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ABSTRACT 

MODELING THE IMPACT OF FUTURE CLIMATE ON DRAINAGE 

INFRASTRUCTURES 

TYLER JAMES BAUMBACH 

2015 

Research has shown a potential 20% increase in future heavy and extreme 

precipitation events over the Midwestern States.  Drainage infrastructures designed using 

current design conditions may not be able to convey projected runoffs resulting in flooding 

and damage to infrastructure.  The objective of this paper is to determine the effects of 

future climate variability on culvert selections in a southwest South Dakota watershed. 

The scope of the study was defined through a comprehensive literature review.  

Future climate events were based on a 20% increase in current annual precipitation over 

the Upper White River Subbasin Watershed.  A portion of the White River was modeled 

to obtain simulated current and future peak discharges for a 10, 25, 50, and 100 year return 

period using ArcGIS and HEC-HMS.  A previously washed out 12 foot CMP culvert on 

BIA-route 32 was analyzed under each specified return period, using HY-8 and Hydraflow 

Express, to verify culvert performance.  This was compared to the capacity of the current 

12 foot x 12 foot – side by side – box culvert following the same procedure. 

Results indicated the 12 foot CMP culvert was underdesigned for the current 25 

year return period; intuitively was also not able to convey the future 25 year return period.  

The 25 year return period was the main focus of the study because BIA-Route 32 is 

classified as local and street road (ADT > 100) with a minimum design return period of 25 

year precipitation event (SDDOT, 2013).  Compared to the 12 foot x 12 foot –side by side 



xix 

 

 

–box culvert which was able to convey the current 25 and 50 year return periods, but was 

unable to convey the projected future 25 year return period.  The 12 foot x 12 foot – side 

by side – box culvert being able to convey the current but not the future peak discharges 

was an indication of future climate having a possible effect on culvert design. 
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1. INTRODUCTION 

1.1 Background 

“The Earth holds more than 300 million mi3 of water beneath the land surface, on 

the surface, and in the atmosphere. This vast amount of water is in constant motion, 

known as the hydrologic cycle” (Ward and Trimble pp. 4, 2004).  One element in the 

hydrologic cycle is precipitation.  Precipitation can take on the form of rain, snow, sleet, 

or hail as it falls to the Earth (Ward and Trimble pp. 5, 2004).  The amount of rain was 

one parameter of interest for this study.  Once the rain falls to the Earth a portion is 

converted to runoff which flows to tributaries, streams, rivers, ponds, lakes and oceans.  

How the water flows across the land, into tributaries, and to the rivers can cause problems 

for civil engineers. 

Civil engineers solve problems of a state, city, town, or single person.  One 

problem is how to construct safe roads for travel.  A common problem arises when the 

road must cross a moving body of water like a river.  The solution is to design a drainage 

appurtenances (e.g. bridge or culvert).  A drainage appurtenance must be designed to 

convey a preselected probability rain event.  The specific probability rain event is 

referred to as a return period.  Most culvert crossings have to be designed to convey a 10, 

25, or 50 year return period based on current rain events. 

Drainage appurtenances are designed from old return period data and have the 

potential of being undersized or underdesigned for future return periods.  Research shows 

a potential increase in annual rain depth over the Midwestern United States.  This could 

result in undersigned culvert crossings on Midwestern roadways. 
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1.2 Objective and Scope 

The objective of this paper is to determine the effects of future climate variability 

on culvert selections in a southwest South Dakota watershed.  Narrowing the scope to an 

amount of climate increase, type of culvert, and location of watershed was conducted 

through a literature review.  Oglala Lakota-South Dakota State University-South Dakota 

School of Mines and Technology-PreEngineering Educational Collaborative (OSSPEEC) 

interests were factored into the ultimate selection of the watershed location. 

The scope of this study is limited to a southwest South Dakota watershed.  The 

Upper White River Subbasin Watershed was selected because of its geographical location 

and OSSPEEC interest in the Pine Ridge Reservation.  Figure 1.1 shows the location of 

the Upper White River Subbasin Watershed in reference to the South Dakota, SD and 

Nebraska, NE state boundaries.  Through a literature review, the amount of climate 

increase was defined as very heavy and extreme rainfall events for current and future 

design conditions.  Current design conditions came from the National Oceanic and 

Atmospheric Administration (NOAA) (HDSC webmaster, 2014).  Estimated future 

design conditions came from the studies performed by Karl and Knight (1998); Kunkel, 

Andsager, and Easterling (1999); and Groisman, et al. (2004).  An Upper White River 

Subbasin Watershed model was created using computer programs.  Simulated current and 

future design condition rain events were also modeled and applied to the watershed 

model to estimate potential peak discharges of the White River at the culvert.  The 

potential peak discharges were analyzed through Hydraulics-8 and Hydraflow Express on 

a culvert crossing; which was recently replaced because of structure damage. 
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Figure 1.1:  Upper White River Subbasin Watershed 
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2. LITERATURE REVIEW 

Chapter 2 consists of an overview of all research which pertains to this paper’s 

objective statement.  Topics included are a section on climate:  importance of climate, 

current climate conditions for the project location, and future projecting of climate 

conditions.  Some specific watershed studies which related to how precipitation has 

concomitantly caused rising of river levels across the United States are discussed.  The 

last section reviewed the effects of raising river levels on current infrastructure and the 

current design criteria for current infrastructure. 

2.1 Climate 

Climate impacts how people, animals, and plants live on Earth.  Climate consists 

of historical patterns in temperature, precipitation, humidity, wind, and seasons for 

different regions across the United States.  On a state and global scale, climate has 

witnessed a change in historical trends over the centuries (Washington State Department 

of Ecology, 2014).  In this report, precipitation would be the only aspect of climate 

subjected to the watershed study. 

 Precipitation characteristics of storms including:  total precipitation, duration, 

and intensity are important for understanding the impacts of precipitation on the society 

and environment (Palecki, Angel, and Hollinger, 2005).  The amount of precipitation 

either large or small affects the amount of runoff, infiltration, and soil erosion; along with 

potential flooding, agricultural production, and aquifer recharge.  All can have a 

tremendous impact on society’s safety and production; as with the environment’s 

quantity and quality of water resources (Santoso, Idinoba, and Imbach, 2008). 
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2.1.1 Current Design Conditions 

Studies of trends in precipitation are usually conducted by government agencies 

such as:  National Oceanic and Atmospheric Administration (NOAA), National Weather 

Service (NWS), United States Geological Survey (USGS), Department of Environmental 

and Natural Resources (DENR), United States Department of Agriculture (USDA), and 

Intergovernmental Panel on Climate Change (IPCC).  The data is then analyzed and 

compiled into tables and atlases which are available to the public (Yarnell, 1935; 

Hershfield, 1961; Frederick, Myers, and Auciello, 1977).  Figure 2.1 shows an Intensity 

Duration-Frequency (IDF) curve of interpolated rainfall intensity-frequency data 

analyzed by Yarnell for time durations from 5 to 120 minutes.  Figure 2.2 shows a 

continuation of the same IDF curve as in Figure 2.1, but for time durations from 2 to 24 

hours.  The raw data used to create the IDF curves can be found in Appendix A. 
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Figure 2.1:  IDF curve for storm durations from 5 to 120 minutes (Yarnell, 1935) 

 

Figure 2.2:  IDF curve for storm durations from 2 to 24 hours (Yarnell, 1935) 
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 Figure 2.1 and Figure 2.2 have been used for any economic and engineering 

design up to the year of 1953 requiring rainfall frequency or intensity data (Hershfield, 

1961).  Yarnell (1935) classified storms into two different classes; (1) rains of great 

intensity and short duration, and (2) rains of moderate intensity and long duration.  For 

the purpose of Yarnell’s report, he used the first classification due to their destructive 

nature.  Yarnell (1935) produced the intensity-frequency diagrams using 211 automatic 

rain gages that were ranging from 33-year to 20-year records. 

HDSC webmaster (2014) provided precipitation frequency estimated IDF curves 

for 11 Midwestern states:  Colorado, Iowa, Kansas, Michigan, Minnesota, Missouri, 

Nebraska, North Dakota, Oklahoma, South Dakota, and Wisconsin.  These atlases would 

be used in determining design limits of engineered infrastructures or other projects with 

the potential of being affected by precipitation.  Figure 2.3 shows an IDF curve of 

interpolated rainfall intensity-frequency data analyzed by NOAA’s National Weather 

Service for time durations from 5 to 120 minutes.  Figure 2.4 shows a continuation of the 

same IDF curve as in Figure 2.3, but for time durations from 2 to 24 hours.  The raw data 

used to create the IDF curves can be found in Appendix A. 
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Figure 2.3:  IDF curve for storm durations from 5 to 120 minutes (HDSC 

webmaster, 2014) 

 

Figure 2.4:  IDF curve for storm durations from 2 to 24 hours (HDSC webmaster, 

2014) 
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 Figure 2.3 and Figure 2.4 have been used for any economic and engineering 

design from the years of 1977 to 2015 requiring rainfall frequency or intensity data 

(SDDOT, 2013).  For the years in between 1953 to 1977 different numerical Weather 

Bureau’s technical papers and NOAA technical memorandum NWS HYDRO’s were 

used.  The current publications referenced by the South Dakota Drainage Manual under 

the hydrology chapter, which consist of guidelines to producing IDF curves for a 

particular location in South Dakota, are Hershfield (1961) and Frederick, Myers, and 

Auciello (1977). 

2.1.2 Future Design Conditions 

“Over the contiguous United States, precipitation, temperature, streamflow, heavy 

and very heavy precipitations have increased during the twentieth century.” (Groisman, et 

al., 2004).  Hershfield (1961) was the last national analysis of precipitation events, but 

large changes in frequency have been occurring since 1960.  Such changes suggest a need 

for updated data.  If engineers continued to design infrastructures based on Hershfield 

(1961) results, the subsequent infrastructures could be drastically underdesigned for 

future streamflows and runoff (Kunkel, Andsager, and Easterling, 1999).  Several studies 

have documented an increase in precipitation over the past century, but not due to just 

one factor (Karl and Knight, 1998).  Three significant studies have shown a 20% 

increasing trend of annual precipitation (Karl and Knight, 1998; Kunkel, Andsager, and 

Easterling, 1999; and Groisman, et al., 2004). 

 Karl and Knight (1998) credited “a change in precipitation amount as a change 

in frequency of precipitation events, intensity of precipitation per event, or any 

combination thereof.”  The study, on how trends of precipitation has changed or varied, 
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was done from the years of 1948 to 1995 on heavy or extreme daily precipitation events.  

For the study, “[t]he upper 10 percentile was defined as a very heavy precipitation event.”  

During the 47 years study, a statistically significant linear trend of a 19.5% increase in 

annual national precipitation was concluded for the very heavy precipitation event. 

 Kunkel, Andsager, and Easterling (1999) analyzed trends in changes in extreme 

precipitation events which could have been linked to flooding.  “The particular measured 

of extreme precipitation events were used because a previous study (Changnon and 

Kunkel 1995) determined a positive correlation between such events and hydrologic 

flood events on small to medium-sized rivers in the Midwest.”  The results found could 

have been relevant to engineering design criteria for infrastructures pertaining to runoff.  

Extreme precipitation events were analyzed from 1931 to 1996 for nine (9) regions of the 

contiguous United States.  “The trend in total annual precipitation for U.S. climate 

divisions, base only on the long-term stations used in the study, suggests upward trends 

of 20% or more in the Southwest, Great Plains, and parts of the upper Mississippi River 

Valley and Great Lakes Basins.” 

One aspect Groisman, et al. (2004) studied was annual precipitation with records 

from 1908 to 2002.  The study analyzed heavy, very heavy, and extreme precipitation 

events in nine (9) regions across the contiguous United States.  Precipitation events were 

based on three (3) percentile ranges:  90th-95th, 99th-99.7th, and 99.9th for the study 

respectively.  A statistically significant trend was defined for the heavy and very heavy 

precipitation events, but not for the extreme precipitation event.  The heavy and very 

heavy precipitation events had a linear trend of a 14% and 20% increase in annual 

national precipitation respectively. 
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2.1.3 Climate Conclusion 

Climate impacts how people, animals, and plants live on earth (Washington State 

Department of Ecology, 2014).  The one aspect of climate focused on was precipitation 

and more specifically heavy and extreme precipitation events.  Hershfield (1961) and 

Frederick, Myers, and Auciello (1977) used the extreme precipitation events to produce 

IDF curves, which are currently consulted for any hydrologic engineering design.  Due to 

the outdated data, studies have been conducted estimating a 20% increasing trend of 

annual precipitation (Karl and Knight, 1998; Kunkel, Andsager, and Easterling, 1999; 

Groisman, et al., 2004).  With the projected future precipitation increase, watersheds’ 

characteristics and features can be evaluated for future performance. 

2.2 Watershed Study 

There are multiple reasons why watershed studies are conducted in the United 

States.  Some of these reasons are to evaluate:  climate change on river flow; non-point 

and/or point source pollution; alternative watershed management practices; water quality 

of surface and/or ground waters; erosion control and/or perdition; better land use 

practices; and flood risk management (Migliaccio and Srivastava, 2007; Halmstad, Reza 

Najafi, and Moradkhani, 2013).  For each watershed study, certain watershed 

characteristics must be analyzed, quantified, and evaluated in order to obtain measureable 

results.  These characteristics include but are not limited to the following spatial and 

temporal data:  topography, land use/cover, soils, rainfall, and flow monitoring data (Chu 

and Steinman, 2009). 

 The scope of this paper will focus on only one of the listed watershed studies, 

evaluating climate change on river flow conditions.  The following are some watershed 
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studies that do not pertain to this paper’s scope, but are good references:  Jha and 

Gassman (2014); Duliére, Zhang and Salathé Jr. (2013); Tanaka, et al. (2006); Grassotti, 

et al. (2003); Miller and Friedman (2009); Shultz and Kjelland (2002); and Halmstad, 

Reza Najafi, and Moradkhani (2013).  Two watersheds pertaining to this paper’s scope 

are Acharya, Lamb, and Piechota (2013) and Rosenberg, et al. (2010). 

2.2.1 Acharya, Lamb, and Piechota (2013) 

Acharya, Lamb, and Piechota (2013) evaluated how an extreme rainfall event 

could affect an urban watershed in Las Vegas, Nevada.  For the purpose of the study, an 

extreme rainfall event was classified as a 100-year return period storm.  “The increase in 

frequency and intensity of extreme rainfall events may cause serious impacts on both 

natural and engineered systems in terms of increased frequency and severity of floods.”  

The U.S. Army Corps of Engineers Hydrologic Engineering Center’s Hydrologic 

Modeling Software (HEC-HMS) and 2008 Flood Control Master Plan Update (MPU) 

were analyzed to determine how extreme rainfall events could have impacted future 

stormwater management.  The data period for the study consisted of average monthly 

temperature and precipitation from 1950 to 2099.  During these periods, precipitation 

patterns and streamflow projections increases and decreases were analyzed.  Acharya, 

Lamb, and Piechota (2013) concluded that future extreme storms are going to be more 

intense, resulting in an increase in peak streamflow and total runoff volume.  The 

predicted peak streamflow for extreme rainfall events would assist in evaluating existing 

flood control facilities. 
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2.2.2 Rosenberg, et al. (2010) 

Rosenberg, et al. (2010) conducted two small urban watershed studies in 

Washington State, to determine the effect runoff has on streams and drainage 

infrastructures.  Future precipitation predictions used to calculate the runoff came from 

reports done by Karl and Knight (1998) and Kunkel, Andsager, and Easterling (1999).  

The watershed studies focused on two ranges of return periods; 2- to 5-year return 

periods (roadside swales, gutters, and sewers) and 50- to 100-year return periods (flood 

control structures) for urban areas.  Rosenberg, et al. (2010) concluded drainage 

infrastructures designed in the mid-20th century rainfall data could be subjected to rain 

events unlike current design standards. 

2.2.3 Watershed Study Conclusion 

There are multiple reasons why watershed studies are conducted in the United 

States.  The scope of this paper will focus on only one of the listed watershed studies, 

evaluating climate change on streamflow conditions.  Two different watersheds which do 

pertain to this paper’s scope are Acharya, Lamb, and Piechota (2013) and Rosenberg, et 

al. (2010).  Acharya, Lamb, and Piechota (2013) concluded future extreme storms are 

going to be more intense resulting in an increase in peak streamflow and total runoff 

volume.  The predicted peak streamflow for extreme rainfall events would help to 

evaluate existing flood control facilities.  Rosenberg, et al. (2010) concluded that 

drainage infrastructures designed in the mid-20th century rainfall data could be subjected 

to rain events different from current design standards.  Both watershed studies 

emphasized with an increase in extreme rainfall events, there could be a destructive 

impact on current infrastructures. 
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2.3 Infrastructure 

Drainage infrastructures are defined, for this paper, as any structure which 

transvers or allows water to move from one side of the road to the other side. (NYSDOT, 

2013; SDDOT, 2013)  For more information on standards of drainage infrastructure, the 

New York State DOT suggested the following agencies websites:  the American 

Association of State Highway and Transportation Officials (AASHTO), the Federal 

Highway Administration (FHWA), the U.S. Army Corps of Engineers (USACE), the 

National Resource Conservation Service (NRCS), and the U.S. Geological Survey 

(USGS) (NYSDOT, 2013).  In this paper, drainage infrastructure criteria for South 

Dakota with govern any design criteria. 

2.3.1 SDDOT 

SDDOT (2013) defined infrastructures as drainage appurtenances, which 

included:  bridge waterway openings, roadway cross culverts, storm drainage systems 

and roadside ditches.  Table 2.1 consists of a table from the South Dakota Drainage 

Manual which was used for sizing drainage appurtenances based on the return period of a 

precipitation event.  Referring back to the scope of the paper, roadway cross culverts was 

the only drainage appurtenance tested. 
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Table 2.1:  Design return periods for drainage appurtenances in South Dakota 

modified from the SDDOT (2013), for more information see Appendix B 

Highway 

Classifications 

Return Period (Years) for Drainage Appurtenances 

Bridge Waterway 

Openings 

Roadway 

Cross 

Culverts 

Storm Drainage 

Systems 
Roadside Ditches 

Design 

Headwater 
Scour 

Design 

Headwater 

Inlet Spacing & 

Trunk Line 

Design 

Headwater 

Permanent 

Erosion 

Protection 

Interstate 50 100 50 10 50 50 

US & State 

Highways 
25 100 25 10 25 25 

Local Roads & 

Streets (ADT > 

100) 

25 100 25 10 25 25 

Local Roads & 

Streets (ADT < 

100) 

10 100 10 10 10 10 

Note:  ADT = average daily traffic 

 As stated by Kunkel, Andsager, and Easterling (1999) if engineers continued to 

design infrastructures based on Hershfield (1961) results, those infrastructures could be 

drastically underdesigned for future streamflows and runoff.  Two examples of 

underdesigned infrastructures, based on Hershfield (1961), are two separate culvert 

washouts.  The first culvert washout resulted in a three year detour for the citizens while 

the road was under construction on the Pine Ridge Reservation.  The second culvert 

washout resulted in two deaths on the Lower Brule Reservation. 

2.3.2 Pine Ridge Reservation 

On the Pine Ridge Reservation, a 12 foot corrugated metal pipe (CMP) washed 

out due to a flash flood back in Spring of 2010.  The 20 year old CMP was located on 

BIA Route-32 in the Slim Buttes area west of Pine Ridge, SD.  Due to the washout, an 

alternate route was put in place which lasted for roughly three years (Testerman, 2010-

2012; Crash, 2011).  The Oglala Sioux Tribe Department of Transportation (OST DOT) 
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installed a new 12 foot x 12 foot – side by side - box culvert in the Spring on 2013 

(Office of Federal Lands Highway, 2013; SDDOT, 2011).  Figure 2.5 shows a modified 

map produced by Joanita Kant of the Pine Ridge Reservation showing the washed out 

culvert on BIA Route-32. 

 

Figure 2.5:  Modified map of Pine Ridge Reservation in South Dakota, originally 

produced by Joanita Kant 

 

 

BIA Route-32 

Culvert Location 

Pine Ridge 
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2.3.3 Lower Brule Reservation 

Halverson (2011) reported on a flash flood which caused a culvert to washout on 

June 21, 2011.  This incident took place near the Lower Brule Reservation, an Indian 

reservation to the northeast of the Pine Ridge Reservation.  Both the Pine Ridge and 

Lower Brule Reservation washouts happened under similar conditions.  Halverson (2011) 

article: 

Creeks and dams overflowing from three days of heavy rain caused flash 

flooding throughout Lyman County last Tuesday and Wednesday. Two people 

died Tuesday morning, June 21 around 10:00 AM when their vehicles drove into 

a washout on BIA 10, also known as 329th Street, just north of the intersection 

with SD Highway 47 about 9.9 miles north of Reliance.Gwen L. Michalek, a 56-

year-old Chamberlain woman was found in her car about 100 yards downstream 

from the crash site. The other victim, Ellen E. Wright, age 61, of Lower Brule, 

who was driving a van was found about four miles downstream from the crash 

site. Neither victim was wearing a seatbelt. Heavy rainfall washed out a culvert 

taking a section of the roadway with it leaving a 30 foot deep gap in the road The 

vehicles separately drove into the washout and were carried downstream in the 

rushing water. Lyman County Sheriff, rescue, and ambulance along with Presho, 

Reliance, and Chamberlain fire departments and Lower Brule law enforcement, 

fire and ambulance responded to the accident site and assisted in the research 

and recovery. The South Dakota Highway Patrol is investigating the accident. 

Businesses, farms and residences along the creek from Vivian to Oacoma were 

inundated by flood waters. Lyman County Sheriff and Emergency Management 

coordinator Steve Manger said that in addition to heavy rain showers, a dam 

north of Draper reportedly washed out and helped fuel the flooding of Stony Butte 

and Medicine Creek. See this week's issue of the Lyman County Herald for more 

story. 

 

As the article reads, two separate deaths happened on the BIA Route-10 culvert 

washout.  The flood waters created a “30 foot deep gap in the road” where the culvert 

used to be.  Unlike the BIA Route-10 culvert washout, BIA Route-32 culvert washout did 

not result in any deaths of residents.  There are similarities between the BIA Route-10 

and BIA Route-32 culvert washouts; both were caused by heavy precipitation events and 

were designed from past IDF curves. 
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2.3.4 Infrastructure Conclusion 

South Dakota Department of Transportation are designing infrastructures from 

data analyzed by Hershfield (1961) and Frederick, Myers, and Auciello (1977).  Kunkel, 

Andsager, and Easterling (1999) stated if engineers continued to design infrastructures 

based on Hershfield (1961) results, those subsequent infrastructures could be drastically 

underdesigned for future streamflows and runoff.  The BIA Route-32 and BIA Route-10 

culverts were examples of underdesigned infrastructures in South Dakota.  With updated 

design criteria on drainage appurtenances the deadly washout on BIA-Route 10 could 

have been prevented. 
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3. DATA & PROCESSING 

Chapter 3 consists of an overview of data and processes used to model the Upper 

White River Subbasin Watershed.  A flowchart outlining the sections covered in this 

chapter is presented in Figure 3.1.  All data used to develop and analyze the watershed 

model is provided with data sources if required.  Refer to Baumbach (2015) for the 

detailed procedure for how the watershed was developed and analyzed.  The culverts 

were analyzed using Hydraflow and HY-8.  The last section covers the SDDOT 

guidelines used to design a culvert. 
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Figure 3.1:  Flow chart of data & processing steps for analyzing a culvert design 
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3.1 Objective 

When starting a project the objective(s) should be realistic and clearly stated.  

Most projects have general guidelines and limitations which must addressed before any 

data collecting and processing can be performed.  Some general guidelines and 

limitations are but not limited to the needs/wants of the client, timeline, budget, funding, 

location, procedures, and documentation.  The Upper White River Subbasin Watershed 

study contains some of these guidelines and limitations. The following guidelines and 

limitations were considered: 

 Client’s wants/needs 

Client – Oglala Lakota College 

Wants/Needs – A study performed to analyze the 100 year flood level for the Pine 

Ridge Indian Reservation. 

 Timeline 

The timeline was based on an average graduate student’s master program of 

one and a half years.  This gave adequate time for researching, program training, 

data collection, analyzing results, and report construction. 

 Budget/Funding 

Funding was provided by the NSF OSSPEEC grant to cover the cost of labor. 

 Location 

The Pine Ridge Indiana Reservation in South Dakota was selected for the 

study area because Oglala Lakota College’s (OLC) has a strong connection with the 

people and land.  Oglala Lakota College conducted a number of research projects 

for the reservation on soil conditions, water quality, plant and animal life along with 
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construction projects.  OLC conducted a research project which entailed installing 

stream gauges at a number of location on or near the White River.  These stream 

gauges had the potential of continuously gathering tributary stream level data, but 

only one stream gauge data was sent to be analyzed.  Stream level data was 

continuously collected on a 15 minute time interval for the months June through 

October of 2013. 

Unfortunately, the data for the particular stream gauge was not able to be 

utilized for the Upper White Water Subbasin Watershed study.  The decision to 

abandon this particular dataset for the study was because (1) small sample size (2) 

small tributary stream (3) secluded location (4) low to no potential impact on 

infrastructure and (5) limited statistical data available.  For these reasons a river 

crossing on the White River was selected.  The BIA Route 32 12 foot CMP culvert 

washout in the Slim Buttes area west of Pine Ridge on the Pine Ridge Reservation 

was chosen for the study; refer to Figure 2.5 back in section 2.3.2 for the location 

map. 

 Procedures 

Watershed models are analyzed with the aid of computer programs specially 

designed to handle large amounts of spatial datasets.  Standard processing 

procedures were created for these computer programs and can be usually be 

downloaded or purchased with the programs.  The Upper White Water Subbasin 

Watershed was developed and analyzed using ArcGIS and HEC-HMS software.  

The watershed was both developed and analyzed by following standard processing 
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procedures.  Details on standard processing procedures used can be found in section 

3.4. 

 Documentation 

Documentation can entail but not be limited to government reports, state 

and/or federal grants, past studies, instrument data logs, and legal forms.  Other 

forms of documentation are proposals, memos, or journal articles pertaining to 

either the study area, standard processing procedures, laboratory trials, or other 

significant information.  Taken into consideration with the budget, there may be 

fees associated with obtaining some of these forms of documentation. 

In the case of the Upper White River Subbasin Watershed documentation for 

research was obtained through SDSU’s databases.  A majority of the documentation 

research was journal articles, user manuals, past studies, and books on computer 

programs.  Other documentation was accessed through the appropriate government 

websites. 

3.2 Data Requirements 

Data specifications should be thoroughly reviewed and stated.  General 

specifications include but are not limited to data:  format, resolution, use, quality, 

accuracy, and price (e.g. time to survey, database fee, etc.).  The user’s discretion is used 

to select acceptable data in the dataset.  This entails, but is not limited to, considering 

data storage size, resolution, and accuracy; and timeline of the overall project. 
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3.2.1 Field Data 

In this paper, field data consists of data which was or could be physically 

reordered.  This would include but is not limited to GPS topographical surveys, LiDAR, 

stream gauges, and precipitation gauges.  GPS topographical surveys and LiDAR data 

consist of geographical coordinate points.  Each point has an X, Y, and Z coordinate 

which represent latitude, longitude, and elevation respectively.  The points are used to 

create surfaces in the model.  Stream gauges measure the depth or level of the flowing 

water.  Combining the topographical survey of the cross section of the stream and water 

depth the stream’s flow and velocity can be computed.  Precipitation gauges measure the 

amount of precipitation, usually rain, on a specific area of land.  The stream level is 

directly affected by precipitation, soil classification, topography, land cover, and 

temperature. 

The Upper White River Subbasin Watershed study used LiDAR and precipitation 

databases to develop models.  Table 3.1 consists of the forms of LiDAR data and location 

of the datasets.  The LiDAR is stored as DEM files and is formatted for a variety of 

software programs.  National hydrography dataset (NHD) is a form of LiDAR that 

consists of streams, rivers, and lakes for a particular region.  This data was used to 

process the White River Subbasin Watershed model which will be covered in a later 

section. 

 

 

 

 



25 

 

 

Table 3.1:  Field data sources (USGS, 2014) 

Data Type Data Source Data Sets 

DEM (ArcGIS) USGS TNM 2.0 Viewer 

Subbasin 10140201 

Subbasin 10140202 

Subbasin 10140203 

Subbasin 10140204 

NHD (ArcGIS) USGS TNM 2.0 Viewer 

Subbasin 10140201 

Subbasin 10140202 

Subbasin 10140203 

Subbasin 10140204 

 

The current design precipitation data was obtained from NOAA Atlas 14, Volume 

8, Version 2 for the City of Pine Ridge, SD (HDSC webmaster, 2014).  The City of Pine 

Ridge, SD was chosen because of its geographical proximity to the culvert of interest.  

Return periods were selected based on the SDDOT return periods for roadways 

referenced in section 2.3.1.  BIA-Route 32 which crosses over the culvert of interest was 

assumed to be classified as a local road or street (ADT > 100) with a return period of 25 

years.  This assumption is consistent with U.S. and state highway culverts are designed 

using an identical return period. Current design precipitation depths in inches for a 

particular intensity duration expected for each return period can be found in Table 3.2.  

Refer back to section 2.3.1 for more information on current design conditions. 
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Table 3.2:  Current design annual precipitation depth for the Pine Ridge area 

Duration 
Return Period 

10 Years 25 Year 50 Years 100 Years 

5 Minutes 0.529 0.658 0.759 0.863 

15 Minutes 0.945 1.18 1.36 1.54 

60 Minutes 1.54 1.91 2.20 2.51 

Note:  Precipitation depth are recorded as an average for the area in inches, full table in 

Appendix C.  (HDSC webmaster, 2014) 

 

The current design conditions have been concluded to be outdated for future 

culvert designs.  Due to the outdated data, studies have been conducted estimating a 20% 

increasing trend of annual precipitation (Karl and Knight, 1998; Kunkel, Andsager, and 

Easterling, 1999; Groisman, et al., 2004).  For full details on these articles refer back to 

section 2.1.2.  Table 3.3 consists of the estimated future design precipitation depths in 

inches for a particular intensity duration expected for each return period.  Future design 

precipitations were calculated by increasing the current design precipitations depths by 

20%. 

Table 3.3:  Future design annual precipitation depth for the Pine Ridge area 

Duration 
Return Period 

10 Years 25 Year 50 Years 100 Years 

5 Minutes 0.635 0.790 0.911 1.04 

15 Minutes 1.13 1.42 1.63 1.85 

60 Minutes 1.85 2.29 2.64 3.01 

Note:  Precipitation depth are recorded as an average for the area in inches. 

No GPS topographical survey or stream gauge data was used in the Upper White 

River Subbasin Watershed study.  The reason for not using GPS topographical surveys 

was because the area was roughly 1,426 mi2 (912,640 acres).  A GPS topographical 

survey could have been done upstream and downstream of the culvert for more accurate 

elevations.  The reason for not using stream gauge data was because there were no stream 
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gauges within reasonable distance of the culvert.  If stream gauge data was used an 

average baseflow conditions could have been gathered for later processes. 

3.2.2 Statistical Data 

In this paper, statistical data consists of data interpolated from scarce samples 

gathered in the field or from history data.  This would include but not limited to soil 

classification, land cover and use, curve number (CN) values, and StreamStats.  Soils are 

classified by their components of water storage, flooding frequency, hydrologic group, 

ratings for building applications, and erosion hazard Esri, 2014).  The type of land cover 

and use can range from impervious urban areas to grassland for ranchers and crop land 

for farmers to mining for minerals.  The hydrologic group of the soil and main land use 

must be estimated for the region to select an appropriate CN value.  The CN value is a 

dimensionless numerical value associated with how much of the rain will be converted to 

runoff.  If more than one region is within the boundaries of the study area a weighted area 

average must be calculated.  A weighted area average was taking for the Upper White 

River Subbasin Watershed model as shown in Table 3.4.  Refer to Baumbach (2015) for 

the produce on how to calculate each subbasins’ CN value. 

 

 

 

 

 

 

 



28 

 

 

Table 3.4:  CN values for the Upper White River Subbasin Watershed model 

Region 
HEC-
HMS 

Subbasin 

Weighted 
Curve 

Numbers 
Region 

HEC-
HMS 

Subbasin 

Weighted 
Curve 

Numbers 

1 W260 84 14 W390 74 

2 W270 87 15 W400 87 

3 W280 81 16 W410 84 

4 W290 82 17 W420 84 

5 W300 78 18 W430 81 

6 W310 88 19 W440 84 

7 W320 76 20 W450 82 

8 W330 88 21 W460 84 

9 W340 80 22 W470 87 

10 W350 88 23 W480 84 

11 W360 85 24 W490 77 

12 W370 71 25 W500 81 

13 W380 85    

Note:  Region represents the label used in ArcGIS. Land use, hydrologic condition, and 

curve numbers (A, B, C, and D) were kept the same for all subbasins; herbaceous, fair, 

and 62, 71, 81, and 89 respectively. 

 

StreamStats is a Web-based Geographic Information Systems (GIS) which makes 

processing un-gauged streams and rivers statistics faster, more accurate and consistent 

than past methods (USGS, 2015).  Statistical data from StreamStats for peak stream flows 

were not used to verify simulated river levels because the majority of the Upper White 

River Subbasin Watershed Model presides in Nebraska.  StreamStats did not have un-

gauged river levels calculated for Nebraska and using South Dakota would result in 

inaccurate comparison river levels.  Therefore, regional regression equations from 

“Nationwide Summary of U.S. Geological Survey Regional Regression Equations for 

Estimating Magnitude and Frequency of Floods for Ungaged Sites, 1993” were used to 

verify the calculated peak flows (USGS pp. 104-109, 1994).  Table 3.5 compares the 
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regional regression equations peak discharges to the simulated river peak discharges for 

each return year. 

There are assumptions made and parameters which cannot be accurately 

accounted for in both the regional regression equations and simulated river levels.  Most 

of the error comes from the sheer size of the study area and estimating the amount of 

precipitation that occurs during the return year.  The regional regression equations used to 

estimate the Upper White River Subbasin Watershed Model river level upper limits had a 

standard error of 98 – 102 % (USGS pp. 104, 1994).  Equations correlated with Region 1 

were used and solutions are found in Appendix D. 

Region 1: 

𝑄10 = 67.19𝐴𝑐0.737(𝑃 − 13)1.149𝐿−0.608 

𝑄25 = 222.93𝐴𝑐0.690(𝑃 − 13)0.905𝐿−0.573 

𝑄50 = 490.86𝐴𝑐0.656(𝑃 − 13)0.742𝐿−0.543 

𝑄100 = 996.78𝐴𝑐0.624(𝑃 − 13)0.588𝐿−0.512 

Variables: 

Q = Estimated peak discharge at given return period 

Ac = contributing drainage area, mi2 

P = mean annual precipitation, inches 

L = main stream length, mi 
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Table 3.5:  Region 1 regression equation vs simulated current peak discharges 

Return Period 

(Years) 

Regression Equation 

(CFS) 

Simulated (CFS) Percent Error 

10 2,960 2,265 23% 

25 5,980 3,595 40% 

50 9,589 4,748 50% 

100 14,645 6,063 59% 

Note:  Regression equation peak discharges are only for current design 

precipitation values. 

 

Results from the simulations are lower than estimated peak discharges calculated 

using regional regression equations.  The comparison provides evidence of a correlation 

between predicting a lager return period and degree of uncertain that corresponds to the 

prediction.  This illustrates the assumptions made for the Upper White River Subbasin 

Watershed Model are reasonable. 

3.3 Processing 

Processing entailed using raw data to develop a working watershed model using 

computer programs.  The two computer programs used in processing the raw data were 

ArcGIS and HEC-HMS.  ArcGIS was used to create the working watershed model by 

utilizing terrain preprocessing and GeoHMS functions.  The outputs from ArcGIS were 

converted to HEC-HMS compatible format before being uploaded into HEC-HMS.  In 

HEC-HMS meteorological models were developed and applied to the watershed resulting 

in unit hydrographs of estimated river levels under specific precipitation conditions.  

Each unit hydrograph peak flow was extracted from a parameter used to analyze the 12 

foot CMP culvert.  For the complete processing procedure of the Upper White River 

Subbasin Watershed study refer to “Watershed Modeling Using Arc Hydro Tools, 
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GeoHMS, and HEC-HMS” (Baumbach, 2015).  The following sections are an overview 

of the paper referenced and what data was used. 

3.3.1 Watershed Model 

The Upper White River Subbasin Watershed was built with the raw field data, but 

first the raw data was processed into a working watershed model.  Terrain preprocessing 

and GeoHMS functions in ArcGIS were used to develop the working watershed model.  

Terrain preprocessing involves defining the surface and river channels of the watershed.  

This was done by reconditioning the DEM and NHD data files and filling in sinks or low 

spots from the recondition process.  From reconditioning flow direction and 

accumulation; stream definition and segmentation; and subbasin delineation layers were 

determined.  The determination of stream segments and subbasin allowed for drainage 

processing to calculate drainage points for each stream and subbasin.  A slope calculating 

process was applied to the working watershed to develop a slope layer for future 

applications.  All processes had to be sequentially completed before applying the 

GeoHMS function to further develop the working watershed model.  Figure 3.2 is a 

screen shot of the Upper White River Subbasin Watershed after terrain preprocessing was 

applied.  The shaded region is the Upper White River Subbasin Watershed overlaid with 

a USA counties map. 
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Figure 3.2:  Upper White River Subbasin Watershed after terrain preprocessing 

Legend: 

 Blue Lines = river or stream 

 Tan Lines = subbasin boundaries 

 Red Dotes = drainage points 

 

HEC-GeoHMS is the intermediate step between terrain preprocessing watershed 

model and a HEC-HMS project.  “HEC-GeoHMS can be used to refine the subbasin and 

stream delineations, extract physical characteristics of subbasins and streams, estimate 

model parameters, and prepare input files for HEC-HMS” (US Army Corps of 

Engineers(a), 2013).  First, a project area (Upper White River Subbasin Watershed 

portion upstream of the culvert) and point (12 foot CMP culvert location) was selected 

from the terrain preprocessed inputs.  Second, modifying subbasin and river delineations 

were not performed on project area.  Modified delineations would include merging or 

dividing existing subbasins or rivers.  Third, physical characteristics calculated for the 
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river were length, slope, and longest flow path.  Subbasin physical characteristics 

included slope, subbasin centroid, and centroidal flow path.  Fourth, model parameters 

came from statistical data which include CN values and TR-55 time of concentration 

estimates.  Fifth, files from HEC-GeoHMS were converted into compatible HEC-HMS 

files.  These include the basin model, background shapefile, unit conversions, and the 

optional meteorological model.  Figure 3.3 is a screen shot of the basin model output file 

converted into HEC-HMS units.  The meteorological models were chosen to be created in 

HEC-HMS and will be covered in a later section. 

 

Figure 3.3:  Upper White River Subbasin Watershed schematic with HEC-HMS 

symbols 

3.3.2 Hydrologic Engineering Center–Hydrologic Modeling System 

“The Hydrologic Modeling System is designed to simulate the precipitation-

runoff processes of dendritic watershed systems” (US Army Corps of Engineers(b), 

2013).  The HEC-HMS was selected because it could be used in conjunction with 

ArcGIS for analyzing a watersheds wide range of parameters.  The parameters include 
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but are not limited to water availability, urban drainage, flow forecasting, future 

urbanization impact, reservoir spillway design, flood damage reduction, floodplain 

regulation, and systems operation (US Army Corps of Engineers(b), 2013).  Flow 

forecasting was the parameter focused on for the Upper White River Subbasin Watershed 

study. 

A HEC-HMS model has six components categorizing the data in the project; (1) 

Basin Models (2) Meteorological Models (3) Control Specifications (4) Time-Series Data 

(5) Paired Data (6) Grid Data.  This study utilized components (1) through (3) due to the 

data available for the study area.  As stated earlier ArcGIS was used to create the basin 

model and uploaded into HEC-HMS.  Further parameters had to be defined for the 

subbasin, sink, junction, and reach elements which made up the basin model.  Some 

parameters were left blank or set to a default setting assigned by HEC-HMS.  Multiple 

meteorological models were created using Table 3.2 and Table 3.3 precipitation depth 

enters.  Frequency storm was set as the type of precipitation and U.S. Customary for the 

unit system.  The control specifications purpose was to set the model’s time limits.  The 

Upper White River Subbasin Watershed model control specifications were arbitrary dates 

and times.  The only stipulation was the time period needed to contain all of the runoff 

effects on the river.  Results from each trial will be discussed in Chapter 4. 
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(1) Basin Model 

Subbasin:  (Labeled with a W followed by an identification number) 

 Canopy Method – None 

 Surface Method – None 

 Loss Method – SCS Curve Number 

o Initial Abstraction (IN) – Blank 

o Curve Number – Refer to Table 3.4 

o Impervious (%) – 0.0 

 Transform Method – SCS Unit Hydrograph 

o Graph Type – Standard 

o Lag Time (MIN) – Lag time, TL was manually computed using 

subbasin time of travel from the TR-55 Excel file (Baumbach, 

2015).  “Studies by the SCS found that in general the lag time can 

be approximated by taking 60% of the time of concentration” (US 

Army Corps of Engineers(b), 2013).  Refer to Table 3.6 for enters. 

 Baseflow Method – None 
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Table 3.6:  Time of concentration and lag time for each subbasin 

Watershed Tc (hr) TL  (hr) TL (min) Watershed Tc (hr) TL  (hr) TL (min) 

W260 24.20 14.52 871 W390 20.51 12.31 738 

W270 15.78 9.47 568 W400 16.96 10.18 611 

W280 21.34 12.80 768 W410 21.69 13.01 781 

W290 14.59 8.75 525 W420 16.73 10.04 602 

W300 12.90 7.74 464 W430 10.41 6.25 375 

W310 22.58 13.55 813 W440 13.50 8.10 486 

W320 10.42 6.25 375 W450 21.64 12.98 779 

W330 21.44 12.86 772 W460 7.95 4.77 286 

W340 15.48 9.29 557 W470 10.34 6.20 372 

W350 36.52 21.91 1315 W480 12.15 7.29 437 

W360 32.18 19.31 1158 W490 16.36 9.82 589 

W370 1.78 1.07 64 W500 17.96 10.78 647 

W380 14.19 8.51 511     

Note:  TC = Time of concentration 

  TL = Lag time 

 

Sink:  (Culvert) 

The sink is represented by the project point which was the 12 foot CMP culvert 

location.  All enters were left blank or set to default. 

Junction:  (Labeled with a J followed by an identification number) 

The junction represents the location where all subbasin runoff outlets into the 

river.  All enters were left blank or set to default. 

Reach:  (Labeled with a R followed by an identification number) 

 Routing Method – Lag routing; this had to be calculated for each reach.  

Lag time was calculated using equation 3.43 and 3.45 (McCuen pp. 148, 

2005) and Table 5.4 for the k function of the landcover (Ward and Trimble 

pp.138, 2004).  Refer to Table 3.7 for enters.   

 Loss/Gain Method – None 
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Table 3.7:  Lag routing variables and lag time for each reach 

Reach 
Slope 
(ft/ft) 

Velocity, 
V (ft/s) 

Length, L 
(ft) 

Lag Time, 
TL (min) 

R10 0.035 0.94 87319 1548 

R20 0.002 0.22 17850 1352 

R30 0.001 0.16 51784 5394 

R40 0.002 0.22 13249 1004 

R80 0.001 0.16 55181 5784 

R90 0.003 0.27 45589 2814 

R110 0.003 0.27 3273 202 

R120 0.001 0.16 58533 6097 

R170 0.002 0.22 40281 3052 

R190 0.003 0.27 26505 1636 

R210 0.004 0.32 38974 2030 

R240 0.004 0.32 40403 2104 

NOTE: Assumed river bed was composed mainly of 
sand and gravel, therefore, k = 5 

𝑇𝐿 =
𝐿

60𝑉
                                                                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3.43) 

𝑉 = 𝑘𝑆0.5                                                                                                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3.46) 

Varaibales: 

L = Length of flow (Appendix E Table 7.4), ft 

V = Velocity, ft/s 

k = function of landcover with the effect measeare by the value Manning’s 

number and hydrologic radius 

 

S = Slope (Appendix E Table 7.4), ft/ft 

 

 

 

 

 



38 

 

 

(2) Meteorological Models 

There was a current and future design meteorological model created and applied 

to the basin model.  Each meteorological model had four (4) different return periods 

tested with three (3) intensity duration; totaling 12 trials per meteorological model.  Table 

3.8 and Table 3.9 list the combinations of return period and intensity durations analyzed.  

Note:  each trial is color coded based on the intensity duration for each return period. 

Frequency Storm: 

 Probability – Varies; refer to Table 3.8 or Table 3.9 

 Input Type – Annual Duration 

 Output Type – Annual Duration 

 Intesnity Duration – Varies; refer to Table 3.8 or Table 3.9 

 Storm Duration – 1 hour (assumption made for an average storm) 

 Intensity Position – 50% (default) 

 Storm Area – Left blank (will use the whole watershed) 

 Curve – Uniform For All Subbasins 
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Table 3.8:  Current design annual precipitation depth meteorological models 

Probability (%) Intensity Duration (min) Duration (min) Annual-Duration Depth (in) 

1 

5 

5 0.863 

15 1.54 

60 2.51 

15 
15 1.54 

60 2.51 

60 60 2.51 

2 

5 

5 0.759 

15 1.36 

60 2.20 

15 
15 1.36 

60 2.20 

60 60 2.20 

4 

5 

5 0.658 

15 1.18 

60 1.91 

15 
15 1.18 

60 1.91 

60 60 1.91 

10 

5 

5 0.529 

15 0.945 

60 1.54 

15 
15 0.945 

60 1.54 

60 60 1.54 
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Table 3.9:  Future design annual precipitation depth meteorological models 

Probability (%) Intensity Duration (min) Duration (min) Annual-Duration Depth (in) 

1 

5 

5 1.04 

15 1.85 

60 3.01 

15 
15 1.85 

60 3.01 

60 60 3.01 

2 

5 

5 0.911 

15 1.63 

60 2.64 

15 
15 1.63 

60 2.64 

60 60 2.64 

4 

5 

5 0.790 

15 1.42 

60 2.29 

15 
15 1.42 

60 2.29 

60 60 2.29 

10 

5 

5 0.635 

15 1.13 

60 1.85 

15 
15 1.13 

60 1.85 

60 60 1.85 
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(3) Control Specifications 

Figure 3.4 is a screen shot of the control specifications used for each of the 24 

trials.  Iterations were ran to select the time limit for the control specifications.  The date 

and time were arbitrarily selected because the meteorological models were theoretical 

values with no comparable storms time intervals. 

 
Figure 3.4:  Control Specifications set at one month limit measured every 1 minute 

 

Results: 

Unit hydrographs are produced from running simulations through HEC-HMS for 

every subbasin, junction, reach, and culvert.  The values of interest are the peak 

discharges for the culvert from each trial.  Table 3.10 lists the peak discharge results for 

both the current design and future design flow conditions; these values were needed for 

culvert analysis.  A more detailed analysis of the HEC-HMS results is in Chapter 4. 
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Table 3.10:  Current and future design peak flow conditions 

Current Design Precipitation Future Design Precipitation 

Probability 
(%) 

Intensity 
Duration 

(min) 

Flow 
(CFS) 

Probability 
(%) 

Intensity 
Duration 

(min) 

Flow 
(CFS) 

1 

5 6062.7 
1 

5 8331.4 
15 6062.8 15 8331.5 
60 6061.7 60 8329.6 

2 

5 4747.6 
2 

5 6635.4 
15 4747.7 15 6635.5 
60 4747.0 60 6634.2 

4 

5 3594.8 
4 

5 5129.8 
15 3594.9 15 5129.9 
60 3594.5 60 5129.1 

10 

5 2264.9 
10 

5 3359.8 
15 2265.0 15 3359.9 
60 2264.9 60 3359.6 

3.4 Culvert Analysis 

Previously, the watershed boundaries, physical characteristics, and parameters 

were established in ArcGIS and HEC-HMS.  A meteorological model was also created 

and applied to the watershed resulting in unit hydrographs for each subbasin, junction, 

reach, and outlet for all 24 trials in HEC-HMS.  Using the culvert unit hydrographs both 

the 12 foot CMP culvert and 12 foot x 12 foot – side by side – box culvert were analyzed 

for capacity performance.  Figure 3.5 and Figure 3.6 are typical culvert designs with 

dimensions drawn in AutoCAD. 
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(a) 

 

 

(b) 

Figure 3.5:  12 foot CMP culvert not to scale (a) cross-section (b) profile view 
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(a) 

 

 

(b) 

Figure 3.6:  12 foot x 12 foot – side by side – box culvert not to scale (a) cross-section 

(b) profile view 
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There have been computer programs developed to analyze culvert designs.  In 

order to use the computer software river and culvert parameters must be known or 

calculated.  The major river parameters are channel characteristics, peak flows, water 

levels both upstream and downstream of the culvert, and embankment characteristics.  

Some major culvert parameters are:  type, material, dimensions and inlet and outlet 

elevations.  The Upper White River Subbasin Watershed study used two different culvert 

analysis computer programs to analyze the existing 12 foot CMP culvert and the current 

12 foot x 12 foot – side by side – box culvert.  The first culvert analyzing program used 

was HY-8 Version 7.3 (HY-8); second was AutoCAD Civil 3D Hydraflow Express 

Extension (Hydraflow Express). 

Figure 3.7 is a screen shot of the 12 foot CMP culvert washout site with estimated 

dimensions from Google Earth (2015).  Table 3.11 lists what the dimensions on Figure 

3.7 represent.  These values were used as parameter enters for HY-8 and Hydraflow 

Express. 

Table 3.11:  List of estimated elevations and dimensions of the White River and 

embankment 

Embankment Culvert River 

Variables Values Variables Values Variables Values 

Top Elevation 2980.00 ft Inlet Elevation 2958.00 ft Surface Width 50.00 ft 

Top Width 50.00 ft Outlet Elevation 2956.00 ft   

Crest Length 125.00 ft Length 110.00 ft   

Note:  Top elevation for embankment was agreed upon after talking with Joanita Kant a 

research who has visited the site and SDSU professor Dr. Burckhard, P.E. 
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Figure 3.7:  12 foot CMP culvert with estimated dimensions (Google Earth, 2015) 
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3.4.1 HY-8 

“An HY-8 project involves the design and analysis of single or multiple culverts 

at one or more crossings” (HY-8 Culvert Analysis Program).  For more information of 

specific details and/or the procedure refer to HY-8 User Manual v7.3 (HY-8 Culvert 

Analysis Program).  The Upper White River Subbasin Watershed study used the analysis 

of a single crossing application of the HY-8. 

Figure 3.8 is a screen shot of the 100 year peak flow conditions entered into the 

crossing data table used to analyze the 12 foot CMP culvert.  River and culvert 

parameters were kept constant throughout the 12 foot CMP culvert analysis and the peak 

flow varied for each trial.  Refer back to Table 3.10 for peak flow values.  The same 

process was followed to analyze the 12 foot x 12 foot – side by side – box culvert.  Figure 

3.9 is a screen shot of the 100 year peak flow conditions entered into the crossing data 

table used to analyze the 12 foot x 12 foot – side by side – box culvert.  Again, the river 

and culvert parameters were kept constant thought the 12 foot x 12 foot – side by side – 

box culvert analysis and the peak flow varied for each trial.  Refer back to Table 3.10 for 

peak flow values. 

Parameter Enters: 

 Discharge Data – Used calculated peak flow discharges from Table 3.10. 

 Tailwater Data – Assumed a trapezoidal channel type with a side slope of 

3:1.  Calculated the bottom width using the side slope and surface width.  

Channel slope was assumed to be equal to culvert slope with a Manning’s 

value, n = 0.03 (McCuen 2005, 135-137).  The n value was based on a 

combination of short grass, fine sand and gravels, and condition of the 
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channel’s bed and embankment.  The channel invert elevation was equal 

to the outlet elevation of the culvert. 

 Roadway Data – Used values from Table 3.11 and assumed a constant 

roadway elevation with no stationing 10 feet above the culvert. 

 Culvert Data – Varied depending on if analyzing the 12 foot CMP culvert 

or 12 foot x 12 foot – side by side – box culvert.  The Manning’s values 

varied depending on the material used to construct the culvert; CMP = 

0.022 and concrete = 0.013 (McCuen 2005, 118). 

 Site Data – Used values from Table 3.11. 

 

 

Figure 3.8:  12 foot CMP culvert crossing data enters 
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Figure 3.9:  12 foot x 12 foot – side by side – box culvert crossing data enters 

3.4.2 Hydraflow Express 

“Hydraflow Express is an application for solving typical hydraulics and 

hydrology problems.  It addresses a wide variety of tasks, including culverts, open 

channels, inlets, hydrology and weirs, using a unique user interface” (Autodesk, 2010).  

For more information on specific details and/or the procedure refer to AutoCAD Civil 3D 

Hydraflow Express Extension User’s Guide (Autodesk, 2010).  AutoCAD Civil 3D has 

an extension called Hydraflow Hydrographs which allows the user to build a watershed.  

This extension was not used because the Upper White River Subbasin Watershed was 

built in ArcGIS.  The culvert analysis option in Hydraflow Express was used to analyze 

both the 12 foot CMP culvert and 12 foot x 12 foot – side by side – box culvert while 

exposed current design and future design river flows. 
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Figure 3.10 is a screen shot of the 100 year peak flow conditions entered into the 

window used to analyze the 12 foot CMP culvert.  River and culvert parameters were 

kept constant throughout the 12 foot CMP culvert analysis and the peak flow varied for 

each trial.  Refer back to Table 3.10 for peak flow values.  The same process was 

followed to analyze the 12 foot x 12 foot – side by side – box culvert.  Figure 3.11 is a 

screen shot of the 100 year peak flow conditions entered into the window used to analyze 

the 12 foot x 12 foot – side by side – box culvert.  Again, the river and culvert parameters 

were kept constant throughout the 12 foot x 12 foot – side by side – box culvert analysis 

and the peak flow varied for each trial.  Refer back to Table 3.10 for peak flow values. 

Parameter Enters: 

 Pipe – Used values from Table 3.11 for:  invert elevation down river (Inv 

Elev Dn), length, and invert elevation up river (Inv Elev Up).  Culvert 

enters varied depending on if analyzing the 12 foot CMP culvert or 12 foot 

x 12 foot – side by side – box culvert.  The Manning’s values varied 

depending on the material used to construct the culvert; CMP = 0.022 and 

concrete = 0.013 (McCuen 2005, 118). 

 Embank – Used values from Table 3.11 and assumed a constant roadway 

elevation with no stationing 10 feet above the culvert. 

 Calcs - Used calculated peak flow discharges from Table 3.10. 
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Figure 3.10:  12 foot CMP culvert window 
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Figure 3.11:  12 foot x 12 foot – side by side – box culvert window 

 

 



53 

 

 

3.5 Culvert Design 

Culvert design was beyond the scope of this project because there was an existing 

culvert at the crossing.  The 12 foot CMP culvert washed out in the Spring of 2010 and a 

12 foot x 12 foot – side by side – box culvert was constructed in the crossing.  If the 

reader is interested in learning more about culvert design please refer to SDDOT 

Drainage Manual Section 10.4 Culvert Hydraulic Design (SDDOT, 2013). 
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4. RESULTS AND ANALYSIS 

Chapter 4 presents the simulated results and analysis of the Upper White River 

Subbasin Watershed.  The current and future design simulated results from HEC-HMS, 

HY-8, and Hydraflow Express are discussed for the 25 year design return period for both 

the 12 foot CMP culvert and 12 foot x 12 foot – side by side – box culvert.  A 

comparison of how the 12 foot CMP culvert vs the 12 foot x 12 foot – side by side – box 

culvert performed under current and future design condition was conducted for capacity 

performance.  An engineering recommendation on which subbasin should also be 

considered for water retention management practices under simulated design criteria. 

4.1 Simulated HEC-HMS Hydrographs 

As stated previously, HEC-HMS was used to conduct precipitation modeling on 

the Upper White River Subbasin Watershed model.  HEC-HMS calculated each 

subbasins’ runoff as water traveled to stream channels and eventually to the White River.  

The White River was broken up into reaches and junctions automatically in HEC-HMS.  

Each reach and junction had a hydrograph calculated for it by HEC-HMS.  A hydrograph 

was also calculated for the culvert location which composed of the sum of reaches and 

junctions hydrographs. 

A total of 24 trials were conducted resulting in 24 culvert hydrographs; 12 using 

the current design precipitations and 12 using the estimated future design precipitations.  

The culvert hydrographs were used to obtain the peak discharges of the river flows due to 

direct runoff only for each scenario.  This means the baseflow conditions were neglected 

in the study.  Figure 4.1 and Figure 4.2 show the culvert hydrographs resulting from a 25 

year return period precipitation event using an intensity duration of 15 minutes for the 
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current and future design precipitations respectively.  The 25 year return period 

precipitation culvert hydrographs were selected for discussion because BIA-Route 32 

crosses over the culvert of interest was assumed to be classified as a local road or street 

(ADT > 100) with a return period of 25 years.  An intensity duration of 15 minutes was 

selected because it corresponded to the highest peak discharge flows for each scenario.  

The simulated peak discharge flows were used to analyze the 12 foot CMP culvert and 12 

foot x 12 foot – side by side – box culvert capacities.  The 10, 50, and 100 year return 

period precipitation ‘culvert’ hydrographs are located in Appendix F. 

 

Figure 4.1:  Current 25 year return period, 15 min intensity duration simulated 

hydrograph excluding baseflow 
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Figure 4.2:  Future 25 year return period, 15 min intensity duration simulated 

hydrograph excluding baseflow 

 

There was an increase in peak discharges from the current 25 year return period to 

future 25 year return period.  By increasing the current design annual precipitation depth 

by 20% correlated to a 30% potential peak discharge increase.  The potential peak 

discharges increase for the 10, 50, and 100 year return periods are presented in Table 4.1. 

Table 4.1:  Potential peak discharge increases 

Return Period (years) Increase (%) 

10 33 

25 30 

50 28 

100 27 
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4.2 12 foot CMP Culvert 

A 12 foot CMP culvert was previously in-place on BIA-Route 32 as a crossing 

over the White River up to a couple of years ago when it was washed out by a storm.  As 

stated previously, BIA-Route 32 is currently classified as a local road or street (ADT > 

100) with a return period of 25 years.  The 12 foot CMP culvert was analyzed using two 

separate computer programs under a 10, 25, 50, and 100 year return period with intensity 

duration of 5, 15, and 60 minutes.  The following analysis is for a 25 year return period 

with a 15 minute intensity duration.  Culvert analysis for return periods 10, 50, and 100 

years with a 15 minute intensity duration are located in Appendix G for both current and 

future design conditions. 

The 12 foot CMP culvert was analyzed as if it was still in place on BIA-Route 32 

under current and future design conditions.  In the Lakota Times Road Construction 

report Tom Crash stated “a 20 year old metal culvert on BIA-Route 32 in Slim Buttes 

west of Pine Ridge finally gave in to the acidic soil prevalent to the area and collapsed in 

the Spring of 2010.”  One cause for the collapse could have resulted from the soil 

condition, which is outside the scope of this paper, or it could have been due to inefficient 

culvert capacity. 

4.2.1 Current Design Conditions 

The 12 foot CMP culvert was analyzed following section 3.4 and using the 

simulated current 25 year return period peak discharge of 3,594.9 cfs.  HY-8 performed 

iterations to calculate the culvert discharge and overtopping discharge if it occurred.  

Results from the iterations graphically showed overtopping of the 12 foot CMP culvert 

under the current 25 year return period with 15 minute intensity duration in Figure 4.3.  
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Overtopping was the indication of inefficient culvert capacity for the simulated scenario.  

With additional baseflow the water level would be elevated beyond the headwater depth, 

and the 12 foot CMP culvert would continue to fail.  Table 4.2 provides the list generated 

by HY-8 of calculated culvert and downriver channel parameters. 

 

 

Figure 4.3:  HY-8 analyzed 12 foot CMP culvert under current design, 25 year 

return period 15 min intensity duration simulated flow conditions 
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Table 4.2:  Current 12 foot CMP culvert and river parameters generated by HY-8 

Culvert Units Downriver Units 

Total Discharge 3594.90 cfs Flow 3594.90 cfs 

Culvert Discharge 2017.41 cfs Tailwater 

Elevation 

2960.22 ft 

Overtopping 

Discharge 

1577.44 cfs Depth 4.22 ft 

Headwater Elevation 2982.59 ft Velocity 15.05 ft/s 

Inlet Control Depth 24.59 ft Shear 4.79 psf 

Flow Type 5-S2n  Froude Number 1.43  

Normal Depth 9.28 ft    

Critical Depth 10.21 ft    

Outlet Depth 9.45 ft    

Outlet Velocity 21.16 ft/s    

Note:   Flow type is broken into three parts; flow type, flow profile, and outlet type. 

Flow type = 5 meaning headwater depth is greater than diameter (HW > D) 

Flow profile = S2 meaning steep channel, supercritical flow, and water depth is in 

between the critical and normal depths or type 2 (Osman Akan 

2008, 99-101). 

Outlet type = n meaning normal outlet depth 

 

The parameter of concern was the inlet control depth also referred to as the 

headwater depth, HW.  Under the current design condition scenario the culvert would 

experience a HW depth of 24.59 ft; which resulted in overtopping the 10 foot 

embankment stated early.  With a 24.59 ft HW depth the culvert was subjected to 44% of 

the total discharge converted to overtopping discharge. 

The outlet depth gradually subsided to meet the tailwater depth, TW of 4.22 ft 

some distance downriver of the culvert.  Downriver shear corresponds to the potential 

shearing force of the water relating to the potential destruction force of the river.  The 

Froude number is a dimensionless number relating to the flow state of the water profile as 

it flows through the culvert.  If the Froude number is greater than 1.0 then the flow type is 

said to be supercritical (Osman Akan 2008, 11).  Flow types classify water profiles and 

culverts as either inlet or outlet controlled. 
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Hydraflow Express was used to verify the result obtained from HY-8.  Following 

section 3.4.2 and entering 3,954.9 cfs for the discharge parameters reiterated the HY-8 

result; which was the culvert was undersized for the current 25 year return period.  The 

graphical representation of the overtopping is showing in Figure 4.4 with the water 

flowing from left to right.  Additionally Hydraflow Express classified the culvert as inlet 

control flow which agrees with the flow type 5-S2n.  “Inlet control flow generally occurs 

in steep, smooth culverts.  The culvert will flow partially full under supercritical 

conditions” (Osman Akan 2008, 214).  Figure 4.4 shows a submerged inlet, pipe flowing 

almost full under supercritical flow, and an unsubmerged outlet with no hydraulic jump 

occurring.  A list of calculated Hydraflow Express parameters are shown in Table 4.3. 

 

 

Figure 4.4:  Hydraflow Express analyzed 12 foot CMP culvert under current design, 

25 year return period 15 min intensity duration simulated flow conditions 
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Table 4.3:  Current 12 foot CMP culvert parameters generated by Hydraflow 

Express 

Category Parameter Value Units 

Flow 

Total 3594.90 cfs 

Culvert 2048.84 cfs 

Overtopping 1546.06 cfs 

Velocity 
Outlet 18.72 ft/s 

Inlet 19.88 ft/s 

Depth 
Outlet 11.14 ft 

Inlet 10.27 ft 

Hydraulic Grade Line 

Outlet Elevation 2967.14 ft 

Inlet Elevation 2968.27 ft 

Headwater Elevation 2982.52 ft 

HW/D 2.04   

 

The hydraulic grade line, HGL represents the water profile as the water flows 

through the culvert.  The HGL also measured the ratio of headwater depth to culvert 

diameter, HW/D.  A HW/D of 2.04 corresponds to a HW depth twice the diameter of the 

culvert.  The embankment height was set at 10 ft which means for this scenario the HW is 

2 ft above the roadway resulting in overtopping.  Hydraflow Express calculated 43% of 

the total discharge was converted to overtopping discharge. 

There are some differences between what was calculated by Hydraflow Express 

and HY-8.  Hydraflow Express does not include river channel input parameters, therefore 

did not calculate any of the downriver parameters.  Also, Hydra flow Express also did not 

classify the flow type.  Table 4.4 provides the list of consistence between the computer 

programs on four (4) major parameters:  HW elevation, culvert discharge, overtopping 

discharge, and inlet control depth or HW/D.  The percent differences are small, therefore 

both computer programs are consistence with one another. 
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Table 4.4:  Current 12 foot CMP culvert percent difference between HY-8 and 

Hydraflow Express parameters 

Parameters 
Percent 

Difference (%) 

Culvert Discharge (cfs) -1.6 

Overtopping Discharge (cfs) 2.0 

Headwater Elevation (ft) 0.0 

HW/D 0.5 

Note:  A negative percent meant HY-8 was lower than Hydraflow Express calculated 

parameter. 

4.2.2 Future Design Conditions 

The future design conditions were analyzed based on the section 2.1.2 journal 

articles stating the potential of increase precipitation events in the future.  Kunkel, 

Andsager, and Easterling (1999) stated if engineers continued to design infrastructures 

based on Hershfield (1961) results, the subsequent infrastructures could be drastically 

underdesigned for future streamflows and runoff.  Based on these statements, the 12 foot 

CMP culvert was analyzed using the simulated future 25 year return period peak 

discharge of 5129.9 cfs.  Following the same procedure used to analyze the culvert under 

current design condition in section 3.4.1, but increasing the peak discharge to 5,129.9 cfs. 

Since future design conditions are higher than current design condition peak 

discharges the culvert by default would have inefficient culvert capacity.  HY-8 provided 

evidence of inefficient capacity through iterations of culvert and overtopping discharges.  

Overtopping occurred under future 25 year return period with 15 minute intensity 

duration is displayed in Figure 4.5.  The overtopping confirmed inefficient capacity of the 

12 foot CMP culvert.  Again, the water level would be elevated if the baseflow condition 

were considered.  Table 4.5 provides the list generated by HY-8 of calculated culvert and 

downriver channel parameters. 
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Figure 4.5:  HY-8 analyzed 12 foot CMP culvert under future design, 25 year return 

period 15 min intensity duration simulated flow conditions 

 

Table 4.5:  Future 12 foot CMP culvert and river parameters generated by HY-8 

Culvert Units Downriver Units 

Total Discharge 5129.90 cfs Flow 5129.90 cfs 

Culvert Discharge 2098.25 cfs Tailwater 

Elevation 

2961.14 ft 

Overtopping 

Discharge 

3031.59 cfs Depth 5.14 ft 

Headwater Elevation 2983.99 ft Velocity 16.81 ft/s 

Inlet Control Depth 25.99 ft Shear 5.83 psf 

Flow Type 5-S2n  Froude Number 1.47  

Normal Depth 9.63 ft    

Critical Depth 10.38 ft    

Outlet Depth 9.76 ft    

Outlet Velocity 21.32 ft/s    

 

The HW depth increased from 24.59 ft to 25.99 ft which relates to an additional 

1.4 ft of water flowing over the roadway.  An increase in 1.4 ft of HW depth 

corresponded to 49% of the total discharge converted to overtopping discharge.  This was 
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a 16% increase compared to the current design conditions.  Consequently the increase 

caused a degree of increase to the other calculated parameters as expected. 

Hydraflow Express was used to verify the result obtained from HY-8.  Following 

section 3.4.2 and entering 5,129.9 cfs for the discharge parameters reiterated the HY-8 

result; which was the culvert was undersized for the current 25 year return period.  The 

graphical representation of the overtopping is showing in Figure 4.6 with the water 

flowing from left to right.  The increase in flow did not change the classification of the 

culvert as inlet controlled with a water profile of 5-S2n.  Figure 4.6 shows an increased in 

HW depth resulting in the culvert remaining submerged, pipe flowing almost full under 

supercritical flow, and an unsubmerged outlet with no hydraulic jump.  Table 4.6 

provides the list generated by Hydraflow Express of calculated culvert parameters. 

 

 

Figure 4.6:  Hydraflow Express analyzed 12 foot CMP culvert under future design, 

25 year return period 15 min intensity duration simulated flow conditions 
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Table 4.6:  Future 12 foot CMP culvert parameters generated by Hydraflow 

Express 

Category Parameter Value Units 

Flow 

Total 5129.90 cfs 

Culvert 2127.18 cfs 

Overtopping 3002.72 cfs 

Velocity 
Outlet 19.35 ft/s 

Inlet 20.39 ft/s 

Depth 
Outlet 11.21 ft 

Inlet 10.42 ft 

Hydraulic Grade Line 

Outlet Elevation 2967.21 ft 

Inlet Elevation 2968.42 ft 

Headwater Elevation 2983.93 ft 

HW/D 2.16   

 

The HGL increase was directly related to the increase in total discharge.  As a 

result of this increase the HW/D increased to 2.16.  An increase of 0.12 corresponds to an 

increase of 1.92 ft of water flowing over the road compared to current design condition.  

Hydraflow Express calculated 59% of the total discharge was converted to overtopping 

discharge.  The differences between what was calculated by HY-8 and Hydraflow 

Express were the same as the current design conditions of the 12 foot CMP culvert.  

Table 4.7 provides the list of consistence between the computer programs on four (4) 

major parameters:  HW elevation, culvert discharge, overtopping discharge, and HW/D.  

The percent differences are small, therefore both computer programs are consistence with 

one another. 
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Table 4.7:  Future 12 foot CMP culvert percent difference between HY-8 and 

Hydraflow Express parameters 

Parameters 
Percent 

Difference (%) 

Culvert Discharge (cfs) -1.4 

Overtopping Discharge (cfs) 1.0 

Headwater Elevation (ft) 0.0 

HW/D 0.5 

Note:  A negative percent meant HY-8 was lower than Hydraflow Express calculated 

parameter. 

4.2.3 Compare and Contrast 

A comparison was conducted to analyze the increases the 12 foot CMP culvert 

potentially could have experienced due to the 30% in peak discharge.  The only variable 

which was changed between the current and future design conditions was the peak 

discharges.  By keeping all other variables constant the HW depth was directly correlated 

to the increase in peak discharge.  Table 4.8 shows percent increase from current to future 

design conditions which the 12 foot CMP culvert and river experienced. 
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Table 4.8:  12 foot CMP culvert comparison of future vs. current design conditions 

HY-8 

Culvert River 

Total Discharge 30% Flow 30% 

Culvert Discharge 4% Tailwater Elevation 0.03% 

Overtopping Discharge 48% Depth 18% 

Headwater Elevation 0.05% Velocity 10% 

Inlet Control Depth 5% Shear 18% 

Flow Type N.A. Froude Number 3% 

Normal Depth 4%     

Critical Depth 2%     

Outlet Depth 3%     

Outlet Velocity 1%     

Hydraflow Express 

Total Discharge 30% 

Culvert Discharge 4% 

Overtopping Discharge 49% 

Outlet Velocity 3% 

Inlet Velocity 3% 

Outlet Depth 1% 

Inlet Depth 1% 

Outlet Elevation 0.00% 

Inlet Elevation 0.01% 

Headwater Elevation 0.05% 

HW/D 6% 
 

As was expected all the parameters increased or remained the same as the peak 

discharge increased from current to future design conditions.  There were a range of 

increase from 0% to 49%.  The results corresponded the highest percent increase were 

total discharge (30%) and overtopping discharge (49%).  One interpretation of a resulting 

49% increase in overtopping discharge was due to the culvert discharge only increased by 

4%.  The reason for a small increase in culvert discharge was because the culvert was 
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approaching critical depth, represented by a small percent increase, in the culvert under 

current design conditions.  Critical depth directly relates to the maximum capacity of the 

culvert. 

The parameters with a small degree of increase:  culvert discharge, HW depth, 

critical depth, normal depth, and velocities meant the 12 foot CMP culvert was at its 

maximum capacity.  The additional peak discharge flows were converted to overtopping 

discharge.  The HW elevation is highlighted in yellow because the increase is very small 

compared to the HW depth and overtopping discharge.  A practical reason for such a 

small increase is because HW elevation was spread over the whole crest length of 125 ft.  

There was a difference of 1.4 ft in the HW elevation resulting in an additional 175 square 

ft for the overtopping discharge to flow through.  Therefore, results confirmed the 12 foot 

CMP culvert was not able to convey current design conditions nor future design 

conditions peak discharges without overtopping the roadway. 

4.3 12 foot x 12 foot – Side by Side - Box Culvert 

A 12 foot x 12 foot – side by side – box culvert is currently in-place on BIA-

Route 32 as a crossing over the White River.  As stated previously, BIA-Route 32 is 

currently classified as a local road or street (ADT > 100) with a return period of 25 years.  

The 12 foot x 12 foot – side by side - box culvert was analyzed using two separate 

computer programs under current and future design conditions of a 10, 25, 50, and 100 

year return period with intensity duration of 5, 15, and 60 minutes.  The following 

analysis is for a 25 year return period with a 15 minute intensity duration.  Culvert 

analysis for return periods 10, 50, and 100 years with a 15 minute intensity duration are 

located in Appendix H for both current and future design conditions. 
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4.3.1 Current Design Conditions 

The 12 foot x 12 foot – side by side - box culvert was analyzed following section 

3.4.1 and using the simulated current 25 year return period peak discharge of 3,594.9 cfs.  

HY-8 performed iterations to calculate the culvert discharge and overtopping discharge if 

it occurred.  Results from the iterations graphically showed no overtopping of the 12 foot 

x 12 foot – side by side - box culvert under the current 25 year return period with 15 

minute intensity duration in Figure 4.7.  No overtopping was the indication of efficient 

culvert capacity for the simulated scenario, therefore the culver met SDDOT design 

criteria.  The water level would be elevated if the baseflow condition were considered, 

but visually should not overtop the crossing.  Table 4.9 provides the list generated by 

HY-8 of calculated culvert and downriver channel parameters. 

 

 

Figure 4.7:  HY-8 analyzed 12 foot x 12 foot – side by side – box culvert under 

current design, 25 year return period 15 min intensity duration simulated flow 

conditions 
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Table 4.9:  Current 12 foot x 12 foot – side by side – box culvert and river 

parameters generated by HY-8 

Culvert Units Downriver Units 

Total Discharge 3594.90 cfs Flow 3594.90 cfs 

Culvert Discharge 3594.90 cfs Tailwater 

Elevation 

2960.22 ft 

Overtopping 

Discharge 

0.00 cfs Depth 4.22 ft 

Headwater Elevation 2973.94 ft Velocity 15.05 ft/s 

Inlet Control Depth 15.94 ft Shear 4.79 psf 

Flow Type 5-S2n  Froude Number 1.43  

Normal Depth 4.97 ft    

Critical Depth 8.87 ft    

Outlet Depth 6.64 ft    

Outlet Velocity 22.57 ft/s    

 

The parameter of concern for this study was the inlet control depth also referred to 

as the HW depth.  Under the current design condition scenario the culvert would 

experience a HW depth of 15.94 ft; which is significantly lower than the 10 foot 

embankment above the 12 foot x 12 foot – side by side – box culvert.  All of the 

discharge was conveyed by the 12 foot x 12 foot – side by side – box culvert for the 

current design conditions peak flows  Downriver conditions were consist between the 12 

foot CMP culvert and 12 foot x 12 foot – side by side – box culvert under current design 

conditions.  The only difference occurred at the inlet of each culvert. 

Hydraflow Express was used to verify the result obtained from HY-8.  Following 

section 3.4.2 and entering 3,954.9 cfs for the discharge parameters reiterated the HY-8 

result; which was the culvert was undersized for the current 25 year return period.  

Results from the iterations graphically shown in Figure 4.8 of the 12 foot x 12 foot – side 

by side - box culvert under the current 25 year return period with 15 minute intensity 

duration has the appropriate capacity as the water flows from left to right.  The water 



71 

 

 

level would be elevated if the baseflow condition were considered, but visually should 

not overtop the crossing.  Additional Hydraflow Express classified the culvert as inlet 

control flow with a submerged inlet, pipe flow not completely full, and an unsubmerged 

outlet verifying the water profile as 5-S2n.  Table 4.10 provides the list generated by 

Hydraflow Express of calculated culvert parameters. 

 

 

Figure 4.8:  Hydraflow Express analyzed 12 foot x 12 foot – side by side – box 

culvert under current design, 25 year return period 15 min intensity duration 

simulated flow conditions 
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Table 4.10:  Current 12 foot x 12 foot – side by side – box culvert parameters 

generated by Hydraflow Express 

Category Parameter Value Units 

Flow 

Total 3594.90 cfs 

Culvert 3594.90 cfs 

Overtopping 0.00 cfs 

Velocity 
Outlet 14.37 ft/s 

Inlet 16.93 ft/s 

Depth 
Outlet 10.43 ft 

Inlet 8.85 ft 

Hydraulic Grade Line 

Outlet Elevation 2966.43 ft 

Inlet Elevation 2966.85 ft 

Headwater Elevation 2974.32 ft 

HW/D 1.36   

 

The HGL calculated HW/D to be 1.36 corresponds to a HW depth of 16.32 ft.  

The embankment height was set at 10 ft which means for this scenario the HW is 5.68 ft 

below the roadway.  Hydraflow Express calculated 100% of the total discharge was 

converted to culvert discharge.  The differences between what was calculated by HY-8 

and Hydraflow Express were the same as the current design conditions of the 12 foot 

CMP culvert.  Table 4.11 provides the list of consistence between the computer programs 

on four (4) major parameters:  HW elevation, culvert discharge, overtopping discharge, 

and HW/D.  The percent differences are small, therefore both computer programs are 

consistence with one another. 
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Table 4.11:  Current 12 foot x 12 foot – side by side – box culvert percent difference 

between HY-8 and Hydraflow Express parameters 

Parameters 
Percent 

Difference (%) 

Culvert Discharge (cfs) 0.0 

Overtopping Discharge (cfs) 0.0 

Headwater Elevation (ft) 0.0 

HW/D 2.21 

Note:  A negative percent meant HY-8 was lower than Hydraflow Express calculated 

parameter. 

4.3.2 Future Design Conditions 

The future design conditions were analyzed based section 2.1.2 journal articles 

stating the potential of increase precipitation events in the future and the impacts on 

infrastructure design conditions.  Based on these statements, the 12 foot x 12 foot – side 

by side - box culvert was analyzed using the simulated future 25 year return period peak 

discharge of 5129.9 cfs.  Following the same procedure used to analyze the culvert under 

current design condition in section 3.4.1, but increasing the peak discharge to 5,129.9 cfs. 

HY-8 provided evidence of inefficient capacity through iterations of culvert and 

overtopping discharges.  Overtopping occurred due to future 25 year return period with 

15 minute intensity duration is displayed in Figure 4.9.  The overtopping confirmed 

inefficient capacity of the 12 foot x 12 foot – side by side- box culvert.  Again, the water 

level would be elevated if the baseflow condition were considered.  Table 4.12 provides 

the list generated by HY-8 of calculated culvert and downriver channel parameters. 
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Figure 4.9:  HY-8 analyzed 12 foot x 12 foot – side by side – box culvert under 

future design, 25 year return period 15 min intensity duration simulated flow 

conditions 

 

Table 4.12:  Future 12 foot x 12 foot – side by side – box culvert and river 

parameters generated by HY-8 

Culvert Units Downriver Units 

Total Discharge 5129.90 cfs Flow 5129.90 cfs 

Culvert Discharge 4956.89 cfs Tailwater 

Elevation 

2961.14 ft 

Overtopping 

Discharge 

172.93 cfs Depth 5.14 ft 

Headwater Elevation 2980.59 ft Velocity 16.81 ft/s 

Inlet Control Depth 22.59 ft Shear 5.83 psf 

Flow Type 5-S2n  Froude Number 1.47  

Normal Depth 6.32 ft    

Critical Depth 10.98 ft    

Outlet Depth 8.48 ft    

Outlet Velocity 24.67 ft/s    

 

The HW depth increased from 15.94 ft to 22.59 ft exceeding the embankment 

elevation resulting in 0.59 ft of water flowing over the roadway.  An increase in 6.65 ft of 

HW depth corresponded to 3.4% of the total discharge converted to overtopping 
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discharge.  Consequently the increase caused a degree of increase to the other calculated 

parameters as expected. 

Hydraflow Express was used to verify the result obtained from HY-8.  Following 

section 3.4.2 and entering 5,129.9 cfs for the discharge parameters reiterated the HY-8 

result; which was the culvert was undersized for the current 25 year return period.  The 

graphical representation of the overtopping is showing in Figure 4.10 with the water 

flowing from left to right.  The increase in flow did not change the classification of the 

culvert as inlet controlled with a water profile of 5-S2n.  Figure 4.10 shows an increased 

in HW depth resulting in the culvert remaining submerged, pipe flowing almost full 

under supercritical flow, and an unsubmerged outlet with no hydraulic jump.  Table 4.13 

provides the list generated by Hydraflow Express of calculated culvert parameters. 

 

 

Figure 4.10:  Hydraflow Express analyzed 12 foot x 12 foot – side by side – box 

culvert under future design, 25 year return period 15 min intensity duration 

simulated flow conditions 
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Table 4.13:  Future 12 foot x 12 foot – side by side – box culvert parameters 

generated by Hydraflow Express 

Category Parameter Value Units 

Flow 

Total 5129.90 cfs 

Culvert 4999.69 cfs 

Overtopping 130.21 cfs 

Velocity 
Outlet 18.10 ft/s 

Inlet 18.90 ft/s 

Depth 
Outlet 11.52 ft 

Inlet 11.02 ft 

Hydraulic Grade Line 

Outlet Elevation 2967.51 ft 

Inlet Elevation 2969.02 ft 

Headwater Elevation 2980.48 ft 

HW/D 1.87   

 

The HGL increased is directly related to the increase in total discharge.  As a 

result the HW/D increased to 1.87.  An increase of 0.51 corresponds to an increase of 

0.44 ft of water flowing over the roadway.  Hydraflow Express calculated 2.5% of the 

total discharge was converted to overtopping discharge.  The differences between what 

was calculated by HY-8 and Hydraflow Express were the same as the current design 

conditions of the 12 foot CMP culvert.  Table 4.14 provides the list of consistence 

between the computer programs on four (4) major parameters:  headwater elevation, 

culvert discharge, overtopping discharge, and HW/D.  The percent differences are small 

for all parameters expect for overtopping discharge.  Difference between smaller values 

have a more significant effect on the percent difference than larger values skewing the 

interpretation. 
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Table 4.14:  Future 12 foot x 12 foot – side by side – box culvert percent difference 

between HY-8 and Hydraflow Express parameters 

Parameters 
Percent 

Difference (%) 

Culvert Discharge (cfs) -0.86 

Overtopping Discharge (cfs) 24.7 

Headwater Elevation (ft) 0.0 

HW/D 0.53 

Note:  A negative percent meant HY-8 was lower than Hydraflow Express calculated 

parameter. 

4.3.3 Compare and Contrast 

A comparison was conducted to analyze the increases the 12 foot x 12 foot – side 

by side – box culvert potentially could have experienced due to the 30% in peak 

discharge.  The only variable which was changed between the current and future design 

conditions was the peak discharges.  By keeping all other variables constant the HW 

depth was directly correlated to the increase in peak discharge.  Table 4.15 shows percent 

increase from current to future design conditions which the 12 foot x 12 foot – side by 

side – box culvert and river experienced. 
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Table 4.15:  12 foot x 12 foot – side by side – box culvert comparison of future vs. 

current design conditions 

HY-8 

Culvert River 

Total Discharge 30% Flow 30% 

Culvert Discharge 27% Tailwater Elevation 0.03% 

Overtopping Discharge 100% Depth 18% 

Headwater Elevation 0.22% Velocity 10% 

Inlet Control Depth 29% Shear 18% 

Flow Type N.A. Froude Number 3% 

Normal Depth 21%     

Critical Depth 19%     

Outlet Depth 22%     

Outlet Velocity 9%     

Hydraflow Express 

Total Discharge 30% 

Culvert Discharge 28% 

Overtopping Discharge 100% 

Outlet Velocity 21% 

Inlet Velocity 10% 

Outlet Depth 9% 

Inlet Depth 20% 

Outlet Elevation 0.04% 

Inlet Elevation 0.07% 

Headwater Elevation 0.21% 

HW/D 27% 
 

As was expected, all the parameters increased or remained the same as the peak 

discharge increased from current to future design conditions.  There were a range of 

increase from 0% to 100%.  The result corresponding to the highest percent increase was 

overtopping discharge (100%).  An increase of 100% was because the 12 foot x 12 foot – 

side by side – box culvert was able to convey the total.  A significant increase of normal, 

critical, and outlet depths were delineated from the comparison.  One explanation is the 
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culvert did not reach full capacity for the current design condition, but approach capacity 

limits under future design conditions. 

The major difference between the current and future design conditions was the 12 

foot x 12 foot – side by side – box culvert’s performance.  Under current design 

conditions the culvert was safely able to convey the simulated peak discharge flow of 

3,594.90 cfs without overtopping.  The HW were roughly 6 ft below road elevation 

ensuring additional culvert capacity for baseflow conditions. 

4.4 12 foot CMP vs. 12 foot x 12 foot – Side by Side – Box Culvert 

As stated previously, the 12 foot CMP culvert failed the current and future 25 

year return period, 15 minute intensity duration design conditions.  During the simulated 

design conditions BIA-Rout 32 would have experienced 3 and 4 foot water depths 

respectively.  The Lakota Times Road Construction report contributed culvert failure to 

“acidic soils” whereas results indicated capacity failure from an underdesigned culvert.  

A complete list of the 12 foot CMP culvert performance is presented in Table 4.16 

emphasizing the conclusion of the 12 foot CMP culvert was underdesigned for the White 

River crossing. 
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Table 4.16:  12 foot CMP culvert results for all tested return periods 

Return Period 
Peak 

Discharge 
(cfs) 

Culvert 
Discharge 

(cfs) 

Overtopping 
Discharge 

(cfs) 

Headwater 
Depth (ft) 

Road 
Water 

Depth (ft) 
Pass/Fail 

Current 10 year 2265 1935 330 23 1 FAIL 

Current 25 year 3595 2033 1562 25 3 FAIL 

Current 50 year 4748 2094 2654 25 3 FAIL 

Current 100 year 6063 2153 3910 27 5 FAIL 

              

Future 10 year 3360 2019 2341 24 2 FAIL 

Future 25 year 5130 2113 3017 26 4 FAIL 

Future 50 year 6636 2177 4459 27 5 FAIL 

Future 100 year 8332 2239 6093 28 6 FAIL 

Note:  Discharges and depths are presented as an average between computed results.  A 

red depth stands for water depth above the road. 

 

Presently a 12 foot x 12 foot – side by side – box culvert is constructed for the 

White River crossing on BIA-Route 32 west of Pine Ridge, SD.  The culvert met current 

design condition for the 25 year return period which were the minimum requirements for 

a local road or street (ADT > 100) (SDDOT, 2013).  Design condition results shown in 

Table 4.17 illustrate the 12 foot x 12 foot – side by side – box culvert starting to overtop 

at the future 25 return period.  The culvert conveying the current 25 year return period 

peak discharge but not the future 25 year return period peak discharge demonstrates the 

effect of future climate variability on culvert selection. 
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Table 4.17:  12 foot x 12 foot – side by side – box culvert results for all tested return 

periods 

Return Period 
Peak 

Discharg
e (cfs) 

Culvert 
Discharg

e (cfs) 

Overtoppin
g Discharge 

(cfs) 

Headwate
r Depth 

(ft) 

Road 
Water 

Depth (ft) 

Pass/Fai
l 

Current 10 year 2265 2265 0 11 11 PASS 

Current 25 year 3595 3595 0 16 6 PASS 

Current 50 year 4748 4748 0 21 1 PASS 

Current 100 year 6063 5195 868 24 2 FAIL 

              

Future 10 year 3360 3360 0 15 7 PASS 

Future 25 year 5130 4978 152 23 1 FAIL 

Future 50 year 6636 5298 1338 24 2 FAIL 

Future 100 year 8332 5547 2785 26 4 FAIL 

 

In conclusion, the simulated hydrographs used to analyze the culverts were 

developed without baseflow conditions.  Under the simulated conditions the 12 foot x 12 

foot – side by side – box culvert outperformed the 12 foot CMP culvert for both current 

and future design conditions.  One reason for an increased culvert discharge capacity was 

because the 12 foot x 12 foot – side by side – box culvert had 60% more area for flows.  

The 12 foot x 12 foot – side by side –box culvert meets the current SDDOT design 

criteria for drainage infrastructures.  Research indicates future precipitation events 

increasing by 20% resulting in this culvert being underdesigned for the White River 

crossing. 
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4.5 Engineering Recommendations 

More than just river levels and culvert capacities can be gathered from the Upper 

White River Subbasin Watershed model created in this study for solving engineering 

problems.  The following two suggestions are outside the scope of this paper but have 

real-world applications.  As stated these are suggestions and if pursued should be further 

studied. 

The first engineering application would be water management practices on 

controlling peak discharges from the subbasins.  Refer to Figure 4.11 for subbasin 

location on the Upper White River Subbasin Watershed.  Figure 4.12 is the future 

simulated 100 year return period with the peak discharges labeled according to which 

subbasin contributes to the peak.  The peaks could be further broken down into individual 

contributing flows to determine which subbasin would water management considerations.  

An example of a consideration would be a retention pond on the subbasin.  The retention 

pond would increase the time of concentration of the water directly decreasing the peak 

discharge experienced at the culvert. 

The second engineering application would be to conduct a study to find the 100 

year flood elevation for a city on the Pine Ridge Reservation.  The 100 year flood 

elevation for the city would aid engineers and contractors on construction boundaries 

near the White River.  A 100 year flood elevation would be useful for home owners when 

it comes to deciding if flood insurance is a feasible option. 
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Figure 4.11:  Labeled subbasins corresponding to Figure 4.11 peak discharges 
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Figure 4.12:  Future 100 year return period, 15 min intensity duration simulated 

hydrograph excluding baseflow 
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5. CONCLUSIONS 

The purpose of the watershed study was to evaluate the impact of future 

precipitation on infrastructure designed and constructed using current design condition.  

The objective was completed by developing simulated current and future design 

condition precipitation and applying the precipitation to a culvert crossing on the Upper 

White River Subbasin Watershed.  Culverts analyzed were the past 12 foot CMP culvert 

which washed out in the Spring of 2010, and the currently in-place 12 foot x 12 foot – 

side by side – box culvert on BIA-Route 32 in SD.  The following conclusions were 

made based on presented research: 

 TR-55 was designed for small subbasins of 4,000 acres or less, by breaking the 25 

subbasins in the Upper White River Subbasin Watershed it would increase the 

accuracy of time of concentration. 

 ArcGIS and HEC-HMS are capable of accuracy processing large spatial datasets 

and have other applications not discussed in this study. 

 Research indicates future precipitation events are expected to increase by 20% 

and current design conditions used to size culverts for South Dakota do not 

consider the increase.  If not addressed this will lead to under designing future 

infrastructure. 

 On average, an increase in 20% of annual precipitation depth results in an 

increase of 30% in expected future peak discharges for the 10, 25, 50, 100 year 

return periods on the Upper White River Watershed excluding fluctuations in 

baseflow at the culvert’s location. 
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 A total of six subbasins developed in ArcGIS contributed to the peak discharge 

which was applied to the culvert analysis.  The reason for multiple subbasins 

contributing over a short time period was because of a fork in the simulated 

drainage path of the longest flow paths. 

 HY-8 and Hydraflow Express require a couple different parameters enters in 

order to analyze a culvert but results are consistence when compared.  HY-8 

requires the addition of river parameters of the tailwater conditions to perform an 

analysis.  While Hydraflow Express for a culvert only analyzes the culvert under 

flow conditions. 

 Simulated current peak discharges were within acceptable ranges when compared 

to the regression equations for Region 1 in Nebraska.  Nebraska was used for 

comparison because the major of the Upper White River Subbasin Watershed is 

located in Nebraska.  Region 1 regression equations used to estimate the Upper 

White River Subbasin Watershed Model river level upper limits had a standard 

error of 98 – 102 % (USGS 1994, 104).  Percent error were 23%, 40%, 50%, and 

59% for the return periods of 10, 25, 50, and 100 years respectively; therefore 

were acceptable for Region 1. 

 Analysis of the 12 foot CMP culvert failed under current and future design 

conditions for tested return periods.  The overtopping ranged from 1 to 5 feet for 

current design conditions and 2 to 6 feet for future design conditions.  The 12 foot 

CMP culvert failed to convey the current 25 year return period stated by the 

SDDOT; raising the question if the culvert was ever properly designed? 
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 The 12 foot CMP culvert washout could have been a result of the culvert being 

underdesigned for the river crossing in addition to the acidic soils.  A more 

extensive study would need to be conducted for definitive conclusion. 

 Analysis of the 12 foot x 12 foot – side by side – box culvert conveyed the current 

25 year return design condition when tested.  Overtopping occurred for the future 

25 year return design condition by 0.6 feet indicating the SDDOT design criteria 

need to be updated to meet future demands. 

 The 12 foot x 12 foot – side by side – box culvert conveying peak discharges of 

the current 25 year return design condition and not the future 25 year return 

design condition indicates future climate effects culvert selection and sizing. 
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6. RECOMMENDATIONS 

Despite the fact of an extensive study of impacts of future precipitation on 

infrastructure designed and constructed using current design condition further research of 

some parameters is recommended.  Further research recommendations are to be 

conducted independently or in conjunction with one another on the Upper White River 

Subbasin Watershed model.  Additional research topics include but are not limited to: 

 To increase accuracy of runoff time of concentration the subbasins need to be 

smaller than or equal to 4,000 acres. 

 Stream gauges could be used to calibrate the meteorological datasets used in 

HEC-HMS if stream gauges are within the study area or near.  Stream gauges 

would allow the user to model precipitation events based on site specific data 

inside of interpolated statistical datasets.  Site specific data would result give 

more accurate results. 

 A survey should be conducted of the culvert of interest prior to modeling.  The 

survey would compose of but not limited to:  cross sections upstream and 

downstream of the culvert, inlet and outlet elevations, crest length and width, 

visual inspection of river conditions for Manning’s number estimation, and 

determining culvert type and dimensions. 

 Model verification should be conducted for future projects by running known 

discharges and precipitation events over the Upper White River Subbasin 

Watershed model.  The verification would require finite modification to but not 

limited to:  CN values, soil properties, precipitation data, time of concentration, 

river lag times, channel slope and shape, and water storage capabilities.  Due to 
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the size of the watershed, amount of unknown variables, and time constraints this 

verification was unable to be performed and a worst case scenario was modeled. 
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7. APPENDIX 

7.1 Appendix A 

Table 7.1:  Interpolated IDF data (Yarnell, 1935) 

X-axis Y-axis 

Duration(min) 
Precipitation intensity (in/hr) 

1 yr 2 yr 5 yr 10 yr 25 yr 50 yr 100 yr 

5  3.96 5.16 5.40 6.60 7.56 8.04 

10   3.06 4.08 4.86 5.40 5.88 6.42 

15   2.48 3.52 3.76 4.48 5.04 6.24 

30   1.74 2.50 3.00 3.46 3.96 4.50 

60   1.02 1.36 1.74 2.02 2.50 2.98 

120   0.59 0.75 0.94 1.27 1.55 1.75 

Duration(hrs)        

2     0.750 0.935 1.265 1.550 1.750 

4     0.500 0.625 0.750 0.875 1.000 

8     0.281 0.338 0.406 0.469 0.531 

16     0.156 0.181 0.219 0.250 0.281 

24     0.104 0.125 0.146 0.167 0.188 
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Figure 7.1:  Current annual precipitation intensity estimates for Pine Ridge, SD 

(HDSC webmaster, 2014) 
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7.2 Appendix B 

Table 7.2:  Design years for drainage appurtenances (SDDOT 2013, 7-10) 

Highway 

Classifications 

Return Period (Years) for Drainage Appurtenances 

Bridge Waterway 

Openings 

Roadway 

Cross 

Culverts 

Storm 

Drainage 

Systems 

Roadside Ditches 

Design 

Headwater 
Scour 

Design 

Headwater 

Inlet Spacing 

& Trunk Line 

Design 

Headwater 

Permanent 

Erosion 

Protection 

Interstate 50 100 50 10 50 50 

US & State 
Highways 

25 100 25 10 25 25 

Local Roads & 

Streets(7) (ADT 

> 100) 

25 100 25 10 25 25 

Local Roads & 

Streets (ADT < 

100) 

10 100 10 10 10 10 

Notes: 
1(a) The allowable design headwater elevation should not exceed 1 ft below the low subgrade 
shoulder at the lowest point of the roadway within the drainage basin. For NFIP-mapped 
floodplains, see Section 7.6.2.2. 
1(b) The review flood frequency should be 100 years. The headwater elevation for the review 
flood should not overtop the highway for Interstate and NHS highways. In addition, bridges should 
not raise backwater more than 1 ft above existing conditions and should provide for at least 2 ft of 
free board below the lowest superstructure element. For smaller crossings (typically smaller than 
1000 acres) on non-NHS highways, review the impacts of the 100-year flood, but overtopping is 
allowed; however, sensitive sites (urban areas, nearby homes or farmsteads, etc.) may require 
further analysis regarding the effects of overtopping. Where there is development near a cross 
culvert, the 100-year event should be reviewed to evaluate the potential impacts. 
1(c) Ramps should be designed for the lower design frequency of the two intersecting highways, 
but reviewed with the higher review frequency of the two intersecting highways. 
1(d) Approaches should be designed for the 10-year flood and reviewed with the review 
frequency of the highway. The design headwater elevation should not overtop the approach. 
Approaches should be designed to meet the roadside ditch criteria for the highway. Approaches 
that do not serve a house may be designed for less than the 10-year flood. 
2 In addition to the 100-year or worst case up to the 100-year flood, bridge foundations should be 
evaluated for scour at the super flood (500-year event or that which produces the maximum scour 
up to the 500-year event) so that the resulting ratio of ultimate to applied loads is greater than 1.0. 
3 If a storm drain provides the outlet for a cross drain, then the design frequency of the cross 
drain should be used for the storm drain system downstream from the cross drain inlet. 
4 If local drainage facilities and practices have provided storm drains of lesser standard, to which 
the highway system should connect, provide special consideration to whether it is realistic to 
design the highway system to a higher standard than available outlets. 
5 Roadway inlets should be designed to meet the spread criteria in Section 12.7.3. Bridge deck 
inlets should be designed to meet the spread criteria in Section 14.7.3.6. 
6 For certain sag points, the design frequency should be 50 years. See Section 12.5.2. 
7 Local roads and streets are considered to be facilities that are not Interstate, US or State 
highways. For local facilities not eligible for Federal-aid funds, use the design frequencies for ADT 
< 100. 
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7.3 Appendix C 

Figure 7.2:  Current annual precipitation depths estimates for Pine Ridge, SD 

(HDSC webmaster, 2014) 
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7.4 Appendix D 

Region 1: 

𝑄10 = 67.19𝐴𝑐0.737(𝑃 − 13)1.149𝐿−0.608 

𝑄25 = 222.93𝐴𝑐0.690(𝑃 − 13)0.905𝐿−0.573 

𝑄50 = 490.86𝐴𝑐0.656(𝑃 − 13)0.742𝐿−0.543 

𝑄100 = 996.78𝐴𝑐0.624(𝑃 − 13)0.588𝐿−0.512 

Variables: 

Q = Estimated peak discharge at given return period, CFS 

Ac = contributing drainage area, mi2 

P = mean annual precipitation, inches 

L = main stream length, mi 

Constant Values: 

Ac = 1424 mi2 (Table 7.3) 

P = 17 inches (USGS 1994, 106) 

L = 180 miles (Table 7.4) 

𝐿 = 𝑊500 + 𝑅240 + 𝑅210 + 𝑅190 + 𝑅170 + 𝑅120 + 𝑅110 + 𝑅80 + 𝑅40 + 𝑅30 + 𝑅20 + 𝑅10 

𝐿 = 97 + 8 + 7 + 5 + 8 + 11 + 1 + 10 + 3 + 10 + 3 + 17 = 180 𝑚𝑖𝑙𝑒𝑠 

 

𝑄10 = 67.19(1424)0.737(17 − 13)1.149(180)−0.608 = 2,960 𝐶𝐹𝑆 

𝑄25 = 222.93(1424)0.690(17 − 13)0.905(180)−0.573 = 5,980 𝐶𝐹𝑆 

𝑄50 = 490.86(1424)0.656(17 − 13)0.742(180)−0.543 = 9,589 𝐶𝐹𝑆 

𝑄100 = 996.78(1424)0.624(17 − 13)0.588(180)−0.512 = 14,645 𝐶𝐹𝑆 
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7.5 Appendix E 

 

 

 

Table 7.3:  Modified attribute table of ArcGIS Subbasins 

OBJECTID Shape_Length (m) Shape_Area (m2) Name 
Slope 

(%) 
BasinCN 

Tc 

(hrs) 
Area_HMS (mi2) 

1 112690 266647120 W260 8 84 24 103 

2 58454 67638566 W270 6 87 16 26 

3 113014 237237904 W280 11 81 21 92 

4 69809 78437491 W290 5 82 15 30 

5 78893 115513338 W300 9 78 13 45 

6 66619 79520089 W310 6 88 23 31 

7 64834 50370374 W320 7 76 10 19 

8 74405 101810918 W330 5 88 21 39 

9 91168 111753122 W340 6 80 15 43 

10 130804 317434159 W350 5 88 37 123 

11 138807 302056308 W360 4 85 32 117 

12 10761 1386689 W370 2 71 2 1 

13 86031 127693835 W380 14 85 14 49 

14 93818 124993556 W390 11 74 21 48 

15 90195 148385988 W400 11 87 17 57 

16 114961 211186128 W410 9 84 22 82 

17 96197 85164067 W420 9 84 17 33 

18 68025 36551726 W430 3 81 10 14 

19 83003 130506688 W440 13 84 13 50 

20 115447 223571302 W450 10 82 22 86 

21 59103 70798639 W460 6 84 8 27 

22 73594 93407449 W470 10 87 10 36 

23 78191 110694648 W480 13 84 12 43 

24 100307 153878652 W490 15 77 16 59 

25 156273 440444537 W500 14 81 18 170 
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Table 7.4:  Modified attribute table of ArcGIS River 

OBJECTID 

Shape_

Length 

(m) 

Slope 

(m/m) 

ElevUP 

(m) 

ElevDS 

(m) 

RivLen 

(m) 
Name 

ElevUP_

HMS (ft) 

ElevDS_

HMS (ft) 

RivLen_

HMS (ft) 

1 26615 0.035 935.87 0.00 26615 R10 3070.44 0.00 87319 

2 5441 0.002 945.09 935.87 5441 R20 3100.68 3070.44 17850 

3 15784 0.001 957.83 945.09 15784 R30 3142.49 3100.68 51784 

4 4038 0.002 965.19 957.83 4038 R40 3166.64 3142.49 13249 

5 996 0.005 969.79 965.19 996 R50 3181.74 3166.64 3269 

6 5962 0.003 964.31 945.09 5962 R60 3163.73 3100.68 19559 

7 18366 0.004 1010.09 935.87 18366 R70 3313.96 3070.44 60256 

8 16819 0.001 985.59 965.19 16819 R80 3233.57 3166.64 55181 

9 13895 0.003 999.88 957.83 13895 R90 3280.45 3142.49 45589 

10 27810 0.002 1033.81 985.59 27810 R100 3391.75 3233.57 91239 

11 998 0.003 988.10 985.59 998 R110 3241.79 3233.57 3273 

12 17841 0.001 1005.18 988.10 17841 R120 3297.83 3241.79 58533 

13 40350 0.002 1075.38 1005.18 40350 R130 3528.14 3297.83 132383 

14 7756 0.005 1023.07 988.10 7756 R140 3356.52 3241.79 25448 

15 11612 0.005 1055.15 999.88 11612 R150 3461.77 3280.45 38096 

16 14232 0.005 1077.18 999.88 14232 R160 3534.06 3280.45 46694 

17 12277 0.002 1027.73 1005.18 12277 R170 3371.83 3297.83 40281 

18 9169 0.003 1076.03 1047.94 9169 R180 3530.27 3438.12 30083 

19 8079 0.003 1047.94 1027.73 8079 R190 3438.12 3371.83 26505 

20 7823 0.004 1061.02 1027.73 7823 R200 3481.05 3371.83 25665 

21 11879 0.004 1091.78 1047.94 11879 R210 3581.96 3438.12 38974 

22 1793 0.006 1102.68 1091.78 1793 R220 3617.71 3581.96 5884 

23 13841 0.007 1240.46 1146.69 13841 R230 4069.76 3762.12 45409 

24 12315 0.004 1146.69 1091.78 12315 R240 3762.12 3581.96 40403 

25 32924 0.006 1351.66 1146.69 32924 R250 4434.57 3762.12 108019 
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7.6 Appendix F 

 

 

 

 

 

Figure 7.3:  Current 10 year return period, 15 min intensity duration simulated 

hydrograph excluding baseflow 
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Figure 7.4:  Current 50 year return period, 15 min intensity duration simulated 

hydrograph excluding baseflow 
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Figure 7.5:  Current 100 year return period, 15 min intensity duration simulated 

hydrograph excluding baseflow 
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Figure 7.6:  Future 10 year return period, 15 min intensity duration simulated 

hydrograph excluding baseflow 
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Figure 7.7:  Future 50 year return period, 15 min intensity duration simulated 

hydrograph excluding baseflow 
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Figure 7.8:  Future 100 year return period, 15 min intensity duration simulated 

hydrograph excluding baseflow 
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7.7 Appendix G 

 

 

Figure 7.9:  HY-8 analyzed 12 foot CMP culvert under current design, 10 year 

return period 15 min intensity duration simulated flow conditions 

 

 

 

Figure 7.10:  HY-8 analyzed 12 foot CMP culvert under current design, 50 year 

return period 15 min intensity duration simulated flow conditions 
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Figure 7.11:  HY-8 analyzed 12 foot CMP culvert under current design, 100 year 

return period 15 min intensity duration simulated flow conditions 
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Table 7.5:  Current 12 foot CMP culvert and river parameters generated by HY-8 

Part 2 

10 year return period 

Culvert Units Downriver Units 

Total Discharge 2265.00 cfs Flow 2265.00 cfs 

Culvert Discharge 1917.71 cfs Tailwater Elevation 2959.25 ft 

Overtopping Discharge 347.13 cfs Depth 3.25 ft 

Headwater Elevation 2980.94 ft Velocity 12.97 ft/s 

Inlet Control Depth 22.94 ft Shear 3.69 psf 

Flow Type 5-S2n   Froude Number 1.38   

Normal Depth 8.86 ft       

Critical Depth 10.00 ft       

Outlet Depth 9.10 ft       

Outlet Velocity 20.88 ft/s       

50 year return period 

Culvert Units Downriver Units 

Total Discharge 4747.7 cfs Flow 4747.7 cfs 

Culvert Discharge 2079.89 cfs Tailwater Elevation 2960.92 ft 

Overtopping Discharge 2667.57 cfs Depth 4.92 ft 

Headwater Elevation 2983.67 ft Velocity 16.41 ft/s 

Inlet Control Depth 25.02 ft Shear 5.59 psf 

Flow Type 5-S2n   Froude Number 1.46   

Normal Depth 9.55 ft       

Critical Depth 10.34 ft       

Outlet Depth 9.68 ft       

Outlet Velocity 21.29 ft/s       

100 year return period 

Culvert Units Downriver Units 

Total Discharge 6062.8 cfs Flow 6062.8 cfs 

Culvert Discharge 2139.73 cfs Tailwater Elevation 2961.63 ft 

Overtopping Discharge 3922.82 cfs Depth 5.63 ft 

Headwater Elevation 2984.74 ft Velocity 17.69 ft/s 

Inlet Control Depth 26.74 ft Shear 6.39 psf 

Flow Type 5-S2n   Froude Number 1.48   

Normal Depth 9.80 ft       

Critical Depth 10.45 ft       

Outlet Depth 9.92 ft       

Outlet Velocity 21.41 ft/s       
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Figure 7.12:  Hydraflow Express analyzed 12 foot CMP culvert under current 

design, 10 year return period 15 min intensity duration simulated flow conditions 

 

 

 

Figure 7.13:  Hydraflow Express analyzed 12 foot CMP culvert under current 

design, 50 year return period 15 min intensity duration simulated flow conditions 
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Figure 7.14:  Hydraflow Express analyzed 12 foot CMP culvert under current 

design, 100 year return period 15 min intensity duration simulated flow conditions 
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Table 7.6:  Current 12 foot CMP culvert parameters generated by Hydraflow 

Express Part 2 

10 year return period 50 year return period 

Category Parameter Value Units Category Parameter Value Units 

Flow 

Total 2265.00 cfs 

Flow 

Total 4747.70 cfs 

Culvert 1952.95 cfs Culvert 2108.77 cfs 

Overtopping 312.05 cfs Overtopping 2638.93 cfs 

Velocity 
Outlet 17.95 ft/s 

Velocity 
Outlet 19.20 ft/s 

Inlet 19.27 ft/s Inlet 20.27 ft/s 

Depth 
Outlet 11.04 ft 

Depth 
Outlet 11.20 ft 

Inlet 10.07 ft Inlet 10.39 ft 

Hydraulic 

Grade Line 

Outlet Elevation 2967.04 ft 

Hydraulic 

Grade Line 

Outlet Elevation 2967.20 ft 

Inlet Elevation 2968.07 ft Inlet Elevation 2968.39 ft 

Headwater Elevation 2950.86 ft Headwater Elevation 2983.60 ft 

HW/D 1.91   HW/D 2.13   

100 year return period     

Category Parameter Value Units     

Flow 

Total 6062.80 cfs     

Culvert 2166.41 cfs     

Overtopping 3896.39 cfs     

Velocity 
Outlet 19.67 ft/s     

Inlet 20.65 ft/s     

Depth 
Outlet 11.25 ft     

Inlet 10.50 ft     

Hydraulic 

Grade Line 

Outlet Elevation 2967.25 ft     

Inlet Elevation 2968.50 ft     

Headwater Elevation 2984.56 ft     

HW/D 2.22       
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Figure 7.15:  HY-8 analyzed 12 foot CMP culvert under future design, 10 year 

return period 15 min intensity duration simulated flow conditions 

 

 

 

Figure 7.16:  HY-8 analyzed 12 foot CMP culvert under future design, 50 year 

return period 15 min intensity duration simulated flow conditions 
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Figure 7.17:  HY-8 analyzed 12 foot CMP culvert under future design, 100 year 

return period 15 min intensity duration simulated flow conditions 
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Table 7.7:  Future 12 foot CMP culvert and river parameters generated by HY-8 

Part 2 

10 year return period 

Culvert Units Downriver Units 

Total Discharge 3359.90 cfs Flow 3359.90 cfs 

Culvert Discharge 2002.82 cfs Tailwater Elevation 2960.06 ft 

Overtopping Discharge 1357.01 cfs Depth 4.06 ft 

Headwater Elevation 2982.34 ft Velocity 14.73 ft/s 

Inlet Control Depth 24.38 ft Shear 4.61 psf 

Flow Type 5-S2n   Froude Number 1.42   

Normal Depth 9.22 ft       

Critical Depth 10.18 ft       

Outlet Depth 9.40 ft       

Outlet Velocity 21.12 ft/s       

50 year return period 

Culvert Units Downriver Units 

Total Discharge 6635.50 cfs Flow 6635.50 cfs 

Culvert Discharge 2163.24 cfs Tailwater Elevation 2961.91 ft 

Overtopping Discharge 4471.89 cfs Depth 5.91 ft 

Headwater Elevation 2985.17 ft Velocity 18.17 ft/s 

Inlet Control Depth 27.17 ft Shear 6.72 psf 

Flow Type 5-S2n   Froude Number 1.49   

Normal Depth 9.96 ft       

Critical Depth 10.50 ft       

Outlet Depth 10.03 ft       

Outlet Velocity 21.47 ft/s       

100 year return period 

Culvert Units Downriver Units 

Total Discharge 8331.50 cfs Flow 8331.50 cfs 

Culvert Discharge 2226.51 cfs Tailwater Elevation 2962.69 ft 

Overtopping Discharge 6104.84 cfs Depth 6.69 ft 

Headwater Elevation 2986.37 ft Velocity 19.45 ft/s 

Inlet Control Depth 28.27 ft Shear 7.59 psf 

Flow Type 5-S2n   Froude Number 1.52   

Normal Depth 10.41 ft       

Critical Depth 10.61 ft       

Outlet Depth 10.41 ft       

Outlet Velocity 21.43 ft/s       
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Figure 7.18:  Hydraflow Express analyzed 12 foot CMP culvert under future design, 

10 year return period 15 min intensity duration simulated flow conditions 

 

 

 

Figure 7.19:  Hydraflow Express analyzed 12 foot CMP culvert under future design, 

50 year return period 15 min intensity duration simulated flow conditions 
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Figure 7.20:  Hydraflow Express analyzed 12 foot CMP culvert under future design, 

100 year return period 15 min intensity duration simulated flow conditions 
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Table 7.8:  Future 12 foot CMP culvert parameters generated by Hydraflow 

Express Part 2 

10 year return period 50 year return period 

Category Parameter Value Units Category Parameter Value Units 

2Flow 

Total 3359.90 cfs 

Flow 

Total 6635.50 cfs 

Culvert 2034.61 cfs Culvert 2189.96 cfs 

Overtopping 1325.30 cfs Overtopping 4445.54 cfs 

Velocity 
Outlet 18.60 ft/s 

Velocity 
Outlet 19.86 ft/s 

Inlet 19.79 ft/s Inlet 20.78 ft/s 

Depth 
Outlet 11.12 ft 

Depth 
Outlet 11.27 ft 

Inlet 10.24 ft Inlet 10.56 ft 

Hydraulic 

Grade Line 

Outlet Elevation 2967.12 ft 

Hydraulic 

Grade Line 

Outlet Elevation 2967.27 ft 

Inlet Elevation 2968.24 ft Inlet Elevation 2968.56 ft 

Headwater Elevation 2982.27 ft Headwater Elevation 2985.11 ft 

HW/D 2.02   HW/D 2.26   

100 year return period     

Category Parameter Value Units     

Flow 

Total 8331.50 cfs     

Culvert 2251.02 cfs     

Overtopping 6080.48 cfs     

Velocity 
Outlet 20.36 ft/s     

Inlet 21.23 ft/s     

Depth 
Outlet 11.32 ft     

Inlet 10.64 ft     

Hydraulic 

Grade Line 

Outlet Elevation 2967.32 ft     

Inlet Elevation 2968.64 ft     

Headwater Elevation 2986.28 ft     

HW/D 2.36       
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7.8 Appendix H 

 

 

Figure 7.21:  HY-8 analyzed 12 foot x 12 foot – side by side – box culvert under 

current design, 10 year return period 15 min intensity duration simulated flow 

conditions 

 

 

Figure 7.22:  HY-8 analyzed 12 foot x 12 foot – side by side – box culvert under 

current design, 50 year return period 15 min intensity duration simulated flow 

conditions 
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Figure 7.23:  HY-8 analyzed 12 foot x 12 foot – side by side – box culvert under 

current design, 100 year return period 15 min intensity duration simulated flow 

conditions 
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Table 7.9:  Current 12 foot x 12 foot – side by side – box culvert parameters 

generated by HY-8 Part 2 

10 year return period 

Culvert Units Downriver Units 

Total Discharge 2265.00 cfs Flow 2265.00 cfs 

Culvert Discharge 2265.00 cfs Tailwater Elevation 2959.25 ft 

Overtopping Discharge 0.00 cfs Depth 3.25 ft 

Headwater Elevation 2968.89 ft Velocity 12.97 ft/s 

Inlet Control Depth 10.89 ft Shear 3.69 psf 

Flow Type 5-S2n   Froude Number 1.38   

Normal Depth 3.56 ft       

Critical Depth 6.52 ft       

Outlet Depth 4.66 ft       

Outlet Velocity 20.25 ft/s       

50 year return period 

Culvert Units Downriver Units 

Total Discharge 4747.70 cfs Flow 4747.70 cfs 

Culvert Discharge 4747.70 cfs Tailwater Elevation 2960.92 ft 

Overtopping Discharge 0.00 cfs Depth 4.92 ft 

Headwater Elevation 2979.44 ft Velocity 16.41 ft/s 

Inlet Control Depth 21.44 ft Shear 5.59 psf 

Flow Type 5-S2n   Froude Number 1.46   

Normal Depth 6.11 ft       

Critical Depth 10.67 ft       

Outlet Depth 8.20 ft       

Outlet Velocity 24.12 ft/s       

100 year return period 

Culvert Units Downriver Units 

Total Discharge 6062.80 cfs Flow 6062.80 cfs 

Culvert Discharge 5163.41 cfs Tailwater Elevation 2961.63 ft 

Overtopping Discharge 898.44 cfs Depth 5.63 ft 

Headwater Elevation 2981.78 ft Velocity 17.69 ft/s 

Inlet Control Depth 23.78 ft Shear 6.39 psf 

Flow Type 5-S2n   Froude Number 1.48   

Normal Depth 6.52 ft       

Critical Depth 11.29 ft       

Outlet Depth 8.74 ft       

Outlet Velocity 24.61 ft/s       
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Figure 7.24:  Hydraflow Express analyzed 12 foot x 12 foot – side by side – box 

culvert under current design, 10 year return period 15 min intensity duration 

simulated flow conditions 

 

 

 

Figure 7.25:  Hydraflow Express analyzed 12 foot x 12 foot – side by side – box 

culvert under current design, 50 year return period 15 min intensity duration 

simulated flow conditions 
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Figure 7.26:  Hydraflow Express analyzed 12 foot x 12 foot – side by side – box 

culvert under current design, 100 year return period 15 min intensity duration 

simulated flow conditions 
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Table 7.10:  Current 12 foot x 12 foot – side by side – box culvert parameters 

generated by Hydraflow Express Part 2 

10 year return period 50 year return period 

Category Parameter Value Units Category Parameter Value Units 

Flow 

Total 2265.00 cfs 

Flow 

Total 4747.70 cfs 

Culvert 2265.00 cfs Culvert 4747.70 cfs 

Overtopping 0.00 cfs Overtopping 0.00 cfs 

Velocity 
Outlet 10.20 ft/s 

Velocity 
Outlet 17.47 ft/s 

Inlet 14.51 ft/s Inlet 18.57 ft/s 

Depth 
Outlet 9.25 ft 

Depth 
Outlet 11.33 ft 

Inlet 6.51 ft Inlet 10.65 ft 

Hydraulic 

Grade Line 

Outlet Elevation 2965.25 ft 

Hydraulic 

Grade Line 

Outlet Elevation 2967.33 ft 

Inlet Elevation 2964.51 ft Inlet Elevation 2968.65 ft 

Headwater Elevation 2962.02 ft Headwater Elevation 2979.23 ft 

HW/D 0.92   HW/D 1.77   

100 year return period     

Category Parameter Value Units     

Flow 

Total 6062.80 cfs     

Culvert 5226.91 cfs     

Overtopping 835.89 cfs     

Velocity 
Outlet 18.65 ft/s     

Inlet 19.18 ft/s     

Depth 
Outlet 11.68 ft     

Inlet 10.36 ft     

Hydraulic 

Grade Line 

Outlet Elevation 2967.68 ft     

Inlet Elevation 2969.36 ft     

Headwater Elevation 2961.66 ft     

HW/D 1.97       

 

 

 



121 

 

 

 

 

Figure 7.27:  HY-8 analyzed 12 foot x 12 foot – side by side – box culvert under 

future design, 10 year return period 15 min intensity duration simulated flow 

conditions 

 

 

Figure 7.28:  HY-8 analyzed 12 foot x 12 foot – side by side – box culvert under 

future design, 50 year return period 15 min intensity duration simulated flow 

conditions 
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Figure 7.29:  HY-8 analyzed 12 foot x 12 foot – side by side – box culvert under 

future design, 100 year return period 15 min intensity duration simulated flow 

conditions 
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Table 7.11:  Future 12 foot x 12 foot – side by side – box culvert parameters 

generated by HY-8 Part 2 

10 year return period 

Culvert Units Downriver Units 

Total Discharge 3359.90 cfs Flow 3359.90 cfs 

Culvert Discharge 3359.90 cfs Tailwater Elevation 2960.06 ft 

Overtopping Discharge 0.00 cfs Depth 4.06 ft 

Headwater Elevation 2972.97 ft Velocity 14.73 ft/s 

Inlet Control Depth 14.97 ft Shear 4.61 psf 

Flow Type 5-S2n   Froude Number 1.42   

Normal Depth 4.73 ft       

Critical Depth 8.48 ft       

Outlet Depth 6.30 ft       

Outlet Velocity 22.21 ft/s       

50 year return period 

Culvert Units Downriver Units 

Total Discharge 6635.50 cfs Flow 6635.50 cfs 

Culvert Discharge 5261.53 cfs Tailwater Elevation 2961.91 ft 

Overtopping Discharge 1373.92 cfs Depth 5.91 ft 

Headwater Elevation 2982.36 ft Velocity 18.17 ft/s 

Inlet Control Depth 24.36 ft Shear 6.72 psf 

Flow Type 5-S2n   Froude Number 1.49   

Normal Depth 6.61 ft       

Critical Depth 11.43 ft       

Outlet Depth 8.87 ft       

Outlet Velocity 24.72 ft/s       

100 year return period 

Culvert Units Downriver Units 

Total Discharge 8331.50 cfs Flow 8331.50 cfs 

Culvert Discharge 5499.98 cfs Tailwater Elevation 2962.69 ft 

Overtopping Discharge 2831.22 cfs Depth 6.69 ft 

Headwater Elevation 2983.82 ft Velocity 19.45 ft/s 

Inlet Control Depth 25.82 ft Shear 7.59 psf 

Flow Type 5-S2n   Froude Number 1.52   

Normal Depth 6.84 ft       

Critical Depth 11.77 ft       

Outlet Depth 9.17 ft       

Outlet Velocity 24.99 ft/s       
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Figure 7.30:  Hydraflow Express analyzed 12 foot x 12 foot – side by side – box 

culvert under future design, 10 year return period 15 min intensity duration 

simulated flow conditions 

 

 

 

Figure 7.31:  Hydraflow Express analyzed 12 foot x 12 foot – side by side – box 

culvert under future design, 50 year return period 15 min intensity duration 

simulated flow conditions 
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 Figure 7.32:  Hydraflow Express analyzed 12 foot x 12 foot – side by side – box 

culvert under future design, 100 year return period 15 min intensity duration 

simulated flow conditions 
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Table 7.12:  Future 12 foot x 12 foot – side by side – box culvert parameters 

generated by Hydraflow Express Part 2 

10 year return period 50 year return period 

Category Parameter Value Units Category Parameter Value Units 

Flow 

Total 3359.60 cfs 

Flow 

Total 6635.50 cfs 

Culvert 3359.60 cfs Culvert 5334.24 cfs 

Overtopping 0.00 cfs Overtopping 1301.26 cfs 

Velocity 
Outlet 13.68 ft/s 

Velocity 
Outlet 18.91 ft/s 

Inlet 16.55 ft/s Inlet 19.31 ft/s 

Depth 
Outlet 10.23 ft 

Depth 
Outlet 11.76 ft 

Inlet 8.46 ft Inlet 11.51 ft 

Hydraulic 

Grade Line 

Outlet Elevation 2966.23 ft 

Hydraulic 

Grade Line 

Outlet Elevation 2967.76 ft 

Inlet Elevation 2966.46 ft Inlet Elevation 2969.51 ft 

Headwater Elevation 2973.49 ft Headwater Elevation 2982.24 ft 

HW/D 1.29   HW/D 2.02   

100 year return period     

Category Parameter Value Units     

Flow 

Total 8331.50 cfs     

Culvert 5594.27 cfs     

Overtopping 2737.23 cfs     

Velocity 
Outlet 19.52 ft/s     

Inlet 19.62 ft/s     

Depth 
Outlet 11.94 ft     

Inlet 11.88 ft     

Hydraulic 

Grade Line 

Outlet Elevation 2967.94 ft     

Inlet Elevation 2969.88 ft     

Headwater Elevation 2983.69 ft     

HW/D 2.14       
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