 604.366 

NIR 29 4.324 12.289 -68.161 -23.841 1291.777 

SWIR1 29 4.755 11.047 -68.668 -23.883 857.269 

SWIR2 23 5.661 10.979 -68.758 -23.814 808.088 

2 Coastal/Aerosol 11 2.703 11.992 -67.067 -26.226 983.792 

Blue 11 3.347 7.044 -69.798 -26.110 1039.627 

Green 17 5.706 11.591 -69.824 -26.570 605.213 

Red 23 7.519 10.785 -68.704 -23.967 1798.418 

NIR 29 4.734 8.082 -66.820 -28.188 1128.123 



182 

 

SWIR1 35 5.522 8.020 -66.719 -27.970 947.627 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 

3 Coastal/Aerosol 17 2.742 7.615 -66.679 -20.927 729.284 

Blue 17 4.019 11.550 -67.189 -23.351 1134.644 

Green 17 6.102 9.242 -66.838 -28.214 903.044 

Red 23 27.219 19.063 -75.854 -14.237 1544.459 

NIR 23 4.808 9.630 -68.693 -23.868 610.172 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 

4 Coastal/Aerosol 17 3.862 10.506 -67.192 -23.481 1706.032 

Blue 17 4.277 12.407 -68.022 -23.105 969.655 

Green 17 7.954 11.519 -68.453 -23.959 3825.316 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 29 37.655 19.979 -75.932 -13.934 890.587 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 
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SWIR2 0 0.000 0.000 0.000 0.000 0.000 

5 Coastal/Aerosol 17 4.321 12.183 -69.273 -29.248 1363.565 

Blue 11 4.348 8.127 -70.060 -25.625 7087.472 

Green 23 32.737 25.453 -75.940 -14.105 2218.335 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 

6 Coastal/Aerosol 17 4.525 8.644 -68.103 -30.263 1968.278 

Blue 11 4.352 7.908 -70.091 -26.689 1219.292 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 
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7 Coastal/Aerosol 11 4.609 16.845 -67.661 -26.173 4476.491 

Blue 17 4.381 13.309 -69.850 -24.333 12877.924 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 

8 Coastal/Aerosol 11 4.728 15.935 -68.213 -25.780 2531.061 

Blue 17 4.417 9.747 -69.923 -25.385 2935.686 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 

9 Coastal/Aerosol 11 4.992 14.010 -66.470 -24.052 6222.872 
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Blue 17 4.452 10.465 -69.914 -26.244 3152.769 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 

10 Coastal/Aerosol 11 6.250 10.754 -68.459 -24.889 1702.869 

Blue 11 4.797 12.923 -68.253 -25.669 1414.377 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 
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F.8 Middle East 

Table F. 8 Characteristics of ten most stable polygons in Middle East 

Polygons Bands Reflectance 

Intensity Level 

(%) 

Temporal 

Uncertainty (%) 

Spatial 

Uncertainty 

(%) 

Central 

Longitude 

Central 

Latitude 

Size (area, 

𝐾𝑀2) 

1 Coastal/Aerosol 23 2.043 4.817 43.897 24.925 4585.863 

Blue 29 1.407 5.357 51.958 22.803 2234.710 

Green 29 2.081 6.718 54.806 24.244 10295.387 

Red 35 1.496 6.671 54.257 22.844 45546.093 

NIR 47 1.345 5.554 50.920 18.091 38874.020 

SWIR1 53 1.589 3.051 52.237 18.233 9432.083 

SWIR2 47 2.793 3.067 52.838 18.097 1725.241 

2 Coastal/Aerosol 29 2.267 4.522 55.534 19.391 20569.480 

Blue 0 0.000 0.000 0.000 0.000 0.000 

Green 23 2.320 5.420 54.892 23.580 9936.023 

Red 35 1.504 7.990 55.307 22.701 1186.645 

NIR 47 1.510 6.712 55.253 21.008 3596.814 
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SWIR1 59 1.809 4.601 54.635 23.478 11647.337 

SWIR2 47 3.022 4.218 44.619 21.275 2348.579 

3 Coastal/Aerosol 23 2.623 5.257 55.458 20.140 3832.216 

Blue 23 2.342 2.186 51.283 20.330 1869.853 

Green 29 2.350 5.571 54.712 19.904 2475.402 

Red 41 1.584 4.265 52.674 17.907 902.720 

NIR 53 1.562 4.446 55.011 19.324 43988.573 

SWIR1 53 1.842 3.267 52.603 23.284 9547.307 

SWIR2 53 3.029 4.395 44.765 19.294 4460.519 

4 Coastal/Aerosol 0 0.000 0.000 0.000 0.000 0.000 

Blue 29 2.441 5.738 55.486 19.381 28563.323 

Green 29 2.361 5.531 51.542 18.063 23728.112 

Red 35 1.599 5.779 50.960 18.277 33134.741 

NIR 47 1.593 5.481 44.961 18.548 16713.469 

SWIR1 53 1.874 3.875 49.924 17.993 8518.724 
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SWIR2 47 3.037 4.504 45.454 24.461 1052.871 

5 Coastal/Aerosol 17 2.679 5.559 41.486 25.281 2952.282 

Blue 23 2.468 7.682 54.172 18.979 4164.495 

Green 23 2.492 5.965 55.437 23.092 2342.214 

Red 35 1.702 2.963 52.811 23.317 11172.549 

NIR 41 1.627 5.951 55.573 23.616 1131.866 

SWIR1 53 1.897 3.639 51.040 17.973 1713.231 

SWIR2 53 3.228 3.237 49.253 19.550 1773.469 

6 Coastal/Aerosol 17 2.679 5.559 41.486 25.281 2952.282 

Blue 23 2.579 7.138 54.814 24.205 8205.179 

Green 29 2.509 10.147 49.502 23.563 337622.448 

Red 35 1.729 3.934 49.768 18.773 1809.916 

NIR 47 1.646 4.125 53.912 18.356 3473.224 

SWIR1 53 1.897 3.486 43.446 22.492 1497.969 

SWIR2 47 3.389 2.881 50.259 18.145 891.464 
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7 Coastal/Aerosol 23 2.810 4.914 51.551 18.055 18335.523 

Blue 23 2.677 5.428 51.449 18.130 16384.953 

Green 23 2.522 7.213 41.025 27.822 5078.776 

Red 35 1.759 5.064 55.307 20.976 3876.521 

NIR 47 1.665 6.648 52.924 22.773 74083.423 

SWIR1 53 1.921 3.904 54.117 23.810 1919.122 

SWIR2 47 3.434 3.892 54.418 19.383 2775.837 

8 Coastal/Aerosol 23 2.863 4.088 45.471 23.848 1595.157 

Blue 23 2.872 2.558 50.676 19.542 1279.331 

Green 23 2.622 2.869 45.578 26.588 1177.195 

Red 41 1.789 8.651 48.683 22.759 451721.755 

NIR 53 1.799 7.433 48.825 21.829 281023.314 

SWIR1 53 1.935 7.097 44.547 19.972 1893.867 

SWIR2 53 3.537 1.888 51.249 22.467 1049.551 

9 Coastal/Aerosol 23 3.036 3.705 42.318 30.172 10171.074 
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Blue 0 0.000 0.000 0.000 0.000 0.000 

Green 23 2.969 5.308 42.134 28.530 5459.520 

Red 41 1.947 4.774 54.511 19.208 34981.356 

NIR 35 1.849 5.434 55.947 22.593 4738.476 

SWIR1 41 1.965 4.811 55.856 22.616 3374.515 

SWIR2 53 3.683 2.339 51.353 20.981 4538.352 

10 Coastal/Aerosol 17 3.106 5.980 58.503 32.633 1512.348 

Blue 29 3.166 5.034 51.114 24.997 2390.962 

Green 23 3.009 4.501 43.485 28.457 6176.095 

Red 35 2.035 2.731 50.632 24.503 1283.893 

NIR 47 1.960 2.873 50.119 20.144 3345.794 

SWIR1 47 2.144 5.635 44.774 21.198 2519.146 

SWIR2 53 3.698 4.462 45.897 26.994 2757.520 
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F.9 South East Asia 

Table F. 9 Characteristics of ten most stable polygons in South East Asia 

Polygons Bands Reflectance 

Intensity Level 

(%) 

Temporal 

Uncertainty (%) 

Spatial 

Uncertainty 

(%) 

Central 

Longitude 

Central 

Latitude 

Size (area, 

𝐾𝑀2) 

1 Coastal/Aerosol 17 3.503 8.491 70.548 34.217 1181.177 

Blue 23 4.760 4.023 69.652 28.767 1522.649 

Green 23 3.395 6.637 69.730 26.615 3495.782 

Red 29 2.667 6.492 69.702 26.518 2424.077 

NIR 35 4.362 6.421 70.477 26.939 2013.085 

SWIR1 35 4.485 9.565 68.742 26.909 2890.903 

SWIR2 29 4.623 8.839 69.251 27.051 2078.256 

2 Coastal/Aerosol 23 4.591 4.566 69.721 28.911 3295.567 

Blue 17 4.965 3.223 68.919 28.697 1198.366 

Green 23 6.236 5.707 69.216 27.004 1109.488 

Red 29 5.561 5.339 69.681 28.786 971.848 

NIR 35 4.723 6.783 69.089 28.812 4650.450 
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SWIR1 41 4.648 6.622 69.659 28.775 1106.158 

SWIR2 29 4.829 8.272 68.659 26.629 727.816 

3 Coastal/Aerosol 17 4.786 3.247 68.919 28.659 2098.106 

Blue 23 8.803 6.196 68.811 28.818 1324.442 

Green 23 25.800 13.514 79.955 36.867 849.281 

Red 23 5.902 6.511 69.304 27.098 1517.216 

NIR 29 4.734 6.939 70.104 27.400 21504.592 

SWIR1 41 5.069 6.599 68.861 28.688 1482.749 

SWIR2 35 6.814 11.831 81.029 36.719 2882.447 

4 Coastal/Aerosol 17 4.966 10.470 69.012 29.850 17593.462 

Blue 17 17.773 11.621 97.289 36.866 631.450 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 35 4.832 5.779 71.133 27.582 2651.376 

SWIR1 35 5.418 9.064 70.186 27.535 21062.438 
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SWIR2 35 7.618 9.985 82.243 36.769 1703.088 

5 Coastal/Aerosol 23 4.994 8.439 68.986 28.906 2471.791 

Blue 11 39.379 36.698 124.375 7.168 845.806 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 29 5.046 6.851 68.769 26.989 1247.706 

SWIR1 47 6.446 11.429 68.980 29.211 1437.378 

SWIR2 35 12.355 10.835 83.322 36.894 906.931 

6 Coastal/Aerosol 23 5.697 5.955 71.025 28.641 1580.341 

Blue 11 44.102 57.638 122.672 9.587 894.607 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 29 6.094 4.934 71.621 30.997 1246.482 

SWIR1 41 7.100 7.655 94.014 36.422 631.246 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 
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7 Coastal/Aerosol 17 5.745 4.366 69.272 26.741 2390.698 

Blue 11 44.224 55.344 100.700 6.690 945.231 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 41 8.384 11.224 81.652 36.604 3308.753 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 

8 Coastal/Aerosol 17 6.072 3.117 70.413 26.676 487.808 

Blue 11 49.673 41.182 125.498 8.857 684.134 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 35 8.733 10.149 80.905 36.714 916.374 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 

9 Coastal/Aerosol 17 6.476 5.618 71.002 28.278 10193.968 
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Blue 11 60.707 39.456 76.715 9.468 744.903 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 

10 Coastal/Aerosol 17 8.218 7.768 70.398 30.577 3176.217 

Blue 11 67.537 38.025 98.741 12.817 1328.072 

Green 0 0.000 0.000 0.000 0.000 0.000 

Red 0 0.000 0.000 0.000 0.000 0.000 

NIR 0 0.000 0.000 0.000 0.000 0.000 

SWIR1 0 0.000 0.000 0.000 0.000 0.000 

SWIR2 0 0.000 0.000 0.000 0.000 0.000 
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