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ABSTRACT

FEASIBILITY STUDY OF ENERGY STORAGE TECHNOLOGIES FOR REMOTE

MICROGRID’S ENERGY MANAGEMENT SYSTEM

MD HABIB ULLAH

2016

Energy storage systems (ESSs) play a significant role in remote microgrids energy

management system (EMS) with the large penetration rate of renewable energy which is

intermittent in nature. Energy storage improves system reliability and efficiency in remote

microgrids by optimizing the power demand and generation to reduce operational costs.

Moreover, it increases the dispatch ability of the energy sources in remote microgrid

systems. Lead acid battery (PbA) can be used as an energy storage device in remote

microgrids due to its low cost; however, the response rate, short life cycle, and depth of

discharge (DoD) lead to high operational costs. Ultracapacitor has a considerably longer

life cycle, its energy density is low, and the initial cost is very high. Lithium-ion (Li-ion)

and hybrid ion batteries may have comparatively better economical prospects in terms of

DoD, life cycle, and operational cost. In this thesis, different energy storage technologies

are considered for remote microgrids energy management systems. In addition, the

Schiffer weighted Ah throughput model introduces two weight factors to describe that a

battery degrades faster in real time operation than the standard test conditions due to

different stress factors. These weight factors virtually increase the battery throughput, and

accelerate the degradation. To mitigate this problem, different periodical and auto cycling

strategies were investigated in this thesis. However, the results demonstrated that frequent



xiii

full charging prevents the battery from over degradation. Auto cycling strategy was found

more cost effective than the periodical cycling. Applying this cycling strategy, the yearly

total operational cost of a microgrid system with a 142 kWh PbA battery bank was

reduced by 0.62% ($826). Results also showed that the wear cost is an important factor to

consider while designing the energy management system. Li-ion and hybrid-ion batteries

had lower wear costs and showed great potentiality, although the EMS with a Li-ion

battery was found to be 2.55% more cost effective and 1.5% more fuel efficient than

hybrid ion batteries. The reduction in operational cost ensures the access to low cost

electricity for the people in remote areas. It will accelerate the development of industries,

communications, technologies, and the standard of living including the remote health

clinics in those areas. Furthermore, the reduction in generators fuel consumption will

reduce CO2 emission which will lower the global warming and the greenhouse effect. In

this thesis, one of the objectives was to prolong the battery lifetime by preventing the

degradation, that may lower the number of yearly battery disposals which are hazardous to

the human health and the environment.



1

CHAPTER 1 INTRODUCTION

1.1 Background

The global electricity demand is increasing day by day with the high population

growth rate. Electrical energy is a significant factor for global development. Lack of

reliable access to electricity is a barrier towards the development [1]. Presently, 17% of

the global population lives without access to electricity, and around 80% of this

population lives in rural areas [2]. To ensure development in remote areas, microgrid

system is one of the most viable solutions wherein renewable energy sources are

integrated with fossil fuel based power generation system.

Currently, diesel generators are considered as a primary energy source in over 4,000

remote microgrids [3], and this is due to availability, low investment cost, and easy

transportability since the remote microgrids generators are typically small in size. In

remote microgrids, loads are highly variable and diesel generators are typically sized to

meet the peak load demand although the ratio of peak to average load ratio is high as of

4-10 [4]. High-fuel efficiency of diesel generators is obtained near to rated load and it is

lower in the low-loading condition. It is recommended by the manufacturers not to operate

diesel generators in low (typically, less than 30% of rated load) loading condition to avoid

wet stacking, fuel dilution, and carbon build up [5]. However, integration of renewable

energy in the remote microgrids further reduces the diesel generator loading as well as the

efficiency. Moreover, renewable energy sources are intermittent in nature which are unlike

the displaceable sources in power generation that led to concern regarding the reliability

of the system. Traditionally, generators minimum loading is maintained by using low cost



2

dump loads or by PV power curtailment in the system. However, energy is being wasted

in either approach. Moreover, there is a waste of costly fuel in case of using dump load.

To mitigate the aforementioned problems, energy storage systems (ESSs) are being used

in remote microgrids [6]. Locally, it improves the energy management system (EMS) of

remote microgrids, and reduces fuel consumption of the generators. Moreover, ESS helps

EMS to utilize maximum renewable energy sources in the system.
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Figure 1.1. Energy storage (without pumped hydro) technology handled by country [7]

ESS provides a wide array of technological approaches according to the form of

energy it contains. Presently, 95% of worldwide total installed energy storage technology

is pumped hydro which is one of the oldest and most prominent storage system [8]. The

remaining 5% belongs to other storage technologies, such as batteries, flywheels,

ultracapacitors, compressed air, thermal storage, and so on. Lead acid (PbA) battery is the

first form of rechargeable battery, and it has been commonly used as secondary energy

storage device for almost 150 years [9]. High energy density, low maintenance, and

comparatively lower initial price ($/kWh) features of the lead acid battery make it more
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competitive in different power applications; however, its response rate is cooperatively

slow; it has a short life cycle, and recommended DoD (usually 50%) leads to higher

system operational cost. Currently, lithium-ion (Li-ion) batteries are being deployed more

than other storage systems (Figure 1.2) in large scale grid applications and microgrids.

Li-ion batteries have a high life cycle at rated DoD compared to the PbA batteries, but the

initial cost of energy ($/kWh) is higher than the PbA battery. Another energy storage

technology, UC, has up to 1,000,000 life cycles with 10 years of lifetime [10]. Compared

to the other storage technologies, UC has a faster response rate, but low energy density

and high initial cost are its main disadvantages. In recent years, hybrid ion technology is

emerging as its operational cost, life cycle and allowable DoD is compatible with Li-ion

technology.

28.20%

41.79%

8.17%

2.62%
14.38%

4.84%

Lead Acid Lithium Ion Sodium Sulfur Flow Battery Other Lithium Iron Phosphate

Figure 1.2. Energy storage technology deployed onto the North American grid in 2013-
2014 [8]

However, a battery has an estimated amount of throughput over its lifetime which is

given by the manufacturer. Usually, it is considered that the battery has reached
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end-of-life when the actual throughput reaches the estimated value. The amount of the

lifetime throughput is obtained by various test methods under standard conditions, but

these conditions are usually not achievable in real-time operation. The operating

conditions of a battery are typically more severe than those used in the standard tests of

cycling and float lifetime. There are different stress factors to consider in real-time

operation such as partial state of charge (SoC) cycling, the time since the last full charge,

incomplete or rare full charging etc.. Due to these stress factors, there is a deviation from

the standard conditions introducing weight factors that continuously multiply with the

actual throughput called weighted throughput. The high value of weighting factors lead to

the higher amount of throughput and reduce the battery lifetime drastically.

1.2 Previous Work

This section begins with a brief review of different optimization techniques.

Afterwards, EMSs with different batteries are presented. Finally, the operating condition

of batteries and different weight factors that model the battery throughput in EMSs are

presented.

1.2.1 Optimization Techniques Applied in EMS

Several methods have already been developed to solve optimization problems in

EMSs. A particle swarm optimization (multiobjective) technique was used in an EMS to

obtain minimum operational cost [11] considering the distributed energy generators cost.

The objective function was the weighted sum of different objectives. A weight determines

the priority of that particular objective to achieve the overall goal. The authors considered

random values of the weights.
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A multi-objective optimization model has been proposed for a microgrid EMS [12].

A fast non-dominated NSGA-II algorithm was selected to solve the optimization problem

under different circumstances. An optimal solution set was obtained through a

multi-objectives optimization problem although single-objective optimization problem

was solved at a time. The authors didn’t considered the importance for any particular

objective.

A multi-objective optimization technique using Genetic Algorithm (GA) is

presented in [13] to minimize the energy generation cost and maximize the storage device

lifetime in microgrids. The authors considered equal importance for the both the

objectives. In [14], a Fuzzy mathematics based multi-objective optimization technique is

introduced without having weighted objective function.

Therefore, multiobjective optimizations were considered in the literatures using

different algorithms but there was no effort to determine the optimal value of weights. An

optimal point could be found by changing the values of the weights in objective function

to achieve the final goal with optimizing the individual objective.

1.2.2 Microgrids with Different Energy Storage Systems

A study in [15], used a model to compare lead acid (PbA) and Aqueous Hybrid Ion

(AHI) batteries using in realistic microgrid by using HOMER software. The study

suggested that a AHI-based microgrid system utilized 10-30% more PV power and

provided 10% more cost-effective solution even though initial cost is higher than

PbA-based systems; however, the authors concluded that a AHI-based system is a more

reliable option for a system which required frequent charging and discharging. It was also
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found that initial levelized cost of electricity (LCOE) is the most important factor to

evaluate different energy storage technologies in terms of operational costs of the systems.

The authors only compared PbA and AHI batteries.

A feasibility study on pumped hydro and battery storage (considered 50% and 100%

DoD) for a renewable energy system in an island was conducted in [16], where the authors

considered different scenarios and analyzed the corresponding life cycle cost. It was found

that batteries with low allocable DoD lead to high life cycle cost. However, a pumped

hydro alone system offered the best cost solution, although the authors didn’t consider the

maintenance cost of pumped hydro and in remote microgrids frequent maintenance is

uneconomical. There was no effort to study the feasibility of other storage devices for

remote microgrid.

Rebecca et. al. [17], presented a comparative techno-economic analysis of lead acid,

and and Li-ion batteries for microgrid uses. The study suggested that the discount rate of

storage devices together with levelized cost of electricity (LCOE) plays a crucial role in

achieving the most effective solution. Although, the authors concluded that the low cost

with high energy density Li-ion battery offers the best solution, there was no effort of

optimal use of the battery along with prolonging the lifetime and not even any

consideration of the battery float life cost. However, the authors only consider two types

of batteries.

However, the literature compares and analyzes only two different types of energy

storage systems. The literature lacks a comparative economical analysis of a range of

storage devices including generator fuel consumption and storage device lifetime.
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1.2.3 Battery Weighted Ah-throughput Model

A weighted Ah throughput model was developed by Schiffer et al. in 2007 [18],

predicts the lifetime of a lead acid battery. In the model, the authors considered different

aging parameters such as corrosion, acid stratification, sulphation, gassing, discharge

current, SoC, consecutive charging time, and temperature. To calculate the actual

throughput from the battery, different weighting factors were multiplied with calculated

throughput. The same battery model was implemented by Rodolfo et al. in 2013 [19] and

compared with other models. The Schiffer AH model was found to be the most accurate

to demonstrate a battery. To design a control system of battery storage and wind energy

system in [20], SoC weighting factor from Schiffer AH model was considered in the

battery model.

In [21], a battery charging/discharging scheme was proposed to avoid detrimental

operation of battery so that the battery lifetime can increase. In the battery model, the

authors considered SoC weighting factor to determine the actual throughput from the

battery although for the sake of simplicity, the impact of SoC and corresponding factor

were considered and the rest were ignored. Moreover, the authors included the Schiffer

Ah model in the real-time energy market rather than the remote microgrids EMS.

Chalise et al. [22] developed a power management strategy for remote microgrids

considering lead acid battery lifetime. To model the battery, the Schiffer Ah model was

considered and for the sake of simplicity only SoC weighting factor was included. The

authors proposed a weekly cycling strategy to reduce the SoC weighting factor. But, the

authors did not consider the weight factor in the objective function of the EMS.
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In summary, most of the current literature focused on the analysis of different

weight factors in the battery model but did not incorporate in the EMS of remote

microgrids. Only one article considered SoC weight factor in the remote microgrids EMS

for analyzing the impact on the battery lifetime deterioration, although did not incorporate

in the objective function.

1.3 Motivation

Motivation of this thesis is the need of cost effective energy storage technology for

remote microgrids EMS to obtain minimum fuel operational cost and fuel consumption

with high life span and a battery cycling strategy to mitigate faster battery degradation due

to irregular operating condition.

1.4 Objectives

The objectives of this thesis are:

1. Analyze the feasibility of using PbA, Li-ion, AHI batteries and

ultracapacitor in remote microgrids EMS.

2. Incorporate Schiffer Ah-throughput model in the objective function of the

EMS to analyze the effect of SoC weight factor in faster battery degradation and

investigate different battery cycling strategies to mitigate that effect.

1.5 Contributions

There are two different contributions of this thesis. The first contribution is the

feasibility study of different energy storage technologies to use in the remote microgrids

EMS. The second contribution is the analysis of different battery cycling strategies to

reduce the value of SoC weight factor in order to protect the battery from faster
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degradation. In the analysis, consideration was given to low minimum operational cost

and generators fuel consumption.

1.6 Thesis Outline

This thesis has been organized as follows: Chapter 2 presents the different

components of a microgrid and a brief description of different energy storage technologies

available in the market and the comprehensive illustration of the Schiffer Ah-throughput

model. Chapter 3 deals with the description and modelling of the components in a

microgrid and modified EMS. Results and corresponding analysis are presented in

Chapter 4, followed by conclusions and future works.



10

CHAPTER 2 THEORY

This chapter presents the theory related to this thesis. Section 2.1 describes the

microgrids and its classification. Section 2.2 presents the operation of a remote microgrid

energy management system (EMS). The EMS describes the day ahead scheduling and real

time dispatch of distributed energy resources. The operating principle and characteristics

of diesel generators, photovoltaic systems and energy storage systems are presented in

Section 2.3. Section 2.4 demonstrates battery weighted throughput model which was

included in this thesis to consider the different operating conditions of battery. Further,

Section 2.4.1 describes the Schiffer weighted Ah-throughput model.

2.1 Microgrids

Microgrids are small and integrated energy systems capable of managing

interconnected loads and distributed energy sources intelligently and maintain stable

operation within a defined boundary either in independently or parallel with utility grid

[23]. A microgrid can ensure the optimal power quality, reliability, and economical

benefits when it is running in grid connected mode or off-grid mode. It can be powered by

distributed energy sources (PV, wind and so on), microturbines, diesel generators, energy

storage system that supply to different kind of loads which are monitored by intelligent

control system.

In recent research, there are five major categories of microgrid were identified [24].

(1) Institutional and Campus Microgrids

(2) Commercial and Industrial Microgrids

(3) Military Microgrids
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(4) Community and Utility Microgrids

(5) Remote Microgrids

Photovoltaic

Utility Grid

Electric Vehicle

Load

Energy Storage

Generator

Wind Turbine

Control System

Figure 2.1. A simple microgrid

2.1.1 Remote Microgrids

Remote microgrids are disconnected from the utility grid due to geographical

location. The main idea of remote microgrids is to power the rural communities where the

population is small. Rural communities mainly use electricity for their household work,

irrigation, and commercial loads. Single or multiple owner can participate to develop such

system and for being small in size it is more simpler than the other systems. In such
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system, customers have to pay high electricity price due to high transportation cost of

generators fuel. Moreover, maintenance and replacement of the components (specially the

storage device) are important issues in remote microgrids to operate the system cost

effectively by improving fuel efficiency and energy storage lifetime.

2.2 Remote Microgrids EMS

EMS is the core part of remote microgrids that efficiently coordinates the distributed

energy energy resources (DERs) of different capacities. Typically, there are two

distinctive layers in the microgrids EMS to schedule and dispatch the distributed energy

resources (Figure 2.2).

PV Forecast Load Forecast

Operational 

Constraints

System 

Architecture 

Day Ahead Scheduling

Real Time Dispatch

Battery Charge/

Discharge Control

Generator 

ON/OFF Control

Schedule Layer

Dispatch Layer

Figure 2.2. Two layers EMS in remote microgrids
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2.2.1 Day Ahead Scheduling

Scheduling is the process of allocating the DERs for operation over a horizon of

time, and it is performed by the master controller considering the economic benefits. It is

required to find the optimal power set point of DERs in a time ahead system. Typically, a

day ahead approach is used to perform the DERs scheduling. However, there are

forecasting and optimization tools in the schedule layer. Forecasting tool forecasts the

renewable energy and the load demand in different periods of a day. Forecasting is used to

utilize the maximum renewable energy, and reduces the required reserve. Then the

calculated net load (forecasted load-PV) information is transferred to the optimization

tool. Optimization provides the most economic scheduling result satisfying all the

constraints over a scheduling horizon. According to the system operational constraints,

the optimization tool performs the economical dispatch considering different objectives of

the system such as low operational cost, generator fuel consumption, and high battery life

time. The optimization method can be deterministic or stochastic in nature. There are

different types optimization are analyzed in [11]-[12]. A goal programming approach can

be used to achieve multi-objective optimization [25]. After performing the optimization,

the dispatching signal send to the dispatch layer.

2.2.2 Real Time Dispatch

Real time dispatch layer receives the dispatching signals from the scheduling layer

with power set point of generators and battery, and dispatch accordingly. The dispatching

process is controlled by the master controller, and the dispatching signals transmit through

the advanced information communication technology infrastructure (ICT). To ensure the
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smooth operation, dispatch layer should not lose the effectiveness of the schedule layer.

Real time dispatch ensures power system reliability and power quality. In addition, any

deviation from the schedule layer is compensated in the dispatch layer. However, dispatch

efficiency can be increased by using consumer based demand side management system

(DSM) scheme [26].

2.3 Remote Microgrid Components

A remote microgrid is typically consists of diesel generators, energy storage

systems, and renewable energy sources (only PV system was considered in this thesis).

2.3.1 Diesel Generators

A diesel generator is a combination of diesel engine and synchronous generator

which converts mechanical power into electrical. The diesel engine provides the external

mechanical energy which is converted into electrical output by a synchronous generator.

The speed of diesel generators are controlled by a governor to control the output

frequency. The governor mainly control the fuel injection that regulates the speed of the

rotor. An automatic voltage regulator (AVR) is used to maintain the generator output

voltage within a certain limit depending upon the loads by controlling its field excitation

current. AVR senses the voltage by using a power-generating coil; compare to a reference

and then the error signal is used to adjust the field current (Figure 2.3).

The fuel consumption of diesel generators can be expressed in terms of fuel

consumption rate and fuel efficiency. The fuel consumption rate is the amount of fuel

consumed by the generator in an hour to produce a certain amount of power output. The

manufacturer usually provides the data related to fuel consumption rate which can be
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Figure 2.3. Block diagram of a diesel generator [27]

expressed in a polynomial relation as given in Equation 2.1.

F = aP2
g +bPg + c (2.1)

where, a, b and c: generator fuel curve coefficients; Pg: generator output power.

Higher value of Pg leads towards the high fuel efficiency.

The fuel efficiency of a diesel generator can be expressed by using Equation 2.2

[28],

ηg =
3600×Pg

ρ f × (aP2
g +bPg + c)×LHVf

(2.2)

where, LHVf : lower heating value of the fuel (MJ/Kg), ρ f : fuel density in Kg/m3.

For diesel generators, LHVf =43.2 MJ/Kg and ρ f =820 Kg/m3 [28].

By using Equation 2.1 and 2.2, the fuel consumption characteristics of a 75 kW

diesel generator can be obtained as in Figure 2.4. The total operating region of a diesel

generator can be divided into three zones based on the output power (% of rated power)
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Figure 2.4. 75 kW diesel generator fuel efficiency characteristics

such as low (< 30%), medium (30−50%) and high (> 50%) efficiency zone [28]. High

fuel efficiency can be obtained by operating the generator near to rated load. While the

diesel generator is operating in low load condition (Pg < 22.5 kW), the efficiency can be

maximum 24.64% (Figure 2.4). At half load condition, fuel efficiency is increased by 4%

and the maximum efficiency can be achieved at near to full load. It is economical to

operate the diesel generator at 80-90% of rated power. Furthermore, the manufacturer also

suggests not to operate bellow 30% of rated load.

2.3.2 Photovoltaic System

A photovoltaic (PV) system is a DC power generation system that converts sunlight

into electrical energy using p-n semiconductors that exhibits PV characteristics. The

materials with PV effect called solar cell, absorbs photon from light and release electrons
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that results the electric current in the system. The equivalent circuit of a solar cell can be

presented by an ideal current source with parallel diode and resistance as in Figure 2.5

[29]. The current source represent the current that is generated from the photons.

Figure 2.5. Equivalent solar cell circuit [30]

The output current power of a solar cell can be written as

Io = ISC− ID− IP (2.3)

P =V Io (2.4)

where, ISC: photon generated current (A); Io: solar cell current, and ID: diode

current which can by given by Equation 2.5 [29].

ID = Id[exp(
q(Vo + IoRS)

nKT
)−1] (2.5)

Now, Equation 2.3 can be written as
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Io = ISC− Id[exp(
q(Vo + IoRS)

nKT
)−1]− Vo + IoRS

RP
(2.6)

where, Vo: output voltage (V) or, open circuit voltage, Voc; Id: diode saturation

current (A); q: one electron charge (1.6×10−19 C); T: solar cell temperature (K); K:

Boltzmann constant (1.38×10−23); RS: solar cell series resistance (Ω); RP: solar cell

shunt resistance (Ω) and n: ideality factor (1 < n < 2) [31].

The electrical output of a solar cell is proportional to the amount of solar irradiation

(W/m−2). Power vs voltage plot of a solar cell is presented in Figure 2.6.
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Figure 2.6. Power vs voltage plot of a solar panel for different solar irradiance (Wm−2)

The maximum power from a solar panel can be obtained by operating the solar cell

at IMPP and VMPP where the panel power is maximum (Figure 2.7). However, a maximum

power point tracker (MPPT) can be used to extract the maximum power from a solar
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panel.

Voltage

C
ur

re
nt

Po
w

er

I
MPP

I
SC

V
MPP

V
OC

P
max

Figure 2.7. Maximum power point operation of a solar panel

The maximum power output from a PV system can be expressed as in Equation 2.7,

in terms of nominal capacity (PVn), solar irradiance (G), STC solar irradiance (GSTC)

which is 1000 Wm−2 at 25 oC, and PV derating factor fd f [32].

PPV (t) = fd f PVn
G(t)
GSTC

(2.7)

2.3.3 Energy Storage System

An energy storage system is a significant component of remote microgrids. By

balancing the power generation and demand, the ESS improves the system reliability and

efficiency. Moreover, in microgrids EMS, ESS reduces the use of dump loads and PV

power curtailment to operate the diesel generators in the high efficiency zone. There are
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various types of electrical energy storage systems which can be classified into different

categories (Figure 2.8) [33].

Capacitors

Ultracapacitor

Superconducting Coil

Flywheels

Pumped Hydro 

Compressed Air

Synthetic Fuels

Batteries

Fuel Cells

Electrical 

Energy Storage

Mechanical 

Energy Storage

Chemical 

Energy Storage

Energy Storage

Figure 2.8. Different energy storage technologies

2.3.3.1 Lead Acid Battery

Lead acid (PbA) batteries are the oldest and most established rechargeable energy

storage technology that are being used in the present microgrids. Lower cost compared to

the other battery technologies wide speareds its adoption; however, slow response rate,

short life cycle, and depth of discharge (DoD) are its major drawbacks. Depending on the

configuration of electrodes, the operation of lead acid batteries are categorized into

shallow discharge and deep-discharge mode. Shallow discharge batteries are suitable for

automobile applications while deep-discharge lead acid batteries are mainly applicable for

small cycle renewable energy systems [34].

2.3.3.2 Lithium-ion Battery

Currently, lithium-ion (Li-ion) batteries are the prominent storage technology for

PV systems and portable and mobile applications (e.g. laptop, mobile phone, electric
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Table 2.1. PbA batteries [35]

Efficiency (%) 70-90
Life cycle (cycles) 500-2000
Float life (years) 5-15
Specific energy (Wh/kg) 30-50
Initial cost ($/kWh) 100-600
Operation and maintenance cost ($/kW-year) 12-30

vehicle) due to its high flexibility. Compared to the other technologies, Li-ion batteries

have high efficiency, energy and power density, life cycle, allowable DoD, and faster

response rate; however, its initial ivestment cost is high and requires sophisticated charge

management and control system.

Table 2.2. Li-ion batteries [36]-[37]

Efficiency (%) 85-98
Life cycle (cycles) 1,000-10,000
Float life (years) 5-15
Specific energy (Wh/kg) 75-200
Initial cost ($/kWh) 500-2,500
Operation and maintenance cost ($/kW-year) 12-30

There are different kind of Li-ion batteries such as

• Lithium Cobalt Oxide (LiCoO2)

• Lithium Manganese Oxide (LiMn2O4)

• Lithium Iron Phosphate (LiFePO4)

• Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2)

• Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2)

• Lithium Titanate (Li4Ti5O12)
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Among all the Li-ion batteries, lithium iron phosphate (LiFePO4) is an emerging

storage technology with high life cycle, faster response rate, and considerably higher

current rating, although the initial cost is very high.

2.3.3.3 Ultracapacitor

Ultracapacitor(UC), also known as supercapacitor, is the energy storage technology

that stores energy in form of electrical charge between two metal plates separated by

dielectric materials. UCs have high power density, efficiency, and high life cycle. High

initial cost is a major drawback to use in the large scale power systems. UCs are highly

appropriate for such a systems that requires high power density particularly hybrid electric

vehicle. In the USA, there are a number of UC energy storage systems installed in

microgrids [38]. Japan has also been analyzed the performance of UC in microgrids

specially for voltage sag compensation and power smoothing [39]. UC and batteries

(specially the PbA battery) can form a hybrid energy storage system that may optimize the

power and energy density of the storage system.

Table 2.3. Ultracapacitor [35]

Efficiency (%) 85-98
Life cycle (cycles) 105-106

Float life (years) 4-12
Specific energy (Wh/kg) 5-30
Initial cost ($/kWh) 300-20,000
Operation and maintenance cost ($/kW-year) N/A

The operation of battery/ultracapacitor (UC) depends on the present state of charge

(SoC) to dispatch the battery/UC for charging and discharging correspondingly. During

the charging and discharging period, the next hour SoC of battery/UC (Equation (2.8) and

(2.9)) depends on the present hour SoC, charging/discharging power, battery/UC capacity,
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charging/discharging efficiency, and the time duration of charging/discharging.

SoCbat(t +1) = SoCbat(t)+
ηPb(t)∆t

Cb
(2.8)

SoCUC(t +1) = SoCUC(t)+
ηPUC(t)∆t

CUC
(2.9)

and,

η =

(
ηch,charging

1/ηdisch,discharging

)

where, t: present time; SoC(t): the present hour SoC; SoC(t +1): the next hour

SoC; Pb(t): present hour battery charging/discharging power at t, (kW); PUC(t): present

hour UC charging/discharging power at t, (kW); Cb: battery capacity, (kWh); CUC: UC

capacity, (kWh); ∆t: charging/discharging duration; ηch: charging efficiency; ηdisch:

discharging efficiency.

2.4 Weighted Throughput Modelling

Generally, the throughput is considered as the amount of discharging energy from a

ESS under standard conditions but these are not achievable in real time operation. There is

a virtual increase (or decrease) in the standard test throughput due to the different physical

and chemical stress factors [40]. Major stress factors in operation of a lead acid battery are

described in [41]-[42] which may cause deviation from the standard conditions.

Considering all those factors, equivalent weighted throughput can be determined to

represent the actual operating conditions [19]. Moreover, the expected lifetime of the ESS

can be estimated from the weighted throughput model.
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2.4.1 The Schiffer Weighted Ah-throughput Model

A weighted Ah-throughput model was developed by Schiffer et. al. considering

different stress factors in the operating conditions during the battery operation [18]. This

model is valid only for lead acid battery and assume that the operating conditions are more

severe than the standard test conditions. The major stress factors in this model are

minimum operating SoC, time between full charge, discharging current, incomplete or

rare full charging, and operating temperature. Considering the aforementioned stress

factors, two weight factors were introduced in the Schiffer model that should be

multiplied with the actual throughput to get the weighted throughput from the battery. The

two weight factors are

(1) SoC weight factor, (WSoC)

(2) Acid weight factor, (WAcid)

2.4.1.1 SoC Weight Factor, WSoC

The SoC weight factor, WSoC takes into account the impact of SoC and discharge

current on the battery operation. Cycling operation at lower values of SoC over a long

period of time since the last full charge introduces mechanical stress, consequently affects

the battery lifetime. Additionally, the discharge current affect the growth of sulphate

crystal called sulfation, and degrade the battery capacity. The first cycle of discharging

current of a fully charged battery mainly influenced the sulfation. Higher the value of the

discharge current results in a high number of small sulphate crystals. The impact of

operating SoC and discharging current modeled by the factor WSoC (Equation 2.10).
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WSoC(t) = 1+(CSoC,0 +CSoC,min× (1−SoCmin(t)|tto)×W (I,Nbc)× (t− to)) (2.10)

where, CSoC,0 and CSoC,min are the constant slope for SoC factor and impact of the

minimum SoC on the SoC factor respectively at SoC=0. In Equation 2.10, the current

factor, WI(I,Nbc) is the combination of sulfation effect and bad charge/partial full charge

(charging at 0.9 < SoC < 1) effect which can be calculated by Equation 2.11

WI(I,Nbc) =

√
I10

I f (t)
× 3

√
exp(

Nbc(t)
3.6

) (2.11)

I10 is the 10 hour current which can be calculated as, I10 =C10/10 where, C10 is the

battery nominal capacity. I f (t) is the discharging current at first cycle immediate after one

full charge. In Equation (2.11), Nbc is the number of bad charges when the battery is in

charging condition at SoC > 0.9, and charging at SoC < 0.9 will not account the bad

charges. The number of bad charges is reset to zero when the battery is fully charged. Nbc

is calculated when the operating SoC is between 0.9 to 1, and it is in charging condition

(Equation 2.12).

Nbc(t +∆t) = Nbc(t)+
0.0025− [0.95−SoC(t +∆t)]2

0.0025
(2.12)

The coefficient CSoC,0 and CSoC,min are constant parameters adopted from [18] and

the value of I10 can be determined from the manufacturer sheet. The variables

SoCmin(t)|tto , ∆tSoC, and I f (t) are schematically illustrated in Figure 2.9. Figure 2.9 (a) (red
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Figure 2.9. Schematic illustration of the (a) sample hourly initial SoC profile throughout
a day, and minimum SoC from the last full charge, SoCmin(t)|tto (b) time from the ast full
charge, ∆tSoC and (c) current at first cycle of discharge after a full charge, I f

dash line) shows a hourly initial SoC profile of a battery over 24 hours of a day, and

initially, the battery is fully charged (SoC=1). Afterwards, the battery gets full charge at

hour 7 and 15. There are a number charging and discharging cycle in the rest of the hours.

SoCmin(t)|tto is the minimum SoC since the last full charge which is presented in the

Figure 2.9 (a) (blue dash line). It can be seen that at hour 2, battery SoC decreases as it is

discharging, and thereafter, it is being charged (SoC increases) till hour 5. So that, the

value of SoCmin from hour 2-5 is equal to the SoC at hour 2 as it is the minimum value

since the hour 1. Similarly, the value of SoCmin can be determined at hour 6, from hour

8-14, 16-17, 18-20 and 21-24. The value of SoC and SoCmin is 1 when the battery is fully
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charged.

∆tSoC= t− to, where t is the present time and to is the time of the last full charge.

Since the time difference from the last full charge to present time increases, the value of

∆tSoC increases from hour 2-6, 8-14, 16-24 (Figure 2.9 (b)).

I f is the current at the beginning of the discharge after a full charge which can be

obtained at the beginning of hour 1, 7 and 15 (Figure 2.9 (c)) (green dash line).

2.4.1.2 Acid Weight Factor, WAcid

The acid weight factor, WAcid mainly takes into account the acid stratification during

battery operation that results in a gradient of the acid concentration. The main factors that

influence the WA are the minimum SoC since the last full charge (SoCmin(t)|tto), gassing

current, temperature, and battery current (charging and discharging). Lower battery

current and minimum SoC since the last full charge have the higher impact on WA. The

total impact of WA can be described by

WA(t) = 1+WS(t)

√
I10

|Ibat |
(2.13)

where, WS is the acid stratification factor which is composed of two factors that

describes the impact of acid stratification increase and decrease.

WS(t +∆t) =WS(t)+(Win(t)−Wde(t))∆t (2.14)

The factor Win incorporates the effect of the discharge current and SoCmin(t)|tto

which can be calculated as
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Win(t) =Cin× (1−SoCmin(t)|tto)× exp(−3WS(t)×
Idis(t)

I10
) (2.15)

The effect of acid stratification is reduced by diffusion and gassing of acid.

Therefore, the total factor for the decrease of acid stratification is

Wde(t) =Wde,gassing +Wde,di f f usion (2.16)

The factor for the decrease of acid stratification, Wde,gassing can be calculated as

Wde,gassing(t) =Cde ·

√
100Ah

CN
×

Igas,0(t)
Igas,ini

×exp(Cv(Vcell−V re f )+CT (T −Tgas,0)) (2.17)

The decrease of acid stratification due to diffusion is given by

Wde,di f f usion(t) =
8D
z2 ·WS(t) ·2(t−20◦C)/10K (2.18)

In the Equation 2.16-2.18, Cin and Cde are the factors for increase and decrease of

acid stratification respectively; Igas,0(t) and Igas,ini are the normalized and initial

normalized gassing current; T is the temperature; Vcell is the cell voltage; Vre f is the

reference voltage; D is the effective diffusion constant; z is the height of the electrodes.

Those parameters can be adopted from [18]. CN is the nominal capacity which can be

obtained from the data sheet.
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CHAPTER 3 PROCEDURE

Chapter 3 describes detailed procedure of this thesis that were followed to complete

the following tasks.

Task 1: Analyze the economical prospectives of different storage devices for

remote microgrids energy management system (EMS).

Task 2: Incorporate the Schiffer weighted Ah-throughput model in the objective

function and analyze the battery cycling strategies.

Section 3.1 describes a developed remote microgrid benchmark which was

considered in this thesis. Including monthly load and PV (photovoltaic) profile, the cost

modeling of some components of that benchmark (diesel generator and storage device

cost modeling are required in this study) are presented in the Section 3.2. To complete the

Task 1, a mathematical model of the EMS using deterministic approach is defined in the

Section 3.3. The EMS algorithm is described with an objective function and a set of

constraints. Section 3.4 describes the procedures to incorporate the Schiffer model in the

EMS (Task 2). Furthermore, a modified state of charge (SoC) weight factor and weighted

battery throughput model are presented in the Section 3.4.1 and 3.4.2 respectively. Section

3.5 demonstrates the case studies of Task 2 to find the cost effective battery charging

strategy to minimize the value of SoC weight factor.

3.1 Remote Microgrid Benchmark

A microgrid benchmark is described in Figure 3.1, which was developed by Santosh

et. al. [22]. This microgrid consists of 30 kW photovoltaic panels, and two KOHLER

generators of 30 kW (model: 30REOZJC) and 75 kW (model: KT75). The diesel cost of



30

the generators was considered $8.00 per gallon based on remote community electric utility

[43]. Generators are limited to supply minimum power of 30% of their rated capacity.

Furthermore, a battery energy storage system exists in the system to balance the power

supply and demand. The battery bank was seized to supply the four hour average load of

the system. The peak and average load of the system are about 64 kW and 25 kW

respectively, and the most of the loads are residential in type. In order to ensure optimum

operation, the EMS forecasts the load and PV power, and afterwards, schedule and

dispatch the DERs. However, the EMS communicate with the system components through

the local controllers.

30 kW Generator

75 kW Generator

Remote 

Microgrid 

EMS

Load

Inverter

Load Forecast

PV Forecast

            Control signal

Power    

LC

LC

Central 

Controller

LC

LC

Storage Device

LC

PV

Inverter

Figure 3.1. Microgrid benchmark [22]



31

The EMS has two different functions: 24 hours (day ahead) scheduling and real

time dispatch of the generators and the energy storage devices. A day ahead scheduling

technique is used to obtain the minimum fuel consumption, to obtain the minimum

operational cost, and to prolong the battery lifetime whereas real time dispatch ensures the

system reliability and power quality. In the microgrids EMS, the operational cost of the

power electronics converters and PV panels were considered constant.

3.2 Mathematical Model of the Components

3.2.1 Loads

In the microgrid, the loads are classified into residential, critical, and non-critical.

The critical loads are mainly the commercial loads such as health clinic, and the

non-critical loads are such as water pumps and water heater. In this study, an hour based

yearly load profile was collected from Nemiah Valley microgrid [44]. Figure 3.2 shows

the monthly load information whereas the yearly maximum, minimum and average loads

are about 64 kW, 3 kW and 25 kW accordingly. In this load profile, the peak to average

load ratio is 2.56. The average load is comparatively high in the late autumn to winter

(November to April) and low in the summer season. The peak and average load are also

higher in the winter season than that in the summer. Figure (3.3) illustrates the daily load

data over 24 hours for four different days of summer (9th July and 12th August) and winter

(19th December and 10th January) season. The peak to average load ratio is slightly higher

in the summer season. This ratio is 1.62, 2.01, 1.28 and 1.35 on 9th July, 12th August, 19th

December and 10th January respectively. The peak and average load both are the highest

on 10th January (56.45 kW and 41.84 kW accordingly).
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Figure 3.2. Monthly load data throughout a year
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Figure 3.3. Load data in four different days
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3.2.2 Photovoltaic Generation

The yearly photovoltaic (PV) profile is presented in the Figure 3.4 which was given

in hour basis [44]. The average and maximum PV power were about 5 kW and 30 kW

respectively. Compared to the winter season, the average PV power generation is high

during the summer due to the availability of sun over a longer period of time. Figure 3.5

shows the PV profile of four different days of the winter and summer season. Typically,

peak PV power is obtained at noon (12.00 pm to 2.00 pm) although it depends on the

geographical location. PV power can be low even at the noon due to bad weather

condition.
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Figure 3.4. Monthly PV data throughout a year
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Figure 3.5. PV data in four different days

3.2.3 Diesel Generator

Generator diesel cost curve is generally represented as cubic or quadratic functions

and piecewise linear functions [26], although the quadratic function more accurately

models the conventional diesel generators. The cost function presents a more nonlinear

nature when the actual generator behavior is considered [45]. In order to avoid wet

stacking and carbon build up, the generators are supplied 30% of their rated capacity.

Moreover, the generator efficiency is also higher for the operating condition near to rated

load, which can be calculated by using Equation 2.2. The fuel consumption and efficiency

characteristics of 30 kW and 75 kW generators are presented in Figure 3.6 and 3.7. The

operating range of the 30 kW diesel generator is 9 kW to 30 kW and the operating range

of the 75 kW generator is 22.5 kW to 75 kW.
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Figure 3.6. Fuel consumption and efficiency curve of 30 kW generator

In general, the total operational cost of a diesel generator depends on diesel cost,

hourly replacement cost, maintenance cost, and startup and shutdown cost. The hourly

replacement cost of a diesel generator depends on the lifetime working hour. 40,000 hours

is the typical value between the two replacement [46][47]. The hourly replacement cost

was calculated by dividing the initial investment ($) by the approximate lifetime working

hours. The startup and shutdown cost is negligible in remote microgrids since the size of

the generators are typically small [48]. Neglecting the maintenance cost, the total daily

operational cost of the generators is given by,

Cg =
T

∑
t=1

K

∑
k=1

[Cd(akP2
g,k(t)+bkPg,k(t)+ ck)+Ck,h]Uk(t) (3.1)
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Figure 3.7. Fuel consumption and efficiency curve of 75 kW generator

where, t: Time, {1, 2, ..., T} hours; K: number of generators; Uk(t): generator on/

off condition at time t, (1 or 0); ak,bk,ck: generator fuel curve coefficients; Cg: generator

operational cost, $; Pg,k(t): kth generator power at time t, kW; Cd: diesel cost of the

generators, $/gallon; Ck,h: hourly replacement cost of kth generator, $/h.

3.2.4 Energy Storage System

Energy storage system (ESS) maximizes the generator fuel efficiency, minimizes

fuel consumption, and utilizes the maximum available renewable energy. Moreover, it

improves the system reliability and performance. However, the lifetime of energy storage

systems is comparatively shorter than the other components, and the replacement cost also

has a significant impact on the operational cost of the ESS and as well as the total
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operational cost. The operational cost of the ESSs depends on the total life time

throughput, initial investment cost, and maintenance cost. Maintenance free storage

system may reduce the storage system operational cost. ESS wear cost was calculated to

determine the storage system operational cost. Battery lifetime throughput is the key

factor to calculate the ESS wear cost.

3.2.4.1 Wear Cost

The ESS wear cost ($/kWh) can be determined by dividing the initial investment ($)

by the lifetime throughput (kWh). The manufacturers provide the number of life cycles at

the rated DoD, battery capacity (kWh), and initial cost information which are used to

determine the ESS wear cost ($/kWh), and this is expressed by Equation (3.2) and (3.3)

[49],

TL = ηdischCESSNL,cDoD (3.2)

Cwc,ESS =
Ci

TL
(3.3)

where, Ci: ESS initial cost, $, NL,c: number of battery life cycle, DoD: depth of

discharge, %; CESS: ESS capacity, (kWh);

The rated DoD and the corresponding life cycles are different for different ESSs.

Typically, the rated DoD of lead acid battery is 50%, and for lithium-ion battery, it is 90%.

The rated DoD and life cycle information can be obtained from the curve provided by the

manufacturer, although sometimes the manufacturer do not provide the precise
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information of efficiency. In that instance, assumption was made after analyzing the

similar storage system specification sheets with the efficiency information. Initial cost is

another important factor to calculate ESS wear cost; higher initial cost leads to the higher

wear cost and as well as the total operational cost.

3.2.4.2 ESS Operational Cost

Daily operational cost of a ESS depends on the wear cost and total throughput of the

day. Considering ESS power is positive for charging and negative for discharging, the

daily throughput of ESS can be determined by using Equation (3.4),

kWhT H,d =
T

∑
t=1

[|PESS(t)|−PESS(t)]∆t
2

(3.4)

where, PESS(t): ESS power, kW; ∆t: absolute time step of battery operation. In this

study, ∆t was considered 1 hour.

Daily operational cost of ESS can be obtained by using Equation (3.5),

Coc,b =Cwc,ESS · kWhT H,d (3.5)

3.3 Evaluation of Different Energy Storage Technology

In the beginning of this thesis, the specification sheet from different energy storage

manufacturers were analyzed to calculate the wear cost. The data of battery charging and

discharging power were also accumulated to simulate the optimization model. The

evaluation of the storage systems was done for remote microgrids EMS considering the

generators fuel consumption, storage device lifetime, and the total system operational cost.
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3.3.1 Mathematical Model of the EMS

To ensure optimal operation of a remote microgrid, the EMS performs optimization

and schedules the distributed energy resources accordingly. In this study, a deterministic

optimization model was used to optimize the system, developed by Santosh et.al. [22].

3.3.1.1 Objective Function

The objective function of this optimization problem is the weighted sum of the

generators operational cost (Cg) and the batteries operational (Coc,b) cost. In the

benchmark, all the other costs were considered constant including the maintenance cost.

So, the objective function was formed by using Equation (3.1) and (3.5) which is to,

Minimize,W1×Cg +W2×Coc,b (3.6)

where, W1+ W2 = 1. The weight W1 represents the weight of generator operational

cost and W2 represents the weight of the battery operational cost. W1 and W2 determine the

generators fuel consumption and battery throughput accordingly. For example, when W1 is

1 and W2 is 0, less fuel will be consumed (generator operation cost will be the lowest, as it

is carrying more weight) and more battery throughput will be used that leads to shorter

battery lifetime.

3.3.1.2 Equality Constraint

In each hour of a day, the total amount of power from the generators, battery and PV

system was equal to the load power which is given by,
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K

∑
k=1

Pg,k(t)+Pb/UC(t)+PPV (t) = PD(t), t ∈ T (3.7)

where, t: Time, {1, 2, ..., T} hours; K: number of generators; Pg,k(t): kth generator

power at time t, kW; Pb/UC(t): battery/UC power at time t, kW; PPV (t): photovoltaic

power at time t, kW ; PD(t) is the load demand at time t, kW.

3.3.1.3 Inequality Constraints

The diesel generator were operated at certain load to maintain high fuel efficiency.

Pg,k,min ≤ Pg,k(t)Uk(t)≤ Pg,k,max,∀t ∈ T (3.8)

where, Uk(t): Generator on/ off condition at time t, (1 or 0); Pg,k,min: minimum

power from kth generator; Pg,k,max: maximum power from kth generator.

The storage device lifetime depends on the allowable SoC (= 1−DoD). If a battery

is operated below its allowable SoC range then its lifetime decreases significantly. For

different types of energy storage technology, allowable SoC range was different.

SoCmin ≤ SoC(t)≤ SoCmax,∀t ∈ T (3.9)

where, SoC(t): battery/UC SoC at time t; SoCmin: minimum SoC of battery/UC;

SoCmax: maximum SoC of battery/UC;

Charging (ch) and discharging (disch) power of a battery/UC was in a specific range

to prolong the lifetime by preventing over charging and discharging.
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Pb/UC,disch ≤ Pb/UC(t)≤ Pb/UC,ch,∀t ∈ T (3.10)

where, Pb/UC,disch: battery/UC discharging power, kW; Pb/UC,ch: battery/UC

charging power, kW.

The optimization problem was solved by using the IBM ILOG CPLEX software to

minimize the objective function with above constraints.

3.4 Incorporation of the Schiffer Model in the EMS

The Schiffer model consists of SoC weight factor (WSoC) and acid weight factor

(WAcid). For the sake of simplicity, only WSoC was considered in the EMS. WSoC has a

significant impact in the microgrids EMS. In [22], WSoC was considered for remote

microgrid day ahead EMS without considering it in the objective function. In that

approach, it may not reflect the accurate effects on the EMS, and may deviates the

scheduling results of the distributed energy resources. According to [18], WSoC should be

calculated after each cycle of operation to obtain the weighted throughput. In a day ahead

EMS, it is very complicated to calculate WSoC on hour basis and incorporate in the EMS.

For simplicity, a modified WSoC was incorporated in the EMS so that the effects of this

factor can be analyzed more accurately.

3.4.1 Modified SoC Weight Factor, WSoC,m

The SoC weight factor (WSoC) is significantly influenced by ∆tSoC. The value of

WSoC increases linearly over the period of battery operation and reset to the initial value

after one full charge [19][18]. The value of WSoC over a small period of time is nearly

same. For the simplicity, an average value of WSoC was considered in the objective
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function. In the modified form, the next day WSoC was calculated from the average WSoC of

the present day as equation (3.11),

WSoC,m(d +1) =
T

∑
t=1

WSoC(t,d)
T

(3.11)

where, t: time, hour and d: number of day.

3.4.2 Weighted Battery Throughput

Battery weighted throughput was obtained from the SoC weight factor WSoC,m and

the actual throughput which can be determined by using Equation 3.4 and 3.11

WkWh(d) =WSoC,m(d) ·
T

∑
t=1

[|Pb(t)|−Pb(t)]∆t
2

(3.12)

where, WkWh(d): daily weighted battery throughput, kWh; Pb(t): battery power, kW.

The weighted throughput is always higher than the actual value since WSoC,m is greater

than unity. A battery is considered to be expired when the amount of weighted throughput

have reached to the calculated lifetime throughput. Higher value of WSoC,m leads towards

the high weighted throughput, consequently reduces the battery lifetime. WSoC,m not only

degrades the battery faster but also increases the operational cost. The battery operational

cost can be determined from the battery wear cost and weighted battery throughput by

using the following equation.

Coc,b,m(d) =Cwc,bat ·WkWh(d) (3.13)

where, Cwc,bat : battery wear cost which was considered as the PbA battery in the
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Task 1.

3.4.3 Modified Objective Function

The modified objective function was obtained by considering WSoC,m in the

Equation 3.6 which can be given by

Minimize,W1×Cg +W2×Coc,b×WSoC,m (3.14)

Previously, the priority of the objectives was determined by the weight W1 and W2

but in this work, WSoC,m was included in the modified objective function to adjust the

priority when battery degradation is higher. Besides the higher value of W2, WSoC,m put

more weight to the battery operational cost, that increases the generator operational cost

as well as the fuel consumption. Comparatively higher value of W2 and lower value of

WSoC,m can provide better solution in terms of the system operational cost and battery

lifetime, although the fuel consumption may increase slightly. However, the low diesel

price can be effective but it depends on the providers. The more effective solution is to

reduce the value of WSoC,m. To do so, different strategies were analyzed in the Section 3.5.

In such ways, battery life time can also be improved.

3.5 Case Study

From the Section 2.4.1.1, it can be observed that the value of WSoC can be reduced

either by operating the battery at higher SoC range or by minimizing ∆tSoC i.e frequent

full charging. Hence, there is an associated cost to charge the battery by the diesel

generators as well as the fuel consumption. To obtain a cost effective battery cycling

strategy, different approaches were analyzed in this thesis which are described in this
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section as case study. There are two case studies which were considered and each case

have five different sub cases.

3.5.1 Case I: Objective Function without WSoC

In case I, WSoC was excluded in the the objective function, but at the end of the

calculation it was considered in the EMS. There were different battery cycling strategies

to minimize the value of WSoC which were considered in the five subcases. Different

periodical cycling strategies were considered in the subcases.

• Case I (a): No Charging Cycle

In Case I (a), simulations were done without considering any cycling strategy.

• Case I (b): Weekly Charging

This case is the combination of Case I (a) and weekly cyclic charging strategy.

Battery underwent one full charge at the first hour of a week. The required battery

power depends on the final hour SoC of the 7th day.

• Case I (c): Bi-weekly Charging

In Case I (c), it was considered that the battery was fully charged after every 2

weeks.

• Case I (d): Monthly Charging

After each month of operation, the battery was considered to be full charged in Case

I (d).

• Case I (e): Threshold Crossing
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In Case I (e), threshold value of WSoC was considered to schedule the battery for full

charging. In this strategy, the battery went through a charging procedure when the

value of WSoC was equal to or greater than the threshold value. Different threshold

values were considered to find the optimum value with the minimum operational

cost and the generators fuel consumption.

3.5.2 Case II: Objective Function with WSoC

In Case II, WSoC was incorporated in the objective function and simulations were

done thereafter. Similar to Case I, five sub cases were also analyzed in Case II.

3.5.3 Battery Charging Procedure

In periodically cycling strategy, the battery was fully charged up after the predefined

period (ex. one week). The amount of power to full charge (SoC=1) the battery (∆P(t))

after that period was calculated by using Equation (3.15)

SoC(t +1) = SoC(t)+
η∆P(t)∆t

Cb
(3.15)

where, SoC(t): SoC at hour t (for weekly charging, it is the final hour SoC of 7th

day; SoC(t +1): next hour SoC (first hour SoC at 8th day for weekly charging); Pb(t):

battery charging power (kW); Cb: battery capacity, (kWh); ∆t: charging duration; η :

charging efficiency;

Afterwards, the calculated power (∆P) was equally added up with the first two hours

load (PL) of 8th, 16th and 31st day for weekly, biweekly and monthly cycling operation

respectively. In the case studies, it was considered that the charging of the batteries was

done by the generator(s).
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PL,1 = PL,1 +
∆P
2

;PL,2 = PL,2 +
∆P
2

where, PL,1 and PL,2 are the load at hour 1 and 2 respectively at next day after one

periodic cycle.

In case auto charging (threshold crossing), the charging strategy is same as the

periodically charging strategy.
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CHAPTER 4 RESULT AND ANALYSIS

This chapter describes the results obtained from the simulation of the optimization

problem by using IBM ILOG CPLEX 12.6.1 software. Section 4.1 represents the wear

cost of the storage devices with associated information. Section 4.2 evaluates the

effectiveness of different batteries. Followed by, the use of modified optimization model,

considering how including the Schiffer Ah model in the objective function impacts the

operation of remote microgrids.

4.1 Storage Device Wear Cost

In this section, the wear cost of PbA, LiFePO4, Li-ion, Hybrid ion batteries, and

ultracapacitor (UC) are presented. The battery/UC bank was designed considering the

peak load demand, 64 kW. Wear costs were calculated by using the Equation 3.3.

Table 4.1. Storage device information [10], [50]–[56]

Type ηdis,% Rated
DoD,
%

Life
cycles

Initial
cost, $

Lifetime
throughput,
kWh

Wear
cost,
$/kWh

PbA 90 50 1,000 32,430 64,087 0.506
LiFePO4 90 90 3,000 91,650 192,065 0.477
Li-ion 92.5 90 5,000 36,000 319,680 0.112
Hybrid ion 90 80 4,000 46,605 260,403 0.178
UC 95 90 1 million 1,835,600 63,984,780 0.028

The required storage size (kWh) depends on rated DoD and discharging efficiency.

The manufacturer didn’t provide the precise information about the discharging efficiency

of LiFePO4, hybrid ion batteries, and UC; on that circumstance, the discharging efficiency

were considered 90%, 90% and 95%, respectively.The storage device wear cost was

calculated from the available data of DoD, life cycles, efficiency, and initial cost. All the

associated costs were considered in the U.S. dollar ($).
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4.2 Feasibility Analysis of the Storage Devices

This section analyze the feasibility of five different types of energy storage devices

that used in remote microgrids energy management system (EMS). Section 4.2.1

describes the comparison of the fuel consumptions while considering different storage

devices in the EMS. Comparison of lifetime of the storage devices and the system

operational cost are presented in the Section 4.2.2 and 4.2.3 respectively.

4.2.1 Fuel Consumption and Battery/UC Throughput

The yearly fuel consumption of the diesel generators depends on the amount of

battery throughput that utilized by the EMS and it varies for the different values of weight

W1 which are presented in the Figure 4.1 and 4.2. When the fuel consumption of the diesel

generators increases, the battery/UC throughput decreases and vice-versa. Wear cost is an

important factor to access more throughput from a battery/UC. Due to the lowest wear

cost ($0.028/kWh), the EMS utilized more throughput from the UC than the other storage

devices for each value of W1, and consequently, fuel consumption of the generators was

the lowest. Compared to other storage devices, generators consumed at least 3.15% less

fuel when the UC was used. Among all the batteries, fuel consumption was the lowest and

the yearly throughput was the highest while Li-ion battery was used in the EMS and this

was because of the lower wear cost. The yearly battery throughput of the PbA and

LiFePO4 batteries and consequence fuel consumption were remain almost the same for

the different values of W1 because of the narrow margin of their wear cost.
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4.2.2 Battery/UC Lifetime

The lifetime of a battery/UC was determined by comparing the yearly throughput

with the estimated yearly throughput. The estimated throughput was obtained from the

data in manufacturer sheets. However, the lifetime of a battery/UC depends on the total

throughput utilizes by the EMS. Excess amount of throughput leads to a shorter lifetime.

The value of weight, W1 influences the battery/UC lifetime. Higher the value of W1, higher

the battery throughput, and lower the battery lifetime. Figure 4.3 shows the lifetime

curves of different energy storage devices. The lifetime was considered equal to its float

life if the EMS could not utilize the total estimated lifetime throughput over this period.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

12

Battery/UC Life Time vs Weight, W
1

Weight, W
1

L
if

e 
T

im
e 

(Y
ea

rs
)

 

 

PbA
LiFePO

4

Li−ion
Hybrid Ion
Ultracapacitor
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In case of UC, due to high amount of unutilized energy, the estimated lifetime was

10 years for different values of W1. PbA battery had the shorter lifetime than the other

batteries and hybrid ion batteries had higher lifetime than the PbA and Li-ion for W1 > 0.5.

4.2.3 Operational Cost

The total cost of operation consists of the individual operating cost of generators,

battery/UC, and the float life cost of the battery/UC. The float life cost is the value of the

energy that being unused the battery/UC expires . Typically, the float life of a PbA battery

is 10 years [57]. For example, estimated yearly throughput of PbA is 6,408.7 kWh. At W1

= 0.3, the EMS utilized 2,909 kWh i.e. 3,046.7 kWh is being unused of cost $1,771 (wear

cost: $0.506/kWh).

Figure 4.4 shows that, the total operational cost was decreased with the increment of

weight W1 while using the UC. The optimal range of weight W1 was found in between 0.5

to 0.8 for most of the batteries. Total cost of operation was almost 3 times higher for UC

at each value of W1, although the value of the UC wear cost ($0.028/kWh) is the lowest

among the energy storage devices. This was because of high float life cost. Due to the

high float life cost of UC, the total operational cost of the microgrid system was too high.

High initial cost of UC ($1,835,600 for 64 kWh) was the key factor for the high yearly

operational cost. The estimated yearly throughput of UC is 6,398,478 kWh (10 years float

life [10]) but the EMS utilized maximum 98,575 kWh, which leads to the high float life

cost and the total operational cost as well. Therefore, UC storage system is not a viable

option in this case.

At different values of W1, the total operational cost was comparatively higher for
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Figure 4.4. Yearly operational cost

using the PbA and LiFePO4 than the other two types of battery due to the high wear cost

(Figure 4.4). According to the results, the Li-ion and hybrid ion batteries were more

potential storage devices for remote microgrids EMS. In both instances, estimated lifetime

was 10 years with a negligible float life cost. However, the Li-ion battery was found to be

2.55% ($2,812) more cost effective than the hybrid ion battery. Additionally, the yearly

fuel consumption was found to be about 1.5% (171 gallons) lower in the system while the

Li-ion battery was used. In this study, all the analysis are based on the theoretical data. In

real life operation, the performance of a particular battery may differ.
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Table 4.2. Yearly simulation for Case I (a)

W1 Yearly
fuel con-
sumption,
gallons

Yearly
through-
put, kWh

Float life
cost, $

Total op-
erational
cost,$

Weighted
yearly
through-
put, kWh

Weighted
Float life
cost,$

Weighted
Total op-
erational
cost, $

0.1 14,144 3,058 1,696 133,945 3,276 1,585 13,3945
0.2 14,120 2,962 1,744 133,723 4,579 926 133,723
0.3 14,067 2,961 1,745 133,222 12,046 0 136,074
0.4 14,027 3,858 1,291 132,398 27,3690 0 143,447
0.5 13,978 5,000 713 132,398 32,448 0 145,574
0.6 13,811 9,014 0 132,147 62,369 0 159,158

4.3 Incorporation of WSoC in the EMS

In this section, different subcases were analyzed considering total operational cost

and generators fuel consumption. The battery weighted throughput and lifetime for

different subcases are included in the appendix. The operational cost and fuel

consumption were calculated in yearly basis.

4.3.1 Case I: Objective Function without WSoC,m

In case I, battery underwent a full charge periodically so that the value of state of

charge (SoC) weight factor, WSoC,m can be reduced.

Table 4.2 presents the simulation results in Case I (a). The minimum operational

cost was found at W1=0.6 when WSoC,m was not considered in the EMS. However, the

optimum point was shifted to W1=0.2 due to the consideration of WSoC,m in the EMS. It

was the consequence of the high value of WSoC at W1 >0.3. WSoC increased till the end of

the year and never fall back to the initial value (=1) when W1 was 0.5 and 0.6. This was

due to the lack of full charge throughout the year. Figure 4.5 shows the WSoC,m and

corresponding SoC profile in Case I (a) at three different values of W1. It is clear to see

that for W1= 0.5 & 0.6, the battery SoC did not reach the full charge region (i.e., SoC=1.0)
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Figure 4.5. WSoC,m and SoC plots for different weight, W1 in Case I (a)

after first few cycle. As a result, ∆tSoC gradually increased until the end of the year. The

battery SoC reach 1.0 once in Case I (a) with W1=0.4 which also reflect in the values

WSoC,m at that point.

In Case I (a), the optimum total operational cost was found about $600 higher than

the Case I (b), (c), and (d). Among these cases, the lowest operational cost ($133,155) was

obtained in Case I (b). Figure 4.6 shows the yearly total operational cost curves for all the

cases and weight, W1. The optimum operating point for case I (b), (c), and (d) was at

W1=0.3 but in case I (a), it was at 0.2. Fuel consumption of the generators was found

almost the same at different cases and different values of weight, W1. Figure 4.7 shows the

generator fuel consumption.

In Case I (e), the minimum operational cost was found at T h,WSoC,m=1.05 which

was $133,034 (Figure 4.8). In the same point, the fuel consumption by the generators was

also the lowest 14,052 gallons (Figure 4.9).
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Figure 4.7. Yearly generators fuel consumption in Case I (a)-(d)
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Figure 4.9. Yearly generators fuel consumption in Case I (e)
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4.3.2 Case II: Objective Function with WSoC,m
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Figure 4.10. WSoC,m plots at W1=0.4 in Case II (a)-(d)

From Case II (a) to (d), the minimum operational case was found at W1=0.4 and

considered it as the optimum operational point. The value of WSoC,m was the highest in

Case II (a) due to lack of regular full charging of the batteries. It was obvious that WSoC,m

would be lower in Case II (b) which was weekly cycling strategy and then in the

bi-weekly and monthly cycling strategy. Figure 4.10 illustrates the WSoC,m in Case II (a),

(b), (c), and (d). The average value WSoC,m in Case II (c) and (d) were about 1.4 and 1.6

respectively. WSoC,m remains high over longer period of time in Case II (d).

However, the total operational cost depends on the value of WSoC,m; higher value

leads towards the higher cost. Compared to Case II (a), the total operational cost in the

other cases were lower although the difference was small (Figure 4.11). In Case II (b) and

(c), the total operational cost was almost the same ($3 higher in Case II (a)). By using
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Figure 4.11. Yearly total operational cost in Case II (a)-(d)
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Figure 4.12. Yearly generators fuel consumption in Case II (a)-(d)
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bi-weekly charging approach (Case II (b)), the yearly total operational cost can be reduced

by $192 at the optimum operating point, W1=0.4. In the same point, the fuel consumption

was the lowest in Case II (b). Therefore, in Case II (b), operational cost was $3 higher

than Case II (c), but the generator fuel consumption was lower by 13 gallons. Compared

to Case II (a), the fuel consumption in the system can be reduced by 22 gallons in Case II

(c) (Figure 4.12).
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Figure 4.13. WSoC,m plots for the different values of T h,WSoC,m at W1 = 0.4 in Case II (e)

Auto cycling was considered in Case II (e) which is such that the battery undergoes

the charging process to reach the full charge state (SoC=1) when WSoC,m is equal or higher

than a threshold value (T h,WSoC,m). The charging procedure of the battery is similar as the

case II. The value of T h,WSoC,m was considered from 1.25 to 2.5 with 0.25 interval to find

an optimum value.
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In Case II (a)-(d), the optimum operating point (minimum operational cost) was

found at weight, W1=0.4 and the value of W1 remained the same for Case II (e). The value

of WSoC,m is an important factor to obtain the lower operational cost. Figure (4.13) WSoC,m

variation within the threshold value; however, in some cases, there were small sharp peaks

in WSoC,m beyond the threshold value due to the number of bad charging (incomplete full

charging) during that days.

However, the number of charging cycles increases with the decrement of

T h,WSoC,m. Diesel generators fuel consumption also increases and impacts the total

operational cost. Figure 4.14 shows the number charging cycles required for different

values of threshold values. The highest number of charging cycle were 66 at

T h,WSoC,m = 1.25 and the lowest were 12 at T h,WSoC,m = 2.5.
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The fuel consumption depends on the battery throughput since the total load was

supplied by the generators and/or battery. Except at T h,WSoC,m = 1.25, generators fuel

consumption was higher for the higher value of T h,WSoC,m and this is because of high

number of cycling charging. Whenever T h,WSoC,m increases, the utilization of the battery

throughput decreases; however, it increases the fuel consumption slightly but the amount

is not that significant. In Case II (a), generators fuel consumption was 14,071 gallon in the

optimum point at weight, W1 = 0.4. At the same point in Case II (e), the fuel consumption

was lower than Case II (a) for all the values of T h,WSoC,m but at the value of 1.5, fuel

consumption was found to be the lowest (Figure 4.15). The lowest operational cost was

also found at T h,WSoC,m = 1.5. Figure 4.16 shows that the total operational cost was

lower than Case II (a) for all the values of T h,WSoC,m.
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Figure 4.15. Yearly generators fuel consumption in Case II (e)
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Figure 4.16. Yearly total operational cost in Case II (e)

4.3.3 Summary

According to the results, the threshold crossing charging strategy was the most cost

effective over periodically charging strategy considering the operational cost and

generator fuel consumption. While comparing the similar sub cases of Case I and II,

results also shows that the operational cost and fuel consumption was low when WSoC,m

was considered in the objective function. Compared to the subcases, less fuel was

consumed (reduced by 82 gallons) in the Case II (e) and consequently, saved the yearly

operational cost by $826 (0.62%) (Figure 4.17 and 4.18). In this part, results were

compared with the Case I (a).
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CHAPTER 5 CONCLUSIONS

Energy storage system (ESS) in remote microgrids improves the reliability and

efficiency of the system. It also ensures cost-effective operation of the system by utilizing

more renewable energy which are intermittent in nature. In addition, generator fuel

efficiency is increased by using ESS in remote microgrids.

Lead acid (PbA) batteries are the most common energy storage system in remote

microgrids due to low installation cost ($/kWh) and maintenance. But the lower life cycle

and allowable depth of discharge are its main drawbacks. In recent years, lithium ion

(Li-ion) and hybrid ion batteries are the immersing technologies that provide better

storage solution in a sense of higher life cycle, rated DoD, operational cost, and lifetime.

But the initial cost of the Li-ion battery is comparatively higher than the PbA batteries.

However, ultracapacitor (UC) has 1 million life cycles, high discharging efficiency, and

higher depth of discharge, although the initial cost is too high. In this thesis, the feasibility

of different energy storage technologies was studied to use them in the remote microgrids

energy management system (EMS). The results demonstrated that the battery wear cost is

an important factor to consider while designing an EMS. It was also found that the Li-ion

and hybrid ion batteries have great potentiality for remote microgrids EMS, although

Li-ion battery was found to be 2.55% more cost-effective and can reduce fuel

consumption by 1.5% in the system.

The operating conditions of a battery are characterized by different weight factors.

Besides degrading the battery, those factors increase the system operational cost and fuel

consumption in remote microgrids. To analyze the impact of those factors in the EMS, the
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Schiffer Ah model was adopted in this thesis but for the sake simplicity, only SoC

weighting factor was considered in the EMS. However, this model is only applicable for

PbA battery. The SoC weight factor impacts the operation of remote microgrids EMS and

reduces the battery life time considerably. To reduce the value of SoC weight factor,

different battery charging approaches were analyzed that prevent degradation and

minimize the system operational cost. Threshold crossing battery cycling strategy was

found the most cost effective approach.

5.1 Conclusions

Firstly, a cost analysis of different energy storage technologies were presented for

remote microgrids EMS. Result showed that the high initial cost and low energy density

of UC leads towards the high operational cost. Batteries with high wear cost (PbA and

LiFePO4), the EMS should consider the impact on the lifetime when scheduling the

batteries. The hybrid ion and Li-ion battery showed great potential for remote microgrids

EMS that can lead to substantial reductions in fuel consumption.

Secondly, the impact of SoC weight factor, WSoC was analyzed while PbA battery

was considered as the ESS in the remote microgrid EMS. Results showed that frequent

full charging of battery reduces WSoC. Moreover, operation of battery at high SoC value

may minimize the impact of WSoC.

5.2 Future Work

The weighted Ah model is only applicable for PbA battery. Moreover, only the SoC

weight factor was considered in the EMS to estimate the battery throughput and life time

besides total operational cost and generators fuel consumption. Therefore, the future
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works of this thesis can be to

(a) incorporate acid weight factor in the remote microgrid EMS for PbA battery.

(b) develop a general weighted Ah model for all the ESS rather than PbA battery

only and implement in the remote microgrid EMS.
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APPENDIX

This section presents the figures of battery weighted throughput and life time in

different cases of objective 2.
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Figure .1. Yearly battery weighted throughput in Case I (a)-(d)
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Figure .2. Battery lifetime in Case I (a)-(d)
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Figure .3. Yearly battery weighted throughput in Case I (e)
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Figure .4. Battery lifetime in Case I (e)
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Figure .5. Yearly battery weighted throughput in Case II (a)-(d)

0.1 0.2 0.3 0.4 0.5 0.6
4

6

8

10

12

Battery Lifetime vs Weight, W
1

Weight, W
1

B
at

te
ry

 L
if

et
im

e 
(Y

ea
rs

)

 

 

Case II (a)
Case II (b)
Case II (c)
Case II (d)

Figure .6. Battery lifetime in Case II (a)-(d)
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Figure .7. Yearly battery weighted throughput in Case II (e)
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