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NOTATION

N : Represents the set of writing samples, where each sample was generated by a

different writer.

Di: Represents the writing sample produced from the ith writer.

D
∗(k)
i : Represents the kth simulated writing sample produced from the ith writer.

s(·, ·): Represents the similarity score used to compare two documents together.

τ: Represents the threshold value used to determine if two documents are declared

a ‘match’ or ‘non-match’.

I(s(·, ·) > τ): The Indicator Function, where if s(·, ·) > τ, then I = 1, and if

s(·, ·) ≤ τ, then I = 0. Sometimes simplified to mij.

l: Represents a specific letter in a-z, A-Z, or 0− 9.

#(·): Represents the number of unique items from ·, for example, in the set A =

{a, a, b, c}, there are four items but only three unique items, and thus #(A) = 3.

ni: Represents the number of words in the ith document.

n: Represents the number of words in a document or chosen from a document.
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ABSTRACT

U-STATISTICS FOR CHARACTERIZING FORENSIC SUFFICIENCY STUDIES

CAMI FUGLSBY

2017

One of the main metrics for deciding if a given forensic modality is useful across a

broad spectrum of cases, within a given population, is the Random Match Probability

(RMP), or the corresponding discriminating power. Traditionally, the RMP of a given

modality is studied by comparing full ‘templates’ and estimating the rate at which

pairs of templates ’match’ in a given population. This strategy leads to a natural

U-statistic of degree two. However, in questioned document examination, the RMP

is studied as a function of the amount of handwriting contained in the two documents

being compared; turning the U-statistic into a U-process. This work is focused on

providing background on forensic sufficiency studies, RMP, and the U-processes that

naturally arise in this class of problems.
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CHAPTER 1

Introduction & Overview

1.1 Introduction

One potential goal of a forensic document examiner (FDE) is to determine the writer

of a given document. One way to reach this goal is to compare the features of the

questioned document to the features of a sample document where the writer is known.

Keep in mind that, due to intra-writer variability, observing a ‘perfect match’ between

two writing samples that were written by the same source is typically not expected,

and may be indicative of a forgery.

One reason why two writing samples provided by the same individual (source) may

never have the exact same handwriting characteristics is the natural variation in an

individual’s handwriting. Comparing writing samples is ultimately comparing writing

habits between distinct individuals, which is discussed by Huber and Headrick (1999,

pp. 73-74). The habits formed by an individual are the characteristics of their writing

that are measured by the features or qualities. There are many factors that affect how

an individual writes, a few may be who taught them at a young age, what country

or region they are from, if the language they are writing in is their first language

or not, etc. Throughout this paper, we will refer to an individual’s entire body1 of

handwriting as their writing profile. One common belief is that an individual’s writing

profile is better described as a probability distribution across generated documents

1This includes everything an individual has ever written and could possibly write.
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from that individual rather than a static characteristic of that individual, such as

DNA or a fingerprint (Bulacu and Schomaker, 2007).

One method that a forensic document examiner might use is taking advantage of an

automated comparison procedure that quantifies the variability in handwriting. Such

a procedure would start by scanning in two writing samples, convert the samples

into a set of quantitative features, and then compute a similarity score based on

the quantitative features as a measure of the similarity of the writing profiles which

generated the two writing samples. Then a threshold value can be introduced where

two samples can be declared a ‘match’ if the similarity score falls above the pre-defined

threshold value, and the two samples can be declared a ‘non-match’ if the similarity

score falls below the threshold.

Using a pre-defined threshold value for a given automated comparison procedure

allows for a measure of the consistency of the writing profiles generating the two

samples. However, simply because the similarity score declares two samples to be a

’match’ does not always mean that the same writer generated both writing samples,

which could lead to an error. When two writing samples provided by different writers

are declared ‘match’, then a false match error has occurred. Similarly, when two

writing samples provided by the same writer are declared ‘no-match’, then a false no-

match error has occurred2. These two errors are results of between-writer similarity

and within-writer dissimilarity (Risinger and Saks, 1996), respectively, which we are

characterizing.

Determining the rates of the two different errors is useful when determining a com-

parison procedure’s ability to discriminate between writers. One way to measure the

false match error rate is what we will refer to in this paper as the Random Match

Probability (RMP). We define the RMP as the probability that two randomly selected

2These are analogous to false positives and false negatives.
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writing samples from two randomly selected writers from a relevant population are

declared to match by the given comparison procedure. Another way to interpret it

is the rate of false match errors “averaged” over all of the relevant3 writing samples.

Similarly, we refer to the false no-match error rate as the Random Non-Match Proba-

bility (RNMP). The RNMP is defined as the probability that two randomly selected

writing samples from one randomly selected writer from a relevant population are

declared to not match under the given comparison procedure. Another way to in-

terpret the RNMP is the rate of false no-match errors “averaged” over all relevant

writing samples. It is important to clarify that the RMP 6= 1−RNMP, simply because

of the different conditioning that occurs; P (match|different source documents) and

P (non-match|same source documents). The RMP and RNMP depend on the com-

parison procedure being used, specifically the associated similarity score and threshold

value used when declaring a match or non-match based on the produced similarity

score. Other factors the RMP and the RNMP depend on include:

• The relevant population generating the writing samples used in the comparison.

Some writing profiles are harder to distinguish between than others.

• The lengths and the content of the writing samples being compared, i.e. the

number of words and the distribution of the letters used in the samples.

In order to use a given comparison procedure, it is important to know what the RMP

and the RNMP that is associated with that procedure. This work will examine a

class of statistics for investigating the RMP and the RNMP with a given comparison

procedure. More specifically, examine how the RMP and the RNMP change as the

length of the writing samples change, as this aids in determining how accurate the

comparison procedure is expected to be concerning different lengths of the writing

samples. Another area of interest is how the RMP and the RNMP depend on the

3Generally refers to the relevant population the samples were collected from, where one would
want to know the commonalities and errors of that specific population.
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content of the writing samples, though in this paper we do not address this. In this

paper, we assume that the content of the writing samples being compared is similar

to the frequency of letters as they appear in English writing.

1.2 RMP and Sufficiency

The RMP shows up in the general forensic literature as the probability of non-

discrimination. (For an overview of this topic, see Aitken and Taroni (2004, Section

4.5).) Aitkin and Taroni (2004) describe the RMP in two different ways. First, as

a way to measure how accurate a comparison method is when it comes to differen-

tiating between biometric samples that come from different sources. Second, as a

way to determine the strength of a declared match, as it may be evidence to support

that two biometric samples were produced by a common source. For these reasons, a

comparison procedure would ideally have a smaller RMP.

Found and Bird (2016, pg. 37) illustrated how, ideally, the RMP decreases as a

function of the amount of writing available increases, as shown in Figure 1.1. As can

be seen from the following definition, the ‘Likelihood of a Chance Match’ corresponds

with our definition of the RMP. “If we were to choose random samples of handwriting

(from different individuals) containing identical text and proceed through a stroke by

stroke analysis of the concatenations, then as the complexity increases (as reflected

in the number of strokes, for example), the likelihood that the samples will diverge in

some way from each other would, in general, increase.” (Found and Bird (2016, pg.

37))

Keep in mind that while a small RMP is ideal, a match under the given comparison

procedure does not strictly mean that the two biometric samples arose from a common

source, there still exists the possibility that two sources have the same or extremely
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Figure 1.1: An Illustration on how the RMP decreases as the amount of writing
available increases, Found and Bird (2016, pg. 37).

similar biometric profiles. As mentioned in Saks and Koehler (2008), infrequency

cannot be equated to uniqueness. Balding (2005) uses the phrase “the uniqueness

fallacy” to describe the fallacy in cases involving DNA evidence, where a certain

set of genetic markers are declared to be unique as they are expected to occur less

than once out of five billion, which is approximately the earth’s population. Thus, if

writing profiles are unique, we cannot say a trace writing sample is unique, we cannot

equate the uniqueness of a writing profile to the uniqueness of a trace.

With this in mind, we can say that the RMP is associated with the “degree of individ-

uality” of writing profiles from a population, as well as associated with a comparison

method, which can create an upper bound on the degree of individuality. See Bolle,

et al. (2004) and Saunders et al. (2011a) for a detailed discussion of this relationship.

Using the size of the RMP is one approach to the question of uniqueness, within the

context of DNA profiles, discussed in a report from the National Research Council

(1996, pp. 136-138). This report suggests that identification (beyond a reasonable

doubt) may mean that the probability that there is at least one match when the

DNA profiles of individuals in the population are compared is small, say 1%, or some
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other chosen small number. (However, the report from the National Research Council

(1996) is careful to point out that it is up to the courts to decide just how small this

probability should be to support individualization.)

The report from the National Research Council (1996) also includes a formula for

an upper bound on the probability that there is at least one match (in the case of

comparing DNA profiles) using population genetics modeling. This depends on the

population size and on the number of loci compared in the typing. However, models of

this type have not been developed to sufficiently characterize an individual’s writing

profile. This paper will propose an alternative comparison methodology to that type

of modeling; it will provide information about the RMP and how it changes compared

to the length of the writing samples that are compared. Note that with DNA evidence,

a RMP is typically referencing the probability (or chance) that a new DNA profile

matches the observed profile.

1.3 Estimating the RMP and the RNMP

One way to estimate the RMP and the RNMP of a given comparison procedure is to

calculate them from a population of known writing samples.

We will be considering a collection of writing samples, where each sample was written

by a different writer, with a total of N writers. Assume that the writers are a random

sample from a relevant population of writers4, and that the writing sample from the

writer is characteristic of their own writing profile5. The writing samples themselves

may include one or more documents and may have been collected at varying times

4We assume that the population of writers is so large that we can treat the sampled writers as
independent and identically distributed (i.i.d.) with respect to some distribution on the relevant
population of writers.

5In other words, each writing sample is assumed to be randomly generated from that writer’s
writing profile.
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or in different environments. With these assumptions, the whole collection of writing

samples is independent and identically distributed (i.i.d.).

One way to estimate the RMP involves measuring the similarity between two writing

samples. This creates pairwise comparisons. Let Di and Dj denote the two writing

samples that arose from the ith and jth writer, respectively, where i 6= j. Then let

s(Di, Dj) be the score that measures similarity between the two writing samples,

where we assume s(Di, Dj) = s(Dj, Di). We denote τ to be the threshold which

declares two writing samples a match. If s(Di, Dj) > τ, then the two samples are

declared to match. If s(Di, Dj) ≤ τ, then the two samples are declared to not match.

Measuring the proportion of declared matches gives an unbiased estimator of the RMP

for the used comparison procedure. See 1.3.1 for more details about the properties of

this estimator of the RMP, including an expression for its standard error which can

be used to construct a Wald-type upper confidence bounds for the RMP.

We can use a similar process to estimate the RNMP. Instead of one writer providing

one writing sample, suppose that each writer provides two writing samples. Then

s(Di,1, Di,2) is the similarity score between the two writing samples provided by the

same writer. Using the same τ defined above, if s(Di,1, Di,2) ≤ τ, then the two

writing samples written by the same writer are declared a non-match. Calculating

the proportion of non-matches when comparing two documents written by the same

writer produces an estimate of the RNMP for the used comparison procedure. See

1.3.1 for more details about this estimator of the RNMP.

Though this process gives an idea of the RMP and the RNMP, it does not provide

information on the relationship between the RMP, RNMP, and the sizes of the writing

samples. The writing samples themselves may have been different lengths as well.

Even if the writing samples in the collection were approximately the same size, we

only see how the RMP and the RNMP are affected by that one size. This would mean
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we would have to obtain multiple writing samples of different lengths from a single

source, and do this for all N sources. Instead of collecting multiple samples, these

samples can instead be “simulated” from a single collection of writing samples, where

the size of the simulated samples will be less than the size of the observed writing

sample.

1.3.1 Properties of the RMP and RNMP

The following results are all in Serfling (1980) and are included for completeness.

For N documents from N writers, where the the ith document is written by the ith

writer, let Di : i = 1, 2, ..., N be i.i.d.. Let s(Di, Dj) be the similarity score associated

with the comparison procedure which compares the documents Di and Dj written by

the ith and jth writers, where i 6= j. Let τ be the threshold used to determine if the

similarity score produced a match or no-match.

One method that can be used to estimate the RMP, which we denote as θ, for a

given comparison procedure is to calculate the proportion of similarity scores that

are declared to match, which we denote as mij = 1 if Di and Dj match, and zero if

they do not.

θ̃ =

(
N

2

)−1 N−1∑
i=1

N∑
j=i+1

mij (1.1)

Denote

θ = P (s(Di, Dj) > τ),

which means that θ = E(mij). We can show that θ̃ is unbiased:
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Proof:

E(θ̃) = E

((
N

2

)−1 N−1∑
i=1

N∑
j=i+1

mij

)

=

(
N

2

)−1 N−1∑
i=1

N∑
j=i+1

E(mij)

=

(
N

2

)−1 N−1∑
i=1

N∑
j=i+1

θ

=

(
N

2

)−1(
N

2

)
θ

= θ.

�

This estimator of the RMP is a member of the class of U-statistics of degree two

(Serfling, 1980). So, under the assumption that the collection of writing samples

{Di : i = 1, 2, ..., N} are i.i.d., θ̃ has a variance of the form:

Var(θ̃) =
4(N − 2)

N(N − 1)
σ2
c +

2

N (N − 1)
θ(1− θ) (1.2)

where

σ2
c ≡ Var[E(mij|Di)] for any j 6= i. (1.3)

Proof: Let m
∼

be the
(
N
2

)
× 1 vector of all of the match outcomes, and 1

∼M
represents

a column vector with M rows with each element as a one. Then

θ̃ =
(
N
2

)−1
1t
∼ (N

2 )
m
∼

and E(θ̃) = θ.

V ar(θ̃) = V ar

((
N

2

)−1
1t
∼ (N

2 )
m
∼

)

=

(
N

2

)−2
1t
∼ (N

2 )
V ar

(
m
∼

)
1
∼(N

2 )
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To understand what the variance term looks like, it helps to look at the covariance

matrix.

V ar
(
m
∼

)
=



cov(m12m12) cov(m12m13) . . . cov(m12mN−1 N)

cov(m13m12) cov(m13m13) . . . cov(m13mN−1 N)

...
. . . . . .

...

cov(mN−1 Nm12) cov(mN−1 Nm13) . . . cov(mN−1 NmN−1 N)



=



θ (1− θ) σ2
c . . . 0

σ2
c θ (1− θ) . . . 0

...
...

. . .
...

0 0 . . . θ (1− θ)


The θ (1− θ) is the variance of a binomial, since mij = mij produces one of two

outcomes, {0, 1}, and thus is a binomial random variable. The term σ2
c represents the

covariance between two comparisons that share exactly one document in common,

cov(mijmih). Finally, the zeros show the covariance of between two comparisons of

sets of four documents, each generated by a different writer, since the documents are

considered i.i.d..

The representation of the form of the matrix is

θ (1− θ) I(N
2 )×(N

2 ) + σ2
c

(
P(N

2 )×NP
t
N×(N

2 ) − 2I(N
2 )×(N

2 )

)
,

where

P =



1 1 0 . . . 0

1 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1


.

P is a matrix where the row represents the index of pairs of the comparisons, and the
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columns represent each one of N individual documents. For the ijth row, there is a

one in the intersection of the ith column and the jth column, and zeros for every other

column in that row. The matrix PP t is used to represent each place in the covariance

matrix where there is a covariance between two comparisons that share exactly one

document in common. The identity matrix multiplied by two is included since PP t

will have an additional ‘two’ along the diagonal, which is not included in the original

matrix.

We can use linear algebra to solve out the variance using the form of the matrix as

follows:

(
N

2

)−2
1t
∼ (N

2 )
V ar

(
m
∼

)
1
∼(N

2 )

=

(
N

2

)−2[
θ (1− θ)

(
N

2

)
+ σ2

c

(
N(N − 1)2 − 2

(
N

2

))]
= θ (1− θ)

(
N

2

)−1
+ σ2

c

(
N(N − 1)2((N − 2)!)2

(N !)2
− 2

(
N

2

)−1)

= θ (1− θ)
(
N

2

)−1
+ σ2

c

(
4(N − 2)

N(N − 1)

)
.

The first step multiplied out the one-vectors, which essentially summed over the

identity matrices as well as PP t. �

Note that σ2
c does not depend on i or j because {Di : i = 1, 2, ..., N} are assumed to be

i.i.d.. Also, the “bar” in E(mij|Di) denotes conditional expectation. So, E(mij|Di)

can be viewed as a conditional match probability - namely, the probability that a

randomly selected writing sample matches a specific writing sample Di.
6

Based on the asymptotic distribution of a U-statistic, an approximate 100(1 − α)%

6Note that the first term in (2) involving σ2
c dominates Var(θ̃) for large values of N , as the second

term quickly converges to zero.
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Wald-type upper confidence bound on the RMP is:

θ̃ + zα

√
Var(θ̃) ≈ θ̃ +

2zασc√
N

for large N (1.4)

where Var(θ̃) (or σc) can be replaced by a consistent estimator, such as the one that

is presented in Wayman (2000) by Bickel, and zα is the 1−α quantile of the standard

normal distribution. Note that this upper bound depends on the sizes of the writing

samples through its dependency on σc and also on the number of writers N .

Suppose now that instead of a single writing sample, the collection contains two writ-

ing samples from each writer (represented in the collection). In other words, consider

an i.i.d. collection of pairs of writing samples {(Di,1, Di,2) : i = 1, 2, ..., N}. Let

s(Di,1, Di,2) denote the similarity score (associated with the comparison procedure)

that compares the two writing samples Di,1 and Di,2 from the ith writer in the col-

lection. Let τ be the threshold used to declare matching writing samples (via the

comparison procedure).

One natural estimator of the RNMP, which will be denoted as γ, for a given com-

parison procedure is the proportion of pairs of writing samples from the same writer

that do not match:

γ̂ = N−1
N∑
i=1

I{s(Di,1, Di,2) ≤ τ}. (1.5)

1.3.2 Overview of Thesis

Our main focus is investigating simulated writing samples that were generated from

a body of genuine writing samples can be used to examine how RMP and RNMP

change with respect to the size of the writing samples in the comparison. We then

use this to produce the standard deviation, which is used to construct upper confi-

dence bounds. Following that, we will examine a specific comparison procedure under
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investigation by the Document Forensics Laboratory at George Mason University and

a set of writing samples collected by the FBI Laboratory and processed by Sciomet-

rics. Using these, we will make an example of the proposed methodology, as well as

possible applications, for instance generating useful information to help in designing

an empirical study focused on handwriting individuality.
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CHAPTER 2

Simulations

2.1 Simulated Writing Samples

Between the limited lengths of documents and not being able to obtain a sample from

every writing profile, there simply may not be enough writing samples to capture the

wide range of writing profiles among a population and to assess the RMP and RNMP

of a given comparison procedure, as well as their relationship to the lengths of the

provided documents. It would be possible, using Monte Carlo simulation1, to produce

writing samples of any specified length if the source’s writing profile is known. Bear in

mind, a source’s writing profile is hardly ever known. However, if reasonable models

for writing profiles are available, the parameters could be estimated from the models

of the writing profiles. Using various resampling methods such as the Bootstrap

algorithm, a parameter could generate any number of writing samples of any size

(Efron and Hastie, 2016). To date, reasonable models for writing profiles have not

been developed.

Another method to generate simulated writing samples would be to subsample the

words from a single writing sample for each source. This proposed methodology

will allow various lengths of simulated samples to be produced, which allows for the

relationship between RMP and writing sample length to be studied. We can also

generate multiple simulated samples from a single writing sample, which allows for

1Monte Carlo simulation generates samples to estimate properties of a distribution.
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the RNMP to be studied as well.

This idea of creating simulated samples from the given samples is the key idea behind

many of the current resampling methods being studied in statistics: use the original

data to represent the population and then generate samples from the ‘estimated pop-

ulation’ (i.e., the original data) to create replicate samples. These replicate samples

can then be used to estimate properties of the original population, just as if one had

access to such samples from the actual population2.

Most resampling methodologies are examples of the plug-in principle in statistics.

Essentially, the plug-in principle works by estimating a property of a population

using the statistic that was derived from the sample. Resampling substitutes the

sample for the population and then draws samples (i.e. resamples) to imitate the

process of constructing the sampling distribution.

Resampling methods still tend to rely on the same Monte Carlo techniques used

when the population distribution is known. In theory, one could generate all possible

simulated samples that are generated from the given samples, however, this process

would be too time consuming and computer intensive to consider. Monte Carlo

resampling is instead used to limit the number of simulated samples produced. There

is one main difference between Monte Carlo simulation and resampling. Monte Carlo

simulation assumes that the underlying distribution is known. Resampling methods

assumes that the underlying distribution is not known, and thus the simulation is

then based on the sampled data.

Simulated samples that are generated from the sampled data can be applied to many

complicated statistical analyses. Regardless of the application though, it is important

that the simulated samples imitate the distribution of the sampled data. This ensures

that the properties of the simulated samples can generate valid estimators of the

2Note that this does not account for outside factors, i.e. writing surfaces, drug usage, or inten-
tionally disguising their own writing or replicating another writing profile.
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population characteristics of interest.

There is an important distinction to be made when subsampling from the sampled

data. Sampling words without replacement produces writing samples with a simi-

lar distribution to the associated writing profile. If instead we sampled words with

replacement, the simulated samples would be distributed according to a slightly dif-

ferent writing profile, as seen in 2.1.1. The estimators based on the latter subsampling

method will not necessarily be consistent if the number of sources increases to infin-

ity while the writing sample lengths remain short (i.e. consists of a small number of

words).3

In the following subsections, we will detail the subsampling method we propose for

estimating the RMP, RNMP, and the standard error associated with the estimator of

the RMP described in 1.3.1. We continue to assume that the writing samples in the

collection are i.i.d. and each sample is provided by one of each N writers.

2.1.1 Subsampling Versus Resampling

In this section, we will show that simulated writing samples generated by sampling

without replacement (i.e., via subsampling) have the same distributional properties as

the original writing samples, whereas those generated by sampling with replacement

(i.e., via resampling) do not.

Derivation 1: Suppose the original writing sample with V words is represented

as {W1,W2, ...,WV } where Wi denotes the features of the ith word in the writing

sample. (In our case, the features consist of the word being written and the isocodes

representing the character’s shapes.) Assume that this vector is an i.i.d. sample

from a multinomial distribution with r categories and associated probability vector

3When we say that an estimator is consistent, it means that for a sufficiently large number of
writers, it is expected that the estimator is very close to the real value for the entire population.
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p = {p1, p2, .., pr}, which we represent as: Wi
i.i.d.∼ Mult(1,p), i = 1, ..., V . Let

Yj = #{Wi in the jth category}, j = 1, 2, ..., r. Then, the random vector of counts

(Y1, Y2, ..., Yr) has a multinomial distribution with parameters V and p, which we

represent as: (Y1, Y2, ..., Yr) ∼ Mult(V,p).

First, suppose the simulated writing sample {W ∗
1 ,W

∗
2 , ...,W

∗
n} is generated by sam-

pling n ≤ V words at random without replacement from the original writing sample

{W1,W2, ...,WV }. Since {W ∗
1 ,W

∗
2 , ...,W

∗
n} ⊂ {W1,W2, ...,Wn}, W ∗

i
i.i.d.∼ Mult(1,p), i =

1, ..., n. So, if Y ∗j = #{W ∗
i in the jth category}, j = 1, 2, ..., r, (Y ∗1 , Y

∗
2 , ..., Y

∗
r ) ∼

Mult(n,p). Thus, simulated writing samples generated by sampling without replace-

ment have the same distributional properties as the original writing sample, i.e., both

are multinomial with the same probability vector p.

Next, suppose the simulated writing sample {W ∗
1 ,W

∗
2 , ...,W

∗
n} is generated by sam-

pling n ≤ V words at random with replacement from the original writing sample

{W1,W2, ...,WV }. Let Y∗ = (Y ∗1 , Y
∗
2 , ..., Y

∗
r ), where Y ∗j = #{W ∗

i in jth category},

j = 1, 2, ..., r. Now, sampling with replacement corresponds to using the observed

proportions in each category from the original sample as estimates of p and then

sampling from the “fitted” model Mult(1,p̂). So, conditional on the observed writing

sample, W ∗
i |Wj

i.i.d.∼ Mult(1,p̂), i = 1, ..., n, j = 1, ..., V, and Y∗|{W1,W2, ...,WV } ∼

Mult(n, p̂) where p̂ = (p̂1, p̂2, ..., p̂r) and p̂j = (Yj/V ), j = 1, 2, .., r.

What is the unconditional distribution of Y∗? For any x = (x1, x2, ..., xr) with

xj ∈ {0, 1, ..., n} and
∑r

j=1 xj = n,

P (Y∗ = x) =
∑
y

P (Y∗ = x|Y = y)P (Y = y)

where the sum is over all {y = {(y1, y2, ..., yr) : yj ∈ {0, 1, ..., V },
∑r

j=1 yj = V }.



18

Substituting the multinomial probabilities,

P (Y∗ = x) =
∑
y

[(
n

x1, x2, ..., xr

)
Πr
j=1

(yj
V

)xj ][( V

y1, y2, ..., yr

)
Πr
j=1p

yj
j

]
= V −n

(
n

x1, x2, ..., xr

)
E

[
Πr
j=1Y

xj
j

]

But, V −nE

[
Πr
j=1Y

xj
j

]
6= Πr

j=1p
xj
j for all x. For example, for x = (n, 0, ..., 0),

V −nE

[
Πr
j=1Y

xj
j

]
= V −nE

[
Y n
1

]
> p1

by Jensen’s inequality (unless p1 = 1). Thus, Y∗ does not have a multinomial distri-

bution with parameters n and p. That is, a simulated sample generated by random

sampling with replacement does not have the same distributional properties as the

original writing sample. �

2.1.2 Estimating RMP

In order to investigate how the RMP changes as a function of the lengths of writing

samples, we propose Algorithm 1 to estimate the RMP when comparing two writing

samples of a specified length.

Analysis of the set of data that Algorithm 1 creates will provide information on the

distribution of the similarity score between two writing samples provided by two

different writing sources.

Note that in Step 3 of Algorithm 1, the k represents the number of simulations that

are performed for the chosen pair of writers and the given sample size n.

In Step 4 of Algorithm 1, the match is determined by the previously defined threshold

value of τ. The proportion of pairs where I
(
s(D

∗(k)
i , D

∗(k)
j )

)
= 1, or θ̃ from (1), is an
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Algorithm 1: RMP

Data: A set of N writing samples from N writers. The set of writing
samples for the ith writer will consist of ni words.

Result: A matrix of the size 10×K ×
(
N
2

)
by 6: {n, k, i, j, s(D∗(k)i , D

∗(k)
j ) :

k = 1, 2, ..., K; i, j = 1, ..., N ; i 6= j, n ∈ {10, 20, 30, ..., 100}}.
begin

for Wi; i ∈ {1, ..., N − 1} do
for Wj; j ∈ {Wi + 1, ..., N} do

for n ∈ {10, 20, 30, ..., 100} do
for k ∈ {1, ..., K} do

Randomly select, without replacement, n words from the ni
words in Wi, generating the pseudo-document D

∗(k)
i , and n

words from the nj words in Wj, generating the

pseudo-document D
∗(k)
j .

Calculate the score, s(D
∗(k)
i , D

∗(k)
j ).

end

end

end

end

end

unbiased estimator of the RMP for comparing two writing samples. As the number of

writers increase for fixed lengths of writing samples being compared, this estimator of

the RMP is consistent; this is due to the variance decreasing as the number of writers

increase to infinity. This can easily be seen by looking at the following relationship

between θ̃ and θ̃∗, where

θ̃∗ =

(
N

2

)−1 N−1∑
i=1

N∑
j=2

[
K−1

K∑
k=1

I
(
s
(
D
∗(k)
i , D

∗(k)
j

)
> τ
)]

.

V ar
(
θ̃∗
)

= V ar
(
E
(
θ̃∗|D1, ..., DN

))
+ E

(
V ar

(
θ̃∗|D1, ..., DN

))
= V ar

(
θ̃
)

+
E (θij (1− θij))

K

(
N

2

)−1
=⇒ |V ar

(
θ̃∗
)
− V ar

(
θ̃
)
| ≤ 1

4K

(
N

2

)−1
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The two estimators, θ̃ and θ̃∗, are unbiased estimators of the RMP, and are further

explored in Section 2.2.4.

2.1.3 Estimating RNMP

We can modify Algorithm 1 to produce Algorithm 2 to study the relationship between

RNMP and the length of the writing samples. The main difference is that estimat-

ing the RNMP relies on comparing two simulated writing samples produced by the

same source, instead of two simulated writing samples produced by two different

sources.

Algorithm 2: RNMP

Data: A set of N writing samples from N writers. The set of writing
samples for the ith writer will consist of ni words.

Result: A matrix of 10×N ×K by 4 scores:
{n, k, i, s(D∗(k)i,1 , D

∗(k)
i,2 ) : k = 1, 2, ..., K; i = 1, ..., N}.

begin
for Wi; i ∈ {1, ..., N} do

for n ∈ {10, 20, 30, ..., 100} do
for k ∈ {1, ..., K} do

Randomly select, without replacement, 2n words from the ni
words in Wi, the first n generating the first pseudo-document
D
∗(k)
Wi,1

, and the remaining n words generating the second

pseudo-document D
∗(k)
Wi,2

.

Calculate the score, s(D
∗(k)
Wi,1

, D
∗(k)
Wi,2

).

end

end

end

end

Analysis of the set of data that Algorithm 2 creates will provide information on the

distribution of the similarity score between two writing samples provided by the same

source.

In Step 3 of Algorithm 2, the match is determined by the previously defined threshold



21

value of τ. The proportion of pairs where I
(
s(D

∗(k)
Wi,1

, D
∗(k)
Wi,2

)
)

= 1, or where there is

no match, is an unbiased estimator of the RNMP for comparing two writing samples.

As the number of writers increase for fixed lengths of writing samples being compared,

this estimator of the RNMP is consistent.

As mentioned in 2.1.2, the proposed algorithm does not investigate the dependency

of the RNMP with respect to the content of the writing samples being compared; the

criterion used when selecting the words that create the simulated samples would have

to be modified.

2.1.4 The Form of the Standard Error

Both the variance in (1.2) of the point estimator of the RMP defined in (1.1) and

the associated Wald-type upper confidence bound on the RMP, θ̃ + 2zασc/
√
N are

functions of the RMP as well as σc defined in (1.3). Unlike the RMP, σc involves

comparison of three writing samples instead of two. To understand why, recall the

assumption that the collection of writing samples {Di : i = 1, 2, ..., N} are i.i.d.. Un-

der this assumption, E(mij|Di) does not depend on j and E[E(mij|Di)] = E(mij) = θ

for any j 6= i. So, for any j 6= h 6= i,

σ2
c = Var[E(mij|Di)]

= E[E(mij|Di)E(mih|Di)]− [E[E(mij|Di)]]
2

= E[E(mijmih|Di)]− θ2

= E(mijmih)− θ2

= Cov (mij, mih)

(2.1)
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since

mijmik = I {s(Di, Dj) > τ} I {s(Di, Dh) > τ}

= I {s(Di, Dj) > τ and s(Di, Dh) > τ} ,

the term in (6) is just the probability of randomly selecting three individuals and

then sampling one writing sample from each individual such that the writing sample

from the first individual matches both the writing samples from the second and third

individuals. As shown in (6), this probability, which we refer to as the tri-match

probability (TMP), when combined with the RMP, determines σc.

σ2
c = TMP − (RMP )2

An important note is that both the TMP and the RMP, for reasonable matching

algorithms, will tend to decrease as the length of the writing samples increase. This

implies that by a small increase in the length of the writing sample, we have a dramatic

decrease in the upper confidence bound for the RMP. Further down, we will use

simple logistic regression models to characterize these relationships. The ability to

characterize the behavior of this relationship is an important factor in determining

the amount of writing the individuals write as well as the number of individuals to

include in a study to explore handwriting individuality and sufficiency.

As discussed at the end of 2.1.5, the output from Algorithm 3 can be used to estimate

the TMP for documents of a fixed length. Specifically, consider the output from

Algorithm 3:

{(
s(D

∗(k)
i , D

∗(k)
j ), s(D

∗(k)
i , D

∗(k)
h ), s(D

∗(k)
h , D

∗(k)
j )

)
: k = 1, 2, ..., K

}
.

For a fixed threshold τ, this data set can be converted into a set of pairs that flag
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whether each of the pairs of pseudo-documents match. Defining

m∗ij = I
{
s(D∗i , D

∗
j ) > τ

}
,

m∗ih = I {s(D∗i , D∗h) > τ} ,

and

m∗hj = I
{
s(D∗h, D

∗
j ) > τ

}
,

the output from Algorithm 3 can be viewed as:

{
(m
∗(k)
ij ,m

∗(k)
ih ,m

∗(k)
hj ) : k = 1, 2, ..., K

}
,

which provides information about the dependence of the TMP and σc on the sizes of

the writing samples; the proportion of triplets for which both match, i.e.,

ψ̃∗hij(n) ≡ K−1
K∑
k=1

m
∗(k)
ij m

∗(k)
ih +m

∗(k)
ij m

∗(k)
hj +m

∗(k)
ih m

∗(k)
hj

3
. (2.2)

This will be used to construct an Incomplete U-Statistic of degree three that can be

used to estimate the TMP. Under the assumption that ν(n) = E
(
m∗ij(n), m∗ih(n)

)
,

the results from Algorithm 3 can be used to construct a natural Incomplete U-Statistic

of degree three:

ν̃∗(n) =

(
N

3

)−1∑
h

∑
i

∑
j

ψ̃∗hij. (2.3)

This statistic in (2.3) will be a consistent estimator of νc as the number of writers

increases for fixed sizes of writing samples. The proof will be analogous to the one

used for the Incomplete U-Statistic of the RMP.

Alternatively, one can estimate σc using the relationship in (6) that σ2
c = νc − θ2.

If one has some other consistent estimator of the RMP, or some other information
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about the behavior of the RMP as a function of size of writing samples, say θ̃(n),

then

ν̃∗(n)− [θ̃(n)]
2

is also a consistent estimator of σc by Slutsky’s lemma (Serfling, 1980).

2.1.5 Estimating the Standard Error

The standard error of the estimate of the RMP (see 2.1.4) depends on using both the

RMP and depends on the tri-match probability (TMP). We define the TMP as the

probability of randomly selecting three writing samples from three different sources

where the writing sample provided by the first source matches the writing sample

from both the second source and the third source.

As the definition suggests, estimating the TMP involves comparing three simulated

writing samples instead of two. The following algorithm is proposed to study the

relationship between the TMP and the lengths of the writing samples being com-

pared.

Analysis of the pairs of scores that make up this data that Algorithm 3 creates will

provide information on the TMP and subsequently, the standard error of an estimate

of the RMP.

In Step 3 of Algorithm 3, the match is determined by the previously defined threshold

value of τ. The proportion of triplets where there is a match, is an unbiased estimator

of the TMP for comparing three writing samples. As the number of writers increase

for fixed lengths of writing samples being compared, this estimator of the TMP is

consistent.
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Algorithm 3: TMP

Data: A set of N writing samples from N writers. The set of writing
samples for the ith writer will consist of ni words.

Result: A matrix of 10×
(
N
3

)
× k by 8 paired scores:

{n, k, h, i, j, s(D∗(k)i , D
∗(k)
j ), s(D

∗(k)
i , D

∗(k)
h ), s(D

∗(k)
h , D

∗(k)
j ) : k =

1, 2, ..., K; n ∈ {10, 20, 30, ..., 100}; h, i, j = 1, ..., N ;h 6= i 6= j}.
begin

for Wh, h ∈ {1, ..., N − 2} do
for Wi, i ∈ {Wh + 1, ..., N − 1} do

for Wj, j ∈ {Wi + 1, ..., N} do
for n ∈ {10, 20, 30, ..., 100} do

for k ∈ {1, ..., K} do
Randomly select, without replacement, n words from
the nh words in Wh, generating the pseudo-document
D
∗(k)
h , n words from the ni words in Wi, generating the

pseudo-document D
∗(k)
i , and n words from the nj

words in Wj, generating the pseudo-document D
∗(k)
j .

Calculate the score, s(D
∗(k)
h , D

∗(k)
i )

Calculate the score, s(D
∗(k)
h , D

∗(k)
j ).

Calculate the score, s(D
∗(k)
i , D

∗(k)
j ).

end

end

end

end

end

end
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2.2 Applications

Throughout this section, we will demonstrate how the proposed algorithms men-

tioned in 2.1.5 can be used in a variety of applications associated with automated

comparisons of writing samples. The comparison procedures we will be using are

two developed by the Document Forensics Laboratory at George Mason University,

and one developed at SDSU, and a collection of research writing samples collected by

the FBI Laboratory and processed by Sciometrics. Note that the algorithms them-

selves are general - applicable to any comparison procedure and collection of writing

samples.

The collection of writing samples we use was formed from documents collected by

the FBI Laboratory from volunteers at the FBI, training classes, various forensic

conferences, and from friends and family members over a two-year period. Note that

this collection is not a random sample representative of some relevant population,

but instead is a convenience sample. With this in mind, the purpose of using this

collection in this study is not to make a statement about the properties of any specific

population, but to illustrate the algorithms proposed in 2.1.5.

Figure 2.1 displays the text and a writing sample for the modified “London Business

Letter” (Osborn, 1929; Saunders et al. 2011a for the modification). For the collection

of the writing samples, each volunteer was asked to provide a total of ten samples

of the modified London Business Letter; five written in cursive and five written in

hand printing. We will refer to this letter as the modified “London Letter”. A

Forensic Document Examiner made modifications to the original “London Letter”

that consisted of inserting two sentences at the end in order to incorporate some

occurrences of specific letter combinations (e.g. “ch”, “qu”, “ll”). The text of the

modified “London Letter” was selected because it gives a reasonable representation

of the frequencies of lowercase letters in English writing and contains at least one
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instance of each uppercase letter and each of the digits “0” through “9”.

Figure 2.1: A cursive and text form of the modified “London Letter” (Saunders et al.
2011a)

In order to assess the similarity between two documents using an automated process,

the writing samples first had to be quantified, which we will give a brief description

of how. Following manual character segmentation of each document, a proprietary

automated process was used to give a representation to each segmented character.

This representation is a mathematical graphic isomorphism where the internal struc-

ture can be enumerated by a code, and from now on we refer to as an isocode. The

result of this process translates documents into isocode frequencies, which can be

represented as a cross-classified table of letters by isocodes (Saunders et al., 2011b,

Hepler et al., 2012, Davis et al., 2012).

The collection of writing samples used in this study consists of mostly cursive docu-

ments and some printed documents from which five documents each were provided by

the first 100 volunteers, with a total of 500 documents after processing. The writing

samples provided by a single writing source were combined for this study, this gives
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one writing sample per writing source in the resulting collection.

Chi-Squared Classifier

As proposed in 2.1.5, we consider using the Chi-Squared Classifier as the similarity

score, which is based on Pearson’s chi-squared statistic (Saunders et al., 2011b). The

development of this Chi-Square Statistic is from Davis et al., 2012.

Consider two simulated documents D∗i and D∗j where i and j represent the ith and jth

writing profiles, i 6= j. For the lth letter, consider the two vectors of counts produced

from the simulated documents, nil and njl, respectively. Using these two vectors,

we construct a 2 × #(Iobs), where Iobs is the set of observed unique isocodes of the

lth letter from the two documents, which we label as M. The Pearson Chi-Squared

Statistic as outlined in Agresti (2012 pgs. 75-76) is as follows.

X2
l =

∑
i

∑
j

(Mij − µ̂ij)2

µ̂ij

Where µ̂ij =
Mi+M+j

nil+njl
which is derived from the maximum likelihood estimates of the

joint probabilities of each element of M. For this statistic, the degree of freedom is

calculated by

df = 2×#(Iobs)− 1.

The Corrected Chi-Square has the form

X2
l =

∑
i

∑
j

(|Mij − µ̂ij| − 0.5)2

µ̂ij
.

To produce the main “Omnibus” score to compare two documents,

1. Calculate the Chi-Square statistic for each letter and record the degrees of



29

freedom, which is outlined above.

2. Then, sum all of the statistics that were calculated for each letter, and separately

sum up all of the degrees of freedom that were calculated for each letter.

X2
T =

∑
l

X2
l

DoFT =
∑
l

DoFl

3. With the Omnibus Chi-Square Statistic and its corresponding degrees of free-

dom, calculate the probability that a chi-squared random variable with the

summed degrees of freedom exceeds the observed value of the summed statistic.

This probability is the similarity score associated with the comparison.

P (X2
DoF ≥ X2

T |DoF = DoFT )

Where X2
DoF is the Chi-square random variable associated with the calculated Degree

of Freedom.

Kullbeck-Liebler Distance

The development of the Kullbeck-Liebler Distance is presented from Hepler et al.

(2012) for clarity.

Consider two simulated documents D∗i and D∗j where i and j represent the ith and

jth writing profiles, i 6= j. For the lth letter, consider the two vectors of counts

produced from the sim documents, nil and njl, respectively. Using these two vectors,

we construct a 2×#(Iobs), where Iobs is the set of observed unique isocodes of the lth

letter from the two documents. We define

νilk =
nilk + I−1obs
nil+ + 1
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and

νjlk =
njlk + I−1obs
njl+ + 1

,

where nil+ =
∑Iobs

k=1 nilk , njl+ =
∑Iobs

k=1 njlk , and k = 1, ..., Iobs represents the number of

unique isocodes used for the letter l from either document. We define the dissimilarity

score for the lth letter as

δ(nil, njl) ≡
Iobs∑
k=1

νjlk ln(
νjlk
νilk

).

Note that when Iobs = 1, the dissimilarity score is zero. To calculate the dissimilarity

score between two documents, i.e. using all letters l = 1, ..., L, we first want to define

a set of weights such that the sum of the weights equals one,

λl ∝


1√

1
nil+

√
1

njl+

min(nil+ , njl+) ≥ 1

0 otherwise.

This ensures a letter has a weight only when it occurs in both documents. To calculate

the dissimilarity score of the two documents,

δ(ni, nj) =
L∑
l=1

λlδ(nil, njl).

Multinomial

Let D1|#(l) ∼ Multi(#(l), θ1
∼

), where θ1
∼

= (p1,1, p1,2, ..., p1,I)
T , p1,j ∼ F , j = 1, ..., I

where I is the total number of isocodes known. F is the distribution function defined

on a simplex of IRj. Let Clj represent the counts of the jth isocode for the lth letter

of the questioned document. θlm is the proportion of the jth isocode for the lth letter.
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Then,

f(Cl|θl) =

(
Cl+

Cl1Cl2...ClI

)
ΠI
j=1θ

Clj

lj

= C1+!Πj∈{Clj>0}
θ
Clj

lj

Clj!
Πj∈{Clj=0}

θ
Clj

lj

1
.

(2.4)

If we let j∗ = j if Culj > 0 for each l, then

f(Cul |θl) =

(
Cul+

Cul1∗Cul2∗ ...CulJ∗

)
ΠJ∗

j∗=1θ
Culj∗

lj∗ . (2.5)

Note that
∑J∗

j∗=1 θlj∗ < 1.

This implies that we can only consider the observed categories plus one, and thus

reduces the dimensionality.

Binomial-Poisson

This score is referred to as the Binomial Method throughout this paper.

This matching score is based on a poisson process. We will consider each isocode/letter

pairing and assume the two documents being compared are the same length. With

this set in place, we test to see if the two sets of the poisson process are equivalent

by testing if the counts of each isocode/letter pairing are equal across the two docu-

ments. If we condition on the total number of counts in a isocode/letter pairing, we

are essentially testing

H0 : N1 ∼ Binom (p = 0.5, N1 +N2) . (2.6)

If we use the exact level α p-value (Casella and Berger, 1990, pg. 368) for this test,

we will have one Uniform random variable for each observed isocode/letter pairing
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between the two documents. We then combine the p-values using Fisher’s Method

(Fisher 1948).
Iobs,Lobs∑

j,l

−2ln(pj,l) ∼ χ2
2×IobsLobs

(2.7)

We use a probability inverse transform to produce a theoretical Uniform similarity

score, as long as the two documents were written by the same writer.

2.2.1 Determining an Appropriate Threshold Value

The RMP and the RNMP can be used to select a suitable threshold to use with

a comparison procedure for declaring a match between two writing samples. One

method for selecting a threshold value is to choose the threshold so that the rate of

false match errors equals the rate of false no-match errors. The resulting rate is called

the equal error rate (EER) and is a standard method used to compare the “matching”

accuracy across comparison procedures, mainly comparison procedures designed for

biometric authentication systems. Another method for selecting a threshold value is

to give a pre-specified rate of no-match errors, e.g. 1%. This method is frequently used

in forensic settings where the consequences of the two types of errors are not equal,

with the false match error commonly considered to have heavier consequences.

With respect to the proposed algorithms, we will consider determining the threshold

value that will produce a RNMP of 1%. If the individual characters chosen for

the algorithm are considered a random sample from an individual’s writing profile,

then the similarity score calculated with the Chi-Squared Classifier is related to an

approximate p-value. If we assume independence across the characters, (theoretically)

the similarity score, when applied to two randomly selected writing samples from

the same source, will have approximately a uniform distribution, independent of the

length and content that make up the two writing samples in the comparison. This
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suggests that the 1% RNMP threshold for the Chi-Squared Classifier should be 0.01,

with the assumption that the characters are independent.

Assuming the characters are independent is questionable, though. Which would mean

the 1% RNMP threshold might not be 0.01, and might change with the length and

content of the writing samples. Since the two samples are from the same source, we

will use Algorithm 2 and simulate writing samples to study empirically the dependence

on the length (though not necessarily the dependence on the content) by estimating

the RNMP for a variety of lengths of writing samples. The algorithms are applied to

words, and thus the dependence between characters within a word is preserved.

We applied Algorithm 2 with 10 different lengths of the simulated writing samples,

starting at n = 10, and increasing by increments of 10, until n = 100. Each length

chosen was ran through the algorithm nine times, producing nine sets of 10 scores for

each comparison.

Figures 2.2-2.9 are plots of the empirical cumulative distribution function (ECDF)4

of the nine similarity scores produced using Algorithm 2 for each of the 10 lengths

of writing samples. The 45-degree line that is overlaid on a few of the plots is the

cumulative distribution function (CDF) for the uniform distribution.

The behavior of the EDCF in Figures 2.4-2.9 are similar for a given method regardless

of the 10 different lengths of writing samples. Comparing the EDCF to the CDF for

a uniform distribution, there is very little similarity between the two, as the EDCF

fluctuates around the CDF. This suggests that for all 10 lengths of writing samples,

the similarity scores for within-writer comparisons tend to be more concentrated to-

ward smaller values than would be expected if the similarity scores followed a uniform

distribution.

4the ECDF is a plot of a score value against the proportion of values in the set of scores that are
less than or equal to a specified score value.
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Notice in nearly every plot in Figures 2.4-2.9, the ECDF is near or below the uniform

CDF line when the score values are less than 0.01; and the EDCF appears to be

moving closer to the CDF (as the score values increase towards 0.01) as the length

of the writing samples increase in terms of word counts. Even though the uniform

approximation is not accurate across the similarity score values, this observation sug-

gests that the 1% RNMP threshold is close to 0.01, or maybe even slightly larger than

0.01. With this in mind, 0.01 appears to be a reasonable choice (though conservative,

particularly for smaller lengths of writing samples) for the threshold value for use with

the Chi-Squared Classifier to create a comparison procedure with a pre-specified rate

of no-match errors of no more than 1%. A threshold value of 0.01 is conservative,

particularly for shorter lengths of writing samples, and using a conservative value

for the RNMP threshold will result in overestimating the RMP associated with the

actual 1% RNMP threshold, and so the RNMP threshold should be bigger. However,

this appears to be less of an issue as the length of writing samples being compared

increases.

2.2.2 Estimating the RMP as a Function of Length of

Writing Samples

We can investigate the RMP associated with the Chi-Squared Classifier and a thresh-

old of τ = 0.01 by applying one of our proposed algorithms.5

We applied Algorithm 1 with 10 different lengths of the simulated writing samples,

starting at n = 10 and increasing by increments of 10, ending when n = 100.6 Each

length chosen was ran through the algorithm 9 times, producing 9 sets of 10 scores

5This threshold corresponds to a rate of no-match errors of at most 1%, which was suggested by
the results in the previous sub-section.

6It is not possible to accurately estimate very small RMP with K = 9, and so we considered
common lengths of writing samples to be at most 100.
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Model Intercept Slope

Binomial Theoretical Threshold 2.985 -0.058
Binomial Empirical Threshold 2.985 -0.058
Uncorrected Chi-Square Theoretical 2.876 -0.109
Uncorrected Chi-Square Empirical 2.548 -0.111
Corrected Chi-Square Theoretical 3.526 -0.093
Corrected Chi-Square Empirical 2.577 -0.107
Kullbeck-Liebler Empirical 1.405 -0.017

Table 2.1: Fitted Simple Logistic Regression on the Models for RMP

per comparison.

As illustrated in Figures 2.10-2.13, the proportion of the scores that exceeded 0.01 was

calculated for each set of scores. This graph illustrates the dependency of the RMP

on the length of the writing samples being compared, where the RMP is approaching

zero as the lengths of the writing samples increase. In order to produce a reasonable

estimate of the trend, we fitted a logistic regression model cubic in length of writing

sample. Table 1 shows the resulting fit, and is plotted as a solid line in Figures 2.10-

2.13. Based on the fitted logistic curve, the RMP associated with the Uncorrected

Chi-Squared Classifier with threshold 0.01 is less than 10% when comparing lengths

of writing samples to be at least 50 words long, and less than 1% when comparing

lengths of writing samples to be at least 65 words long.

The logistic parameters are estimated by solving the following equation

β̂ = argminβ
∑
n

(
θ̂∗(n)− θβ(n)

)2
,

recalling that

ln

(
θβ(n)

1− θβ(n)

)
= β0 + β1n.
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2.2.3 Estimating the TMP and Standard Error

One approach to constructing upper confidence bounds on the RMP would be to use

a Wald-type upper confidence bound, which is described in 1.3.1. A Wald-type upper

confidence bound is an approximate confidence set based on the asymptotic normality

of a parameter estimate. For a given parameter estimate θ̃, it typically has the form

θ̃+Z1−α×SE, where Z1−α is the z-value associated with the chosen α-level, and SE

stands for the standard error (or any consistent estimator of the standard error). For

example, for a 95% upper confidence bound, the standard error would be multiplied

by 1.645.

As mentioned above, in order to calculate this type of upper confidence bound, the

standard error of the estimated RMP needs to be known. However, the standard

error of the RMP estimator is related to the TMP, which can be estimated using

Algorithm 3.

Given enough time, we would apply Algorithm 3 with 10 different lengths7 of the

simulated writing samples, a threshold of τ = 0.01, would start at n = 10 and

increasing by increments of 10, ending when n = 100. Each length chosen would be

ran through the algorithm 9 times, producing 9 sets of 10 scores per comparison.

The application of Algorithm 3 using the same values of K and choices of writing

sample length is computationally complex, as it would take upwards of three months

to run. We propose a new algorithm to randomly sample approximately 600 triplicates

from the entire set of possible triplicates8.

As Figures 2.15-2.18 illustrates, the proportion of pairs for each set of score pairs where

both scores exceeded 0.01 was calculated. Figures 2.15-2.18 shows the dependency of

7The values of K and the choices of writing sample length are the same as the RMP application
in 2.2.2.

8600 was chosen because that is approximately how many calculations that could be performed
in two days using available computational resources.
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Algorithm 4: TMP Estimate

Data: A set of N writing samples from N writers. The set of writing
samples for the ith writer will consist of ni words.

The set of each triplicate formed by the N writers,
T = {{W1,W2,W3}, {W1,W2,W4}, ..., {WN−2,WN−1,WN}}, where T has

(
N
3

)
elements.
TM = {{W1,1? ,W1,2? ,W1,3?}, {W2,1? ,W2,2? ,W2,3?}, ..., {WM,1? ,WM,2? ,WM,3?}},
a random sample from T of M triplicates.
Result: A matrix of 10×K ×M by 8 paired scores:

{n, k, {m, 1?}, {m, 2?}, {m, 3?}, s(D∗(k)m,1? , D
∗(k)
m,2?), s(D

∗(k)
m,1? , D

∗(k)
m,3?),

s(D
∗(k)
m,2? , D

∗(k)
m,3?) : k = 1, 2, ..., K; for n ∈ {10, 20, 30, ..., 100}; m = 1, ...,M}.

begin
for {Wm,1? ,Wm,2? ,Wm,3?}, m = 1, ...,M do

for k ∈ {1, ..., K} do
for n ∈ {10, 20, 30, ..., 100} do

Randomly select, without replacement, n words from the nm,1?

words in Wm,1? , generating the pseudo-document D
∗(k)
m,1? , n

words from the nm,2? words in Wm,2? , generating the

pseudo-document D
∗(k)
m,2? , and n words from the nm,3? words in

Wm,3? , generating the pseudo-document D
∗(k)
m,3? .

Calculate the score, s(D
∗(k)
m,1? , D

∗(k)
m,2?)

Calculate the score, s(D
∗(k)
m,1? , D

∗(k)
m,3?).

end

end

end

end
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the TMP on the length of the writing samples being compared; the TMP approaching

zero as the length of the writing samples grow larger. Following in the path of the

RMP, we again plotted a logistic regression model, cubic in length of writing samples,

to provide a reasonable fit and a smooth curve to represent the relationship between

the TMP and the length of the writing samples. Table 2 summarizes the results of

the logistic curve, and is plotted as the solid line in Figures 2.15-2.18.

Figures 2.15-2.18 also include a dotted line for comparison. This is the logistic model

fit to the estimated RMP from 2.2.2. If we compare the two curves, observe that

the estimated RMP and the estimated TMP act similar for shorter lengths of writing

samples. Also note that the estimated TMP drops down more rapidly as the length

of the writing samples increase.

Figure 2.14 illustrates the relationship between the estimated variance of the condi-

tional match probabilities9 of the estimated RMP and the number of writers across

the different lengths of writing samples. Using (2) given in 1.3.110, these estimates

combine the two logistic curves shown in Figures 2.15-2.18, as well as an additional

logistic model. The logistic model for the RMP in Figures 2.10-2.13 is fit to the

proportion of pairs from the simulated samples that match when comparing the first

and the second simulated samples in the output from Algorithm 3. The estimates

shown in Figures 2.15-2.18 use the same type of logistic model, also cubic in length

of writing sample, and is fit to the proportion of pairs from the simulated samples

that match when comparing the first and the third simulated samples in the output

from Algorithm 3. Even though the standard error is affected by both the length of

the writing samples and the number of writers represented, it is more sensitive to the

lengths than to the number of writers.

9As is clear from the form of the standard error of the U-Statistic, the variance of the conditional
match probability is proportional to the standard error of the estimated RMP.

10This is not suggesting that the best estimator of the standard error of this data is the combination
of fitted logistic models for the RMP and TMP. The estimator discussed here is to show one approach
to estimating the standard error. See 2.1.4 for a more detailed discussion of this issue.
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Model Intercept Slope

Binomial Theoretical Threshold 2.957 -0.078
Binomial Empirical Threshold 2.743 -0.078
Uncorrected Chi-Square Theoretical Threshold 3.189 -0.157
Uncorrected Chi-Square Empirical Threshold 2.649 -0.155
Corrected Chi-Square Theoretical Threshold 3.983 -0.132
Corrected Chi-Square Empirical Threshold 2.767 -0.155
Kullbeck-Liebler Empirical Threshold 0.821 -0.0182

Table 2.2: Fitted Simple Logistic Regression on the Models for TMP

The variance of the conditional match probability plots in Figure 2.14 suggest that

for a short length of writing samples (i.e., 100 words), the standard error of the

estimated RMP is going to be essentially zero. Knowing this, using shorter lengths

of writing samples will not be as useful when trying to precisely bound a very small

RMP. Doubling the length of the writing samples to 200 does not provide much in

reducing the standard error.

2.2.4 Notes-Approximation Results for Sub-sampling

U-Statistics estimates of RMP

In this section we will discuss some of the statistical properties of the estimates of the

RMP from the previous sections. The main goal is to demonstrate that the limiting

form of the sub-sampling estimates, for a specified word count, are U-statistics of

degree two (or three in the case of the estimates of the variance of the conditional

match probability). We will use a slightly different set of notation to facilitate the

discussion of the theoretical properties.

Assume we have N vectors of counts denoted as Di, i = 1, 2, . . . , N . We will assume

that Di =
ni∑
j=1

Dij, j = 1, 2, 3, . . . , ni, where for fixed i,

Dij
i.i.d.∼ Multi(1, pi).
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This immediately implies that, conditional on pi and ni,

Di ∼ Multi(ni, pi).

We will assume that pi
i.i.d.∼ F, i = 1, 2, . . . , N, where F is a distribution function

defined on a simplex of RM .

Let

mij = m (Di, Dj) = I (s (Di, Dj) > τ) ,

where s (·, ·) is a function that maps two vectors of counts to [0, ∞) as a similarity

score. Then the random match probability conditional on the length of the two

documents being compared is

θ (ni, nj) = Emij.

We are specifically interested in estimating the random match probability between

two documents of common length n of interest, with ni being the actual number of

words in the ith document; if n ≤ ni for i = 1, 2, . . . , N, then θ (n) = Emij.

A sub-sampled document of size n from a writing sample, say D∗i , is generated by

sampling n words without replacement from the original ni words that make up Di.

Denote the kth sub-sampled document from Di as the Di
∗(k).

Lemma 2.1:

Let Di and Di
k∗ be defined as above. Then,

i) Conditional on Di; Di
∗(k) are i.i.d. multivariate Hyper-geometric ran-

dom variables, for k = 1, 2, 3, . . .

ii) Di
∗(k) ind.∼ Multi(n, pi), i = 1, 2, . . . , N.
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Proof: Part i) By definition of the hyper-geometric random variables.

Part ii) For a multinomial random vector, we can take advantage of the fact that, for

f being probability mass functions associated with multinomial random vector X,

f(X) = f(X1)f(X2|X1)f(X3|X2X1) . . . f(XI |XI−1 . . . X1)

to allow us to only focus on binomial and hypergeometric random variables. Let X

and Y be random variables such that

X ∼ Binomial(M,P )

and

Y |X = x ∼ HyperGeometric(x, J − x,m).

Let Bj
iid.∼ Bernoulli(p). Then X can be written as

X =
J∑
j=1

Bj,

furthermore we can decompose X as

X =
m∑
j=1

Bj +
J∑

j=m+1

Bj

≡ Y + Y c.

Next we will look at all possible permutations of the Bj’s and consider a probability

distribution on the permutations such that each permutation is equally likely to be

observed. Let Q be a random vector taking values on Q; the set of permutations of

the objects {1, 2, . . . , J} . Now for Q = q , let j? be the j?th entry in the vector q, we
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can then write

X|Q=q =
J∑

j?=1

Bj?

=
m∑

j?=1

Bj +
J∑

j?=m+1

Bj?

≡ Yq + Y c
q .

Since the Bj’s are i.i.d., then there is no dependence on the selected permutation.

This directly implies that Y and Yq have the same distribution. Therefore, Y ∼

Binomial(m, p) and Y c ∼ Binomial(N −m, p), which in turn implies that Di
∗(k) i.i.d.∼

Multi(ni, pi), i = 1, 2, . . . , N. �

An implication of Lemma 1. is that

θ (n) = Em
∗(k)
ij = Em

(
D
∗(k)
i , D

∗(k)
j

)
.

Consider two writing profiles for which we have observed writing samples from, denote

these profiles as pi and pj, let Ti ∼Multi(n, pi) and Tj ∼Multi(n, pj).

Then define

θij (n) = E (m (Ti, Tj)| pi, pj)

and note that

E (θij (n)) = θ (n) .

For two given writers, say i and j, θij (n) is the probability that we observe a match

between two of these writers’ documents that are composed of n words.

Next consider a document, D, made up of nD distinct words. There are exactly
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R =

(
nD
n

)
distinct subsets of words of size n; denote the set of all possible subsets as

{
D(r)

}R
r=1

.

Consider Di and Dj, as well as their corresponding subsets of words of size n :

Ri =

(
ni
n

)

{
Di
∗(r)
}Ri

r=1
,

Rj =

(
nj
n

)

and

{
Dj
∗(r)
}Rj

r=1
.

A possible estimate of θij (n) is

θ̃ij (n) = Ri
−1Rj

−1
Ri∑
r=1

Rj∑
r′=1

m
(
Di
∗(r), Dj

∗(r′)
)
.

Next we will define a U-statistic that estimates θ under the above assumptions:

θ̃N (n) =

(
N

2

)−1 N−1∑
i=1

N∑
j=i+1

θ̃ij (n) .
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Lemma 2.2:

Let {Di}Ni=1 satisfy the above assumptions. Let
{
Di
∗(r)
}Ri

r=1
be defined as

above. Let θ (n) and θ̃N (n) be defined as above.

Then, for fixed n,

√
N
(
θ̃N (n)− θ (n)

)
 N (0, 4ξ1) , as N →∞,

for ξ1 = var
(
θ̃i

)
> 0 and θ̃i (n) = E

(
θ̃ij (n)

∣∣∣Di

)
, for i = 1, 2, ..., N.

Proof: As mentioned above, θ̃N (n) is a U-statistic of degree two. The kernel of

θ̃N (n) is θ̃ij (n) which is a bounded symmetric function with expectation θ. As long as

var
(
θ̃i

)
> 0, the result follows from Theorem A of Section 5.5.1 of Serfling (1980). �

As in 2.1.2, D
∗(k)
1 and D

∗(k)
2 be sub-sampled documents from the kth draw and

θ̃∗ =

(
N

2

)−1 N−1∑
i=1

N∑
j=i+1

[
K−1

K∑
k=1

I
(
s
(
D
∗(k)
i , D

∗(k)
j

)
> τ
)]

.

[Note that the distribution of Kθ̃∗(n) given {Di}Ni=1 is binomial with probability of

success UN (n) and K trials.] The variance of θ̃∗(n) is then

V ar
(
θ̃∗
)

= V ar
(
E
(
θ̃∗|D1, ..., DN

))
+ E

(
V ar

(
θ̃∗|D1, ..., DN

))
= V ar

(
θ̃
)

+
E (θij (1− θij))

K

(
N

2

)−1
=⇒ |V ar

(
θ̃∗
)
− V ar

(
θ̃
)
| ≤ 1

4K

(
N

2

)−1

Note that as K, the number of iterations in the subsampling algorithm increases, the
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variance of θ̃∗(n) approaches the variance of θ̃(n).

An additional aspect of this development, which I plan on working on for my Ph.D.,

is that we have developed a class of U-statistics which are indexed by the length of

the documents considered in the kernel. This generalizes the U-statistics that we

have focused on in this research project into a class known as U-processes. This

representation is a major goal of this specific research project.

2.2.5 Contributions to Designing a Study of Handwriting

Individuality

One critical part of planning a study is to select the number of observations. One

procedure is to designate a desired margin of error associated with estimating a pa-

rameter of interest and select the number of observations which produce the given

margin of error.

In a study of handwriting individuality, one parameter of interest is the RMP, which

is related to the degree of individuality of writing profiles in a population. Discussed

in detail in Bolle et al. (2004) and Saunders et al. (2011a), and mentioned in 1.2,

an upper bound on the RMP is also an upper bound on the infrequency of matching

writing profiles. Thus, for an empirical study of the individuality of handwriting

within a specific population, one might consider selecting the number of writers to

produce a desired upper bound on the RMP (assuming the “true” value for the RMP

is very close to zero).

Obtaining a small upper bound when there are zero observed matches is ideal. The

smallest possible upper bound on the RMP (when writing samples are compared

pairwise) occurs when there are no observed matches from a collection of writing

samples taken from a large number of writers.
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Using a Wald-type upper bound (1.3.1) with an estimated standard error based on

simulated samples, as described in 2.2.3, requires a large number of writers to produce

writing samples in order to be very precise. Though, typically, a large set of writing

samples is not available at the planning stages of a study. One alternative would be

to use one of the proposed estimators of the standard error that is based entirely on

an observed set of writing samples without subsequent subsampling. However, most

of these proposed estimators, such as those proposed by Sen (1960), Arveson (1969),

Schucany and Bankson (1989), and Wayman (2000), cannot be used when there are

zero observed matches.

For interval estimation of a proportion, Agresti and Coull (1998) show that adding

two “successes” and two “failures” to the sample gives coverage probabilities close to

the nominal confidence levels of an adjusted Wald interval. In order to investigate the

coverage probability of a Wald-type upper confidence bound on the RMP, we have

performed a small simulation study with a similar adjustment of adding one match

and one no match11 to Wayman’s (2000) estimate of standard error. Our preliminary

investigations suggest that this adjustment produces coverage probabilities close to

the nominal confidence levels.

When adding one match and one no match to the sample when there are no observed

matches, the formula for the 95% upper confidence bound using Wayman’s (2000)

estimate of the standard error simplifies to 4.65/[(N + 1)(N + 2)], where N is the

number of writers. This shows that the more writers involved in the study, the

upper bound for when there are no observed matches is smaller, and will result in

a conservative interval in the sense that the coverage probability has increased. For

example, in a sample of 963 writers with no observed matches would yield a 95%

upper confidence bound on the RMP of 5 in one million, and a sample 2,154 writers

11To be more specific, the procedure consists of adding one sample that matches exactly one
observed sample, and adding one sample that does not match any of the observed samples. This
ensures there is exactly one match out of all of the comparisons.
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with no observed matches would yield a 95% upper confidence bound on the RMP of

about one in 1 million.

Keep in mind that the examples mentioned above assumes no observed matches when

the writing samples are compared pairwise. And, given that the ‘true’ RMP is not

zero, for a fixed length of writing samples and fixed RNMP threshold, the probability

of observing a match increases as more writers are introduced and being compared.

However, the length of the writing samples affects the RMP and in turn affects the

probability of observing no matches, as shown in Figures 2.10-2.13. Therefore, in

order to obtain a small upper bound, the length of the writing samples as well as the

number of writers must be considered.

The modeling techniques developed and proposed from this work will allow researchers

to accurately model the necessary match probabilities needed to design individuality

or sufficiency studies as in Saunders et al. (2011).
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Figure 2.2: Binomial RNMP by Word Count
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Figure 2.3: Binomial RNMP by Word Count
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Figure 2.9: Kullbeck-Liebler RNMP by Word Count
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Figure 2.10: Fitted Simple Logistic Regression Model for Binomial RMP
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Figure 2.11: Fitted Simple Logistic Regression Model for Uncorrected Chi-Square
RMP
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Figure 2.12: Fitted Simple Logistic Regression Model for Corrected Chi-Square RMP

●

●

●

● ● ● ●

●

●
●

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Word Count

E
st

im
at

ed
 T

hr
es

ho
ld

Figure 2.13: Fitted Simple Logistic Regression Model for Kullbeck-Liebler RMP



58

0 50 100 150 200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Variance of the Binomial TMP

Word Count

V
ar

ia
nc

e

0 50 100 150 200
0.

00
0.

02
0.

04
0.

06
0.

08
0.

10

Variance of the Corrected Chi−Squared TMP

Word Count

V
ar

ia
nc

e

0 50 100 150 200

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Variance of the Uncorrected Chi−Squared TMP

Word Count

V
ar

ia
nc

e

Figure 2.14: Subsampling Estimates of the Variance of the Conditional Match Prob-
ability; using the theoretical threshold for the Binomial match and the empirical
threshold for the two χ2 classifiers.
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Figure 2.15: Fitted Simple Logistic Regression Model for Binomial TMP
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Figure 2.16: Fitted Simple Logistic Regression Model for Uncorrected Chi-Square
TMP
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Figure 2.17: Fitted Simple Logistic Regression Model for Corrected Chi-Square TMP
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Figure 2.18: Fitted Simple Logistic Regression Model for Kullbeck-Liebler TMP
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CHAPTER 3

Conclusion

The National Research Council (2009, p. 122) states:

The assessment of the accuracy of the conclusions from forensic analyses and the

estimation of relevant error rates are key components of the missions of forensic

science.

This statement suggests that investigations into the RMP and the RNMP associ-

ated with a comparison procedure contributes to its practical utility in forensic sci-

ence.

In forensic DNA analysis, population genetics allow modeling the RMP and the

RNMP as a function of population size and number of loci compared. Currently,

no comparable modeling exists in handwriting analysis. In this paper, we have dis-

cussed one alternative for modeling the relationship between the RMP and the RNMP

associated with a comparison procedure and applied to a collection of writing sam-

ples. The proposed method involves investigating the RMP and the RNMP using

simulated writing samples. We have proposed algorithms for subsampling from writ-

ing samples in a collection where the subsamples are used to consistently estimate

the RMP and the RNMP as a function of the lengths of the writing samples being

compared. We have determined that the consistency of the subsampling estimators

is only dependent on the number of writers, not on the length of the writing sam-

ples. We also have proposed a subsampling algorithm that can be used to estimate
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the standard error associated with an estimator of the RMP based on all pairwise

comparisons of the writing samples in a collection.

All of these algorithms have been stated in terms of a common length of writing

samples being compared. However, they can be trivially adapted to scenarios where

the sizes of writing samples being compared are not the same for all writing sam-

ples. Such an application might arise when studying match probabilities associated

with comparing very short notes, such as might be associated with bank robberies,

to very large writing samples collected from potential suspects. The algorithms can

also be adapted to investigate the dependency of match probabilities on criteria other

than sizes of writing samples being compared. For example, the effect of content

on match probabilities can be studied by changing from random sampling to strati-

fied or systematic sampling when selecting words to generate the simulated writing

samples.

Throughout this paper we introduced this subsampling methodology, which was the

main objective, and have also applied the subsampling-based algorithms to a collec-

tion of writing samples. One example we have shown is how the information about

the RMP can be used when organizing an empirical study of handwriting individual-

ity within a relevant population. Caution must be taken concerning the actual values

of the resulting estimates and the recommendations regarding an empirical study of

handwriting individuality presented in this paper, as the collection of writing samples

used to provide examples is relatively small with samples from only 100 individuals.

Also, the collection of writing samples is a convenience sample and not necessarily

representative of a specific population. Having a small collection limits the ability to

accurately estimate very small match probabilities.

Although this paper is focused on match probabilities, the algorithms this paper pro-

posed have potential applications in other forensic disciplines. Match probabilities are
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utilized in studies of individuality and to validate the use of specific forensic techniques

for individualization. However, it should be noted that they may not be the relevant

measures for use in court (Stoney, 1984). A recent focus in forensic disciplines is to use

the likelihood ratio, which can be used in cases such as handwriting and in the DNA

practice of reporting profile frequencies. If a likelihood ratio is used, the probability

that is estimated for the denominator is related to match probabilities. Currently, we

are in the process of investigating the use of subsampling techniques proposed in this

paper to estimate a likelihood ratio for handwriting identification.
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Glossary

Between-Writer: Refers to the comparison of two documents that were generated
by two individual writers.

Character: Refers to the letter in a specific place in a document.

Isocode: A representation of each segmented character, represented by a mathe-
matical graphic isomorphism where the internal structure can be enumerated
by a code. Isocodes are cretaed by a proprietary automated process.

Length: The length of a document is measured by the number of characters or
words written in the document. Throughout this paper we will refer to the
length as the number of words in that document.

Letter: Refers to a specific letter of the English Alphabet, a number between 0-9,
or a commonly used symbol, i.e. $ or &. Note that this distinguishes between
capital and lowercase versions of the Alphabet, which implies for the Alphabet
alone, there are 52 unique letters.

Within-Writer: Refers to the comparison of two documents that were generated
by the same writer.
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