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ABSTRACT

ON ZERO-SUM RADO NUMBERS FOR THE EQUATION ax1 + x2 = x3

NICHOLAS BROWN

2017

For every positive integer a, let n = RZS(a) be the least integer, provided
it exists, such that for every coloring

∆ : {1, 2, ..., n} → {0, 1, 2},

there exist three integers x1, x2, x3 (not necessarily distinct) such that

∆(x1) + ∆(x2) + ∆(x3) ≡ 0 (mod 3)

and
ax1 + x2 = x3.

If such an integer does not exist, then RZS(a) =∞. The main results of
this paper are

RZS(2) = 12

and a lower bound is found for RZS(a) where a ≥ 2.
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Introduction

We �rst begin by de�ning some important terms.

De�nition 1. Let N denote the set of natural numbers, and let [a, b]
denote the set {n ∈ N| a ≤ n ≤ b}.

De�nition 2. A function ∆ : [1, n] → [0, t− 1] is called a coloring of
the set [1, n] with t colors.

De�nition 3. Given a coloring function ∆ and a system L of linear equa-
tions in m variables, a solution (x1, x2, ..., xm) is said to be monochromatic if
and only if

∆(x1) = ∆(x2) = · · · = ∆(xm).

De�nition 4. If L is a system of equations in m variables, then we say
that a solution (x1, x2, ..., xm) to L is zero-sum if and only if

∆(x1) + ∆(x2) + · · ·+ ∆(xm) ≡ 0 (mod m).

Zero-sum Rado numbers have arisen from numerous results in combina-
torics that began with Ramsey's Theorem [1, 2] which describes monochro-
matic complete subgraphs. Study of the earlier Schur's Theorem [1, 3] which
proved a similar result involving monochromatic solutions to the basic equa-
tion x1 + x2 = x3, revealed a connection to Ramsey's theorem.

De�nition 5. For the Schur equation, x1 + x2 = x3, for every t ≥ 2, let
S(t) be the least integer, provided it exists, such that for every t-coloring of
the set [1, S(t)] there exists a monochromatic solution to the Schur Equation.
S(t) is called the t-color Schur Number.

Only the 2, 3, and 4 color Schur Numbers are known while the Schur Num-
bers for 5 or more colors are unknown and di�cult to compute, so variations
were subsequently explored. Rado, a student of Schur, explored di�erent
linear equations involving monochromatic solutions [1].

De�nition 6. Let L be a system of equations, then de�ne Dt(L) as the
least integer, provided it exists, such that every t-coloring of the set [1, Dt(L)]
contains a monochromatic solution to L. Dt(L) is called the t-color Rado
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Number for L.

Schur's and Rado's work concentrated on proving that these numbers ex-
isted and the situations in which they would exist. It wasn't until years later
that the focus shifted to actually �nding the Rado Number for a particular
equation. The �rst such problem was for an equation in m variables and
was proven by Beutelspacher and Brestovansky [4]. Again, while some Rado
numbers are known, there are a great deal of equations for which the Rado
number is unknown. The initial paper that explored the concept of zero-sum
is the Erd®s-Ginzburg-Ziv Theorem [5], which says that every sequence of
elements of Zm with length at least 2m− 1 contains a subsequence of length
m with a sum of zero mod m.

De�nition 7. Let L be a system of equations in m variables and de�ne
DZS(L) as the least integer, provided it exists, such that every t-coloring of
the set [1, DZS(L)] contains a zero-sum Solution to L. DZS(L) is called the
zero-sum Rado Number for L.

We provide proofs of Ramsey's Theorem, Schur's Theorem, and the 2-
color Rado number for L(m) : x1 + x2 + · · · + xm−1 = xm proven by Beu-
telspacher and Brestovansky in the Background Results section.

Background Results

Ramsey's Theorem For all integers l1, l2 ≥ 2, there exists n = R(l1, l2)
such that for every coloring of the edges on a complete graph on n vertices,

there exists either a complete subgraph on l1 vertices monochromatic in color

1, or a complete subgraph on l2 vertices monochromatic in color 2.

Proof. We will use a double induction on l1, and l2. First we note that
R(l, 2) = R(2, l) = l since a complete graph on l vertices must contain either
a complete graph in one color or would have at least two vertices connected
with the other color. Thus we complete the basis case. Now we do the
inductive step. Let arbitrary integers l1, l2 ≥ 2 be given. We will show that
R(l1, l2) exists. Note that our induction hypothesis is that R(l1 − 1, l2) and
R(l1, l2 − 1) exist.
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We will now show that

R(l1, l2) ≤ R(l1 − 1, l2) +R(l1, l2 − 1).

Let n = R(l1 − 1, l2) + R(l1, l2 − 1). Let G be a complete graph on n
vertices and let E be the set of edges of the graph G. Let ∆ : E → [0, 1] be
given. Pick an arbitrary vertex x of G and consider the n−1 edges eminating
from x. Let ∆0 and ∆1 be the sets of edges adjacent to x colored 0 and 1
respectively. We now note that either

|∆0(x)| ≥ R(l1 − 1, l2)

or
|∆1(x)| ≥ R(l1, l2 − 1).

Suppose without loss of generality that

|∆0(x)| ≥ R(l1 − 1, l2).

Then we know by the induction hypothesis, that there exists either a com-
plete graph on l1 − 1 verticies in color 0, or a complete graph on l2 verticies
monochromatic in color 1. If we have a complete graph on l2 verticies in
monochromatic color 1, then we are done. If we have a complete graph on
l1 − 1 verticies monochromatic in color 0, then when we consider that com-
plete graph along with our arbitrary vertex x and adjacent edges, we now
have a complete graph in l1 verticies monochromatic in color 0. Therefore we
have shown that a complete graph on n = R(l1−1, l2)+R(l1, l2−1) verticies
must contiain either a complete graph on l1 verticies monochromatic in color
0, or a complete graph on l2 verticies monochromatic in color 1. Thus we
have shown that

R(l1, l2) ≤ R(l1 − 1, l2) +R(l1, l2 − 1)

which completes the proof.

Ramsey's Theorem (Multi-Color) For all integers l1, l2, . . . , lt ≥ 2,
there exists n = R(l1, . . . , lt) such that for every coloring of the edges on

a complete graph on n vertices, for some i ∈ [1, t] there exists a complete

subgraph on li vertices monochromatic in color i.
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Note while we will not prove the multi-color version, a proof would be
very similar to that of the two-color proof. The signi�cant changes are using
induction on the colors, and the useful inequality would be

R(l1, . . . , lt) ≤ 2 +
r∑

i=1

(R(l1, . . . , li − 1, . . . , lt)− 1).

Schur's Theorem If N is colored with a �nite number of colors, there

exist natural numbers x1, x2, x3 having the same color such that

x1 + x2 = x3.

Proof. Suppose we have t colors. Let n ∈ N such that n + 1 = R(3, ..., 3).
Let G be a complete graph on n+ 1 vertices and label the vertices from 1 to
n+ 1. Let (i, j) denote the edge between the ith and jth vertices. Note that
if we consider the coloring ∆ : [1, n] → [1, t] then we can induce a coloring
∆′ on G given by

∆′(i, j) = ∆(|i− j|).
By Ramsey's theorem, there must exist a monochoromatic complete graph on
3 verticies, that is, a monochromatic triangle. Then let i, j, k with i < j < k
be the vertices of our monochromatic triangle so,

∆′(i, j) = ∆′(i, k) = ∆′(j, k).

Now let x1 = j − i, x2 = k − j, x3 = k − i. We will show that the triple
(x1, x2, x3) is a monochromatic solution to the Schur Equation. By de�nition
of ∆′ we have ∆(x1) = ∆′(i, j),∆(x2) = ∆′(j, k),∆(x3) = ∆′(i, k), so

∆(x1) = ∆(x2) = ∆(x3)

and
x1 + x2 = (j − i) + (k − j) = k − i = x3.

Thus we have shown that for an arbitrary �nite number of colors, there
exists a natural number n = S(t), called the Schur Number, such that every
t-coloring of the set [1, n] must contain a monochromatic solution to the
equation x1 + x2 = x3.
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We now note that if we have 2 colors, then S(2) = 5. This leads us to the
�nal result in the section. This theorem was proven by Beutelspacher and
Brestovansky [4].

Theorem For all m ≥ 3, the rado number BB(m) for the equation

L(m) : x1 + x2 + · · ·+ xm−1 = xm

is m2 −m− 1.

Proof. Let m ≥ 3 be given. Lower Bound: We will �rst show

BB(m) ≥ m2 −m− 1

by exhibiting a 2-coloring of the interval [1,m2 − m − 2] that avoids a
monochromatic solution.

Let ∆ : [1,m2 −m− 2]→ [0, 1] be de�ned by

∆(x) =

{
0 x ∈ [1,m− 2] ∪ [m2 − 2m+ 1,m2 −m− 2]

1 x ∈ [m− 1,m2 − 2m].

Let (x1, x2, . . . , xm) be a solution to L(m).We will show that (x1, x2, . . . , xm)
is not monochromatic. We will show that this coloring avoids a monochro-
matic solution to L(m). Suppose ∆(x1) = ∆(x2) = · · · = ∆(xm−1) = 0.
Then

x1 + x2 + · · ·+ xm−1 ≥ m− 1 > m− 2

so xm /∈ [1,m − 2]. Also note that if even one of xi for some i ∈ [1,m − 1]
then

xm = x1 + x2 + · · ·+ xm−1 ≥ m2 −m− 1 > m2 −m− 2

so then xm /∈ [1,m2−m− 2], so xi ∈ [1,m− 2] for all i ∈ [1,m− 1] But also
note that we must have

xm = [x1 + x2 + · · ·+ xm−1 ≤ (m− 1)(m− 2) = m2− 3m+ 2 < m2− 2m+ 1

so xm ∈ [m− 1,m2 − 2m] so ∆(xm) = 1.
Now suppose that ∆(x1) = ∆(x2) = · · · = ∆(xm−1) = 1. Then we know

that

xm = x1 + x2 + · · ·+ xm−1 ≥ (m− 1)(m− 1) = m2 − 2m+ 1 > m2 − 2m
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so therefore xm ∈ [m2 − 2m + 1,m2 −m − 2]. So ∆(xm) = 0. Thus we see
that ∆ avoids a monocrhomatic solution, and we have shown that

BB(m) ≥ m2 −m− 1.

Upper Bound: We will now show that

BB(m) ≤ m2 −m− 1

by showing that any 2-coloring of the interval [1,m2 − m − 1] contains a
monochromatic solution.

Let ∆ : [1,m2−m− 1]→ [0, 1], be given. We can assume without loss of
generality that

∆(1) = 0.

Then we know that if ∆(m − 1) = 0, then we have the monochromatic
solution (1, 1, . . . , 1,m− 1). So assume that

∆(m− 1) = 1.

Now if ∆(m2 − 2m + 1) = 1, then we have the monochromatic solution
(m− 1,m− 1, . . . ,m− 1,m2 − 2m+ 1). So we can assume that

∆(m2 − 2m+ 1) = 0.

Now note that if ∆(m2 − m − 1) = 0, then we have the monochromatic
solution, (1, 1, . . . , 1,m2 − 2m+ 1,m2 −m− 1) so we can assume that

∆(m2 −m− 1) = 0.

Finally note that if ∆(m) = 0, then we have the monochromatic solution
(1,m,m, . . . ,m,m2 − 2m + 1). But also if ∆(m) = 1, then we know that
we have the monochromatic solution (m − 1,m,m, . . . ,m,m2 − m − 1) so
we know that no matter what m is colored, we must have a monochromatic
solution. Therefore we have shown that

BB(m) ≤ m2 −m− 1.

Putting the bounds together gives us that

BB(m) = m2 −m− 1

and we are done.
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Main Results

De�nition 8. Let L(a) represent the equation ax1 + x2 = x3.

Let RZS(a) represent the zero-sum Rado Number for L(a).

Theorem 1. The zero-sum Rado Number for L(2) is equal to 12.

Proof. First note that our equation to consider in this case is

L(2) : 2x1 + x2 = x3.

For the remainder of this proof, the term zero-sum solution will mean a
zero-sum solution to L(2).

Lower Bound: We will �rst show that

RZS(2) ≥ 12

by exhibiting a 3-coloring of the interval [1, 11] that avoids a zero-sum solu-
tion to L(2).

Let ∆ : [1, 11]→ {0, 1, 2} be de�ned by

∆(x) =


0 x ∈ {1, 4, 7, 8, 11}
1 x ∈ {2, 3, 5, 10}
2 x ∈ {6, 9}.

We will show that no solution to L(2) can be zero-sum. Note if

∆(x1) + ∆(x2) + ∆(x3) ≡ 0 (mod 3)

then
∆(x1) = ∆(x2) = ∆(x3)

or
∆(xi) 6= ∆(xj)

when i 6= j.
Let (x1, x2, x3) be a solution to L(2). First we will show that (x1, x2, x3)

is not monochromatic. Suppose ∆(x1) = ∆(x2) = 0. Then since x1, x2 ∈
{1, 4, 7, 8, 11} we must have

x3 ∈ {3, 6, 9, 10}
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but then ∆(x3) 6= 0. So there are no solutions monochromatic in 0.
Now if ∆(x1) = ∆(x2) = 1 then since x1, x2 ∈ {2, 3, 5, 10}, we must have

x3 ∈ {6, 7, 8, 9, 11}

so we know that ∆(x3) 6= 1. So there are no solutions monochromatic in 1.
Now note that if ∆(x1) = ∆(x2) = 2 then x3 > 11 so there are no

solutions monochromatic in 2. Thus there are no monochromatic solutions
to L(2).

Now to check for solutions of with the property that ∆(xi) 6= ∆(xj) when
i 6= j, suppose

∆(x1) = 0

and
∆(x2) = 1.

Since x1 ∈ {1, 4, 7, 8, 11} and x2 ∈ {2, 3, 5, 10} then

x3 ∈ {4, 5, 7, 10, 11}

so ∆(x3) 6= 2.
Now suppose ∆(x1) = 0 and ∆(x2) = 2. Then

x3 ∈ {8, 11}

but then ∆(x3) 6= 1.
If ∆(x1) = 1 and ∆(x2) = 2 then

x3 = 10,

and so ∆(x3) 6= 0.
Now suppose that ∆(x1) = 1 and ∆(x2) = 0. Then

x3 ∈ {5, 7, 8, 10, 11}

so ∆(x3) 6= 2.
Finally note that there are no solutions where ∆(x1) = 2 since 2(6) +

x2 > 11 for all x2 ∈ [1, 11]. Thus there are no solutions to L(2) where
∆(xi) 6= ∆(xj) when i 6= j. Thus this coloring is free of zero-sum solutions,
so we may conclude that there exists a 3-coloring on the set [1, 11] that avoids
a zero-sum Solution, so

RZS(2) ≥ 12.
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Upper Bound: We will now show that RZS(2) ≤ 12. Let a coloring
∆ : [1, 12]→ [0, 2] be given. Without loss of generality, suppose

∆(1) = 0.

If, ∆(3) = 0 we have a zero-sum solution (1, 1, 3), so we may assume without
loss of generality that

∆(3) = 1.

Now note that if ∆(5) = 2 or ∆(7) = 2 we have Zero Sum solutions (1, 3, 5)
or (3, 1, 7), so we know that

∆(5) 6= 2

and
∆(7) 6= 2.

We now proceed by cases.

Case 1: Suppose ∆(5) = 0 and ∆(7) = 0. Then we have a (1, 5, 7) as a
zero-sum Solution.

Case 2: Suppose ∆(5) = 1 and ∆(7) = 1. Then if ∆(9) = 2, we have
(1, 7, 9) as a zero-sum solution. If ∆(9) = 1, then (3, 3, 9) is a zero-sum
solution. Therefore we may assume

∆(9) = 0.

Now, if ∆(11) = 0, then (1, 9, 11) is a zero-sum solution, so ∆(11) 6= 0. Also,
if ∆(11) = 1, then (3, 5, 11) is a zero-sum solution, so ∆(11) 6= 1. Finally, if
∆(11) = 2, we have (5, 1, 11) as a zero-sum solution. Therefore ∆(11) 6= 2.
Thus we must have a zero-sum solution no matter how 11 is colored.

Case 3: Suppose ∆(5) = 0 and ∆(7) = 1. Then if ∆(9) = 2, we have
(1, 7, 9) as a zero-sum solution. If ∆(9) = 1, then (3, 3, 9) is a zero-sum
solution. Therefore we may assume

∆(9) = 0.

If ∆(11) = 0, then (1, 9, 11) is a zero-sum solution, and if ∆(11) = 2, then
(3, 5, 11) is a zero-sum solution, so assume

∆(11) = 1.
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If ∆(2) = 0, then (2, 1, 5) is a zero-sum solution, and if ∆(2) = 1, then
(2, 3, 7) is a zero-sum solution, so assume

∆(2) = 2.

If ∆(4) = 1, then (1, 2, 4) is a zero-sum solution, and if ∆(4) = 0, then
(4, 1, 9) is a zero-sum solution, so assume

∆(4) = 2.

If ∆(6) = 1, then (1, 4, 6) is a zero-sum solution, and if ∆(6) = 2, then
(2, 2, 6), is a zero-sum solution, so assume

∆(6) = 0.

If ∆(8) = 0, then (1, 6, 8) is a zero-sum solution, and if ∆(8) = 2, then
(2, 4, 8) is a zero-sum solution, so assume

∆(8) = 1.

Finally if ∆(10) = 1, then (2, 6, 10) is a zero-sum solution, and if ∆(10) = 0,
then (3, 4, 10) is a zero-sum solution, and if ∆(10) = 2, then (1, 8, 10) is a
zero-sum solution. Thus ∆ contains a zero-sum solution no matter how 10
is colored.

Case 4: Suppose ∆(5) = 1 and ∆(7) = 0. Then if ∆(9) = 0, then (1, 7, 9)
is a zero-sum solution, and if ∆(9) = 1, then (3, 3, 9) is a zero-sum solution,
so assume

∆(9) = 2.

If ∆(11) = 1, then (1, 9, 11) is a zero-sum solution, and if ∆(11) = 2, then
(5, 1, 11) is a zero-sum solution, so assume

∆(11) = 0.

If ∆(2) = 0, then (2, 5, 9) is a zero-sum solution, and if ∆(2) = 2, then
(2, 1, 5) is a zero-sum solution, so assume

∆(2) = 1.

If ∆(4) = 1, then (4, 1, 9) is a zero-sum solution and if ∆(4) = 2, then (1, 2, 4)
is a zero-sum solution, so assume

∆(4) = 0.
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If ∆(6) = 0, then (1, 4, 6) is a zero-sum solution, and if ∆(6) = 1, then
(2, 2, 6) is a zero-sum solution, so assume

∆(6) = 2.

If ∆(8) = 1 then (1, 6, 8) is a zero-sum solution, and if ∆(8) = 2, then (2, 4, 8)
is a zero-sum solution, so assume

∆(8) = 0.

If ∆(10) = 0, then (1, 8, 10) is a zero-sum solution, and if ∆(10) = 2, then
(3, 4, 10) is a zero-sum solution, so assume

∆(10) = 1.

Finally if ∆(12) = 2, then (1, 10, 12) is a zero-sum solution, and if ∆(12) = 0,
then (3, 6, 12) is a zero-sum solution, and if ∆(12) = 1, then (5, 2, 12) is a
zero-sum solution, so ∆ contains a zero-sum solution no matter how 12 is
colored. We note that in Case 4, we are attempting to extend the speci�c
coloring shown as the lower bound.

Since we have shown that ∆ contains a zero-sum solution in all four
cases, we can conclude that every 3-coloring of the set [1, 12] must contain a
zero-sum Solution to L(2), so

RZS(2) ≤ 12.

Therefore we have proven that

RZS(2) = 12.

We proceed to establish lower bounds for the general cases for when a > 2.
For the rest of this paper zero-sum Solution means a zero-sum Solution to
L(a).

Theorem 2. For a > 2 and a odd, RZS(a) ≥ 2(a2 + 3a+ 1).
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Proof. Let a > 2, a odd be given. Let ∆ : [1, 2(a2 + 3a+ 1)− 1]→ [0, 2] be
given by

∆(x) =


0 if x odd

1 if 2 ≤ x ≤ 2a, 2a2 + 4a+ 2 ≤ x ≤ 2(a2 + 3a+ 1)− 1 x even

2 if 2a+ 2 ≤ x ≤ 2a2 + 4a x even.

Let (x1, x2, x3) be a solution to L(a). We will show that ∆ avoids a zero-
sum solution. First note that (x1, x2, x3) cannot be monochromatic in 0 since
if x1, x2, x3 were all odd, then the left side of L(a) would be even, and the
right side of L(a) would be odd.

Now consider that it is not possible for only one of x1, x2, x3 to be odd
since if x1 is odd and x2, x3 are even, then we have

x3 = ax1 + x2 = odd + even = odd

which contradicts that x3 is even. If x2 is odd and x1, x3 are even, then we
have

x3 = ax1 + x2 = even + odd = odd

which contradicts that x3 is even. Finally, if x3 is odd and x1, x2 are even,
then we have

x3 = ax1 + x2 = even + even = even

which contradicts that x3 is odd. Thus there are no solutions to L(a) where
only one of (x1, x2, x3) is odd.

Next note that if we have a solution (x1, x2, x3) where exactly two of
them are odd and one is even, then it cannot be zero-sum. Without loss of
generality, suppose that x1, x2 are odd, and x3 is even. Then we would have

∆(x1) + ∆(x2) + ∆(x3) = 0 + 0 + 1 6≡ 0 (mod 3)

or
∆(x1) + ∆(x2) + ∆(x3) = 0 + 0 + 2 6≡ 0 (mod 3).

Therefore, any solutions (x1, x2, x3) where exactly two of them are odd, can-
not be zero-sum.

Thus the only possible zero-sum solutions must involve only even num-
bers. Such a solution would have the form, (x1, x2, x3) = (2α, 2β, 2γ) for some
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natural numbers, α, β, γ. Note that since the evens are only colored with two
colors, there will only be solutions of the form ∆(x1) = ∆(x2) = ∆(x3). We
now induce a coloring ∆′ : [1, a2 + 3a]→ [1, 2] given by ∆′(x) = ∆(2x). Note
that the number a2+3a matches up with the number m2−m−2 if m = a+2
since (a+ 2)2 − (a+ 2)− 2 = (a2 + 4a+ 4)− (a+ 2)− 2 = a2 + 3a. Also

∆′(x) =

{
1 if x ∈ [1, a] ∪ [a2 + 2a+ 1, a2 + 3a]

2 if x ∈ [a+ 1, a2 + 2a].

Now substituting m = a+ 2, we obtain

∆′(x) =

{
1 if x ∈ [1,m− 2] ∪ [m2 − 2m+ 1,m2 −m− 2]

2 if x ∈ [m− 1,m2 − 2m].

Note that by the proof of Beutelspacher and Brestovansky [4] that ∆′

avoids a monochromatic solution to L(m). Therefore, if ∆ containted a zero-
sum solution (x1, x2, x3) = (2α, 2β, 2γ), then ∆′ would contain a monochro-
matic solution (α, . . . , α, β, γ), but since ∆′ avoids a monochromatic solution,
then we know that ∆ does not contain a zero-sum solution. Therefore we
have shown that there exists a 3-coloring of the set [1, 2(a2 +3a+1)−1] that
avoids a zero-sum Solution, so

RZS(a) ≥ 2(a2 + 3a+ 1)

when a is odd.

Theorem 3: For a > 2 and a even, RZS(a) ≥ a2 + 3a+ 1.

Proof. Let a ≥ 2, a even be given. Let ∆ : [1, a2 + 3a]→ [0, 2] be de�ned by

∆(x) =

{
0 if x ∈ [1, a] ∪ [a2 + 2a+ 1, a2 + 3a]

1 if x ∈ [a+ 1, a2 + 2a].

We will show that ∆ avoids a zero-sum solution by showing that any
solution to L(a) is not zero-sum. Note that since we only have two colors,
the only possible zero-sum solutions are monochromatic solutions. Suppose
we have a solution (x1, x2, x3) to L(a) such that ∆(x1) = ∆(x2) = 1. Then
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x3 = ax1 + x2 ≥ a(a+ 1) + (a+ 1)

= a2 + 2a+ 1

> a2 + 2a

(1)

Thus x3 ∈ [a2 + 2a+ 1, a2 + 3a], so ∆(x3) = 0.
Now suppose we have a solution (x1, x2, x3) to L(a) such that ∆(x1) =

∆(x2) = 0. Note that x1, x2 ∈ [1, a], because if x2 ∈ [a2 + 2a + 1, a2 + 3a],
then we have

x3 = ax1 + x2 ≥ a(1) + a2 + 2a+ 1

= a2 + 3a+ 1

> a2 + 3a

(2)

so x3 /∈ [1, a2 + 3a]. Therefore, x1, x2 ∈ [1, a]. Now �nally, note that

x3 = ax1 + x2 ≥ a(1) + 1

= a+ 1

> a

(3)

and

x3 = ax1 + x2 ≤ a(a) + a

= a2 + a

< a2 + 2a

(4)

Therefore x3 ∈ [a+1, a2+2a], so ∆(x3) = 1. Therefore ∆ avoids a monochro-
matic solution, so ∆ must avoid a zero-sum solution.

Therefore we have shown that

RZS(a) ≥ a2 + 3a+ 1

when a > 2, a even.

Note that there does exist a lower bound using 3 colors as well when a is
even.
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Further Research

Areas of further research based on these results will be to prove the upper
bounds given in Theorems 2 and 3 are sharp upper bounds for both the
even and odd case. Initial attempts have suggested that a set required to
show the upper bounds is not a �nite set, but is indexable with respect to
the parameter a. Once the upper bounds are completed, the research would
continue onto other variations of this problem. Some variations might include
other coe�cients, ax1 + bx2 = cx3, adding constants, ax1 + x2 + c = x3, or
changing the number of variables and considering zero-sum problems over
more colors with the equation x1 + x2 + x3 = x4.
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