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ABSTRACT 

UNDERSTANDING THE EFFECT OF BVDV ON INNATE IMMUNE RESPONSE 

THROUGH NEUTROPHILS 

NEELU SINGH THAKUR 

2017 

Bovine viral diarrhea virus (BVDV) is one of the highly prevalent and 

economically important diseases of cattle industry worldwide. The two major 

consequences of this disease are persistent infection and immunosuppression. Several 

studies have been done to determine the underline mechanisms of BVDV-induced 

immunosuppression targeting antigen presenting cells, adaptive immune system cells and 

cytokine gene expression. However, very little research has been done to determine the 

effect of BVDV on neutrophils. 

Neutrophils are one of the most abundant while blood cells (WBC) in the 

peripheral blood, which play a critical role in the innate as well as adaptive immune 

response. The current study measured the effect of BVDV infection on viability of 

neutrophils, their surface marker expression and functional abilities including 

migration/chemoattraction, phagocytosis, reactive oxygen species production (oxidative 

burst) and neutrophil extracellular trap (NET) formation. These studies revealed that none 

of BVDV strains affected the viability of neutrophils in vitro.  BVDV infection did affect 

surface marker expression.  TGAC and TGAN reduced the expression of CD18 and L-

selectin while increasing CD14 expression. All ncp BVDV strains used enhanced 

neutrophil migration while the cp BVDV strain reduced neutrophil migration as 

compared to mock-infected control treatment.  Among the BVDV strains used in current 
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study, highly virulent 1373 significantly enhanced neutrophil migration. The 

enhancement in neutrophil migration by 1373 was approximately 55% higher as 

compared to LPS-treated positive control macrophages. 

BVDV infection significantly enhanced neutrophil phagocytosis activity for 0.2 

µm microsphere beads as compared to mock infection. Neutrophil phagocytic activity for 

rhodamine-labeled E. coli was reduced by BVDV infection as compared to LPS-control. 

TGAC, TGAN, 1373 or 28508 had 23%, 6%, 19% or 12% less phagocytic activity 

respectively as compared to mock-infected rhodamine-labeled E. coli-treated neutrophils. 

All BVDV strains used in the current study also reduced oxidative burst by 

approximately 50% as compared to positive control (p<0.05). In contrast, the four strains 

increased the neutrophil NET formation.  

The current study revealed that BVDV infection modulates neutrophil activity in 

a strain dependent manner. This effect may result in different disease outcomes, e.g. 

enhanced neutrophil migration by highly virulent 1373 may be the reason for severe 

neutropenia and hemorrhagic lesions in  in vivo infection. In addition to pathogenesis, 

further studies need to be done to determine the role of neutrophils in shaping adaptive 

immune system following BVDV infection. 
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UNDERSTANDING THE EFFECT OF BVDV ON INNATE IMMUNE RESPONSE 

THROUGH NEUTROPHILS  

 

CHAPTER 1 

RESEARCH OBJECTIVES AND LITERATURE REVIEW 

INTRODUCTION 

 

Bovine viral diarrhea virus (BVDV) is one of the major devastating problems in 

the cattle industry. BVDV infections produce variable and complicated symptoms 

including reproductive disorders, abortion, growth retardation, diarrhea, and lethal 

mucosal disease.  The greatest impact is likely from immunosuppression, which makes 

animals more susceptible to a vast variety of other pathogens including bacteria and 

viruses. Several studies have been conducted to evaluate the underline mechanisms of 

BVDV-induced immunosuppression and have targeted mainly adaptive immune cells.  

The current study was designed to investigate the effect of BVDV on a key cell of 

the innate immune system, the neutrophil.  Neutrophils are the first line of defense in the 

innate immune system along with macrophages and represent the largest population of 

circulating white blood cells (WBCs).  Neutrophils not only phagocytize and destroy the 

invading pathogen but also secrete a wide variety of cytokines and chemical mediators 

that help in shaping the adaptive immune response.  Viral infection to neutrophils may 

significantly affect their number (quantity) and functional activity.  This can lead to sub-

optimal innate immune defense as well as reduced stimulation to generate an effective 

adaptive immune response.   
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 To address these questions, the major objective of current study was to 

investigate the effect of different strains of BVDV on neutrophils.  Our hypotheses were: 

1) BVDV infection to neutrophils significantly affects neutrophil viability in a strain 

dependent manner; 2) BVDV infection changes the phenotypic characteristics of 

neutrophils; 3) BVDV infection alters the functional activity of neutrophils leading to 

immunomodulation. 

RESEARCH OBJECTIVES 

1) To isolate and culture bovine neutrophils as an in vitro model to determine effect of 

BVDV on innate immune system. With this objective, three approaches were taken: 

a) Optimize methods for neutrophil isolation from bovine peripheral blood to achieve 

high yields and viability.  

b) Optimize morphological and phenotypic characterization of the neutrophils. 

c) Optimize culture conditions for the neutrophils.  

2) Investigate the effect of BVDV on neutrophil viability and phenotype. The approaches 

for this objective were: 

a) Study the effect of different biotypes and virulent strains of BVDV on neutrophils 

viability as well as surface marker expression (CD14, CD18 and L-selectin). 

3) Investigate the effect of different strains of BVDV on neutrophil functional activity.  

Under this objective, four major functions of neutrophils were investigated: 

a) Phagocytic activity  

b) Chemotaxic ability  

c) Oxidative burst  

d) Neutrophil extracellular trap formation  
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LITERATURE REVIEW 

 

1.1 BVDV disease:  

 Bovine viral diarrhea virus (BVDV) is a major problem for the cattle industry 

worldwide.  BVDV infections cause multiple forms of disease ranging from inapparent to 

lethal mucosal disease (MD) (Chase et al. 2015).  Its ability to establish lifelong 

persistent infection in animals, rank this disease as the most insidious and devastating 

viral pathogen of the cattle industry (Brackenbury et al. 2003, Chase et al. 2004, Chase 

2013, Chase et al. 2015).  

  Despite 60 years of vaccination, BVDV infections remain a source of significant 

economic loss for producers in the United States (Van Campen 2010, Ridpath 2012) and 

the world (Houe 1999, Mockeliuniene et al. 2004).  The economic importance of BVDV 

increased with emergence of more virulent strains during early 1980s and 1990s (Goens 

2002).  A study conducted in 1999, estimated that farmers lose about US$20 million per 

million calvings when animals were infected with a low-virulence BVDV strain, however 

it increased to US$57 million per million calvings with a highly-virulent BVDV strain 

(Houe 1999).  The recent appearance of a new putative pestivirus species, tentatively 

called "HoBi-like" or "BVDV-3" or "atypical pestiviruses," which was first identified 

in Europe in a fetal bovine serum (FBS) imported from Brazil (Bauermann et al. 2013), 

may further increase these losses.  

 BVDV infections produce variable and complicated symptoms, that vary from 

growth retardation, persistent infection, hemorrhagic symptoms, respiratory and enteric 

infections, reproductive disease to lethal mucosal disease (MD) (Chase et al. 2015). On 

the basis of severity and duration, BVDV infection can be divided into various forms: 
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inapparent infections, acute disease, in utero or congenital infection, mucosal disease and 

chronic disease.  

 The inapparent form of disease is characterized by a slow rise in antibody levels over 

the first 10-12 weeks after infection and an inability to recover virus. The failure to 

isolate virus from either nasal swabs or blood and the slow development of detectable 

antibody in serum may be due to antibody is still developing and in an undetectable range 

and the virus may be sequestered in lymphoid tissues (Ohmann 1983).  

 Acute infection is most commonly caused by the noncytopathic (ncp) strain of 

BVDV (Lanyon et al. 2014), characterized by reduced general health condition, 

respiratory distress, increased body temperature, sporadic coughing, nasal discharge and 

elevated body temperature (Muller-Doblies, Arquint et al. 2004). Viremia can be 

observed as early as 2 days post infection and usually peaks at 7 days post infection 

(Smirnova et al. 2008), with the highest body temperature reaching values above 39°C. 

The rise in body temperature is generally biphasic, with one peak at day 4 and a second 

peak at day 8. These clinical signs last from 3 to 15 days with a full recovery by the end 

of three weeks (Muller-Doblies, et al. 2004). An acute infection has different outcomes 

depending upon physiological status of the infected animals (Figure 1.1).  
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Figure 1.1. Clinical forms of BVDV. BVDV can cause a spectrum of diseases depending 

on the virulence of the strain and the immune state of the host. Adapted from Elmowalid, 

G (2003). Unmasking the effect of bovine viral diarrhea virus on macrophage 

inflammation. Ph.D. Thesis. South Dakota State University, Brookings, SD 57007, U.S.A 

(Pt): 73 

 

 BVDV infection of pregnant animal results in a placentome infection, leading to an 

in utero or congenital infection. The in utero or congenital infection early in pregnancy 

generally results in early embryonic death and infertility (Van Oirschot 1983).  BVDV 

infection of pregnant cows significantly reduced conception rates (Virakul et al. 1988, 

McGowan et al. 1993) and resulted in death, abortion or mummification of the fetus 

(Kendrick 1971, Sprecher et al. 1991, Barr and Anderson 1993).  Fetal death during that 

period may be due to extensive damage of placenta that interferes with the oxygen and 

nutrient supply to fetus (Murray 1991).  However, experimental infections with the 

cytopathic (cp) strain at a similar stage of pregnancy did not affect conception or fetal 

viability, indicating the importance of different biotypes in disease outcomes (Brownlie et 

al. 1989).  
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 In addition to death, abortion or mummification of the fetus, BVDV infection to 

pregnant cows may result in birth of anatomically abnormal calves.  Congenial defects 

result when BVDV establishes a stable infection during early organogenesis in the 

developing fetus (Van Oirschot 1983, Karakaya et al. 2013, Brown et al. 1973, Done et 

al. 1980).   

 The most important fetal infection outcome is persistent infection (PI).  PI generally 

occurs in calves, which are infected with ncp BVDV during the first 40-120 days of 

pregnancy.  This occurs because the fetal immune system is not fully developed and 

cannot distinguish self and non-self-antigen (Brackenbury et al. 2003, Chase et al. 2004, 

Chase et al. 2015).   

 In PI, the BVDV infected animals immune system treat BVDV as self and are 

tolerazied. This results in the lack of a BVDV immune response including neutralizing 

antibody. PI animals may look apparently health but they serve as a continuous source of 

BVDV infection to other animals. In these PI animals, any stress may cause mutations in 

the ncp BVDV strain to become a homologous cp strain (Tautz et al. 1998, Darweesh et 

al. 2015) and the superinfection of antigenically homologous ncp and cp BVDV strain 

results in fatal mucosal disease (Brownlie et al. 1984, Sentsui et al. 2001, Kane et al. 

2015).  Mucosal disease is characterized by high mortality and extensive lesions in the 

gastrointestinal tract (Huck 1957).  

1.2 Bovine Viral Diarrhea Virus:  

Bovine viral diarrhea virus (BVDV) is a single-stranded, positive-sense RNA 

virus belonging to the Pestivirus genus and the family Flaviviridae (Ostachuk 2016). The 

virus shares similarities to other genera of Flaviviridae, which includes viruses of human 
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importance including hepatitis C virus, yellow fever virus, Dengue fever virus, Japanese 

encephalitis virus, West Nile virus, St. Louis encephalitis virus and the recently 

reemerging Zika virus (Burd and Griffin 2016). The Pestivus genus also contains two 

other viruses of animal importance: classic swine fever virus and border disease virus in 

sheep (Nettleton et al. 1998). 

  BVDV has a genome of approximately 12.5 kb that encodes a single open reading 

frame. This single open reading frame encodes a polyprotein of about 4000 amino acids. 

This polyprotein is then cleaved into 11-12 individual viral proteins either by host cell 

and/or viral proteases (Tautz et al. 1996, Xie et al. 2014) to make the complete virion.  

(Figure 1.2). 

 

 

 

Figure 1.2. The schematic representation of the BVDV encoded proteins. BVDV is a 

single-stranded RNA virus comprised of 12,300 nucleotides. BVDV consists of a single 

open reading frame between two untranslated regions (5’ and 3’). The polyprotein is 

autoprocessed into both structural and non-structural proteins. In cytopathic biotype 

viruses, NS23 protein cleaves into NS2 and NS3 proteins (CP-lower panel) while in 

noncytopathic biotype viruses, NS23 does not cleave into two proteins (NCP upper 

panel). from:  Morarie, S.E. (2012). “Unraveling the biology of bovine viral diarrhea 

virus (BVDV) persistent infections: integrating field and laboratory studies.” Ph.D. 

Thesis. South Dakota State University, Brookings, SD 57007, U.S.A (Pt): 9. 
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BVDV strains can be classified in two ways: 1) comparison of sequences from the 

5' untranslated region (UTR) of the viral genome, which divide BVDV into two 

genotypes  Type 1 (BVDV1) or Type 2 (BVDV2) and subgenotypes,1a, 2a, etc. (Ridpath 

et al. 1994) and 2) their cytopathogenicity in cell culture-where BVDV is divided into 

two biotypes; cytopathic (cp) or non-cytopathic (ncp) BVDV (Weiss et al. 1994, Deregt 

and Loewen 1995).   

The phylogenetic analyses of BVDV isolates using the least conserved portion of 

the BVDV E2 glycoprotein gene (sequence of 420 nucleotides) also can be used to 

identify the two genotypes (BVDV1 and BVDV2) classification based on 5' UTR 

sequence (Tajima and Dubovi 2005).  At the time of this writing, the BVDV1 genotype 

has at least 15 subtypes (1a-1o) with complete genomic sequences of subtype BVDV-1a, 

1b, 1d, 1e, 1k and 1m while BVDV2 genotype has only two subtypes, BVDV2a and 2b 

(Xie et al. 2014). 

The cp biotypes of BVDV are generated by mutation with a few nucleotides 

inserted in their homologous ncp biotypes, that results in nonstructural protein NS23 

being cleaved into NS2 and NS3 (Tautz et al. 1996, Balint et al. 2005, Darweesh,  et al. 

2015) (Figure 1.2)  

1.3 Structure of BVDV virion and its replication:  

BVDV is a relatively small oval to pleomorphic enveloped viral particle, 40-60 

nm in diameter, with numerous projecting knobs, 4 to 5 nm in diameter in its envelope 

(Chu and Zee 1984, Ohmann 1990). BVDV genome (12.5 kb) is packed with C (capsid) 

protein and finally by envelope glycoproteins Erns, E1 and E2. E2 (Wang et al. 2014).  



9 

 

The binding of glycoproteins with various cell surface receptors including cluster 

of differentiation 46 (CD46), heparan sulfate, glycosaminoglycans and/or the low-density 

lipoprotein (LDL) receptor help virus attachment to host cell (Iqbal et al. 2000, Krey et 

al. 2006, Krey et al. 2006) followed by clathrin-dependent endocytosis (Krey et al. 2006). 

The low pH of the endosomes in the cytoplasm induces fusion of viral and endosomal 

membrane, causing release of the genome.  

Viral RNA replicates and is translated into structural and non-structural proteins. 

The virions assemble in association with the endoplasmic membrane (Jordan et al. 2002) 

and autophagosomes (Ohmann 1990, Fu et al. 2014, Rajput, 2013) and are subsequently 

released either by cell lyses and/or via exocytosis. (Figure 1.3) 

 

Figure 1.3. BVDV replication cycle. BVDV virion binds to specific cellular receptors: 

cluster of differentiation 46 (CD46), heparan sulfate, glycosaminoglycans and/or the 

low-density lipoprotein (LDL) receptor through their envelope proteins. Following 

attachment, BVDV virion are internalized through receptor-mediated endocytosis. The 

virion replicates in the cytoplasm and assembles in the endoplasmic reticulum. Mature 

BVDV virions are released through virion-containing vesicles that fusion to the host cell 

plasma membrane. Adopted from Lindenbach and Rice, 2001. Flaviviridae: the viruses 

and their replication, In: Knipe, D.M., Howley, P.M., Griffin, D.E., Lamb, R.A., Martin, 

M.A., Roizman, B. (Eds.), Fields Virology, 4th ed., Vol. 1. Lippincott Williams & Wilkins, 

Philadelphia, PA, pp. 991–1041. 
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During replication, the BVDV polyprotein is cleaved into 11-12 individual viral 

proteins: Npro, capsid/nucleocapsid (C), Erns, envelop 1 (E1), E2, P7, non-structural 23 

(NS23) [NS2 and NS3 in cp BVDV], NS4A, NS4B, NS5A and NS5B, respectively by 

host cell and viral proteases. The processing of the polyprotein starts with cleavage of 

nucleocapsid protein (C) by Npro, which contains autoprotease activity (Rumenapf et al. 

1993, Stark et al. 1993).  

This event is followed by cleavage of Erns12 protein at the C terminus of E2 

protein separated from Erns12, resulting Erns1 and E2 proteins. After E2 (gp53) is 

released from the precursor, E01 is processed into Erns (gp48), E1 (gp25) by 

endoplasmic reticulum (ER)-resident host cell proteases (Rumenapf et al. 1993, Bintintan 

and Meyers, 2010). 

A protease located in the N-terminal region of nonstructural (NS) protein, NS3, 

catalyzes the cleavages and release of NS4A, NS4B, NS5A, and NS5B (Tautz et al. 

2000). Each processed protein in BVDV has its unique role in virus replication. The C 

protein play an important role in genomic RNA packaging (Reimann  et al. 2007) and 

provides structure for the virion envelope. The Erns, E1, and E2 have important roles in 

virus binding and cell entry as well as for immunologic recognition by the host.  

The E2 protein contains the major recognition sites for BVDV neutralizing 

antibodies. The neutralizing epitopes of E2 are important targets for BVDV vaccine 

efficacy (Donofrio et al. 2006, Chimeno Zoth et al. 2007). Unlike E1 and E2, Erns is 

dispensable for cellular entry (Iqbal et al. 2004, Ronecker et al. 2008). The E1 protein is 
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predicted to have various functions including a membrane anchor for E2. The E1 and E2 

form E1-E2 heterodimers. 

The E1-E2 heterodimers appear to be essential for cell entry of BVDV (Ronecker 

et al. 2008).  Among the BVDV nonstructural proteins, the Npro (p20) is the first protein 

produced from the open reading frame. It has papain-like protease activities (Rumenapf 

et al. 1998), which initiates BVDV polyprotein processing (Stark et al. 1993). NS23 

(p125) mediates multiple functions including zinc-finger, a protease, and a helicase 

(Wiskerchen and Collett 1991, Warrener and Collett 1995, Xu et al. 1997). However, for 

full serine protease activity, NS3 requires NS4A (p10) as a cofactor (Lattwein  et al. 

2012). The cleavage of NS23 protein in NS2 (p54) and NS3 (p80) results in cytopathic 

BVDV strains (Balint et al. 2005, Darweesh et al. 2015). Protease activity of NS3 cleaves 

NS4A, NS4B (p32), NS5A (p58) and NS5B (p75). 

The NS4B protein plays an important role in the BVDV replication complex 

(Weiskircher et al. 2009), while NS5A contains an essential zinc-binding site 

(Tellinghuisen et al. 2006). The NS5B (p75) acts as RNA-dependent-RNA polymerase 

and is needed to replicate the viral genome (Zhong et al. 1998). 

1.4 BVDV- induced Immunosuppression:  

BVDV infection is an immunosuppressive infection. It affects both the adaptive 

as well as the innate immune system (Chase 2013). BVDV infection reduced the number 

and functional ability of both granulocytes as well as monocytes (Brewoo et al. 2007). An 

acute BVDV infection or vaccination with modified live virus vaccine (MLV) of BVDV 

resulted in decreased delayed type hypersensitivity (DTH) to Mycobacterium avium 
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subspecies (Thoen and Waite 1990). Similarly, animals with an established immune 

response to attenuated  

Mycobacterium bovis (BCG) had a transient immune suppression following acute ncp 

BVDV infection (Charleston et al. 2001). Immunosuppression caused by BVDV 

facilitated secondary infections from bovine respiratory syncytial virus, parainfluenza 

virus, reovirus, bovine adenovirus and bovine herpesvirus-1 infection (Richer et al. 1988, 

Risalde et al. 2011). 

BVDV is an important part of the bovine respiratory disease complex (BRDC) 

(Hay et al. 2016).  BRDC is one of the most economically significant disease of the cattle 

feedlot industry (Larson 2015), which further enhances the economic impact of BVDV in 

a country’s agricultural economy 

1.4.1 Effect of BVDV on Innate immune response: 

The pattern recognition receptors (PRR) including Toll-like receptors (TLR), 

retinoic acid-inducible gene-I-like receptors (RIG-I-like receptor) and nucleotide-binding 

oligomerization domain-like receptors (NOD like receptors) play an important role in 

innate immune system. These receptors activate the innate immune system and shapes an 

effective adaptive immune response (Kawai and Akira 2009, Kumar et al. 2011).  

The interaction of TLR with their respective ligands leads to downstream pathway 

changes to cytokines and chemokines (Schaefer et al. 2004). Both cp and ncp BVDV 

altered the TLR3, TLR7, TLR8 and TLR9 expression (Lee et al. 2008).  Both biotypes 

upregulated TLR7 expression while, only ncp BVDV enhanced the expression of 

TLR3,while TLR3 was down regulated by cp BVDV.  In addition, both these laboratory 

biotypes suppressed pro-inflammatory cytokines, TNF-alpha, IL-1beta, IL-6 and co-
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stimulatory molecules, CD80 and CD86, following infection (Lee et al. 2008). More 

virulent NCP strains enhance pro-inflammatory cytokines (Chase personal 

communication).  Ncp BVDV did not induce type 1 interferons in vitro (Diderholm and 

Dinter 1966).  However, a strong type 1 interferon response was observed in an in vivo 

experiment with similar ncp strain (Charleston et al. 2002), indicating that BVDV 

biotypes behave differently in different environments.  

Ncp BVDV infection  reduced IFNγ and IL-12 production (Risalde et al. 2011). 

IL-12 acts as a growth factor for NK cells and cytotoxic T cells (Trinchieri 1995), 

indicating that BVDV infection can indirectly affect NK cells and T cells activity through 

IL-12. In addition to cytokines, various antimicrobial peptides and superoxides also 

modulate the innate immune response (Ganz 2003, Break et al. 2012). Both cp TGAC 

and ncp TGAN BVDV reduced phorbol-12-myristate-13 acetate (PMA)-induced 

superoxide production following infection, while only ncp BVDV primed bone marrow-

derived macrophages (BBMM) enhanced reactive nitrogen production in response to 

Salmonella dublin (Adler et al. 1994). Similarly, only BVDV2, not BVDV1 inhibited the 

LPS-induced upregulation of tracheal antimicrobial peptide (TAP) mRNA (Al-Haddawi 

et al. 2007). Another study showed that BVDV (unidentified strain) inhibited 

phytohemagglutinin- (PHA), PHA plus phorbol-12-myristate-13 acetate- (PMA) or PHA 

plus calcium ionophore (A23187)-stimulated bovine peripheral blood mononuclear cell 

(PBMC) proliferation.  Further, BVDV inhibited A23187stimulated leukotriene B4 

(LTB4) synthesis in the culture supernatants (Atluru et al. 1992). 

1.4.2 BVDV, neutrophils and immune response: 
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Neutrophils are one of the predominant white blood cells in circulating blood and 

are considered the first line of defense in the innate immune system (Kobayashi and 

DeLeo 2009) along with macrophages. Neutrophils play an important role against 

invading bacteria and, initiate innate as well as adaptive immune responses. Neutrophils 

activate innate immune response through various mediators including interleukin-8 (IL-

8), platelet activating factor (PAF), leukotriene B4 (LTB4) or complement fragment 5a 

(C5a) (Guo et al. 2003, Mitchell et al. 2003, Mantovani et al. 2011, Mitchell et al. 2014). 

The ability of neutrophils to migrate and destroy the invading microorganism depends 

upon their expression of surface markers including  cluster of differentiation (CD) -14 

(CD14), CD-18 and L-selectin (Yoshitake et al. 2002) Virus affecting the neutrophil 

surface markers can significantly affect the host immune defense mechanism.  

Normally, neutrophils are present in circulation in a resting state, which ensures 

that their oxidative intracellular contents are not released to damage the host tissue 

(Wright et al. 2010). During acute inflammation, neutrophils become activated and kill 

the invading organism (mainly bacteria) and help in shaping adaptive immune response 

(Kasama et al. 2005, Jaillon et al. 2013). Neutrophils activate the adaptive immune 

system through pro-inflammatory cytokines and chemokines including tumor necrosis 

factor alpha (TNF α), interleukin-1β (IL-1β), interleukin-8 (IL-8), interleukin-6 (IL-6), 

interferon inducible protein 10 (IP-10) and macrophage inflammatory protein (MIP)-1α 

(Altstaedt et al. 1996, Kasama et al. 2005).  

Neutrophils become activated via a two-stage process: 1) priming and 2) 

mobilization. Priming occurs by exposure to invading bacterial products or the 

cytokines/chemokines, TNF-α, GM-CSF, IL-8, IFN-γ, and /or MIP-1 (Hallett and Lloyds 
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1995, Mercer-Jones et al. 1999). This rapid priming occurs within minutes after receiving 

the signals. The primed neutrophils have an extended life span. Activated neutrophils are 

mobilized to the site of infection by chemoattractants N-formylmethionyl-leucyl-

phenylalanine (fMLP) or complement component 5a (C5a). These chemoattractants 

induce cellular polarization to make actin-rich pseudopodia, which helps in their 

movement (Servant et al. 2000).  

Formation of pseudopodia also helps in phagocytosis and destroying invading 

bacteria through intracellular phagosome and reactive oxygen species (ROS) (Lee et al. 

2003). In addition to these strategies, neutrophils also use neutrophil extracellular traps 

(NET) to destroy larger pathogens which cannot be phagocytized (Segal 2005, Halverson 

et al. 2015). The process of NET formation is NETosis. NETosis is distinct from 

apoptosis and necrosis and defined as the release of nuclear DNA, DNA associated 

proteins and lactate dehydrogenase (LDH) from an activated neutrophil into the 

extracellular environment (Kawasaki and Iwamuro 2008, Urban et al. 2009, Brinkmann 

and Zychlinsky 2012). NET also contains primary, secondary, and tertiary granular 

components that include neutrophil elastase, cathepsin G, and myeloperoxidase (MPO) 

(Urban et al. 2009, Brinkmann and Zychlinsky 2012), lactoferrin, and gelatinase 

(Borregaard 2010).  Among all the components, histones proteins are the most abundant 

component and act as a potent antimicrobial agent (Kawasaki and Iwamuro 2008, Urban 

et al. 2009).  

During NET formation, the nuclear envelope degrades and the mixing of nuclear 

DNA with cytosolic proteins takes place, which then extrude from the cell to trap the 

invading pathogen. NET can be induced by the treatment of neutrophils with interleukin-
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8 (IL-8), phorbol 12-myristate 13-acetate (PMA), lipopolysaccharide (LPS), bacteria, 

fungi or activated platelets There are number of viruses which also induce the NET 

formation including influenza A virus, HIV-1 virus, myxoma virus, 

encephalomyocarditis virus and respiratory syncytial virus (Narasaraju et al. 2011, Saitoh 

et al. 2012, Jenne et al. 2013, Funchal et al. 2015). There is no information on the  effect  

of BVDV on neutrophil NET formation. There are few studies on the effect of  BVDV on 

neutrophils.  Most of the information is from histological examination  characterizing 

BVDV lesions or through immunocytochemical/flow cytometric procedures (Bolin and 

Ridpath 1990) characterizing population dynamics but only a few studies have looked at 

the effect of BVDV on neutrophil function. BVDV infection significantly reduced the 

number of circulating neutrophils (Roth et al. 1981, Brown et al. 1991, Ganheim et al. 

2005) with reduced degranulation and impaired myeloperoxidase, hydrogen peroxide, 

halide antibacterial activity (Roth et al. 1981). Similarly, vaccination with BVDV 

modified live virus vaccine (MLV) significantly reduced circulating neutrophils, 

suppressed iodination, and antibody-dependent cell-mediated cytotoxicity (ADCC) 

activity (Roth and Kaeberle 1983).  High (HV24515) and low virulent (LV11Q) ncp 

BVDV-2 infection induced a severe neutropenia after viral inoculation. The number of 

neutrophils returned to normal but recovery was delayed in calves infected with high 

virulence virus as compared to low virulence (Keller et al. 2006).  

Several studies have been done to study the effect of BVDV on chemokines (Burr 

et al. 2012) and pro-inflammatory cytokines (Schweizer and Peterhans 2001, 

Fredericksen et al. 2015).   IL-1β, IL-8, IL-15, IL-18, Mx-1, IFN gamma, which recruit or 

activate neutrophils, have all been studied (Hammond et al. 1995, Leung et al. 2001, 
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Verri et al. 2007). However, a study to determine the effect of BVDV on neutrophil 

function with its underline mechanism is needed.  

The current study was designed to understand the effect of BVDV infection on 

neutrophil phenotype as well as functional activities of migration/chemotaxis, 

phagocytosis, oxidative burst and NETs formation. There are over 200 identified strains 

of BVDV that are either type 1 or type 2 genotype, or cp or ncp biotypes. The current 

study used BVDV strains from both genotypes as well as biotypes to study their effect on 

neutrophils. The BVDV strains used in current study were a virus pair (biotypes) of cp 

BVDV1b TGAC and ncp BVDV1b TGAN from type 1a genotypes and a highly 

pathogenic ncp BVDV2a 1373 and moderate pathogenic ncp BVDV2a 28508 type 2a 

genotypes.  

 



18 

 

REFERENCES 

 

Adler, H., Frech, B. Meier,  P., Jungi, T.W.,  Peterhans, E. (1994). Noncytopathic 

strains of bovine viral diarrhea virus prime bovine bone marrow-derived 

macrophages for enhanced generation of nitric oxide. Biochem Biophys Res 

Commun 202(3): 1562-1568. 

 

Al-Haddawi, M., Mitchell, G.B.,  Clark, M.E.,  Wood, R.D.,  Caswell, J.L.  (2007). 

Impairment of innate immune responses of airway epithelium by infection with 

bovine viral diarrhea virus. Vet Immunol Immunopathol 116(3-4): 153-162. 

 

Altstaedt, J., Kirchner, H., Rink L. (1996). Cytokine production of neutrophils is 

limited to interleukin-8. Immunology 89(4): 563-568. 

 

Archambault, D., Beliveau, C.,  Couture, Y.,  Carman, S. (2000). Clinical response and 

immunomodulation following experimental challenge of calves with type 2 

noncytopathogenic bovine viral diarrhea virus. Vet Res 31(2): 215-227. 

 

Atluru, D., Gudapaty, S.,  Xue, W.,  Gurria, F.,  Chengappa, M.M.,  McVey, D.S.,  

Minocha, H.C.,  Atluru, S. (1992). In vitro inhibition of 5-lipoxygenase 

metabolite, leukotriene B4, in bovine mononuclear cells by bovine viral diarrhea 

virus. Vet Immunol Immunopathol 31(1-2): 49-59. 

 

Balint, A., Baule, S., Palfi, A.,  Dencso, A., Hornyak, A.,  Belak, S.  (2005). A 45-

nucleotide insertion in the NS2 gene is responsible for the cytopathogenicity of a 

bovine viral diarrhoea virus strain. Virus Genes 31(2): 135-144. 

 

Barr, B. C., Anderson M.L. (1993). Infectious diseases causing bovine abortion and 

fetal loss. Vet Clin North Am Food Anim Pract 9(2): 343-368. 

 



19 

 

Bauermann, F. V., Ridpath, J.F.,  Weiblen, R., Flores, E.F.  (2013). HoBi-like viruses: 

an emerging group of pestiviruses. J Vet Diagn Invest 25 (1): 6-15. 

 

Berger, H., Lietzau, M., Tichy, A., Herzog, K. (2016). Investigations of mammary and 

uterine blood flow in relation to milk yield, postpartum disease, and 

pregnancy result in dairy cows. Theriogenology  86 (8):1906-12 

 

Bielefeldt-Ohmann, H. (1995). The pathologies of bovine viral diarrhea virus infection. 

A window on the pathogenesis. Vet Clin North Am Food Anim Pract 11(3): 447-

476. 

 

Bintintan, I.,  Meyers, G. (2010). A new type of signal peptidase cleavage site 

identified in an RNA virus polyprotein. J Biol Chem 285 (12): 8572-8584. 

 

Bolin, S. R., Ridpath, J.F. (1990). Frequency of association of noncytopathic bovine 

viral diarrhea virus with bovine neutrophils and mononuclear leukocytes before 

and after treatment with trypsin. Am J Vet Res 51(11): 1847-1851. 

 

Borregaard, N. (2010). Neutrophils, from marrow to microbes. Immunity 33 (5): 657-

670. 

 

Brackenbury, L. S., Carr, B.V., Charleston, B. (2003). Aspects of the innate and 

adaptive immune responses to acute infections with BVDV. Vet Microbiol 96 

(4): 337-344. 

 

Break, T. J., Jun, S.,  Indramohan, M., Carr, D.K.,  Sieve, A.N.,  Dory, L.,  Berg, R.E. 

(2012). Extracellular superoxide dismutase inhibits innate immune responses and 

clearance of an intracellular bacterial infection. J Immunol 188 (7): 3342-3350. 

 



20 

 

Brewoo, J. N., Haase, C.J.,  Sharp, P.,  Schultz, R.D.,  (2007). Leukocyte profile of 

cattle persistently infected with bovine viral diarrhea virus. Vet Immunol 

Immunopathol 115(3-4): 369-374. 

 

Brinkmann, V., Zychlinsky, A. (2012). Neutrophil extracellular traps: is immunity the 

second function of chromatin. J Cell Biol 198 (5): 773-783. 

 

Brodersen, B. W., Kelling, C.L. (1999). Alteration of leukocyte populations in calves 

concurrently infected with bovine respiratory syncytial virus and bovine viral 

diarrhea virus. Viral Immunol 12(4): 323-334. 

 

Brown, G. B., Bolin, S.R., Frank, D.E., Roth, J.A. (1991). Defective function of 

leukocytes from cattle persistently infected with bovine viral diarrhea virus, and 

the influence of recombinant cytokines. Am J Vet Res 52(3): 381-387. 

 

Brown, T. T., De Lahunte, A.,  Scott, F.W.,  Kahrs, R.F.,  McEntee, K.,  Gillespie, J.H. 

(1973). Virus induced congenital anomalies of the bovine fetus. II. 

Histopathology of cerebellar degeneration (hypoplasia) induced by the virus of 

bovine viral diarrhea-mucosal disease. Cornell Vet 63(4): 561-578. 

 

Brownlie, J., Clarke, M.C., Howard, C.J. (1984). Experimental production of fatal 

mucosal disease in cattle. Vet Rec 114(22): 535-536. 

 

Brownlie, J., Clarke, M.C., Howard, C.J. (1989). Experimental infection of cattle in 

early pregnancy with a cytopathic strain of bovine virus diarrhoea virus. Res Vet 

Sci 46(3): 307-311. 

 

Burd, I., Griffin, D. (2016). The chasm between public health and reproductive 

research: what history tells us about Zika virus. J Assist Reprod Genet 33(4): 

439-440. 

 



21 

 

Burr, S., Thomas, C.,  Brownlie, J., Offord, V.,  Coffey, T.J.,  Werling, D. (2012). 

Potential evidence for biotype-specific chemokine profile following BVDV 

infection of bovine macrophages. Vet Immunol Immunopathol 150(1-2): 123-

127. 

 

Charleston, B., Brackenbury, L.S.,  Carr, B.V., Fray, M.D., Hope, J.C., Howard, C.J.,  

Morrison, W.I. (2002). Alpha/beta and gamma interferons are induced by 

infection with noncytopathic bovine viral diarrhea virus in vivo. J Virol 76(2): 

923-927. 

 

Charleston, B., J. C. Hope, B. V. Carr, C. J. Howard (2001). Masking of two in vitro 

immunological assays for Mycobacterium bovis (BCG) in calves acutely 

infected with non-cytopathic bovine viral diarrhoea virus. Vet Rec 149(16): 481-

484. 

 

Chase, C. C. (2013). The impact of BVDV infection on adaptive immunity. Biologicals 

41(1): 52-60. 

 

Chase, C. C., G. Elmowalid, A. A. Yousif (2004). The immune response to bovine viral 

diarrhea virus: a constantly changing picture. Vet Clin North Am Food Anim 

Pract 20(1): 95-114. 

 

Chase, C. C., N. Thakur, M. F. Darweesh, S. E. Morarie-Kane, M. K. Rajput (2015). 

Immune response to bovine viral diarrhea virus--looking at newly defined 

targets. Anim Health Res Rev 16(1): 4-14. 

 

Chimeno Zoth, S., M. R. Leunda, A. Odeon, O. Taboga (2007). Recombinant E2 

glycoprotein of bovine viral diarrhea virus induces a solid humoral neutralizing 

immune response but fails to confer total protection in cattle. Braz J Med Biol 

Res 40(6): 813-818. 

 



22 

 

Chu, H. J., Y. C. Zee (1984). Morphology of bovine viral diarrhea virus. Am J Vet Res 

45(5): 845-850. 

 

Collen, T., V. Carr, K. Parsons, B. Charleston, W. I. Morrison (2002). Analysis of the 

repertoire of cattle CD4(+) T cells reactive with bovine viral diarrhoea virus. Vet 

Immunol Immunopathol 87(3-4): 235-238. 

 

Collen, T., W. I. Morrison (2000). CD4(+) T-cell responses to bovine viral diarrhoea 

virus in cattle. Virus Res 67(1): 67-80. 

 

Darweesh, M. F., M. K. Rajput, L. J. Braun, J. F. Ridpath, J. D. Neill, C. C. Chase 

(2015). Characterization of the cytopathic BVDV strains isolated from 13 

mucosal disease cases arising in a cattle herd. Virus Res 195: 141-147. 

 

Deregt, D., K. G. Loewen (1995). Bovine viral diarrhea virus: biotypes and disease. 

Can Vet J 36(6): 371-378. 

 

Diderholm, H., Z. Dinter (1966). Interference between strains of bovine virus diarrhea 

virus and their capacity to suppress interferon of a heterologous virus. Proc Soc 

Exp Biol Med 121(3): 976-980. 

 

Done, J. T., S. Terlecki, C. Richardson, J. W. Harkness, J. J. Sands, D. S. Patterson, D. 

Sweasey, I. G. Shaw, C. E. Winkler, S. J. Duffell (1980). Bovine virus diarrhoea-

mucosal disease virus: pathogenicity for the fetal calf following maternal 

infection. Vet Rec 106(23): 473-479. 

 

Donofrio, G., E. Bottarelli, C. Sandro, C. F. Flammini (2006). Expression of bovine 

viral diarrhea virus glycoprotein E2 as a soluble secreted form in a Mammalian 

cell line. Clin Vaccine Immunol 13(6): 698-701. 

 



23 

 

Ellis, J. A., W. C. Davis, E. L. Belden, D. L. Pratt (1988). Flow cytofluorimetric 

analysis of lymphocyte subset alterations in cattle infected with bovine viral 

diarrhea virus. Vet Pathol 25(3): 231-236. 

 

Endsley, J. J., M. J. Quade, B. Terhaar, J. A. Roth (2002). Bovine viral diarrhea virus 

type 1- and type 2-specific bovine T lymphocyte-subset responses following 

modified-live virus vaccination. Vet Ther 3(4): 364-372. 

 

Falkenberg, S. M., C. Johnson, F. V. Bauermann, J. McGill, M. V. Palmer, R. E. Sacco, 

J. F. Ridpath (2014). Changes observed in the thymus and lymph nodes 14 days 

after exposure to BVDV field strains of enhanced or typical virulence in neonatal 

calves. Vet Immunol Immunopathol 160(1-2): 70-80. 

 

Fredericksen, F., G. Carrasco, M. Villalba, V. H. Olavarria (2015). Cytopathic BVDV-

1 strain induces immune marker production in bovine cells through the NF-

kappaB signaling pathway. Mol Immunol 68(2 Pt A): 213-222. 

 

Fu, Q., H. Shi, Y. Ren, F. Guo, W. Ni, J. Qiao, P. Wang, H. Zhang, C. Chen (2014). 

Bovine viral diarrhea virus infection induces autophagy in MDBK cells. J 

Microbiol 52(7): 619-625. 

 

Funchal, G. A., N. Jaeger, R. S. Czepielewski, M. S. Machado, S. P. Muraro, R. T. 

Stein, C. B. Bonorino, B. N. Porto (2015). Respiratory syncytial virus fusion 

protein promotes TLR-4-dependent neutrophil extracellular trap formation by 

human neutrophils. PLoS One 10(4): e0124082. 

 

Ganheim, C., A. Johannisson, P. Ohagen, K. Persson Waller (2005). Changes in 

peripheral blood leucocyte counts and subpopulations after experimental 

infection with BVDV and/or Mannheimia haemolytica. J Vet Med B Infect Dis 

Vet Public Health 52(9): 380-385. 

 



24 

 

Ganz, T. (2003). The role of antimicrobial peptides in innate immunity. Integr Comp 

Biol 43(2): 300-304. 

 

Glew, E. J., B. V. Carr, L. S. Brackenbury, J. C. Hope, B. Charleston, C. J. Howard 

(2003). Differential effects of bovine viral diarrhoea virus on monocytes and 

dendritic cells. J Gen Virol 84(Pt 7): 1771-1780. 

 

Goens, S. D. (2002). The evolution of bovine viral diarrhea: a review. Can Vet J 

43(12): 946-954. 

Guo, R. F., N. C. Riedemann, K. D. Bernacki, V. J. Sarma, I. J. Laudes, J. S. Reuben, 

E. M. Younkin, T. A. Neff, J. D. Paulauskis, F. S. Zetoune, P. A. Ward (2003). 

Neutrophil C5a receptor and the outcome in a rat model of sepsis. FASEB J 

17(13): 1889-1891. 

 

Hallett, M. B., D. Lloyds (1995). Neutrophil priming: the cellular signals that say 

'amber' but not 'green'. Immunol Today 16(6): 264-268. 

 

Halverson, T. W., M. Wilton, K. K. Poon, B. Petri, S. Lewenza (2015). DNA is an 

antimicrobial component of neutrophil extracellular traps. PLoS Pathog 11(1): 

e1004593. 

 

Hammond, M. E., G. R. Lapointe, P. H. Feucht, S. Hilt, C. A. Gallegos, C. A. Gordon, 

M. A. Giedlin, G. Mullenbach, P. Tekamp-Olson (1995). IL-8 induces neutrophil 

chemotaxis predominantly via type I IL-8 receptors. J Immunol 155(3): 1428-

1433. 

 

Hay, K. E., R. C. Ambrose, J. M. Morton, P. F. Horwood, J. L. Gravel, S. Waldron, M. 

A. Commins, E. V. Fowler, A. C. Clements, T. S. Barnes, T. J. Mahoney (2016). 

Effects of exposure to Bovine viral diarrhoea virus 1 on risk of bovine 

respiratory disease in Australian feedlot cattle. Prev Vet Med 126: 159-169. 

 



25 

 

Houe, H. (1999). Epidemiological features and economical importance of bovine virus 

diarrhoea virus (BVDV) infections. Vet Microbiol 64(2-3): 89-107. 

 

Huck, R. A. (1957). Mucosal disease complex. J Comp Pathol 67(3): 267-276. 

 

Iqbal, M., H. Flick-Smith, J. W. McCauley (2000). Interactions of bovine viral 

diarrhoea virus glycoprotein E(rns) with cell surface glycosaminoglycans. J Gen 

Virol 81(Pt 2): 451-459. 

 

Iqbal, M., E. Poole, S. Goodbourn, J. W. McCauley (2004). Role for bovine viral 

diarrhea virus Erns glycoprotein in the control of activation of beta interferon by 

double-stranded RNA. J Virol 78(1): 136-145. 

 

Jaillon, S., M. R. Galdiero, D. Del Prete, M. A. Cassatella, C. Garlanda, A. Mantovani 

(2013). Neutrophils in innate and adaptive immunity. Semin Immunopathol 

35(4): 377-394. 

 

Jenne, C. N., C. H. Wong, F. J. Zemp, B. McDonald, M. M. Rahman, P. A. Forsyth, G. 

McFadden, P. Kubes (2013). Neutrophils recruited to sites of infection protect 

from virus challenge by releasing neutrophil extracellular traps. Cell Host 

Microbe 13(2): 169-180. 

 

Jordan, R., L. Wang, T. M. Graczyk, T. M. Block, P. R. Romano (2002). Replication of 

a cytopathic strain of bovine viral diarrhea virus activates PERK and induces 

endoplasmic reticulum stress-mediated apoptosis of MDBK cells. J Virol 76(19): 

9588-9599. 

 

Kane, S. E., L. D. Holler, L. J. Braun, J. D. Neill, D. B. Young, J. F. Ridpath, C. C. L. 

Chase (2015). Bovine viral diarrhea virus outbreak in a beef cow herd in South 

Dakota. J Am Vet Med Assoc 246(12): 1358-1362. 

 



26 

 

Karakaya, E., G. Alpay, G. Yilmazbas-Mecitoglu, A. Alasonyalilar-Demirer, B. Akgul, 

S. Inan-Ozturkoglu, M. O. Ozyigit, D. Seyrek-Intas, K. Seyrek-Intas, K. 

Yesilbag, A. Gumen, A. Keskin (2013). Perosomus elumbis in a Holstein calf 

infected with bovine viral diarrhea virus. Tierarztl Prax Ausg G Grosstiere 

Nutztiere 41(6): 387-391. 

 

Kasama, T., Y. Miwa, T. Isozaki, T. Odai, M. Adachi, S. L. Kunkel (2005). Neutrophil-

derived cytokines: potential therapeutic targets in inflammation. Curr Drug 

Targets Inflamm Allergy 4(3): 273-279. 

 

Kawai, T., S. Akira (2009). The roles of TLRs, RLRs and NLRs in pathogen 

recognition. Int Immunol 21(4): 317-337. 

 

Kawasaki, H., S. Iwamuro (2008). Potential roles of histones in host defense as 

antimicrobial agents. Infect Disord Drug Targets 8(3): 195-205. 

 

Keller, S. L., B. J. Jefferson, R. M. Jacobs, R. D. Wood (2006). Effects of 

noncytopathic type 2 bovine viral diarrhea virus on the proliferation of bone 

marrow progenitor cells. Can J Vet Res 70(1): 20-27. 

 

Kendrick, J. W. (1971). Bovine viral diarrhea-mucosal disease virus infection in 

pregnant cows. Am J Vet Res 32(4): 533-544. 

 

Kobayashi, S. D., F. R. DeLeo (2009). Role of neutrophils in innate immunity: a 

systems biology-level approach. Wiley Interdiscip Rev Syst Biol Med 1(3): 309-

333. 

 

Krey, T., A. Himmelreich, M. Heimann, C. Menge, H. J. Thiel, K. Maurer, T. 

Rumenapf (2006). Function of bovine CD46 as a cellular receptor for bovine 

viral diarrhea virus is determined by complement control protein 1. J Virol 80(8): 

3912-3922. 



27 

 

 

Krey, T., E. Moussay, H. J. Thiel, T. Rumenapf (2006). Role of the low-density 

lipoprotein receptor in entry of bovine viral diarrhea virus. J Virol 80(21): 

10862-10867. 

 

Kumar, H., T. Kawai, S. Akira (2011). Pathogen recognition by the innate immune 

system. Int Rev Immunol 30(1): 16-34. 

 

Lanyon, S. R., F. I. Hill, M. P. Reichel, J. Brownlie (2014). Bovine viral diarrhoea: 

pathogenesis and diagnosis. Vet J 199(2): 201-209. 

 

Larson, R. L. (2015). Bovine Viral Diarrhea Virus-Associated Disease in Feedlot 

Cattle. Vet Clin North Am Food Anim Pract 31(3): 367-380, vi. 

Lattwein, E., O. Klemens, S. Schwindt, P. Becher, N. Tautz (2012). Pestivirus virion 

morphogenesis in the absence of uncleaved nonstructural protein 2-3.J Virol 

86(1): 427-437. 

 

Lee, S. R., G. T. Pharr, B. L. Boyd, L. M. Pinchuk (2008). Bovine viral diarrhea viruses 

modulate toll-like receptors, cytokines and co-stimulatory molecules genes 

expression in bovine peripheral blood monocytes. Comp Immunol Microbiol 

Infect Dis 31(5): 403-418. 

 

Lee, V. M., P. A. Quinn, S. C. Jennings, L. L. Ng (2003). Neutrophil activation and 

production of reactive oxygen species in pre-eclampsia. J Hypertens 21(2): 395-

402. 

 

Leliefeld, P.H., Koenderman, L., Pillay, J. (2015). How Neutrophils Shape Adaptive 

Immune Responses. Front Immunol 6, 471. 

 



28 

 

Leung, B. P., S. Culshaw, J. A. Gracie, D. Hunter, C. A. Canetti, C. Campbell, F. 

Cunha, F. Y. Liew, I. B. McInnes (2001). A role for IL-18 in neutrophil 

activation. J Immunol 167(5): 2879-2886. 

 

Liebler-Tenorio, E. M., J. E. Ridpath, J. D. Neill (2004). Distribution of viral antigen 

and tissue lesions in persistent and acute infection with the homologous strain of 

noncytopathic bovine viral diarrhea virus. J Vet Diagn Invest 16(5): 388-396. 

 

Liebler-Tenorio, E. M., J. F. Ridpath, J. D. Neill (2003). Distribution of viral antigen 

and development of lesions after experimental infection of calves with a BVDV 

2 strain of low virulence. J Vet Diagn Invest 15(3): 221-232. 

 

Liebler-Tenorio, E. M., J. F. Ridpath, J. D. Neill (2003). Lesions and tissue distribution 

of viral antigen in severe acute versus subclinical acute infection with BVDV2. 

Biologicals 31(2): 119-122. 

Lindenbach, B.D., Rice, C.M.  2001. Flaviviridae: the viruses and their replication, In: 

Knipe, D.M., Howley, P.M., Griffin, D.E., Lamb, R.A., Martin, M.A., Roizman, 

B. (Eds.), Fields Virology, 4th ed., Vol. 1. Lippincott Williams & Wilkins, 

Philadelphia, PA, pp. 991–1041. 

 

Mantovani, A., M. A. Cassatella, C. Costantini, S. Jaillon (2011). Neutrophils in the 

activation and regulation of innate and adaptive immunity. Nat Rev Immunol 

11(8): 519-531. 

 

McGowan, M. R., P. D. Kirkland, S. G. Richards, I. R. Littlejohns (1993). Increased 

reproductive losses in cattle infected with bovine pestivirus around the time of 

insemination. Vet Rec 133(2): 39-43. 

 

Mercer-Jones, M. A., M. S. Shrotri, M. Heinzelmann, J. C. Peyton, W. G. Cheadle 

(1999). Regulation of early peritoneal neutrophil migration by macrophage 



29 

 

inflammatory protein-2 and mast cells in experimental peritonitis. J Leukoc Biol 

65(2): 249-255. 

 

Mitchell, G. B., B. N. Albright, J. L. Caswell (2003). Effect of interleukin-8 and 

granulocyte colony-stimulating factor on priming and activation of bovine 

neutrophils. Infect Immun 71(4): 1643-1649. 

 

Mitchell, M. J., K. S. Lin, M. R. King (2014). Fluid shear stress increases neutrophil 

activation via platelet-activating factor. Biophys J 106(10): 2243-2253. 

 

Mockeliuniene, V., A. Salomskas, R. Mockeliunas, S. Petkevicius (2004). Prevalence 

and epidemiological features of bovine viral diarrhoea virus infection in 

Lithuania. Vet Microbiol 99(1): 51-57. 

 

Muller-Doblies, D., A. Arquint, P. Schaller, P. M. Heegaard, M. Hilbe, S. Albini, C. 

Abril, K. Tobler, F. Ehrensperger, E. Peterhans, M. Ackermann, A. Metzler 

(2004). Innate immune responses of calves during transient infection with a 

noncytopathic strain of bovine viral diarrhea virus. Clin Diagn Lab Immunol 

11(2): 302-312. 

 

Murray, R. D. (1991). Lesions in aborted bovine fetuses and placenta associated with 

bovine viral diarrhoea virus infection. Arch Virol Suppl 3: 217-224. 

 

Narasaraju, T., E. Yang, R. P. Samy, H. H. Ng, W. P. Poh, A. A. Liew, M. C. Phoon, 

N. van Rooijen, V. T. Chow (2011). Excessive neutrophils and neutrophil 

extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J 

Pathol 179(1): 199-210. 

 

Nettleton, P. F., J. A. Gilray, P. Russo, E. Dlissi (1998). Border disease of sheep and 

goats. Vet Res 29(3-4): 327-340. 

 



30 

 

Ohmann, H. B. (1983). Pathogenesis of bovine viral diarrhoea-mucosal disease: 

distribution and significance of BVDV antigen in diseased calves. Res Vet Sci 

34(1): 5-10. 

 

Ohmann, H. B. (1990). Electron microscopy of bovine virus diarrhoea virus. Rev Sci 

Tech 9(1): 61-73. 

 

Ostachuk, A. (2016). Bovine viral diarrhea virus structural protein E2 as a complement 

regulatory protein. Arch Virol 161(7): 1769-1782. 

 

Paape, M., Mehrzad, J., Zhao, X., Detilleux, J., Burvenich, C. (2002). Defense of the 

bovine mammary gland by polymorphonuclear neutrophil leukocytes. J 

Mammary Gland Biol Neoplasia 7, 109-121. 

 

Paape, M.J., Bannerman, D.D., Zhao, X., Lee, J.W. (2003). The bovine neutrophil: 

Structure and function in blood and milk. Vet Res 34, 597-627 

 

Pellerin, C., van den Hurk, J., Lecomte, J., Tijssen, P. (1994). Identification of a new 

group of bovine viral diarrhea virus strains associated with severe outbreaks 

and high mortalities. Virology 203, 260-268. 

 

Peterhans, E., Schweizer, M. (2010). Pestiviruses: how to outmaneuver your hosts. Vet 

Microbiol 142, 18-25. 

 

Peterhans, E., Schweizer, M. (2013). BVDV: a pestivirus inducing tolerance of the 

innate immune response. Biologicals 41, 39-51 

 

Rajput, M. K., Darweesh, MF.,  Park, K.,  Braun, L.J., Mwangi, W.,  Young, A.J.,  

Chase, C.C.L. (2014). The effect of bovine viral diarrhea virus (BVDV) strains 

on bovine monocyte-derived dendritic cells (Mo-DC) phenotype and capacity to 

produce BVDV. Virol J 11: 44. 



31 

 

 

Reimann, I., Semmler, I.,  Beer, M. (2007). Packaged replicons of bovine viral diarrhea 

virus are capable of inducing a protective immune response. Virology 366(2): 

377-386. 

 

Renard, A., Guiot, C., Schmetz, D., Dagenais, L., Pastoret, P.P., Dina, D., Martial, J.A. 

(1985). Molecular cloning of bovine viral diarrhea viral sequences. DNA 4, 

429-438. 

 

Richer, L., Marois, P., Lamontagne, L. (1988). Association of bovine viral diarrhea 

virus with multiple viral infections in bovine respiratory disease outbreaks. Can 

Vet J 29(9): 713-717. 

 

Ridpath, J. F. (2012). Preventive strategy for BVDV infection in North America. Jpn J 

Vet Res 60 : 41-49. 

 

Ridpath, J. F., Bolin, S.R., Dubovi, E.J. (1994). Segregation of bovine viral diarrhea 

virus into genotypes. Virology 205(1): 66-74. 

 

Risalde, M. A., Molina,V., Sanchez-Cordon, P.J., Pedrera, M.,  Panadero, R.,  Romero-

Palomo, F., Gomez-Villamandos, J.C. (2011). Response of proinflammatory and 

anti-inflammatory cytokines in calves with subclinical bovine viral diarrhea 

challenged with bovine herpesvirus-1. Vet Immunol Immunopathol 144(1-2): 

135-143. 

 

Ronecker, S., Zimmer, G., Herrler, G., Greiser-Wilke,I.,  Grummer, B. (2008). 

Formation of bovine viral diarrhea virus E1-E2 heterodimers is essential for 

virus entry and depends on charged residues in the transmembrane domains. J 

Gen Virol 89(Pt 9): 2114-2121. 

 



32 

 

Roth, J. A., Kaeberle, M.L. (1983). Suppression of neutrophil and lymphocyte function 

induced by a vaccinal strain of bovine viral diarrhea virus with and without the 

administration of ACTH. Am J Vet Res 44(12): 2366-2372. 

 

Roth, J. A., Kaeberle, M.L., Griffith, R.W. (1981). Effects of bovine viral diarrhea virus 

infection on bovine polymorphonuclear leukocyte function. Am J Vet Res 42(2): 

244-250. 

 

Rumenapf, T., Stark, R., Heimann, M.,  Thiel, H.J. (1998). N-terminal protease of 

pestiviruses: identification of putative catalytic residues by site-directed 

mutagenesis. J Virol 72(3): 2544-2547. 

 

Rumenapf, T., Unger, G.,  Strauss, J.H.,  Thiel, H.J. (1993). Processing of the envelope 

glycoproteins of pestiviruses. J Virol 67(6): 3288-3294. 

 

Saitoh, T., Komano, J., Saitoh, Y.,  Misawa, T.,  Takahama, M.,  Kozaki, T.,  Uehata, 

T.,  Iwasaki, H., Omori, H, Yamaoka, S.,  Yamamoto, N.,  Akira, S. (2012). 

Neutrophil extracellular traps mediate a host defense response to human 

immunodeficiency virus-1. Cell Host Microbe 12(1): 109-116. 

 

Schaefer, T. M., Desouza, K.,  Fahey, J.V., Beagley, K.W., Wira, C.R. (2004). Toll-like 

receptor (TLR) expression and TLR-mediated cytokine/chemokine production 

by human uterine epithelial cells. Immunology 112(3): 428-436. 

 

Schweizer, M., Peterhans, E. (2001). Noncytopathic bovine viral diarrhea virus inhibits 

double-stranded RNA-induced apoptosis and interferon synthesis. J Virol 75(10): 

4692-4698. 

 

Segal, A. W. (2005). How neutrophils kill microbes. Annu Rev Immunol 23: 197-223. 

 



33 

 

Sentsui, H., Nishimori, T., Kirisawa, R.,  Morooka, A. (2001). Mucosal disease induced 

in cattle persistently infected with bovine viral diarrhea virus by antigenically 

different cytopathic virus. Arch Virol 146(5): 993-1006. 

 

Servant, G., O. D. Weiner, P. Herzmark, T. Balla, J. W. Sedat, H. R. Bourne (2000). 

Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. 

Science 287(5455): 1037-1040. 

 

Smirnova, N. P., Bielefeldt-Ohmann, H., Van Campen, H., Austin, K.J.,  Han, H., 

Montgomery, D.L., Shoemaker, M.J.,  van Olphen, A.L.,  Hansen, T.R. (2008). 

Acute non-cytopathic bovine viral diarrhea virus infection induces pronounced 

type I interferon response in pregnant cows and fetuses. Virus Res 132(1-2): 49-

58. 

 

Sopp, P., Hooper, L.B., Clarke, M.C., Howard, C.J., Brownlie, J. (1994). Detection of 

bovine viral diarrhoea virus p80 protein in subpopulations of bovine leukocytes. 

J Gen Virol 75 ( Pt 5): 1189-1194. 

 

Sprecher, D. J., Baker, J.C., Holland, R.E., Yamini, B. (1991). An outbreak of fetal and 

neonatal losses associated with the diagnosis of bovine viral diarrhea virus. 

Theriogenology 36(4): 597-606. 

 

Stark, R., Meyers, G., Rumenapf, T., Thiel, H.J. (1993). Processing of pestivirus 

polyprotein: cleavage site between autoprotease and nucleocapsid protein of 

classical swine fever virus. J Virol 67(12): 7088-7095. 

 

Tajima, M., Dubovi, E.J. (2005). Genetic and clinical analyses of bovine viral diarrhea 

virus isolates from dairy operations in the United States of America. J Vet Diagn 

Invest 17(1): 10-15. 

 



34 

 

Tautz, N., Kaiser, A., Thiel, H.J. (2000). NS3 serine protease of bovine viral diarrhea 

virus: characterization of active site residues, NS4A cofactor domain, and 

protease-cofactor interactions. Virology 273(2): 351-363. 

 

Tautz, N., Meyers, G.,  Stark, R.,  Dubovi, E.J.,  Thiel, H.J. (1996). Cytopathogenicity 

of a pestivirus correlates with a 27-nucleotide insertion. J Virol 70(11): 7851-

7858. 

 

Tautz, N., Meyers, G., Thiel, H.J. (1998). Pathogenesis of mucosal disease, a deadly 

disease of cattle caused by a pestivirus. Clin Diagn Virol 10(2-3): 121-127. 

 

Teichmann, U., Liebler-Tenorio, E.M.,  Pohlenz, J.F. (2000). Ultrastructural changes in 

follicles of small-intestinal aggregated lymphoid nodules in early and advanced 

phases of experimentally induced mucosal diseases in calves. Am J Vet Res 

61(2): 174-182. 

 

Tellinghuisen, T. L., Paulson, M.S., Rice, M.C. (2006). The NS5A protein of bovine 

viral diarrhea virus contains an essential zinc-binding site similar to that of the 

hepatitis C virus NS5A protein. J Virol 80(15): 7450-7458. 

 

Thoen, C. O., Waite, K.J. (1990). Some immune responses in cattle exposed to 

Mycobacterium paratuberculosis after injection with modified-live bovine viral 

diarrhea virus vaccine. J Vet Diagn Invest 2(3): 176-179. 

 

Trinchieri, G. (1995). Interleukin-12: a proinflammatory cytokine with 

immunoregulatory functions that bridge innate resistance and antigen-specific 

adaptive immunity. Annu Rev Immunol 13: 251-276. 

 

Urban, C. F., Ermert, D.,  Schmid, M.,  Abu-Abed, U.,  Goosmann, C.,  Nacken, W., 

Brinkmann, V., Jungblut, P.R.,  Zychlinsky, A. (2009). Neutrophil extracellular 



35 

 

traps contain calprotectin, a cytosolic protein complex involved in host defense 

against Candida albicans. PLoS Pathog 5(10): e1000639. 

 

Van Campen, H. (2010). Epidemiology and control of BVD in the U.S. Vet Microbiol 

142(1-2): 94-98. 

 

Van Oirschot, J. T. (1983). Congenital infections with nonarbo togaviruses. Vet 

Microbiol 8(4): 321-361. 

 

Verri, W. A., Cunha, T.M., Ferreira, S.H.,  Wei, X., Leung, B.P., Fraser, A., McInnes, 

I.B.,  Liew, F.Y.,  Cunha, F.Q. (2007). IL-15 mediates antigen-induced 

neutrophil migration by triggering IL-18 production. Eur J Immunol 37(12): 

3373-3380. 

 

Virakul, P., Fahning, M.L.,  Joo, H.S., Zemjanis, R. (1988). Fertility of cows 

challenged with a cytopathic strain of Bovine Viral Diarrhea virus during an 

outbreak of spontaneous infection with a noncytopathic strain. Theriogenology 

29(2): 441-449. 

 

Wang, J., Li, Y.,  Modis, Y. (2014). Structural models of the membrane anchors of 

envelope glycoproteins E1 and E2 from pestiviruses. Virology 454-455: 93-101. 

 

Wang, W., Shi, X.,  Tong, Q.,  Wu, Y.,  Xia, M.Q.,  Ji, Y.,  Xue,W.,  Wu, H. (2014). A 

bovine viral diarrhea virus type 1a strain in China: isolation, identification, and 

experimental infection in calves. Virol J 11: 8. 

 

Warrener, P.,  Collett, M.S. (1995). Pestivirus NS3 (p80) protein possesses RNA 

helicase activity. J Virol 69(3): 1720-1726. 

 



36 

 

Weiskircher, E., Aligo, J., Ning, G.,  Konan, K.V. (2009). Bovine viral diarrhea virus 

NS4B protein is an integral membrane protein associated with Golgi markers and 

rearranged host membranes. Virol J 6: 185. 

 

Weiss, M., Hertig, C., Strasser, M.,  Vogt, H.R.,  Peterhans, E. (1994). Bovine virus 

diarrhea/mucosal disease: a review.  Schweiz Arch Tierheilkd 136(5): 173-185. 

 

Welsh, M. D., Adair, B.M., Foster, J.C. (1995). Effect of BVD virus infection on 

alveolar macrophage functions. Vet Immunol Immunopathol 46(3-4): 195-210. 

 

Wiskerchen, M., Collett, M.S. (1991). Pestivirus gene expression: protein p80 of 

bovine viral diarrhea virus is a proteinase involved in polyprotein processing. 

Virology 184(1): 341-350. 

 

Wright, H. L., Moots, R.J., Bucknall, R.C.,  Edwards, S.W. (2010). Neutrophil function 

in inflammation and inflammatory diseases. Rheumatology (Oxford) 49(9): 

1618-1631. 

 

Xie, Z., Fan, Q.,  Xie, Z.,  Liu, J., Pang, Y.,  Deng, X.,  Xie, L., Luo, S.,  Khan, M.I. 

(2014). Complete genome sequence of a bovine viral diarrhea virus strain 

isolated in southern china. Genome Announc 2(3). 

 

Xu, J., Mendez, E., Caron, P.R.,  Lin, C.,  Murcko, M.A.,  Collett, M.S.,  Rice, M.C. 

(1997). Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage 

sites, cofactor requirements, and molecular model of an enzyme essential for 

pestivirus replication. J Virol 71(7): 5312-5322. 

 

Yoshitake, H., Takeda, Y.,  Nitto, T.,  Sendo, F. (2002).  Cross-linking of GPI-80, a 

possible regulatory molecule of cell adhesion, induces up-regulation of 

CD11b/CD18 expression on neutrophil surfaces and shedding of L-selectin. J 

Leukoc Biol 71(2): 205-211. 



37 

 

 

Zhang, G., Aldridge, S., Clarke, M.C., McCauley, J.W. (1996). Cell death induced by 

cytopathic bovine viral diarrhoea virus is mediated by apoptosis. J Gen Virol 77 ( 

8), 1677-1681. 

 

Zhong, W., Gutshall, L.L.,  Del Vecchio, A.M. (1998). Identification and 

characterization of an RNA-dependent RNA polymerase activity within the 

nonstructural protein 5B region of bovine viral diarrhea virus.  J Virol 72(11): 

9365-9369. 



38 

 

CHAPTER 2 

EFFECT OF BVDV ON VIABILITY OF BOVINE NEUTROPHILS AND ITS CELL 

SURFACE MARKERS EXPRESSION  

 

ABSTRACT 

Infection with bovine viral diarrhea virus (BVDV) is one of the most important 

infectious causes of immunosuppressive in ruminants. One of the hallmarks of 

immunosuppression is reduced cell surface markers expression on antigen presenting 

cells.  However, very little known is about the effect of BVDV infection on neutrophil 

viability and surface marker expression. In this chapter, the effect of BVDV infection on 

viability of neutrophil and surface marker expression of  cluster of differentiation -14 

(CD14), CD-18 and L-selectin were examined. Bovine neutrophils were isolated by 

gradient centrifugation followed by red blood cells (RBCs) lysis and neutrophil 

restoration. Isolated neutrophils were confirmed morphologically and phenotypically and, 

further examined for viability, purity and yield.  The neutrophils had characteristic 

polymorphic nucleus with 99.80±0.1% purity and 98.86±0.90 % viability. Isolated 

neutrophils had high expression for CD18+ (99.77±0.13%) and L-selectin (97.05±2.41%) 

and low CD14+ (11.34±3.89%) expression. The typical yield was 20.64±1.89 106 

neutrophils from 50 ml of peripheral blood (e.g. A 10 ml cell suspension with 

concentration of 2.064±1.89x106/ ml was obtained from 50 ml blood) 

To determine the effect of BVDV biotype on neutrophil viability and phenotypes, 

neutrophils were infected with either Tifton Georgia cytopathic (TGAC) or Tifton 

Georgia noncytopathic (TGAN) strains recovered from an animal that died of mucosal 

disease. Neither of the biotypes (TGAC or TGAN) used in the study affected the viability 
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of neutrophils in vitro.  Interestingly TGAC and TGAN reduced the expression of CD18 

and L-selectin while increasing CD14 expression. This effect on surface marker 

expression by TGAC or TGAN infection likely reduces neutrophil migration and 

extravasation.  

 

INTRODUCTION 

Bovine viral diarrhea virus (BVDV) is one of the most insidious and devastating 

viral pathogens of the cattle industry around the world (Ridpath, 2012; Van Campen, 

2010). The main hurdle in BVDV control is immunosuppression, which reduces vaccine 

efficacy and places animals in a greater risk of secondary infections (Hay et al., 2016; 

Richer et al., 1988; Risalde et al., 2011).  Several studies have demonstrated the effect of 

BVDV on immune cells that influence adaptive immune system including monocytes 

(Glew et al., 2003), macrophages (Chase et al., 2004), dendritic cells (Glew et al., 2003; 

Rajput et al., 2014) and lymphocytes (Rypula, 2003). However, very little is known about 

the effect of BVDV on the granulocytic cells of the innate immune system. Neutrophils 

are the one of the predominant white blood cells and considered a first line of defense in 

the innate immune system (Kobayashi and DeLeo, 2009). Neutrophils play an important 

role against invading bacteria and help initiate the adaptive immune response.  

Neutrophils phagocytize invading microorganisms and activate innate as well as adaptive 

immune response through various mediators including interleukin-8 (IL-8), platelet 

activating factor (PAF), leukotriene B4 (LTB4) or complement fragment 5a (C5a) (Guo et 

al., 2003; Mantovani et al., 2011; Mitchell et al., 2003; Mitchell et al., 2014). However, 

the functional ability of neutrophils is dependent on its cell surface maker expression of 
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CD14, CD-18 and L-selectin. CD14 helps in bacterial recognition (McAvoy et al., 2011), 

while CD18 and L-selectin helps in migration (receptor mediated homing) (Gao and 

Issekutz, 1996; Gomez and Doerschuk, 2010) as well as in adhesion (von Andrian et al., 

1993) respectively.  Finally, those surface markers help in activating the neutrophils. 

Activated neutrophils not only destroy the invading pathogens but also activate the 

adaptive immune system (Jaillon et al., 2013). 

In the current study, we optimized a simple, reproducible method to isolate bovine 

neutrophils with high purity, yield and viability. Isolated neutrophils were confirmed 

morphologically as well as phenotypically. Freshly isolated neutrophils were used to 

measure the effect of BVDV biotypes on viability and surface marker expression (CD14, 

CD18 and L-selectin). 

MATERIALS AND METHODS 

Cell and Virus Strains and Virus Propagation 

A homologous pair of ncp and cp type 1b viruses, Tifton GeorgiA Non-cytopathic 

(ncp BVDV1b TGAN) and Tifton GeorgiA Cytopathic (cp BVDV1b TGAC) were 

isolated from an animal that died of mucosal disease (Brownlie et al., 1984; Ridpath et 

al., 1991) were used.  Virus stocks of each BVDV strain was prepared in BVDV-free 

Madin Darby bovine kidney (MDBK) cells. BVDV-free MDBK cells (passages 98-112) 

were grown in minimal essential medium (MEM, Gibco BRL, Grand Island, NY) (pH 7-

7.4) supplemented with 10% BVDV-free fetal calf serum (FCS) (PPA, Pasching, 

Austria), penicillin (100 U /ml) and streptomycin (100 μg /ml).  A five (5) ml of 5x105 

MDBK cells/ml were seeded in T25 flasks using minimal essential medium (MEM, 

Gibco BRL, Grand Island, NY) supplemented with 10% FBS, penicillin (100 U/ml) and 
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streptomycin (100μg/ml) (Sigma-Aldrich, St. Louis, MO, USA). Cells were grown to 60-

70% confluency and infected with either of each virus.  At the time of infection, the 

media was removed from T25 flasks and 0.75 ml of virus inoculum with a multiplicity of 

infection [MOI] of one was added to each flask. Virus was adsorbed for 1 hr at 37°C in a 

humidified CO2 incubator with gentle rotation at every 15 minutes. After one hr 

incubation, unabsorbed virus was removed and the cells were washed with sterile PBS. 

After washing, 5 ml MEM medium supplemented with 10% FBS, penicillin (100 U/ml) 

and streptomycin (100μg/ml) was added to each flask. The cells were incubated at 37°C 

in a humidified CO2 incubator for 4-5 days or up to 70-80% cytopathic effect for cp 

BVDV1b TGAC. After 4-5 days of incubation, cells were frozen at (-80˚C for 15 

minutes) and thawed in ice for two cycles. The cell debris were pelleted by centrifugation 

at 3000 rpm for 10 min at 4°C in 15 ml conical tubes. The supernatants, containing virus 

were carefully collected. Supernatants were titrated for virus concentration and then 

aliquoted and stored at -80 °C for further use.  

The viral titers were determined by serially inoculating 1:10 dilutions of 

supernatants on MDBK cells as per method described earlier (Reed and Muench, 1938). 

Briefly MDBK cells were detached from tissue culture flask using 0.25% trypsin-EDTA 

(Sigma-Aldrich, St. Louis, MO, USA). The number of cells was adjusted to 5x105 cells/ 

ml.  One hundred eighty (180) µl cell suspension was added to each well of 96-well plate. 

Twenty (20) µl of virus was added to the first row of the plate. The virus was then mixed 

with MDBK cells and 20 µl of this dilution was added to next row to achieve 10-fold 

dilutions.  The last two rows were treated as negative controls with no virus. The plates 

were incubated at 37°C in humidified incubator for next 4 days. The plate was examined 



42 

 

every day for cytopathic effect (CPE). The highest dilution showing CPE was used as end 

to calculate the proportionate distance (PD). The PD was then used to determine the viral 

concentration (TCID50) as per formula as described earlier (Reed and Muench, 1938). 

 

1. Proportionate distance (PD) = (% CPE at dilution above 50%) – (50%)/ (% CPE 

at dilution above 50%)- (% CPE at dilution below 50%) (e.g.  60-50/60-0= 0.166) 

2. Calculation of endpoint just next to 50% CPE and conversion into – Log (e.g.10-6 

dilution would be -6) 

3. Calculation of TCID50.  

4.  TCID50 for 20 µl= (PD+ - Log dilution above 50%) (e.g. 1x106.166) 

For ncp BVDV, the same procedures were done except the endpoint for ncp 

BVDV was determined by staining the MDBK cells with anti-BVDV antibody (IDEXX 

Laboratories, Westbrook, ME, USA) followed by biotinylated rabbit anti-mouse IgG 

(Zymed, Invitrogen Corporation, Frederick, MD, USA), streptavidin-HRP (Invitrogen 

Corporation, Camarillo, CA, USA) and AEC reagent (3 amino-9 ethyl-carbazole) 

(Sigma-Aldrich, St. Louis, MO, USA). The endpoint for ncp BVDV was determined by 

the presence of red stained cells showing BVDV protein.  

Animals 

Sixteen (16) healthy cattle including Holstein Friesian (n=9) and Brown Swiss calves 

(n=7) (8-12 months of age), housed at the Department of Dairy Science Dairy Farm, 

South Dakota State University (SDSU), Brookings, SD, USA were used in this study. 

The SDSU Institutional Animal Care and Use Committee approved animal handling and 

blood collection. 

Neutrophil Isolation and Viability 
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To isolate neutrophils, fifty (50) ml of peripheral blood was collected in 10 ml 

heparinized vacutainer tubes (BD, Franklin Lakes, New Jersey, USA). The neutrophils 

along with red blood cells (RBCs) were separated by centrifuging the blood at 1,000 X g 

for 30 minutes at 25°C. The plasma and buffy coat were removed and discarded.  The 3-

ml cell pellet (neutrophils+ RBCs) was divided among eight (8), 15 mL conical tubes. To 

each 15-mL conical tube, 10 mL of RBC lysing solution was added. Each tube was 

gently inverted several times for 10 minutes to lyse the RBCs. After gently inverting the 

tubes, the tubes were centrifuged at 1,000 X g for 5 minutes at 25°C. Supernatants were 

discarded and cells pellets were washed 3 times using 10 mL of HBSS (the tubes were 

centrifuged at 1,000 X g for 5 minutes at 25°C). After each wash, cell pellets from two 

tubes were combined to one, leaving 4 tubes, 2 tubes and 1 tube at the end of each wash 

(after three wash, cells from eight tubes were combined to one tube). The final cell pellet 

was suspended in 10 mL RPMI 1640 medium (MEM, Gibco BRL, Grand Island, NY) 

supplemented with 10% BVDV-free fetal calf serum (FCS) (PPA, Pasching, Austria), 

sodium pyruvate, penicillin (100 U/ml) and streptomycin (100μg/ml) (Sigma-Aldrich, St. 

Louis, MO, USA). Freshly collected neutrophils were examined for purity through 

morphological examination using 4',6-diamidino-2-phenylindole (DAPI) as well as 

hematoxylin and eosin (H & E) staining as described below. 

Freshly collected neutrophils were also examined for yield. Neutrophil yield was 

calculated using trypan blue staining as described above. The total number of 

neutrophil/mL was measured using a hemocytometer.  The calculation was multiplied by 

diluting factors (eg. 100) and total number of cells calculated using the following 

formula. 
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Total neutrophil yield (from 50 mL blood)= Total number of cells calculated through 

hemocytometer/mL X dilution factor (eg. 

100) X Total volume of cells (eg. 10 mL).   

The typical yield from 50 ml of peripheral blood was 20.64±1.89x106 neutrophils 

(e.g. A 10 ml cell suspension with concentration of 2.064±1.89x106/ ml was obtained 

from 50 ml blood) 

Neutrophil viability was examined through trypan blue exclusion assay as well as 

by apoptosis using Annexin V Apoptosis Detection Kit (eBiosciences, San Diego, CA).  

The trypan blue exclusion assay was used to determine the cell viability by staining the 

neutrophils with 0.4% trypan blue stain as described (Strober, 2001).  Briefly, in 20 µl 

freshly isolated neutrophils suspension [after 1:100 dilution in 1x phosphate buffered 

saline (PBS)] was mixed with 20 µl of 0.4% trypan blue. The cells were incubated for 2 

minutes at room temperature and examined under microscope. The non-stained viable 

cells were counted and cell viability was calculated using the following formula. 

Cell viability percentage = Number of viable cells (none trypan blue stained cells) 

cells X   100/Total counted cells. 

 

Freshly collected neutrophils were also examined for apoptosis using Annexin V 

Apoptosis Detection Kit (eBiosciences, San Diego, CA). Briefly, 50 ul neutrophils (a 

1.0x106 neutrophils in 50 ul) were suspended in equal volume of 1X Binding Buffer 

[(BB) provided with the Kit]. One hundred (100µl) of suspended-1X BB neutrophils 

were then added to each round bottom 96 well plates in triplicates. Five microliters (5 μl) 

of fluorochrome-conjugated Annexin V (provided with Kit) was added to each well and 
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the plates were incubated for 10-15 minutes at room temperature in the dark. Cells were 

washed with 1X 200 μl binding buffer by centrifugation at 200xg for 4 minutes at room 

temperature and analyzed by flow cytometry using a FACScan (Becton-Dickson, 

Mountain View, CA).  

To determine the effect of BVDV biotypes on neutrophil viability, neutrophils 

were infected with either cp BVDV1b TGAC or ncp BVDV1n TGAN at a MOI 6 for 0 

hr, 1 hr or 6 hr while mock-infected or LPS-treated (10 ng/ml) neutrophils were used as 

negative or positive controls respectively. Neutrophil viability was examined through 

trypan blue exclusion assay and Annexin V Apoptosis Detection Kit (eBiosciences, San 

Diego, CA) as described above. For apoptosis, 10µl. staurosporine (STS) was used as a 

positive apoptotic control in respective wells (Belmokhtar et al., 2001). 

 

Characterization of neutrophils 

Morphological characterization 

The freshly collected neutrophils were stained with 4’, 6-diamidino-2-

phenylindole (DAPI) (Chazotte, 2011) or H&E stain as per method described earlier 

(Bleyer et al., 2016). Neutrophils were cytospun at 1000x for 10 minutes at room 

temperature. After cytospinning, cells were either stained directly with DAPI stain or 

fixed with methanol for H&E staining. For H&E staining, fixed cells were immersed in 

hematoxylin stain for 10 seconds followed by washing with tap water. During washing, 

slides were immersed in water until slides were clear of stain. The slides were then 

immersed in eosin dye for 30 seconds followed by washing with tap water. Finally, H&E 

slides were air dried and examined under compound microscope at 20x (Olympus, PA, 
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USA) while the DAPI-stained cells were examined under florescent microscope with 

358⁄461nm excitation⁄emission filter at 20x (Olympus, PA, USA). 

 Phenotypic characterization using flow cytometry. 

 The phenotypic characterization of freshly collected neutrophils as well as 

neutrophils after BVDV infection was done by measuring CD14, CD18 or L-selectin 

surface marker expression. Briefly, freshly isolated neutrophils were collected by gentle 

pipetting and centrifugation for 5 min at 1500 rpm at room temperature. Cell numbers 

were adjusted to 1x106/ml in PBS containing 1% FBS. A 100 µl cell suspension were 

added to each well of round bottom 96-well plates in triplicate. Fifty (50) µl of primary 

antibodies of anti-CD14 antibody (clone M-M9), VMRD Inc, Pullman, WA.; anti-CD18 

antibody (clone BAQ30A; Kingfisher Biotechnology, St Paul, MN) or anti-L selectin 

antibody (clone FMC46; Novus Biological, Littleton, CO) were added to respective 

wells. The primary antibodies used in staining were pre-diluted 1:100 in PBS containing 

1% FBS.  After adding primary antibodies, cells were incubated at 4°C for 10 min 

followed by 2X washes with 200 µl PBS containing 1% FBS.  After washing, cells were 

stained with FITC-labeled anti-mouse secondary antibody (VMRD Inc., Pullman, WA, 

USA) with 1:1000 dilution in PBS containing 1% FBS at 4°C for 10 min.  After 

secondary antibody straining, cells were washed again for 2X as described above. 

Finally, stained cells were fixed with 200 µl of 1% paraformaldehyde and analyzed by 

FACScan (Becton-Dickson, Mountain View, CA). 

Virus infection of neutrophils 

Freshly collected neutrophils were suspended in RPMI 1640 medium 

supplemented with 10% FBS, penicillin (100 U /ml) and streptomycin (100 μg /ml) to 



47 

 

achieve final concentration 1x106 /ml.  One (1) ml of the cell suspension was added to 

each well of the 12-well plates. Cells were infected with either cp TGAC or ncp TGAN 

strains of BVDV with a multiplicity of infection (MOI) of 6.  Mock-infected neutrophils 

or lipopolysaccharide-treated (LPS; 10 ng/ml, Sigma-Aldrich, St. Louis, MO, USA) 

neutrophils were used as negative or positive controls respectively.  BVDV-, mock-

infected or LPS-treated neutrophils were collected at 0 hr, 1 hr or 6 hr, post infection 

(p.i.) and examined for their viability and cell surface marker expression of CD14, CD18 

or L-selectin as described above. These time points were chosen because beyond 6 hr, the 

short half of neutrophils resulted in high back ground apoptosis in the mock-infected cells 

so differences could not be measured. 

Statistical analysis 

The significance of BVDV infection on neutrophil viability and cell surface 

marker expression was calculated by paired t-test (Glantz, 2002).   

RESULTS 

Neutrophil morphology, viability and yield 

The isolated neutrophils had characteristic polymorphic nucleus (Figure 2.1), with 

99.80±0.1% purity.  H & E staining of neutrophils showed purple colored multiple 

lobulated nucleus (polymorphic nucleus) (Figure 2.1A). Similar multiple lobulated nuclei 

(polymorphic nucleus) were observed following DAPI staining (Figure 2.1B).  

Neutrophil purity was determined and confirmed through morphological examination, 

and differential leukocyte count (Chung et al., 2005) by the Veterinary Clinical Pathology 

Section, Animal Disease Research and Diagnostic Laboratory (ADRDL), South Dakota 

State University (SDSU), Brookings, SD.  
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Isolated neutrophil viability was 98.86±0.90% as measured by the trypan blue 

exclusion assay. The yield of was 20.64±1.89X106 neutrophils from 50 mL of peripheral 

blood.   

Phenotypic characterization of neutrophils  

Freshly isolated neutrophils were stained for CD14, CD18 or L-selectin.  Freshly 

isolated neutrophils were low in CD14+ (11.34±3.89), and high for CD18+ (99.77±0.13) 

and L-selectin (97.05±2.41) (Figure 2.2). 

The effect of BVDV infection on neutrophil viability  

Neutrophil viability did not change during BVDV infection (p<0.05). Neutrophil 

viability was 99.17± 1.41%, 98.13± 2.65% in unstimulated control cell while LPS-treated 

neutrophils was 98.25± 1.82% and 93.43± 3.08%, TGAC- and TGAN-infected neutrophil 

viability was 98.08± 1.26%, 97.33± 2.08% and 99.25±1.27%, 97.10± 1.09% at 1hr or 6 

hr post infection respectively, which were not significantly different from the 

unstimulated control cells (p<0.05) (Figure 2.3, Table 2.1).  

The effect of BVDV infection on neutrophil apoptosis was determined.   TGAN 

induced significant apoptosis at 1 hr post infection as compared to unstimulated control 

neutrophils (p<0.05).  At 1 and 6 hr post infection, TGAN induced around 7% and 1% 

higher apoptosis as compared to time point unstimulated control neutrophils respectively 

(Figure 2.4, Table 2.2).  TGAC induced approximately 3% and 4% more apoptosis at 1 

and 6 hr post infection as compared to unstimulated control neutrophils respectively 

(Figure 2.4, Table 2.2).  LPS treatment did not induce any apoptosis in neutrophils at 1 hr 

post infection while it caused significant apoptosis (around 6% higher as compared to 

time point unstimulated control neutrophils) at 6 hr post infection (p<0.05) (Figure 2.4, 
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Table 2.2). However, the staurosporine (STS) (positive control) induced around 13% and 

11% apoptosis in neutrophils at 1 hr and 6 hr post treatment, which were significantly 

higher as compared to the unstimulated control neutrophils (p<0.05)(Figure 2.4, Table 

2.2).   

Effect of BVDV on neutrophil surface marker expression  

 BVDV infection with either TGAC or TGAN had no effect on neutrophil CD14 

expression at 1 hr p.i. In contrast at 6 hr, CD14 expression increased approximately 12% 

and 27% following TGAC or TGAN infection as compared to their unstimulated time 

point control neutrophils (Table 2.3, Figure 2.5).  The positive control, LPS, a well-

known inducer of CD14, significantly enhanced neutrophil CD14 expression at 1 hr as 

well as 6 hr post treatment (p<0.05). This was approximately 200% and 300% higher at 1 

hr and 6 hr post treatment respectively as compared to its time point control (Table 2.3, 

Figure 2.5).  

Both TGAC and TGAN infection significantly reduced CD18 expression at 1 hr 

post infection, which was approximately 17% and 13% less than their unstimulated time 

point control neutrophils respectively (p<0.05) (Table 2.3, Figure 2.6). At 6 hr p.i. TGAN 

further reduced CD18 expression. The reduction in CD18 expression at 6 hr p.i. by 

TGAN was significant and was approximately 24% less as compared to unstimulated 

time point control neutrophils (p<0.05) (Table 2.3, Figure 2.6). However, homologous 

TGAC increased CD18 expression at 6 hr p.i. by approximately 8% as compared to 

unstimulated control neutrophils.  Neutrophils treated with LPS increased CD18 

expression by 2% and 15% higher at 1hr and 6 hr p.i. respectively as compared to 

unstimulated control neutrophils (Table 2.3, Figure 2.6). 
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LPS treatment also reduced the L-selectin expression by 4% and 29% at 1 and 6 

hr p.i. respectively, as compared to their time point control (Table 2.3, Figure 2.7). The 

reduction in L-selectin expression by LPS at 6 hr p.i. was significant as compared to their 

time point control (p<0.05)(Table 2.3, Figure 2.7). 

DISCUSSION 

The current study was conducted to standardize neutrophil isolation protocol with 

high yield, viability and purity. The effect of BVDV biotypes on neutrophil viability and 

phenotypic characteristics was measured. The optimized centrifugation, RBCs lysis and 

neutrophil restoration method in current study yielded 20.64±1.89 106 neutrophils from 

50 ml peripheral blood. Isolated neutrophils were 99.80±0.1% pure with 98.86±0.90 % 

viability. Freshly isolated neutrophils had high expression of CD18+ (99.77±0.13%), L-

selectin (97.05±2.41%), and low expression of CD14+ (11.34±3.89%) markers.  

Neither biotypes (eg. TGAC or TGAN) had any effect on neutrophil viability 

(p<0.05). A previous in vivo study showed that BVDV infection cause neutropenia in 

vivo (Roth et al., 1981) but they did not measure the effect BVDV on neutrophil viability. 

Such changes in neutrophil population could be due to reduced neutrophil production, 

margination or other hemodynamic mechanisms. However, the current study showed that 

BVDV infection significantly reduced CD18 and L-selectin expression on neutrophils. 

Both surface makers (e.g. CD14 or L-selectin) are needed for neutrophil margination and 

extravasation (Ley et al., 1995, Simon et al., 1995, Walzog et al., 1999, Kolaczkowska 

and Kubes, 2013).  Additionally, CD18 helped in inducing neutrophil maturation and 

release to the circulation from bone marrow (Gomez and Doerschuk, 2010). The 

crosslinking of L-selectin to its ligands upregulated CD18 expression (Green et al., 
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2003). Thus, reduced expression of L-selectin and CD18 may result in neutropenia due to 

reduced neutrophil production from the bone marrow.   

 In addition to surface marker expression, BVDV could affect neutrophil 

production through direct effect on hematopoietic cells. Studies with the highly virulent 

ncp BVDV2-890 and comparatively less virulent TGAN revealed that highly virulent ncp 

BVDV2-890 has higher association with lymphocytes and platelets as compared to the 

less virulent TGAN. The higher ability to infect and replicate in lymphocytes and in 

platelets by ncp BVDV2-890 may be a reason for lymphopenia, neutropenia and 

thrombocytopenia caused by ncp BVDV2-890 as compared to TGAN (Bolin and 

Ridpath, 1992).  

Similarly, an in vivo study with high virulent ncp BVDV2-HV24515 and low 

virulent ncp cp BVDV2-LV11Q revealed that both viruses cause neutropenia. However, 

the number of neutrophils rebounded earlier in low virulent ncp cp BVDV2-LV11Q 

infected animals as compared to high virulent ncp BVDV2-HV24515 infected animals. 

Rebound of neutrophil numbers was associated with bone marrow mononuclear cell 

(BMMCs) proliferation, which were isolated from each group. Results of that study 

suggested that BVDV induced neutropenia by affecting proliferative capacity of bone 

marrow progenitor cells (Keller et al., 2006). 

Another virus of the Flaviviridae family, dengue virus type 4, infected immature 

human bone marrow progenitor cells resulting in bone marrow failure and neutropenia 

(Nakao et al., 1989). Similarly, hepatitis C virus (HCV), another member of the 

Flaviviridae family, infected pluripotent hematopoietic CD34+ cells (Sansonno et al., 

1998), suggesting that HCV cause   neutropenia (Sheehan et al., 2014) this neutropenia 



52 

 

could be the results of affecting pluripotent hematopoietic CD34+ cell (Sansonno et al., 

1998) or through direct neutrophil apoptosis through caspases 3 and 10 (Aref et al., 

2011), or by both. 

In another in vivo study, neutrophils isolated from a BVDV persistently infected 

cattle had impaired neutrophil activity (Brown et al., 1991). However, this study in vivo 

which was a complete different environment then the current in vitro study. Additionally, 

that study did not measured the effect of BVDV on neutrophil surface marker expression, 

which helps determines the neutrophil functional ability.  

The current study measured the effect of two different BVDV biotypes, TGAC or 

TGAN, on neutrophil cell surface marker expressions. Both, TGAC or TGAN increased 

CD14 expression approximately 12% and 27% at 6 hr p.i. respectively, as compared to 

their unstimulated time point control neutrophils.  LPS that was used as positive control 

in assay significantly enhanced neutrophil CD14 expression at 1 hr as well as 6 hr post 

treatment (p<0.05). Upregulation of CD14 expression by LPS-positive control was 

approximately 200% and 300% higher at 1 hr and 6 hr post treatment respectively as 

compared to its time point control. (Jersmann et al., 1998; Landmann et al., 1996). 

The current study also revealed that TGAN infection significantly reduced CD18 

expression (p<0.05) while TGAC slightly enhanced the expression. Reduction in CD18 

expression by TGAN was about 24% while increment in CD18 expression by TGAC was 

about 8% at 6 hr p.i. as compared to their time point control neutrophil. However, both 

TGAC and TGAN significantly reduced L-selectin expression at 6 hr p.i. as compared to 

their time point control neutrophil (p<0.05). The reduction in L-selectin at 6 hr p.i. by 

both biotypes was approximately 11% as compared to their time point control 
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neutrophils. Downregulation of CD18 and L-selectin on neutrophils following BVDV 

infection indicated that BVDV infection could significantly affect neutrophil functional 

ability (Yoshitake et al., 2002). CD18 plays an important role in neutrophil maturation 

and its release into the circulation from bone marrow (Gomez and Doerschuk, 2010) as 

well as neutrophil extravasation from blood to tissues (Walzog et al., 1999).  

Similarly, L-selectin has adhesive properties to endothelium, which helped in 

extravasation of neutrophils from blood to tissues (Smolen et al., 2000). Additionally, 

crosslinking of L-selectin to its ligands was required for phosphorylation of mitogen-

activated protein kinases (MAPKs) leading activation of CD18 (Green et al., 2003). Thus, 

downregulation of L-selectin could further reduce the CD18 expression on neutrophils. 

Therefore, reduced L-selectin and CD18 could lead to reduced neutrophil production 

resulting neutropenia. This neutropenia and impaired neutrophil function was reported 

earlier in in vivo studies (Brown et al., 1991; Ganheim et al., 2005; Roth et al., 1981).  

In brief, the results of this study suggested that BVDV infection does not affect 

the viability of neutrophils. However, it reduced the L-selectin and CD18 expression 

leading to neutropenia and impaired neutrophil function.  Further studies need to be done 

with other BVDV strain inducing highly pathogenic and moderate pathogenic to evaluate 

the effect of BVDV pathogenicity of neutrophil surface marker expression.    
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Figure 2.1. Morphologic characterization of isolated bovine neutrophils. 

Freshly isolated bovine neutrophils were cytospun and fixed with methanol 

followed by H and E staining or stained with DAPI. H and E staining of 

neutrophils showed purple colored multiple lobes in nucleus (polymorphic 

nucleus-red arrow) (A). Similar multiple lobes in nucleus (polymorphic nucleus) 

with blue color (shown with red arrow) were observed following DAPI staining 

Cells were examined at 20X using compound microscope (Olympus, PA, USA) 

(A) or fluorescent microscope (Olympus, PA, USA) (B) 
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Figure 2.2. Phenotype of bovine neutrophils. Bovine neutrophils were stained 

with anti-CD18, anti-L-selectin and anti-CD14 antibodies followed by FITC-

labeled secondary antibody. The percentage of cells expressing CD18 

(99.77±0.13) (A), L-selectin (97.05±2.41) (B) and CD14 (11.34±3.89) (C) in M1 

gating, shown by red arrow were measured using FACScan flow cytometer 

(Becton-Dickson, Mountain View, CA).  



63 

 

 

 

Figure 2.3. Neutrophils viability following BVDV infection. Neutrophils were infected 

with TGAC or TGAN at a MOI 6 for 0 hr, 1 hr and 6 hr. Mock-infected or LPS 

(10ng/ml) treated neutrophils were used as negative or positive controls respectively. 

Neutrophil viability was examined for through trypan blue exclusion assay and examined 

for significant differences using paired T test (p<0.05). 
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Figure 2.4. Effect of BVDV in inducing apoptosis in neutrophils. Neutrophils 

were infected with TGAC or TGAN at a MOI 6 for 0 hr, 1 hr and 6 hr. Mock-

infected, or staurosporine (STS) 10nM treated neutrophil were used as negative or 

positive controls respectively. LPS (10ng/ml) also used for neutrophil stimulation. 

Neutrophil apoptosis was measured through Annexin V Apoptosis Detection Kit 

(eBiosciences, San Diego, CA). Significant differences from unstimulated control 

cells was calculated using paired T-test (p<0.05). Significant differences in 

treatment are shown with asterisk (*)  
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Figure 2.5. Effect of BVDV infection of CD14 expression on neutrophils. 

Freshly isolated neutrophils were infected with TGAC or TGAN at a MOI of 6 

or treated with LPS (10ng/ml). Neutrophils were collected at 0 hr, 1 hr or 6 hr 

post infection/treatment. Neutrophils were then stained with anti-CD14 

antibodies. Followed by FITC-labeled secondary antibody.  After secondary 

antibody staining, cells were analyzed through FACScan (Becton-Dickson, 

Mountain View, CA). Significant difference in surface marker expression 

following BVDV infection or LPS-treatment then its time point control was 

calculated through paired T-test (p<0.05) and indicated with an asterisk (*).  
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Figure 2.6. Effect of BVDV infection of CD18 expression on neutrophils. 

Freshly isolated neutrophils were infected with TGAC or TGAN at a MOI of 6 or 

treated with LPS (10ng/ml). Neutrophils were collected at 0 hr, 1 hr or 6 hr post 

infection/treatment. Neutrophils were then stained with anti-CD18 antibodies. 

Cells were analyzed using a FACScan flow cytometer (Becton-Dickson, 

Mountain View, CA). Significant difference in surface marker expression 

following BVDV infection or LPS-treatment at each time point were calculated 

using a paired T-test (p<0.05) and are shown with an (*).  
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Figure 2.7. Effect of BVDV infection of L-selectin expression on neutrophil. 

Freshly isolated neutrophils were infected with TGAC or TGAN at a MOI of 6 or 

treated with LPS (10ng/ml). Neutrophils were collected at 0 hr, 1 hr or 6 hr post 

infection/treatment. Neutrophils were then stained with anti-L-selectin antibodies 

and using flow cytometry. Significant differences in surface marker expression 

following BVDV infection vs. LPS-treatment at each time point were determined 

using a paired T-test (p<0.05) and statistical differences were indicated with an 

asterisk sign (*).  
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TABLES 

 

Treatment  0 hr 1 hr 6 hr 

Control (Unstimulated neutrophils) 99.39±0.93% 99.17± 1.41% 98.13± 2.65% 

Neutrophils treated with LPS 

(10ng/ml) 

99.39±0.93% 98.25± 1.82 93.43± 3.08 

Neutrophils infected with TGAC (6 

MOI) 

99.39±0.93% 98.08± 1.26 97.33± 2.08 

Neutrophils infected with TGAN (6 

MOI) 

99.39±0.93% 99.25± 1.27 97.10± 1.09 

 

Table 2.1. Neutrophils viability following BVDV infection. Neutrophils were infected 

with TGAC or TGAN at a MOI 6 for 0 hr, 1 hr and 6 hr. Mock-infected or LPS-treated 

neutrophils were used as negative or positive controls respectively. Neutrophil viability 

was examined for through trypan blue exclusion assay and examined for significant 

differences using a paired T test (p<0.05). 
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Treatment 0 hr 1 hr 6 hr 

Control (Unstimulated neutrophils) 5.39±0.48% 20.17± 5.58% 37.11± 2.41% 

Neutrophils treated with LPS 

(10ng/ml) 

5.39±0.48% 18.55± 3.43 43.49±2.53* 

Neutrophils treated with 

staurosporine (STS) 10nM (positive 

control) 

5.39±0.48% 33.82±0.00* 48.62±2.82* 

Neutrophils infected with TGAC (6 

MOI) 

5.39±0.48% 23.23±6.94 41.20± 1.58 

Neutrophils infected with TGAN (6 

MOI) 

5.39±0.48% 27.49± 1.97* 38.72± 1.18 

 

Table 2.2. Effect of BVDV in inducing apoptosis in neutrophils. Neutrophils were 

infected with TGAC or TGAN at a MOI 6 for 0 hr, 1 hr and 6 hr. Mock-infected, or 

staurosporine (STS) 10nM treated neutrophil were used as negative or positive controls 

respectively. LPS (10ng/ml) also was used for neutrophil stimulation. Apoptosis in 

neutrophil was measured with Annexin V Apoptosis Detection Kit (eBiosciences, San 

Diego, CA). Significant differences from unstimulated control cells was calculated using 

a paired T-test (p<0.05). Significant differences in treatment are indicated with an 

asterisk sign (*). 
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 CD14 CD18 L-selectin  

 0 hr 1hr 6 hr 0 hr 1hr 6 hr 0 hr 1hr 6 hr 

Control 

(Unstimulated 

Neutrophils)  

100 

±0.00 

103.91 

±27.83 

118.93 

±34.20 

100 

±0.00 

123.21 

±19.28 

78.13 

±14.65 

100 

±0.00 

75.47 

±18.96 

56.82 

±5.69 

Neutrophils 

treated with 

LPS 

(10ng/ml) 

100 

±0.00 

204.41 

±6.25* 

360.52 

±26.30* 

100 

±0.00 

126.33 

±2.31 

90.24 

±2.14 

100 

±0.00 

72.72 

±6.20 

40.33 

±5.69* 

Neutrophils 

infected with 

TGAC (6 

MOI) 

100 

±0.00 

104.54 

±35.02 

133.97 

±43.17 

100 

±0.00 

103.08 

±11.85* 

84.46 

±20.83 

100 

±0.00 

82.73 

±11.86 

50.34 

±7.35* 

Neutrophils 

infected with 

TGAN (6 

MOI) 

100 

±0.00 

100.81 

±27.99 

151.19 

±43.23 

100 

±0.00 

108.50 

±26.11* 

59.79 

±3.56* 

100 

±0.00 

80.87 

±18.03 

50.56 

±4.48* 

 

Table 2.3. Effect of BVDV infection of cell surface marker expression CD14, CD18 

and L-selectin on neutrophils. Freshly isolated neutrophils were infected with TGAC or 

TGAN at a MOI of 6 or treated with LPS (10ng/ml). Neutrophils were collected at 0 hr, 1 

hr or 6 hr post infection/treatment. Neutrophils were then stained with anti-CD14, anti-

CD18 and anti-L-selectin antibodies, followed by FITC-labeled secondary antibody.  

After secondary antibody staining, cells were analyzed using flow cytometer. Significant 

differences in surface marker expression following BVDV infection or LPS-treatment 

then its time point control was calculated with a paired T-test (p<0.05) and are shown 

with an asterisk (*).  
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CHAPTER 3. 

EFFECT OF BVDV ON FUNCTIONAL ABILITY OF BOVINE NEUTROPHILS  

ABSTRACT 

Bovine viral diarrhea virus (BVDV) is one of the highly prevalent and 

economically devastating diseases of the cattle industry worldwide. The two major 

consequences of BVDV infection are persistent infection and immunosuppression. 

Several studies have been done to determine the underline mechanisms for BVDV-

induced immunosuppression, targeting antigen presenting cells, cells of adaptive immune 

system and cytokine gene expression. However, very little research has focused on the 

effect of BVDV on neutrophils.  

Neutrophils are one of the most abundant white blood cell (WBC) in the 

peripheral blood and play a critical role in innate as well as adaptive immune response. 

During injury or pathogen invasion, neutrophils become activated and migrate to the site 

of infection. At the site of infection, neutrophils phagocytize and destroy the invading 

pathogen through intracellular phagosomes and/or reactive oxygen species.  In some 

cases, neutrophils also use extracellular traps to eliminate the invading pathogen.  

The effect of BVDV infection on neutrophil functions, migration/chemoattraction, 

phagocytosis, oxidative burst and NET formation, were measured. The three ncp strains 

enhanced migration while the cp strain reduced neutrophil migration as compared to the 

mock-infected control treatment.  The number of neutrophil that reached the lower 

chamber were 139%, 350% or 44% higher in TGAN, 1373 or 28508-infected 

macrophages as compared to mock-infected macrophage control, respectively. The 

number of neutrophils that migrated to TGAC-infected macrophages was 10% less as 
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compared to mock-infected control neutrophils. Compared with LPS-treated positive 

macrophage, all strains infection except the highly virulent 1373, reduced neutrophil 

migration. The enhancement in neutrophil migration by 1373 was approximately 55% 

higher as compared to LPS-treated positive control macrophages.  

BVDV infection by any of the four strains significantly enhanced neutrophil 

phagocytosis activity of 0.2 µm microsphere beads as compared to mock infection 

(p<0.05). Phagocytosis activity following TGAC, TGAN, 28508 or 1373 infection was 

approximately 159%, 816%, 384% and 741% higher as compared to mock-infected 

control neutrophils respectively. Compared with LPS-treated positive control neutrophils, 

the 4 BVDV strains significantly reduced the phagocytosis of microsphere beads 

(p<0.05). Neutrophils infected with TGAC, TGAN, 1373 or 28508 reduced phagocytosis 

activity as 78.9%, 25.7%, 60% or 31.8% respectively, as compared to LPS-treated 

neutrophils.   

Neutrophil phagocytic activity of rhodamine-labeled-E. coli was significantly 

reduced by BVDV infection. TGAC, TGAN, 1373 or 28508 had 23%, 6%, 19% or 12% 

less phagocytic activity as compared to mock-infected rhodamine-labeled-E. coli-treated 

neutrophils (p<0.05).  

BVDV significantly enhanced the NET formation as compare to mock-infected 

negative control neutrophils (p<0.05).  NET formation following TGAC, TGAN, 1373 or 

28508 infection was observed at 102.82±4.83%, 106.91±7.58%, 107.04±6.72 % and 

111.01±10.86% respectively as compared to the LPS positive control.  NET formation 

was dramatic higher 179%, 190%, 190% and 201% higher as compared to mock-infected 

negative control neutrophils (37%)   
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These results indicated that BVDV infection modulates neutrophil activity of 

migration, phagocytosis and oxidative burst in a strain-dependent manner. All strains 

reduced neutrophil phagocytosis and oxidative burst activity, indicating that BVDV 

infection likely enhanced the susceptibility of secondary bacterial infection.  

   

INTRODUCTION 

  Bovine viral diarrhea virus (BVDV) is one of the most widespread viruses in the 

cattle industry.  It is a single-stranded, positive-sense RNA virus with a genome of 

approximately 12.5 kb (Renard et al., 1985).  The BVDV genome encodes a single open 

reading frame flanking with a 5′-nontranslated region (5′-NTR) and a 3′-untranslated 

region (3′-NTR) (Fan and Bird, 2012; Wiskerchen et al., 1991).  The polyprotein is 

cleaved into 11-12 structural or non-structural viral proteins either by host or viral 

proteases (Kummerer et al., 1998; Wiskerchen et al., 1991). The genetic diversity 

between different strains of BVDV has resulted in the classification of BVDV into two 

genotypes based on highly conserved 5’UTR region: BVDV Type I and BVDV Type II 

(Ridpath, 2003). BVDV can also be divided into two biotypes: cytopathic (cp) BVDV 

and noncytopathic (ncp) BVDV based on their effect in cell culture (Baker, 1987).  

BVDV produces a wide range of clinical symptoms. The severity of the disease 

can range from mild acute infection to severe infection depending on the virulence of 

strain and health of infected host (Chase et al., 2015). A common feature of all BVDV 

infections are immunosuppression. Several studies determined the effect of BVDV on the 

adaptive response from antigen presenting to T cell activation and B cell responses 

(Chase, 2013; Chase et al., 2015). However, few studies have determined the effect of 
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BVDV on neutrophils, specifically the comparative effect of BVDV biotypes and strains 

with different virulence.  Neutrophils are the major white blood cell in circulation, which 

play an important role innate immune response as well as activating and shaping the 

adaptive immune response (Jaillon et al., 2013).  This study was designed to measure the 

effect of BVDV on neutrophil functional activity using a variety of BVDV strains: 

homologous pair of ncp and cp viruses (e.g. ncp BVDV1b TGAN and cp BVDV1b 

TGAC) recovered from an animal that died of mucosal disease as well as highly virulent, 

ncp BVDV2a 1373 and moderate virulent ncp BVDV2a 28508-5 strains.    

MATERIALS AND METHODS 

Virus Strains and Preparation 

A homologous pair of ncp and cp type 1b viruses, ncp BVDV1b TGAN and cp 

BVDV1b TGAC (Brownlie et al., 1984), highly virulent ncp BVDV2a 1373 and 

moderate virulent ncp BVDV2a 28508-5 strains were used.  Virus stocks of each strain 

was prepared in BVDV-free Madin Darby bovine kidney (MDBK) cells as described in 

chapter two. Briefly, BVDV-free MDBK cells (passage 98-112) were grown in minimal 

essential medium (MEM, Gibco BRL, Grand Island, NY) (pH 7-7.4) supplemented with 

10% BVDV-free fetal calf serum (FCS) (PPA, Pasching, Austria), penicillin (100 U /ml) 

and streptomycin (100 μg /ml).  Five (5) ml of 5x105 MDBK cells/ml were seeded in T25 

flasks using minimal essential medium (MEM, Gibco BRL, Grand Island, NY) 

supplemented with 10% FBS, penicillin (100 U/ml) and streptomycin (100μg/ml) 

(Sigma-Aldrich, St. Louis, MO, USA). MDBK cells with 60-70% confluency were 

infected with either viral strain.  During viral infection, the media from each flask was 

replaced with and 0.75 ml of virus inoculum with a multiplicity of infection [MOI] of 
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one. Virus was adsorbed for 1 hr at 37°C in a humidified CO2 incubator with gentle 

rotation at every 15 minutes. After one hr incubation, unabsorbed virus was removed and 

the cells were washed with sterile PBS. After washing, 5 ml MEM medium supplemented 

with 10% FBS, penicillin (100 U/ml) and streptomycin (100μg/ml) was added to each 

flask.  The cells were incubated at 37°C in a humidified CO2 incubator for 4-5 days or up 

to 70-80% cytopathic effect for TGAC.  After 4-5 days of incubation, cells were frozen at 

(-80˚C for 15 minutes) and thawed on ice for two cycles.  The cell debris were pelleted 

by centrifugation at 3000 rpm for 10 min at 4°C in 15 ml conical tubes.  The 

supernatants, containing virus, were carefully collected. Supernatants were titrated for 

virus concentration and then aliquoted and stored at -80°C for further use.  

The viral titer was determined by serially inoculating 1:10 dilutions in MEM 

containing MDBK cells as per the method described earlier (Reed and Muench, 1938).  

Briefly MDBK cells were detached from tissue culture flask using 0.25% trypsin-EDTA 

(Sigma-Aldrich, St. Louis, MO, USA). The number of cells was adjusted to 5x105 cells/ 

ml.  One hundred eighty (180) µl cell suspension was added to each well of 96-well plate. 

Twenty (20) µl of virus was added to the first row of the plate. The virus was then mixed 

with MDBK cells and 20 µl of this dilution was added to next row to achieve 10-fold 

dilutions.  The last two rows were treated as negative controls with no virus. The plates 

were incubated at 37°C in humidified incubator for next 4 days. The plate was examined 

every day for cytopathic effect (CPE). The highest dilution showing CPE was used as 

endpoint to calculate the proportionate distance (PD). The PD was then used to determine 

the viral concentration (TCID50) as per formula as described earlier (Reed and Muench, 

1938). 
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5. Proportionate distance (PD) = (% CPE at dilution above 50%) – (50%)/ (% CPE 

at dilution above 50%)- (% CPE at dilution below 50%) (e.g.  60-50/60-0= 0.166) 

6. Calculation of endpoint just next to 50% CPE and conversion into – Log (e.g.10-6 

dilution would be -6) 

7. Calculation of TCID50.  

8.  TCID50 for 20 µl= (PD+ - Log dilution above 50%)  (e.g. 1x106.166) 

For ncp BVDV, the same procedures were done except the endpoint for ncp 

BVDV was determined by staining the MDBK cells with anti-BVDV antibody (mAb 

16C6: IDEXX Laboratories, Westbrook, ME, USA) followed by biotinylated rabbit anti-

mouse IgG (Zymed, Invitrogen Corporation, Frederick, MD, USA), streptavidin-HRP 

(Invitrogen Corporation, Camarillo, CA, USA) and AEC reagent (3 amino-9 ethyl-

carbazole) (Sigma-Aldrich, St. Louis, MO, USA). The endpoint for ncp BVDV was 

determined by the presence of BVDV positive red stained cells.  

Animals  

Sixteen (14) healthy cattle (Holstein Friesian (n=9) and Brown Swiss calves (n=5) 

(8-12 months of age) housed at Department of Dairy Science’s Dairy Farm, South Dakota 

State University (SDSU), Brookings, SD, USA were used in this study. The SDSU 

Institutional Animal Care and Use Committee approved animal handling and blood 

collection. 

Neutrophil Isolation and Viability 

To isolate neutrophils, fifty (50) ml of peripheral blood was collected in 10 ml 

heparinized vacutainer tubes (BD, Franklin Lakes, New Jersey, USA) as described in 

chapter two.  Briefly, neutrophils along with red blood cells (RBCs) were separated by 

centrifuging the blood at 1,000 X g for 30 minutes at 25°C. The plasma and buffy coat 
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were removed and discarded.  The 3-ml cell pellet (neutrophils+ RBCs) was placed into 

eight (8)-15 ml conical tubes.  To each 15-ml conical tube, 10 ml of RBC lysing solution 

was added.  Each tube was gently inverted several times for 10 minutes to lyse the RBCs. 

After gentle inverting, tubes were centrifuged at 1,000 X g for 5 minutes at 25°C.  

Supernatants were discarded and cells pellets were washed 3 times using 10 ml of HBSS 

(for each tube, then were centrifuged at 1,000 X g for 5 minutes at 25°C).  After each 

wash, cell pellets from two tubes were combined to one, leaving 4 tubes, 2 tubes and 1 

tube at the end of each wash (after three wash, cells from eight tubes were combined to 

one tube).  The final cell pellet was suspended in 10 ml RPMI 1640 medium (MEM, 

Gibco BRL, Grand Island, NY) supplemented with 10% BVDV free fetal calf serum 

(FCS) (PPA, Pasching, Austria), sodium pyruvate, penicillin (100 U/ml) and 

streptomycin (100μg/ml) (Sigma-Aldrich, St. Louis, MO, USA). A 2.06±1.89 106/ml (in 

a final volume of 10 ml) neutrophils with 98.86±0.90% viability. 

Effect of BVDV on neutrophil migration ability 

The effect of BVDV on the neutrophil migration was measured using collagen-

coated 6.5 mm transwell plates (Corning life Sciences, Corning, NY).  Briefly, monocyte 

derived macrophages (MDM) were seeded and infected with BVDV in a 24-well plate 

(lower part of the transwell plate) while freshly collected neutrophils were added to upper 

chamber of the transwell. The number of neutrophils migrating to the lower well after 

one hour was used to estimate neutrophil migration ability.  

The neutrophil migration assay was conducted as follows: 

A. Generation of monocyte derived macrophage (MDM): 
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  Sixty (60) ml heparinized venous blood was collected using 6-10 ml heparinized 

vacutainers tubes through adopter needles from healthy calves.  Freshly collected 

heparinized blood was centrifuged at 2000 rpm for 30 minutes at 4°C to collected buffy 

layers.  Cells from buffy layer were suspended into heparinized (10 U/ml) PBS in 1:3 

ratio. The 10 ml of diluted cells were overlaid on a 3 ml, 65% Percoll (GE Healthcare 

Biosciences, Pittsburgh, PA, USA) in 15 ml conical tubes (Falcon, Oxnard, CA, USA). 

After the cells were overlaid, the cells were centrifuged for at 2000 rpm, 4°C for 30 

minutes. The white cell layer containing PBMC were aspirated by pipette from the 

interphase. The collected PBMC were washed two times using heparinized PBS (10 

U/mL) by centrifugation at 1700 rpm for 15 min at 4°C. Finally, PBMC were 

resuspended in complete RPMI medium [RPMI 1640 medium supplemented with 10% 

FBS, penicillin (100 U/ml) and streptomycin (100μg/ml)] to achieve a final concentration 

of 1X 106 cells/ ml. Three (3) ml of the cell suspension was added to each well of a 6-

well plate (Falcon, Oxnard, CA, USA) and incubated at 37°C in a humidified CO2 

incubator for 3 hour. After 3-hour attachment, non-adherent cells were washed away 

using pre-warmed PBS.  Adherent monocytes were cultured for 5 days by changing one-

half of the media every other day.  

B. BVDV infection to monocyte derived macrophages (MDM):  

On the 5th day of culture, MDM were detached with 0.5 ml/well Accutase 

(eBioscience, San Diego, CA, USA) and dissolved in complete RPMI medium to achieve 

a final concentration of 5x105 cell/ml.  One (1) ml of MDM cells was seeded to each well 

of 24 well plates and allowed to attach overnight at 37 °C. The following day, MDM 

were infected with either TGAC, TGAN, 1373 or 28508 at a MOI of 6. Mock-infected or 
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LPS–treated (10ng/ml) MDM were used as negative and positive controls respectively. 

After one-hour adsorption/treatment, MDM were washed with PBS and each well was 

supplemented with fresh 0.6 ml complete RPMI medium (Figure 3.1). 

C. Neutrophil transwell migration assay 

Freshly collected neutrophils were resuspended in complete RPMI medium to a 

final concentration of 1x106 cell/ml.  One hundred (100) µl of the cell suspension was 

placed in the upper chamber of the transwell and the plate was incubated at 37°C for one 

hour (Figure 3.1). After one-hour incubation, a digital image of neutrophils migrated to 

lower chamber were taken.  After migration, activated neutrophils were tightly attached to 

the lower chamber of transwell and Accutase/trypsin was unable to detach all cells. For 

better accuracy, cells were counted using ImageJ software.  At least six images from 

different fields at 20X magnification were taken through a microscope (Olympus, Center 

Valley, PA) and number of cells in each field was counted using ImageJ software 

(Schneider et al., 2012). 

Effect of BVDV on phagocytic activity on neutrophils  

A. Effect of BVDV on phagocytic activity on neutrophils using fluorescent beads as target 

The effect of BVDV on neutrophil phagocytic activity was measured using a 

homologous pair, TGAC and TGAN, highly virulent BVDV2a 1373 or moderate virulent 

BVDV2a 28508. Briefly, freshly collected bovine neutrophils were infected with either 

strain at a MOI of 6 for 1 hour. Mock-infected or LPS-treated (10ng/ml) neutrophils were 

used as negative and positive controls respectively. After one-hour infection/treatment, 

neutrophils were washed with PBS once. During washing, neutrophils from respective 

well of 6-well plates were transferred to 15 ml conical tubes. Tubes were centrifuged at 
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500xg for 10 minutes at 25°C. After centrifugation, supernatant was discarded and the 

pellet was resuspended in 5 ml PBS by gentle pipetting. Neutrophils were centrifuged at 

500xg for 10 minutes at 25°C and resuspended in RPMI media supplemented with 10% 

FBS and antibiotics to achieve final concentration 5x105/ml.  One (1) ml neutrophils from 

each treatment was transferred to 24-well plates.  To these plates, 0.2 µm red (580/605) 

carboxylated-modified microsphere beads (Thermo Fisher, Waltham, MA) were added at 

1:10 target effector ratio. The neutrophil-bead mixture was incubated at 37 °C for one 

hour and then washed with PBS by centrifugation at 1000xg for 10 minutes at 4°C.  The 

neutrophil-bead pellet was resuspended and fixed with 200µl 1% paraformaldehyde in 

PBS.  Fixed cells were transferred to individual well of 24-well plates and examined 

under fluorescent microscope (Olympus, Center Valley, PA).  The percent phagocytosis 

was calculated with following formula  

 

Percent phagocytosis= Number of neutrophils with phagocytized beads X 

100/Total number of neutrophils  

 

B. Effect of BVDV on phagocytic activity on neutrophils using rhodamine-labeled E. coli 

as target  

The effect of BVDV infection on phagocytic activity of neutrophils was further 

examined through rhodamine-labeled-E. coli.  Briefly, E. coli (DH5-Alpha), was streaked 

on nutrient agar plate and incubated overnight at 37°C in humidified incubator. After 

overnight incubation, a single colony of E. coli was collected and propagated in Luria-

Bertani (LB) broth for 8 hours at 37°C in shaking incubator.  After 8 hours incubation, 
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the LB broth was centrifuged at 2000X g for 15 minutes at 4 °C to obtain E. coli pellet.  

E. coli were washed one time with PBS by centrifugation at 2000X g for 15 minutes at 

4°C and, then inactivated by autoclaving at 121°C for 20 minutes.  E. coli inactivation 

was confirmed by absence of its growth on nutrient agar plate up to 48 hours following 

incubation at 37°C, while integrity of the E. coli cells was confirmed by microscopic 

examination (Olympus, Center Valley, PA).  

To label E. coli with rhodamine, 2-gram of rhodamine was dissolved in 100 ml 

carbonate bicarbonate buffer (pH 9.2). Then the E. coli pellet was dissolved in 

rhodamine-carbonate bicarbonate buffer and incubated for 1 hour at room temperature. 

After the 1-hour incubation, rhodamine-labeled E. coli was washed five times with PBS 

by centrifugation at 2000X g for 15 minutes at 4 °C. Finally, rhodamine labeling to E. 

coli was confirmed using fluorescent microscopy (Olympus, Center Valley, PA).   

To measure the effect of BVDV on neutrophil phagocytosis of E. coli, freshly 

collected bovine neutrophils were infected with either TGAC, TGAN, 1373 or BVDV2a 

28508 at a MOI of 6. Following a 1-hour incubation, BVDV or mock-infected 

neutrophils were washed with PBS and resuspended in RPMI media supplemented with 

10% FBS and antibiotics to achieve final concentration 5x105/ml. One ml of neutrophils 

from each treatment was transferred to 24-well plates, to those wells, rhodamine-labeled-

E. coli were added at 1:10 target effector ratio. Neutrophils were incubated at 37°C for 

hour and washed with PBS as described above. Neutrophils were then fixed with 200 µl, 

1% paraformaldehyde suspended in PBS.  Fixed neutrophils were either transferred to 

individual wells in 24-well plates to determine phagocytosis by fluorescence microscopy 

(Olympus, Center Valley, PA) using the following formula  
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Percent phagocytosis= Number of neutrophils with phagocytized beads X 100/Total 

number of neutrophils  

 

or examined using the FACS Calibur (Becton-Dickson, Mountain View, CA, USA).   

Effect of BVDV on neutrophil oxidative burst activity  

Freshly collected neutrophils were infected with either TGAC, TGAN, 1373 or 

28508 at a MOI of 6 to measure the effect of BVDV on neutrophil oxidative burst 

activity. After one-hour of infection, BVDV or mock-infected neutrophils were washed 

with PBS by centrifugation at 500X g for 10 minutes at 25°C. After washing, the 

neutrophils were suspended in RPMI 1640 medium supplemented with 10% FBS, 

penicillin (100 U /ml) and streptomycin (100 μg /ml) to achieve final concentration as 

1x106 /ml.  The neutrophil suspension (200 µl) from each treatment was then transferred 

to an individual well in a round bottom 96-well plate. Mock-infected neutrophils were 

divided into three groups: 1) positive control (mock-infected neutrophils treated with 

oxidative burst inducer phorbol 12-myristate 13-acetate: PMA); 2) negative control 

(mock-infected neutrophils with no PMA; and 3) DHR 123-negative control [neutrophils 

with no treatment and no dihydrorhodamine 123 (DHR 123)]. The DHR 123-negative 

control was used to set the fluorescence gates on the FACS Calibur flow cytometer.  

Twenty (20) µl of 10 µm dihydrorhodamine 123 (DHR 123) (Sigma-Aldrich, St. 

Louis, MO, USA) was added to each well, except no DHR123 was added to the negative 

control cells.  DHR 123 is colorless dye, which passively enters the cell and produces 

green fluorescent in the presence of reactive oxygen species. After adding DHR 123, 

plates were incubated at 37C for 15 minutes. Following the incubation, 50 µl Phorbol 
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12-myristate 13-acetate (PMA) 10nM was added to each well (except DHR123-negative 

control) and the plate was incubated for 15 minutes at 37C.  After 15 minutes of 

incubation, the plates were washed with PBS and fixed with 1% paraformaldehyde in 

PBS.  The oxidative burst activity in fixed cells were measured using the flow cytometer 

(Becton-Dickson, Mountain View, CA, USA).  

Effect of BVDV on Neutrophil extracellular traps (NETs) formation  

Effect of BVDV on neutrophil extracellular traps (NETs) formation was measured 

through NETosis assay kit (Cayman Chemical, Ann Harbor, MI).  Briefly, freshly 

collected bovine neutrophils were infected with one of the four strains at a MOI of 6 for 1 

hr.  

BVDV or mock-infected neutrophils were centrifuged at 500X g for 10 minutes at 25 °C 

to obtain cell pellet. The neutrophil pellet was resuspended in pre-warmed NET assay 

buffer (prepared by combining 500 ml RPMI medium with 5 grams of bovine serum 

albumin and 500 µl calcium chloride) to achieve final concentration 1x106/ml. A 900 µl 

cell suspension was transferred to individual wells of 24-well plate. One hundred (100) µl 

1X phorbol 12-myristate 13-acetate: PMA (provided with the kit) was added to each well 

and plate was incubated at 37 °C for four hours to induce NET formation. The mock-

infected neutrophils treated with PMA were treated as positive control while mock-

infected neutrophils with no PMA treatment was used as a negative control.  

After the four-hour incubation, the supernatant was aspirated and discarded 

carefully without disturbing the NET-cells. The NET-cells were washed gently with one 

ml NET assay buffer twice.  Five hundred (500) µl of S7 nuclease (1:1000 dilution: 

provided with kit) was added to each well and the plate was incubated for 15 minutes at 
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37°C to digest NET DNA and release neutrophil elastase.  After 15 minutes of 

incubation, the supernatant was collected and placed into a new 1.5 ml tube.  The 10 µl 

500Mm ethylenediaminetetraacetic acid (provided with kit) was added to each tube and 

incubated for one minutes at room temperature to inactivate nuclease. The tubes were 

inverted gently a few times and then centrifuged at 300Xg for 5 minutes at room 

temperature.  One hundred (100) µl of supernatant from each tube was transferred to a 

respective well of flat bottom 96-well plate. The 100 µl neutrophil elastase substrate 

containing 15 mM N-methoxysuccinyl-Ala-Ala-Pro-val-p nitroanilide (provided with kit) 

was added to cell supernatant. The plate was covered with aluminum foil and incubated 

at 1 hour for 37°C.  After the 1-hour incubation, absorbance from each well was 

measured at 405nm using Bioteck ELX808 ELISA plate reader (Thermo Fisher Scientific 

Inc., MA, USA). Each experiment was repeated in at least three different animals to 

determine the effect of BVDV on neutrophil extracellular traps (NETs) formation.  

Statistical analysis:  

A paired T test at 5% level of significance was used to determine the significant 

effect of BVDV on neutrophil migration/chemoattraction, phagocytosis, reactive oxygen 

species production (oxidative burst) or NET formation (Glantz, 2002). 

RESULTS 

Effect of BVDV on neutrophil chemotaxis/ migration ability  

The effect of BVDV on neutrophil chemotaxis activity was measured using 

transwells (Corning life Sciences, Corning, NY).  The number of neutrophil that reached 

the lower chamber were 1509±117.97 for TGAN-infected macrophages, 2836.4±560.97 

for 1373-infected macrophages and 913.2±85.26 for 28508-infected macrophages 
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respectively, which was approximately 139%, 350% and 44% higher as compared to 

mock-infected control neutrophils respectively (Figure 3.3) (p<0.05).  The number of 

neutrophils that migrated after TGAC-infected macrophages were 568.4±208.02 was 

10% less as compared to mock-infected control neutrophils (Figure 3.3) (p<0.05).  Mock 

infection or LPS treatment of macrophage (10ng/ml) resulted in migration of 630±143.94 

and 1818±184.83 neutrophils, respectively (Figure 3.2 and 3.3).  

TGAC, TGAN or 28508 infection reduced the neutrophil migration by 68%, 16% 

and 50% respectively, while 1373 significantly enhanced neutrophil migration by 

approximately 55% as compared to LPS-treated positive control neutrophils (Figure 3.2 

and 3.3) (p<0.05).   

 

Effect of BVDV on neutrophil phagocytic capacity.  

To measure the effect of BVDV on neutrophil phagocytic activity, freshly 

collected neutrophils were infected with one of the 4 BVDV strains at a MOI of 6 for one 

hour. LPS-treated (10ng/ml) or mock-infected neutrophils were used as positive or 

negative controls respectively. After the one-hour incubation, either 0.2 µm red 

carboxylated-modified microsphere beads or rhodamine-labeled E. coli at 1:10 target 

effector ratio was added to the treated or infected neutrophils and incubated an additional 

hour. After the one-hour incubation, phagocytic activity of neutrophil for was measured 

by counting the number of fluorescent beads or rhodamine-labeled-E. coli by fluorescent 

microscope (Olympus, Center Valley, PA) internalized in the neutrophils.  Additionally, 

the phagocytic activity of neutrophils for rhodamine-labeled E. coli was also measured 

using flow cytometry.  
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BVDV infection by any of the four strains significantly enhanced neutrophil 

phagocytic activity of 0.2 µm microsphere beads (p<0.05) as compared to mock infection 

(Figure 3.4). Phagocytosis activity following TGAC, TGAN, 28508 or 1373 infection 

was approximately 159%, 816%, 384% and 741% higher as compared to mock-infected 

control neutrophils respectively (Figure 3.4). 

Compared to LPS-treated positive control neutrophils, infection with any of the 4 

BVDV strains significantly reduced the phagocytosis of microsphere beads (p<0.05). 

Indicating that BVDV infection compromise the neutrophils’ phagocytic activity during 

bacterial infection as gram negative bacteria contain LPS. Neutrophils infected with 

TGAC, TGAN, 373 and 28508 had phagocytic activity for microsphere beads of 

13.83±4.16%, 48.83±3.34%, 25.83±6.58%, and 44.85±5.77% respectively, which was 

approximately 78.9%, 25.7%, 60% and 31.8% less as compared to LPS-treated 

neutrophils (Figure 3.4).  The phagocytic activity of LPS-treated and mock-infected 

neutrophils was 65.83±6.14% and 5.33±0.52% respectively (Figure 3.4). 

Neutrophil phagocytic activity of rhodamine-labeled E. coli was significantly 

reduced by infection with TGAC, 1373 or 28508 as compared to mock-infected 

rhodamine-labeled E. coli-treated neutrophils (p<0.05).  Neutrophils infected with cp 

BVDV1b TGAC, ncp BVDV2a 1373 or ncp BVDV2a 28508 had less significantly 

phagocytic activity [62.65±7.44% (23% less), 65.92±9.76% (19% less) and 69.92±6.09% 

(12% less) respectively] as compared to mock-infected, rhodamine-labeled-E. coli-treated 

neutrophils with phagocytic activity of 81.29±5.54% (p<0.05) (Figure 3.5).  Neutrophils 

infected with TGAN had less phagocytic activity (76.60±4.59%, 6% less) but not 

significantly lower than the mock-infected control neutrophils (Figure 3.5).  In the current 
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assay, mock-infected-rhodamine-labeled E. coli-treated control neutrophils could also be 

considered as LPS-treated positive control as E. coli contain LPS.   

Additional neutrophil phagocytic experiments were done with rhodamine-labeled E. coli 

using flow cytometry.  The percent geometric mean fluorescence from rhodamine-labeled 

E. coli in neutrophils infected with TGAC, TGAN, 1373 or 28508 was reduced by all 4 

strains (71.45±16.39, 27.8% reduction; 91.03±5.93, 8% reduction; 84.21±10.49, 15% 

reduction and 87.98±11.70, and 11% reduction, respectively) as compared to the mock-

infected rhodamine-labeled E. coli-treated neutrophils that had a geometric mean of 

99.00±13.22 (Figure 3.6).  Among the four strains, cp TGAC infection reduced 

neutrophil phagocytic activity significantly (p<0.05) as compared to mock-infected 

rhodamine-labeled E. coli-treated neutrophils.  

Effect of BVDV infection on neutrophil oxidative burst  

To measure the effect of BVDV infection on neutrophil oxidative burst activity, 

freshly collected neutrophils were infected with one of the four BVDV strains at a MOI 

of 6.  BVDV or mock-infected neutrophils were treated with PMA oxidative burst 

inducer positive control. The neutrophil oxidative burst activity was measured using flow 

cytometry (Figure 3.7).  All strains of BVDV significantly reduced the oxidative burst 

activity in neutrophils (p<0.05). The neutrophil oxidative burst activity was 57.33±3.38% 

(50% less) 55.89±7.32% (51% less) 61.20±4.44% (46% less) and 58.96±5.16% (48%) 

following infection with TGAC, TGAN, 1373 and 28508 respectively (Figure 3.8, Table 

3.1).   Mock-infected-PMA-treated neutrophils (positive control) oxidative burst activity 

was 115.72±3.08%, while mock-infected negative control (no PMA treatment) oxidative 

burst activity was 0.96± 0.02 % (Figure 3.7, Figure 3.8, Table 3.1).  
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Effect of BVDV infection on neutrophil extracellular trap (NETs) activity 

The effect of BVDV infection on neutrophil extracellular traps (NETs) activity 

was measured through NETosis assay kit (Cayman Chemical, Ann Harbor, MI). Freshly 

collected neutrophils were infected with one of the four BVDV strains at a MOI of 6. 

BVDV- or mock-infected neutrophils were treated with PMA as a positive control NET 

inducer. Mock-infected neutrophils treated with PMA were used as a positive control 

while mock-infected neutrophils with no PMA treatment were used as a negative control. 

The four BVDV strains significantly enhanced the NET formation as compared to mock-

infected negative control neutrophils (p>0.05).  NET formation following TGAC, TGAN, 

1373 and 28508 was observed as 102.82±4.83%, 106.91±7.58%, 107.04±6.72 % and 

111.01±10.86% respectively which were  approximately 179%, 190%, 190% and 201% 

higher as compared to  mock-infected negative control neutrophils which showed NET 

formation as 36.87± 0.83% (Figure 3.9, Table 3.1). 

DISCUSSION 

This study was conducted to measure the effect of BVDV infection on neutrophil 

functional activities of migration/chemotaxis, phagocytosis, oxidative burst and NETs 

formation.  The ncp BVDV, TGAN, 1373 or 28508, significantly enhanced neutrophil 

migration by 139%, 350% and 44% higher while cp TGAC reduced neutrophil migration 

as 10% as compared to mock-infected control respectively.  While comparing with LPS-

treated positive control, cp TGAN (68% reduction) and moderately virulent ncp 28508 

(50% reduction) significantly reduced the migration ability of neutrophils (p<0.05).  

TGAN infection reduced neutrophil migration by 16%.  A surprising finding was that the 

highly virulent 1373 enhanced the neutrophil migration by approximately 55%. The cp 
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biotype (cp TGAC) significantly reduced the migration of neutrophils as compared to its 

homologous ncp biotype (TGAN) (p<0.05).  The reduction in neutrophil migration by cp 

TGAC was 62% less than its homologous ncp biotype (TGAN). However, there was no 

significant difference between BVDV type 1 and type 2 on neutrophil phagocytic 

activity.   Surprisingly, the moderately virulent ncp BVDV2a 28508 significantly reduced 

neutrophil migration as compared to the highly virulent BVDV (ncp BVDV2a 1373). 

Higher neutrophil migration following highly virulent 1373 strain infection may be the 

reason of severe leucopenia and hemorrhagic syndrome caused by this virus in vivo 

(Ridpath et al. 2006a, Ridpath et al. 2006b). 

All four strains significantly enhanced neutrophil phagocytic activity for 0.2 µm 

microsphere beads (p<0.05) as compared to mock infection. Phagocytosis activity 

following TGAC, TGAN, 28508 or 1373 infection was approximately 159%, 816%, 

384% and 741% higher as compared to mock-infected control neutrophils respectively. 

Compared with LPS-treated positive control, which simulates gram-negative 

bacterial infection, the four BVDV strains significantly reduced neutrophil phagocytic 

activity of microsphere beads.  Similarly, BVDV infection with all four strains (TGAC, 

TGAN, 1373 and 28508) reduced neutrophil phagocytic activity for rhodamine-labeled E. 

coli and there was little difference between the microscopy and flow cytometry (23% 

vs.27.8, 6% vs 8%, 19% vs 15% and 12% vs 11%).  The higher magnitude of reduction 

in the microsphere assay (TGAC ~3-fold higher; TGAN ~4X fold higher; 1373 ~4X fold 

higher and 28508 ~3X fold higher) between may be due to the difference in targets 

between the two different phagocytosis assays and the high response of the LPS-positive 

control in the microsphere assay. The microsphere beads used in the phagocytosis assay 
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were not coated with any other ligand, and the LPS was added independently to the LPS-

positive control.  However, rhodamine-labeled E. coli had endogenous LPS and LPS has 

been shown to increased neutrophil phagocytosis in a dose-dependent manner (Bohmer et 

al., 1992). Additionally, the size of E. coli (2µm) is 10 times larger than microsphere 

beads (0.2µm). 

A previous study with neutrophils isolated from cp NADL la-infected animals 

also showed decreased paraffin oil uptake as compared to neutrophils isolated from non-

infected control cattle (Roth et al., 1981) supporting the findings of the current study. 

However, in vivo studies did not compare BVDV biotypes or genotypes.  

Previously, our lab also showed that there was a BVDV strain effect on 

phagocytosis with monocyte-derived macrophages (MDM), another phagocytic cell.  In 

that study, both cp and ncp BVDV infection significantly reduced the phagocytic activity 

of MDM for Candida albicans (Elmowalid, 2003; Chase et al., 2004), and such 

phagocytic activity was reduced with course of infection (e.g. 12 hr p.i., 24 hr p.i. and 48 

hr p.i.). That study also showed that moderately virulent 28508, BJ or PA131 did not 

have any effect on MDM phagocytic activity for Candida albicans.  While highly 

virulent 1373, BVDV2-890, Singer, NY-1 or A125 significantly reduced phagocytic 

activity of MDM for Candida albicans at 48 hr p.i. by 51.6%, 54.0%, 59.3%, 72.3% and 

73.2% respectively as compared to mock-infected MDM that had phagocytic activity of 

more than 95%. (Elmowalid, 2003). 

The study showed that all four strains used in study significantly reduced 

oxidative burst activity (p<0.05) by approximately 50% as compared to positive control 

(p<0.05).  BVDV from both biotypes (cp or ncp), genotypes (type 1 or type 2) or 
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virulence (high virulence or moderate virulence) had similar effect on neutrophil 

oxidative burst activity.  There was no significant difference in neutrophil oxidative burst 

activity between BVDV biotypes, genotypes or virulence (p<0.05). Reduced neutrophil 

functional activity following BVDV infected was also observed in a previous in vivo 

experiment.  Neutrophils isolated from MLV (cp BVDV1a Singer) vaccinated animal had 

reduced neutrophil iodination as well as antibody-dependent cell-mediated cytotoxicity 

(ADCC) (Roth and Kaeberle, 1983).   

Our study also showed that BVDV infection significantly enhanced neutrophil 

extracellular trap (NET) formation (p<0.05). NET formation following TGAC, TGAN, 

1373 and 28508 was approximately 179% (102.82±4.83%), 190% (106.91±7.58%), 

190% (107.04±6.72 %) and 201% (111.01±10.86%) higher than mock-infected control 

neutrophils respectively which showed NET formation as 36.87± 0.83%. 

In conclusion, the study measured the strain effect of BVDV on major functions 

of neutrophils. The study used four strains from both genotypes (type 1 and type 2), 

biotypes (cp and ncp), including highly virulent and moderate virulent strains of BVDV. 

Our results indicated that BVDV infection has a significant impact on neutrophil 

functional activity phagocytosis, migration, oxidative burst and NET formation. 

However, in vitro effects can be different than in vivo.  Further in vivo studies need to be 

done to measure the effect of BVDV strains on neutrophil functional activity and overall 

innate immune response. However, it is very difficult to infect neutrophils alone in an in 

vivo system as BVDV infects almost all types host cell, host ranging from epithelial cells 

to cells of innate as well as adaptive immune system. 
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Figure 3.1. Neutrophil transwell migration assay. MDM were seeded and infected 

with BVDV in a 24-well plate (lower part of the transwell plate).  Following incubation 

with the virus, neutrophils were added to the upper chamber of the transwell. The number 

of neutrophils that migrated to the lower well after one hour was used to estimate the 

neutrophil migration ability.  Picture adapted from 

https://www.corning.com/worldwide/en/products/life-sciences/products/permeable-

supports.html. 

https://www.corning.com/worldwide/en/products/life-sciences/products/permeable-supports.html
https://www.corning.com/worldwide/en/products/life-sciences/products/permeable-supports.html
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Figure 3.2. Effect of BVDV infection on neutrophil chemotaxis/migration. Five day 

cultured MDM were seeded in the lower chamber of transwell and infected with either 

TGAC (A), TGAN(B), 1373 (C) or 28508 (D) at a MOI of 6 for 1 hour. Mock-infected 

(F) or LPS-treated (10ng/ml) (E) MDM were used as negative or positive controls 

respectively. A 100µl (1x106 cell/ml) of freshly collected neutrophils were seeded in the 

upper chamber of the transwell and allowed to migrate for 1 hour at 37°C. After an one-

hour incubation, the number of neutrophils that migrated to the lower chamber was 

counted by ImageJ software.   
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Figure 3.3. Effect of BVDV infection on neutrophil chemotaxis/migration ability. 

Five day cultured MDM were seeded in the lower chamber of transwell and infected with 

either cp TGAC (A), TGAN(B), 1373 (C) or 28508 (D) at a MOI of 6 for 1 hour.  Mock-

infected (F) or LPS-treated MDM (10ng/ml)(E) were used as negative or positive 

controls respectively.  One hundred (100 µl) (1x106 cell/ml) freshly collected neutrophils 

were seeded at upper chamber of transwell and allowed to migrate for 1hour at 37°C. 

After an one-hour migration, the number of neutrophils reached at lower chamber were 

counted by ImageJ software. Significant difference from LPS treatment was calculated 

through paired T-test (p<0.05) and shown with asterisk sign (*)  
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Figure 3.4. Effect of BVDV infection on neutrophil phagocytosis of 0.2µm beads. 

Freshly collected neutrophils were infected with TGAC, TGAN, 1373 or 28508 at a MOI 

of 6 for 1 hour. Mock-infected or LPS-treated (10ng/ml) neutrophils were used as 

negative or positive controls. After one hour of infection/treatment, neutrophils were 

added to 0.2µm beads with 1:10 target effector ratio. The neutrophil-bead mixture was 

further incubated for one hour and examined for phagocytic activity and the number of 

cells counted using fluorescence microscopy.  Significant difference in neutrophil 

phagocytosis activity from LPS treatment was calculated through paired T-test (p<0.05) 

and shown with asterisk (*)  
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Figure 3.5 The effect of BVDV infection on neutrophil phagocytosis of rhodamine-

labeled E. coli as compared to mock-infected neutrophils. Freshly collected 

neutrophils were infected with TGAC, TGAN, 1373 or 28508 at a MOI of 6 for 1 hour 

while mock-infected neutrophils were used as negative controls. After one hour of 

infection neutrophils were added with rhodamine-labeled E. coli with 1:10 target effector 

ratio. The neutrophil-E. coli mixture was further incubated for one hour and examined for 

phagocytic activity using fluorescent microscope (Olympus, Center Valley, PA).  

Significant differences in neutrophil phagocytosis was calculated with a paired T-test 

(p<0.05) and indicated with an asterisk (*) 
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Figure 3.6. The effect of BVDV on neutrophil phagocytosis of rhodamine-labeled E. 

coli using flow cytometry. Freshly collected neutrophils were infected with cp BVDV1b 

TGAC, ncp BVDV1b TGAN, ncp BVDV2a 1373 or ncp BVDV2a 28508 at a MOI of 6 

for 1 hour while mock-infected neutrophils were used as negative controls. After one 

hour of infection, neutrophils were added to rhodamine-labeled E. coli with 1:10 target 

effector ratio. The neutrophil-E. coli mixture was further incubated for one hour and 

fixed with 1% paraformaldehyde. Fixed cells were examined for phagocytic activity 

using flow cytometry. Significant differences in neutrophil phagocytosis activity from 

mock infection was calculated using a paired T-test (p<0.05) and indicated with an 

asterisk (*) 
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Figure 3.7. Flow cytometry histograms of neutrophil oxidative burst activity 

following BVDV infection. Neutrophils were infected with TGAC (C), TGAN (D), 1373 

(E) or 28508 (F) at a MOI 6 for 1 hr. BVDV or mock-infected (B: positive control) 

neutrophils were treated with PMA. Mock-infected neutrophils with no PMA treatment 

were used as negative control (A). The neutrophil oxidative burst activity in all treatment 

was measured using flow cytometer.  
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Figure 3.8. Neutrophil oxidative burst activity following BVDV infection. 

Neutrophils were infected with TGAC, TGAN, 1373 or 28508 at a MOI 6 for 1 hr.  

BVDV or mock-infected (positive control) neutrophils were treated with PMA. While 

mock-infected and no PMA-treated neutrophils were used as negative control. The 

neutrophil oxidative burst activity in all treatments was measured through FACS Caliber 

(Becton Dickson, Mountain View, CA, USA). Significant reduction in oxidative burst 

activity from positive control cell was calculated using a paired T test (p<0.05) and 

indicated with an asterisk (*). 
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Figure 3.9. Neutrophil extracellular trap (NET) formation following BVDV 

infection. Freshly collected neutrophils were infected with TGAC, TGAN, 1373 or 

28508 at a MOI 6 for 1 hr.  BVDV or mock-infected neutrophils were treated with NET 

inducer, PMA.  Mock-infected and PMA-treated neutrophils were used as positive 

control while mock-infected with no PMA treated neutrophils were used as negative 

control.  NET formation was analyzed through enzyme substrate reaction and measured 

at 405nm using a Bioteck ELX808 ELISA plate reader (Thermo Fisher Scientific Inc., 

MA, USA). 
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 Oxidative burst 

activity (%) 

Neutrophil extracellular 

traps (NETs) (%) 

Positive control neutrophils 115.72±3.08 100.00± 4.05%* 

Mock-infected negative control 

neutrophils  

0.96±0.02%* 36.87± 0.83 

Neutrophils infected with cp TGAC (6 

MOI) 

57.33±3.38%* 102.82± 4.83* 

Neutrophils infected with TGAN (6 

MOI) 

55.89±7.32%* 106.91± 7.58* 

Neutrophils infected with 1373 (6 

MOI) 

61.20±4.44%* 107.04± 6.72* 

Neutrophils infected with 28508 (6 

MOI) 

58.96±5.16%* 111.01± 10.86* 

 

Table 3.1. Neutrophil oxidative burst and Neutrophil extracellular traps (NETs) 

formation ability following BVDV infection. Freshly collected neutrophils were 

infected with cp BVDV1b TGAC, ncp BVDV1b TGAN, ncp BVDV2a 1373 or ncp 

BVDV 28508 at a MOI 6 for 1 hr.  BVDV-infected or mock-infected neutrophils were 

treated with the PMA which induced both oxidative burst and/or NET inducer.  Mock-

infected and PMA-treated neutrophils were used as positive control while mock-infected 

with no PMA-treated neutrophils were used as negative control. Neutrophil oxidative 

burst activity was measured through FACS Calibur (Becton-Dickson, Mountain View, 

CA, USA) while NET formation was analyzed through enzyme substrate reaction at 

405nm using Bioteck ELX808 ELISA plate reader (Thermo Fisher Scientific Inc., MA, 

USA).  Significant reduction in oxidative burst activity or NET formation from positive 

control cell was calculated using a paired T test (p<0.05) and indicated with an asterisk 

(*). 
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CHAPTER 4 

 

GENERAL DISCUSSION 

 

Neutrophils are the one of the major white blood cells in circulating blood. 

Neutrophils are considered the first line in the innate immune system (Kobayashi and 

DeLeo, 2009) along with macrophages. Neutrophils play an important role against 

invading bacteria and initiates the adaptive immune responses.  They phagocytize the 

invading microorganisms and activate the innate as well as adaptive immune response. 

Neutrophils activate the immune response through various mediators including 

interleukin-8 (IL-8), platelet activating factor (PAF), leukotriene B4 (LTB4) or 

complement fragment 5a (C5a) (Guo et al., 2003; Mantovani et al., 2011; Mitchell et al., 

2003; Mitchell et al., 2014).  The ability of neutrophils to migrate and destroy the 

invading microorganism depends upon surface maker expression, phagocytic ability and 

oxidative enzymes. Among the surface markers, the cluster of differentiation (CD)-14 

(CD14), CD18 and L-selectin, play an important role against invading organism 

recognition and initiating the immune response (Yoshitake et al., 2002).  A pathogen that 

infects neutrophils could alter its surface marker expression, functional ability and 

significantly affect innate as well as adaptive immune response as discussed in review 

(Drescher and Bai, 2013)   

In the current study, we had three hypotheses: 1) BVDV infection to neutrophils 

significantly affects neutrophil viability in a strain dependent manner; 2) neutrophils 

infected with BVDV have impaired cell surface marker expression of CD14, CD18 and 



106 

 

L-selectin; and, 3) altered surface marker expression can result in abnormal functional 

ability including improper migration, phagocytosis activity, chemotaxis ability, oxidative 

burst and/or, altered neutrophil extracellular trap formation. Such changes in neutrophils 

could vary depending on infection with different BVDV biotypes, genotypes or virulence 

types. To address this question, we used four different viruses: a virus pair (biotypes) of 

cp BVDV1b TGAC and ncp BVDV1b TGAN, highly pathogenic ncp BVDV2a 1373 and 

moderately pathogenic ncp BVDV2a 28508.  

The hypothesis of the current study was tested using the following objectives:   

1) To isolate and use bovine neutrophils as an in vitro model to determine effect of BVDV 

on innate immune system. Under this objective three approaches were taken: 

a) Optimize the method for neutrophil isolation from bovine peripheral blood with 

high yields and viability.  

b) Morphological and phenotypic characterization of neutrophils. 

c) Optimize culture conditions for neutrophils.  

2) To investigate the effect of BVDV on neutrophil viability and phenotype. The 

approaches for that objective were: 

a) Study the effect of different biotypes and virulent strains of BVDV on neutrophils 

viability as well as surface marker expression (CD14, CD18 and L-selectin). 

 To investigate the effect of different strains of BVDV on neutrophil functional 

activities of phagocytosis activity, chemotaxis ability, oxidative burst and 

neutrophil extracellular trap formation  

Bovine neutrophils were isolated by gradient centrifugation followed by red blood 

cells (RBCs) lysis and neutrophil restoration. Isolated neutrophils were confirmed 
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morphologically and phenotypically and, further examined for viability, purity and yield.  

The neutrophils had characteristic polymorphic nucleus with 99.80±0.1% purity and 

98.86±0.90 % viability. 

 Neutrophils were CD18+ (99.77±0.13%), L-selectin (97.05±2.41%), and CD14+ 

(11.34±3.89%) positive. A total 20.64±1.89 106 neutrophils were obtained from 50 mL 

peripheral blood (e.g. 10 ml of 2.064±1.89 106/ml neutrophils). None of the BVDV 

strains used in current study cp BVDV1b TGAC, ncp BVDV1b TGAN, ncp BVDV2a 

1373 or ncp BVDV2a 28508 affected the viability of neutrophils in vitro. Trypan blue 

exclusion assay showed neutrophils viability at 98.08± 1.26%, 97.33± 2.08 % and 99.25± 

1.27%, 97.10± 1.09% and 98.50±2.14%, 94.48±0.87% and 98.12±2.22%, 93.97±5.79% 

at 1hr and 6 hr post infection with cp BVDV1b TGAC, ncp BVDV1b TGAN, ncp 

BVDV2a 1373 or ncp BVDV2a 28508 respectively. While unstimulated control cell or 

LPS-treated neutrophils showed viability of 99.17± 1.41%, 98.13± 2.65% and 98.25± 

1.82% and 93.43± 3.08% at 1hr and 6 hr post infection respectively.  

Surface marker expression was measured following BVDV infection revealed that 

both cp BVDV1b TGAC and ncp BVDV1b TGAN increased CD14 expression 

approximately 12% and 27% at 6 hr p.i., respectively, as compared to their unstimulated 

time point control neutrophils. The current study also revealed that ncp BVDV1b TGAN 

infection significantly reduced the CD18 expression (p<0.05) while cp BVDV1b TGAC 

slightly enhanced the expression. Reduction in CD18 expression by ncp BVDV1b TGAN 

was about 24% while increment in CD18 expression by cp BVDV1b TGAC was about 

8% at 6 hr p.i. as compared to their time point control neutrophils.  
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However, both cp BVDV1b TGAC and ncp BVDV1b TGAN significantly 

reduced L-selectin expression at 6 hr p.i. as compared to their time point control 

neutrophils (p<0.05). The reduction in L-selectin at 6 hr p.i. by both biotypes was 

approximately 11% as compared to their time point control neutrophils. 

The effect of BVDV infection on neutrophil functional activity 

migration/chemotaxis, phagocytosis, oxidative burst and NETs formation was measured. 

The neutrophil migration assay was designed to measure the effect of BVDV-infected 

macrophages on neutrophil migration mechanisms (Zec, et al. 2016).  Macrophages acted 

as tissue resident sentinels and attract circulating neutrophils to the site of infection 

(Kolaczkowska and Kubes 2013, Schiwon et al. 2014, Zec et al. 2016). This indirect 

effect of BVDV-infected macrophages on neutrophil migration was measured.   

Cp BVDV1b TGAC infection to macrophage, significantly reduced migration 

ability of neutrophils as compared to mock infected negative control macrophage 

(p<0.05). The reduction in neutrophil migration following cp BVDV1b TGAC was 

approximately 10% less as compared to mock-infected control. While ncp BVDV strains  

BVDV1b TGAN, 1373 and 28508 enhanced neutrophil migration. The number of 

neutrophil that reached the lower chamber were 1509±117.97 for TGAN-infected 

macrophages, 2836.4±560.97 for 1373-infected macrophages and 913.2±85.26 for 

28508-infected macrophages respectively, which was approximately 139%, 350% and 

44% higher as compared to mock-infected control neutrophils respectively.   

The comparative effect of biotypes and virulence revealed that cp biotype (cp 

BVDV1b TGAC) significantly reduced the migration ability of neutrophils as compared 

to its homologous ncp (ncp BVDV1b TGAN) (p<0.05). The reduction in neutrophil 
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migration by cp BVDV1b TGAC was about 62% as compared to its homologous ncp 

(ncp BVDV1b TGAN).  Surprisingly, highly virulent BVDV (ncp BVDV2a 1373) 

significantly enhanced neutrophil migration as compared to moderate virulent BVDV 

(ncp BVDV2a 28508) (p<0.05).  Enhancement of neutrophil migration by highly virulent 

BVDV (ncp BVDV2a 1373) was about 210% higher as compared to moderate virulent 

BVDV (ncp BVDV2a 28508).  Higher neutrophil migration following ncp BVDV2a 

1373 may be the reason for excess tissue injury caused by this virus (Jaeschke and 

Hasegawa 2006, Ridpath et al. 2006, Ramaiah and Jaeschke 2007, Kruger et al. 2015). 

Phagocytic activity was also studied.  All BVDV strains used in the current study 

significantly reduced the phagocytic activity of neutrophils for microsphere beads as 

compared to LPS-treated neutrophils (p<0.05). Neutrophils infected with cp BVDV1b 

TGAC, ncp BVDV1b TGAN, ncp BVDV2a 1373 or ncp BVDV2a 28508 reduced 

phagocytic activity by 78.9%, 25.7%, 60% and 31.8% respectively for microsphere beads 

as compared to LPS-treated neutrophils.  

While comparing with mock-infected control neutrophils, BVDV (e.g. cp 

BVDV1b TGAC, ncp BVDV1b TGAN ncp BVDV2a 1373 or ncp BVDV2a 28508) 

infection significantly enhanced the neutrophil phagocytic activity (p<0.05), which was 

approximately 159%, 816%, 384% and 741% higher as compared to mock-infected 

control neutrophils respectively. 

Similar results were observed with rhodamine-labeled E. coli (E. coli gram 

negative bacteria which contain LPS) was used as target. Neutrophils infected with cp 

BVDV1b TGAC, ncp BVDV2a 1373 or ncp BVDV2a 28508 had a reduction in 
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phagocytic activity of 22.8%, 18.9%, and 13.9% respectively for rhodamine-labeled E. 

coli as compared to mock-infected neutrophils. 

Similar to migration and phagocytic activity, BVDV infection also affected the 

oxidative burst activity in neutrophils. Neutrophils infected with cp BVDV1b TGAC, ncp 

BVDV1b TGAN, ncp BVDV2a 1373 or ncp BVDV 28508 showed approximately 50%, 

51%, 46% and 48% reduction in oxidative burst activity respectively as compared to 

mock-infected-PMA treated neutrophils -  after 1 hr of infection (p<0.05). BVDV from 

both biotypes (cp or ncp), genotypes (type 1 or type 2) or virulence (high virulence or 

moderate virulence) had similar effect on neutrophil oxidative burst activity.  

The PMA-treated BVDV-infected (e.g. cp BVDV1b TGAC, ncp BVDV1b 

TGAN, ncp BVDV2a 1373 or ncp BVDV 28508) neutrophils, increased the oxidative 

burst by 57%, 55%, 61% and 58% respectively as compared with mock-infected 

neutrophils.  

All four of the BVDV significantly enhanced the NET formation as compare to 

mock-infected negative control neutrophils (p>0.05).  NET formation following TGAC, 

TGAN, 1373 and 28508 was observed as 102.82±4.83%, 106.91±7.58%, 107.04±6.72 % 

and 111.01±10.86% respectively which were  approximately 179%, 190%, 190% and 

201% higher as compared to  mock-infected negative control neutrophils, which showed 

NET formation as 36.87± 0.83%.  

There are very limited studies have been done to determine the effect of BVDV 

on neutrophils. In an in vivo study, neutrophils isolated from experimentally BVDV 

infected cattle showed decreased phagocytic activity with reduced paraffin oil uptake as 

compared to neutrophils isolated from non-infected control cattle (Roth et al., 1981).  
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Similarly, neutrophils isolated from persistently infected cattle also showed reduced 

number as well as its functional activity (Brown et al., 1991).  Animals experimentally 

vaccinated with live modified BVDV vaccines also showed similar results with reduced 

neutrophil numbers as well as functional activity (Roth and Kaeberle, 1983). However, 

these studies did not evaluate neutrophil functional activities like migration, 

phagocytosis, oxidative burst, pathogen killing ability or cytokine production. In addition, 

there are no studies, which compared BVDV biotypes, genotypes and virulence on 

neutrophil function making this study unique.  

Another flavivirus, hepatitis C virus (HCV), also cause neutropenia (Yu et al. 

2011, Sheehan et al. 2013) and altered neutrophil function (Hassoba et al. 2010).  

Neutropenia caused by HCV may be due to its infection to pluripotent hematopoietic 

CD34+ cell (Sansonno et al., 1998), resulting reduced neutrophil production or direct 

neutrophil apoptosis through caspases 3 and 10 pathways  (Aref et al., 2011), or by both.  

Study with 24 HCV patients with hemodialysis had significantly reduced neutrophil 

oxidative burst activity before as well as after hemodialysis (Hassoba et al. 2010).  

Measurement of oxidative burst in that study after hemodialysis was performed to avoid 

any effect of uric acid.  

West Nile virus (WNV), another flavivirus behaved differently with neutrophils.  

WNV increased peripheral neutrophil count as observed in case report (Lustig et al. 

2016), with rapid recruitment of neutrophils at site of infection (Bai et al. 2010).  

WNV infected and used neutrophils to transport virus to the  brain (Wang et al. 

2012). Depletion of neutrophils or knockdown of Cxcr2 gene (neutrophil chemokine 

gene) prior to WNV resulted in reduced viremia and enhanced host survival (Bai et al. 
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2010).   Depletion of neutrophils after WNV infections in mice resulted in higher viremia 

with enhanced host mortality (Bai et al. 2010). Results of this study further strengthening 

that WNV used neutrophils for virus transport and disease pathogenesis.   

Although in the same family, HCV and WNV infections result in different 

outcomes in neutrophils. Therefore, a study on effect of BVDV on neutrophil viability 

was done to better understand BVDV pathogenesis.  The current study tried to choose the 

most representative BVDV strains: a virus pair (biotypes) of cp BVDV1b TGAC and ncp 

BVDV1b TGAN from type 1a genotypes and the highly pathogenic ncp BVDV2a 1373 

and moderate pathogenic ncp BVDV2a 28508 were chosen from type 2a genotypes. 

However, there are still number of questions which need to be answered including the 

effects of BVDV on neutrophil toll-like receptors (TLR) and cytokine production, which 

ultimately shapes the adaptive immune response.  The current study showed that highly 

virulent ncp BVDV2a 1373 induced more neutrophil migration, which can result in 

excessive tissue damage. However, the oxidative burst assay revealed that ncp BVDV2a 

1373 reduced neutrophil oxidative activity. There is further need to determine the effect 

of BVDV on other underline mechanisms, which may lead to tissue damage from 

neutrophil protease activity (e.g. elastase, proteinase-3, and cathepsin G). Among the 

various antimicrobial neutrophil products serine proteases plays an important role in 

microbial killing as well as tissue damage (Kruger et al. 2015). 

 Additionally, in the current study, we infected macrophages and observed the 

neutrophils migration.  It will be interesting, if we can infect neutrophils or both 

neutrophils and macrophages and then see the combined effect on neutrophil migration 

and other neutrophil functional activity.  
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