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ABSTRACT 

 

EFFECTS OF MECHANICAL BAR SPLICES ON SEISMIC PERFORMANCE OF 

REINFORCED CONCRETE BUILDINGS 

ABDULLAH AL HASHIB 

2017 

Mechanical bar splices, which are commonly referred to as couplers, are currently 

used in reinforced concrete structures to directly connect steel bars in lieu of conventional 

lap splicing.  With proper detailing, couplers can be utilized to connect precast beams and 

columns to accelerate the construction.  However, the experimental and analytical studies 

regarding their effect on the performance of RC moment-resisting frames (MRFs) are 

scarce.  Current ACI 318 restricts the use of couplers in plastic hinge regions of special 

moment-resisting frames (SMRFs).  Nevertheless, they can be incorporated at any 

location of the intermediate and ordinary MRFs.  The seismic performance of RC frames 

incorporating mechanical bar splices in plastic hinge regions was analytically 

investigated in the present study.   

Ordinary, intermediate, and special moment-resisting frames (OMRF, IMRF, and 

SMRF) were included in the study.  Three-, six-, and nine-story buildings were designed 

for each frame type (nine frames in total) according to current ASCE 7 and ACI 318 

codes.  Modeling methods were proposed for mechanically spliced RC members then the 

results were verified against large-scale test data from literature.  Subsequently, more 

than 100 pushover analyses were performed on the nine frames by varying the coupler 

rigid length factor and the coupler length.  The results showed that the coupler length, the 
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coupler rigidity, the height and the type of frames affect the displacement capacity of 

mechanically RC frames.  Long and rigid couplers may reduce the displacement capacity 

of a short SMRF up to 42%.  A simple design equation was proposed to quantify the 

effect of mechanical bar splices on the displacement capacity of RC frames.   
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1.  Introduction 

 

 

 

 

This study presents the findings of an extensive parametric study to quantify the 

effect of mechanical bar splices on the seismic performance of reinforced concrete 

moment-resisting buildings.  This chapter includes problem statement and background, 

objectives and scope, and the organization of the document. 

 

1.1 Background 

Reinforcing steel bars are needed to be spliced to provide continuity in reinforced 

concrete (RC) structures.  Bars can be spliced either through overlapping two adjoining 

reinforcement, “lap splicing”, or using mechanical bar splices, which are commonly 

referred to as “couplers”.  Bar couplers can also be utilized to connect prefabricated 

concrete members to accelerate construction.  Two types of couplers are allowed in ACI 

318-14 (2014).  Type 1 in which couplers shall resist at least 1.25 times the yield strength 

of the reinforcement, and Type 2 in which couplers shall resist the ultimate tensile 

strength of the reinforcement.  Type 1 couplers are currently not allowed in the plastic 

hinge region of special moment-resisting frames neither in longitudinal nor in the 

transverse bars.  Type 2 couplers cannot be used within one-half of the beam depth in 

special moment-resisting frames but are allowed in any other locations and members.   
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The restriction of mechanical bar splices in special moment-resisting RC frames 

is mainly due to a lack of performance data and uncertainty regarding coupler effects on 

the seismic performance of frames with couplers especially the displacement capacity.  

 

1.2 Objectives and Scope 

The main objective of the present study is to analytically investigate the effect of 

mechanical bar splices on the seismic behavior of moment-resisting RC buildings.  

Ordinary, intermediate, and special moment-resisting RC buildings were designed for 

different seismic categories.  Three-, six-, and nine-story buildings were selected for the 

analytical studies.  The effect of bar couplers on the displacement capacity and 

displacement ductility capacity of the frames is investigated and quantified for practical 

use.  The effect of coupler is quantified and new design recommendations are proposed to 

facilitate the design of RC buildings incorporating couplers.   

A literature review is performed to compile building component test data in which 

couplers were used in the critical regions.  Modeling methods are developed and verified 

using the test data.  RC frames are designed according to current codes to meet the 

requirements of ordinary, intermediate, and special moment-resisting frames per ACI 

seismic specifications.  A parametric study is performed to investigate the effect of bar 

couplers on the displacement capacity of the frames.  The findings of the analytical 

studies are compiled and evaluated then a design guideline is proposed for RC frames 

incorporating mechanical bar splices.   
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1.3 Document Organization 

This study contains analytical investigation carried out on spliced RC frames to 

determine the effects of couplers on the seismic behavior of the frames.  Chapter 1 

presents the rationale, objective and a brief overview of the work done.  Chapter 2 

presents a review of literature on mechanically spliced RC specimens.  Chapter 3 presents 

the analytical studies on the RC components and modeling method for parametric study.  

Chapter 4 presents the design and detailing of the RC frames to be studied for parametric 

study.  Chapter 5 presents the analytical modeling method for spliced RC frames and 

shows the effects of coupler on the frames.  Chapter 6 presents the summary and 

conclusions of the study.   
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2. Literature Review 

 

 

 

 

A literature review was conducted on the performance of mechanical bar splices, 

which is commonly referred to as “couplers”, and reinforced concrete (RC) members 

incorporating mechanical bar splices.  The bulk of information provided in the literature 

was also evaluated for potential analytical studies.  This chapter presents a summary of 

the findings from the literature.   

 

2.1 Introduction to Mechanical Bar Splices 

This section covers the definition, advantage, and type of mechanical bar splices 

available in the market.   

2.1.1 What is Mechanical Bar Splices 

Reinforcing steel bars are needed to be spliced to provide continuity in RC 

members.  Bars can be spliced either through overlapping two adjoining reinforcement, 

“lap splicing”, or using mechanical bar splices.  Mechanical bar splices are mechanical 

devices that connect two adjacent bars together.  Figure 2.1 shows one sample of lap and 

mechanical splices.  Couplers reduce the width and length of the lap compared to the 

conventional lap splicing.  Therefore, couplers reduce the congestion in splicing regions 
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especially the joints.  Coupler may reduce the construction time if proper detailing is 

used.   

  

Figure 2.1- Comparison of Lap and Mechanical Splicing (Lenton, 2017)  

2.1.2 Advantages of Couplers 

The main advantages of using couplers over conventional bar splicing are: 

• Couplers act like a continuous bar in the connecting region.  Loading path 

and structural integrity are then improved.   

• Less congestion of reinforcement in joints. 

• Lower amount of reinforcement in a structure will be used when couplers 

are incorporated.   

• Bar couplers may be used in precast member connections to accelerate 

construction.   

• Lap splice is prohibited for No. 14 (Ø43 mm) and No. 18 (Ø57 mm) 

reinforcing bars.  Thus, couplers should be used for these bar sizes.   
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2.1.3 Types of Mechanical Bar splices 

Different manufacturers produce different coupler types.  Tazarv and Saiidi 

(2015) categorized the available couplers as: shear screw, headed bar, grouted sleeve, 

threaded, and swaged (Fig. 2.2).  Note that couplers with the same anchoring mechanism 

may be entitled differently by manufacturers.   

  

Figure 2.2- Sample of Mechanical Bar Splices (Tazarv and Saiidi, 2015)  

 

2.2 Material Model for Couplers 

Mechanical bar splices exhibit different behavior than reinforcing steel bars due 

to the anchoring mechanism.  Stress-strain relationship for couplers proposed by Tazarv 

and Saiidi (2016) was adopted in the present study and is discussed in this section.   

2.2.1 Stress-Strain Relationship for Couplers 

Limited tensile test data on the bar couplers showed that the stress-strain behavior 

of couplers follows the reinforcement behavior but stiffer with lower strain capacities 

(Fig. 2.3).  Tazarv and Saiidi (2016) found that the relatively large diameter of couplers 
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and the anchoring mechanism contribute to this rigid behavior.  They developed a 

procedure to determine the stress-strain relationship of coupler region based on the 

mechanical properties of reinforcement, the coupler length, and a new parameter named 

“coupler rigid length factor” (Fig. 2.3).  Coupler rigid length factor is discussed in the 

next section (Sec. 2.2.2).  The proposed material model is generic and can be used for any 

type of couplers. 

 
 

(a) Coupler Uniaxial Model (b) Stress-Strain Relationship 

Figure 2.3- Generic Stress-strain Material Model for Couplers (Tazarv and Saiidi, 2015) 

2.2.2 Coupler Rigid Length Factor 

Coupler rigid length factor, β, is required to determine the full stress-strain 

relationship of couplers, which can be calculated form a tensile test data as: 

𝜀𝑠𝑝

𝜀𝑠
= (𝐿𝑐𝑟 − β 𝐿𝑠𝑝)/𝐿𝑐𝑟 2.1 

where, 

Ԑsp = The strain of the coupler region (Fig. 2.3), 

Ԑs = The strain of connecting reinforcing steel bar, 
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Lcr = The coupler region length (Fig. 2.3), (Lcr = Lsp + αdb from each end of the coupler, α 

= 1.0 to 2.0) 

β = The coupler rigid length factor, 

Lsp = The coupler length (Fig 2.3). 

The main assumption is that a portion of the coupler length is rigid and does not 

contribute to the total elongation of the splice.  Stress-strain relationship of coupler region 

will be the same as unspliced reinforcing bar when β = 0.  When β = 1, the entire length 

of the coupler is rigid.  Figure 2.4 shows the stress-strain relationship of couplers for two 

coupler rigid length factors (β = 0.25 and β = 0.75).  Based on the test data in Haber et al. 

(2015), Tazarv and Saiidi (2016) calculated the coupler rigid length factor for grouted 

and headed bar couplers using Eq. 2.1, which were 0.65 and 0.75, respectively.   

 

Figure 2.4- Effect of Coupler Rigid Length Factor on Stress-strain Relationship (Tazarv and 

Saiidi, 2015) 
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2.3 Behavior of Mechanical Bar Splices 

Matsuzaki et al. (1987b) tested 26grouted sleeve couplers (Fig. 2.5) under 

monotonic and cyclic loading to investigate their performance.  It was found that the 

properties of the grouted couplers depend on the pull out or slippage characteristics.   

 

Figure 2.5-  Stress-Strain Relationship of a sample Grouted Coupler Tested by Matsuzaki et al. 

(1987b) 

 

Aida et al. (2005) tested two grouted splice sleeves to determine the stress-strain 

relationship of the coupler.  Figure 2.6 shows cut-in-half of one of the specimens.  They 

measured the properties of couplers by tensile test.   
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Figure 2.6- Inside view of Grouted Splice Sleeve Tested by Aida et al. (2005) 

 

Haber et al. (2013) tested two types of mechanical bar splices under tensile loads, 

three per mechanical bar splices: headed coupler (HC) and grouted sleeve coupler (GC).  

Figure 2.7 shows a sample test result.  The couplers were tested under static, dynamic, 

cyclic loading to failure.  They found that both type of couplers exhibited consistent 

mode of failure of bar fracture.  The ultimate strains of the spliced bars were lower than 

those for the unspliced bars.   

 

 

Figure 2.7- Stress-Strain Relationship of a sample Headed Bar Coupler Tested by Haber et al. 

(2013) 
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Phuong and Mutsuyoshi (2015) performed tensile tests on six threaded couplers 

(TC) (Fig. 2.8).  Five of the splices were intentionally assembled improperly.  Only one 

of the splices (MS-6me) was assembled as required by the manufacturer.  Tensile test 

showed that only the correctly assembled splice exhibited almost same initial stiffness 

and strength as the reference unspliced reinforcing bar.  Other specimens failed by bar 

pullout before reaching the ultimate strength.   

 

 

Figure 2.8- Stress-Strain Relationship of Threaded Couplers Tested by Phuong and Mutsuyoshi 

(2015)  

 

2.4 RC Members Incorporating Mechanical Bar Splices 

The performance of RC beams and columns incorporating mechanical bar splices 

was investigated in several studies.  However, no data was found regarding the 

performance of RC frames with couplers.  This section presents a summary of the finding 

of studies in which the bulk of the information presented was sufficient to construct an 

analytical model for further investigations.   
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2.4.1 Beams with Mechanical Bar Splices 

Matsuzaki et al. (1987a) tested one RC beam without any splicing as reference 

model and two beams incorporating bar couplers.  Grouted sleeve couplers were 

incorporated (Fig. 2.9).  Of the two coupler incorporated members, the sleeve was 

incorporated only in beam in Specimen No. 2 (Fig. 2.9).  The sleeve was incorporated in 

both beam and beam-column joint in Specimen No. 3 (Sec. 2.4.3).  Figure 2.10 shows the 

load-deformation relationship of the three beams.  They reported that the effect of 

grouted couplers on member performance was insignificant.   

 

Figure 2.9- Beam with Grouted Couplers Tested by Matsuzaki et al. (1987a) 
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Figure 2.10- Load-Deformation Relationship for Beams and Beam-Column Joint Tested by 

Matsuzaki et al. (1987a) 

 

Yoshino et al. (1996) tested 73 columns and 18 beams some incorporating 

grouted couplers.  The purpose of their test was to determine the performance of precast 

concrete members using intensive shear reinforcing (ISR) and the contribution of ISR to 

the shear capacity of the members.  Figure 2.11 shows the detailing of two specimens and 

Fig. 2.12 shows the force-displacement relationship.  They reported that the performance 

of spliced specimens were comparable to that of reference specimens in terms of strength 

and displacement capacity.   
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Figure 2.11- Specimen with Grouted Couplers Tested by Yoshino et al. (1996) 

 

 

Figure 2.12- Load-Deformation Relationship for Specimen with Grouted Couplers Tested by 

Yoshino et al. (1996) 
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Phuong and Mutsuyoshi (2015) investigated the effect of improperly installed bar 

couplers on the behavior of RC beams.  They tested ten beams including a reference 

beam with no splice (B1) and a beam with correctly installed threaded coupler (B10-6me-

0d).  Eight other beams had threaded couplers with improper detailing either by shorter 

length or by lack of epoxy.  Figure 2.13 shows elevation and top view of a beam.  Figure 

2.14 shows the load-displacement relationship of three spliced beams.  They have found 

that the beams with properly installed threaded splices performed the same as the control 

beam.   

 

 

Figure 2.13- Beam Tested by Phuong and Mutsuyoshi (2015) 
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Figure 2.14- Load-Displacement Relationship for Beams Tested by Phuong and Mutsuyoshi (2015) 

2.4.2 Columns with Mechanical Bar Splices 

Tazarv and Saiidi (2016) preformed a state-of-the-art literature review of the 

performance of mechanically spliced columns.  The readers are referred to this study for 

complete review. 

2.4.3 Joints with Mechanical Bar Splices 

Matsuzaki et al. (1987a) tested a specimen incorporating couplers in beams and 

beam-column joint (Fig. 2.15) to investigate the structural performance.  Figure 2.10 

shows the load-displacement relationship of the specimen (Specimen No. 3).  They 

reported that the effect of grouted sleeve couplers on member performance was 

insignificant.   
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Figure 2.15- Grouted Couplers in Beams and Beam-Column Joint Tested by Matsuzaki et al. 

(1987b) 

2.4.4 Frames with Mechanical Bar Splices 

No experimental study was found on the performance of mechanically spliced RC 

frames.   

2.4.5 Conventional Frames 

Of several large-scale experiments on the performance of conventional RC frames 

and buildings, a few studies were selected to be used in following chapters to verify the 

proposed modeling methods.   

Vecchio and Emara (1992) tested a one-bay two-story frame under lateral loads.  

Figure 2.17 shows the details of the frame and Fig. 2.18 shows the force-displacement 

response.  The main goal of the study was to determine the effect of shear forces on the 

ductility of RC frames.  They reported that load capacity and failure mechanism are 

affected by the shear deformation.   
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Figure 2.17- Unspliced Frame Tested by Vecchio and Emara (1992) 

 

 

Figure 2.18- Force-Displacement Relationship of Unspliced Frame Tested by Vecchio and Emara 

(1992) 

 

Calvi et al. (2001) tested a three-bay three-story RC frame designed for gravity 

loads (Fig 2.19) to determine the seismic behavior of this type of frame under lateral 

load.  Figure 2.20 shows the force-displacement relationship of the frame.  They have 

reported the local and global damage and failure of the frame.   
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Figure 2.19- Gravity Frame Tested by Calvi et al. (2001) 
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Figure 2.20- Force-Displacement of Gravity Frame Tested by Calvi et al. (2001) 

 

Calvi et al. (2004) tested one one-bay one-story bare frame and one infilled frame 

(Fig. 2.21) under cyclic loading to determine the effect of reinforcement in masonry 

infilled RC frames.  Figure 2.22 shows the force-displacement relationship.  They 

reported that using reinforcement in the infilled frames improves the seismic 

performance.   
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Figure 2.21- Unfilled Unspliced Frame Tested by Calvi et al. (2004) 

 

 

Figure 2.22- Force-Displaement Relationship of Unfilled Unspliced Frame Tested by Calvi et al. 

(2004) 
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3. Analytical Modeling Methods for RC Buildings 

 

 

 

 

An extensive literature review on reinforced concrete (RC) members 

incorporating mechanical bar splices was conducted and a summary of the findings was 

presented in Chapter 2.  This chapter presents analytical modeling methods for 

mechanically spliced RC components such as beams and columns.  Different models 

were selected from the experimental studies available in the literature, and the calculated 

response using the proposed modeling methods was compared to that measured in the 

experiments.  Since there is no experimental study on the performance of RC frames with 

mechanical bar splices at the time of this writing, the modeling method for frames was 

for those without bar couplers.  The verified modeling methods are utilized in the next 

chapter to investigate the seismic performance of RC frames with couplers. 

 

3.1 Analysis of RC Beams Incorporating Couplers 

Previous studies extensively investigated force-displacement behavior of RC 

beams with different geometries and reinforcement.  However, test data pertaining to 

mechanically spliced RC beams is scarce.  In this section, a simply supported 

mechanically spliced beam tested by Phuong and Matsuyoshi (2015) was selected for 

further studies.   
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3.1.1 Description of Mechanically Spliced Beam Test Model 

Phuong and Matsuyoshi (2015) tested 10 beams under two-point load 

configuration.  Of which, B10-6me-0d was selected for analytical studies (Fig. 3.1).  The 

beam was 9.84-ft (3-m) long with a span length of 8.2 ft (2.5 m).  Two rollers supported 

the beam at the ends.  Two point loads were equally applied at 16 in. (400 mm) away 

from the mid-span.  Four threaded couplers were utilized at the mid-span of the beam to 

connect the beam bottom reinforcement.  Length of each coupler was 6 in. (152.4 mm).  

The couplers were located in the uniform bending moment region, and no stirrups were 

used in this region assuming that the shear demand is zero.   

 

 

Figure 3.1- Test Setup for B10-6me-0d in Phuong and Matsuyoshi (2015) 
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Figure 3.2 shows the details of the beam cross-section.  Four No. 6 bars (Ø19 

mm) and two No. 2 bars (Ø6 mm) were used at the bottom and the top of the beam, 

respectively.   

 

Figure 3.2- Cross-Section of B10-6me-0d Tested by Phuong and Matsuyoshi (2015) 

 

The yield and ultimate strength of the beam longitudinal reinforcement were 56.8 

ksi (391.62 MPa) and 80.3 ksi (553.65 MPa), respectively.  The yield and ultimate 

strength of the beam transverse reinforcement were 56.8 (391.62 MPa) and 80.3 ksi 

(553.65 MPa), respectively.  The beam concrete compressive strength was 4.57 ksi 

(31.51 MPa).   

Phuong and Matsuyoshi (2015) also tested the beam longitudinal reinforcement 

with and without the coupler under tensile forces.  Figure 3.3 shows the measured stress-

strain relationship for the unspliced and mechanically spliced reinforcing steel bars.  It 

can be seen that the initial stiffness of the two specimens is the same but the spliced bar 

exhibited significantly lower strain capacity (56%) compared to the unspliced bar.   
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Figure 3.3- Measured Stress-Strain Relationships for Mechancially Spliced and Unspliced 

Reinforcing Steel Bars Tested by Phuong and Matsuyoshi (2015) 

3.1.2 Modeling Methods for Beam with Couplers 

OpenSees (2016) was used for modeling of RC members in the present study.  

Seven nodes and six elements in a two-dimensional fiber-section model were used to 

simulate B10-6me-0d.  Figure 3.1 shows the analytical model parameters for the beam.  

Table 3.1 presents the detail of the parameters and how they were simulated in OpenSees.   
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Table 3.1: Modeling Method for B10-6me-0d Tested by Phuong and Mutsuyoshi (2015) 

Remarks 

Two Dimensions with 3 Degrees of freedom per 

node 

Geometrical Properties: 
Number of nodes: 7 

Number of Elements: 6 

Element type: “forcebeamcolumn” with 5 

integration points per element 

No bond-slip effects 

Sectional Properties:  

Fiber Section 

Cover Concrete Discretization: 50 by 50 
Core Concrete Discretization: 50 by 50 

Confinement based on the actual transverse 

reinforcement. 

Concrete Fibers 

Application: unconfined concrete (cover) 

 

Type: “Concrete01” 

f’cc = -4.57 ksi (-31.51 MPa) 
Ԑcc = -0.002 in./in. 

f’cu = 0.0 ksi (0.0 MPa) 

Ԑcu = -0.005 in./in. 

 

Application: confined concrete (core) based on 

Mander’s model 

Type: “Concrete01” (corner elements) 

f’cc = -6.33 ksi (43.64 MPa) 
Ԑcc = -0.006 in./in. 

f’cu = -4.39 ksi (30.27 MPa) 

Ԑcu = -0.032 in./in. 

Type: “Concrete01” (middle elements) 

f’cc = -4.75 ksi (32.75 MPa) 

Ԑcc = -0.002 in./in. 

f’cu = -2.36 ksi (16.27 MPa) 

Ԑcu = -0.009 in./in. 

Unspliced / Spliced Reinforcing Steel Fibers 

Application: Unspliced Bars 
Type: “ReinforcingSteel” 

fy = 56.8 ksi (391.62 MPa) 

fsu = 80.3 ksi (553.65 MPa) 

Es = 29000 ksi (199947.96 MPa) 

Esh = 984.6 ksi (6788.58 MPa) 

Ԑsh = 0.017 in./in. 

Ԑsu = 0.162 in./in. 

Application: Spliced Bars 
Type: “ReinforcingSteel” 

b= 0.7 (Coupler Rigid Length Factor) 

fy = 56.8 ksi (391.62 MPa) 

fsu = 80.3 ksi (553.65 MPa) 

Es = 64285.84 ksi (443235.26 MPa) 

Esh = 2228.73 ksi (15366.55 MPa) 

Ԑsh = 0.0075 in./in. 

Ԑsu =0.0716 in./in. 

 

Tazarv and Saiidi (2016) developed a stress-strain material model for mechanical 

bar splices.  The input of the model is the mechanical properties of the unspliced bar and 

the “coupler rigid length factor, 𝛽”, which can be estimated using the measured stress-

strain behavior for spliced bars.  The coupler rigid length factor was 0.7 based on the 

measured data (Fig. 3.3).  Figure 3.4 presented the measured and calculated stress-strain 

relationships for the spliced bar used in the beam test.  It can be seen that the calculated 

response was in good agreement with that measured in the test especially the ultimate 

strain, which was essentially the same.   
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Figure 3.4- Measured and Calculated Stress-Strain Relationships for Spliced Bars Used in B10-

6me-0d Tested by Phuong and Matsuyoshi (2015) 

 

“ReinforcingSteel” material model from the OpenSees library was used to 

simulate the beam steel reinforcement in both the spliced and unspliced regions.  For the 

unspliced section, the original properties of reinforcement were used.  The mechanical 

properties of the coupler region (Fig. 3.4) were utilized in the sections with couplers.  

Confined concrete properties were calculated based on Mander’s model (Mander et al. 

1988).  “Concrete01” material model was utilized for both cover and core concrete.  Two 

displacement-based loads were applied at nodes 2 and 6 to failure.     

3.1.3 Results of Analysis for Beam with Couplers 

Figure 3.5 shows the calculated and the measured force-displacement 

relationships of the beam tested by Phuong and Mutsuyoshi (2015).  The calculated 

ultimate displacement was defined where the core concrete failed, the reinforcement 

fractured, or the drop in the load carrying capacity was more than 15% with respect to the 
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peak load.  It can be seen that the calculated displacement capacity was 1.95 in. (49.53 

mm) whereas the measured displacement capacity was 1.8 in. (45.72 mm), a 7.7% 

difference.  The model successfully reproduced the initial stiffness but the overall 

strength was overestimated by an average of 5.5%.   

 

Figure 3.5- Measured and Calculated Force-Displacement Relationships for B10-6me-0d Tested 

by Phuong and Mutsuyoshi (2015) 

 

3.2 Analysis of RC Columns Incorporating Couplers 

A few studies have experimentally investigated the seismic performance of 

columns incorporating mechanical bar splices.  A handful of those presented systematic 

modeling methods for this type of columns.  Of which, modeling methods developed by 

Tazarv and Saiidi (2015) were adopted in the present study. 

3.2.1 Test Model for Column with Couplers 

Haber et al. (2013) tested a precast column with partial pedestal and grouted 

couplers above the pedestal, GCPP, to failure.  Figure 3.6 shows the details of GCPP.  
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The circular column had a length of 108 in. (2743.2 mm) and a diameter of 24 in. (609.6 

mm).  The column was longitudinally reinforced with 11 No. 8 (Ø25 mm) bars and 

transversely with No. 3 (Ø10 mm) spirals at 2 in. (50.8 mm) pitch.  The yield and the 

ultimate strength of the longitudinal reinforcement were 66.8 ksi (460 MPa) and 111.3 

ksi (767 MPa), respectively.  The yield and ultimate strength of the transverse 

reinforcement were 81.8 (564 MPa) and 112 ksi (768 MPa), respectively.  The column 

concrete compressive strength was 3.83 ksi (26.4 MPa). 
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Figure 3.6- GCPP Column Incorporating Grouted Couplers Tested by Haber et al. (2013) 

3.2.2 Modeling Methods for Column with Couplers 

Tazarv and Saiidi (2015) developed an analytical modeling methods for columns 

in which the stress-strain relationship of the column sections with couplers is modified to 
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account for the coupler effect (similar to what was done in section 3.1 for mechanically 

spliced beam).  Details of the modeling methods can be found in that study. 

3.2.3 Results of Analysis for Column with Couplers 

Figure 3.7 shows the measured and calculated force-displacement relationships 

for GCPP.  It can be seen that the analytical model was able to reproduce the test data 

with a reasonable accuracy. 

 

Figure 3.7- Measured and Calculated Force-Displacement Relationships for GCPP Tested by 

Haber et al. (2013)  

 

3.3 Analysis of Frames without Couplers 

It was mentioned that there is no experiment on the performance of RC frames 

incorporating mechanical bar splices.  However, the seismic performance of RC frames 

without bar couplers has been experimentally investigated in a few studies (Calvi et al., 
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2001; Calvi et al., 2004; Vecchio and Emara, 1992).  Of which, the study by Vecchio and 

Emara (1992) was selected for further investigation. 

3.3.1 Test Model for Frame without Coupler 

The test specimen was a one-bay two-story frame (Fig. 3.8) tested laterally to 

failure.  The span length was 137.8 in. (3500 mm).  The height of each story was 78.74 

in. (2000 mm).  The base columns were fixed to a strip footing, which was tied down to 

the floor.   

 

Figure 3.8- Elevation View and Section Properties of Frame Tested by Vecchio and Emara (1992) 

 

Both beams and columns were rectangular with side dimensions of 12 in. (300 

mm) by 16 in. (400 mm).  No. 20 (mm) bars (according to the Canadian codes) were used 

as longitudinal reinforcement for both beams and columns.  No. 10 (mm) bars (were 

utilized as transverse reinforcement.  Stirrups were spaced at 5 in. (125 mm) in both 

beams and columns.  Clear cover for the beams and columns was 1.2 in. (30 mm) and 0.8 

in. (20 mm), respectively.   
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The yield stress and ultimate tensile strength of the longitudinal reinforcement 

were 60 ksi (418 MPa) and 86 ksi (596 MPa), respectively.  The yield stress and ultimate 

tensile strength of the transverse reinforcement were 66 ksi (454 MPa) and 93 ksi (640 

MPa), respectively.  The frame concrete compressive strength was 4.35 ksi (30 MPa).  

An axial load of 157 kips (700 kN) was applied to each column.  Lateral loads were 

applied to the top left beam-column joint.   

3.3.2 Modeling Method for Frame without Coupler 

A three-dimensional fiber-section model with six nodes and six elements was 

developed to simulate the frame behavior.  Figure 3.9 shows the frame main model 

parameters.   

 

 

Figure 3.9- Modeling Method for Frame Tested by Vecchio and Emara (1992) 
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Table 3.2 presents a summary of modeling methods for the frame.  For each beam 

and column, nonlinear “forcebeamcolumn” element with five integration points was 

utilized.  Material properties were based on the measured data.  P-Δ effect was included 

in the analysis for column elements only.  No torsional or bond slip effect was included 

in the analysis.   

“Concrete04” was used for both unconfined and confined concrete (Fig. 3.10).  

Confinement properties were found from Mander’s model (Mander et al. 1988) based on 

the information from the cross-section of the beams and columns. 

Two types of reinforcing material models were used in the analyses as shown in 

Fig. 3.11: (1) “ReinforcingSteel” material model, and (2) “Pinching4” material model.  

“ReinforcingSteel” material model can simulate the backbone and hysteresis behavior of 

reinforcing steel bars.  However, the model does not exhibit a sudden drop at the failure 

point.  “Pinching4” model requires 17 parameters to simulate the backbone of a stress-

strain relationship of a material and needs 41 parameters to simulate the hysteretic 

behavior of a material.  “Pinching4” was included in the analysis since it can simulate the 

failure point of a steel bar with a sudden drop in the strength as shown in Fig. 3.11.  Note 

that the measured data was available up to 2.2% strain. 
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Table 3.2: Modeling Method for Frame Tested by Vecchio and Emara (1992) 

General Remarks 

3 Dimensions with 6 Degree of freedoms 

Geometrical Properties: 

Number of nodes: 6 
Number of Elements: 6 

Element type: forcebeamcolumn with 5 integration 

points for both beams and columns 

P-Δ effects in columns 

No torsional or bond-slip effects 

Sectional Properties:  

Fiber Section 

Cover Concrete Discretization: 50 by 30 
Core Concrete Discretization: 50 by 30 

Same section in all beams 

Same section in all columns 

 

Concrete Fibers 

Application: unconfined concrete (cover) 

 

Type: Concrete04 for both beam and column 

f’cc = -4.35 ksi (30 MPa) 
Ԑcc = -0.002 in./in. 

f’cu = 0.0 ksi (0.0 MPa) 

Ԑcu = -0.005 in./in. 

 

Application: confined concrete (core) based on 

Mander’s model 

Type: Concrete04 for beam 

f’cc = -6.177 ksi (42.59 MPa) 
Ԑcc = -0.0062 in./in. 

f’cu = -4.7351 ksi (32.65 MPa) 

Ԑcu = -0.0266 in./in. 

Type: Concrete04 for column 

f’cc = -6.0683 ksi (41.84 MPa) 

Ԑcc = -0.006 in./in. 

f’cu = -4.6247 ksi (31.89 MPa) 

Ԑcu = -0.0253 in./in. 

Steel Fibers 

Application: Longitudinal reinforcement 
Type: ReinforcingSteel 

Fy = 60 ksi (413.69 MPa) 

Fsu = 86 ksi (592.95 MPa) 

Es = 27900 ksi (192363.73 MPa) 

Esh = 0.043* Es 

Ԑsh = 0.0095 in./in. 

Ԑsu = 0.12 in./in. 

Application: Longitudinal reinforcement 
Type: Pinching4 

F1 = 60 ksi (413.69 MPa) 

F2 = 82 ksi (565.37 MPa) 

F3 = 86 ksi (592.95 MPa) 

F4 = 0.5 ksi (3.45 MPa) 

Ԑs1 = 0.0023 in./in. 

Ԑs2 = 0.0365 in./in. 

Ԑs3 = 0.11 in./in. 

Ԑs4 = 0.12 in./in. 
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Figure 3.10- Measured and Calculated Stress-Strain Relationship for Concrete in Frame Tested 

by Vecchio and Emara (1992) 

 

 

Figure 3.11- Measured and Calculated Stress-Strain Relationships for Reinforcement in Frame 

Tested by Vecchio and Emara (1992) 
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3.3.3 Results of Analysis for Frame without Coupler 

Figure 3.12 shows the measured and calculated force-displacement relationships 

for the frame without couplers.  Results from two analytical models are included in the 

figure: “ReinforcingSteel” material model was used for the longitudinal reinforcement in 

one model and “Pinching4” was utilized in the other one.  It can be seen that both models 

reproduced the test data with reasonable accuracy.  In the model with “ReinforcingSteel” 

material model, the stress-strain relationships of all reinforcement in all fiber sections 

were monitored to identify the ultimate displacement.  However, the identification of the 

failure point in the model utilizing “Piching4” material model was relatively easy and 

simple since the reinforcement failure resulted in sudden drop in the lateral force carrying 

resistance of the frame.  The calculated displacement capacity of the frame using 

“Pinching4” and “ReinforcingSteel” material models was 4.85 in. (123.2 mm) and 6.82 

in. (173.2 mm), respectively.  Note that the test frame did not fail but the test was stopped 

at 6-in. (150-mm) displacement due to stroke limitations of the actuator.  Because of the 

use of “Concrete04” material model for concrete, a gradual strength degradation can be 

seen in both models due to failure of the core concrete in different sections. 
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Figure 3.12- Measured and Calculated Pushover Response for Frame Tested by Vecchio and 

Emara (1992) 

 

3.4 Summary and Conclusions 

This chapter discussed the analytical modeling methods for different reinforced 

concrete components spliced with bar couplers.  A mechanically spliced beam, a 

mechanically spliced column, and a conventional unspliced (without couplers) frame 

were selected for analytical studies.  Based on the analytical studies, the following 

conclusions can be drawn:   

• The measured and calculated initial stiffness as well as the ultimate 

displacement of the beam model were approximately the same using the 

proposed modeling method.  The base shear was overestimated. 

• The proposed modeling method for columns successfully reproduced the 

measured force-displacement relationship.   
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• The proposed modeling method for the unspliced frame was successful in 

reproducing the test force-displacement behavior.  The “Pinching4” 

material model was found to be a simpler model for reinforcing steel bars 

in frames since the ultimate displacement of the frame can be easily 

identified using a sudden drop in the lateral strength.   

Overall, the proposed modeling methods for mechanically spliced RC 

components were simple and sufficiently accurate to be used in further analysis.   
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4. Design of Moment Resisting RC Frames 

 

 

 

 

Design of moment resisting reinforced concrete (RC) frames to be used in 

analytical studies is presented in this chapter.  Three-, six- and nine-story office buildings 

were designed according to the Ordinary, Intermediate and Special moment-resisting 

requirements per current design codes.  Three site with different Seismic Design 

Categories (SDCs) were selected as the construction site.  Design specifications, loading, 

and the results of the design are presented herein.   

 

4.1 Design Specifications and Methods 

ASCE 7-10 (2010) was used to determine the design loads and combinations.  

ACI 318-14 (2014) was used for the design of the moment-resisting RC frames and 

members.  The buildings were to be used as office.  Risk category of all buildings were 

II.  Seismic importance factor, Ie, which depends on the risk category of the building, was 

1.  Site class or soil condition was considered as type D (stiff soil) for the design of all 

buildings.   
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4.1.1 Building Geometry and Sites 

Each building was assumed to have four spans in each direction.  However, only 

an interior frame of the buildings was selected for further investigation as shown in Fig. 

4.1.  The height and the span length of each frame were 12 ft. (3.66 m) and 20 ft. (6.1 m), 

respectively.  Each frame was designed for three site locations (different SDC): Sioux 

Falls (SD) for SDC A, New York city (NY) for SDC B and Los Angeles (CA) for SDC 

E.  Therefore, the total number of the frames was nine.   

   

Figure 4.1- RC Frames for Analytical Studies 

4.1.2 Material Properties 

The compressive strength of normal-weight concrete and the yield strength of 

reinforcing steel bars were considered as 5 ksi (34.47 MPa) and 60 ksi (413.69 MPa), 

respectively.  Reinforcing steel bars were ASTM A706 Grade 60.   

4.1.3 Element Geometry 

The size of beams and columns were kept the same for every three story of each 

frame for the ease of analysis.  Section sizes were modified using a 6-in. (152 mm) 

increment.  Only two sizes of longitudinal reinforcement were used: No. 7 (Ø22 mm) and 
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No. 9 (Ø29 mm).  No. 3 (Ø10 mm) stirrups were used as transverse reinforcement in 

beams and columns.  The clear concrete cover was 1.5 in. (38.1 mm) and 2 in. (50.8 mm) 

for the beam and column sections, respectively.   

4.1.4 Load Combinations 

The design load combinations were according to ASCE 7-10 (2010) as:   

1. 1.4D 

2. 1.2D + 1.6L + 0.5Lr 

3. 1.2D + L + 1.6Lr 

4. 1.2D + L + E 

5. 0.9D + E 

6. 1.2D + 1.6Lr + 0.5W 

7. 1.2D + L + 0.5Lr + 1.0W 

8. 0.9D + 1.0W 

where D is the dead load, L is the live load, Lr is the roof live load, E is the earthquake 

load and W is the wind load.  Wind and seismic loads should be applied in both directions 

of a frame. 

 

4.2 Gravity Loads 

Since only two-directional frames were considered, tributary gravity loads were 

applied directly on the beams of the floors.  Tributary area for each beam was 400 ft2 

(37.16 m2).  Dead loads consisted of slab self-weight, floor finish, and wall loads.  Roof 

dead load consisted of slab self-weight, plaster (ceilings), and coverings.   
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The floor slab thickness was assumed to be 6 in. (150 mm).  Thus, the slab dead 

load that transfers to the beams was 1500 plf (2034 N/m).  The floor finish and wall loads 

were estimated to be 660 plf (895 N/m) and 63 plf (85 N/m), respectively.  The total 

superimposed dead load for each beam was 2223 plf (3014 N/m).   

For the roofs, the slab load was the same as that for the floors.  The roof ceilings 

and coverings loads were 300 plf (407 N/m) and 400 plf (542 N/m), respectively.  

Therefore, the roof total deal load was 2200 plf (2983 N/m).   

For office type building, 50 psf (2394 N/m2) live load is required by the code.  

The live load was not reduced per the code requirement.  Partition load was considered to 

be 15 psf (718 N/m2).  Therefore, the total live load per floor beam was 1300 plf (1763 

N/m). 

Ordinary flat roof live load is 20 psf (958 N/m2), which was reduced to 19 psf 

(910 N/m2) per live load code requirements.  Therefore, the total live load for each roof 

beam was 384 plf (521 N/m).   

 

4.3 Lateral Loads 

Lateral wind and seismic loads were also applied to the frames.  Only the greater 

of which was selected for the design per the code requirements. 

4.3.1 Seismic Loads 

Seismic loads vary in different parts of the country due to the seismic activity of 

regions.  Three cities in the USA were selected to include the effect of the seismic loads 
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in the design.  Table 4.1 presents seismic ground motion properties of the three site 

locations.  Figure 4.2 shows the design response spectrum for the selected regions.   

Table 4.1: Seismic Ground Motion Values for Three Selected Regions 

City Ss S1 SMS SM1 SDS SD1 Seismic Design Category 

New York city, NY 0.089 0.035 0.142 0.084 0.094 0.056 SDC A 

Sioux Falls, SD 0.278 0.072 0.439 0.172 0.293 0.114 SDC B 

Los Angeles, CA 0.252 0.793 0.252 0.189 0.501 0.793 SDC E 

 

  

Figure 4.2- Design Response Spectrum for Three Selected Regions 

 

To meet the seismic requirements, there types of moment-resisting frames (MRF) 

should be utilized: ordinary (or OMRF), intermediate (or IMRF), and special (or SMRF).  

Table 4.2 presents the design coefficients and factors for three MRFs per ASCE 7-10 

(2010). 

Table 4.2: Design Coefficients and Factors for Different Moment-Resisting Frames 

Seismic Force-

Resisting System 

Response Modification 

Coefficient, R 

Overstrength 

Factor, Ω 

Deflection Amplification 

Factor, Cd 

OMRF 3 3 2.5 

IMRF 5 3 4.5 

SMRF 8 3 5.5 
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4.3.2 Wind Loads 

Wind loads were also included in the design based on ASCE 7-10 (2010).  

Directional procedure was used to determine the wind load.  According to the code, a 

structure is rigid if the fundamental frequency is greater than or equal to 1 Hz, is flexible 

when the fundamental frequency is less than 1 Hz.   

Based on the calculated period, it was concluded that the three-story buildings 

were rigid structures and the six- and nine-story buildings are flexible.  Basic wind speed 

for SD, NY and CA were 115 mph (185 kph), 121 mph (195 kph), and 130 mph (209 

kph).  Directionality factor, Kd, was 0.85.  Surface roughness was considered as type B 

assuming that all buildings are in urban and suburban areas.  Exposure category was D.  

Topographic factor, Kzt, was 1.  The building was classified as enclosed building.  

Velocity pressure exposure coefficient, Kz, varies with height of the building.  Kz was 

equal to 1.196, 1.316, and 1.45 for three-, six-, and nine-story buildings, respectively.  

Wall pressure coefficients, Cp, was 0.8 and 0.5 for windward wall and leeward wall, 

respectively.   

4.3.3 Base Shear Comparison 

According to the code, only the greater of the lateral seismic and wind loads 

should be used for the design.  Base shear demands were calculated by hand and using a 

commercial software (SAP2000, 2015) for all frames under the seismic and wind loads, 

and a summary is presented in Table 4.3.  Highlighted cells are the larger of the two.  It 

can be seen that the seismic loads are higher than the wind loads only in SMRFs, which 

were located in SDC E (Table 4.1).   
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Table 4.3: Comparison of Base Shear 

Type of frame 

Seismic load Wind load 

SAP2000, kips 

(kN) 

Hand Calculation, 

kips (kN) 

SAP2000, kips 

(kN) 

Hand Calculation, 

kips (kN) 

Three story Ordinary 18.11 (80.56) 18.37 (81.71) 37.36 (166.19) 37.36 166.19) 

Three story Intermediate 24.92 (110.85) 23.82 (105.96) 41.36 (183.98) 41.36 (183.98) 

Three story Special 126.17 (561.23) 127.97 (569.24) 47.74 (212.36) 47.74 (212.36) 

Six story ordinary 21.6 (96.08) 21.33 (94.88) 82.2 (365.64) 82.11 (365.24) 

Six story Intermediate 29.34 (130.51) 27.05 (120.32) 91.01 (404.83) 91.01 (404.83) 

Six story Special 155.6 (692.14) 154.91 (689.07) 105.07 (467.37) 105.07 (467.37) 

Nine story ordinary 24.3 (108.09) 23.34 (103.82) 135.69 (603.58) 135.69 (603.58) 

Nine story Intermediate 30.98 (137.81) 29.53 (131.36) 150.25 (668.35) 150.25 (668.35) 

Nine story Special 194.83 (866.65) 194.82 (866.6) 173.49 (771.72) 173.49 (771.72) 

 

4.4 Summary of Design and Detailing 

All nine RC frames were analyzed and designed satisfying the code requirements.  

The lateral displacement is usually the controlling parameter in the design of a building.  

Interstory drift is usually used in the design instead of the displacement, which is defined 

as the ratio of the relative displacements of the two adjacent stories to the story height.  

The allowable interstory drift is 0.025 for four-story buildings or shorter, and is 0.02 for 

five-story buildings and taller.  The amplified interstory drifts (Table 4.2) were smaller 

than the allowable drifts.   

Special moment-resisting frames were designed in a way that the columns were at 

least 1.25 stronger than the beams (strong column, weak beam design philosophy).  ACI 

seismic detailing was utilized in all frames.  A summary of the final design for each 

frame is presented herein.   

4.4.1 Three-Story Ordinary Moment Resisting RC Frame 

The detailing for the three-story ordinary moment-resisting frame is shown in Fig. 

4.3 and 4.4.  Table 4.4 presents the general design output.   
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Figure 4.3- Three-Story Ordinary Moment-Resisting Frame 
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Beam Section B1 Beam Section B2 

  
Beam Section B3 Beam Section B4 

 
Column Section 

Figure 4.4- Section Details for Three-Story Ordinary Moment-Resisting Frame 

 
Table 4.4: Summary of Design for Three-Story Ordinary Moment-Resisting Frame 

Member Story Section Size (in.) Longitudinal Reinf. Transverse Reinf. 

Beam 

Story 1 to 2 B1 (end) 18 by 18 
Top 5 No. 7 

Bottom 3 No. 7 
No. 3 @ 5.5 in. 

Story 1 to 2 B2 (middle) 18 by 18 
Top 2 No. 7 

Bottom 3 No. 7 
No. 3 @ 7.5 in. 

Story 3 B3 (end) 18 by 18 
Top 4 No. 7 

Bottom 3 No. 7 
No. 3 @ 7.5 in. 

Story 3 B4 (middle) 18 by 18 
Top 2 No. 7 

Bottom 3 No. 7 
No. 3 @ 7.5 in. 

Column Story 1 to 3 C 18 by 18 8 No. 7 No. 3 @ 7.5 in. 

Note:  1 in. = 25.4 mm, Bar No. 3 = No. 10 mm, Bar No. 7 = No. 22 mm 
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4.4.2 Three-Story Intermediate Moment Resisting RC Frame 

The detailing for the three-story intermediate moment-resisting frame is shown in 

Fig. 4.5 and 4.6.  Table 4.5 presents the general design output.   

 

Figure 4.5- Three-Story Intermediate Moment-Resisting Frame 
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Beam Section B1 Beam Section B2 

  
Beam Section B3 Beam Section B4 

 
Column Section 

Figure 4.6- Section Details for Three-Story Intermediate Moment-Resisting Frame 
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Table 4.5: Summary of Design for Three-Story Intermediate Moment-Resisting Frame 

Member Story Section Size (in.) Longitudinal Reinf. Transverse Reinf. 

Beam 

Story 1 to 2 B1 (end) 18 by 24 
Top 4 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 1 to 2 B2 (middle) 18 by 24 
Top 2 No. 7 

Bottom 3 No. 7 
No. 3 @ 10.5 in. 

Story 3 B3 (end) 18 by 24 
Top 3 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 3 B4 (middle) 18 by 24 
Top 2 No. 7 

Bottom 3 No. 7 
No. 3 @ 10.5 in. 

Column Story 1 to 3 C 18 by 18 16 No. 7 3 No. 3 @ 7 in. 

Note:  1 in. = 25.4 mm, Bar No. 3 = No. 10 mm, Bar No. 7 = No. 22 mm 

4.4.3 Three-Story Special Moment Resisting RC Frame 

The detailing for the three-story special moment-resisting frame is shown in Fig. 

4.7 and 4.8.  Table 4.6 presents the general design output.  Two columns sections were 

included with the same longitudinal reinforcement but different transverse reinforcement 

satisfying the code seismic requirements.  Section C1 was used at the ends of the columns 

and Section C2 was utilized at the middle portion of the column.   

 

Figure 4.7- Three-Story Special Moment-Resisting Frame 
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Beam Section B1 Beam Section B2 

  
Beam Section B3 Beam Section B4 

  
Column Section C1 Column Section C2 

Figure 4.8- Section Details for Three-Story Special Moment-Resisting Frame 
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Table 4.6: Summary of Design for Three-Story Special Moment-Resisting Frame 

Member Story Section Size (in.) Longitudinal Reinf. Transverse Reinf. 

Beam 

Story 1 to 2 B1 (end) 18 by 30 
Top 5 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 1 to 2 B2 (middle) 18 by 30 
Top 3 No. 7 

Bottom 3 No. 7 
No. 3 @ 13.5 in. 

Story 3 B3 (end) 18 by 30 
Top 3 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 3 B4 (middle) 18 by 30 
Top 2 No. 7 

Bottom 3 No. 7 
No. 3 @ 13.5 in. 

Column 
Story 1 to 3 C1 (end) 18 by 18 16 No. 9 3 No. 3 @ 4.5 in. 

 C2 (middle) 18 by 18 16 No. 9 3 No. 3 @ 6 in. 

Note:  1 in. = 25.4 mm, Bar No. 3 = No. 10 mm, Bar No. 7 = No. 22 mm, Bar No. 9 = No. 29 mm 

4.4.4 Six-Story Ordinary Moment Resisting RC Frame 

The detailing for the three-story special moment-resisting frame is shown in Fig. 

4.9 and 4.10.  Table 4.7 presents the general design output. 
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Figure 4.9- Six-Story Ordinary Moment-Resisting Frame 
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Beam Section B1 Beam Section B2 
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Column Section C1 Column Section C2 

Figure 4.10- Section Details for Six-Story Ordinary Moment-Resisting Frame 
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Table 4.7: Summary of Design for Six-Story Ordinary Moment-Resisting Frame 

Member Story Section Size (in.) Longitudinal Reinf. Transverse Reinf. 

Beam 

Story 1 to 3 B1 (end) 24 by 24 
Top 5 No. 7 

Bottom 3 No. 7 
No. 3 @ 10 in. 

Story 1 to 3 B2 (middle) 24 by 24 
Top 3 No. 7 

Bottom 3 No 7 
No. 3 @ 10 in. 

Story 4 to 5 B3 (end) 18 by 18 
Top 5 No. 7 

Bottom 3 No. 7 
No. 3 @ 5.5 in. 

Story 4 to 5 B4 (middle) 18 by 18 
Top 2 No. 7 

Bottom 3 No. 7 
No. 3 @ 7.5 in. 

Story 6 B5 (end) 18 by 18 
Top 4 No. 7 

Bottom 3 No. 7 
No. 3 @ 7.5 in. 

Story 6 B6 (middle) 18 by 18 
Top 2 No. 7 

Bottom 3 No. 7 
No. 3 @ 7.5 in. 

Column 
Story 1 to 3 C1 24 by 24 12 No. 7 3 No. 3 @ 10 in. 

Story 4 to 6 C2 18 by 18 8 No. 7 No. 3 @ 7.5 in. 

Note:  1 in. = 25.4 mm, Bar No. 3 = No. 10 mm, Bar No. 7 = No. 22 mm 

4.4.5 Six-Story Intermediate Moment Resisting RC Frame 

The detailing for the three-story special moment-resisting frame is shown in Fig. 

4.11 and 4.12.  Table 4.8 presents the general design output.  Two columns sections were 

included for the bottom 3 stories with the same longitudinal reinforcement but different 

transverse reinforcement satisfying the code seismic requirements.  Section C1 was used 

at the ends of the columns and Section C2 was utilized at the middle portion of the 

column.   
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Figure 4.11- Six-Story Intermediate Moment-Resisting Frame 
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Beam Section B1 Beam Section B2 

  
Beam Section B3 Beam Section B4 

  
Beam Section B5 Beam Section B6 

Figure 4.12- Section Details for Six-Story Intermediate Moment-Resisting Frame 
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Beam Section B7 Beam Section B8 

  
Column Section C1 Column Section C2 

 
Column Section C3 

Figure 4.12- Continued 
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Table 4.8: Summary of Design for Six-Story Intermediate Moment-Resisting Frame 

Member Story Section Size (in.) Longitudinal Reinf. Transverse Reinf. 

Beam 

Story 1 B1 (end) 24 by 24 
Top 6 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 1 B2 (middle) 24 by 24 
Top 3 No. 7 

Bottom 3 No. 7 
No. 3 @ 10.5 in. 

Story 2 to 3 B3 (end) 24 by 24 
Top 5 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 2 to 3 B4 (middle) 24 by 24 
Top 3 No. 7 

Bottom 3 No. 7 
No. 3 @ 10.5 in. 

Story 4 to 5 B5 (end) 18 by 24 
Top 4 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 4 to 5 B6 (middle) 18 by 24 
Top 2 No. 7 

Bottom 3 No. 7 
No. 3 @ 10.5 in. 

Story 6 B7 (end) 18 by 24 
Top 3 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 6 B8 (middle) 18 by 24 
Top 2 No. 7 

Bottom 3 No. 7 
No. 3 @ 10.5 in. 

Column 

Story 1 to 3 C1 (end) 24 by 24 16 No. 7 3 No. 3 @ 7 in. 

 C2 (middle) 24 by 24 16 No. 7 3 No. 3 @ 10 in. 

Story 4 to 6 C3 18 by 18 16 No. 7 3 No. 3 @ 7 in. 

Note:  1 in. = 25.4 mm, Bar No. 3 = No. 10 mm, Bar No. 7 = No. 22 mm 

4.4.6 Six-Story Special Moment Resisting RC Frame 

The detailing for the three-story special moment-resisting frame is shown in Fig. 

4.13 and 4.14.  Table 4.9 presents the general design output.  Two columns sections were 

included for top 3 stories with the same longitudinal reinforcement but different 

transverse reinforcement satisfying the code seismic requirements.  Section C2 was used 

at the ends of the columns and Section C3 was utilized at the middle portion of the 

column.   
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Figure 4.13- Six-Story Special Moment-Resisting Frame 
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Beam Section B5 Beam Section B6 

Figure 4.14- Section Details for Six-Story Special Moment-Resisting Frame 
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Column Section C1 

  
Column Section C2 Column Section C3 

Figure 4.14- Continued 

 

Table 4.9: Summary of Design for Six-Story Special Moment-Resisting Frame 

Member Story Section Size (in.) Longitudinal Reinf. Transverse Reinf. 

Beam 

Story 1 to 3 B1 (end) 24 by 30 
Top 6 No. 7 

Bottom 4 No. 7 
No. 3 @ 5 in. 

Story 1 to 3 B2 (middle) 24 by 30 
Top 4 No. 7 

Bottom 4 No. 7 
No. 3 @ 10 in. 

Story 4 to 5 B3 (end) 18 by 30 
Top 5 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 4 to 5 B4 (middle) 18 by 30 
Top 3 No. 7 

Bottom 3 No. 7 
No. 3 @ 13.5 in. 

Story 6 B5 (end) 18 by 30 
Top 3 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 6 B6 (middle) 18 by 30 
Top 2 No. 7 

Bottom 3 No. 7 
No. 3 @ 13.5 in. 

Column 

Story 1 to 3 C1 24 by 24 16 No. 9 3 No. 3 @ 6 in. 

Story 4 to 6 C2 (end) 18 by 18 16 No. 9 3 No. 3 @ 4.5 in. 

 C3 (middle) 18 by 18 16 No. 9 3 No. 3 @ 6 in. 

Note:  1 in. = 25.4 mm, Bar No. 3 = No. 10 mm, Bar No. 7 = No. 22 mm, Bar No. 9 = No. 29 mm 
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4.4.7 Nine-Story Ordinary Moment Resisting RC Frame 

The detailing for the three-story special moment-resisting frame is shown in Fig. 

4.15 and 4.16.  Table 4.10 presents the general design output. 

 

Figure 4.15- Nine-Story Ordinary Moment-Resisting Frame 
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Beam Section B1 Beam Section B2 
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Figure 4.16- Section Details for Nine-Story Ordinary Moment-Resisting Frame 
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Column Section C1 Column Section C2 

Figure 4.16- Continued 

 

Table 4.10: Summary of Design for Nine-Story Ordinary Moment-Resisting Frame 

Member Story Section Size (in.) Longitudinal Reinf. Transverse Reinf. 

Beam 

Story 1 to 3 B1 (end) 24 by 24 
Top 6 No. 7 

Bottom 3 No. 7 
No. 3 @ 10 in. 

Story 1 to 3 B2 (middle) 24 by 24 
Top 3 No. 7 

Bottom 3 No. 7 
No. 3 @ 10 in. 

Story 4 to 6 B3 (end) 24 by 24 
Top 5 No. 7 

Bottom 3 No. 7 
No. 3 @ 10 in. 

Story 4 to 6 B4 (middle) 24 by 24 
Top 3 No. 7 

Bottom 3 No. 7 
No. 3 @ 10 in. 

Story 7 to 8 B5 (end) 18 by 18 
Top 5 No. 7 

Bottom 3 No. 7 
No. 3 @ 5.5 in. 

Story 7 to 8 B6 (middle) 18 by 18 
Top 2 No. 7 

Bottom 3 No. 7 
No. 3 @ 7.5 in. 

Story 9 B7 (end) 18 by 18 
Top 4 No. 7 

Bottom 3 No. 7 
No. 3 @ 7.5 in. 

Story 9 B8 (middle) 18 by 18 
Top 2 No. 7 

Bottom 3 No. 7 
No. 3 @ 7.5 in. 

Column 
Story 1 to 6 C1 24 by 24 12 No. 7 3 No. 3 @ 10 in. 

Story 7 to 9 C2 18 by 18 8 No. 7 No. 3 @ 7.5 in. 

Note:  1 in. = 25.4 mm, Bar No. 3 = No. 10 mm, Bar No. 7 = No. 22 mm 

4.4.8 Nine-Story Intermediate Moment Resisting RC Frame 

The detailing for the three-story special moment-resisting frame is shown in Fig. 

4.17 and 4.18.  Table 4.11 presents the general design output.  Two column sections were 

included for bottom 6 stories with the same longitudinal reinforcement but different 

transverse reinforcement satisfying the code seismic requirements.  Section C1 was used 
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at the ends of the columns and Section C2 was utilized at the middle portion of the 

column.   

 

Figure 4.17- Nine-Story Intermediate Moment-Resisting Frame 

 

B5

B5

B8

B8

B10

12' [3.7m]
B5

B5

B7

B7

12' [3.7m]

B7

B9

B1

B4

B6

B6

20' [6.1m]

B4

B6

B7

B8

B9

B7

B9

B1

B8

B10

B1

B5

B5

B7

B7

B2

B4

B6

B5

B7

B9

12' [3.7m]

B5

B6

B8

B7

B10

B7

B7

B1

B8

B10

12' [3.7m]

B7

B9

B2

B3

B5B5

B5

B7

B7

B9

20' [6.1m]

B6

B6

B7

B8

B1

B3

B5

B5

B8

B9

B8

B8

12' [3.7m]

B1

B7

B9

B3

B5

B8

B10

B6

B5

B7

B7

B9

12' [3.7m]

B5

B6

B8

B7

20' [6.1m]

B3

B3

B5

B5

B7

B10

20' [6.1m]

B3

B5

B7

B7

B9

B7

B9

B7

B9

12' [3.7m]

B2

B4

B5

B4

B5

12' [3.7m]

B4

B3

B6

B3 B4

B6

B3

B3

B5

B3 B3

B5

B4 B4

B6

B4 B4

B5

B4

B1

B2

B5

B4

B3

B1

B1

B5

B3

B1

B2

B4

B6

B7

B1

B3

B6

B4

B8

B1

B1

B3

B1

B1

B4

B1

B1

B3

B5

B7

B1

B6

B3

B7

B1

B1

B4

B2

B2

B3

B1

B1

B3

B5

B8

B2

B2

B5

B3

B7

B10

B2

B3

B1

B1

B3

B2

B10

B4

B5

B7

B1

B1

B5

B4

B7

B9

B1

B4

B1

B9

B7

B2

B1

B6

B3

B8

B9

B1

B3

B2

B9

B2

B1

B3

B7

B8

B2

B3

B5

B3

B1

B2

12' [3.7m]



71 

 

  
Beam Section B1 Beam Section B2 

  
Beam Section B3 Beam Section B4 

  
Beam Section B5 Beam Section B6 

Figure 4.18- Section Details for Nine-Story Intermediate Moment-Resisting Frame 
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Column Section C1 Column Section C2 

Figure 4.18- Continued 
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Column Section C3 

Figure 4.18- Continued 

 

Table 4.11: Summary of Design for Nine-Story Intermediate Moment-Resisting Frame 

Member Story Section Size (in.) Longitudinal Reinf. Transverse Reinf. 

Beam 

Story 1 to 2 B1 (end) 24 by 24 
Top 7 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 1 to 2 B2 (middle) 24 by 24 
Top 3 No. 7 

Bottom 3 No. 7 
No. 3 @ 10.5 in. 

Story 3 to 4 B3 (end) 24 by 24 
Top 6 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 3 to 4 B4 (middle) 24 by 24 
Top 3 No. 7 

Bottom 3 No. 7 
No. 3 @ 10.5 in. 

Story 5 to 6 B5 (end) 24 by 24 
Top 5 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 5 to 6 B6 (middle) 24 by 24 
Top 5 No. 7 

Bottom 3 No. 7 
No. 3 @ 10.5 in. 

Story 7 to 8 B7 (end) 18 by 24 
Top 4 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 7 to 8 B8 (middle) 18 by 24 
Top 2 No. 7 

Bottom 3 No. 7 
No. 3 @ 10.5 in. 

Story 9 B9 (end) 18 by 24 
Top 3 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 9 
B10 

(middle) 
18 by 24 

Top 2 No. 7 

Bottom 3 No. 7 
No. 3 @ 10.5 in. 

Column 

Story 1 to 6 C1 (end) 24 by 24 16 No. 7 3 No. 3 @ 7 in. 

 C2 (middle) 24 by 24 16 No. 7 3 No. 3 @ 10 in. 

Story 7 to 9 C3 18 by 18 16 No. 7 3 No. 3 @ 7 in. 

Note:  1 in. = 25.4 mm, Bar No. 3 = No. 10 mm, Bar No. 7 = No. 22 mm 

4.4.9 Nine-Story Special Moment Resisting RC Frame 

The detailing for the nine-story special moment-resisting frame is shown in Fig. 

4.19 and 4.20.  Table 4.12 presents the general design output.  Two columns sections 

were included for top 3 stories with the same longitudinal reinforcement but different 
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transverse reinforcement satisfying the code seismic requirements.  Section C3 was used 

at the ends of the columns and Section C4 was utilized at the middle portion of the 

column.   

 

Figure 4.19- Nine-Story Special Moment-Resisting Frame 
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Beam Section B1 Beam Section B2 

  
Beam Section B3 Beam Section B4 

  
Beam Section B5 Beam Section B6 

Figure 4.20 Section Details for Nine-Story Special Moment-Resisting Frame 

#3 @ 5 in.

(127 mm)

30"

[762mm]

7-#7

30"

[762mm]

3"
 [76mm]

5-#7

#3 @ 8 in.

(203.2 mm)

30"

[762mm]

5-#7

3"
 [76mm]

5-#7

30"

[762mm]

#3 @ 5 in.

(127 mm)

30"

[762mm]

3"
 [76mm]

4-#7

24"
[610mm]

6-#7

24"
[610mm]

#3 @ 10 in.

(254 mm)

30"

[762mm]

4-#7

3"
 [76mm]

4-#7

#3 @ 5 in.

(127 mm)

30"

[762mm]

18"

[457mm]

5-#7

3"
 [76mm]

3-#7

#3 @ 13.5 in.

(342.9 mm)

30"

[762mm]

18"

[457mm]

3-#7

3"
 [76mm]

3-#7



76 
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Column Section C3 Column Section C4 

Figure 4.20- Continued 
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Table 4.12: Summary of Design for Nine-Story Special Moment-Resisting Frame 

Member Story Section Size (in.) Longitudinal Reinf. Transverse Reinf. 

Beam 

Story 1 to 3 B1 (end) 30 by 30 
Top 7 No. 7 

Bottom 5 No. 7 
No. 3 @ 5 in. 

Story 1 to 3 B2 (middle) 30 by 30 
Top 5 No. 7 

Bottom 5 No. 7 
No. 3 @ 8 in. 

Story 4 to 6 B3 (end) 24 by 30 
Top 6 No. 7 

Bottom 4 No. 7 
No. 3 @ 5 in. 

Story 4 to 6 B4 (middle) 24 by 30 
Top 4 No. 7 

Bottom 4 No. 7 
No. 3 @ 10 in. 

Story 7 to 8 B5 (end) 18 by 30 
Top 5 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 7 to 8 B6 (middle) 18 by 30 
Top 3 No. 7 

Bottom 3 No. 7 
No. 3 @ 13.5 in. 

Story 9 B7 (end) 18 by 30 
Top 3 No. 7 

Bottom 3 No. 7 
No. 3 @ 5 in. 

Story 9 B8 (middle) 18 by 30 
Top 2 No. 7 

Bottom 3 No. 7 
No. 3 @ 13.5 in. 

Column 

Story 1 to 3 C1 30 by 30 16 No. 9 3 No. 3 @ 6 in. 

Story 4 to 6 C2 24 by 24 16 No. 9 3 No. 3 @ 6 in. 

Story 7 to 9 C3 (end) 18 by 18 16 No. 9 3 No. 3 @ 4.5 in. 

 C4 (middle) 18 by 18 16 No. 9 3 No. 3 @ 6 in. 

Note:  1 in. = 25.4 mm, Bar No. 3 = No. 10 mm, Bar No. 7 = No. 22 mm, Bar No. 9 = No. 29 mm 

 

4.5 References 

ACI 318-14 (2014).  “Building Code Requirements for Structural Concrete”.  

American Concrete Institute.   

ASCE 7-10 (2010).  “Minimum Design Loads for Buildings and Other 

Structures”.  American Society of Civil Engineers.   

SAP2000.  Version 18.1.1.  Computers and Structures, Inc. Berkeley, CA (2015).   
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5. Analytical Study on Mechanically Spliced Moment-Resisting 

RC Frames 

 

 

 

 

The effect of mechanical bar splices on the seismic performance of moment-

resisting RC frames, which were designed and presented in the previous chapter, is 

investigated in this chapter through analytical studies.  First, modeling method for spliced 

frames is discussed.  Then parameters of the analytical study are presented.  Finally, the 

results of the analytical study are discussed, and ACI 318 requirements for mechanically 

spliced frames are evaluated.  Furthermore, an equation was developed based on the 

results of the analytical study to quantify the effect of couplers on the displacement 

capacity of RC frames.   

 

5.1 Modeling Methods 

It was discussed in the previous chapter that there is no test data regarding the 

performance of mechanically spliced RC frames.  Modeling methods for spliced RC 

members and unspliced RC frames were proposed and verified in the previous chapter.  

Based on the findings, modeling methods for mechanically spliced RC frames are 

summarized herein.  OpenSees (2016) was used for the analytical studies.  
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Mechanical bar splices, or couplers, were assumed to be utilized at the end of 

each beam and column representing a connection for precast members.  A typical corner 

beam-column joint for such a scenario is shown in Fig. 5.1.  Note Lsp is the length of the 

splice, which might be different for beams and columns.  The construction sequence will 

be (1) erect the precast columns of the first story, (2) form the beam-column joints, place 

the connecting reinforcement, and pour the joints (3) installed the precast beams, and (4) 

erect the precast columns of the second floor.  Continue for all stories. 

 

Figure 5.1- Elevation View for a Mechanically Spliced Beam-Column Joint 

 

Three-, six-, and none-story moment-resisting frames were designed according to 

the current codes and detailed in the previous chapter.  Finite element models for these 
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frames but incorporating mechanical bar splices are shown in Fig. 5.2 to 5.4.  Each 

column and beam was modeled with seven sub-elements.  Nodes were shown with 

circles.  The location of the applied load for pushover analysis is also shown.  Figure 5.5 

shows a close-up of the finite element model for a typical beam-column joint.  Nodes 

were used at the centerline of the joint, the face of the beams and columns, and at the 

ends of the couplers.  Hsp is the distance between the face of either the beam or column 

and the coupler end face.  Hsp was assumed to be zero in the present study, which is for 

the cases where the couplers are exactly at the ends of the beams and columns.  Table 5.1 

presents a summary of the modeling methods for mechanically spliced RC frames.   

 

 

Figure 5.2- Finite Element Model for Three Story Moment-Resisting Frames 
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Figure 5.3- Finite Element Model for Six Story Moment-Resisting Frames 
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Figure 5.4- Finite Element Model for Nine Story Moment-Resisting Frames 
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Figure 5.5- Finite Element Model for a Typical Beam-Column Joint 

 

 

  

H sp

Lsp

Beam
Lsp

Column

Nodes

H sp

Elements

Couplers



84 

 

Table 5.1: Modeling Methods for Mechanically Spliced RC Frames 

General Remarks 

Two Dimensions with 3 Degrees of 

freedom per node. 

Supports are fixed. 
 

Geometrical Properties: 

Number of nodes in beam: 8, 

Number of nodes in column: 8, 

Number of Elements in beam: 7, 

Number of Elements in column: 7. 

 

Element type: forcebeamcolumn with 5 

integration points except for the smallest 

element, Hsp which is close to 0.  Hsp is the 

distance from the face of beam or column to 
the end face of coupler.  Two integration 

points were used along this very short 

element. 

 

Gravity load and P-Δ effects were 

considered, 

No torsional or bond-slip effects 

Sectional Properties:  

Fiber Section, 

Core Concrete Discretization: 30 by 30, 
Cover Concrete Discretization: 10 by 10. 

 

Element in the middle of the beam or 

column has less transverse reinforcement. 

 

The Beam-Column joint region is rigid.  

“elasticBeamColumn” elements with large 

moment of inertia were used in joint region.   

 

 

Concrete Fibers 

Application: unconfined concrete (cover) 

 
Type: Concrete04 

f’cc = - 5 ksi (34.47 MPa) 

Ԑcc = -0.002 in./in. 

f’cu = 0.0 ksi (0.0 MPa) 

Ԑcu = -0.005 in./in. 

Ec = [57000 x √(5000)] / 1000 = 4030.51 

ksi (27789.39 MPa) 

Application: confined concrete (core) based 

on Mander’s model. 
 

Type: Concrete04 (for all sections i.e. for 

both beam and column) 

f’cc, Ԑcc, f’cu and Ԑcu depends on cross-

section, transverse bar size, type, and 

spacing, and clear cover according to 

Mander’s model. 

Steel Fibers 

Application: Longitudinal bar 

Type: ReinforcingSteel 
fy = 68 ksi (468.84 MPa) 

fsu = 95 ksi (655 MPa) 

Es = 29000 ksi (199947.96 MPa) 

Esh = 1247 ksi (8597.76 MPa) 

Ԑsh = 0.015 in./in.  

Ԑsu = 0.12 in./in. 

Application: Longitudinal bar 

Type: Pinching4 
f1 = 68 ksi (468.84 MPa) 

f2 = 91.22 ksi (628.94 MPa) 

f3 = 95 ksi (655 MPa) 

f4 = 0.5 ksi (3.45 MPa) 

Ԑ1 = 0.0023 in./in. 

Ԑ2 = 0.05 in./in. 

Ԑ3 = 0.11 in./in. 

Ԑ4 =0.12 in./in. 

 

As discussed before, “ReinforcingSteel” material model does not show any sudden drop 

in strength at the ultimate strain.  Therefore, an alternative material model, “Pinching4” 

was used.  Figure 5.6 shows the stress-strain relationships for both types of the material 

models for an ASTM A706 Grade 60 steel bar.  The use of “Pinching4” and 
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“Concrete04” material model allows to identify the ultimate displacement of a frame 

without monitoring the stress-strain of the steel and core concrete fibers.   

 

  

Figure 5.6- Stress-Strain Relationship for “ReinforcingSteel” and “Pinching4” Material Models 

 

Coupler properties were determined according to the coupler material model developed 

by Tazarv and Saiidi (2016) and are summarized in Table 5.2 for different coupler rigid 

length factor, β, and different coupler length, Lsp.  Only No. 7 bars (Ø22 mm) and No. 9 

bars (Ø29 mm) were utilized in the frames.   
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Table 5.2: Coupler Properties for Parametric Study 

Coupler Length of Lsp = 5db 

Original Steel Bar β = 0.25 β = 0.5 β = 0.75 

Type: ReinforcingSteel, 

fy = 68 ksi (468.84 

MPa), 
fsu = 95 ksi (655 MPa), 

Es = 29000 ksi 

(199947.96 MPa), 

Esh = 1247 ksi (8597.76 

MPa), 

Ԑsh = 0.015 in./in., 

Ԑsu =0.12 in./in. 

Type: ReinforcingSteel, 

fy = 68 ksi (468.84 

MPa), 
fsu = 95 ksi (655 MPa), 

Es = 35304.35 ksi 

(243414.92 MPa), 

Esh = 1518.09 ksi 

(10466.86 MPa), 

Ԑsh = 0.0123 in./in., 

Ԑsu =0.099 in./in. 

Type: ReinforcingSteel, 

fy = 68 ksi (468.84 

MPa), 
fsu = 95 ksi (655 MPa), 

Es = 45111.11 ksi 

(311030.15 MPa), 

Esh = 1939.78 ksi 

(13374.31 MPa), 

Ԑsh = 0.0096 in./in., 

Ԑsu =0.077 in./in. 

Type: ReinforcingSteel, 

fy = 68 ksi (468.84 

MPa), 
fsu = 95 ksi (655 MPa), 

Es = 62461.54 ksi 

(430657.16 MPa), 

Esh = 2685.85 ksi 

(18518.28 MPa), 

Ԑsh = 0.0069 in./in., 

Ԑsu =0.056 in./in. 

Coupler Length of Lsp = 10db 

Original Steel Bar β = 0.25 β = 0.5 β = 0.75 

Type: ReinforcingSteel, 

fy = 68 ksi (468.84 
MPa), 

fsu = 95 ksi (655 MPa), 

Es = 29000 ksi 

(199947.96 MPa), 

Esh = 1247 ksi (8597.76 

MPa), 

Ԑsh = 0.015 in./in., 

Ԑsu =0.12 in./in. 

Type: ReinforcingSteel, 

fy = 68 ksi (468.84 
MPa), 

fsu = 95 ksi (655 MPa), 

Es = 36631.58 ksi 

(252565.85 MPa), 

Esh = 1575.16 ksi 

(10860.35 MPa), 

Ԑsh = 0.0119 in./in., 

Ԑsu =0.095 in./in. 

Type: ReinforcingSteel, 

fy = 68 ksi (468.84 
MPa), 

fsu = 95 ksi (655 MPa), 

Es = 49714.29 ksi 

(342767.96 MPa), 

Esh = 2137.71 ksi 

(14738.99 MPa), 

Ԑsh = 0.0088 in./in., 

Ԑsu =0.07 in./in. 

Type: ReinforcingSteel, 

fy = 68 ksi (468.84 
MPa), 

fsu = 95 ksi (655 MPa), 

Es = 77333.33 ksi 

(533194.54 MPa), 

Esh = 3325.33 ksi 

(22927.34 MPa), 

Ԑsh = 0.0056 in./in., 

Ԑsu =0.045 in./in. 

Coupler Length of Lsp = 15db 

Original Steel Bar β = 0.25 β = 0.5 β = 0.75 

Type: ReinforcingSteel, 
fy = 68 ksi (468.84 

MPa), 

fsu = 95 ksi (655 MPa), 

Es = 29000 ksi 

(199947.96 MPa), 

Esh = 1247 ksi (8597.76 

MPa), 

Ԑsh = 0.015 in./in., 

Ԑsu =0.12 in./in. 

Type: ReinforcingSteel, 
fy = 68 ksi (468.84 

MPa), 

fsu = 95 ksi (655 MPa), 

Es = 37207.54 ksi 

(256536.96 MPa), 

Esh = 1599.92 ksi 

(11031.06 MPa), 

Ԑsh = 0.0117 in./in., 

Ԑsu =0.094 in./in. 

Type: ReinforcingSteel, 
fy = 68 ksi (468.84 

MPa), 

fsu = 95 ksi (655 MPa), 

Es = 51894.74 ksi 

(357801.64 MPa), 

Esh = 2231.47 ksi 

(15385.44 MPa), 

Ԑsh = 0.0084 in./in., 

Ԑsu =0.067 in./in. 

Type: ReinforcingSteel, 
fy = 68 ksi (468.84 

MPa), 

fsu = 95 ksi (655 MPa), 

Es = 85739.13 ksi 

(591150.49 MPa), 

Esh = 3686.78 ksi 

(25419.45 MPa), 

Ԑsh = 0.005 in./in., 

Ԑsu =0.041 in./in. 

 

The stress-Strain relationship for an original steel bar and 15db-long couplers with 

three rigid length factors of 0.25, 0.5, and 0.75 are shown in Fig. 5.7.  It can be seen that 

stiffener couplers significantly reduces the ultimate strain capacity of the reinforcement 

in the spliced region. 
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Figure 5.7- Stress-Strain Relationships for Original Steel Bar and Couplers Used in Parametric 

Study 

 

Concrete confinement varies throughout the length of the beams and columns 

depending on the sectional properties, the size and properties of the longitudinal bars, and 

the spacing and detailing of the transverse reinforcement (different frame types).  

Mander’s model (Mander et al., 1988) was used to calculate the properties of the 

confined concrete.  Tables 5.3 to 5.11 present a summary of the confined concrete 

properties for different frame types.  “Concrete04” was used in all beam and column 

sections to model the core concrete fibers since it shows a sudden drop in the strength 

when the ultimate strain is reached.   
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Table 5.3: Properties of Core Concrete Fibers in Three-story Ordinary MRF 

Beam B1 Beam B2, B3 and B4 Column C 

f’cc = -5.95 ksi (41.03 MPa) 

Ԑcc = -0.0039 in./in. 

f’cu = -3.763 ksi (25.94 MPa) 

Ԑcu = -0.0164 in./in. 

f’cc = -5.75 ksi (39.64 MPa) 

Ԑcc = -0.0035 in./in. 

f’cu = -3.6375 ksi (25.08 MPa) 

Ԑcu = -0.0131 in./in. 

f’cc = -5.75 ksi (39.64 MPa) 

Ԑcc = -0.0035 in./in. 

f’cu = -3.5942 ksi (24.78 MPa) 

Ԑcu = -0.0134 in./in. 

 

Table 5.4: Properties of Core Concrete Fibers in Three-story Intermediate MRF 

Beam B1 and B3 Beam B2 Column C 

f’cc = -5.95 ksi (41.03 MPa) 

Ԑcc = -0.0039 in./in. 

f’cu = -3.885 ksi (26.79 MPa) 
Ԑcu = -0.0154 in./in. 

f’cc = -5.45 ksi (37.58 MPa) 

Ԑcc = -0.0029 in./in. 

f’cu = -3.2029 ksi (22.08 MPa) 
Ԑcu = -0.0099 in./in. 

f’cc = -6.25 ksi (43.09 MPa) 

Ԑcc = -0.0045 in./in. 

f’cu = -4.3776 ksi (30.18 MPa) 
Ԑcu = -0.0175 in./in. 

 

Table 5.5: Properties of Core Concrete Fibers in Three-story Special MRF 

Beam B1 and B3 Beam B2 and B4 Column C1 

f’cc = -5.95 ksi (41.02 MPa) 

Ԑcc = -0.0039 in./in. 

f’cu = -4.0365 ksi (27.83 MPa) 

Ԑcu = -0.0143 in./in. 

f’cc = -5.25 ksi (36.2 MPa) 

Ԑcc = -0.0025 in./in. 

f’cu = -2.7229 ksi (18.77 MPa) 

Ԑcu = -0.0083 in./in. 

f’cc = -6.925 ksi (47.75 MPa) 

Ԑcc = -0.0059 in./in. 

f’cu = -5.208 ksi (35.91 MPa) 

Ԑcu = -0.0234 in./in. 

Column C2   

f’cc = -6.325 ksi (43.61 MPa) 

Ԑcc = -0.0047 in./in. 

f’cu = -4.308 ksi (29.7 MPa) 

Ԑcu = -0.0199 in./in. 

  

 

Table 5.6: Properties of Core Concrete Fibers in Six-story Ordinary MRF 

Beam B1 and B2 Beam B3 Beam B4, B5 and B6 

f’cc = -5.25 ksi (36.2 MPa) 

Ԑcc = -0.0025 in./in. 

f’cu = -2.4763 ksi (17.07 MPa) 

Ԑcu = -0.0092 in./in. 

f’cc = -5.95 ksi (41.02 MPa) 

Ԑcc = -0.0039 in./in. 

f’cu = -3.763 ksi (25.94 MPa) 

Ԑcu = -0.0164 in./in. 

f’cc = -5.75 ksi (39.64 MPa) 

Ԑcc = -0.0035 in./in. 

f’cu = -3.5942 ksi (24.78 MPa) 

Ԑcu = -0.0134 in./in. 

Column C1 Column C2  

f’cc = -5.6 ksi (38.61 MPa) 

Ԑcc = -0.0032 in./in. 
f’cu = -3.4956 ksi (24.1 MPa) 

Ԑcu = -0.0112 in./in. 

f’cc = -5.75 ksi (39.64 MPa) 

Ԑcc = -0.0035 in./in. 
f’cu = -3.6375 ksi (25.08 MPa) 

Ԑcu = -0.0131 in./in. 
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Table 5.7: Properties of Core Concrete Fibers in Six-story Intermediate MRF 

Beam B1, B3 and B5 Beam B2, B4 and B6 Beam B7 and B9 

f’cc = -5.8 ksi (39.99 MPa) 

Ԑcc = -0.0036 in./in. 

f’cu = -3.7425 ksi (25.8 MPa) 

Ԑcu = -0.0134 in./in. 

f’cc = -5.25 ksi (36.2 MPa) 

Ԑcc = -0.0025 in./in. 

f’cu = -2.541 ksi (11.52 MPa) 

Ԑcu = -0.009 in./in. 

f’cc = -5.95 ksi (41.02 MPa) 

Ԑcc = -0.0039 in./in. 

f’cu = -3.8848 ksi (26.78 MPa) 

Ԑcu = -0.0154 in./in. 

Beam B8 and B10 Column C1 Column C2 

f’cc = -5.45 ksi (37.58 MPa) 

Ԑcc = -0.0029 in./in. 

f’cu = -3.2029 ksi (22.08 MPa) 
Ԑcu = -0.0099 in./in. 

f’cc = -5.85 ksi (40.33 MPa) 

Ԑcc = -0.0037 in./in. 

f’cu = -3.8292 ksi (26.4 MPa) 
Ԑcu = -0.0138 in./in. 

f’cc = -5.6 ksi (38.61 MPa) 

Ԑcc = -0.0032 in./in. 

f’cu = -3.4956 ksi (24.1 MPa) 
Ԑcu = -0.0112 in./in. 

Column C3   

f’cc = -6.25 ksi (43.09 MPa) 

Ԑcc = -0.0045 in./in. 

f’cu = -4.3776 ksi (30.18 MPa) 

Ԑcu = -0.0175 in./in. 

  

 

Table 5.8: Properties of Core Concrete Fibers in Six-story Special MRF 

Beam B1 Beam B2 Beam B3 and B5 

f’cc = -5.7 ksi (39.3 MPa) 

Ԑcc = -0.0034 in./in. 

f’cu = -3.6006 ksi (24.83 MPa) 

Ԑcu = -0.0124 in./in. 

f’cc = -5.25 ksi (36.2 MPa) 

Ԑcc = -0.0025 in./in. 

f’cu = -2.6498 ksi (18.27 MPa) 

Ԑcu = -0.0086 in./in. 

f’cc = -5.7 ksi (39.3 MPa) 

Ԑcc = -0.0034 in./in. 

f’cu = -3.2455 ksi (22.38 MPa) 

Ԑcu = -0.0147 in./in. 

Beam B4 and B6 Column C1 Column C2 

f’cc = -5.25 ksi (36.2 MPa) 

Ԑcc = -0.0025 in./in. 

f’cu = -2.7229 ksi (18.77 MPa) 

Ԑcu = -0.0083 in./in. 

f’cc = -5.95 ksi (41.02 MPa) 

Ԑcc = -0.0039 in./in. 

f’cu = -3.8856 ksi (26.79 MPa) 

Ԑcu = -0.0154 in./in. 

f’cc = -6.925 ksi (47.75 MPa) 

Ԑcc = -0.0059 in./in. 

f’cu = -5.208 ksi (35.91 MPa) 

Ԑcu = -0.0234 in./in. 

Column C3   

f’cc = -6.325 ksi (43.61 MPa) 

Ԑcc = -0.0047 in./in. 
f’cu = -4.308 ksi (29.7 MPa) 

Ԑcu = -0.0199 in./in. 

  

 

Table 5.9: Properties of Core Concrete Fibers in Nine-story Ordinary MRF 

Beam B1, B2, B3 and B4 Beam B5 Beam B6, B7 and B8 

f’cc = -5.25 ksi (36.2 MPa) 

Ԑcc = -0.0025 in./in. 

f’cu = -2.4763 ksi (17.07 MPa) 

Ԑcu = -0.0092 in./in. 

f’cc = -5.95 ksi (41.02 MPa) 

Ԑcc = -0.0039 in./in. 

f’cu = -3.763 ksi (25.94 MPa) 

Ԑcu = -0.0164 in./in. 

f’cc = -5.75 ksi (39.64 MPa) 

Ԑcc = -0.0035 in./in. 

f’cu = -3.5942 ksi (24.78 MPa) 

Ԑcu = -0.0134 in./in. 

Column C1 Column C2  

f’cc = -5.6 ksi (38.61 MPa) 

Ԑcc = -0.0032 in./in. 

f’cu = -3.4956 ksi (24.1 MPa) 

Ԑcu = -0.0112 in./in. 

f’cc = -5.75 ksi (39.64 MPa) 

Ԑcc = -0.0035 in./in. 

f’cu = -3.6375 ksi (25.08 MPa) 

Ԑcu = -0.0131 in./in. 
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Table 5.10: Properties of Core Concrete Fibers in Nine-story Intermediate MRF 

Beam B1, B3 and B5 Beam B2, B4 and B6 Beam B7 and B9 

f’cc = -5.8 ksi (39.99 MPa) 

Ԑcc = -0.0036 in./in. 

f’cu = -3.7425 ksi (25.8 MPa) 

Ԑcu = -0.0134 in./in. 

f’cc = -5.25 ksi (36.2 MPa) 

Ԑcc = -0.0025 in./in. 

f’cu = -2.541 ksi (11.52 MPa) 

Ԑcu = -0.009 in./in. 

f’cc = -5.95 ksi (41.02 MPa) 

Ԑcc = -0.0039 in./in. 

f’cu = -3.8848 ksi (26.78 MPa) 

Ԑcu = -0.0154 in./in. 

Beam B8 and B10 Column C1 Column C2 

f’cc = -5.45 ksi (37.58 MPa) 

Ԑcc = -0.0029 in./in. 

f’cu = -3.2029 ksi (22.08 MPa) 
Ԑcu = -0.0099 in./in. 

f’cc = -5.85 ksi (40.33 MPa) 

Ԑcc = -0.0037 in./in. 

f’cu = -3.8292 ksi (26.4 MPa) 
Ԑcu = -0.0138 in./in. 

f’cc = -5.6 ksi (38.61 MPa) 

Ԑcc = -0.0032 in./in. 

f’cu = -3.4956 ksi (24.1 MPa) 
Ԑcu = -0.0112 in./in. 

Column C3   

f’cc = -6.25 ksi (43.09 MPa) 

Ԑcc = -0.0045 in./in. 

f’cu = -4.3776 ksi (30.18 MPa) 

Ԑcu = -0.0175 in./in. 

  

 

Table 5.11: Properties of Core Concrete Fibers in Nine-story Special MRF 

Beam B1 Beam B2 Beam B3 

f’cc = -5.625 ksi (38.78 MPa) 

Ԑcc = -0.0033 in./in. 

f’cu = -3.5516 ksi (24.49 MPa) 

Ԑcu = -0.0113 in./in. 

f’cc = -5.4 ksi (23.44 MPa) 

Ԑcc = -0.0028 in./in. 

f’cu = -3.2929 ksi (22.71 MPa) 

Ԑcu = -0.0088 in./in. 

f’cc = -5.7 ksi (39.3 MPa) 

Ԑcc = -0.0034 in./in. 

f’cu = -3.6006 ksi (24.83 MPa) 

Ԑcu = -0.0124 in./in. 

Beam Beam B5 and B7 Beam B6 and B8 

f’cc = -5.25 ksi (36.2 MPa) 

Ԑcc = -0.0025 in./in. 

f’cu = -2.6498 ksi (18.27 MPa) 

Ԑcu = -0.0086 in./in. 

f’cc = -5.7 ksi (39.3 MPa) 

Ԑcc = -0.0034 in./in. 

f’cu = -3.2455 ksi (22.38 MPa) 

Ԑcu = -0.0147 in./in. 

f’cc = -5.25 ksi (36.2 MPa) 

Ԑcc = -0.0025 in./in. 

f’cu = -2.7229 ksi (18.77 MPa) 

Ԑcu = -0.0083 in./in. 

Column C1 Column C2 Column C3 

f’cc = -5.75 ksi (39.64 MPa) 

Ԑcc = -0.0035 in./in. 
f’cu = -3.6728 ksi (25.32 MPa) 

Ԑcu = -0.0129 in./in. 

f’cc = -5.95 ksi (41.02 MPa) 

Ԑcc = -0.0039 in./in. 
f’cu = -3.8856 ksi (26.79 MPa) 

Ԑcu = -0.0154 in./in. 

f’cc = -6.925 ksi (47.75 MPa) 

Ԑcc = -0.0059 in./in. 
f’cu = -5.208 ksi (35.91 MPa) 

Ԑcu = -0.0234 in./in. 

Column C4   

f’cc = -6.325 ksi (43.61 MPa) 

Ԑcc = -0.0047 in./in. 

f’cu = -4.308 ksi (29.7 MPa) 

Ԑcu = -0.0199 in./in. 

  

 

The stress-strain relationship for the unconfined and a sample confined concrete 

(section C3 for nine-story SMRF) is shown in Fig. 5.8. 
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Figure 5.8- Stress-Strain Relationship for Unconfined and Confined Concrete Used in Parametric 

Study 

 

The displacement capacity of frames is the interest of the analytical studies.  Since 

both steel and core concrete fibers show sudden drop in the strength at the ultimate 

strains, the ultimate displacement of a frame in a pushover analysis can be defined as the 

point where the lateral load carrying capacity of the frame drops by 15% with respect to 

the peak base shear.  Therefore, the effect of bar fracture and core concrete failure are 

included in the system performance.  The geometric nonlinearity was included in all 

analyses.  Both displacement capacity and displacement ductility capacity were 

calculated from each analysis.  The displacement ductility capacity is the ratio of the 

displacement capacity and the effective yield displacement.  Effective yield displacement 

was calculated per ASCE 41-13 (2014).  Since the displacement ductility capacity was 

not consistent, it was excluded from further data processing. 

OpenSees modeling for the nine-story IMRF is presented in Appendix A.   
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5.2 Analytical Study 

In total, 108 pushover analyses were performed.  Of which, nine analysis were 

performed on reference unspliced frames and 99 analyses were carried out on the spliced 

frames to determine the effect of couplers on their seismic performance.   

5.2.1 Parameters 

Previous study by Tazarv and Saiidi (2016) showed that the coupler rigid length 

factor, the coupler length, and the coupler location affect the displacement capacity of 

mechanically spliced bridge columns.  For RC frames, four parameters were included in 

the analyses: (1) the coupler rigid length factor, (2) the coupler length, (3) the number of 

stories or the building height, and (4) the moment-resisting frame system.   

There are many coupler types available in the market.  Due to lack of test data, a 

range of β from 0.25 to 0.75 was included in the present study to cover all practical cases.  

Tazarv and Saiidi (2016) recommended to only use couplers with a length less than 15db 

(db is the diameter of the reinforcing bar) for seismic applications.  Therefore, three Lsp of 

5db, 10db, and 15db were selected for the parametric study.  Height of three-, six-, and 

nine-story buildings provides another parameter to the analysis.  The fourth parameter 

was the frame type: ordinary moment-resisting force (OMRF), intermediate moment-

resisting force (IMRF), and special moment-resisting force (SMRF).   

5.2.2 Results of Parametric Study 

Effect of the individual parameter on the seismic performance of mechanically 

spliced RC frames is evaluated herein.   
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5.2.2.1 Coupler Rigid Length Factor, β 

Figure 5.9 shows the effect of the coupler rigid length factor on the pushover 

curve of nine-story SMRF.  It can be seen that couplers with higher rigid length factors 

increase the initial stiffness of RC frames but significantly reduce the frame displacement 

capacity.  For example, the initial stiffness for the nine-story SMRF spliced with 15db–

long couplers was increased by 22%, and the displacement capacity was reduced by 21% 

when the coupler rigid length factor increased from 0.25 to 0.75.  Similar trend was 

observed in other frames with different number of stories. 

 

Figure 5.9- Pushover Response of Nine-Story SMRF with Lsp = 15db and Different Coupler Rigid 

Length Factors 

5.2.2.2 Coupler Length, Lsp 

Figure 5.10 shows the effect of the coupler length on the force-displacement 

relationship of nine-story SMRFs.  It is obvious that the coupler length has a significant 

effect on the initial stiffness and the displacement capacity of the frames.  Longer 

couplers reduce the displacement capacities of RC frames more than the shorter couplers.  
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For example, the displacement capacity of the mechanically spliced nine-story SMRF 

with β = 0.5 was reduced by 14% when the coupler length increased from 5db to 15db.  

The same trend was observed in other frames. 

 

 

Figure 5.10- Pushover Response of Nine-Story SMRF with β=0.5 and Different Coupler Lengths 

5.2.2.3 Height of Building 

Figure 5.11 shows the effect of the building height on the pushover response of 

SMRFs with Lsp = 15db and β = 0.75.  It can be seen that the height of the RC frames 

affects the overall pushover response thus they have to be included in the evaluation of 

coupler effects on the seismic performance of RC frames. Similar trend was observed in 

other frames.   
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Figure 5.11- Pushover Response of SMRFs with Lsp = 15db, β = 0.75, and Different Buidling Hights 

5.2.2.4 Moment-Resisting Frame System 

Figure 5.12 shows the effect of moment-resisting frame systems on the pushover 

response.  It can be seen that the frame seismic detailing is another critical parameter to 

evaluate the coupler effect.  The general trend is that RC frames with better seismic 

detailing are more ductile than others.   
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Figure 5.12- Pushover Response of Three-Story MRFs with Lsp = 10db, β = 0.25, and Different 

Seismic Detailing 

5.2.3 Summary of Results 

More than 100 pushover analyses were performed to investigate the effect of 

mechanical bar splices on the seismic performance of RC frames.  The analytical study 

showed how much displacement capacity will reduce due to the use of different types of 

couplers in plastic hinge regions region in various types of buildings.   

The data was clustered per frame type then the reduction in the displacement 

capacity (the ratio of the spliced frame displacement capacity, sp, to the unspliced 

reference frame displacement capacity, RC) was plotted against the ratio of the coupler 

length to the building height.  Figure 5.13 shows such a graph for SMRFs.  Outlier data 

was removed from the graph.  Linear, logarithmic, polynomial, and exponential curves 

were fitted to the data to find the best match.  It was found that a logarithmic equation 
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represents the behavior.  Based on the observed behavior, an equation was developed for 

SMRFs then it was expanded for other types of moment-resisting RC frames (Fig. 5.14 

and 5.15).  It can be seen that the effect of mechanical bar splices on the displacement 

capacity of RC frames is more significant for SMRFs.  For example, at 100Lsp/Height=2 

and Beta=0.75, the displacement capacity reduction was 35% in SMRF due to the use of 

the couplers while the displacement capacity reduction for IMRF and OMRF was 32% 

and 29%, respectively.   

 

 

Figure 5.13- Summary of Results for SMRFs 
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Figure 5.14- Summary of Results for IMRFs 

 

 

Figure 5.15- Summary of Results for OMRFs 
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5.3 Proposed Design Equation 

It was shown that four parameters affect the displacement capacity of 

mechanically spliced moment-resisting RC frames: the coupler rigid length factor (β), the 

coupler length (Lsp), the height of the building, and the moment-resisting frame system 

(ordinary, intermediate, and special).  Based on the statistical analysis, a simple design 

equation was proposed accounting for the four aforementioned parameters: 

𝛿𝑠𝑝

𝛿𝑅𝐶  
=  Ω [1 − 0.35 𝛽 + (0.01 − 0.2 𝛽) ln

100𝐿𝑠𝑝

𝐻
] ≤ 1 (5.1) 

where, 

Ω = The type of MRF system (1 for SMRF, 1.05 for IMRF, and 1.1 for OMRF) 

Lsp = The coupler length (in. or m) 

β = The coupler rigid length factor 

H = The height of the building (in. or m) 

The proposed equation was shown in Fig. 5.13 to 5.15 with solid lines for three 

different coupler rigid length factors.  It can be seen that the proposed equation estimates 

the reduction in the displacement capacity of moment-resisting RC frames due to the use 

of mechanical bar splices in the plastic hinge regions with reasonable accuracy. 

 

5.4 Discussion 

The analytical studies presented above showed that couplers reduce the 

displacement capacity of RC frames.  ACI 318-14 (2014) allows two types of bar 

couplers:  Type 1 and Type 2.  Type 2 couplers, which are stronger than the ultimate 

strength of bars, were utilized and modeled in the present study.  The code restricts the 
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use of these couplers in certain locations.  Table 5.12 presents the summary of the ACI 

318-14 (2014) requirements and the findings of the present study.   

 

Table 5.12: Summary of Results and ACI 318-14 (2014) Requirement 

Frame 

Type 
Code Requirements 

Present Study 

Reduction in Displacement Capacity (β=0.75, Lsp=15db) 

Three-

Story 

Six-

Story 

Nine-

Story 
Remarks 

OMRF  No restriction 

36% 25% 19% 

Type 2 couplers may be 

incorporated in plastic hinge 

regions but the reduced 

displacement capacity (Eq. 

5.1) shall be higher than the 
displacement demand.  

IMRF  No restriction 

39% 29% 23% 

Type 2 couplers may be 

incorporated in plastic hinge 

regions but the reduced 

displacement capacity (Eq. 

5.1) shall be higher than the 

displacement demand. 

SMRF  Type 1 coupler: 

• Shall not be located within 

twice the member depth from 

the beam or column face or 

from critical sections where 

yielding of reinforcement may 
occur due to lateral 

displacement. 

• Restricted in all reinforcement 

resisting earthquake effects.   

 

Type 2 coupler: 

• Shall not be located in beam 

closer than half the height of 

the beam from the joint face in 

ductile connections 

constructed using precast 
concrete. 

• Can be used with 

documentation in regions of 

potential yielding of members 

resisting earthquake effects 

42% 32% 26% 

Type 2 couplers may be 

incorporated in plastic hinge 

regions but the reduced 

displacement capacity (Eq. 

5.1) shall be higher than the 

displacement demand. 

Note:  Story height was assumed 12 ft (3.66 m) 

 

The findings of the present study show the use of mechanical bar splices can be 

allowed for all three types of RC MRFs mainly to accelerate the construction.  However, 
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the coupler shall be Type 2 (bar fracture shall be ensured outside the coupler region), the 

coupler length shall not exceed 15 times the anchoring bar diameter, and the 

displacement capacity shall be modified according to the proposed equation (Eq. 5.1) to 

be checked against the displacement demand.  Type 1 shall not be used in the plastic 

hinge region of ductile member of any frame type since large inelastic deformations of 

spliced bars cannot be guaranteed.    

In summary, the ACI restrictions for SMRFs can be relaxed.  However, new 

restrictions are needed for OMRFs and IMRFs if the seismic demands are significant.    
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6. Summary and Conclusions 

 

 

 

6.1 Summary 

Effects of mechanical bar splices on the seismic behavior of RC frames were 

analytically investigated in the present study.  Three-, six-, and nine-story ordinary 

moment-resisting frames (OMRFs), intermediate MRFs (IMRFs), and special MRFs 

(SMRFs) were designed and detailed according to ASCE 7-10 and ACI 318-14.  Previous 

experimental data was selected from literature to verify the modeling methods presented 

for mechanically spliced RC members.  More than 100 pushover analyses were 

performed.  Four variables were included in the analytical studies of the nine frames:  the 

coupler rigid length factor (β = 0.25, 0.50, and 0.75), the coupler length, (Lsp = 5db, 10db, 

and 15db), the height of building (with an interval of 12 ft per story), and the type of 

moment-resisting frame system (ordinary, intermediate, and special).  A simple design 

equation was proposed to quantify the effect of coupler on the displacement capacity of 

spliced frames.   
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6.2 Conclusions 

Based on the analytical studies, following conclusions can be drawn: 

• The proposed modeling methods for mechanically spliced RC members 

was simple and reasonably accurate.   

• Mechanical splices significantly affect the force-displacement relationship 

of all three types RC frames.   

• Couplers with higher rigid length factors and longer couplers increase the 

stiffness of RC frames and reduce their displacement capacities. 

• Taller RC frames are less affected by mechanical bar splices.   

• The adverse effect of couplers on the displacement capacity is more 

profound for SMRFs compared to other frame types.  Very rigid and long 

couplers can reduce the displacement capacity of a short SMRF up to 42% 

while this reduction in the displacement capacity can be up to 39% and 

36% for IMRF and OMRF, respectively.   

Overall, the effect of coupler on all RC frame types is significant and must be 

included in the design.    
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APPENDIX A: SAMPLE OPENSEES CODE 

OpenSees was used for the parametric study.  A sample of the code for nine-story 

intermediate moment-resisting frame is presented to further help the researchers. 

# 3D modeling of 2D RC frame w/ Nonlinear Beam and Column and Inelastic Fiber Section for 

non-linear static procedure (NSP) 

# Abdullah Al Hashib, 2016 

# Advisor: Dr. Mostafa Tazarv 

 

#      ^Y 

#      | 

#   (100110)|________(100120)_____(100130)_____(100140)_____(100150)   _,_ 

#      |       |      |      |           |  | 

#      |       |      |      |  |      LCol 

#    (90110)|____(90120)|____(90130)|____(90140)|___________|(90150)   _|_ 

#    |       |      |      |    |  |     

#      |  |  |  |  |      

LCol 

#    (80110)|____(80120)|____(80130)|____(80140)|___________|(80150)   _|_ 

#      |       |      |      |      |  | 

#      |       |       |      |   |          LCol 

#    (70110)|________(70120)_____(70130)_____(70140)______(70150)      _|_ 

#      |       |      |      |           |  | 

#      |       |      |      |  |      LCol 

#    (60110)|____(60120)|____(60130)|____(60140)|___________|(60150)   _|_ 

#    |       |      |      |    |  |     

#      |  |  |  |  |      

LCol 

#    (50110)|____(50120)|____(50130)|____(50140)|___________|(50150)   _|_ 

#      |       |      |      |      |  | 

#      |       |       |      |   |          LCol 

#    (40110)|________(40120)_____(40130)_____(40140)______(40150)      _|_ 

#      |       |      |      |           |  | 

#      |       |      |      |  |      LCol 

#    (30110)|____(30120)|____(30130)|____(30140)|___________|(30150)   _|_ 

#    |       |      |      |    |  |     

#      |  |  |  |  |      

LCol 

#    (20110)|____(20120)|____(20130)|____(20140)|___________|(20150)   _|_ 

#      |       |      |      |      |  | 

#      |       |       |      |   |          LCol 

#   (10110)_|_  (10120)_|_  (10130)_|_  (10140)_|_  (10150)_|_  ___X   _|_ 

#          ```      ```      ```      ```      ``` 

 ` 

#      |<--LBeam-->|<--LBeam-->|<--LBeam-->|<--LBeam-->| 

 

 

# SET UP ---------------------------------------------------------------------------- 

wipe;       # clear memory of all past model 

definitions 

model BasicBuilder -ndm 3 -ndf 6;  # Define the model builder, ndm=#dimension, 

ndf=#dofs 

set dataDir Data;     # set up name of data directory 

file mkdir $dataDir;     # create data directory 

source LibUnits.tcl;    # define units 

source DisplayPlane.tcl;   # procedure for displaying a plane in model 

source DisplayModel3D.tcl;   # procedure for displaying 3D perspectives 

of model 

source BuildRCrectSection.tcl;  # procedure for definining RC fiber section 

 

# ------ frame configuration 

set NStory 9;   # number of stories above ground level 

set NBay 4;    # number of bays in X direction 

set NBayZ 0;   # number of bays in Z direction 

puts "Number of Stories in Y: $NStory Number of bays in X: $NBay Number of bays in Z: 

$NBayZ"; 
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set NFrame [expr $NBayZ + 1]; # actually deal with frames in Z direction, as this is an 

easy extension of the 2d model 

 

# define structure-geometry paramters 

set LCol [expr 12.*$ft];  # column height (parallel to Y axis) 

set LBeam [expr 20.*$ft];  # beam length (parallel to X axis) 

set LGird [expr 0.*$ft];  # girder length (parallel to Z axis) 

 

# Section Properties: 

set HCol1 [expr 24.*$in];  # square-Column 

set BCol1 $HCol1;   

set HCol2 [expr 24.*$in];  # square-Column 

set BCol2 $HCol2;   

set HCol3 [expr 18.*$in];  # square-Column 

set BCol3 $HCol3;   

 

set HBeam [expr 24.*$in];  # Beam depth -- perpendicular to bending axis 

set BBeam1 [expr 24.*$in];  # Beam width -- parallel to bending axis 

set BBeam2 [expr 24.*$in];  # Beam width -- parallel to bending axis 

set BBeam3 [expr 18.*$in];  # Beam width -- parallel to bending axis 

 

# Reinforcing Bar Property---------------------------------------------------------------

------------- 

set BarAreaBeam 0.6*$in*$in;       # Area of longitudinal-reinforcement bars.  

set BarAreaCol 0.6*$in*$in;       # Area of longitudinal-reinforcement bars.  

 

set BeamBarDia 0.875*$in;       # Area of longitudinal-reinforcement bars.  

set ColBarDia 0.875*$in;       # Area of longitudinal-reinforcement bars.  

 

# Define Coupler Geometry----------------------------------------------------------------

----- 

set betaspBeam 0.75;                 # Coupler rigid length factor (can be 0 to 1) 

set betaspColumn 0.75;               # Coupler rigid length factor (can be 0 to 1) 

 

set LspBeam  [expr 15.*$BeamBarDia];    # Coupler Length, [e.g. 5db, 10db, 15db]  

set LspCol  [expr 15.*$ColBarDia];    # Coupler Length, [e.g. 5db, 10db, 15db] 

 

set HspBeam [expr 0.01*$HBeam];     # Distance from face of beam to start or end 

of coupler 

 

set HspCol1 [expr 0.01*$HCol1];     # Distance from face of column to start or 

end of coupler  

set HspCol2 [expr 0.01*$HCol2];     # Distance from face of column to start or 

end of coupler  

set HspCol3 [expr 0.01*$HCol3];     # Distance from face of column to start or 

end of coupler  

 

puts "------------------------------------------------------------------"; 

puts " Coupler Regid Length Factor (beta) in beam = [expr $betaspBeam]"; 

puts " Coupler Regid Length Factor (beta)in column = [expr $betaspColumn]"; 

puts " Coupler Length in Beam (in.)= [expr $LspBeam]"; 

puts " Coupler Length in Column (in.)= [expr $LspCol]"; 

puts " Distance of Coupler from Beam-Column Interface in BEAM (in.)= [expr $HspBeam]";     

puts " Distance of Coupler from Beam-Column Interface in Bottom COULMNs (in.)= [expr 

$HspCol1]";     

puts " Distance of Coupler from Beam-Column Interface in Middle COULMNs (in.)= [expr 

$HspCol2]";     

puts " Distance of Coupler from Beam-Column Interface in Top COULMNs (in.)= [expr 

$HspCol3]";     

puts "------------------------------------------------------------------"; 

 

# define NODAL COORDINATES 

 

# Story 1 to 3 

set Dlevel 10000; # numbering increment for new-level nodes (y axis) 

set Dframe 100; # numbering increment for new-frame nodes (z axis) 

set Dpier 10; # numbering increment for new-pier nodes (x axis) 

for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

 set Z [expr ($frame-1)*$LGird]; 

 for {set level 1} {$level <=[expr 3+1]} {incr level 1} { 

  set Y [expr ($level-1)*$LCol]; 
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  for {set pier 1} {$pier <= [expr $NBay+1]} {incr pier 1} { 

   set X [expr ($pier-1)*$LBeam]; 

   set nodeID [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier]; 

   node $nodeID $X $Y $Z;   # actually define node 

#puts "Nodes at Beam-Column Joints = $nodeID"; 

set A [expr $X + $HCol1/2];     # For Beams  

set B [expr $A + $HspBeam];     # For Beams 

set C [expr $B + $LspBeam];     # For Beams 

set F [expr $X + $LBeam - $HCol1/2];   # For Beams 

set E [expr $F - $HspBeam];     # For Beams 

set D [expr $E - $LspBeam];     # For Beams 

 

set nodeID1 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+1]; 

   node $nodeID1 $A $Y $Z;  # actually define node 

 #puts " Node 1 (beam) = $nodeID1"; 

set nodeID2 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+2]; 

   node $nodeID2 $B $Y $Z;  # actually define node 

 #puts " Node 2 (beam) = $nodeID2"; 

set nodeID3 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+3]; 

   node $nodeID3 $C $Y $Z;  # actually define node 

 #puts " Node 3 (beam) = $nodeID3"; 

set nodeID4 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+4]; 

   node $nodeID4 $D $Y $Z;  # actually define node 

 #puts " Node 4 (beam) = $nodeID4"; 

set nodeID5 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+5]; 

   node $nodeID5 $E $Y $Z;  # actually define node 

 #puts " Node 5 (beam) = $nodeID5"; 

set nodeID6 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+6]; 

   node $nodeID6 $F $Y $Z;  # actually define node 

 #puts " Node 6 (beam) = $nodeID6"; 

 

set A [expr $Y+ $HBeam/2];     # For Columns  

set B [expr $A + $HspCol1];     # For Columns 

set C [expr $B + $LspCol];     # For Columns 

set F [expr $Y + $LCol - $HBeam/2];    # For Columns 

set E [expr $F - $HspCol1];     # For Columns 

set D [expr $E - $LspCol];     # For Columns 

 

set nodeID1 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+1000]; 

   node $nodeID1 $X $A $Z;  # actually define node 

 #puts " Node 1 (column) = $nodeID1"; 

set nodeID2 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+2000]; 

   node $nodeID2 $X $B $Z;  # actually define node 

 #puts " Node 2 (column) = $nodeID2"; 

set nodeID3 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+3000]; 

   node $nodeID3 $X $C $Z;  # actually define node 

 #puts " Node 3 (column) = $nodeID3"; 

set nodeID4 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+4000]; 

   node $nodeID4 $X $D $Z;  # actually define node 

 #puts " Node 4 (column) = $nodeID4"; 

set nodeID5 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+5000]; 

   node $nodeID5 $X $E $Z;  # actually define node 

 #puts " Node 5 (column) = $nodeID5"; 

set nodeID6 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+6000]; 

   node $nodeID6 $X $F $Z;  # actually define node 

 #puts " Node 6 (column) = $nodeID6"; 

  } 

 } 

} 

 

# Removing unnecesary nodes created at the bottom most layers 

for {set pier 1} {$pier <=[expr $NBay+1]} {incr pier 1} { 

set level 1; 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+1];   

 remove node $nodeID;   #puts "$nodeID"; 

  

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+2]; 

 remove node $nodeID;   #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+3]; 

 remove node $nodeID;   #puts "$nodeID"; 
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 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+4]; 

 remove node $nodeID;   #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+5]; 

 remove node $nodeID;   #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+6]; 

 remove node $nodeID;   #puts "$nodeID"; 

} 

 

# Removing unnecesary nodes created at the right most side 

for {set level 2} {$level <=[expr 3+1]} {incr level 1} { 

 set pier [expr $NBay+1]; 

  

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+1]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+2]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+3]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+4]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+5]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+6]; 

 remove node $nodeID;  #puts "$nodeID"; 

} 

 

# Story 4 to 6 

set Dlevel 10000; # numbering increment for new-level nodes 

set Dframe 100; # numbering increment for new-frame nodes 

set Dpier 10; # numbering increment for new-pier nodes 

for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

 set Z [expr ($frame-1)*$LGird]; 

 for {set level 5} {$level <=[expr 6+1]} {incr level 1} { 

  set Y [expr ($level-1)*$LCol]; 

  for {set pier 1} {$pier <= [expr $NBay+1]} {incr pier 1} { 

   set X [expr ($pier-1)*$LBeam]; 

   set nodeID [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier]; 

   node $nodeID $X $Y $Z;   # actually define node 

#puts "Nodes at Beam-Column Joints = $nodeID"; 

set A [expr $X + $HCol2/2];     # For Beams  

set B [expr $A + $HspBeam];     # For Beams 

set C [expr $B + $LspBeam];     # For Beams 

set F [expr $X + $LBeam - $HCol2/2];   # For Beams 

set E [expr $F - $HspBeam];     # For Beams 

set D [expr $E - $LspBeam];     # For Beams 

 

set nodeID1 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+1]; 

   node $nodeID1 $A $Y $Z;  # actually define node 

 #puts " Node 1 (beam) = $nodeID1"; 

set nodeID2 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+2]; 

   node $nodeID2 $B $Y $Z;  # actually define node 

 #puts " Node 2 (beam) = $nodeID2"; 

set nodeID3 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+3]; 

   node $nodeID3 $C $Y $Z;  # actually define node 

 #puts " Node 3 (beam) = $nodeID3"; 

set nodeID4 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+4]; 

   node $nodeID4 $D $Y $Z;  # actually define node 

 #puts " Node 4 (beam) = $nodeID4"; 

set nodeID5 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+5]; 

   node $nodeID5 $E $Y $Z;  # actually define node 

 #puts " Node 5 (beam) = $nodeID5"; 

set nodeID6 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+6]; 
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   node $nodeID6 $F $Y $Z;  # actually define node 

 #puts " Node 6 (beam) = $nodeID6"; 

 

set A [expr $Y+ $HBeam/2];     # For Columns  

set B [expr $A + $HspCol2];     # For Columns 

set C [expr $B + $LspCol];     # For Columns 

set F [expr $Y + $LCol - $HBeam/2];    # For Columns 

set E [expr $F - $HspCol2];     # For Columns 

set D [expr $E - $LspCol];     # For Columns 

 

set nodeID1 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+1000]; 

   node $nodeID1 $X $A $Z;  # actually define node 

 #puts " Node 1 (column) = $nodeID1"; 

set nodeID2 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+2000]; 

   node $nodeID2 $X $B $Z;  # actually define node 

 #puts " Node 2 (column) = $nodeID2"; 

set nodeID3 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+3000]; 

   node $nodeID3 $X $C $Z;  # actually define node 

 #puts " Node 3 (column) = $nodeID3"; 

set nodeID4 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+4000]; 

   node $nodeID4 $X $D $Z;  # actually define node 

 #puts " Node 4 (column) = $nodeID4"; 

set nodeID5 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+5000]; 

   node $nodeID5 $X $E $Z;  # actually define node 

 #puts " Node 5 (column) = $nodeID5"; 

set nodeID6 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+6000]; 

   node $nodeID6 $X $F $Z;  # actually define node 

 #puts " Node 6 (column) = $nodeID6"; 

  } 

 } 

} 

 

# Removing unnecesary nodes created at the right most side 

for {set level 5} {$level <=[expr 6+1]} {incr level 1} { 

 set pier [expr $NBay+1]; 

  

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+1]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+2]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+3]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+4]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+5]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+6]; 

 remove node $nodeID;  #puts "$nodeID"; 

} 

 

# Story 7 to 9 

set Dlevel 10000; # numbering increment for new-level nodes 

set Dframe 100; # numbering increment for new-frame nodes 

set Dpier 10; # numbering increment for new-pier nodes 

for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

 set Z [expr ($frame-1)*$LGird]; 

 for {set level 8} {$level <=[expr $NStory+1]} {incr level 1} { 

  set Y [expr ($level-1)*$LCol]; 

  for {set pier 1} {$pier <= [expr $NBay+1]} {incr pier 1} { 

   set X [expr ($pier-1)*$LBeam]; 

   set nodeID [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier]; 

   node $nodeID $X $Y $Z;   # actually define node 

#puts "Nodes at Beam-Column Joints = $nodeID"; 

set A [expr $X + $HCol3/2];     # For Beams  

set B [expr $A + $HspBeam];     # For Beams 

set C [expr $B + $LspBeam];     # For Beams 
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set F [expr $X + $LBeam - $HCol3/2];   # For Beams 

set E [expr $F - $HspBeam];     # For Beams 

set D [expr $E - $LspBeam];     # For Beams 

 

set nodeID1 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+1]; 

   node $nodeID1 $A $Y $Z;  # actually define node 

 #puts " Node 1 (beam) = $nodeID1"; 

set nodeID2 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+2]; 

   node $nodeID2 $B $Y $Z;  # actually define node 

 #puts " Node 2 (beam) = $nodeID2"; 

set nodeID3 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+3]; 

   node $nodeID3 $C $Y $Z;  # actually define node 

 #puts " Node 3 (beam) = $nodeID3"; 

set nodeID4 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+4]; 

   node $nodeID4 $D $Y $Z;  # actually define node 

 #puts " Node 4 (beam) = $nodeID4"; 

set nodeID5 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+5]; 

   node $nodeID5 $E $Y $Z;  # actually define node 

 #puts " Node 5 (beam) = $nodeID5"; 

set nodeID6 [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier+6]; 

   node $nodeID6 $F $Y $Z;  # actually define node 

 #puts " Node 6 (beam) = $nodeID6"; 

 

set A [expr $Y+ $HBeam/2];     # For Columns  

set B [expr $A + $HspCol3];     # For Columns 

set C [expr $B + $LspCol];     # For Columns 

set F [expr $Y + $LCol - $HBeam/2];    # For Columns 

set E [expr $F - $HspCol3];     # For Columns 

set D [expr $E - $LspCol];     # For Columns 

 

set nodeID1 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+1000]; 

   node $nodeID1 $X $A $Z;  # actually define node 

 #puts " Node 1 (column) = $nodeID1"; 

set nodeID2 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+2000]; 

   node $nodeID2 $X $B $Z;  # actually define node 

 #puts " Node 2 (column) = $nodeID2"; 

set nodeID3 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+3000]; 

   node $nodeID3 $X $C $Z;  # actually define node 

 #puts " Node 3 (column) = $nodeID3"; 

set nodeID4 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+4000]; 

   node $nodeID4 $X $D $Z;  # actually define node 

 #puts " Node 4 (column) = $nodeID4"; 

set nodeID5 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+5000]; 

   node $nodeID5 $X $E $Z;  # actually define node 

 #puts " Node 5 (column) = $nodeID5"; 

set nodeID6 [expr $level*$Dlevel+$Dframe+$pier*$Dpier+6000]; 

   node $nodeID6 $X $F $Z;  # actually define node 

 #puts " Node 6 (column) = $nodeID6"; 

  } 

 } 

} 

 

# Removing unnecesary nodes created at the right most side 

for {set level 8} {$level <=[expr $NStory+1]} {incr level 1} { 

 set pier [expr $NBay+1]; 

  

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+1]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+2]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+3]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+4]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+5]; 

 remove node $nodeID;  #puts "$nodeID"; 
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 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+6]; 

 remove node $nodeID;  #puts "$nodeID"; 

} 

 

 

# Removing unnecesary nodes created at the top most layers 

for {set pier 1} {$pier <=[expr $NBay+1]} {incr pier 1} { 

set level [expr $NStory+1]; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+1000]; 

 remove node $nodeID;  #puts "$nodeID"; 

  

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+2000]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+3000]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+4000]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+5000]; 

 remove node $nodeID;  #puts "$nodeID"; 

 

 set nodeID [expr $level*$Dlevel+$Dframe+$pier*$Dpier+6000]; 

 remove node $nodeID;  #puts "$nodeID"; 

} 

 

# Print out the state of nodes 

#print -node; 

 

# determine support nodes 

set iSupportNode ""; 

for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

 set level 1; 

 for {set pier 1} {$pier <= [expr $NBay+1]} {incr pier 1} { 

  set nodeID [expr $level*$Dlevel+$frame*$Dframe+$pier*$Dpier]; 

  lappend iSupportNode $nodeID; 

 } 

} 

puts "support nodes are = $iSupportNode"; 

 

# BOUNDARY CONDITIONS 

#fixY 0.0  1 1 1 1 1 1;  # pin all Y=0.0 nodes 

fix 10110 1 1 1 1 1 1; 

fix 10120 1 1 1 1 1 1; 

fix 10130 1 1 1 1 1 1; 

fix 10140 1 1 1 1 1 1; 

fix 10150 1 1 1 1 1 1; 

 

# Define SECTIONS ------------------------------------------------------------- 

 

# define section tags: 

set ColSecTag 1; 

set BeamSecTag 2; 

set ColSecTagAgg 3; 

set BeamSecTagAgg 4; 

set BeamSecTagAggStory1 5; 

set BeamSecTagAggStory2 6; 

set BeamSecTagAggStory3 7; 

 

set ColSecTagFiber 100; 

 

set ColSecTagFiberCorner1 111; 

set ColSecTagFiberCoupler1 112; 

set ColSecTagFiberMiddle1  113; 

 

set ColSecTagFiberCorner2 121; 

set ColSecTagFiberCoupler2 122; 

set ColSecTagFiberMiddle2  123; 
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set ColSecTagFiberCorner3 131; 

set ColSecTagFiberCoupler3 132; 

set ColSecTagFiberMiddle3  133; 

 

set BeamSecTagFiber 10; 

 

set BeamSecTagFiberStory1Corner 11; 

set BeamSecTagFiberStory1Coupler 12; 

set BeamSecTagFiberStory1Middle 13; 

 

set BeamSecTagFiberStory2Corner 21; 

set BeamSecTagFiberStory2Coupler 22; 

set BeamSecTagFiberStory2Middle 23; 

 

set BeamSecTagFiberStory3Corner 31; 

set BeamSecTagFiberStory3Coupler 32; 

set BeamSecTagFiberStory3Middle 33; 

 

set BeamSecTagFiberStory4Corner 41; 

set BeamSecTagFiberStory4Coupler 42; 

set BeamSecTagFiberStory4Middle 43; 

 

set BeamSecTagFiberStory5Corner 51; 

set BeamSecTagFiberStory5Coupler 52; 

set BeamSecTagFiberStory5Middle 53; 

 

set BeamSecTagFiberStory6Corner 61; 

set BeamSecTagFiberStory6Coupler 62; 

set BeamSecTagFiberStory6Middle 63; 

 

set BeamSecTagFiberStory7Corner 71; 

set BeamSecTagFiberStory7Coupler 72; 

set BeamSecTagFiberStory7Middle 73; 

 

set BeamSecTagFiberStory8Corner 81; 

set BeamSecTagFiberStory8Coupler 82; 

set BeamSecTagFiberStory8Middle 83; 

 

set BeamSecTagFiberStory9Corner 91; 

set BeamSecTagFiberStory9Coupler 92; 

set BeamSecTagFiberStory9Middle 93; 

 

 source LibMaterialsRC.tcl;    # define library of 

Reinforced-concrete Materials 

# column section properties: 

 set ACol1 [expr $HCol1*$BCol1]; 

 set ACol2 [expr $HCol2*$BCol2]; 

 set ACol3 [expr $HCol3*$BCol3]; 

 

# set IzCol [expr 1./12*$BCol*pow($HCol,3)]; # about-local-z Rect-Column gross 

moment of inertia 

 set IzCol $Ubig;      # about-local-z Rect-

Column gross moment of inertia 

# set IyCol [expr 1./12*$HCol*pow($BCol,3)]; # about-local-z Rect-Column gross 

moment of inertia 

 set IyCol $Ubig;      # about-local-z Rect-

Column gross moment of inertia 

# set JCol [expr $IzCol+$IyCol]; 

 set JCol $Ubig; 

 

# beam sections: 

 set ABeam1 [expr $HBeam*$BBeam1]; 

 set ABeam2 [expr $HBeam*$BBeam2]; 

 set ABeam3 [expr $HBeam*$BBeam3]; 

 

# set IzBeam [expr 1./12*$BBeam*pow($HBeam,3)]; # about-local-z Rect-Beam 

cracked moment of inertia 

 set IzBeam $Ubig;      # about-local-z Rect-

Beam cracked moment of inertia 

# set IyBeam [expr 1./12*$HBeam*pow($BBeam,3)]; # about-local-y Rect-Beam 

cracked moment of inertia 
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 set IyBeam $Ubig;      # about-local-y Rect-

Beam cracked moment of inertia 

# set JBeam [expr $IzBeam+$IyBeam]; 

 set JBeam $Ubig; 

 

# section Elastic $ColSecTag $Ec $ACol $IzCol $IyCol $G $JCol; 

# section Elastic $BeamSecTag $Ec $ABeam $IzBeam $IyBeam $G $JBeam; 

 

# FIBER SECTION properties 

 # Column section geometry: 

 set coverBeam [expr 3.*$in];   # rectangular-RC-Beam cover 

 set coverCol [expr 2.8125*$in];  # rectangular-RC-Column cover 

 set numBarsTopCol 5;    # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotCol 5;    # number of longitudinal-

reinforcement bars on bottom layer 

 set numBarsIntCol 6;    # TOTAL number of reinforcing bars on 

the intermediate layers 

 set barAreaTopCol [expr 0.6*$in*$in]; # longitudinal-reinforcement bar area 

 set barAreaBotCol [expr 0.6*$in*$in]; # longitudinal-reinforcement bar area 

 set barAreaIntCol [expr 0.6*$in*$in]; # longitudinal-reinforcement bar area 

 

 set numBarsIntBeam 0;    # TOTAL number of reinforcing bars on 

the intermediate layers 

 set barAreaTopBeam [expr 0.6*$in*$in]; # longitudinal-reinforcement bar area 

 set barAreaBotBeam [expr 0.6*$in*$in]; # longitudinal-reinforcement bar area 

 set barAreaIntBeam [expr 0.6*$in*$in]; # longitudinal-reinforcement bar area 

 

 set numBarsTopBeamStory1Corner 7;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory1Corner 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 set numBarsTopBeamStory1Middle 3;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory1Middle 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 

 set numBarsTopBeamStory2Corner 7;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory2Corner 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 set numBarsTopBeamStory2Middle 3;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory2Middle 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 

 set numBarsTopBeamStory3Corner 6;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory3Corner 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 set numBarsTopBeamStory3Middle 3;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory3Middle 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 

 set numBarsTopBeamStory4Corner 6;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory4Corner 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 set numBarsTopBeamStory4Middle 3;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory4Middle 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 

 set numBarsTopBeamStory5Corner 5;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory5Corner 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 set numBarsTopBeamStory5Middle 3;  # number of longitudinal-

reinforcement bars on top layer 
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 set numBarsBotBeamStory5Middle 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 

 set numBarsTopBeamStory6Corner 5;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory6Corner 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 set numBarsTopBeamStory6Middle 3;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory6Middle 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 

 set numBarsTopBeamStory7Corner 4;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory7Corner 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 set numBarsTopBeamStory7Middle 2;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory7Middle 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 

 set numBarsTopBeamStory8Corner 4;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory8Corner 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 set numBarsTopBeamStory8Middle 2;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory8Middle 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 

 set numBarsTopBeamStory9Corner 3;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory9Corner 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 set numBarsTopBeamStory9Middle 2;  # number of longitudinal-

reinforcement bars on top layer 

 set numBarsBotBeamStory9Middle 3;  # number of longitudinal-

reinforcement bars on bottom layer 

 

 set nfCoreY 30;  # number of fibers in the core patch in the y 

direction 

 set nfCoreZ 30;  # number of fibers in the core patch in the z 

direction 

 set nfCoverY 10;  # number of fibers in the cover patches with long 

sides in the y direction 

 set nfCoverZ 10;  # number of fibers in the cover patches with long 

sides in the z direction 

 

 BuildRCrectSection $ColSecTagFiberCorner1 $HCol1 $BCol1 $coverCol $coverCol 

$IDconcCoreColumnCorner1 $IDconcCover $IDPinching $numBarsTopCol $barAreaTopCol 

$numBarsBotCol $barAreaBotCol $numBarsIntCol $barAreaIntCol  $nfCoreY $nfCoreZ $nfCoverY 

$nfCoverZ; 

 BuildRCrectSection $ColSecTagFiberCoupler1 $HCol1 $BCol1 $coverCol $coverCol 

$IDconcCoreColumnCorner1 $IDconcCover $IDcouplerCol $numBarsTopCol $barAreaTopCol 

$numBarsBotCol $barAreaBotCol $numBarsIntCol $barAreaIntCol  $nfCoreY $nfCoreZ $nfCoverY 

$nfCoverZ; 

 BuildRCrectSection $ColSecTagFiberMiddle1 $HCol1 $BCol1 $coverCol $coverCol 

$IDconcCoreColumnMiddle1 $IDconcCover $IDPinching $numBarsTopCol $barAreaTopCol 

$numBarsBotCol $barAreaBotCol $numBarsIntCol $barAreaIntCol  $nfCoreY $nfCoreZ $nfCoverY 

$nfCoverZ; 

 

 BuildRCrectSection $ColSecTagFiberCorner2 $HCol2 $BCol2 $coverCol $coverCol 

$IDconcCoreColumnCorner1 $IDconcCover $IDPinching $numBarsTopCol $barAreaTopCol 

$numBarsBotCol $barAreaBotCol $numBarsIntCol $barAreaIntCol  $nfCoreY $nfCoreZ $nfCoverY 

$nfCoverZ; 

 BuildRCrectSection $ColSecTagFiberCoupler2 $HCol2 $BCol2 $coverCol $coverCol 

$IDconcCoreColumnCorner1 $IDconcCover $IDcouplerCol $numBarsTopCol $barAreaTopCol 

$numBarsBotCol $barAreaBotCol $numBarsIntCol $barAreaIntCol  $nfCoreY $nfCoreZ $nfCoverY 

$nfCoverZ; 

 BuildRCrectSection $ColSecTagFiberMiddle2 $HCol2 $BCol2 $coverCol $coverCol 

$IDconcCoreColumnMiddle1 $IDconcCover $IDPinching $numBarsTopCol $barAreaTopCol 
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$numBarsBotCol $barAreaBotCol $numBarsIntCol $barAreaIntCol  $nfCoreY $nfCoreZ $nfCoverY 

$nfCoverZ; 

 

 BuildRCrectSection $ColSecTagFiberCorner3 $HCol3 $BCol3 $coverCol $coverCol 

$IDconcCoreColumnCorner2 $IDconcCover $IDPinching $numBarsTopCol $barAreaTopCol 

$numBarsBotCol $barAreaBotCol $numBarsIntCol $barAreaIntCol  $nfCoreY $nfCoreZ $nfCoverY 

$nfCoverZ; 

 BuildRCrectSection $ColSecTagFiberCoupler3 $HCol3 $BCol3 $coverCol $coverCol 

$IDconcCoreColumnCorner2 $IDconcCover $IDcouplerCol $numBarsTopCol $barAreaTopCol 

$numBarsBotCol $barAreaBotCol $numBarsIntCol $barAreaIntCol  $nfCoreY $nfCoreZ $nfCoverY 

$nfCoverZ; 

 BuildRCrectSection $ColSecTagFiberMiddle3 $HCol3 $BCol3 $coverCol $coverCol 

$IDconcCoreColumnCorner2 $IDconcCover $IDPinching $numBarsTopCol $barAreaTopCol 

$numBarsBotCol $barAreaBotCol $numBarsIntCol $barAreaIntCol  $nfCoreY $nfCoreZ $nfCoverY 

$nfCoverZ; 

 

 

 BuildRCrectSection $BeamSecTagFiberStory1Corner $HBeam $BBeam1 $coverBeam 

$coverBeam $IDconcCoreBeamCorner1 $IDconcCover $IDPinching $numBarsTopBeamStory1Corner 

$barAreaTopBeam $numBarsBotBeamStory1Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory1Coupler $HBeam $BBeam1 $coverBeam 

$coverBeam $IDconcCoreBeamCorner1 $IDconcCover $IDcouplerBeam $numBarsTopBeamStory1Corner 

$barAreaTopBeam $numBarsBotBeamStory1Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory1Middle $HBeam $BBeam1 $coverBeam 

$coverBeam $IDconcCoreBeamMiddle1 $IDconcCover $IDPinching $numBarsTopBeamStory1Middle 

$barAreaTopBeam $numBarsBotBeamStory1Middle $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 

 BuildRCrectSection $BeamSecTagFiberStory2Corner $HBeam $BBeam1 $coverBeam 

$coverBeam $IDconcCoreBeamCorner1 $IDconcCover $IDPinching $numBarsTopBeamStory2Corner 

$barAreaTopBeam $numBarsBotBeamStory2Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory2Coupler $HBeam $BBeam1 $coverBeam 

$coverBeam $IDconcCoreBeamCorner1 $IDconcCover $IDcouplerBeam $numBarsTopBeamStory2Corner 

$barAreaTopBeam $numBarsBotBeamStory2Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory2Middle $HBeam $BBeam1 $coverBeam 

$coverBeam $IDconcCoreBeamMiddle1 $IDconcCover $IDPinching $numBarsTopBeamStory2Middle 

$barAreaTopBeam $numBarsBotBeamStory2Middle $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 

 BuildRCrectSection $BeamSecTagFiberStory3Corner $HBeam $BBeam1 $coverBeam 

$coverBeam $IDconcCoreBeamCorner1 $IDconcCover $IDPinching $numBarsTopBeamStory3Corner 

$barAreaTopBeam $numBarsBotBeamStory3Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory3Coupler $HBeam $BBeam1 $coverBeam 

$coverBeam $IDconcCoreBeamCorner1 $IDconcCover $IDcouplerBeam $numBarsTopBeamStory3Corner 

$barAreaTopBeam $numBarsBotBeamStory3Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory3Middle $HBeam $BBeam1 $coverBeam 

$coverBeam $IDconcCoreBeamMiddle1 $IDconcCover $IDPinching $numBarsTopBeamStory3Middle 

$barAreaTopBeam $numBarsBotBeamStory3Middle $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 

 BuildRCrectSection $BeamSecTagFiberStory4Corner $HBeam $BBeam2 $coverBeam 

$coverBeam $IDconcCoreBeamCorner1 $IDconcCover $IDPinching $numBarsTopBeamStory4Corner 

$barAreaTopBeam $numBarsBotBeamStory4Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory4Coupler $HBeam $BBeam2 $coverBeam 

$coverBeam $IDconcCoreBeamCorner1 $IDconcCover $IDcouplerBeam $numBarsTopBeamStory4Corner 

$barAreaTopBeam $numBarsBotBeamStory4Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory4Middle $HBeam $BBeam2 $coverBeam 

$coverBeam $IDconcCoreBeamMiddle1 $IDconcCover $IDPinching $numBarsTopBeamStory4Middle 

$barAreaTopBeam $numBarsBotBeamStory4Middle $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 

 BuildRCrectSection $BeamSecTagFiberStory5Corner $HBeam $BBeam2 $coverBeam 

$coverBeam $IDconcCoreBeamCorner1 $IDconcCover $IDPinching $numBarsTopBeamStory5Corner 
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$barAreaTopBeam $numBarsBotBeamStory5Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory5Coupler $HBeam $BBeam2 $coverBeam 

$coverBeam $IDconcCoreBeamCorner1 $IDconcCover $IDcouplerBeam $numBarsTopBeamStory5Corner 

$barAreaTopBeam $numBarsBotBeamStory5Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory5Middle $HBeam $BBeam2 $coverBeam 

$coverBeam $IDconcCoreBeamMiddle1 $IDconcCover $IDPinching $numBarsTopBeamStory5Middle 

$barAreaTopBeam $numBarsBotBeamStory5Middle $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 

 BuildRCrectSection $BeamSecTagFiberStory6Corner $HBeam $BBeam2 $coverBeam 

$coverBeam $IDconcCoreBeamCorner1 $IDconcCover $IDPinching $numBarsTopBeamStory6Corner 

$barAreaTopBeam $numBarsBotBeamStory6Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory6Coupler $HBeam $BBeam2 $coverBeam 

$coverBeam $IDconcCoreBeamCorner1 $IDconcCover $IDcouplerBeam $numBarsTopBeamStory6Corner 

$barAreaTopBeam $numBarsBotBeamStory6Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory6Middle $HBeam $BBeam2 $coverBeam 

$coverBeam $IDconcCoreBeamMiddle1 $IDconcCover $IDPinching $numBarsTopBeamStory6Middle 

$barAreaTopBeam $numBarsBotBeamStory6Middle $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 

 BuildRCrectSection $BeamSecTagFiberStory7Corner $HBeam $BBeam3 $coverBeam 

$coverBeam $IDconcCoreBeamCorner2 $IDconcCover $IDPinching $numBarsTopBeamStory7Corner 

$barAreaTopBeam $numBarsBotBeamStory7Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory7Coupler $HBeam $BBeam3 $coverBeam 

$coverBeam $IDconcCoreBeamCorner2 $IDconcCover $IDcouplerBeam $numBarsTopBeamStory7Corner 

$barAreaTopBeam $numBarsBotBeamStory7Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory7Middle $HBeam $BBeam3 $coverBeam 

$coverBeam $IDconcCoreBeamMiddle2 $IDconcCover $IDPinching $numBarsTopBeamStory7Middle 

$barAreaTopBeam $numBarsBotBeamStory7Middle $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 

 BuildRCrectSection $BeamSecTagFiberStory8Corner $HBeam $BBeam3 $coverBeam 

$coverBeam $IDconcCoreBeamCorner2 $IDconcCover $IDPinching $numBarsTopBeamStory8Corner 

$barAreaTopBeam $numBarsBotBeamStory8Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory8Coupler $HBeam $BBeam3 $coverBeam 

$coverBeam $IDconcCoreBeamCorner2 $IDconcCover $IDcouplerBeam $numBarsTopBeamStory8Corner 

$barAreaTopBeam $numBarsBotBeamStory8Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory8Middle $HBeam $BBeam3 $coverBeam 

$coverBeam $IDconcCoreBeamMiddle2 $IDconcCover $IDPinching $numBarsTopBeamStory8Middle 

$barAreaTopBeam $numBarsBotBeamStory8Middle $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 

 BuildRCrectSection $BeamSecTagFiberStory9Corner $HBeam $BBeam3 $coverBeam 

$coverBeam $IDconcCoreBeamCorner2 $IDconcCover $IDPinching $numBarsTopBeamStory9Corner 

$barAreaTopBeam $numBarsBotBeamStory9Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory9Coupler $HBeam $BBeam3 $coverBeam 

$coverBeam $IDconcCoreBeamCorner2 $IDconcCover $IDcouplerBeam $numBarsTopBeamStory9Corner 

$barAreaTopBeam $numBarsBotBeamStory9Corner $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 BuildRCrectSection $BeamSecTagFiberStory9Middle $HBeam $BBeam3 $coverBeam 

$coverBeam $IDconcCoreBeamMiddle2 $IDconcCover $IDPinching $numBarsTopBeamStory9Middle 

$barAreaTopBeam $numBarsBotBeamStory9Middle $barAreaBotBeam $numBarsIntBeam 

$barAreaIntBeam  $nfCoreY $nfCoreZ $nfCoverY $nfCoverZ; 

 

# ---------------------------------------------------------------------------------------

----------------------------------------- 

# set up geometric transformations of element 

# separate columns and beams, in case of P-Delta analysis for columns 

set IDColTransf 1;      # all columns 

set IDBeamTransf 2;      # all beams 

set ColTransfType PDelta  ;    # options for columns: Linear PDelta  

Corotational  
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geomTransf $ColTransfType  $IDColTransf  0 0 1; # orientation of column stiffness 

affects bidirectional response. 

geomTransf Linear $IDBeamTransf 0 0 1; 

 

# Define Beam-Column Elements 

set numIntgrPts 5; # number of Gauss integration points for nonlinear curvature 

distribution 

set numIntgrPtsHsp 2; # number of Gauss integration points for nonlinear curvature 

distribution 

set numIntgrPtsLsp 5; # number of Gauss integration points for nonlinear curvature 

distribution 

 

set i 1; 

set j 1; 

 

# COLUMNS 

 

# Story 1 to 6 [Columns] 

 

set Locations "0.0 0.25 0.5 0.75 1.0"; 

set SectagCol "$ColSecTagFiberCorner1 $ColSecTagFiberCorner1 $ColSecTagFiberMiddle1 

$ColSecTagFiberCorner1 $ColSecTagFiberCorner1"; 

 

set level 0; 

for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

 for {set level 1} {$level <=6} {incr level 1} { 

  for {set pier 1} {$pier <= [expr $NBay+1]} {incr pier 1} { 

 

   set elemID [expr $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+1000]; 

   set nodeI [expr  $level*$Dlevel + $frame*$Dframe+$pier*$Dpier]; 

   set nodeJ  [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+1000]; 

   element elasticBeamColumn $elemID $nodeI $nodeJ $ACol1 $Ecc $G 

$JCol $IyCol $IzCol $IDColTransf;   # columns 

 

   set elemID [expr $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+2000]; 

   set nodeI [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+1000]; 

   set nodeJ  [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+2000]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsHsp 

$ColSecTagFiberCorner1 $IDColTransf;   # columns 

 

   set elemID [expr $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+3000]; 

   set nodeI [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+2000]; 

   set nodeJ  [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+3000]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsLsp 

$ColSecTagFiberCoupler1 $IDColTransf;   # columns 

 

   set elemID [expr $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+4000]; 

   set nodeI [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+3000]; 

   set nodeJ  [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+4000]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $IDColTransf 

FixedLocation $numIntgrPts $SectagCol $Locations; # columns 

 

   set elemID [expr $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+5000]; 

   set nodeI [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+4000]; 

   set nodeJ  [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+5000]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsLsp 

$ColSecTagFiberCoupler1 $IDColTransf;   # columns 
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   set elemID [expr $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+6000]; 

   set nodeI [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+5000]; 

   set nodeJ  [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+6000]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsHsp 

$ColSecTagFiberCorner1 $IDColTransf;   # columns 

 

   set elemID [expr $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+7000]; 

   set nodeI [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+6000]; 

   set nodeJ  [expr  ($level+1)*$Dlevel + 

$frame*$Dframe+$pier*$Dpier]; 

   element elasticBeamColumn $elemID $nodeI $nodeJ $ACol1 $Ecc $G 

$JCol $IyCol $IzCol $IDColTransf;   # columns 

  } 

 } 

} 

 

# Story 7 to 9 [Columns] 

 

for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

 for {set level 7} {$level <=$NStory} {incr level 1} { 

  for {set pier 1} {$pier <= [expr $NBay+1]} {incr pier 1} { 

 

   set elemID [expr $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+1000]; 

   set nodeI [expr  $level*$Dlevel + $frame*$Dframe+$pier*$Dpier]; 

   set nodeJ  [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+1000]; 

   element elasticBeamColumn $elemID $nodeI $nodeJ $ACol3 $Ecc $G 

$JCol $IyCol $IzCol $IDColTransf;   # columns 

 

   set elemID [expr $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+2000]; 

   set nodeI [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+1000]; 

   set nodeJ  [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+2000]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsHsp 

$ColSecTagFiberCorner3 $IDColTransf;   # columns 

 

   set elemID [expr $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+3000]; 

   set nodeI [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+2000]; 

   set nodeJ  [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+3000]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsLsp 

$ColSecTagFiberCoupler3 $IDColTransf;   # columns 

 

   set elemID [expr $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+4000]; 

   set nodeI [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+3000]; 

   set nodeJ  [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+4000]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPts 

$ColSecTagFiberMiddle3 $IDColTransf;    # columns 

 

   set elemID [expr $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+5000]; 

   set nodeI [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+4000]; 

   set nodeJ  [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+5000]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsLsp 

$ColSecTagFiberCoupler3 $IDColTransf;   # columns 
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   set elemID [expr $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+6000]; 

   set nodeI [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+5000]; 

   set nodeJ  [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+6000]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsHsp 

$ColSecTagFiberCorner3 $IDColTransf;   # columns 

 

   set elemID [expr $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+7000]; 

   set nodeI [expr  $level*$Dlevel + 

$frame*$Dframe+$pier*$Dpier+6000]; 

   set nodeJ  [expr  ($level+1)*$Dlevel + 

$frame*$Dframe+$pier*$Dpier]; 

   element elasticBeamColumn $elemID $nodeI $nodeJ $ACol3 $Ecc $G 

$JCol $IyCol $IzCol $IDColTransf;   # columns 

  } 

 } 

} 

 

# beams -- parallel to X-axis 

# Story 1 to 2 (Beam) 

set SectagBeam12 "$BeamSecTagFiberStory1Corner $BeamSecTagFiberStory1Corner 

$BeamSecTagFiberStory1Middle $BeamSecTagFiberStory1Corner $BeamSecTagFiberStory1Corner "; 

 

for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

 for {set level 2} {$level <=[expr 2 + 1]} {incr level 1} { 

  for {set pier 1} {$pier <= [expr $NBay]} {incr pier 1} { 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+1]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+1]; 

   element elasticBeamColumn $elemID $nodeI $nodeJ $ABeam1 $Ecc $G 

$JBeam $IyBeam $IzBeam $IDBeamTransf;   # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+2]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+1]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+2]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsHsp 

$BeamSecTagFiberStory1Corner $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+3]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+2]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+3]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsLsp 

$BeamSecTagFiberStory1Coupler $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+4]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+3]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+4]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $IDBeamTransf 

FixedLocation $numIntgrPts $SectagBeam12 $Locations; # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+5]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+4]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+5]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsLsp 

$BeamSecTagFiberStory1Coupler $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+6]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+5]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+6]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsHsp 

$BeamSecTagFiberStory1Corner $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+7]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+6]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ 

($pier+1)*$Dpier]; 
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   element elasticBeamColumn $elemID $nodeI $nodeJ $ABeam1 $Ecc $G 

$JBeam $IyBeam $IzBeam $IDBeamTransf;   # beams 

  } 

 } 

} 

 

# Story 3 to 4 (Beam) 

set SectagBeam34 "$BeamSecTagFiberStory3Corner $BeamSecTagFiberStory3Corner 

$BeamSecTagFiberStory3Middle $BeamSecTagFiberStory3Corner $BeamSecTagFiberStory3Corner "; 

 

for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

 for {set level 4} {$level <=[expr 4 + 1]} {incr level 1} { 

  for {set pier 1} {$pier <= [expr $NBay]} {incr pier 1} { 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+1]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+1]; 

   element elasticBeamColumn $elemID $nodeI $nodeJ $ABeam1 $Ecc $G 

$JBeam $IyBeam $IzBeam $IDBeamTransf;   # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+2]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+1]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+2]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsHsp 

$BeamSecTagFiberStory3Corner $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+3]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+2]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+3]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsLsp 

$BeamSecTagFiberStory3Coupler $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+4]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+3]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+4]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $IDBeamTransf 

FixedLocation $numIntgrPts $SectagBeam34 $Locations; # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+5]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+4]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+5]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsLsp 

$BeamSecTagFiberStory3Coupler $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+6]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+5]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+6]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsHsp 

$BeamSecTagFiberStory3Corner $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+7]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+6]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ 

($pier+1)*$Dpier]; 

   element elasticBeamColumn $elemID $nodeI $nodeJ $ABeam1 $Ecc $G 

$JBeam $IyBeam $IzBeam $IDBeamTransf;   # beams 

  } 

 } 

} 

 

# Story 5 to 6 (Beam) 

set SectagBeam56 "$BeamSecTagFiberStory5Corner $BeamSecTagFiberStory5Corner 

$BeamSecTagFiberStory5Middle $BeamSecTagFiberStory5Corner $BeamSecTagFiberStory5Corner "; 

 

for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

 for {set level [expr 5+1]} {$level <=[expr 6+1]} {incr level 1} { 

  for {set pier 1} {$pier <= [expr $NBay]} {incr pier 1} { 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+1]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+1]; 
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   element elasticBeamColumn $elemID $nodeI $nodeJ $ABeam2 $Ecc $G 

$JBeam $IyBeam $IzBeam $IDBeamTransf;   # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+2]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+1]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+2]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsHsp 

$BeamSecTagFiberStory5Corner $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+3]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+2]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+3]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsLsp 

$BeamSecTagFiberStory5Coupler $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+4]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+3]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+4]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $IDBeamTransf 

FixedLocation $numIntgrPts $SectagBeam56 $Locations; # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+5]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+4]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+5]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsLsp 

$BeamSecTagFiberStory5Coupler $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+6]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+5]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+6]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsHsp 

$BeamSecTagFiberStory5Corner $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+7]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+6]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ 

($pier+1)*$Dpier]; 

   element elasticBeamColumn $elemID $nodeI $nodeJ $ABeam2 $Ecc $G 

$JBeam $IyBeam $IzBeam $IDBeamTransf;   # beams 

  } 

 } 

} 

 

# Story 7 to 8 (Beam) 

set SectagBeam78 "$BeamSecTagFiberStory7Corner $BeamSecTagFiberStory7Corner 

$BeamSecTagFiberStory7Middle $BeamSecTagFiberStory7Corner $BeamSecTagFiberStory7Corner"; 

 

for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

 for {set level [expr 7+1]} {$level <=[expr 8+1]} {incr level 1} { 

  for {set pier 1} {$pier <= [expr $NBay]} {incr pier 1} { 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+1]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+1]; 

   element elasticBeamColumn $elemID $nodeI $nodeJ $ABeam3 $Ecc $G 

$JBeam $IyBeam $IzBeam $IDBeamTransf;   # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+2]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+1]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+2]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsHsp 

$BeamSecTagFiberStory7Corner $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+3]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+2]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+3]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsLsp 

$BeamSecTagFiberStory7Coupler $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+4]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+3]; 
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   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+4]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $IDBeamTransf 

FixedLocation $numIntgrPts $SectagBeam78 $Locations; # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+5]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+4]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+5]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsLsp 

$BeamSecTagFiberStory7Coupler $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+6]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+5]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+6]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsHsp 

$BeamSecTagFiberStory7Corner $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+7]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+6]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ 

($pier+1)*$Dpier]; 

   element elasticBeamColumn $elemID $nodeI $nodeJ $ABeam3 $Ecc $G 

$JBeam $IyBeam $IzBeam $IDBeamTransf;   # beams 

  } 

 } 

} 

 

# Story 9 (Beam) 

set SectagBeam90 "$BeamSecTagFiberStory9Corner $BeamSecTagFiberStory9Corner 

$BeamSecTagFiberStory9Middle $BeamSecTagFiberStory9Corner $BeamSecTagFiberStory9Corner "; 

 

for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

 for {set level [expr $NStory+1]} {$level <=[expr $NStory+1]} {incr level 1} { 

  for {set pier 1} {$pier <= [expr $NBay]} {incr pier 1} { 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+1]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+1]; 

   element elasticBeamColumn $elemID $nodeI $nodeJ $ABeam3 $Ecc $G 

$JBeam $IyBeam $IzBeam $IDBeamTransf;   # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+2]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+1]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+2]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsHsp 

$BeamSecTagFiberStory9Corner $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+3]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+2]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+3]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsLsp 

$BeamSecTagFiberStory9Coupler $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+4]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+3]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+4]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $IDBeamTransf 

FixedLocation $numIntgrPts $SectagBeam90 $Locations; # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+5]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+4]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+5]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsLsp 

$BeamSecTagFiberStory9Coupler $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+6]; 

   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+5]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+6]; 

   element forceBeamColumn $elemID $nodeI $nodeJ $numIntgrPtsHsp 

$BeamSecTagFiberStory9Corner $IDBeamTransf;  # beams 

 

   set elemID [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+7]; 
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   set nodeI [expr $level*$Dlevel + $frame*$Dframe+ $pier*$Dpier+6]; 

   set nodeJ  [expr $level*$Dlevel + $frame*$Dframe+ 

($pier+1)*$Dpier]; 

   element elasticBeamColumn $elemID $nodeI $nodeJ $ABeam3 $Ecc $G 

$JBeam $IyBeam $IzBeam $IDBeamTransf;   # beams 

  } 

 } 

} 

 

#print -ele; 

 

# ---------------------------------------------------------------------------------------

----------------------------------------- 

# Define GRAVITY LOADS, weight and masses 

# calculate dead load of frame, assume this to be an internal frame 

# calculate distributed weight along the beam length 

set GammaConcrete [expr 150.*$pcf]; 

set QdlCol1 [expr $GammaConcrete*$HCol1*$BCol1]; # self weight of Column, weight per 

length 

set QdlCol2 [expr $GammaConcrete*$HCol2*$BCol2]; # self weight of Column, weight per 

length 

set QdlCol3 [expr $GammaConcrete*$HCol3*$BCol3]; # self weight of Column, weight per 

length 

set QdlBeam1 [expr $GammaConcrete*$HBeam*$BBeam1]; # self weight of Beam, weight per 

length 

set QdlBeam2 [expr $GammaConcrete*$HBeam*$BBeam2]; # self weight of Beam, weight per 

length 

set QdlBeam3 [expr $GammaConcrete*$HBeam*$BBeam3]; # self weight of Beam, weight per 

length 

 

# ---------------------------------------------------------------------------------------

----------------------------------------- 

 

# Set up MODEL PARAMETERS, for displacement control 

#set IDctrlNode [expr int(($NStory+1)*$Dlevel+(1*$Dframe)+10)]; # node where 

displacement is read for displacement control 

set IDctrlNode 100110;        # node where 

displacement is read for displacement control 

puts "_______________________________________ 

Node where displacement is read for displacement control = $IDctrlNode"; 

 

# LATERAL-LOAD distribution for static pushover analysis 

# distribution of lateral load based on mass/weight distributions along building height 

set IDctrlDOF 1;         # 

degree of freedom of displacement read for displacement control 

set iNodePush "$IDctrlNode"; 

puts "Nodes to be pushed = $iNodePush"; 

 

set iFPush 50.;         # 

lateral load for pushover, vectorized 

puts "iFPush = $iFPush"; 

 

# Define RECORDERS ------------------------------------------------------------- 

set FreeNodeID $IDctrlNode; 

puts "Node to be recorded for displacement = $FreeNodeID"; 

recorder Node -file $dataDir/DFree.out -node $FreeNodeID  -dof 1 disp; # 

displacements of free node 

 

recorder Node -file $dataDir/RBase1.out -node 10110 -dof 1 reaction; # support 

reaction 

recorder Node -file $dataDir/RBase2.out -node 10120 -dof 1 reaction; # support 

reaction 

recorder Node -file $dataDir/RBase3.out -node 10130 -dof 1 reaction; # support 

reaction 

recorder Node -file $dataDir/RBase4.out -node 10140 -dof 1 reaction; # support 

reaction 

recorder Node -file $dataDir/RBase5.out -node 10150 -dof 1 reaction; # support 

reaction 

 

# Define DISPLAY ------------------------------------------------------------- 
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DisplayModel3D DeformedShape;        # options: 

DeformedShape NodeNumbers ModeShape 

 

# GRAVITY ------------------------------------------------------------- 

# define GRAVITY load applied to beams and columns -- eleLoad applies loads in local 

coordinate axis 

pattern Plain 101 Linear { 

 for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

  for {set level 1} {$level <=3} {incr level 1} { 

   for {set pier 1} {$pier <= [expr $NBay+1]} {incr pier 1} { 

 

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+1000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol1;  # COLUMNS (Story 1 to 3) 

      

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+2000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol1;  # COLUMNS (Story 1 to 3) 

  

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+3000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol1;  # COLUMNS (Story 1 to 3) 

 

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+4000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol1;  # COLUMNS (Story 1 to 3) 

 

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+5000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol1;  # COLUMNS (Story 1 to 3) 

 

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+6000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol1;  # COLUMNS (Story 1 to 3) 

 

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+7000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol1;  # COLUMNS (Story 1 to 3) 

   } 

  } 

 } 

 

for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

  for {set level 4} {$level <=6} {incr level 1} { 

   for {set pier 1} {$pier <= [expr $NBay+1]} {incr pier 1} { 

 

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+1000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol2;  # COLUMNS (Story 4 to 6) 

     

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+2000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol2;  # COLUMNS (Story 4 to 6) 

  

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+3000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol2;  # COLUMNS (Story 4 to 6) 

 

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+4000]; 
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     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol2;  # COLUMNS (Story 4 to 6) 

 

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+5000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol2;  # COLUMNS (Story 4 to 6) 

 

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+6000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol2;  # COLUMNS (Story 4 to 6) 

 

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+7000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol2;  # COLUMNS (Story 4 to 6) 

   } 

  } 

 } 

 

for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

  for {set level 7} {$level <=$NStory} {incr level 1} { 

   for {set pier 1} {$pier <= [expr $NBay+1]} {incr pier 1} { 

 

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+1000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol3;  # COLUMNS (Story 7 to 9)  

     

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+2000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol3;  # COLUMNS (Story 7 to 9) 

  

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+3000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol3;  # COLUMNS (Story 7 to 9) 

 

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+4000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol3;  # COLUMNS (Story 7 to 9) 

 

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+5000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol3;  # COLUMNS (Story 7 to 9) 

 

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+6000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol3;  # COLUMNS (Story 7 to 9) 

 

    set elemID [expr $level*$Dlevel 

+$frame*$Dframe+$pier*$Dpier+7000]; 

     eleLoad -ele $elemID -type -beamUniform 0. 0. -

$QdlCol3;  # COLUMNS (Story 7 to 9) 

   } 

  } 

 } 

 

 for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

  for {set level 2} {$level <=[expr 3+1]} {incr level 1} { 

   for {set pier 1} {$pier <= $NBay} {incr pier 1} { 

     

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+1]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam1 

0.;  # BEAMS (Story 1 to 3) 
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    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+2]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam1 

0.;  # BEAMS (Story 1 to 3) 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+3]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam1 

0.;  # BEAMS (Story 1 to 3) 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+4]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam1 

0.;  # BEAMS (Story 1 to 3) 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+5]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam1 

0.;  # BEAMS (Story 1 to 3) 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+6]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam1 

0.;  # BEAMS (Story 1 to 3) 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+7]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam1 

0.;  # BEAMS (Story 1 to 3) 

   } 

  } 

 } 

 

 for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

  for {set level 5} {$level <=[expr 6+1]} {incr level 1} { 

   for {set pier 1} {$pier <= $NBay} {incr pier 1} { 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+1]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam2 

0.;  # BEAMS (Story 4 to 6) 

     

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+2]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam2 

0.;  # BEAMS (Story 4 to 6) 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+3]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam2 

0.;  # BEAMS (Story 4 to 6) 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+4]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam2 

0.;  # BEAMS (Story 4 to 6) 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+5]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam2 

0.;  # BEAMS (Story 4 to 6) 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+6]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam2 

0.;  # BEAMS (Story 4 to 6) 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+7]; 



126 

 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam2 

0.;  # BEAMS (Story 4 to 6) 

   } 

  } 

 } 

 

 for {set frame 1} {$frame <=[expr $NFrame]} {incr frame 1} { 

  for {set level 8} {$level <=[expr $NStory+1]} {incr level 1} { 

   for {set pier 1} {$pier <= $NBay} {incr pier 1} { 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+1]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam3 

0.;  # BEAMS (Story 7 to 9) 

     

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+2]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam3 

0.;  # BEAMS (Story 7 to 9) 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+3]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam3 

0.;  # BEAMS (Story 7 to 9) 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+4]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam3 

0.;  # BEAMS (Story 7 to 9) 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+5]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam3 

0.;  # BEAMS (Story 7 to 9) 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+6]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam3 

0.;  # BEAMS (Story 7 to 9) 

 

    set elemID [expr $level*$Dlevel +$frame*$Dframe+ 

$pier*$Dpier+7]; 

     eleLoad -ele $elemID  -type -beamUniform -$QdlBeam3 

0.;  # BEAMS (Story 7 to 9) 

   } 

  } 

 } 

 

 

} 

 

puts goGravity; 

# Gravity-analysis parameters -- load-controlled static analysis 

set Tol 1.0e-2;     # convergence tolerance for test 

 

variable constraintsTypeGravity Plain; # default; 

#variable constraintsTypeGravity Lagrange;# default; 

 

constraints $constraintsTypeGravity ;     # how it handles boundary conditions 

numberer RCM;     # renumber dof's to minimize band-width 

(optimization), if you want to 

system BandGeneral ;    # how to store and solve the system of 

equations in the analysis (large model: try UmfPack) 

test EnergyIncr $Tol 6 ;    # determine if convergence has been achieved 

at the end of an iteration step 

algorithm Newton;     # use Newton's solution algorithm: 

updates tangent stiffness at every iteration 

set NstepGravity 10;      # apply gravity in 10 steps 

set DGravity [expr 1./$NstepGravity];  # first load increment; 

integrator LoadControl $DGravity;  # determine the next time step for an 

analysis 
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analysis Static;     # define type of analysis static or 

transient 

analyze $NstepGravity;    # apply gravity 

 

# ------------------------------------------------- maintain constant gravity loads and 

reset time to zero 

loadConst -time 0.0; 

 

# ------------------------------------------------------------- 

puts "Model Built"; 
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