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ABSTRACT 

MONITORING POLLEN COUNTS AND POLLEN ALLERGY INDEX USING 

SATELLITE OBSERVATIONS IN EAST COAST OF THE UNITED STATES 

 

MURAT CAGATAY KECECI  

2017 

Allergic diseases have become increasingly common over the world during the 

last four decades, and they are affecting millions of people. Pollination is an important 

process in the life cycle of plants. However, pollen exposure is associated with allergic 

diseases such as asthma and seasonal allergic rhinitis (hay fever). As a result, the total 

annual expenditure for asthma-associated morbidity is about $56 billion in the United 

States, and the overall cost of allergic diseases is over $18 billion annually. For allergic 

rhinitis, the annual medical cost is approximately $3.4 billion. The intensity and 

frequency of the pollen exposures can be easily affected by many factors such as climate, 

vegetation, and topography, which are difficult to predict in large scales. Vegetation is 

very important as a pollen source, and the amount and time of pollinations depend on the 

flowering and growth of plants. With optimal water and temperature, vegetation can 

reach a maximum growth and flowering during a growing season, which means that 

maximum amount of pollen can be released from the plants. However, if the 

requirements of water and temperature cannot be met in the specific times within the 

growing season, pollen dispersal will be affected negatively. It is an urgent need to 

develop models or systems for predicting pollen events at large scales and providing 
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early warning to prevent pollen effects on people. Unlike manual pollen counting at local 

sites, remote sensing facilitates the pollen estimates at large scales with temporally and 

spatially distributed observations, which significantly reduces the time and labor costs. 

With remotely sensed observations, Artificial Neural Network (ANN) helps us fill the 

gaps in understanding of the relationships between environmental variables and pollen 

concentration. At this point, I investigated pollen estimates from satellite observations in 

the states of East Coast United States with short and long-term data. This region is highly 

populated with a population of 104 million. In addition, this region has a great variety of 

temperature, precipitation, and vegetation. The final goal of this project is to investigate 

the relationships between satellite-derived variables (precipitation, land surface 

temperature (LST), and enhance vegetation index (EVI2)) and pollen count and further to 

generate a model for the prediction of pollen counts at high temporal and spatial 

resolutions. For this purpose, to predict pollen concentration using environmental 

variables, a Neural Network Analysis was performed. The results showed that strong 

correlations existed between pollen counts and environmental variables, except for 

precipitation in most locations. The validation analysis using regression models revealed  

strongly significant relationships between the observed and predicted pollen 

concentrations obtained for short and long-term data. The R squares (R2) for long term 

pollen counts were mostly higher than 0.5, ranging from 0.5542 for Olean, NY to 0.8589 

for Savannah, GA. For short term predictions of pollen allergy index, R2 ranged from 

0.53 to 0.966 except for a few sites, especially in southern Florida. The pollen 

distribution was mostly affected by precipitation in the southern part, whereas it was 

influenced by temperature in the northern part. Moreover, results demonstrated that ANN 
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is a suitable tool for complicated statistical analysis and EVI2 combining with LST and 

precipitation is a reliable predictor of pollen variation. Overall the results  provide a 

better understanding of pollen variation with vegetation seasonality and climate variables, 

which could assist an approach towards the establishment of an early warning system for 

allergy patients.   

 

Key Words: Pollen Count, Pollen Allergy, Artificial Neural Network, Remote Sensing 

Data 
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CHAPTER 1: INTRODUCTION 

1.1. Problem Statement and Description 

Pollen is a very fine powder produced by flowers on trees, grasses, and weeds, 

which carried by insects or wind to fertilize other plants of the same species (Kerr 2016). 

The pollen grain is a part of the flowering plant life cycle, and is a specialized structure 

that harbors the flowering plant male gametes. Its biological function is to fertilize the 

female gametophyte (Taketomi et al. 2006). Despite of the key role of pollen for plants, 

pollen is a serious problem in our daily life with causing different allergic diseases 

leading to sneezing, wheezing, coughing, snorting, and itching (UCB Institute of Allergy 

1999). While approximately 31 million Americans each year suffer from different 

allergic diseases in the past (Davis 1972), 60 million Americans suffer from allergies 

every day in the present (Meltzer et al. 2009). It is also reported that while allergies were 

affecting 1% of the population in Europe at the beginning of the century, they are now 

affecting about 20% of people, and it is predicted that 35% of the population will be 

affected within next twenty years with an estimated cost of around 30 billion Euro (UCB 

Institute of Allergy 1999; Ranzi et al. 2003). It is substantial to be aware that allergic 

diseases and their medical costs can be a heavy burden for allergic sufferers. Therefore, 

pollen forecasts must be improved for preventing allergic episodes and reducing 

economic costs owing to allergic diseases (Ranzi et al. 2003). In the science world, the 

awareness of pollen diseases among the scientists are increasing and more studies are 

conducted on pollen diseases.  However, current studies are mostly focused on local 
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scales due to the difficulties of pollen counting, so it is needed to improve models to 

predict pollen intensity in large scales.  

Pollen counts can be affected directly or indirectly by environmental factors 

(relative humidity, temperature, and precipitation) (Taketomi et al. 2006; Valecia et al. 

2001), human-induced factors (industrialization and urbanization) (Takai et al. 2015; 

Jalbert et al. 2015), vegetation types (grass, trees etc.) and topography (slope, elevation) 

(Jin et al. 2008). Some factors are very changeable in short times, which makes counting 

pollen and predicting intensity of pollen distribution difficult, so it is important to 

develop innovative approaches to predict pollen effectively.   

Pollen counting is most commonly performed manually by counting pollens one 

by one using a haemocytometer. This method could provide accurate results, but it takes 

too much time and needs tremendous labors (Mudd and Arathi 2012). Moreover, pollens 

collected for manual counting through pollen traps can represent the area where they are 

placed (Skjøth et al. 2012), which means this method can only be effective for small-

scaled forecast of pollen. However, new monitoring devices such as remote sensing 

systems are generating vast amounts of spatio-temporal data with the wider accessibility 

(Turner et al. 2006) thus providing opportunities for large-scaled forecasts as well as 

reducing labor. For example, Normalized Difference Vegetation Index (NDVI) and a two 

band EVI (EVI2) derived from Advanced Very High-Resolution Radiometer (AVHRR) 

and Moderate-Resolution Imaging Spectroradiometer (MODIS) might be used for 

observing long-term dynamics of the vegetated land surface and climate impacts since it 

enables the longest time series of global satellite measurements (Huete et al. 2006 and 

Jiang et al. 2008).  
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Models to estimate pollen intensity in the air are based on the interactions 

between atmospheric weather and pollen (Arizmendi et al. 1993). Several statistical 

approaches have been developed to investigate pollen concentration from environmental 

factors but showed limited successes (Goldberg et al. 1988; Arizmendi et al. 1993). 

Artificial Neural Network (ANN) is a universal statistical tool for the problems related to 

complex or poorly understood phenomena (Castellano-Méndez et al. 2005), which is able 

to model the dynamic characteristics of time series of atmospheric pollen (Bianchi, 

Arizmendi, and Sanchez 1992) and to predict pollen concentration (Arizmendi et al. 

1993) in anarchic time series (Lapedes and Farber 1987). 

The difference of ANNs from the other statistical programs for algorithmic 

processing of information is the ability to generalize knowledge over new, previously 

unknown data not presented in the process of learning (Puc 2012). This characteristic of 

ANNs made it popular in the science world and it has been used in various pollen studies 

such as a grass pollen in the southern part of the Iberian Peninsula (Sanchez-Mesa et al. 

2002), betula pollen in different parts of Europe (Castellano-Méndez et al. 2005), 

determining the relationship between betula pollen and meteorological factors in 

Szczecin (Poland) (Puc 2012), airborne castanea pollen forecasting model for ecological 

and allergological implementation (Astray et al. 2016), and using machine learning to 

estimate atmospheric Ambrosia pollen concentrations in Tulsa, OK (Liu et al 2017). 

1.2. Thesis Statement and Research Objectives 

In this study, I researched the linkage of climatic factors (such as temperature and 

precipitation) and vegetation growth seasonality to the variation of seasonal pollen count 

in the East Coast of the United States. In particular, I focused on the prediction of short 
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and long-term pollen concentration using satellite observations and Neural Network 

Analysis towards an early warning system for allergy sufferers.   

In this case, to better understand the vegetation seasonality and climate impacts 

on pollen releases, I followed the research questions below: 

• What is the association of pollen allergy index or pollen count with climate 

variables and vegetation growth condition? 

• How to predict seasonal variation in pollen counts and pollen allergy index based 

on vegetation phenology, temperature, and precipitation? 

• How to integrate vegetation phenology data and climate parameters to predict 

pollen count? 

• How to validate the pollen prediction of model? 

I collected two different data sets in this research project. The first is long term 

pollen count data observed in field sites from 2002 to 2015, and second is short term data 

of pollen allergy index from May to December 2016 across the East Coast of the US. The 

aim of this study is to reveal the strength of relationship between pollen and other 

variables (land surface temperature, precipitation and EVI2) and then create the best 

model to predict pollen count or pollen allergy using these variables in ANN. This 

research is expected to show that the pollen counts and pollen allergy index could be 

predicted spatially and temporally from satellite observations. 
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CHAPTER 2: LITERATURE REVIEW 

2.1.  Pollen 

The dictionary definition of pollen is a fine powdery substance, typically yellow, 

consisting of microscopic grains discharged from the male part of a flower or from a 

male cocoon. The pollen grain is a part of the flowering plant life cycle, and is a 

specialized structure that harbors the flowering plant male gametes. Its biological 

function is to fertilize the female gametophyte (Taketomi et al. 2006). Pollination is a 

substantial process because pollen, looking like insignificant yellow dust, bears a plant’s 

male sex cells and is a vital link in the reproductive cycle.  Almost all of the seed plants 

in the world need to be pollinated. With adequate pollination, wildflowers (Huang and 

Giray 2012): 

• Reproduce and produce enough seeds for dispersal and propagation. 

• Maintain genetic diversity within a population. 

• Develop adequate fruits to entice seed dispersers.   

Pollination provides sustainability for plants and thus contribute to carbon 

cycling/sequestration, clean air, and purification of water as well as prevent soil erosion 

(Knapp et al. 2002).  

Although it is an important process for nature, pollen is one of the allergen 

sources such as house dust mites (HDM) and fungi, HDM fecal pellets, food, and cat 

dander, all of which produce or include allergen components (Takai and Izuhara 2015). It 

also plays a vital role in improvement and escalation of allergic diseases (Kizilpinar et al. 

2010). Airborne pollen is a significant cause of asthma and rhinitis (Rojo et al. 2016). 



6 

 

 

 

While about 300 million people worldwide suffer from asthma (UCB institute of allergy 

1999), 31 million Americans each year suffer from some form of allergic disease, 

including 8.6 million from asthma (Davis 1972). And then, the number of sufferers 

increased to 60 million based on the Meltzer’s research in 2009 (Meltzer et al. 2009). 

These diseases are also common in Europe (Rojo et al. 2016; Emberlin et al. 1999; 

Emberlin et al. 2000; Ranzi et al. 2003) as results of urbanization, industrialization and 

climate change affecting the prevalence and management of allergic diseases (Jalbert and 

Golebiowski 2015). 5-30 % of the population of industrialized countries (European 

countries) is influenced by pollen-related allergic diseases (Cecchi 2012). Allergy owing 

to pollen might be ranked as one of the most common diseases during the next century 

among European population (Ranzi et al. 2003), and the awareness on this global issue is 

increasing among scientists from various countries such as Spain, France, Turkey, 

Argentina, United States and Australia (D’Amato et al. 2007; Beggs et al. 2015; 

Valencia-Barrera et al. 2001; Emberlin et al. 2000; Kizilpinar et al. 2010). 

2.2.     Factors Affecting Pollen Dispersal 

Pollen dispersal is a natural event and can be affected by various factors. These 

factors can be grouped into environment, human-induced factors, vegetation types, and 

topography. 

2.2.1.   Environment 

Environmental factors that affect pollen allergen release in the air are relative 

humidity, precipitation, temperature and wind speed. In high humidity, allergens are 

released from the pollen grain in a process similar to that occurs in physiological 

pollinating conditions (Taketomi et al. 2006). Rarely, such as in thunderstorms, pollen 
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grains might rupture as a result of osmotic shock, releasing allergen-containing particles 

(Taketomi et al. 2006). In Leon (Spain), the results of a correlation analysis between the 

meteorological parameters and the daily pollen concentrations reveal a positive and 

significant correlation of pollen with maximum and minimum temperatures and sunshine 

hours, but a negative (but still significant) correlation with relative humidity and wind 

speed (Valencia et al. 2001). One study claim that allergy sufferers were at stake from 

February through October due to the high airborne pollen concentrations, which only 

showed a temporary decline when the temperature decreased or there was precipitation 

(Peternel 2004). Also in the previous studies, heavy and long-term rainfalls were 

generally informed to keenly decrease airborne pollen concentration but correlations were 

poor (Perez et al. 2009; Green et al. 2004; Gottardini and Fabiana 1997; Barnes et al. 

2001; Bartková-Ščevková, 2003) because a sustained rain or a short but heavy rain 

washes the air of pollen away. Raindrops falling to the ground with the force of gravity 

take pollen with them and therefore plants are more prolific at releasing pollen during 

warm, dry weather (Korpella 2017).  

2.2.2.   Human-induced factors 

Human-induced changes in environments resulting from urbanization and 

industrialization have vital implications for the prevalence and management of allergic 

diseases (Takai and Izuhara 2015; Jalbert and Golebiowski 2015). For instance, 5-30% of 

the population in industrialized countries are affected by pollen-related allergic diseases 

(Cecchi 2012). Furthermore, urbanization has an indirect impact on pollen concentration 

effecting some factors such as temperature and soil moisture. Many studies attributed 

advancement in flowering in the cities to the urban heat island effect (Neil and Jianguo 
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2006), also different vegetation types showed different reactions to this change in 

temperature (Zhang et al. 2004). Urbanization can alter humidity either by escalating or 

reducing surface water or count of plant (Adebayo 1991; Lipfert et al. 1991; Jonsson 

2004). Experimental research conducted in the Mediterranean stated a strong correlation 

between decreased moisture availability and delayed flowering (Penuelas et al. 2004). 

2.2.3.   Vegetation 

Pollen could be released from trees, grasses, and weeds (Table 1). Weeds are the 

most prolific producers of allergenic pollen among North American plants. Ragweed, 

sagebrush, redroot pigweed, lamb's quarters, Russian thistle (tumbleweed), and English 

plantain are the major sources for pollen (Kosisky, Marks, and Nelson 2010). Grasses 

and trees are also important sources of allergenic pollens. Although more than 1,000 

species of grass grow in North America, the highly allergenic pollen is only produced 

from a few species such as timothy grass, Kentucky bluegrass, Johnson grass, Bermuda 

grass, redtop grass, orchard grass, and sweet vernal grass (Kosisky, Marks, and Nelson 

2010). This shows that different vegetation types release different amount pollen causing 

different allergic diseases. Therefore, there are studies trying to build models to estimate 

the composition of vegetation from pollen data (Kujawa et al. 2016).  
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Table 1: Type of Allergens by Species        Source: Right Diagnosis from Healthgrades 

Tree Pollen 

Allergies 

Weed Pollen 

Allergies 

Grass Pollen 

Allergies 

Other Pollen 

Allergies 

Birch Ragweed Timothy Grass Walnut Tree 

Oak Sagebrush Kentucky Bluegrass Maple Tree 

Ash Redroot Pigweed Bermuda Grass Sorrel 

Pecan Lamb’s Quarters Johnson Grass Rapeseed Oil 

Hickory Russian Thistle Orchard Grass Beet 

Mountain Cedar English Plantain Sweet Vernal Grass Sunflower 

 

2.2.4.  Topography 

The impacts of climate and topology on pollen dispersal have already been 

revealed in different species with both direct techniques and indirect techniques of pollen 

observation (Streiff et al. 1999). Spatial distribution of vegetation cover is generally 

affected by elevation, aspect and slope (Jin et al. 2008). Also, temperature and wind 

change depending on elevation, aspect and slope.  

2.3.     Pollen Allergy and Measurements 

While grass pollen is one of the substantial allergens related with atopic disease 

all over the World, other pollens are especially significant in some areas, e.g. birch 

pollen in Scandinavia, ragweed in the United States and some parts of Europe, and olive 
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in Mediterranean countries (Burr et al. 2003).  The symptoms of hay fever become more 

frequent and more severe when the pollen count increases beyond a certain threshold 

(Burr et al. 2003). However, the geographical relationship is unclear between pollen 

exposure and the underlying prevalence of rhinitis (Burr et al. 2003) because weather 

conditions may rapidly change and different vegetation species can release a different 

amount of pollen. Surveys in several countries illustrate that the extensity of rhinitis and 

atopy is apt to be lower in rural areas (Gergen et al. 1987; Åberg 1989; Bråbäck et al. 

1994) specially on farms (Åberg 1989; Braun-Fahrländer 1999; Von Ehrenstein et al. 

2000; Riedler et al. 2000; Kilpelainen et al. 2000). On the other hand, in some surveys 

the occurrence of rhinitis has been similar in urban and rural areas, or higher in an area 

with high pollen exposure (Burr et al. 2003). Briefly, high pollen exposure means high 

occurrence of allergic diseases.   

Despite its significance, only a few studies have examined statewide variation and 

determinants of allergic diseases as well as the role of climate on pollen dispersal 

(Silverberg, Braunstein, and Wong 2014). Knowing the amount of the pollen in a specific 

time is significant to determine the effect of allergic diseases and establish an early 

warning system for people who are vulnerable to allergic diseases. Early forecasting of 

pollen concentration in the atmosphere is very important for medical applications due to 

the increasing occurrence of allergic diseases induced by allergenic pollen.  

During the last two decades, the allergic diseases inducted by allergenic pollen 

have dramatically increased, as well as the severity of allergic symptoms. Consequently, 

the social cost of pollen related to diseases has increased greatly. One of the main 

characteristics of the pollen allergies is the seasonal nature, due to the pollination period 
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that characterizes each plant. The information of seasonal variation may be used to 

support preventive allergic therapy. In particular, early forecasting of daily airborne 

pollen concentration could greatly support a better application of preventive allergic 

therapy (Arca et al. 2002). 

However, variations in the composition of outdoor aeroallergens change 

geographically and seasonally with different vegetation types (Jalbert and Golebiowski 

2015; Beggs et al. 2015; Haberle et al. 2014). For example, vegetation has a particular 

importance on allergic diseases caused by pollen.  Diverse types of plants can cause 

different allergic diseases in different areas. While grass pollens usually cause hay fever 

in Europe (van Vliet et al. 2002), indigenous vegetation such as Eucalyptus, Acacia and 

Sorthum grass can contribute to allergic diseases in Australia (Jalbert and Golebiowski 

2015).  

Briefly, allergic diseases are widespread all over the World, so it is an urgent 

necessity to create early warning systems for allergy sufferers. For the allergy diseases, 

pollen data was used in the previous studies (Darrow et al. 2012; Ito et al. 2015; Jariwala 

et al. 2014).  However, large-scaled measurement of pollen has always become one of the 

challenges because of unpredictable weather conditions and large distribution of 

vegetation types. In addition, start and peak days of flowering control the time of pollen 

season and the amount of pollen counts (Bogawski et al. 2015; Garcia-Mozo et al. 2008).  

Manual pollen count is the most common method used among researchers, but it needs 

lots of labor and time. Also, the results of manual pollen count are applicable to the place 

where traps for pollen are installed, so it is difficult to use this data for a large-scale 

study. In addition, weather data are sometimes collected from weather stations away from 
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pollen traps, so they cannot represent the area well due to changing weather conditions in 

short distances. In contrast, remote sensing systems are generating large amounts of 

spatio-temporal data with better accessibility (Turner et al. 2006), which facilitates large-

scaled forecasts of precipitation, temperature and vegetation distribution. Lately, there 

have been some studies which focus on observing pollen releases from specific plants in 

local areas using satellite data (Karlsen et al. 2009; Luvall et al. 2012; Peng et al. 2013).  

It was claimed that land surface phenology (LSP) is an important indicator of flowering 

progress and flowering duration is correlated with temporal vegetation index variation in 

a specific plant (Karlsen et al., 2009) Also, statistical models such as Neural network 

facilitate the monitoring of the interactions between environmental variables and pollen 

concentration or vegetation and pollen concentration.       

2.3.1.   Remote Sensing and Neural Network 

2.3.1.1. Remote Sensing 

The dynamics of terrestrial ecosystem can be monitored from satellite 

observations, and vegetation index from these observed data is primarily used and a 

powerful parameter for analyzing the features of vegetated land surface (Zhang 2015). 

The Advanced Very High-Resolution Radiometer (AVHRR) series is the first satellite 

sensors that has been used and is suitable to monitor land surface vegetation phenology 

across large areas (Tan et al. 2011). The Moderate Resolution Imaging Spectroradiometer 

(MODIS) enables a more extensive data source to examine land surface phenology with 

high quality observations at continental and global scales (Tan et al. 2011, Zhang 2015). 

The time series satellite observations are capable of monitoring the seasonal development 

of vegetation growth and pollen seasonality.  
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Vegetation growth and seasonality can be characterized using several vegetation 

indices. Normalized difference vegetation index (NDVI) is widely used in remote sensing 

studies such as examining long-term dynamics of the vegetated land surface and climate 

impacts. NDVI is calculated with formula below (NIR: Near-infrared band; Red: Red 

Band): 

 

���� =
(��� − �	
)

(��� + �	
)
 

 

NDVI is sensitive to brightness of soil background and scattering by the 

atmosphere from highly variable aerosols. The noises in the long-term NDVI time series 

are essentially resulted from clouds and optically thick aerosols, directional illumination 

and viewing variations, shadows, topographic variation, geometric errors, and ground 

snow conditions (Goward et al. 1991; Pinty and Verstraete 1992; Roujean et al. 1992).  

The Enhance Vegetation Index (EVI) coordinates with several elements of 

ecosystem dynamics such as leaf area index, biomass, canopy cover, and the fraction of 

absorbed photosynthetically active radiation (Boegh et al. 2002; Huete et al. 2006). EVI 

has been developed to reduce the NDVI limitations. Using EVI, vegetation signal was 

optimized with improved sensitivity in high biomass regions and improved vegetation 

monitoring as well as a reduction in atmospheric influences (Houborg, Soegaard, & 

Boegh, 2007; Zhang 2014). EVI is also less affected by saturation compared to the other 

vegetation indexes such as NDVI (Huete et al. 2006), so it is more effective for 

monitoring seasonal, inter-annual, and long-term variation in vegetation structure. EVI is 
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calculated using the following formula (ρNIR: reflectance in the near infrared waveband; 

ρRED: reflectance in the red waveband): 

 

More recently, a two band enhance vegetation index (EVI2) has also developed. It 

is calculated by taking advantage of the autocorrelative properties of surface reflectance 

spectra between the red and blue wavelengths in the EVI calculation equation: 

 

where ρNIR is reflectance in the near infrared waveband and ρRED is reflectance in the 

red waveband. EVI2 is equivalent to EVI and has advantages over NDVI. EVI2 produces 

values within an error of ±0.02 of EVI over most land cover types and during different 

seasons at local and global scales (Jiang et al. 2008), which is fully compatible with EVI 

(Huete et al. 2006; Jiang et al. 2008; Zhang 2015) 

Zhang (2015) renovated temporal EVI2 trajectory using the Hybrid Piecewise 

Logistic Model (HPLM).  The HPLM algorithm is described as: 
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where t is time in the day of year (DOY), a is related to the vegetation growth time, b is 

associated with the rate of plant leaf development, c is the amplitude of EVI2 variation, d 

is a vegetation stress factor, and EVI2b is the background EVI2 value. 

Similar to EVI, two band (red and near-infrared) enhance vegetation index (EVI2) 

is less sensitive to noises unlike NDVI (Huete et al. 2006; Rocha and Shaver 2009). 

Moreover, EVI2 is better than NDVI in terms of classifying land cover variety (Mondal 

2011), predicting crop yield (Bolton and Friedl 2013), monitoring gross primary 

productivity (Xiao et al. 2005), capturing subtle changes in vegetation condition and 

structure (Rocha and Shaver 2009), and detecting land surface phenology (Zhang et al. 

2014). 

 2.3.1.2. Neural Network 

Researchers have been trying to understand the correction between pollen and 

climate, yet their relationship is still poorly understood. There are various methods in 

analyzing pollen data. The Box-Jenkins methodology (Box and Jenkins, 1976) is one of 

them, in which the autoregressive integrated moving average (ARIMA) models forecast a 

variable by a linear combination of the previous state of the variable and the previous 

forecast errors (Arca et al. 2004). The essential restriction in ARIMA methodologies is 

the linear structure of the model (Zhang, 2003), which are not capable of capturing 

nonlinear patterns that affect many environmental phenomena (Arca et al. 2004).  

In general, all ANN models present better predictions than other kinds of models 

like linear regressions (Astray et al. 2016).  Unlike the previous statistical models, 

artificial neural network (ANN) is a model-based nonlinear method (Zhang 1998) with an 

ability to learn (Puc 2012; Mesa, Carmen, and Cesar 2005), which is capable of 
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performing nonlinear modelling without a priori knowledge about the relationships 

between input and output variables (Zhang 1998). The ability of learning algorithm helps 

ANNs learn the existing relationship between input and output (Mesa, Carmen, and Cesar 

2005). When the ANNs has “learnt” to carry out the desired function, input values for 

which the output is unknown can be entered, and the neural network will execute the 

output (Mesa, Carmen, and Cesar 2005). ANNs has a wide range of use such as solar 

energy potential (Sozen et al. 2005) and prediction of the fracture parameters of concrete 

(Ince 2004) in Engineering, developing information system in Computer Science (Heiat 

2002), prediction of the river flow forecast in reservoir management in Hydrology 

(Baratti et al. 2003), gene expression data analysis in Medicine (Tan and Pan 2005).  

Recent researches have demonstrated that ANNs is a powerful tool (Zhang et al. 

1998; Castellano-Méndez et al. 2005) and forecasting of pollen is one of the major 

application areas (Sharda, 1994; Sánchez-Mesa et al. 2002; Castellano-Méndez et al. 

2005; Puc 2012; Tomassetti et al. 2013; Astray et al. 2016; Liu et al 2017). For instance, 

it was used to estimate atmospheric ambrosia pollen concentration in Tulsa, OK (Liu et 

al. 2017) and forecast airborne castanea pollen for ecological and allergological 

implementation (Astray et al. 2016).  The former studies demonstrated relationships 

between climatic factors and the dispersal of pollen in the air were successfully modelled 

and analyzed by ANNs (Puc 2012; Liu et al. 2017). In addition, a previous study stated 

that pollen can be predicted using machine learning and a suite of environmental data 

from meteorological stations and remote sensing (Liu, 2017). 

ANNs is an attractive tool because of the following reasons. Contrary to the 

traditional model-based methods, ANNs are data-driven self-adaptive methods in that 



17 

 

 

 

there are few a priori assumptions about the models for problems under study (Zhang et 

al. 1998). It can be utilized as an effective and an alternative method for the experimental 

studies whose the mathematical model cannot be formed (Tosun and Ozler 2002; Zain et 

al. 2012). It has the ability to model more complex nonlinearities and interactions than 

linear and exponential regression models can offer (Zain et al. 2012). 
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CHAPTER 3: FRAMING THE PROBLEM AND THEORY 

3.1.     Framing the Problem 

Asthma and eczema are the gravest of the allergic diseases. They are affecting 

increasing numbers of people every day along with increasing costs.  Allergic diseases 

cost approximately 6 billion USD annually in USA, 3 billion USD in Germany, and 1.6 

billion USD in Britain, whereas more than half of this expenses is spent on hospital care 

and 80% of the entire bill is attributable to the 20% of patients who require the most 

treatment (Cookson 1999). Therefore, allergic diseases are destroying the social life of 

people due to fear of death from an asthma attack or anaphylactic shock (Kizilpinar et al. 

2010, 623). 

Despite its significance, studies on the role of climate on pollen dispersal are 

limited in large scales (Silverberg, Braunstein, and Wong 2014). Previous studies are 

mostly in small-scales since pollens manually collected by pollen traps which represent 

the area where the traps are placed (Skjøth et al. 2012; Goldberg et al. 1988; Charaborty 

et al. 1992; Arca et al. 2004; Taylor et al. 2014; Kosisky 2010). Even though pollen 

counting performed manually with using a haemocytometer gives more accurate results, 

it takes too much time and needs more labor (Mudd and Arathi 2012).  There are only 48 

stations (National Allergy Bureau) that count the pollen around the United States.  As 

mentioned above, the amount of pollen can be affected by climate, geographical location 

and time, so the pollen counts from these stations are not able to represent the entire 

United States. Therefore, it is needed to develop innovative approaches for large-scaled 

measurements of pollen variation.      
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Remote sensing technology is getting popular in environmental sciences due to 

the accurate results and wider accessibility. Our method based on satellite observations 

will provide satisfactory results because remote sensing data are updated timely and 

distributed spatially in a high spatial resolution. Remote sensing data provide not only 

data in vegetation growth, but also climate data (precipitation and temperature). This 

provides us a good opportunity in understanding of pollen distributions.  Furthermore, 

remote sensing data could help establishing an early warning system for allergic diseases. 

Thus, people will be aware of what to do or how to protect themselves from these 

diseases.  

The interactions between pollen and environmental factors are not clearly 

understood. Although different methodologies are used to predict pollen amounts, some 

of them failed (Goldberg et al. 1988; Arizmendi et al. 1993) due to linear approaches 

(Zhang, 2003). ANN is a nonlinear statistical analysis, which has been successfully used 

in the previous studies.  

3.2.      Theory  

To estimate the amount of pollen in a large scale has always become an issue as 

the intensity of pollen is severely affected by environmental factors because these factors 

are highly changeable in temporal and spatial. In the former studies, it has been reported 

that airborne pollen concentration is related to climatic factors. Temperature plays a key 

role on the characteristics of the vegetative and reproductive growth of plants, and 

determines the time of flowering.  Frenguelli et al. (1991) stated that higher temperature 

accelerates the process of ripening of flowers, thus the outset of pollen season will be 

earlier. They also point out two critical issues; 
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1. Trees need chilling before termination of dormancy permitting bud break.  

2. Trees also require a heat before actual growth is resumed and pollination 

occurs.   

Another research indicates that the high airborne pollen concentrations showed a 

temporary decline when the temperature went down (Peternel 2004). This explains that 

increasing temperature causes an escalation in pollen amount in late spring. In addition, 

in the other studies, heavy and long-term rainfalls were reported to sharply decrease 

airborne pollen concentration but correlations were not strong (Perez et al. 2009; Green et 

al. 2004; Gottardini and Fabiana 1997; Barnes et al. 2001; Bartková - Ščevková, 2003). 

Especially a sustained rain or a short but heavy rain washes the air of pollen away. 

Raindrops falling to the ground with the force of gravity take pollen with them and 

therefore plants are more prolific at releasing pollen during warm, dry weather (Korpella 

2017). Briefly, while there was a strong positive correlation between temperature and 

pollen, the correlation was weak and negative between precipitation and pollen 

concentration. It is obvious to say based on the information above, climatic factors 

(temperature and precipitation) are related with pollen concentration and have a 

significant role to predict pollen count.  

Temporal vegetation index reflects the vegetation growing cycles. Vegetation is 

very important as a pollen sources, and the amount and time of pollinations depend on the 

flowering and growth of plants. Flowing/pollen could appear in at the beginning of a 

growing season for some trees or grasses while in late spring or autumn for others. With 

optimal water and temperature, vegetation can reach a maximum growth and flowering 

during a growth season, which means that maximum amount of pollen can be released 
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from the plants. However, if the requirements of water and temperature cannot be 

provided in the specific times within the growth season, pollen dispersal will be affected 

negatively or positively depending on increases and decreases in precipitation and 

temperature. Moreover, vegetation type (or species) has a key role in the intensity of 

pollen concentration and the amount of pollen released from plants because various 

vegetation types may release different amounts of pollen in different time of the year. For 

example, pollen could appear in at the beginning of a growing season for some trees or 

grasses while in late spring or autumn for others. Type of vegetation can be affected by 

environmental factors easily (topography, wind, temperature, precipitation etc.), so it is a 

big challenging to separate various vegetation species at large scales in a year.  

New monitoring devices such as remote sensing systems are generating vast 

amounts of spatio-temporal data with the better accessibility (Turner et al. 2006) thus 

providing opportunities to create large-scaled models for pollen forecasts.  NDVI and 

EVI are vegetation indexes that facilitate to the measurement of plant covers. Although 

both indexes are capable of measuring vegetation cover, EVI has shown a better 

performance in the previous studies (Mondal 2011; Friedl 2013; Xiao et al. 2005; Rocha 

and Shaver 2009; Yan et al. 2016; Zhang et al. 2014). Also, the 5 km EVI could contain 

various types of vegetation.   

Based on the knowledge mentioned above, the theories used in this project will 

focus on how pollen dispersal is affected by different environmental factors such as 

temperature, precipitation and vegetation. It is possible to predict pollen dispersal using 

the environmental factors in statistical models (generalized regression, neural network 

analysis etc.). Unlike the other statistical models, artificial neural network (ANN) is a 
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nonlinear statistical method (Zhang 1998) which has the ability of learning (Puc 2012; 

Mesa, Carmen, and Cesar 2005). This ability helps ANNs learn the existing relationship 

between input and output (Mesa, Carmen, and Cesar 2005). Some of the statistical 

models using to predict pollen concentration have been resulted in failures (Goldberg et 

al. 1988; Arizmendi 1993), so it is important to choose suitable model. The former 

studies indicate that relationships between climatic factors and the dispersal of pollen in 

the air were successfully analyzed by ANNs (Puc 2012; Liu et al. 2017).  
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CHAPTER 4: METHOD 

4.1.     Study Area 

The study area covers all East Coast of the United States (15 states and 224 cities, 

see Figure 1 for the states and Appendix 1 for the all cities). The Eastern Region 

(especially East Coast of the US) is the most geographically, ecologically, and socially 

different territory in the United States (USDA 2017). Approximately 105 million people 

live in the East Coast of the United States, which is recognized as one of the most 

urbanized and populated area in the United States because this region contains 

approximately 35% of total population of the country (Table 2).  

There are fifteen states which have coastal access to the Atlantic Ocean in this 

region. The states of East Coast region are: Maine, New Hampshire, Massachusetts, 

Rhode Island, Connecticut, New York, District of Columbia, New Jersey, Delaware, 

Maryland, Virginia, North Carolina, South Carolina, Georgia, and Florida (Figure 1). The 

region from Maine to almost central Connecticut has a continental climate, with warm 

summers and long, cold and snowy winters. The region from southern Connecticut to 

almost the Virginia Eastern Shore has a temperate climate with hot summers and cool 

winters with a mix of rain and snow. The region from southeastern Virginia to central 

Florida has a humid subtropical climate, with long hot summers and mild winters. The far 

southern portion of the East Coast from south-central Florida southward has a tropical 

climate, which is frost free and is warm to hot all year. 
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Figure 1: Map of Study Area for East Coast of the United States 

 



25 

 

 

 

In northeast of the study area, mean annual precipitation changes up to around 20 

inches throughout the Northeast with the highest amounts observed in coastal and some 

mountainous regions, and also, winters have bitter cold and frozen precipitation, 

especially in the north with repeated storms (Horton et al. 2014). Summers are warm and 

humid, especially to the south. The Northeast is periodically exposed to extreme events 

such as ice storms, floods, droughts, heat waves, hurricanes, and major storms in the 

Atlantic Ocean (Horton et al. 2014). In the Southeast, there is more precipitation in 

March and less in October and November, and June through August is a wet period for 

all states in this area (NCSU 2012). This is due in part to heavy rainfall produced by 

summer thunderstorms (NCSU 2012).  

Moreover, there are roughly 10,000 lakes, over 10,000 miles of streams, and 

approximately 2 million acres of wetlands in this region. The 10 million acres of national 

forest system lands are among the largest contiguous blocks of public lands (USDA 

2017). 
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Table 2: Some Information of Study Area by States   (Source: US Census of 2010 and 

2016) 

STATE NAME POPULATION 

(2016) 

TOTAL AREA 

(sq. mi) (2010) 

DENSITY 

(per sq. mi) 

Maine 1,331,479 35,380 37.63 

New Hampshire 1,334,795 9,349 142.77 

Massachusetts 6,811,779 10,554 645.42 

Rhode Island 1,056,426 1,545 683.77 

Connecticut 3,576,452 5,543 645.22 

New York 19,745,289 54,555 361.93 

New Jersey 8,944,469 8,723 1,025.39 

District of Columbia 681,170 68 10,017.21 

Delaware 952,065 2,489 382.51 

Maryland 6,016,447 12,406 484.96 

Virginia 8,411,808 42,775 196.65 

North Carolina 10,146,788 53,819 188.54 

South Carolina 4,961,119 32,020 154.95 

Georgia 10,310,371 59,425 173.5 

Florida 20,612,439 65,758 313.46 

TOTAL 104,892,896 394,409 265.95 
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4.2.  Data Collection and Their Descriptions 

I collected several types of datasets such as precipitation, temperature, pollen 

count, pollen allergy index and EVI2 to achieve my purposes. The first data I collected 

were daily real pollen count data from 2002 to 2015 from 5 different stations (National 

Allergy Bureau) of AAAAI (American Academy of Allergy Asthma and Immunology). 

Second, I collected pollen allergy index data from pollen.com from April to December of 

2016. Pollen.com is a pollen forecasting website for entire United States, and provides us 

to get daily (present) and historical pollen allergy index values for the periods of 1, 3, and 

6 months. I extracted a short-term dataset of pollen allergy index from 225 different 

locations.  

I acquired the daily rainfall time series from the Tropical Rainfall Measurement 

Mission (TRMM) product 3B42 (post-real-time, Version 7). The TRMM product 3B42 is 

available as 3-hourly rainfall rate (mm/h) with a spatial resolution of 0.25°. I also 

obtained  land surface temperature (K) (LST) in my research. This data is a 3-day LST 

data which is extracted from 5 km MODIS LST product. 

Vegetation properties can be characterized in several ways such as Normalized 

Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) deriving 

from MODIS data. In this research, we used EVI2 that has better capability in 

quantifying seasonal vegetation variation than NDVI (Zhang 2015).  

4.3. Neural Network Analyses 

After the data collection, my main purpose is to determine the relationship 

between variables (temperature, precipitation, and EVI2) and pollen. There are different 
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statistical models for this purpose, but neural network analysis is most common and 

suitable for this task.  First of all, correlation analysis between variables was done using 

R language to see the interactions.   

A typical ANNs consists of (Michael 2017) (Figure 2): 

• Input layers: Layers that take inputs based on existing data. 

• Hidden layers: Layers that use backpropagation to optimize the weights of 

the input variables in order to improve the predictive power of the model. 

• Output layers: Output of predictions based on the data from the input and 

hidden  

layers.  

The basic schema of ANNs is shown in Figure 2. Our input variables are land 

surface temperature, precipitation and EVI2, while output data is pollen count. 
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Package “neuralnet” was used in R environment to execute the model. Data 

normalization was performed before the training process begins to avoid computational 

problems (Lapedes and Farber 1988). In the data normalization, basic idea is to squash 

the variables to typically (0,1) or (-1,1). The approaches of normalization are (Zhang et 

al. 1998); 

• Linear Transformation to [0, 1]: Xn = (X0 – Xmin) / (Xmax – Xmin) 

• Linear Transformation to [a, b]: Xn = (b-a) (X0 – Xmin) (Xmax – Xmin) + a 

• Statistical Normalization: Xn = (X0 - X¯) / S 

• Simple Normalization: Xn = X0 / Xmax 

In this study, we used the statistical normalization as it provided better results 

compared to the other methods. In the previous studies, dataset was classified as training 

Figure 2: A typical feed forward neural network (Zhang 1997) 
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(70%), validation (10%) and test (20%) (Smith 2005) or 19 years of dataset divided into 

validation (2011-2012) and training (1993-2010) was used to create ANNs (Astray et al. 

2016). It was also reported that most authors use the rule of 90% vs. 10%, 80% vs. 20% 

or 70% vs. 30%, etc. for training and testing of ANN models (Zhang et al.1998).   

4.3.1. Processing Short Term Pollen Allergy Index  

A limited term dataset of all cities was collected to run ANN.  There are about 60 

measurements (every measurement represents 3 days) of daily allergy index for each city, 

which is later divided into 90% as training and 10% as testing to run ANNs. 

Standardization is important for ANNs, and the described method in the methodology 

from R Package was applied to the whole dataset before running ANNs (Figure 3). 

Package “neuralnet” in R was used to run ANNs after setting suitable parameters of 

neural net function. Until I acquired a small value of MSE, I changed the parameters 

(number of hidden layers, stepmax, threshold, etc) in the function and reran ANNs. After 

obtaining a low MSE, I recorded the value. Then the equation which was acquired from 

the ANNs was applied to the test data, and the result was recorded. I repeated this entire 

process 5 times and stored 5 best results (6 measurements, a total of 30 measurements) 

with the lowest MSE. Finally, the predicted results recorded from ANNs and the 

observed results were compared by using regression analysis to evaluate how well our 

model works.  
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Figure 3: Process of the Short Term Neural Network Analysis 
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4.3.2. Processing Long Term Pollen Count Data 

We have long-term dataset that include precipitation, land surface temperature 

(LST), EVI2 and daily pollen count for 5 different locations (Table 3).  

Table 3: Information of Data Range, Testing, and Training for Long Term Locations 

which using in ANN processes 

Long Term Location Data Range Testing Training 

New York, NY 11 years 1 years 10 years 

Olean, NY 8 years 1 years 7 years 

New Castle, DE 12 years 1 years 11 years 

Washington, DC 8 years 1 years 7 years 

Savannah, GA 14 years 1 years 13 years 

 

Long term datasets are mostly from 2002 to 2015. After collecting precipitation, 

LST, EVI2 and daily pollen count, every three-day value grouped into one value by 

taking average of 3 days because every EVI2 and LST data represent every three days. 

ANNs processing for long-term prediction was similar to ANN analysis to short term 

data, except for repeating process 5 times because there was enough dataset to run ANNs 

successfully. There were some missing values in the long-term data, which caused poor 

result in implementing ANNs. Therefore, average of three days at before or after the 

missing observations was used to fill the missing value. In this way, the missing values 

that was replaced with the average values provided better results. After data preparation, I 

ran the ANN model in R language. The flow chart illustrates the process of ANN for long 
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term data below (Figure 4). First, standardization was applied to whole dataset to see 

them in a same range. Then, I divided the dataset into testing and training depending on 

which year gives better result. To do this, different combinations were tried to get better 

results. For example, I chose one year of data for testing and the rest was chosen for 

training. I reran the ANN with the different sets of testing and training choosing different 

years because previous studies related with pollen prediction using ANN suggest 10%, 

20%, and 30% or different percentages as a testing. Different combinations were tested to 

get better results, then the best result stored as a final result.   

As with the short-term analysis, mean square error (MSE) value was 

determinative for the long-term analysis. When the MSE value was high after running 

ANN with training data, ANN was repeated until to get a lower MSE value. The result 

with the lowest MSE was recorded and the equation was applied to the testing data. The 

extracted result from the testing process was compared to the observed pollen 

concentration by using regression analysis to evaluate how well our model predicted.       
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Figure 4: The Process of Neural Network Analysis for long term data 
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CHAPTER 5: RESULTS AND DISCUSSION 

The results of our research will help understand interactions between climatic 

variables and prediction of pollen count so that we can help improving the estimation of 

pollen distribution during a year and relieving allergy sufferers’ problems. For a better 

understanding of this study, we categorized the results based on short and long-term data 

analysis.   

5.1.     Short Term Analysis  

In this section, Neural Network Analysis is applied to 225 cities, and the results of 

2 cities are unveiled (for the results of the rest of the cities, see appendix 1 in 

APPENDICES). As it was mentioned in the Methodology, short term data includes 

rainfall (mm), land surface temperature (LST) (K), EVI2 and pollen allergy index. 

Annual distribution and comparison line charts of these variables for Adirondack, NY 

and Gainesville, FL are demonstrated in Figure 5 with the other variables. First graph 

(Figure 5A) describes the pollen allergy index which was higher from late June up to late 

September for Adirondack, NY and Gainesville, FL. However, pollen allergy index was 

in a similar level except some days of the data for Gainesville, FL.  

Second graph (Figure 5B) describes about LST. The distribution of the LST was 

higher in summer months and going down through fall and winter months in Adirondack, 

NY. The LST pattern for Gainesville, FL shows similarities with the Adirondack, NY. 

The only difference between them is level of the LST. For example, the difference 

between summer and winter is about 40 K in Adirondack, NY and 15 K in Gainesville, 

FL because of their geological locations.  
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Third graph (Figure 5C) explains for EVI2 which is an indicator of vegetation 

cover. EVI2 was at higher level and going down through the September in Adirondack, 

NY. However, EVI2 is not changing much in a year for Gainesville, FL. The most 

important factor in this difference might be temperature because pollination rate increases 

with the temperature rises (the late spring and summer times) for cities in the north of the 

study area such as Adirondack, NY.  

Last variable (Figure 5D) is a rainfall in millimeter (mm). The distribution of the 

rainfall level is generally low, but it has some peak points (in June and beginning of the 

July) for Adirondack, NY. Unlike Adirondack, Gainesville has higher level pattern and 

peaks (in June, late August, and late September are the highest peak times) for rainfall. 

The reason of the difference between rainfall levels might be ocean effect to Gainesville, 

FL.  

When a correlation analysis was performed between these variables (Figure 6), 

we found that there was a strong positive correlation between EVI2 and temperature 

(89%), EVI2 and pollen allergy index (83%), temperature and pollen allergy index 

(82%). However, rainfall has a negative, weak relationship with the other variables as it 

was mentioned in some previous studies. Correlations for the other cities in this research 

show similar results, which are positive, strong relationships between temperature-EVI2, 

pollen allergy index-EVI2, temperature-pollen allergy index and a negative, weak 

relationship between rainfall and the others.  
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Figure 5: Temporal variation of variables. (A) Pollen Allergy Index, (B) land surface 

temperature, (C) EVI2, and (D) rainfall in time for Adirondack, NY and 

Gainesville, FL in Adirondack, NY and Gainesville, FL 
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Figure 6: Interactions of variables for Adirondack, NY (rainfall, EVI2, land surface 

temperature (LST), and pollen allergy index). 
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Correlations between the variables and pollen allergy index prove that pollen 

distribution can be estimated from these variables. To prove this idea, the variables were 

used as inputs in ANN model. The observed and ANN predicted pollen allergy index  

from two cities (Adirondack, NY and Gainesville, FL) were plotted to manifest the 

capability of this research (Figure 7). Validation of prediction against the observations 

was revealed in the regression analysis. The regression plot provided detailed information 

of slope equations, R squares (R2), mean square errors (MSE) and root mean square 

errors (RMSE). The results show low MSEs (0.7752 for Adirondack, NY and 1.21046 for 

Gainesville, FL) and high R square values (0.8890 for Adirondack, NY and 0.7809 for 

Gainesville, FL). ANN results for the rest of the cities show similar correlations between 

observations and predictions although  R square varies slightly (see appendix 1). Overall, 

the results demonstrate  that the pollen allergy index could be accurately predicted.  
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Figure 7: Linear regression between actual and predicted pollen allergy index for 

Adirondack, NY (A) and Gainesville, FL (B) 
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Nevertheless, some cities had statistically meaningful results with lower R2 

compared to the other cities. This difference might be due to the fluctuations or the 

stability of environmental variables within a year. For example, the cities of Florida 

mostly presented a relatively higher MSE and lower R2, where the  distribution of EVI2 

values were pretty stable during the year ( see Gainesville). In contrast, EVI2 shows high 

temporal variation in Adirondack (Figure 6), which associates with high prediction 

quality. Here, it may be expected that temporal variation of pollen concentration should 

be stable depending on stable variation of EVI2 and partly changing temperature in 

Gainesville, but pollen concentration changes over time. The reason behind the unstable 

pollen concentration may be correlated with slightly changing temperature and extreme 

variation of rainfall as well as the number of thunderstorms occurring during a year in 

Florida.  
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Figure 8: Spatial variation of correlation (R2) between actual and predicted pollen allergy 

index in East Coast of the United States  
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Figure 8 presents the spatial variation of the correlation between actual pollen 

allergy index and ANN predictions. Based on the map, our results are between 0.53 and 

0.95 except for some cities which are mostly in southeast and southwest coast of the 

Florida. We found very good predictions for many locations, which proves that our 

model and satellite data (precipitation, land surface temperature, and EVI2) are effective 

in predicting pollen allergy index. The reason of the low R2 values might be attributed to 

heavy and high-level rain and other climatic events. In addition to this, total amount of 

precipitation used in the analyses might not be good index. Future work is needed to 

investigate this problem. 

5.2.  Long term Analysis  

Two long-term datasets out of five were explained in this section (the rest of the 

result, see appendix 2 and 3), which were from for Washington, DC and New York, NY. 

The same variables as in short term analysis were used to execute ANN.  But the time 

series of pollen count data from stations instead of pollen allergy index were used for 

long term. Relationships between these variables are shown in Figure 9. The results of 

correlation analyses are similar to those in short terms, which are positive correlations 

between pollen count and EVI2 (0.39), temperature (LST) (0.56), except for rainfall (-

0.071). Further, positive and strong correlation (0.86) was found between EVI2 and LST. 

Similar relationship was also found for many locations in rest of the analysis.  

 



45 

 

 

 

Figure 9: Correlation between long term variables of Washington, DC 

 

One-year pollen distribution was chosen to simplify the graph representation from New 

York, NY (2003) and Washington, DC (2002). Figures 10 and 11 illustrate the seasonal 

pollen distribution from actual observations and ANN predictions. Pollen concentration 

was higher from the spring to early summer for New York City, NY on actual values, and 

our predicted results show mostly similar pattern. On the other hand, pollen concentration 

was higher from late spring to early summer in Washington, DC on both actual and 

predicted results, which was  similar to New York City, NY.  

R square value between actual and predicted pollen counts is 0.8319 for New 

York and 0.8093 for Washington, which reveals the reliability of ANN model prediction. 

Pollen Count 
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The high R square indicates that the LST, EVI2 and precipitation can explain very well 

the temporal variation in pollen counts although the pollen releases could also be 

impacted by other environmental variables including high winds, storms, tornadoes, and 

heavy rain and their irregular behaviors in different years.   

 

Figure 10. Temporal variation in actual and predicted pollen counts  (2003) for NYC, NY 
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Figure 11. Temporal variation in actual and predicted pollen counts (2002) for 

Washington, DC 

 

Overall, our ANN models enabled useful estimations of pollen concentrations for 

long term data. The intensity of predicted and observed pollen for both cities was highest 

though the spring months, it was pretty stable in the rest of the time, the value close to 

zero (Figures 10 and 11). As it was found in the short-term analysis, LST, precipitation 

and EVI2 have significant impacts on pollen concentration in long terms too. 
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CHAPTER 6: CONCLUSION 

Many people are suffering from allergic diseases. This puts people in unsocial 

lives, which causes stress. Also, allergic sufferers pay lots of money for allergy relief in 

prescription medications that are costly. Despite its importance, studies are limited 

because the amount of pollen can easily change depending on environmental factors 

(temperature, precipitation and vegetation), human-induced factors (industrialization-

urbanization), and collecting and counting pollen grains take a long time as well as need 

more labor.  

Remote sensing system is a popular tool due to its multifunctional features and 

accurate results. It also facilitates researchers to deal with large datasets like 

environmental and vegetation data as well as provides high accuracy of the results in 

large scales.  The consequences obtained will hopefully provide the information needed 

for establishing and improving better early warning systems that show intensive pollen 

releases. These systems may help people be aware of the days or specific times when the 

intensity of pollen is high.    

In general, R2 values were pretty high (over 0.5) for both short and long-term 

analysis, but there were remarkable differences between higher values of northeast cities 

and lower values of southeast cities in the study area. These differences can be explained 

by correlation analysis between the variables because it was a strong hint of how pollen 

concentration interacts with environmental variables and vegetation. Although the 

correlation between rainfall and pollen was low in most locations, it didn’t mean there 

was no relationship between them. While pollen concentration changed depending mostly 

on precipitation, temperature, and vegetation in the northeast, it changed depending 
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mostly on precipitation in the Southeast. This proves that pollen concentration is closely 

related to precipitation, temperature and vegetation seasonality, and shows EVI2 data 

derived from MODIS is reliable for modelling pollen counts. Moreover, the results show 

that ANN is a suitable statistical technique for this study.  
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APPENDICES 

Appendix 1: Table of the All Short-Term Results 

CITY STATE R2 MSE RMSE 

Adirondack  NY 0.889 0.775213 0.880461811 

Aiken  SC 0.9057 0.627645 0.792240494 

Albany  GA 0.8473 0.77122 0.878191323 

Albany  NY 0.8903 1.111584 1.05431684 

Americus  GA 0.9155 0.688272 0.8296216 

Anderson  SC 0.8751 0.792722 0.89034937 

Annapolis  MD 0.8494 1.380698 1.175031063 

Appalachia  VA 0.9449 0.379342 0.615907461 

Arlington  VA 0.7953 1.580713 1.257264093 

Armonk  NY 0.2069 8.819109 2.96969847 

Asbury Park  NJ 0.5657 4.690998 2.165871187 

Asheville  NC 0.7524 1.264272 1.124398506 

Athens  GA 0.9536 0.404657 0.63612656 

Atlanta  GA 0.8974 0.711065 0.843246702 

Auburn  ME 0.668 2.744066 1.656522261 

Auburn  NY 0.936 0.678256 0.823562991 

Augusta  GA 0.6567 1.941652 1.393431735 

Augusta  ME 0.6367 2.037555 1.427429508 

Baltimore  MD 0.6531 3.261483 1.805957641 

Barre  MA 0.6375 2.181897 1.477124572 

Bear Creek  NC 0.9598 0.380396 0.616762515 

Beaufort  SC 0.6238 1.768403 1.329813145 

Bel Air  MD 0.8811 1.328857 1.1527606 
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Bethany Beach  DE 0.7937 1.864611 1.365507598 

Binghamton  NY 0.7214 3.232053 1.797791145 

Blue Hill  ME 0.7164 1.684499 1.297882506 

Boston  MA 0.7304 1.738843 1.318651963 

Bozrah  CT 0.6742 4.002811 2.000702627 

Bradford  RI 0.8802 0.904114 0.950849094 

Bridgeport  CT 0.6798 2.87499 1.695579547 

Bridgewater  ME 0.7381 1.57317 1.254260738 

Brockton  MA 0.864 1.128103 1.062121933 

Brooklin  ME 0.7513 1.653191 1.285764753 

Brownville Junction  ME 0.739 1.44674 1.202805055 

Brunswick  GA 0.3701 4.01896 2.004734396 

Buffalo  NY 0.7812 2.544715 1.595216286 

Burlington  NC 0.9045 0.850648 0.922305806 

Camden  NJ 0.8084 2.338867 1.529335477 

Canaan  CT 0.8987 1.149104 1.071962686 

Carrollton  GA 0.8796 0.806182 0.897876383 

Cartersville  GA 0.9102 0.703274 0.838614333 

Catskill  NY 0.8351 2.204745 1.484838375 

Charleston  SC 0.8526 0.827145 0.909475123 

Charlotte  NC 0.8588 0.696138 0.834348848 

Charlottesville  VA 0.7513 1.833537 1.354081608 

Chesapeake Beach  MD 0.8392 1.97329 1.40473841 

Chesterfield  NH 0.5963 3.314934 1.820696021 

Clearwater  FL 0.4156 1.712019 1.308441439 

Cocoa  FL 0.4936 1.822692 1.350071109 

Colebrook  CT 0.8174 2.337165 1.528778925 

Collins  GA 0.8318 0.638885 0.799302821 
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Columbia  NC 0.4624 3.792525 1.947440628 

Columbia  SC 0.8941 0.591842 0.76931268 

Columbus  GA 0.9338 0.678398 0.823649197 

Compton MD 0.8735 1.59861 1.24436084 

Concord  NH 0.8573 1.130795 1.063388452 

Cornish  ME 0.8479 0.999008 0.999503877 

Covington  GA 0.9053 0.658555 0.811514017 

Dalton  GA 0.8582 1.031506 1.015630838 

Daytona Beach  FL 0.7625 0.917328 0.957772416 

Deland  FL 0.6347 0.875057 0.935444814 

Douglasville  GA 0.7669 1.055038 1.027150427 

Dover  DE 0.9139 1.231441 1.109703113 

Durham  NC 0.736 2.150664 1.466514235 

Eagle Rock  VA 0.9196 0.500005 0.707110317 

Elizabeth City  NC 0.7945 2.563687 1.601151773 

Elmira  NY 0.9474 0.363315 0.60275617 

Essex  MA 0.9034 1.113506 1.055227937 

Fair Haven  NJ 0.6398 3.684501 1.919505405 

Falls Village  CT 0.7808 2.63487 1.623228265 

Fayetteville  NC 0.8543 0.726979 0.852630635 

Fernandina Beach  FL 0.0597 5.434548 2.331211702 

Florence  SC 0.7233 1.588046 1.260176972 

Fort Lauderdale  FL 0.0661 1.076802 1.037690705 

Fort McCoy  FL 0.6995 0.93977 0.969417351 

Fort Myers  FL 0.2941 1.972829 1.404574313 

Fort Pierce  FL 0.0013 1.732174 1.316120815 

Frederick  MD 0.9043 1.066881 1.032899317 

Fredericksburg  VA 0.7987 1.589667 1.260819971 
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Freeport  ME 0.7746 1.683809 1.297616661 

Fremont  NH 0.821 1.570683 1.253268926 

Gaffney  SC 0.8336 0.870688 0.933106639 

Gainesville  FL 0.7809 1.210461 1.100209525 

Gainesville  GA 0.9595 0.389272 0.623916661 

Gastonia  NC 0.8851 0.829029 0.910510296 

Georgetown  SC 0.7325 1.490246 1.220756323 

Glens Falls  NY 0.8839 1.210684 1.100310865 

Gloversville  NY 0.8676 1.54063 1.241221173 

Goldsboro  NC 0.9158 0.770813 0.877959566 

Greenfield  MA 0.8644 1.32946 1.153022116 

Greensboro  NC 0.9006 0.845342 0.91942482 

Greenville  NC 0.9098 0.76191 0.872874561 

Greenville  SC 0.8448 1.100978 1.049274988 

Greenwood  SC 0.834 0.571518 0.755988095 

Griffin  GA 0.9106 0.642087 0.801303313 

Hagerstown  MD 0.6109 4.501673 2.121714637 

Hartford  CT 0.7694 2.3798 1.54266004 

Haverhill  MA 0.7 2.255915 1.501970373 

Hilton Head Island  SC 0.6416 1.327881 1.15233719 

Homestead  FL 0.2294 1.096261 1.047024833 

Hudson  NY 0.8347 1.95246 1.397304548 

Island Falls  ME 0.7857 0.930441 0.964593697 

Ithaca  NY 0.6946 2.002182 1.414984806 

Jacksonville  FL 0.9034 0.598043 0.773332399 

Jarvisburg  NC 0.8092 1.947814 1.395641071 

Jonesboro  GA 0.797 1.523365 1.234246734 

Kennebunk ME 0.651 1.746087 1.321395853 
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Lake City  FL 0.8288 1.043848 1.021688798 

Lakeland  FL 0.4632 2.362954 1.537190294 

Lakeville  CT 0.9063 1.038142 1.018892536 

Lancaster  SC 0.9227 0.623823 0.789824664 

Lawrenceville  GA 0.7514 1.414839 1.18947005 

Lee  FL 0.8207 1.068701 1.033779957 

Lewes  DE 0.7749 2.42043 1.55577312 

Lexington  NC 0.9184 0.653355 0.80830378 

Lincoln  NH 0.8367 1.196895 1.094026965 

Littleton  MA 0.867 1.341217 1.158109235 

Lynchburg  VA 0.831 1.302381 1.141219085 

Macon  GA 0.9272 0.595953 0.771979922 

Madison  ME 0.8697 0.653873 0.80862414 

Manahawkin  NJ 0.7408 2.63629 1.623665606 

Manchester  NH 0.529 2.747193 1.657465837 

Marietta  GA 0.8872 0.674329 0.821175377 

Matthews  NC 0.893 0.695472 0.833949639 

Melbourne  FL 0.2375 2.334319 1.527847833 

Miami  FL 0.0981 1.325042 1.151104687 

Midway Park  NC 0.6756 1.083909 1.041109504 

Milford  DE 0.528 4.642564 2.154660994 

Monticello  FL 0.9124 0.473432 0.688063951 

Morristown  NJ 0.5858 4.070183 2.017469455 

MT. Laurel  NJ 0.9661 0.327478 0.572256935 

Myrtle Beach  SC 0.8334 1.233075 1.110439102 

Mystic  CT 0.8993 1.083832 1.041072524 

Naples  FL 0.1136 1.644999 1.282575144 

Nashua  NH 0.8622 1.107296 1.052281331 
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New Bern  NC 0.6861 1.942256 1.393648449 

New Castle  DE 0.8979 1.244131 1.115406204 

New Hampton  NH 0.7055 2.874723 1.695500811 

New Haven  CT 0.7685 1.732633 1.31629518 

Newark  NJ 0.6263 4.001109 2.000277231 

Newport  RI 0.9025 1.424412 1.193487327 

Norfolk  VA 0.8653 1.421544 1.192285201 

North Uxbridge  MA 0.6041 3.987268 1.996814463 

NYC  NY 0.7731 2.165166 1.471450305 

Ocala  FL 0.5561 1.501329 1.225287313 

Ocean City  NJ 0.7109 2.545223 1.595375504 

Oldtown  MD 0.8029 2.156333 1.468445777 

Olean  NY 0.2488 5.454993 2.335592644 

Orangeburg  SC 0.8969 0.560121 0.74841232 

Orlando  FL 0.4259 1.594995 1.262931115 

Panama City  FL 0.8287 0.811351 0.900750243 

Peak  SC 0.828 1.136145 1.065901027 

Pelion  SC 0.4033 3.693523 1.921854053 

Pensacola  FL 0.4474 4.082976 2.020637523 

Peterborough  NH 0.8451 1.163276 1.078552734 

Pittsfield  MA 0.905 0.849744 0.9218156 

Plymouth  MA 0.6255 3.438414 1.854296093 

Pocomoke City  MD 0.9565 0.597608 0.773051098 

Portland  ME 0.6774 2.351497 1.533459162 

Portsmouth  NH 0.8071 1.576757 1.25568985 

Poughkeepsie  NY 0.877 1.58207 1.257803641 

Prospect Harbor  ME 0.7032 1.695983 1.302299121 

Providence  RI 0.8526 1.624144 1.274419083 
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Raleigh  NC 0.9231 0.727575 0.85298007 

Rehoboth Beach  DE 0.6686 2.803271 1.674297166 

Richmond  VA 0.8145 2.002357 1.415046642 

Ridgely  MD 0.8347 2.241742 1.497244803 

Rileyville  VA 0.6553 4.21415 2.052839497 

Roanoke  VA 0.7509 2.127448 1.458577389 

Rochester  NH 0.8015 1.542539 1.241989936 

Rochester  NY 0.9004 1.203113 1.096865078 

Rock Hill  SC 0.918 0.671339 0.819352793 

Rockport  ME 0.9182 0.618409 0.786389852 

Rockville  RI 0.8057 1.39828 1.182488901 

Rocky Mount  NC 0.881 0.9356 0.967264183 

Rome  GA 0.9139 0.667231 0.81684209 

Saint Augustine  FL 0.185 3.398241 1.843431854 

Saint George  ME 0.6164 2.260272 1.503420101 

Saint Petersburg  FL 0.4146 1.93454 1.390877421 

Salem  CT 0.8039 2.091745 1.446286624 

Salisbury  MD 0.8133 1.822864 1.350134808 

Salisbury  NC 0.9258 0.819697 0.905371195 

Sarasota  FL 0.3008 1.727416 1.314311987 

Savannah  GA 0.6895 1.179488 1.086042356 

Seneca  SC 0.8559 0.9909766 0.995478076 

Silver Lake  NH 0.9313 0.662978 0.81423461 

Silver Spring  MD 0.8099 1.574555 1.254812735 

Smithfield  NC 0.8749 0.819306 0.905155235 

Southampton  NY 0.6993 2.828814 1.681907845 

Sparta  GA 0.8117 1.388243 1.178237243 

Spartanburg  SC 0.8544 1.000256 1.000127992 
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Springfield  MA 0.8756 1.142344 1.06880494 

Springfield  NJ 0.8796 1.479976 1.216542642 

Stamford  CT 0.8219 2.769432 1.66416105 

Statesboro  GA 0.7166 1.012334 1.0061481 

Stockholm  ME 0.5426 3.742638 1.934589879 

Sumter  SC 0.6542 1.5216 1.233531516 

Sunbury  NC 0.8578 1.058965 1.029060251 

Swainsboro  GA 0.76 1.646097 1.283003118 

Syracuse  NY 0.8245 1.212214 1.101005904 

Tallahassee  FL 0.7283 1.668293 1.291624171 

Tampa  FL 0.1752 2.58116 1.606598892 

Toms River  NJ 0.7285 2.687894 1.639479796 

Townsend  DE 0.5174 5.105356 2.259503485 

Trenton  NJ 0.6419 3.536916 1.88066903 

Utica  NY 0.8886 0.937756 0.968378025 

Ventnor City  NJ 0.9627 0.25641 0.50636943 

Vineland  NJ 0.7663 2.055529 1.433711617 

Waldorf  MD 0.8887 0.938095 0.968553044 

Waleska  GA 0.8568 0.776716 0.881314927 

Walpole  NH 0.8998 0.754686 0.868726654 

Warrenton  VA 0.9292 1.305093 1.14240667 

Waterbury  CT 0.796 1.856321 1.362468715 

Watertown  NY 0.7469 1.501987 1.225555792 

West Ossipee  NH 0.6479 1.84098 1.356827181 

West Palm Beach  FL 0.0518 1.240575 1.113811025 

West Point  NY 0.8197 1.767346 1.329415661 

West Townsend  MA 0.8905 1.708086 1.306937642 

Wilmington  DE 0.5909 2.931524 1.712169384 
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Wilmington  NC 0.7771 1.0934 1.045657688 

Wilson  NC 0.827 1.237107 1.112253119 

Winston Salem  NC 0.8764 0.861612 0.928230575 

Wolfeboro  NH 0.7068 2.107241 1.451633907 

Worcester  MA 0.5496 3.817855 1.953933213 

 

Appendix 2: Table of the All Long-Term Results 

City State R2 MSE RMSE 

New Castle Delaware 0.6242 30116.36 173.54 

New York City New York 0.8319 109865.5 331.46 

Olean New York 0.4845 6898466 2626.49 

Savannah Georgia 0.8589 104001.2 322.49 

Washington District of Columbia 0.8093 13744.74 117.24 
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Appendix 3: Distributions of Long-Term Results in time 
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