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ABSTRACT 

EVALUATING FILTER MATERIALS FOR E. COLI REMOVAL FROM 

STORMWATER 

GHAEM HOOSHYARI 

2017 

 

 Stormwater runoff from agricultural and urban areas carries a wide range of 

pollutants and pathogens that can negatively affect surface water bodies and cause 

significant risks to the ecosystem and public health. Bacteria is one of the pollutants 

carried by stormwater, and Escherichia coli (E. coli) is commonly used as a microbial 

pollution indicator of surface water. The aim of this research was to investigate the 

removal of E. coli from stormwater using low-cost filter materials. Two industrial 

byproducts (steel slag and steel chips) and two natural minerals (zeolite and limestone) 

with three different sizes (0.5-1 mm, 1-2 mm, and 2-4 mm) were chosen to investigate the 

potential of these materials as filter media for E. coli removal from stormwater. Batch 

experiments were conducted to investigate the impact of initial E. coli concentration, 

temperature, pH, particles size and mass, salt, natural organic matter (NOM), and contact 

time on the removal of E. coli. Column adsorption experiments were also performed to 

obtain the E. coli adsorption characteristics of steel chips, steel slag, limestone, and 

zeolite under continuous flow conditions. In addition, the E. coli release potential of these 

materials were determined. Using a desorption test, the batch adsorption results 

demonstrated that the maximum E. coli removal efficiencies of 100%, 99.5%, 86.5%, and 

80.2% were achieved using steel byproducts, steel slag, limestone, and zeolite, 

respectively, using E.coli concentrations of 107 MPN/mL for steel chips and 104 MPN/mL 
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for steel slag, limestone, and zeolite, in the synthetic stormwater. Increasing pH from 5 to 

9 resulted in a reduction in E. coli adsorption by 33.5% and 19.0% for  steel chips and 

steel slag, respectively. As temperature increased steel chips and steel slag adsorption 

capacities increased. The effect of the addition of NOM on E. coli removal efficiencies 

was determined. The results indicated that E. coli removal efficiency were reduced by 

19.77% and 41.77% for steel chips and 6.86% and 11.56% for steel slag in the presence 

of 20 and 50 mg/L of NOM. Moreover, E. coli release from steel chips was negligible in 

comparison with other absorbents. Finally, adding high salt concentrations in E. coli 

solution showed a significant impact in natural minerals adsorption capacities. As the 

salinity increased the E. coli adsorption capacity of limestone and zeolite were improved 

by 23.5%, and 35.5%, respectively.  
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1. INTRODUCTION 

 

Stormwater runoff from agricultural and urban areas carries a large amount of 

pollutants and pathogens, such as heavy metals (e.g. copper (Cu), zinc (Zn), cadmium 

(Cd), Nicel (Ni), and lead (Pb)), nutrients (phosphate and nitrate), suspended solids 

(organic substance), and microorganisms (viruses and bacteria). Organic and inorganic 

pollutants are carried into ground and surface water by stormwater runoff, that can 

negatively affect natural water bodies. Stormwater runoff also causes significant risks to 

the ecosystem and public health (House et al., 1993; Hat et al., 2008; Tafuri and Field, 

2012). 

 Bacteria is one of the pollutants carried by stormwater and Escherichia coli (E. 

coli) is commonly used as a microbial pollution indicator of surface water (CWP 1999). 

E. coli is found in the food, environment, and intestines of human and animals. A large 

amount of E. coli from animal manures and municipal disposal can enter into natural 

water after a heavy rainfall. 

 Some stormwater management practices (SMPs) have been applied to control and 

treat the pollutants from stormwater. Pitt et al. (2008) reported that the geographical 

location and land were the principal causes that affected the runoff pollutant 

concentrations. The removal of runoff contaminants can be achieved by a variety of 

technologies including infiltration, bio-retention, constructed wetlands, vegetative swales, 

and other engineered treatment systems (Clark and Pitt, 2012). Although many of the 

conventional SMPs (e.g. detention ponds) are designed to control runoff volume and 

remove particles from the runoff, these conventional SMPs are generally not effective in 
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removing other pollutants such as heavy metals, nutrients, and (E. coli). Infiltration-type 

stormwater treatment systems are able to remove different contaminants but these 

systems typically require a large operating footprint and have the risk of contaminating 

the groundwater. There is a need to develop low-maintenance, low-cost, and effective 

SMPs that can remove multiple contaminants in stormwater runoff. 

 Media filtration has received increasing attention as an effective technology that 

can remove microorganisms and other pollutants from stormwater runoff using a 

relatively small footprint. Many filter materials have been evaluated for their potential for 

runoff treatment. These materials include sand, modified sand, anthracite coal, modified 

wool, modified cotton, limestone, clay, zeolite, steel slags, iron filling, woodchips, 

sawdust, and tire crumbles; all of which possess good hydraulic properties and are widely 

available (Bailey et al., 1999; Lukasik et al., 1999; Kim et al., 2010; Wium-Anderson et 

al., 2012; Reddy et al., 2014a). Some studies have also demonstrated that single filter 

media does not have a great adsorption capacity to remove all the contaminants of 

concern in stormwater (Dastgheibi 2012; Wium-Anderson et al., 2012; Reddy 2013; 

Reddy et al., 2014). The combination of two or more media is often necessary to achieve 

high removal efficiency of multiple contaminants. 

 Seelsaen et al. (2006) recommended that different sorption media mixes (sand, 

compost, zeolite etc.) be used as an effective medium for the treatment of dissolved metal 

contaminants commonly found in stormwater. Prabhukumar (2014) performed column 

experiments to evaluate the contaminant removal of filter materials. The results showed 

that calcite was the most efficient material for nutrients and suspended solids removal, 

natural zeolite was highly effective in removing E. Coli, and iron fillings were effective 
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in removing nutrients and metals. Reddy et al. (2014) showed that mixed-media filtration 

(calcite, zeolite, sand and iron fillings) was effective for simultaneous removal of 

nutrients and heavy metals from stormwater runoff. These studies suggested that mixed-

media filtration systems using permeable reactive materials have great potential to 

remove multiple contaminants in stormwater runoff.  

 There are different methods for E. coli removal such as biofiltration (Almaguer et 

al., 2011; Chandrasena et al., 2014), electro-coagulation (Wong et al., 2010; Delaire et 

al., 2013), and filtration with modified materials (Jonson and Logan 1995; Li, Y. L et al., 

2012; Akhigbe et al., 2016; Shaw et al., 2016).  

 One of the most important methods for bacteria removal is adsorption of bacteria 

onto the surface of filter media and this mechanism is referred to as surface attachment. 

Many factors affect bacteria attachment onto porous media. In order to describe the 

bacterial sorption, adsorption isotherms have been developed for illustrating mass 

transfer between solid and liquid phases. The Freundlich isotherm, the Langmuir 

isotherm, and the Linear isotherm are three types of isotherms used to illustrate sorption 

process (Powelson and Mills, 2001; Mankin et al., 2007). 

 Moreover, stormwater runoff carries different types of organic compounds that 

can deteriorate surface water quality. Several studies have shown that natural organic 

matter (NOM) has some effect on bacterial cell walls, their electrophoretic mobility, and 

their attachment to minerals (Gerritson and Bradly, 1987). Bacteria and dissolved organic 

carbon (DOC) have negative charges on their surface and they can be attached to the 

positive charge of media surface. This mechanism results in competition between bacteria 

and DOC during filtration (Scholl and Harvey, 1992). Johnson et al. (1996) reported that 
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Suwannee river NOM could influence bacteria and filter media (quartz), thereby 

increasing the negative charge on both bacteria and quartz surfaces, which results in 

repulsive electrostatic interaction between bacteria and quartz leading to a decrease in 

bacteria removal. Jonson and Logan (1995) stated that bacteria removal decreased with 

the presence of sediment organic matter (SOM). The authors used Fe-quartz as filtration 

media in their study. It was shown that SOM could be attached to the positive charge of 

the media surface and establish a negatively charged media surface. This mechanism 

leads to an electrostatic repulsion between porous media and bacteria. However, bacteria 

removal with Fe-quartz without any competitors increased because iron-oxide raises the 

positive charge of the media surface.   

 Other factors that affect E. coli removal through filter media are salinity and pH. 

As the salinity increased, ionic strength increased, which led to enhanced attachment of 

negatively charged bacteria onto silica beads, quartz, and sand (Fonts et al., 1991; Mills 

et al., 1994). Guber et al. (2005) reported that soil and E. coli both have negatively 

charged surfaces, which make unfavorable environments in E. coli removal by soil. The 

ionic strength can be increased to reduce the electrical double layer on both media and E. 

coli cells surface, thereby allowing the E. coli cells to approach the media surface and 

Van der Waals force as an attractive power exceeds electrostatic repulsion.  

 Lytle et al. (1999) measured the electrophoretic mobilities (EPMs) of several E. 

coli types in different pH values (2, 5, and 6.5). The results indicated that EPM was 

increased with decreasing pH. Several studies also illustrated that the adsorption of 

bacteria onto porous media is strongly pH-dependent (Scholl and Harvey, 1992; Guber et 

al., 2005; Starosvetsky et al., 2012).  
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 The aim of this research was to investigate the adsorption capacities of low-cost 

materials for E. coli removal in synthetic stormwater. Batch experiments were conducted 

to assess the impact of initial E. coli concentration, temperature, pH, particles size and 

mass, contact time, salt, and NOM on the E. coli removal. Two natural minerals (zeolite 

and limestone) and two industrial byproducts (steel slag and steel chips) with three 

different sizes (0.5-1 mm, 1-2 mm, and 2-4 mm) were chosen to investigate the potential 

of these materials as  filter media for E. coli removal from stormwater. 
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2. MATERIAL AND METHODS 

 

2.1 Filter materials 

 Four materials were selected for this study; carbon steel byproducts (steel chips), 

electric arc furnace steel slag, limestone, and zeolite (Fig. 2.1). Table 2.1 summarizes the 

characteristics of filter materials. Limestone as a sedimentary stone composed of varying 

crystal forms of calcium carbonate (CaCO3) (Aziz et al., 2001) was acquired from Martin 

Marita Limestone Co, Inc. Natural zeolites are formed in basaltic lava and particular 

rocks exposed to moderate geologic temperature and pressure (D.E.W 1988). The natural 

zeolite from Bear River Zeolite Co, Inc. was used for this study.  

 Steel chips are produced by cutting, shaping, drilling, and finishing carbon steel 

products and were obtained from a metal machining factory located in Sioux Falls, South 

Dakota. Electric arc furnace steel slag is a byproduct of steelmaking and typically 

produced through the blast furnace. Slag is usually a mixture of metal oxides and silicon 

dioxide. The steel slag was collected from Nucor Steel (Norfolk, Nebraska).  

 All filter materials were sieved with different size sieves, then washed with 

distilled water water to remove any dust or very fine particles that can cause interference 

in adsorption experiments. Steel chips were washed with phosphate free soap to remove 

any possible oil on the surface. Then materials were air-dried. During the drying process, 

the steel chips were oxidized, forming a layer of rust on the surface. For comparison 

purposes, all materials were sieved to a size range of 0.5-1 mm, 1-2 mm. and 2-4 mm 

(Fig. 2.2), to identify the impact of material sizes on E. coli removal. Particle densities 

were determined for four materials as the amount of water volume displaced by a certain 

mass of material. Steel slag, limestone, and zeolite had lower particle densities between 

https://en.wikipedia.org/wiki/Steelmaking
https://en.wikipedia.org/wiki/Blast_furnace
https://en.wikipedia.org/wiki/Oxide
https://en.wikipedia.org/wiki/Silicon_dioxide
https://en.wikipedia.org/wiki/Silicon_dioxide
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2.18-3.57 g/cm3, while steel chips had higher particle densities between 5.20-5.91 g/cm3. 

PH values were measured using ASTM D4972. The steel slag and natural minerals were 

alkaline (pH > 8.0) while the steel chips pH was 6.3. 

2.2 E. coli preparation 

 An Escherichia coli (E. coli) ATCC 35218 (American Type Culture Collection) as 

a nonpathogen and Gram-negative bacterium was used as bacteria culture in this study. E. 

coli was incubated in a 100 mL Luria Broth Base (Thermo Fisher Scientific, included 10 

g/L of peptone, 10 g/L of sodium chloride, 5 g/L of yeast extract) at 37 oC, in a 

temperature controlled shaker. The culture was shaken at 150 rpm for 24 h, then the cells 

were centrifuged to remove growth media, and washed with buffer solution three times 

before re-suspending in buffer solution. The buffer solution was prepared by dissolving 

1.0 mole NaHCO3 and 0.01mole KCl in one liter distilled water. The pH value of buffer 

solution was adjusted to 7 using 1.0 mole H2SO4 solution. A spectrophotometer (Model 

DR400, Hach, Germany) was used for measuring E. coli cell concentration. 1.5×109 

cells/mL was the initial E. coli cell concentration in buffer solution. Serial dilution (10-

fold) were used to bring the E. coli concentration to the level of 1×104 MPN/mL (Most 

Probably Number) as an initial E. coli concentration for batch experiments. IDEXX 

Quanti-Tray 2000 method (i.e., most probably number, MPN) was used for accurate 

determination of the level of E. coli in solution. All dishes were placed in phosphate-free 

soap baths overnight then rinsed with reverse osmosis (RO) water. Dishes were  then 

placed in 25% H2SO4 (acid bath) overnight, afterward rinsed with 18MΩ nanopure water, 

and autoclaved prior to use. For avoiding any contamination, before and after each 
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experiment all apparatus were sterilized with Steris Coverage Spray HB plus (disinfectant 

cleaner). 

2.3 Batch Adsorption for E. coli removal 

 Batch adsorption experiments were conducted to evaluate the E. coli removal 

efficiency for each filter material at various initial E. coli concentrations, temperature, 

pH, particles size and mass, and contact time. The impact of salt and NOM on E. coli 

adsorption onto filter materials was also assessed. The E. coli removal efficiency depends 

on the mass of materials, time, pH, and temperature. Initial E. coli concentrations of 107 

MPN/mL and 104 MPN/mL were chosen  for steel chips and steel slag, limestone, and 

zeolite, respectively, for adsorption isotherm, kinetics, and desorption tests. An initial E 

.coli concentration of 104 MPN/mL was used to evaluate the impact of pH, temperature, 

salt, NOM, and continues flow on adsorption. Although 24 hours was found to be 

adequate to achieve equilibrium conditions in adsorption tests, 2 hours was used for 

determining the impact of pH, temperature, salt, NOM, and different initial E. coli 

concentrations based on kinetic results. A temperature controlled orbital shaker (Model 

MaxQ 4000,Thermo Scientific, Waltham, MA)  was used for all batch experiments (Fig. 

2.3).  

2.4 Adsorption Isotherms  

 For the adsorption isotherm tests, 0.1, 0.2, 0.5, 1, 2, 4, and 8 g (steel slag and steel 

chips), and 0.5, 1, 2, 4, 8, and 16 g (limestone and zeolite) with the three different size 

ranges (0.5-1, 1-2, and 2-4 mm) were used. Each material was placed in a 250 mL 

Erlenmeyer flask containing 100 mL buffer solution with an initial E. coli concentration 

of 104 MPN/mL for steel slag, limestone, and zeolite, and 107  MPN/mL for steel chips. A 
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flask with 100 mL E. coli solution without any absorbent was prepared as a control. 

Flasks were placed in a shaker and were continuously shaken at 100 rpm for 24 h at 20°C. 

After 24 h, flasks were removed from the shaker and allowed to stand for 30 min, then 

the solution was analyzed for E. coli concentration via IDEXX method. The following 

steps were included in analyzing the solution with the IDEXX Quanti-Tray/2000. First, 

samples were diluted (10-flod) to below 2400 MPN/100 mL (this is the highest number 

that the incubation tray can measure), and placed into a 100 mL IDEXX vessel 

containing a dechlorination chemical (sodium thiosulfate to neutralize up to 15 mg/L of 

chlorine). Second, one packet of Colilert reagent was added and mixed to the sample by 

gently inverting the bottle. After that, the solution was poured into the incubation tray and 

sealed by a Quanti-Tray sealer (Cat WQTs2X-115). Third, the sealed tray was placed in a 

45°C incubator for 24h then the results were analyzed by counting large and small 

positive wells and checking with fluorescence light under a long-wave ultraviolet light 

which is known as  an E. coli indicator (Fig. 2.4). All experiments were conducted in 

duplicate to ensure the accuracy of the experiments. The results of the duplicate 

experiments are expressed as average values and standard deviations. 

The equilibrium adsorption capacity, qe (mg/g), was calculated by the following 

equation: 

𝑞𝑒 =
𝑉 (𝐶0−𝐶𝑒)

𝑚
                             (Eq. 2.1) 

where C0 and Ce are the initial and equilibrium liquid phase E. coli concentrations 

(cells/mL), V is the volume of the solution (L), and m is the mass of the adsorbent (g). 

The Langmuir model assumes monolayer adsorption on a homogeneous surface while the 

Freundlich model assumes multilayer adsorption over a heterogeneous surface (Foo and 
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Hameed, 2010). The Freundlich isotherm model was used for fitting the experimental 

data. The linearized form of the Freundlich model can be expressed mathematically as 

follows:   

qe = KF Ce
1/n                                                                                                 (Eq. 2.2) 

where qe = equilibrium adsorption capacity (number of E. coli cells measured as most 

probably number, MPN) mg/g.  

KF = Freundlich adsorption capacity coefficient. 

1/n = Freundlich adsorption intensity (Miller et al., 2001; Wang et al., 2002). 

Freundlich coefficients (n and KF) are expected to relate to the material size and bacteria 

type. 

2.5 Adsorption Kinetics 

The rate of E. coli adsorption on the adsorbents surface was described by 

adsorption kinetics. Steel chips, steel slag, limestone, and zeolite (1-2 mm) were chosen 

for kinetic tests based on the results of the adsorption isotherm experiments. Steel chips 

adsorption kinetics was evaluated at an initial E. coli concentrations of 2.0×107 MPN/mL, 

and 1.4×104 MPN/mL was used for steel slag, limestone, and zeolite. The sample 

preparation procedure was the same as the adsorption experiments and samples were 

collected at different time intervals of 30, 60, 120, 360, 720, and 1440 min then analyzed 

for E. coli concentration. The adsorption data was fitted to pseudo first-order and pseudo-

second-order kinetic models which are wildly used to illustrate adsorption rates. The 

pseudo first-order and pseudo-second-order kinetics equations can be given as: 

 log(𝑞𝑒 − 𝑞𝑡) = log 𝑞𝑒 −
𝑘1𝑡

2.303
                                                       (Eq.2.3)       
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𝑡

𝑞𝑡
=

1

𝑘2𝑞𝑒²
+

𝑡

𝑞𝑒
                                                             (Eq. 2.4) 

where qt is the adsorption capacity at time t (mg/g), t is the shaking time (h); k1, k2 is the 

equilibrium rate constant of the pseudo first-order adsorption(h-1), and the pseudo-

second-order adsorption(g/mg-h), respectively. 

2.6 Different Initial E. coli Concentration 

 Based on adsorption isotherm and kinetics adsorption tests, one gram of steel 

chips, steel slag, limestone, and zeolite was used for determining the absorbent’s E. coli 

removal capacity with different initial E. coli concentrations of 10, 100, 1000, and 10000 

MPN/mL. An E. coli culture (109 MPN/mL) was diluted to 10, 100, 1000, and 10000 

MPN/mL after harvesting the culture. Absorbents were placed in 250 mL flasks and 

continuously shaken at 100 rpm with an orbital shaker for 2 h at 20oC. Then flasks were 

removed from shaker and analyzed via IDEXX method to obtain E. coli removal 

efficiency. For each E. coli concentration one control flask (with no absorbent) was also 

prepared to determine the exact initial number of cells.   

2.7 Temperature Impact 

The impact of temperature in E. coli removal was investigated by using initial E. 

coli concentrations of 1.3×104, 1.5×104, and 2×104 MPN/mL for 5 oC, 20 oC, and 30 oC, 

respectively. One gram of two byproduct materials (steel chips and steel slag) in the size 

range of 1-2 mm was added to each solution. For each temperature one control flask (E. 

coli solution) was prepared to determine the exact initial E. coli cells number. The 

temperature controlled orbital was used for these experiment. After 2 h flasks were 

removed from shaker and samples were analyzed.   
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2.8 pH Impact 

The effect of pH on E. coli removal was examined. Initial E. coli concentrations 

of 1.5×104 MPN/mL were used for adsorption under pH values of 5.0, 7.0, and 9.0. Steel 

chips and steel slag were placed in a 100 mL E .coli solution in 250 Erlenmeyer flask. 

Prior to starting the experiment the pH was adjusted to initial values of 5.0, 7.0, and 9.0 

by using 1.0 M H2SO4 (sulfuric acid) and 1.0 M NaOH (sodium hydroxide). Samples 

were shaken for 2 h at 20 oC and collected for analyzed by IDEXX method. 

2.9 Natural organic matter Impact. 

The effect of NOM on the E. coli adsorption onto steel chips and steel slag was 

investigated. NOM stock solution was prepared by dissolving a Suwannee River NOM 

standard, which was obtained from the International Humic Substances Society, in buffer 

solution. NOM samples were prepared with E. coli solutions in concentrations of 0, 5, 20, 

and 50 mg DOC/L. Samples were removed from shaker after 2h and analyzed for E. coli 

concentration. The initial E. coli concentration of 2.4×104 MPN/mL was used for this 

experiment.  

2.10 Salt Impact 

One gram of absorbent (steel chips, steel slag, limestone, and zeolite) with the 

size range of 1-2 mm was chosen for investigating the impact of salt on E. coli 

adsorption. Salt solution was prepared by mixing potassium chloride (KCl) into buffer 

solution at concentrations of 100, 1000, and 10,000 mg Cl-/L. Then the E. coli solution 

was added to the buffer solution to reach 2.4×104 MPN/mL for by-product materials and 

2.0×104 MPN/mL for natural minerals. After 2 h samples were removed from the orbital 

shaker and each solution was analyzed for E. coli concentrations. 
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2.11 Desorption of E. coli 

 To evaluate the desorption potential of the materials (steel slag, steel chips, 

limestone, and zeolite), 100 mL E. coli solution was prepared in 250 mL Erlenmeyer 

flasks then one gram of each material was placed in the flask. Samples were shaken at 

100 rpm for 24 h at 20oC. Two different ratios of E. coli concentration were used; 2×107 

MPN/mL for steel chips and 1.4×104 MPN/mL for steel slag, limestone, and zeolite. 

Once adsorption tests were finished, samples were analyzed for E. coli concentration. 

Afterward, the adsorbents were carefully rinsed with nanopure water, and buffer solution 

was poured into the flasks (included the adsorbents) to make the volume of solution the 

same as the adsorption test volume. The flasks were shaken for 24 h on the orbital shaker 

at 100 rpm, and samples were collected at different time intervals of 30, 60, 120, 360, 

720, and 1440 min. Then E. coli concentration was determined.   

The desorption ratio was obtained by the following equation: 

𝐷 =
de

Nr
×100                                                                                               (Eq. 2.5)  

where D is desorption percentage, de is E. coli concentration after certain desorption time 

(MPN/mL), Nr is the number of E. coli adsorbed onto adsorbents (MPN/mL).  

 

2.12 Column E. coli Adsorption Experiments 

 The column E. coli adsorption experiments were operated in four Omnifit® fixed-

bed glass columns with 1.5 cm inner diameter and 15 cm height (Fig. 2.5). The masses of 

30, 34, 27.5, and 18.6 gram of steel chips, steel slag, limestone, and zeolite, respectively, 

were placed into the columns to achieve a bed height of 10 cm. Experiments were 

conducted for five days. Effluent samples were collected at different time intervals of 
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0.25, 0.5, 2, 4, 8, 24, 36, 48, 96, 114, 192, 240, and 264 hours, then analyzed for E. coli 

concentration via the IDEXX method. A 12-liter buffer solution was prepared with the 

initial E. coli concentration range of 1.1×104 - 1.4×104 MPN/mL for each day.  Solution 

was pumped from the bottom of the columns upward at flow rate of 1.76 mL/min to 

achieve empty bed contact time (EBCTs) of 10 min using a peristaltic pump. The EBCT 

in the column is calculated from the ratio of bed volume (mL) to the flow rate (mL/min), 

and is calculated as follows: 

  𝐸𝐵𝐶𝑇 =
𝐵𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒

𝑄
                   (Eq. 2.6) 

Breakthrough curves were constructed to show the adsorption behavior of E. coli onto 

steel chips, steel slag, limestone, and zeolite. The breakthrough curves showed the 

adsorption of E. coli onto the fixed-bed columns and were expressed as the ratio of inlet 

E. coli concentration to outlet E. coli concentration (C/C0) as a function of time.  
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3. Results and discussion 

 

3.1 Adsorption Isotherm  

 The E. coli adsorption data for the four materials was fitted with the Freundlich 

isotherm model. The experimental results are shown in Table 3.1 and Table 3.2. As Table 

3.2 shown, all absorbents had high correlation coefficients (R2) using the Freundlich 

model  (R2 > 0.93) at 20 °C, suggesting that the adsorption of E. coli can be characterized 

by the formation a multilayer adsorption of bacteria cells along the surface of the 

adsorbents with a heterogeneous energy distribution between active sites (Yousef et al., 

2011). The results of the E. coli adsorption experiments fitted to the Freundlich isotherm 

models shown in Fig. 3.1, 3.2, and 3.3 for different size ranges of 0.5 – 1 mm, 1 – 2 mm, 

and 2 – 4 mm, respectively. The results showed that by decreasing particle sizes, the 

removal efficiency improved and also the maximum removal efficiencies were achieved 

for byproducts materials using the smallest size. Regarding natural minerals, limestone 

removed more E. coli cells in comparison to zeolite. Based on Cheung et al. (2007), 

general adsorption process included three steps; mass transfer of adsorbate to absorbent 

across a surface binding (internal and external), a diffusion layer, and an external 

boundary layer. Previous studies also has shown that bacteria adsorption to filter media 

can be analyzed via particle diffusion (dp) and film diffusion (df) (m
2/min) whereby E. 

coli diffusion was followed by particle diffusion in the aqueous phase (Bonilla et al. 

2007; Moussavi et al. 2011; Sochacki et al. 2011; lin et al. 2013; Guaya et al. 2015; Sang 

et al. 2016). The comparison of kf values for all filter medias showed that the E. coli 

attachment to byproducts materials (steel chips and steel slag) was higher than attachment 
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to natural minerals (limestone and zeolite). This may be attributed to positively charged 

surface which can absorb negative charged E. coli, which results in removal efficiency 

over 97%. Hydrophobic attraction and electrostatic interaction are two forces that affect 

E. coli adsorption onto filter materials (Wang et al. 2012; Sang et al. 2016). Voorthuizen 

et al. (2001) reported that the thickness of the double layer is important for electrostatic 

interaction. Accordingly, electrolytes on the surface of materials, such as metal ions, 

cause attraction between bacteria cells and filter media (Pagnout et al., 2012). The zeta 

potential value of the filter materials also affects E. coli removal. It has been shown that 

iron filling have positive zeta potentials which can enhance the E. coli removal efficiency 

(Schwegmann et al. 2010; Hernovic et al. 2011, Walcaz et al. 2012).  

3.2 Adsorption Kinetics 

 The results of kinetic experiments of E. coli adsorption to steel chips, steel slag, 

limestone, and zeolite are shown in Fig 3.4. Two different initial E. coli concentrations of 

2×107 MPN/mL and 1.4×104 MPN/mL were used for steel chips and  steel slag,  

limestone and zeolite, respectively. In general, all four of the selected materials exhibited 

fast adsorption kinetics. The adsorption rate of  steel byproducts were larger than natural 

minerals. Steel chips and steel slag reached 93% and 84% of the 24 h adsorption rate 

within 6 h, respectively. However, limestone and zeolite reached equilibrium about 6 h. 

Table 3.3 shows the analyzed data for pseudo-first-order and pseudo-second-order. It can 

be seen both the correlation coefficient R2 of orders are high. But the adsorption data fits 

pseudo-second-order reasonably well (R² > 0.962) for all cases. The k1 values (pseudo-

first-order kinetic constant) for steel chips, steel slag, limestone, and zeolite were 

obtained 0.813, 0.48, 0.393, and 0.37 (h-1), respectively.   
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3.3 Different Initial E. coli Concentrations 

 Fig 3.5 illustrates the effect of different initial E. coli concentrations on filter 

materials for E. coli removal. This indicates that as Co changed from 10 MPN/mL to 

10,000 MPN/mL, absorbents removal percentage substantially decreased. The results 

showed that the E. coli adsorption capacities for steel chips, steel slag, limestone, and 

zeolite were decreased by 2.4%, 44.0%, 38.0%, and 71.0%, respectively, when the cells 

concentration increased from 10 to 10,000 MPN/mL. However increasing E. coli 

concentration did not have significant effect on steel chips adsorption capacities in 

comparison with other materials. Sang-Woo et al. (2015) examined the different 

adsorption capacities of natural zeolite and Mg2+ -modified zeolite (MMZs) for E. coli 

removal. The authors reported that when initial E. coli concentration increased from 

10mg/L to 50 mg/L (based on dry cell mass) zeolite adsorption capacity was decreased. 

But MMZs have an enormous E. coli adsorption capacity compared to natural zeolite 

toward different initial E. coli concentration. Also, other studies have reported that with 

increasing the contamination concentration the removal capacities of filter media were 

decreased (Aziz et al. 2001; Erdem et al. 2004; Komnitsas et al. 2004; Pitcher et al. 2004; 

Rangsivek et al. 2005; Aziz et al. 2008; Wang and Peng, 2010). 

3.4 Temperature Impact 

 The extents of E. coli removal by steel chips and steel slag under different 

temperatures (5, 20, and 30oC) are shown in Fig. 3.6. Filter materials adsorption 

capacities were increased by 62.0% and 76.0% for steel chips and steel slag as the 

experimental temperature increased from 5oC to 30oC. The results suggested that E. coli 

adsorption was more favorable at higher temperatures. In stormwater treatment ponds, 
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water temperature will be dependent on season and location. Therefore, a field-scale filter 

structure for stormwater treatment will more than likely have higher E. coli removal 

efficiencies during the warmer months and lower efficiencies in the cooler months. Ishii 

et al. (2005) reported that by decreasing the temperature E. coli retention on filter 

materials decreased whereas by rising the temperature E. coli cells attachment to media 

increased.  

3.5 pH Impact 

 In order to investigate the pH impact on E. coli removal by using steel chips and 

steel slag, pH values of 5, 7, and 9 were examined. The adsorption capacities of steel 

chips and steel slag were increased by 34.0% and 62.5%, respectively, as pH decreased 

from 9 to 5 (Fig. 3.7). Scholl and Harvey (1992) conducted the bacteria adsorption using 

the aquifer materials at pH 3.5 to 8 for uncontaminated groundwater and pH 3.0 to 9 for 

contaminated groundwater. Their results showed that pH increased, sorption of bacteria 

to media was decreased. The maximum bacteria adsorption in uncontaminated and 

contaminated groundwater occurred at pH 5 and 6.5, respectively. Also, several studies 

demonstrated that E. coli adsorption onto filter media increased significantly with 

decreasing pH from 10 to 4. By decreasing pH, hydroxide (OH-) ions decrease resulting 

in a decline in materials surface negative charge, thereby reducing repulsion force 

between E. coli and materials surface (Lytle et al. 1999; Tawfik et al. 2003; Guber at al. 

2005; Starosvetsky et al. 2012; Delaire et al. 2015). 

3.6 Natural organic matter Impact 

 The effect of NOM on E. coli retention on steel chips and steel slag was 

examined. Fig. 3.8 shows the impact of adding different NOM concentrations (0, 5, 20, 
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and 50 mg DOC/L) on E. coli adsorption. The results showed that E. coli adsorption 

capacities were reduced by 21.0% and 44.0%, and 25.5% and 43.0% in the presence of 

20 and 50 mg DOC/L onto steel chips and steel slag, respectively. However, Fig. 3.8 

showed that 5mg DOC/L did not influence E. coli removal. The main reason is described 

by the competitive attachment of E. coli cells and dissolved organic carbon (DOC) onto 

the positively charged adsorbents. This is similar to a study by Delaire et al. (2015) which 

reported a reduction in bacteria removal efficiency after adding 3 mg/L of NOM 

(Suwannee River fulvic acid). This is likely due to attachment of NOM on filter materials 

surface and increase the negative surface charge which led to a decrease in E. coli 

attachment (Song et al. 1994; Johnson et al. 1995). Also, Johnson and Logan (1996) 

reported that in the presence of Suwannee River dissolved organic matter in solution, 

bacteria attachment on quartz and Fe-quartz was decreased about 20% and 10%, 

respectively. 

3.7 Salt Impact 

 The impact of adding different initial salt concentrations (100, 1000, and 10,000 

mg Cl-/L) on E. coli adsorption onto four materials (steel chips, steel slag, limestone, and 

zeolite) was investigated. Results shown in Fig. 3.9 illustrated that as the salinity 

increased more E. coli were attachment to absorbents. The E. coli adsorption capacities of 

steel chips, steel slag, Limestone, and zeolite were improved by 5%, 35.5%, 45.0%, and 

78.0%, respectively, when the initial salt concentration increased from 0 to10,000 mg Cl-

/L. As can be seen in Fig. 3.9, increasing chloride concentration had a significant effect 

on natural minerals adsorption capacities in comparison to byproduct materials. It may be 

that the increase in the ionic strength caused a reduction in electrical double layer on both 
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media and E. coli cells surface, thereby allowing the E. coli cells to approach the filter 

media surface, and Van der Waals force as an attractive power exceeds electrostatic 

repulsion (Fonts et al., 1991; Mills et al., 1994; Guber et al. 2005). However, 

Starosvetsky et al. (2012) observed that high salt concentration (above 140 mM) 

prevented bacteria strains (E. coli and Salmonella typhimurium) attachment on media 

surface. Some studies also demonstrated that for certain bacteria types, high salt 

concentration reduced adsorption capacity and caused desorption from porous media 

(Daniels 1972; Wood et al. 1980).  

3.8 Desorption of E. coli 

 Fig. 3.10 illustrated E. coli desorption of the four filter materials (steel chips, steel 

slag, limestone, and zeolite). The absorbents ability to keep previously adsorbed E. coli is 

critical to the success of field-scale filter, since the release of E. coli will increase the 

pathogen loading to natural water bodies. After an initial batch adsorption experiment for 

examining the E. coli removal capacity by filter media, another batch experiment was 

applied to investigate the de-sorbability of E. coli over time. Over a period of 24 h, steel 

chips, steel slag, limestone, and zeolite desorbed 0. 04, 0.4, 3.11, and 2.73% of the 

attached E. coli cells, respectively. E. coli release from steel chips is almost negligible to 

compare with other absorbents. As already described in adsorption part, steel chips was 

able to remove E. coli up to 95%. On the other hand, natural minerals (limestone and 

zeolite) had more desorption capacities than steel byproducts. limestone showed faster E. 

coli release the beginning of desorption test, later the curve was flattened and reached 

equilibrium. However, the zeolite curve is similar to straight line suggesting desorption of 

E. coli will be continuing as time goes on. Some factors play  roles in E. coli desorption 
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from filter materials as follows; the strength of surface adsorption, filter media surface 

charge, filter materials particle size, zeta potential, contact time, temperature, existing of 

any pollutants like NOM, and pH value. As already mentioned, natural minerals have 

negative surface charge which led to less adsorption capacity and more desorption 

because of surface repulsive force between E. coli and minerals. Also, Wang et al. (2014) 

concluded that with increasing of quartz sand particle size desorption ratio was improved 

and adsorption capacity was reduced. Large particles desorption capacity was higher than 

fine particles and they took longer time to reach equilibrium.  

3.9 Column E. coli Adsorption Experiments 

 The breakthrough curves for steel chips, steel slag, limestone, and zeolite are 

shown in Fig. 3.11. All filter materials have an immediate breakthrough of E. coli, 

reaching initial removal rates of 95.7%, 51.2%, 42.0% and 21.2% for steel chips, steel 

slag, limestone, and zeolite, respectively. The steel slag, limestone, and zeolite curves are 

then characterized by a slow decrease in E. coli removal efficiency over time. As can be 

seen in Fig. 3.11 the effluent E. coli concentration of the natural minerals reached 95% of 

the influent concentration after 96 h. The steel slag showed a 95% breakthrough in the 

effluent after 264 h adsorption.  However, the steel chips breakthrough curve exhibited 

no significant decrease (C/C0 % < 7%) after 11 days. The adsorption of E. coli onto steel 

slag and, limestone and zeolite showed a traditional S-shaped breakthrough curve and 

reached full exhaustion (C/C0 % = 100%) after 11 days and 4 days, respectively. In 

contrast, steel chips had a high E. coli removal until day 11, and never reached 

completely exhaustion. Therefore, it is possible that this is a result form the continuous 
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regeneration of adsorption sites due to continuous oxidation in the column and forming 

new Fe oxides for E. coli to bind with. 
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4. Conclusions 

 

 This study was conducted to investigate E. coli removal from stormwater runoff 

using byproduct materials (steel slag and steel chips) and natural minerals (zeolite and 

limestone). The results of the batch adsorption experiments and column study illustrated 

that industrial byproducts were more effective at removing E. coli from storm water than 

natural minerals. As material sizes increased E. coli adsorption capacities onto filter 

materials were decreased. In general, all four of the selected materials exhibited fast 

adsorption kinetics. The presence of varying initial E. coli concentrations (10, 100, 1000, 

and 10000 MPN/mL) had a large impact on E. coli adsorption onto all filter materials 

except steel chips. With increasing the temperature adsorption capacities were increased 

from 36.9% to 96.2% and 7.5% to 30.6% for steel chips and steel slag from  5°C to 30°C. 

As pH decreased from 9 to 5 steel chips and steel slags’ E. coli adsorption capacities 

improved.  

 The results of adding salt on E. coli removal revealed a significant impact on 

natural minerals adsorption capacities in comparison with steel byproducts. E. coli 

removal efficiency were reduced by 19.8% and 41.8% onto steel chips and 6.8% and 

11.5% onto steel slag in the presence of 20 and 50 mg DOC/L. The desorption results 

showed that E. coli release from steel chips was negligible in comparison with other 

absorbents since the strong chemical bonds between steel byproducts and E. coli 

prevented the release of E. coli. Overall, the results of this study suggest that steel 

byproducts are highly efficient for E. coli removal under variable environmental 

conditions.   
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Figure 2.1: Filter materials (left to right : Limestone, zeolite, steel slag, and steel chips).  
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 a.  

b.  

c.  

Figure 2.2: Filter materials in size range 0.5 – 1 mm(a), 1.0 – 2.0 mm (b), and         

2.0 – 4.0 mm (c).  
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  Figure 2.3: Temperature controlled orbital shaker. 
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Figure 2.4: IDEXX Quanti-Tray/2000 (Quanti tray sealer, tray, vessel, and reagent). 
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Figure 2.5: Column experiment equipment. 
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   Table 2.1: Characteristics of industrial byproducts and natural minerals. 

Material 
Sizea 

(mm) 

Particle 

Density 

(g/cm³) 

pHb   

 0.5-1     

Steel chips 1-2 5.20 6.3 
  

 2-4   
  

 0.5-1   
  

Steel Slag 1-2 3.57 10.9 
  

 2-4   
  

limestone 

0.5-1 

1-2 

2-4 

2.76 9.0 
  

Zeolite 

0.5-1 

1-2 

2-4 

2.18 8.0 
  

a Size ranges determined from known sieve sizes.                                
b Values of pH were obtained from a 1:1 by weight slurry mixture of material and     

distilled water. 
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Table 3.1: Filter materials adsorption capacities in different size range.* 

Material 
Size 

(mm) 

         Mass 

       (gram) 

  Time        

(hours) 

Removal (%) 

Steel Chips 

0.5-1             92.0  

1-2  1       24     90.0  

2-4             87.0  

Steel Slag 

0.5-1             96.3  

1-2  1       24     94.0  

2-4             92.0  

Limestone 

0.5-1             49.0 

 1-2  1   24       32.2 

2-4              13.1 

Zeolite 

0.5-1              32.2  

1-2  1   24         23.5  

2-4               6.9  

*Experimental conditions: Initial E. coli concentration =2.0×107 MPN/mL for steel chips, 

and 1.4×104 MPN/mL was used for steel slag, limestone, and zeolite; adsorption 

time=24h; pH=7.0. 
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Table 3.2: Freundlich isotherm constants parameters for the E. coli adsorption onto 

filter materials.* 

    Material                 Size (mm) 

Freundlich Isotherm  

KF n R² 

 

Steel Chips 

0.5-1 0.6 078 0.96 

1-2 0.61 0.7 0.98 

2-4 0.66 0.52 0.97 

Steel Slag 

0.5-1 0.73 2.7 0.97 

1-2 0.65 2.27 0.98 

2-4 0.51 1.82 0.98 

Limestone 

0.5-1 0.58 1.37 0.96 

1-2 0.54 1.67 0.98 

2-4 0.39 1.48 0.93 

Zeolite 

0.5-1 0.69 1.86 0.99 

1-2 0.66 1.74 0.97 

2-4 0.64 1.69 0.97 

*Experimental conditions: Initial E. coli concentration =2.0×107 MPN/mL for steel chips, 

and 1.4×104 MPN/mL was used for steel slag, limestone, and zeolite; adsorption time=24 

h; pH=7.0. 
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Table 3.3: Kinetic parameters for E. coli adsorption onto filter materials.* 

Material 
Size 

(mm) 

Pseudo first-order model 
Pseudo second-order 

model 

k1                       

(h-1) 
R² 

k2  

(g/mg-h) 
R² 

Steel Chips 1.0-2.0 0.813 0.9685 6 0.9776 

Steel Slag 1.0-2.0 0.48 0.8762 2.6 0.9678 

Limestone 1.0-2.0 0.393 0.7569 2.387 0.9936 

Zeolite 1.0-2.0 0.37 0.6479 2.34 0.9864 

*Experimental conditions: Initial E. coli concentration =2.0×107 MPN/mL for steel chips, 

and 1.4×104 MPN/mL was used for steel slag, limestone, and zeolite; collected sample at 

30, 60, 120, 360, 720, and 1440 min =24 h; pH=7.0. 
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Figure 3.1: Freundlich adsorption isotherms for filter materials in size range 0.5 – 1 

mm. (Experimental conditions: Initial E. coli concentration =2.0×107 MPN/mL for steel 

chips, and 1.4×104 MPN/mL was used for steel slag, limestone, and zeolite; adsorption 

time=24 h; pH=7.0.)  
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Figure 3.2: Freundlich adsorption isotherms for filter materials in size range 1 – 2 

mm. (Experimental conditions: Initial E. coli concentration =2.0×107 MPN/mL for steel 

chips, and 1.4×104 MPN/mL was used for steel slag, limestone, and zeolite; adsorption 

time=24 h; pH=7.0.)  
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Figure 3.3: Freundlich adsorption isotherms for filter materials in size range 2 – 4 

mm. (Experimental conditions: Initial E. coli concentration =2.0×107 MPN/mL for steel 

chips, and 1.4×104 MPN/mL was used for steel slag, limestone, and zeolite; adsorption 

time=24 h; pH=7.0.)  
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Figure 3.4: Effect of time on E. coli removal (Kinetics adsorption). (Experimental 

conditions: Initial E. coli concentration =2.0×107 MPN/mL for steel chips, and 1.4×104 

MPN/mL was used for steel slag, limestone, and zeolite; collected sample at 30, 60, 120, 

360, 720, and 1440 min; pH=7.0.)  

 

 

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600

A
d
so

rp
ti

o
n
 c

ap
ac

it
y
, 
q
e(

C
el

ls
 n

u
m

b
er

/m
g
)

Time (Min)

Steel Chips (qe×10^-3) Steel Slag Zeolite Lomestone



37 

 

 

 

 

 

Figure 3.5: Effect of different initial E. coli concentrations on adsorption. 

(Experimental conditions: Initial E. coli concentration =10.0, 100.0, 1000.0, and 10,000.0 

MPN/mL, adsorption time = 2 h; pH=7.0.)  
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Figure 3.6: Effect of different temperature on E. coli adsorption. (Experimental 

conditions: Initial E. coli concentration = 1.4×104 MPN/mL, adsorption time = 2h; 

temperature = 5, 20, and 30oC; pH=7.0, error bars indicate standard deviation) 
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Figure 3.7: Effect of different pH on E. coli adsorption. (Experimental conditions: 

Initial E. coli concentration = 1.4×104 MPN/mL, adsorption time = 2 h; temperature = 5, 

20, and 30oC; pH=7.0, error bars indicate standard deviation.) 
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Figure 3.8: Effect of different natural organic matter concentration on E. coli 

adsorption. (Experimental conditions: Initial E. coli concentration = 1.4×104 MPN/mL, 

adsorption time = 2 h; temperature = 20oC; pH=7.0; error bars indicate standard 

deviation, NOM = 0, 5, 20, and 50 mg/L.) 
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Figure 3.9: Effect of different salt (KCl) concentration on E. coli adsorption. 

(Experimental conditions: Initial E. coli concentration = 1.4×104 MPN/mL, adsorption 

time = 2 h; temperature = 20oC; pH=7.0; error bars indicate standard deviation, salt 

concentration = 0, 100, 1000, and 10,000 mg/L. 
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Figure 3.10: Desorption of E. coli. (Time = 30, 60, 120, 360, 720, and 1440 min; 

temperature = 20oC; pH=7.0.) 
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Figure 3.11: column study for E. coli adsorption onto filter materials. Breakthrough 

curves of filter materials (Initial E. coli concentration = 1.0×104 MPN/mL; EBCT=10 

min; experiment duration=5 d; bed height=10 cm; error bars indicate standard deviation,) 
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