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ABSTRACT 

ELECTROCHEMICAL SENSOR FOR METAL IONS AND PHOSPHATE ION 

DETECTION FOR BIOMEDICAL AND AGRICULTURE APPLICATION 

MD FAISAL KABIR 

2017 

The goal of this work was to develop electrochemical sensors for heavy metal ions 

(e.g., Cd2+, Hg2+, Pb2+) and phosphate detections in fertilizers with high sensitivity, high 

detection range, repeatability and portability. The heavy metal electrochemical sensors 

were made using novel graphene oxide/silver nanowire (GO/AgNWs) composite as 

working electrode. The phosphate electrochemical sensors were fabricated using 

ammonium molybdate tetrahydrate/silver nanowires (AMT/AgNWs) modified screen 

printed electrode.  

Most of the heavy metals such as mercury, lead, cadmium, and arsenic have 

dangerous effects on human body. These ions can enter human body system via agriculture 

food chain such as fish. Phosphorous-containing fertilizer is imperative to plant and animal 

nutrition. Essential biomolecules of the human body and plant growth depend upon the 

proper availability of phosphate ions in the fertilizer. There is a need for inexpensive, 

portable, repeatable, highly sensitive and field deployable sensors with high detection 

range to monitor the health of the field soil.  

Mercury, lead and cadmium ions have oxidation peaks at three different potentials, 

which indicates good selectivity of the GO/AgNWs sensing electrode. In this experiment, 

the sensitivities of the GO/AgNW working electrode sensors are found to be 7.89 µA/µM, 
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4.21 µA/µM, 2.63 µA/µM for Cd2+, Hg2+, Pb2+ respectively. The detection ranges of these 

sensors are very broad at 5µM - 10 mM. From cyclic voltammetry measurements, the 

sensitivities of AMT modified SPE without and with AgNWs are 0.1 µA/µM and 0.71 

µA/µM with a detection range of 5 μM - 50 mM. Therefore, the use of AgNWs increased 

the sensitivity of the AMT modified SPE significantly. I-V curves showed the sensitivities 

of the SPE without and with AgNWs are 0.2 Ω/µM and 1.6 Ω/µM, respectively. The 

sensors response shows a negative linear (R∞1/Q) relation between concentration (Q) and 

resistance (R). The repeatability tests show an error of only 5-6%. The sensing electrodes 

including GO/AgNWs composite film for heavy metal detection and AMT/AgNWs for 

phosphate ion detection invented in this work can be a potentially simple, low-cost system 

owing to easy fabrication processes and use of inexpensive materials; and portable as it is 

small and needs less equipment to collect data for field deployment.   
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Chapter 1: Introduction 

1.1 Background 

Heavy metals are considered as very toxic chemical elements. Additionally, they 

are characterized as metals because their atomic weights are near 63.5 and 200.6 gmol-1and 

density larger than 5 gcm-3. They are non-biodegradable, widely dispersed and present 

serious hazard to human health and environment. They are mixed in the earth and enter 

physical systems throughout the nutritious chain, causing weakening of human health. 

These metals make bonding with the thiol group of proteins and show their toxicity. Some 

metal ions are needed by the body system in a lower amount such as iron, cobalt, zinc, 

copper, manganese, and so forth, but higher concentration prompts to toxic impacts. 

However, heavy metals such as cadmium, lead, arsenic, chromium and mercury are 

deemed risky even at lower concentrations.  

The above-mentioned ions are considered as the "Environmental health hazards" as 

they are positioned in the list of the 10 highest hazardous substances posted by Agency for 

Toxic Substances and Disease Registry (ATSDR), based on the toxicity and potential 

contribution to polluted water, air and soil. A few international agencies such as World 

Health Organization (WHO), Center for Disease Control (CDC), Joint Food and 

Agricultural Organization (FAO), Joint FAO/WHO Expert Committee on Food Additives 

(JECFA), and International Agency for Research on Cancer (IARC) are working on the 

assessment of toxicity of these heavy metal ions. Among different important metals, lead 

(Pb), cadmium (Cd), mercury(Hg), arsenic (As) and chromium (Cr) are the most likely 

sources of metal ion-related sickness[1]. Small levels of metals are vital to the natural 

working of cells such as carrying cell signals. However, if the concentration exceeds the 
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limits, these metal ions can communicate with other standard protein leading to toxicity in 

humans, animals, and plants. The toxicity is caused by these toxic ions through enzyme 

inhibition, oxidative stress, and impaired antioxidant metabolism which can lead to 

unfavourable health impact. This can result in DNA harm, lipid peroxidation and reduction 

of protein sulfhydryl [2]. 

Phosphorous, nitrogen and water are the three main factors that determine the 

production of sufficient food to feed the fast-growing population of the world. 

Phosphorous-containing fertilizer is imperative to plant and animal nutrition[3]. 

Agriculture and agribusiness are one of the key industries in South Dakota. For example, 

60% of South Dakota (USA) workforce directly or indirectly works in agriculture and over 

43M acres are used as farmland. The agriculture commodities (e.g., corn, soybean, forage 

and wheat) and animal agriculture (e.g., cattle, turkeys and pigs) are valued at over $10B 

market. Annual fertilizer, chemical, seed costs are very high [4]. “Phosphate rock” provides 

around 80% of the world’s economically viable phosphorous. These rocks are localized in 

a single place and world’s supply of natural phosphorous is being threatened by worldwide 

political instability and monopolistic economic practices. Management of phosphorous is 

a bit inconsistent. Although the agriculture system may face the scarcity of phosphorous-

containing fertilizer later this century, a lot of areas are now affected with an excess of 

phosphorous both inland and river water. Crops, livestock and energy production will need 

fresh water, which will considerably add to the existing pressure on non-renewable 

groundwater sources. It is anticipated that the scarcity of fresh water will be experienced 

by seven billion people in sixty countries by 2050. This will put further pressure both on 

food supplies and energy consumption rates [5]. In addition, food production creates huge 
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amount of waste streams that contain organic compounds, phosphorous- and nitrogen-

containing species in water. Novel methods are needed to overcome the price of ineffective 

and energy intensive detection. The development of inexpensive, field-deployable, 

energetically and environmentally viable sensors to monitor phosphorous-containing 

species in agriculture and waste water would benefit the mass production of food and 

agricultural products. 

Keup et al. reported that expanding the phosphate in a waterway led to the quick 

production of plankton, which made such water unacceptable for consumption [6]. The 

highest allowable concentration of phosphate in drinking water proposed by the World 

Health Organization is 1 mg L-1. The determination of hyperparathyroidism, hypertension, 

vitamin D inadequacy, mineral, and bone tissue is related to phosphate condition in blood. 

The presence of phosphate amounts in body liquids can also give helpful data about 

infections, for example, kidney failure. The unusual level of phosphate in blood 

(hyperphosphatemia) can prompt to kidney harm. Bones and teeth get mechanical strength 

from phosphate salts. Body organs get phosphate from intestinal ingestion of food. Renal 

absorption and bone resorption are other important phosphate activities in our body [6]. 

Khoshiniat et al. found that phosphate detecting component might be available in different 

tissues and such sensor will distinguish changes in serum or nearby phosphate existence. 

Phosphate is a notable original part of cells which generates proteins in organic methods. 

The breaking of Adenosine triphosphate (ATP) in cells to produce energy greatly depends 

upon phosphate. Shervendani and Pourbeyaran observed a bone disorder due to phosphate 

related mineral. Polluted water treatment needs millions of dollars to expel phosphate from 

sewage before clearance. For these purposes, the censoring of phosphate fixation is vital 
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for improving water value and limiting contamination of regular waters. Quick, direct and 

delicate strategies for ensuring phosphate concentrations are key to empowering rapid 

evaluation of phosphate in different systems [7]. 

Compared to optical, electrical, electrochemical, mass and thermal sensors, 

electrochemical sensors are particularly preferable to detect metal and phosphate ions due 

to their exceptional selectivity, stability, and simplicity. A statistics of analytical chemistry 

improvement shows that electrochemical sensors are the quickly developing group of 

chemical sensors[7]. Preferably, a chemical sensor gives a particular reaction straight 

connected to a number of chemical compounds under investigation. All chemical sensors 

comprise of a transducer, which converts the obtained response into a recognizable data on 

prevailing equipment, and a chemically modified layer, which separates the signal of the 

chemical species from its surroundings. The chemical sensors can be classified according 

to the property to be detected as electrical, electrochemical, optical, mass or thermal 

sensors. These sensors are intended to identify and react to an analyte in the gaseous, liquid 

or solid state.  

Electrochemical sensors have found meaningful employment in various 

applications such as clinical, mechanical, ecological and farming experiments. 

Potentiometric, amperometric and conductometric are three main parts of electrochemical 

sensors. Ion-selective electrodes (ISE), coated wire electrodes (CWES) and field effect 

transistors (FETS) are three major kinds of potentiometric devices. The ion selective 

electrode can detect particular ionic species. This system needs two electrodes which are 

working and reference electrodes. Voltage is applied externally to the working electrode. 

Reference electrode potential is determined by an electrolyte having the ion of interest. 
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Depending upon the type of the film, ISEs can be separated into three classes: glass, liquid 

and solid electrodes. ISEs are economically available more than twenty types from Orion, 

Radiometer, Corning, Beckman, Hitachi and others, and they are broadly utilized for the 

inspection of natural ions and of cationic or anionic ions in different solutions [8]. Freiser 

first presented coated wire electrodes (CWEs) in the mid of 1970's [9]. In the CWE method, 

an electrode is specifically coated with a proper polymer film generally poly (vinyl 

chloride), poly (vinylbenzyl chloride) or poly (acrylic corrosive) to make an electrode 

system that is sensitive to electrolyte fixations. The advantage of this sensor is that it does 

not require an internal reference electrode which leads simplicity in measurement. The FET 

is a solid–state tool that shows high-input impedance and low output impedance and is 

designed for observing charge development on the ion detecting film. The measurement 

depends on the equipment used to create microelectronic solid state chips [10], and its 

advantage  is the feasibility to make tiny multisensory systems with various gates, for 

detecting several ions. In amperometric sensors, a voltage is applied to a reference and a 

working cathode to carry out the oxidation or reduction of chemical ions and the resultant 

current is calculated. In conductometric sensors, estimation of conductivity is done for a 

series of frequencies. Figure 1.1 shows various environmental applications of screen 

printed electrode (SPE) which is an electrochemical sensor. 

Nowadays in electrochemistry, immobilization of chemical microstructures onto 

the surface of the electrode has become very common. Electrodes are modified chemically 

by use of a modifying mediator onto the electrode surface via chemical responses, 

chemisorption, composite formation or polymer coating. In contrast to normal working 

electrodes, this surface modification allows better control of working electrode features 
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and reactivity since the immobilization conveys the physiochemical properties of the 

mediator to the electrode surface [8]. 

 

Figure 1. 1 Environmental application of electrochemical SPE [9]. 

        This thesis is divided into two major parts: First part describes the graphene oxide 

(GO) /AgNWs electrode for sensing toxic heavy metal ions, and the second part illustrates 

SPE for phosphate measurement.  

 

1.2 Literature review  

For a long time, mercury was utilized as the most appropriate electrode material 

because of its exceptionally appealing qualities of regeneration, recodification and plane 

surface. These distinctive features of the mercury modified electrode prompted to the 

Nobel Prize in 1959 in Chemistry granted to Heyerovský. Both doping and hanging 

electrodes have been commonly utilized as a part of different polarographic and 

electrochemical techniques. With the advancement in electro-analytical science, different 

non-mercury electrodes have additionally been inspected. For instance, bismuth and carbon 

electrodes began to be utilized as a part of electro-investigation over three prior decades 

because of their minimal background current, suitable voltage range, ionic inertness and 

practicality for different sensing and detection purposes. They have disadvantages since 
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they use bulk pieces of metals which make the sensor design very enormous in size and 

not portable for field deployment. Nowadays, reduction in the size of solid electrodes has 

been used to achieve a decrease in sample volume, portability and cost effectiveness. Use 

of SPEs is one of the techniques to achieve the above-mentioned characteristics [11]. 

Graphene is a flat monolayer carbon. It has two-dimensional honeycomb-structured 

carbon atoms and has drawn a considerable attention because of its superior electronic, 

mechanical, optical and thermal features. It turned into a great candidate for a variety of 

applications such as transistors, transparent conducting electrodes, nanocomposites, 

lithium-ion batteries and gas sensors. Numerous techniques have been demonstrated for 

fabricating graphene layers including exfoliation, reduction of GO, chemical vapour 

deposition (CVD) and thermal desorption. Amongst them, reduction of GO is the mostly 

used method to fabricate the graphene layers with ease and for mass production. Oxygen 

functional groups such as hydroxyl, epoxide, carboxyl, carbonyl groups and defects can be 

used to modify the graphene layers. However, Hummers and modified Hummers 

techniques are the most widely used strategies to produce GO, which changes the physical 

and chemical characteristics of graphene [12]. 

 Tang et al. reported aptamer-based GO/silver nanoparticles based electrochemical 

sensor to detect Pb2+ ions [13]. The detection range of this work was claimed to be in the 

range of 0.1 nM to 10 µM. They used aptamer which needs specific DNA sequence for the 

lead detection. This aptamer is very costly and is not abundant. Another group, Promphet 

et al. showed graphene/polyaniline/polystyrene nonporous fibers modified electrode to 

detect lead and cadmium simultaneously. The detection range for this device was 10- 500 

µgL-1 [14]. The fabrication of the electrode with multiple layers is complicated. 
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Gnanaprakasam et al. demonstrated spongy spherical Au nanoparticles uniformly 

decorated on reduced graphene oxide (rGO) for simultaneous detection of Hg2+, Pb2+, Cd2+ 

ions. The Au nanoparticles showed good sensitivity of 19.05 mA mM
-1

, 47.76 mA mM
-

1
, 22.10 mA mM

-1 and 29.28 mA mM
-1 

for Cd
2 +

, Pb
2 +

, Cu
2 + and Hg

2 +
[15]. Lately, 

Some et al. developed hydrophilic GO and hydrophobic rGO based fiber optic gas sensors 

to detect the unstable organic mixes such as CO2, NO3
-, etc. [16]. Recently, Cui et al. 

demonstrated the silver nanowires (AgNWs) modified GO composite sensors for the NH3 

vapor sensing. It was demonstrated that the sensitivity of GO-Ag nanolayer was higher 

than that of GO and multi-walled carbon nanotubes-Ag nanocomposites as Ag nanoparticle 

has good enhancing capability, conductivity and stability [17]. Moreover, the loading 

thickness of AgNWs significantly influenced the sensing performance of GO-AgNWs 

hybrid, and an appropriate nanoparticle loading led to higher sensitivity. However, the 

fabrication procedures of the above sensors are complicated and costly. Noble metal 

nanoparticles such as Ag, Au, Pt, and Pd were used to make GO-metal nanoparticle 

mixtures [15]. The existence of metal nanoparticles on GO surface greatly enhanced the 

capacity of ammonia gas sensing due to their improved surface to volume proportion. The 

presence of different oxygen functional groups such as hydroxyl, epoxide, carbonyl and 

carboxyl groups in GO allowed AgNWs to interrelate with the GO layers with electrostatic 

binding or charge-transmission interface. The presence of AgNWs on the GO surface can 

potentially enhance the detection function toward ions over partly reduced GO sensor [12]. 

Carbon or polymer-based materials have moderately small electrical conductivity and sheet 

resistance higher than that of ITO/glass. Percolation junctions of AgNWs have 

demonstrated comparable sheet resistance and transparency of ITO/glass. Due to the high 
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conductivity of silver, the sheet resistance of an AgNWs permeation junction is determined 

by the interaction resistance of inter-nanowire networks [18].   

  Many works have been reported for the detection of phosphate. A system based on 

spectrophotometric determination was among the first analytical devices developed. These 

colorimetric methodologies are typically based on the phosphomolybdate blue complex 

and characterized by the turbidity. These strategies are influenced by silicate obstruction; 

the silico-molybdate blue complex has a wide absorbance band (790 nm) that covers 710 

nm commonly utilized for phosphomolybdate blue sensing. Rohwedder et al. demonstrated 

a mono segmented drift system for the detection of phosphate in water, by utilizing the 

response between molybdophosphate and malachite green, characterized by high 

absorption at 650 nm. However, the colorimetric setup is difficult to adjust for online 

estimations, since it requires plenty of reagents and is ascorbic corrosive. The advantage 

of the electroanalytical procedure is that it does not require ascorbic acid because the 

reduction occurs at the electrode surface. Moreover, they are characterized by cost-

effective equipment and suitable to be used directly in-situ by means of portable equipment 

interfaced with a portable computer. Talarico et al. reported the use of SPE modified with 

carbon black to detect phosphate ions and their limit of detection was 6 µM [19]. The 

sensitivity here was not linear, and the carbon black is not a good conductive material. 

Gilbert et al. used pyruvate oxidase to make the electrochemical sensor where the pyruvate 

oxidase reacts with the phosphate ions and produce hydroxide ions giving the chemical 

response. The detection limit was 23 µM to 180 µM [20]. The main limitation of the 

reported electrochemical sensors is lower sensitivity. They used the bulky instrument to 

get the data which make them non-portable and non-field deployable.  
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  In summary, various approaches such as modified carbon and graphene based 

electrodes were made previously, but they are not portable, field deployable, very 

expensive and complicated to make. In addition, bulky instruments are needed to obtain 

data. 

 

1.3 Motivation  

There is a need for low cost, portable, repeatable, highly sensitive and field 

deployable sensors with wide detection range to monitor the agriculture field soil and 

biomedical applications. 

1.4 Objectives 

The goal of this work was to develop simple electrochemical sensors using novel 

GO/AgNWs for heavy metal ions detection and novel modified SPE for phosphate 

detection to achieve simplicity, high sensitivity, wide detection range, repeatability and 

portability. The tasks to achieve the goal were to:  

1. Prepare precursor solutions including preparation of AgNWs, GO/AgNWs 

mixtures, an electrolyte for metal and phosphate ions, ammonium molybdate 

tetrahydrate, different concentrations of metal and phosphate ions. 

2. Clean samples and conduct plasma treatment. 

3. Fabricate electrochemical sensor devices including sensor electrode, AgNWs 

and Phenyl-C61-butyric acid methyl ester (PCBM) on working electrode of 

SPE. 
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4.  Characterize the sensors with Raman spectroscopy, scanning electron 

microscopy, cyclic voltammetry and Agilent 4155C semiconductor parameter 

analyzer.  

 

1.4 Organization of dissertation 

Chapter 1 describes the need for electrochemical sensor devices, classification of 

electrochemical sensors, need of heavy metal ion and phosphate ion detection in ground 

water and complexity in developing different kinds of sensor devices. Finally, motivation, 

goal, and specific tasks of this work are presented.   

Chapter 2 discusses the basic working principle of electrochemical sensors. The 

sensors have different parameters that affect the sensor performance. The theory behind 

the parameters and characterization techniques are described.  

Chapter 3 describes experimental details of preparing GO/AgNWs films and 

ammonium molybdate tetrahydrate/AgNWs modified SPEs. The characterization 

techniques used for analysis of sensor device performance are described. 

Chapter 4 presents the results of the sensor device performance using different 

characterization techniques to demonstrate the sensor selectivity and sensitivity. The 

difference between the sensor performance of with and without AgNWs are discussed in 

this chapter.  

Chapter 5 summarizes this work with key conclusions and future work.  
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Chapter 2: Theory 

2.1       Working principle of an electrochemical cell  

Electrochemistry defines the relationship between chemical reactions and energy 

or power associated with it. This involves the investigation of compound conversions 

produced by the passing of an electric current over a system, or the generation of electric 

power by chemical reactions.  

Numerous chemical reactions require input energy to occur. Such reactions 

typically take place at the surfaces of cathodes in an electrochemical cell. These reactions 

provide data about the types and characteristics of the chemical ions held in the cells. The 

generation of chlorine and aluminium, electroplating and electrowinning of metals are 

examples of modern electrochemical procedures. Electrochemical cells that create electric 

energy from chemical reaction are the foundation of main and auxiliary energy cells [21]. 

Current and potential (or voltage) are the subjects of interest for electrochemical 

cells. Current is measured in ampere (A) which is the measure of charge in coulombs (C) 

that goes over a medium per second. Voltage among the two electrodes is computed in 

volts (V) with a voltmeter and is the measure of the energy of the cell response. 

Measurements of the voltages of galvanic cells at open circuit provide information about 

the thermodynamics of cells and cell responses. For instance, the voltage of the galvanic 

cell shown in figure 2.1 is 1.10 V when the mix concentration is 1 molar (1 M) at 25°C, 

this is known as the standard potential of the cell and is denoted by E°. The obtainable 

energy (Gibb's free energy Δ G °) of the cell response is identified with E° by the equation:   

           ΔG ° = − nFE°…………………………………………………….2.1  
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where n is a number of electrons involved in the reaction and F is the Faraday’s 

constant (96,485 coulombs/mol). The cell potential is the difference in potential of the two 

half-cells. The half-cell reaction Cu 2+ + 2 e − → Cu has standard potential of E° = +0.34 

V versus NHE (Normal Hydrogen Electrode) and correspondingly, the standard potential 

for the Zn/Zn 2+ cell gives Zn → Zn 2+ + 2 e – is -0.76 V. The reaction of copper is called 

reduction and the reaction of zinc is called oxidation. These two reactions must take place 

at the same time to successfully operate the electrochemical cell. 

 

Figure 2. 1 Galvanic cell showing oxidation and reduction reactions[22]. 

Voltammetry belongs to a categorization of electro-analytical techniques, through 

which information about an analyte is collected by varying a voltage and calculating the 

resultant current. It is, therefore, an amperometric procedure. Since there are various 

approaches of varying the voltage, there are in addition many forms of voltammetry, for 

example, polarography (DC Voltage), linear sweep, differential staircase, normal pulse, 

reverse pulse, differential pulse and others. Cyclic voltammetry is one of the greatest 

commonly used techniques and provides data about the redox potential and electrochemical 

response rates of ionic mixtures. In this case, the potential is swept from V1 to V2 at a 
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constant rate, and when the voltage achieves V2, the sweep is opposite, and the potential 

is swept back to V1, as is represented in Figure 2.2(a). The scan rate, (V2 - V1)/ (t2 - t1), 

is a crucial thing since the length of a sweep must give enough time for a significant 

chemical response to happen. Changing the scan rate, therefore, gives respectively varied 

results. Potential is applied between the reference electrode and the working electrode, but 

the current is acquired among the working and the counter electrodes.  

The acquired measurements are plotted in a graph as current versus voltage, also 

known as voltammogram as shown in a typical example in figure 2.2(b). As the voltage is 

enhanced towards the electrochemical reduction voltage of the ions, the current will also 

increase. When the voltage of V2 increases, and exceeds this reduction potential then the 

current starts to decrease. As the voltage is switched towards V1, the reaction will start to 

reduce the product from the initial reaction. This creates an increase in current of opposite 

polarity as compared to the forward sweep, but again decreases below the reduction 

potential. The reverse scan also gives data about the reversibility of a reaction at a given 

sweep rate. The form of the voltammogram for a specific analyte depends on several factors 

such as electrode surface characteristics, scan rate, catalyst type and concentration.  

 

Figure 2. 2 An example of cyclic voltammograms: (a) a single generic linear 

voltage scan and (b) a cyclic voltammogram of the Prussian Blue-changed (PB) glassy 

carbon electrode set up in 0.1 M KCl + 0.1 M HCl with a scan rate 50 mV/s [23]. 
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2.2   Working principle of electrochemical sensing electrodes 

2.2.1  Graphene oxide (GO) 

GO is a single layer of carbon atoms in which the atoms are firmly packed in a 

honeycomb-like crystal lattice as shown in figure 2.3. The properties of GO including large 

surface area, low production cost and catalytic properties and so forth make it a potential 

material in the field of sensing. The existence of various oxygen functional groups which 

covalently attached to carbon atoms making GO hydrophilic. It has a high Young’s 

modulus (∼0.25 TPa) and high flexibility, making it a greatly rigid component. In addition, 

GO is cheap and solution processable. 

 

Figure 2. 3 Chemical structure of GO [21]. 

 

2.2.2  Role of AgNWs in sensing 

AgNWs can be involved by epoxy, carboxyl, hydroxyl, and carbonyl functional 

groups and adsorbed on the top of GO via Ag–π orbital connection as shown in figure 2.4. 

These functional groups give improved electrostatic interface among Ag-GO and 

negatively charged GO and form an Ag–GO composite. Having oxygen functional groups, 

metal molecules that are considered as an electron donor can be adsorbed on the plane of 

GO-AgNWs layer, providing a good detection ability. Figure 2.4 shows the working 
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mechanism of GO-AgNWs film. It can be seen that metal ions can be attached to the 

surface of the working film. 

 

Figure 2. 4 Mixture of GO-AgNWs showing the attachment of metal ions. 

 

2.2.3  Mechanism of SPE 

 SPEs are industrially made for electrochemical reaction to use in environmentally 

friendly biomedical and agriculture areas. They are typically made of carbon, gold, 

platinum, silver, carbon nanotubes. The general strip dimension is 3.4 x 1.0 x 0.05 cm. This 

device is very inexpensive and reusable for microvolumes of samples. The working 

electrode of the screen-printed electrode is modified with AgNWs and ammonium 

molybdate tetrahydrate. The oxidation reaction occurs in two steps. It is known that in a 

compound when oxygen is added then the reaction is oxidation. Here in this reaction, the 

Mo7O24
6− and H+ are oxidized in two different steps as shown in the reaction 2.2a. 2.2b 

shows the reduction reaction of the working electrode. That is why two oxidation peaks 

were found, and again the phosphate has changed its valence from 5 to 7. The reaction of 

the working electrode with phosphate ions takes place as: 

7H3PO4+ 12Mo7O24
6−+ 51H+ = 7PMo12O40

3−+ 36H2O ….…………………… (2.2a) 

PMo12O40
3−+ nH++ ne- = [Hn PMo12O40]3-…………………………………...(2.2b) 
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The peak current depends on the change of concentration via the following 

equation: 

iP = (2.69×105)n3/2AD0
1/2

V1/2C0
∗ [24] ……………………………………. (2.3) 

Where, iP = peak current, n = the number electron, A = area of the working 

electrode (cm2), D0 = diffusion coefficient (cm2/s), V = scan rate (V/s), C0
∗ = concentration 

of the oxidized materials in solution. As n, A, D0, V are constant. Thus, it can be simplified 

as, 

iP ∞ C0
∗  ……………………………………………………….. (2.4) 

The peak current varies proportionally with concentration. The current vs 

concentration plot of cyclicvoltammetry measurement should be linear. 

For the I-V measurement, the current varies with charge concentration. Faraday’s 

first law of electrolysis shows, 

      I =  
Q

t
…………………………………………………………………… (2.5) 

Where, I = current (A), Q= charge (coulomb) and t= time (s) 

From Ohm’s law, 

      I =
V

R
…………………………………………………………………… (2.6) 

Where, V= applied voltage (V) and R= resistance (Ω) 

As V and t are constant, so from equation 2.5 and 2.6 it is found that, 

   𝑅∞ 
1

𝑄
…………………………………………………………….... (2.7) 

Which depicts a negative linear relationship between resistance and charge concentration 
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2.3      Working principle of characterization techniques 

2.3.1  Raman spectroscopy 

Raman spectroscopy can provide a fingerprint of a molecule with which a particular 

ion can be determined. The peak position and intensity can give the information about the 

concentration of specific ions. So, it is important to detect ions. Figure 2.5 describes the 

schematic diagram of light scattering after laser falls on a sample plane. When 

monochromatic radiation falls upon a sample, it can be reflected, absorbed or scattered. It 

is the scattering of the radiation from the sample that provides information about the atomic 

structure of the sample. The photons are scattered by the sample, so their wavelengths are 

also changed which provides the chemical and structural data. The scattered radiation 

consists of both incident radiation wavelength (Rayleigh scattering) and a little measure of 

radiation that is scattered with another distinct wavelength (Stokes and Anti-Stokes Raman 

scattering) (approx. just 1 x 10-7 of the scattered light is Raman). Light scattered from a 

particle has a few elements - the Rayleigh scattering, and the Stokes and Anti-Stokes 

Raman scatter. In atomic structures, these frequencies are primarily of the kinds related 

with rotational, vibrational and electronic level transitions. The scattered radiation happens 

over all ways and may also have changes in its polarity alongside its wavelength. The 

scattering procedure without a variation of frequency is called Rayleigh scattering and is a 

similar procedure demonstrated by Lord Rayleigh and which represents the blue color of 

the sky. So, Raman scattering is called a variation in the frequency. Raman moved photons 

of light which can be both of higher or smaller energy, dependent on the vibrational 

condition of the atom [25].  
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Figure 2. 5 Schematic showing light scattering after laser falls on a sample plane [26]. 

 

2.2.1 Scanning electron microscope (SEM) 

SEM characterization of the sensor electrodes was carried out to observe the film 

quality and morphology of the electrode surface. Figure 2.6 describes the schematic 

diagram of SEM working principle. The scanning electron microscope (SEM) uses a 

concentrated emission of high energy electrons upon a sample. The signals that get from 

electron-specimen contacts provide data about the sample in addition to outside 

morphology (texture), chemical mixtures, and crystalline structure and polarization of 

components which are inside the sample. The SEM is additionally equipped with for 

investigating of specified areas on the sample; this method is particularly helpful in 

deciding chemical compositions (utilizing EDS), crystalline structure, and crystal 

orientations (utilizing EBSD)[27]. 

The electrons which get accelerated in a SEM provides the data of kinetic energy, 

and this energy is dissolved as different signals delivered by electron-sample connections 
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when the solid sample decelerate the incident electrons. These signals comprise secondary 

electrons (that deliver SEM images), backscattered electrons (BSE), diffracted 

backscattered electrons (EBSD that are utilized to decide crystal arrangements and 

orientations of atoms), photons (typical X-rays which are used for basic investigation), 

visible light (cathodoluminescence–CL), and heat. Secondary electrons are utmost 

important for demonstrating morphology and topography on surfaces, and backscattered 

electrons are very important for illustrating contrasts in the composition in multiphase 

specimens (i.e. for fast phase separation). X-ray generation is delivered by rigid collisions 

of the occurrence electrons with electrons in discrete orbitals (shells) of particles in the 

sample. As the energized electrons come back to lower energy states, they give X-rays that 

are of a constant wavelength (that is identified with the difference in energy levels of 

electrons in various shells of a component). Along these lines, characteristic X-rays are 

generated for every component in a mineral that is "energized" by the electron beam.  

 

Figure 2. 6 Set up of Scanning Electron Microscope [28].  
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Chapter 3: Experimental procedures    

3.1 Preparation of precursor solutions 

3.1.1 Fabrication of AgNWs solution 

Figure 3.1 shows the preparation of AgNWs. Silver nitrate was purchased from 

Sigma Aldrich. Two knob flask was taken and cleaned with soap and deionized (DI) water. 

The stirrer was put inside the biker and was sonicated with soap water, DI water, acetone 

and IPA for 20 minutes for each. 6 ml of ethylene glycol (EG) and 0.5 g of silver nitrate 

(AgNO3) were mixed in a cylinder. 0.025M CuCl2 solution was prepared in EG. A big 

pyrex biker was taken to use oil and an RTD thermometer to measure the temperature. 0.3g 

polyvinylpyrrolidone (PVP) was added slowly in 24 ml of EG with the moving stirrer in a 

flask and was heated in the oil bath at 150°C, but the RTD showed 175°C When the 

temperature was stable then, 40 µL of CuCl2 was added, and stirred 1 minute at 260 rpm 

at the same temperature.  

 

Figure 3. 1 Set up to prepare AgNWs. 

 

The AgNO3/EG solution was sonicated for 4 minutes until it turned little yellow 

before adding to the biker. AgNO3/EG solution was added slowly to the biker which took 

almost 10-15 minutes. Longer heating time might make the nanowires thicker. High 
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temperature might make the reaction faster. 0.9 g to 0.3 g of PVP was added to test the 

effect of concentration of PVP on nanowires morphology. The centrifuging was done four 

times to clean the uncleaned AgNWs, first with acetone, followed by DI water for the 

remaining three times.  Each time the centrifuging was done for 20 minutes at 2000 rpm. 

After that IPA was used to preserve the AgNWs. Each time the nanowires were shaken and 

mixed with the cleaning solution before centrifuging. 

3.1.2 Preparation of GO/ AgNWs solution 

Aqueous GO solution was purchased from Sigma-Aldrich which has a 

concentration of 4 mg/ml. The AgNWs were centrifuged for 5 minutes at 1000 rpm. The 

wires were diluted in IPA to achieve 4 mg/ml. Then the nanowires were centrifuged and 

dispersed in GO solution. 

3.1.3 Preparation of electrolyte solution for metal ions 

The electrolyte was an essential solution consisting of 5 mM of potassium 

ferrocyanide (K4FeCN6) and 0.1 M of potassium chloride (KCl) and had a volume ratio of 

1:1. 0.05 ml of 10% w/w solution of K4FeCN6 was taken to make 5 ml of the solution, and 

0.04 g of KCl was mixed with 5 ml of water to make 0.1 M KCl solution. 

3.1.4 Preparation of ammonium molybdate tetrahydrate (AMT) 

100 g of ammonium molybdate tetrahydrate was purchased from Sigma-Aldrich. 

0.013 g of AMT was dissolved in 10 ml of DI water to prepare 10 ml of solution. This 

solution was used to find out the oxidation peaks for phosphate detection. 

3.1.5 Preparation of electrolyte solution for phosphate detection 

98% sulfuric acid was purchased from Fisher Scientific. A stock solution of sulfuric 

acid was calculated as 18.385 M based on a density of 1.84 g/mL, a molecular weight 
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of 98.08 g/mol, and a concentration of 98% w/w. To make a 0.1 M solution, 0.054 mL of 

stock solution was added slowly to 2.5 mL deionized water. The final volume of solution 

was adjusted to 10 mL with deionized water.  

3.1.6 Preparation of metal ion solution with different concentration 

Mercury chloride (HgCl2), cadmium nitrate(Cd(NO3)2) and lead iodide(PbI2) were 

bought from Sigma-Aldrich. Then the weight was calculated to make different molarity 

solution. The mass (m) of the metal ion precursor was calculated from the equation:  

𝑚 = 𝑐×𝑣×𝑚𝑤 …………………………………. …… (3.1) 

where c is molar concentration (mol/L), v is the volume (L), and mw is the molecular 

weight (g/mol). 

Firstly, 1 M of HgCl2 was made by adding 1.36 g of HgCl2 powder in 5ml of water. 

From this 1 M solution, 10 µM, 50 µM, 100 µM, 200 µM HgCl2 solutions were obtained 

by adding 0.05 µl, 0.25 µl, 0.5 µl and 1 µl in 5 ml of DI water respectively. Secondly, 1 

M of PbI2 was made by adding 4.6 g of PbI2 powder in 5ml of water. From this 1 M 

solution, 10 µM, 50 µM, 100 µM, 200 µM PbI2 solutions were made by adding 0.05 µl, 

0.25 µl, 0.5 µl and 1 µl in 5ml of DI water respectively and thirdly, 1 M of Cd(NO3)2 was 

made by adding 1.18 g of Cd(NO3)2 powder in 5 ml of water. From this 1M solution, 10 

µM, 50 µM, 100 µM, 200 µM Cd(NO3)2 solutions were made by adding 0.05 µl, 0.25 µl, 

0.5 µl and 1 µl in 5 ml of DI water respectively. Different concentrations of HgCl2, PbI2, 

CdNO3 solutions were dropped on the film and waited 5 minutes to become dry before the 

measurement. 

3.1.7 Preparation of phosphate ion solution with different concentrations 

Sodium biphosphate(Na2HPO4) was purchased from Sigma-Aldrich. It has a molar 
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mass of 141.16 g/mol. So, 0.7 g of it was taken and mixed with 5 ml of DI water. Then, 

from this 1M solution, 10 µM, 50 µM, 100 µM, 250 µM, 500 µM, 750 µM, 1 mM PbI2 

solutions were made by adding 0.05 µl, 0.25 µl, 0.5 µl, 1.25 µl, 2.5 µl, 3.75 µl and 5 µl in 

5 ml of DI water respectively. 

3.2 Sample cleaning and plasma treatment 

Fluorine doped Tin Oxide (FTO) substrates were sonicated with soap water, DI 

water, Acetone and IPA for 20 minutes for each.  Then they were dried with dry 

nitrogen(N2) gas and were placed inside the plasma cleaner as shown in figure 3.2. The 

purpose of cleaning the sample and doing the plasma treatment was to make the surface 

hydrophilic that leads to better adhesion. The chamber was evacuated using a mechanical 

pump. FTO substrates were kept under vacuum for 5 minutes. An oxygen cylinder knob 

was then opened which was previously connected to the plasma cleaner at ~50 psi for 1 

minute. The RF power level was set to medium. The oxygen valve was turned on for 10 

seconds after every 5 minutes of interval. This process continued for 20 minutes. After that, 

the power was turned off as well as the oxygen knob and the air knob was turned on slowly. 

Finally, the oxidized samples were taken out from the plasma cleaner. 

 

Figure 3. 2 Picture of oxygen plasma cleaner. 
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3.3 Electrochemical sensor device fabrication 

3.3.1  Fabrication of sensor electrode    

Two types of electrodes were prepared namely, composite (Figure 3.3) and layer by 

layer (Figure 3.4). For the composite electrode, the GO/AgNWs mixture solution was spin 

coated at 2000 rpm on a cleaned FTO glass substrate with an acceleration of 2000 rpm for 

30 seconds. For layer by layer electrode, firstly GO was spin coated on the cleaned FTO 

glass followed by drop casting of the AgNWs solution on top of the GO film and drying 

for 30 minutes in the air. Different concentration of metal ions solutions was dropped and 

waited 5 minutes and then tested. 

 

 

Figure 3. 3 Composite electrodes of GO/AgNWs. 

 

Figure 3. 4 Layer by layer electrode of GO/AgNWs. 

 

3.3.2 Fabrication of AgNWs on working electrode of SPE 

 SPEs were purchased from DropSens. The working electrode was made of carbon 

which was modified with AgNWs and AMT as shown in figure 3.5. The modification was 

done by dropping the prepared solutions of AgNWs and AMT over the carbon working 

electrode and making it dry in air for 30 minutes. Different concentration of phosphate ion 
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solutions was dropped and waited 5 minutes and then tested. The measurements were 

carried out with and without the AgNWs.  

 

Figure 3. 5 Image of the modified SPE. 

 

3.3.3  Modification of working electrode of SPE with Phenyl-C61 butyric acid methyl 

ester(PCBM) 

The carbon working electrode was modified with PCBM, and the other area was 

etched with chlorobenzene. The electrolysis process was carried out between the 

electrodes applying 10V DC voltage across the working electrode and counter electrode. 

The PCBM had been used due to its better electron accepting ability and relatively high 

electron mobility. 

3.4   Characterization of the sensor electrodes 

3.4.1 Scanning electron microscopy (SEM) 

SEM characterization of the sensor electrodes was carried out to observe the film 

quality and morphology of the electrode surface. The Hitachi S-4300N as shown in figure 

3.7 was used to obtain the SEM images. The machine and the software for SEM were 

turned on with a small key and in computer respectively. The sample chamber was opened 
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manually after filling with air. GO/AgNWs films with different structures and 

compositions were placed in the chamber and EVAC icon in the software was pressed to 

make the chamber vacuum. The sample holder was automatically adjusted near the 

detector. Each time 25kV was applied, and the current started to increase. There were a 

monitor and focusing knobs on doing the zooming perfectly. Different range of zooming 

images was selected to get the images of the film surface.  

 

 

Figure 3. 6 Photograph of Hitachi S-4300N SEM. 

3.4.2 Raman spectroscopy 

Raman measurements of different GO/AgNWs films was carried out to determine 

the signature peaks of the metal ions under investigation. This was done by using the 

LabRAM HR Evolution system as shown in figure 3.6. Labspec5 software was opened on 

the computer which controls the Raman spectroscopy. Different structures of GO/AgNWs 

films with different concentrations of metal ions were placed on the stage, and x100 

magnifying lens was focused on the sample. The green laser which has a wavelength of 

532 nm was used for the experiment. Diffraction grating and filter intensity were set at 
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1800 and D2 respectively. The video camera was turned on which was also connected with 

a light source through an optical fiber. To adjust the sample stage, a joystick was used. 

After the adjusted zooming, the spectrum acquisition icon was selected in the software to 

get the final spectrum.  

 

Figure 3. 7 Photograph of the LabRAM HR Raman spectroscopy. 

3.4.3 Cyclic voltammetry (CV) 

CV measurements were done using a computer connected Ametek VERSASTAT3-

200 potentiostat as shown in figure 3.8. The cyclic voltammetry (single) measurement was 

chosen. The initial, vertex and final potentials were selected as -1V, 1V and -1V 

respectively. The scan rate was selected as 50 mVs-1. After extracting data from cyclic 

voltammetry measurements, potential vs. current was plotted using the versastudio 

software. The electrolyte was 1:1 volume mixture of 5 mM K4Fe(CN)6 and 0.1 M KCl in 

water. The set up included GO/AgNWs as working electrode, Ag/AgCl as a reference 

electrode and platinum as the counter electrode. For phosphate ion detection, 

AMT/AgNWs modified carbon, carbon and silver were the working, reference and counter 

electrode respectively.  
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Figure 3. 8 Photograph of VERSASTAT3-200 potentiostat electrochemical cyclic 

voltammetry. 

3.4.4 Current-voltage (I-V) characterization 

Figures 3.9 shows a photograph of Agilent 4155C semiconductor parameter 

analyzer used for extracting I-V data of sensor devices. The test voltage ranges were 0 to 

3V for all the screen-printed electrodes.  

 

Figure 3. 9 Photograph of Agilent 4155C semiconductor parameter analyzer to extract I-

V data of sensors. 
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Chapter 4: Results and analysis 

4.1 Morphology of growth of AgNWs on top of GO layer 

Figure 4.1a shows the microscopic images of GO/AgNWs composite layer where 

the dark area is GO, the bright lines are AgNWs, and the light area is FTO substrate. Figure 

4.1b shows the SEM image of GO/AgNWs layer. It can be seen that the AgNWs are well 

spread over the entire surface of the GO. 

 

Figure 4. 1 (a) Microscopic image of GO/AgNWs composite layer. (b) SEM image of 

GO/AgNWs layer. 

Figure 4.2 shows the SEM images of AgNWs synthesized with heating for a 

reaction time of (a) 10 min and (b) 16 min. Here, it can be seen that the shorter reaction 

time yielded longer AgNWs with an average value of 29 µm for 10 min compared to the 

15 µm for 16 min.  

 

Figure 4. 2 SEM images of AgNWs from reaction time of (a) 10 min and (b) 16 min 

heating. 
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In addition, the AgNWs were thinner with a diameter of around 100 nm for shorter reaction 

time at 10 min, whereas the diameter increased to 125 nm for longer reaction time at 15 

min. However, some agglomerates were observed on the film for longer time at 16 min.   

4.2 Raman spectrum change for the detection of metal ions with GO/AgNWs films 

4.2.1 Raman spectroscopy for GO/AgNWs films 

Figure 4.3 shows Raman spectra for GO only, GO/AgNWs mixed composite and 

GO/AgNWs layer by layer structure. Raman shifts at 1300 cm-1 and 1500 cm-1 which 

represent the characteristic peaks for GO. The intensities of the Raman peaks were different 

in the GO/AgNWs composite and layer by layer structures of sensors. The Raman peak 

intensity in the layer by layer structure was higher than the mixed structure. The layer by 

layer structure was chosen for the experiment as it was more sensitive. The incorporation 

of AgNWs increased the intensity of the Raman peaks. 
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Figure 4. 3 Raman spectra for GO only, GO/AgNWs composite and GO/AgNWs layer by 

layer structure. 
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4.2.2  Raman spectra for mercury chloride (HgCl2) to detect mercury 

Figure 4.4 shows the Raman spectra of the sensing electrode in response to the 

different concentration of mercury ions.  It can be observed  that the peak intensity 

decreased with the decrease  of concentration of HgCl2. This indicated the concentration 

sensitivity of the film . The peak varied at around 230 cm-1. The intensity varied from 200 

to 8000 for 10 µM to 1 mM of mercury ions. More mercury ions are attached on the film 

surface with the increase of concentration, resulting in higher peak intensity. Also, it is 

selective as it showed peaks only at 230 cm-1 which indicated the presence of mercury. 
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Figure 4. 4 Raman spectra of the GO/AgNWs electrode in response to different 

concentrations of mercury ions: 10 µM, 50 µM, 100 µM and 1 mM. 

 

4.2.3  Raman spectra for cadmium nitrate to detect cadmium ions 

Figure 4.5 shows the Raman spectra of the GO/AgNWs electrode in response to  

different concentrations of cadmium ions. The intensity of the Raman peaks at 1350 cm-1 

and 1600 cm-1 changed with the change in cadmium concentrations. For 10 µM, 50 µM, 

100 µM and 1 mM the peak intensities were 200, 500, 650 and 750 a.u. respectively.  The 
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increase in peak intensity with increase in cadmium ion concentration can be attributed to 

the attachment of metal ions to the carboxyl groups of GO. Metal ions have Raman 

enhancing capability. As more ions are attached, the Raman scattering of light increases 

and thus increasing the Raman peak intensity. Again, the change shows that the 

GO/AgNWs electrode is responsive to cadmium ions as cadmium ions are attached on the 

surface of Ag–GO composite.  
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Figure 4. 5 Raman spectra of the GO/AgNWs electrode in response to different 

concentrations of cadmium ions: 10 µM, 50 µM, 100 µM and 1 mM. 

 

4.3  Cyclic voltammograms for detection of metal ions with GO/AgNWs film 

4.3.1 Cyclic voltammetry for mercury chloride to detect mercury ions 

Figure 4.6 shows the cyclic voltammogram of GO/AgNWs in response to different 

concentrations of mercury chloride solutions. The electrolyte was 1:1 mixture of 5 mM 

K4Fe(CN)6 and 0.1 M KCl in water. It can be observed that with the increase of mercury 
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concentration, the intensity of the oxidation peak increased which were found at the 

potential range of 0.3 - 0.4 V. The sensor surface captures mercury and leads to oxidation 

and reduction reactions. The more ions the sensor surface captures, the higher the peak 

redox current intensity.  
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Figure 4. 6 Cyclic voltammograms of GO/AgNWs in response to different concentrations 

of mercury chloride solutions: 10 µM, 50 µM, 100 µM and 200 µM. The electrolyte 

was 1:1 mixture of 5 mM K4Fe(CN)6 and 0.1 M KCl in water. 

 

4.3.2 Cyclic voltammetry for lead iodide to detect lead ions 

Figure 4.7 shows the cyclic voltammogram of GO/AgNWs electrode in response 

to different concentrations of PbI2 solutions. The electrolyte used was 0.1 M KCl/ 

K4Fe(CN)6 in water. It was observed that with the increase of the lead concentration, the 

intensity of the oxidation peak increased. The oxidation peaks were observed at the 

potential of 0.2V. The potential is different from the mercury which was at 0.3 to 0.4 V. 

With the increase in concentration, the sensor surface attaches more lead ions and leads to 
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more oxidation and reduction reactions. This indicates the good sensitivity of the 

GO/AgNWs towards lead ions. 
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Figure 4. 7 Cyclic voltammograms of GO/AgNWs electrode in response to different 

concentrations of PbI2 solutions: 10 µM, 50 µM, 100 µM and 200 µM. Electrolyte 0.1 

M KCl/ K4Fe(CN)6 in water. 

 

4.3.3 Cyclic voltammetry for cadmium nitrate to detect cadmium ions 

Figure 4.8 shows the cyclic voltammogram of GO/AgNWs electrode in response 

to different concentrations of cadmium nitrate to detect cadmium ions. The electrolyte used 

was 0.1 M KCl/ K4Fe(CN)6 in water.  It was observed that with the increase of cadmium 

concentration, the intensity of the oxidation peak at ~ 0.6 V increased. The sensor showed 

a distinct response to cadmium ions with high peak current intensities which indicate the 

GO/AgNWs sensitivity towards cadmium.  
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Figure 4. 8 Cyclic voltammograms of GO/AgNWs electrode in response to different 

concentrations of cadmium nitrate to detect cadmium ions: 10 µM, 50 µM, 100 µM 

and 200 µM. Electrolyte 0.1 M KCl/ K4Fe(CN)6 in water. 

4.3.4 Linearity of concentration vs. current plot for mercury, lead and cadmium ions  

Figure 4.9 shows the current response of the GO/AgNWs electrode to different 

concentrations of solutions from different metal ions. It was observed that all the different 

metal ions under investigation depicted linear response but had their own specific range of 

current response. Lead detection had the least current change of 0-50 µA in response to 

concentration range of 10 µM-200 µM. Similarly, mercury detection showed a change in 

current of 25-100 µA for the concentration range of 10 µM-200 µM. Cadmium detection 

showed the highest current change of 150-300 µA for the concentration range of 10 µM-

200 µM.  All the three ions under test had oxidation peaks at three different potentials 

which indicated good selectivity of the sensor. This indicates that the GO/AgNWs can be 

used to detect all three heavy metal ions simultaneously. The sensitivities were found 7.89 
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µA/µM, 4.21 µA/µM, 2.63 µA/µM for Cd2+, Hg2+, Pb2+ respectively with a detection range 

was 5 µM - 10 mM. These sensitivities are lower than the previously reported GO/Au 

nanoparticle electrode sensors. However, the GO/AgNWs sensors have the advantage of 

lower cost and easily scalable fabrication.  
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Figure 4. 9 Current response of the GO/AgNWs electrode sensors to different 

concentrations of solutions from different metal ions. 

4.4 SPE for phosphate ion detection in the field soil 

4.4.1 Cyclic voltammetry test with and without AgNWs 

Figures 4.10 and 4.11 show cyclic voltammograms of SPE electrode for phosphate 

detection without and with AgNWs, respectively. It can be observed that the use of AgNWs 

led to an increase in the oxidation current by a factor of 5. The current response range was 

increased from 0 – 125 µA to 0 – 650 µA. This can be attributed to the increase in surface 

conductivity of the electrode by AgNWs. The reduction peaks have narrower shapes than 

the oxidation ones. Reduction peaks can also be selected to measure the concentration 

change. That is the advantage of cyclic voltammetry that either reaction peaks can be used. 
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Figure 4. 10 Cyclic voltammograms for phosphate detection without AgNWs. 
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Figure 4. 11 Cyclic voltammograms for phosphate detection with AgNWs. 
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Figure 4.12 shows linearity of current vs. concentration plot for phosphate detection 

with and without AgNWs. The oxidation current increased with the increase of 

concentration as more reaction occurs on AMT modified SPE with AgNWs. The 

sensitivities of SPE without and with AgNWs were 0.1 µA/µM and 0.71 µA/µM. 

Therefore, the use of AgNWs increased the sensitivity of the SPE significantly. 
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Figure 4. 12 Linearity of current vs. concentration plot for phosphate detection with and 

without AgNWs. 

4.5 Selectivity test with cyclic voltammetry for phosphate detection 

Figure 4.13 shows the oxidation peak for the H2SO4/KCl electrolyte solution where the 

working electrode is modified with AMT; the counter electrode is carbon and reference 

electrode is silver.  A single oxidation peak was found at 0.1V potential. Figure 4.14 shows 

two oxidation peaks for the electrolyte/AMT/phosphate ions. Two oxidation peaks were 

observed at 0.05V and 0.1V potential. These two oxidation peaks were found due to the 

two steps of the following oxidation reaction. Mo7O24
6− and H+ were each oxidized and thus 
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resulted in two peaks. These peaks are found only in the presence of phosphate ions which 

indicates the selectivity for phosphate ions. 

7H3PO4+ 12Mo7O24
6−+ 51H+ = 7PMo12O40

3−+ 36H2O 
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Figure 4. 13 A single oxidation peak for electrolyte solution without phosphate ions 

where the working electrode is modified with AMT, counter electrode is carbon and 

reference electrode is silver. 
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Figure 4. 14 Oxidation peaks for the electrolyte solution/ AMT/phosphate ions. 
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4.5.1 Repeatability test for modified SPE for phosphate detection 

Figure 4.15 shows the repeatable results of cyclic voltammogram measurements of 

SPE for different concentrations of phosphate ion solution. In the repeatability results, the 

two peaks were found at the same potential position for each, and the trend of change was 

same. The current change due to the concentration change also matched the previous 

experimental data.  
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Figure 4. 15 Repeatable results of cyclic voltammogram measurements of SPE for 

different concentrations of phosphate ion solutions. 

 

Figure 4.16 shows the linearity of current vs. concentration plot for phosphate 

detection for repeatability test with four different experiments. Table 4.1 summarizes the 

values of the current change with respect to change in concentration for four different 

experiments with standard deviation. The linearity of the four experiments almost 
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overlapped each other which indicated good repeatability and consistency of the device 

performance.  
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Figure 4. 16 Linearity plot of current vs. concentration for phosphate detection for 

repeatability test with four different experiments. 

 

Figure 4.17 shows the plots with error bars in terms of standard deviation for 

different concentration of phosphate ions. The average value and standard deviation were 

calculated. The least and highest standard deviations were found 5.85 µA and 29.81 µA.  

The error bars show that there is 5-6% of error prevailing in the measurements which are 

in the tolerable range. For the phosphate detection, the sensitivity and the detection range 

were found to be 0.71 µA/µM and 5 µM- 50 mM. It shows better sensing limit than 

previously reported carbon black modified electrode which was 6 µM. 
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Figure 4. 17 Plots of error bars in terms of standard deviation for different concentrations 

of phosphate ions. 

Table 4. 1 Comparison of current response for different concentration of phosphate ion 

for four different experiments. 

Concentration 

(µM) 

Current1 

(µA) 

Current2 

(µA) 

Current3 

(µA) 

Current4 

(µA) 

Average 

Current(µA) 

Standard 

deviation(µA) 

1000 650 600 614 624 622 18.27 

750 450 450 496 487 470.75 20.99 

500 400 410 397 372 394.75 13.98 

250 250 275 267 290 270.5 14.43 

100 150 200 222 224 199 29.81 

50 100 60 88 77 81.25 14.72 

10 50 45 61 50 51.5 5.85 

       0        15        25       25         32         24.25 6.05 

  

4.6 I-V characteristic of SPE for phosphate ion detection 

4.6.1 Ion detection using SPE carbon electrode modified with PCBM  

  Table 4.2 describes current measurement for different ion solutions using modified 

SPEs with PCBM. The current was determined using I-V measurement. The ions used in 
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the table are present in a field soil.  As can be seen, the SPE showed higher sensitivity 

towards chloride, phosphate and nitrate ions with higher current intensity for the same 

concentration of ion solutions. However, this does not provide selectivity. 

Table 4. 2 Current measurements for different ion solutions using modified SPE with 

PCBM 

 

 

 

 

 

4.6.2 Ion detection using SPE carbon electrode modified with ammonium molybdate 

tetrahydrate 

The carbon working electrode was modified with 0.1 M KCl, 0.1 M H2SO4, 1 mM 

AMT. AMT was used as it can react with phosphate ions. Table 4.3 shows current 

measurement for different ion solutions using modified SPE with ammonium molybdate 

tetrahydrate. As can be seen, the intensity of the current increased to 8.5 mA for the 

phosphate ion solution compared to SPE with PCBM at 2.7 mA. This was attributed to the 

reaction of AMT to phosphate ions. 

In addition, the voltage was decreased from 10V to 3V as it is less power 

consuming. In the field generally only 3V is used. Table 4.4 shows current change 

measurement with a change in voltage for phosphate detection. It can be observed that for 

3V the change is obviously lower than 10V. 

Solution Concentration Current(mA) 

DI water --- 0.7 

NH4OH 100 mM 1.2 

HgCl2 100 mM 1.9 

CdNO3 100 mM 2.4 

Na2HPO4 100 mM 2.7 

KCl 100 mM 3.3 
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Table 4. 3 Current measurements for different ion solutions using modified SPE with 

ammonium molybdate tetrahydrate 

 

 

 

 

 

 

 

 

Table 4. 4 Current change measurement with change in voltage for phosphate ion 

detection 

 

 

 

 

4.6.3 I-V characteristics for SPE at different concentrations of phosphate ions  

Figure 4.18 shows the I-V characteristics of the AMT modified SPE without 

AgNWs for different concentrations of phosphate ion solutions. It can be observed that the 

current increased with the increase in the concentration of phosphate ions as more 

electrolysis reactions take place. Figure 4.19 shows the I-V characteristic of the AMT 

modified SPE with AgNWs for different concentrations of phosphate ion solutions.  The 

similar observation of current increase with increased concentration was observed. 

However, the current value was increased due to AgNWs. For SPE without AgNWs, the 

current range is 0.001-0.0018 A while with AgNWs, range is 0.0005-0.004A. 

Solution Concentration Current(mA) 

DI water --- 0.7 

NH4OH 100 mM 1.2 

HgCl2 100 mM 1.9 

CdNO3 100 mM 2.4 

Na2HPO4 100 mM 8.5 

KCl 100 mM 3.3 

Voltage Current (with AMT but 

without phosphate) 

Current (with AMT 

And phosphate) 

Increment 

10 V 2 mA 8 mA 4 times 

3 V 0.245 mA 0.5 mA 2 times 
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Figure 4. 18 I-V characteristics of AMT modified SPE without AgNWs for 

different concentrations of phosphate ions. 

1.5 2.0 2.5 3.0

0.0

1.0E-3

2.0E-3

3.0E-3

4.0E-3

5.0E-3

 

 

C
u

rr
e
n
t(

A
)

Voltage(V)

 50 mM

 10 mM

 1 mM

 500 M

 250 M

 100 M

 50 M

 10 M

 

Figure 4. 19 I-V characteristics of AMT modified SPE with AgNWs for different 

concentrations of phosphate ions. 
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4.6.4 Resistance change with concentration of phosphate ion solutions 

The resistance change of the SPE with respect to the concentration was calculated 

from I-V curves for both with and without AgNWs and are plotted as shown in figure 4.20. 

The voltage was 3 V as it has the highest current change. The range for resistance change 

is from 400 to 2000 Ω for the concentration change from 5 µM to 50 mM for with AgNWs. 

The sensitivity of the SPE without and with AgNWs was 0.2 Ω/µM and 1.6 Ω/µM 

respectively. The fitted curve showed a negative linear relation between concentration and 

resistance. Measurement of resistance needs very less equipment which makes this system 

portable and field deployable. 
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Figure 4. 20 Plot of resistance vs. concentration with and without AgNWs for phosphate 

ion detection. The resistance was calculated at a voltage of 3V in figure 4.19.  
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Chapter 5: Conclusions 

5.1 Summary 

Heavy metals are considered as low-density chemical components which are very 

toxic. These heavy metals are non-biodegradable, widely dispersed and present serious 

hazard to human health and environment. The sensing of these ions is one of the most 

attractive applications due to their large production and toxicity. Phosphorous-containing 

fertilizer is imperative to plant and animal nutrition as plant growth and growth of essential 

biomolecules of human body depend upon the proper availability of phosphate ions. The 

high concentration of heavy metal and phosphate ions in the aquatic system affects the 

human immune system, permanently damage and/or injuries skin.  

Various materials have been employed as sensor electrodes for the detection of 

heavy metal ions. Carbon-based materials such as graphene, carbon nanotubes, GO have 

been used to detect metal ions. In addition, metal nanoparticles such as Au, Ag, and Pt have 

been used in conjunction with carbon-based electrodes to achieve higher electrode 

conductivity. However, the methods employed were complex, costly and not portable for 

field deployment. For the detection of phosphate ions, various methods such as colorimetry 

can be used. However, the colorimetric setup is difficult to adjust for online estimation 

since it requires plenty of reagents and is ascorbic corrosive. Also, the simple SPE has been 

used with incorporated sensing materials such as carbon black and pyruvate oxidase. 

However, these detection systems exhibited poor detection limits with a non-linear 

response.  

There is a need for low cost, portable, repeatable, highly sensitive, highly detection 

ranged and field deployable sensors to monitor the health of field soil. The goal of this 
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work was to develop a simple electrochemical sensor using novel GO/AgNWs for heavy 

metal ions detection and novel modified SPE for phosphate detection to achieve simplicity, 

high sensitivity, wide detection range, high repeatability and portability. GO is a single 

layer of carbon atoms with large surface area, high catalytic properties and has oxygen 

functional groups covalently attached to carbon atoms making it hydrophilic. This makes 

it suitable for sensing application in biomedical and agriculture areas. AgNWs can be 

attached by epoxy, carboxyl, hydroxyl, and carbonyl functional groups and adsorbed on 

the top of GO via the Ag–π orbital connection. These functional groups offer improved 

electrostatic interface between Ag-GO and negatively charged GO and form an Ag–GO 

composite. Having oxygen functional groups, metal molecules that are considered as an 

electron donor can be adsorbed on the plane of GO-AgNWs layer, providing a good 

detection ability. The easiness of industrial manufacturing of SPE makes it economically 

feasible for on-site field monitoring and favourably comparable with current portable 

meters used in the environmental applications.  

For the metal ion detection, a solution of AgNWs, GO/AgNWs and different 

concentrations of metal and phosphate ions were prepared. The sensing electrode 

GO/AgNWs was fabricated by spin coating onto an FTO glass substrate, and the solution 

of metal ion of interest was drop casted on top of it. For phosphate detection, the SPE was 

modified with AgNWs and AMT, and the phosphate solution was drop casted. These 

electrodes were characterized using Raman, cyclic voltammetry and I-V measurements. 

Mercury, lead, cadmium ions had oxidation peaks at three different potentials 

which indicated good selectivity of the GO/AgNWs sensing electrode sensors. So, this 

sensor film can be used to detect three different heavy metal ions simultaneously. The 
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sensitivities of the GO/AgNWs were found to be 7.89 µA/µM, 4.21 µA/µM, 2.63 µA/µM 

for Cd2+, Hg2+, Pb2+ respectively and the detection range was from 5 µM to 10 mM. This 

sensitivity is lower than the previously reported GO/Au nanoparticle electrode. However, 

GO/AgNWs has the advantage of lower cost and easily scalable fabrication. 

From the cyclic voltammetry measurements, the sensitivity of AMT modified SPE 

without and with AgNWs were 0.1 µA/µM and 0.71 µA/µM respectively and detection 

range was 5 μM-50 mM. Therefore, the use of AgNWs increased the sensitivity of the 

AMT modified SPE significantly. In addition, from the I-V measurements, the sensitivity 

of the SPE without and with AgNWs were 0.2 Ω/µM and 1.6 Ω/µM respectively depicting 

a negative linear relation between concentration and resistance. The repeatability tests 

showed an error of only 5-6%. This Measurement of resistance needs very less equipment 

which makes this system portable and field deployable. 

 

5.2 Conclusions 

A novel GO/AgNWs composite film was developed to detect heavy toxic metal 

ions such as Cd2+, Hg2+, Pb2+ and a modified SPE with AMT/AgNWs was invented to 

detect phosphate ions in water solution. GO/AgNWs films showed a sensitivity of 7.89 

µA/µM, 4.21 µA/µM, 2.63 µA/µM for Cd2+, Hg2+, Pb2+ ions, respectively. The existence 

of oxidation peaks at different potentials for different metal ions demonstrated good 

selectivity of the GO/AgNWs electrode. The modified SPE sensors demonstrated 

repeatable sensitivity of 0.71 µA/µM and a wide detection range 5 µM-50 mM with a small 

error of 5-6%.  
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Heavy metal and phosphate ion sensors are not commercially well cost effective. 

Some of them are very expensive and complicated to manufacture, and bulky instruments 

are needed to obtain results. The sensing electrode based sensors developed in this work 

can be a potential simple and low cost system owing to the easy fabrication process and 

use of cheaper materials. They are also portable as they are small and need less equipment 

to collect data for field deployment.  However, the sensitivity still requires improvement.  

   

5.3  Future work 

Future work includes the use of the developed GO/AgNWs electrode and 

AMT/AgNWs modified SPE sensors for microcontroller based real time monitoring 

sensing systems for heavy metal ions and phosphorous-containing species with Global 

Positioning System (GPS) in the agricultural fields. Modification of the electrode surface 

with different noble biomaterials such as DNA, protein, antibody, etc. can be carried out 

to address film sensitivity and detection range.  
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