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ABSTRACT 

IDENTIFICATION OF PHYSIOLOGICAL AND MORPHOLOGICAL TRAITS 

GOVERNING HIGH WATER USE EFFICIENCY IN ALFALFA 

KRISHNA GHIMIRE 

2017 

 

Alfalfa is an important forage crop worldwide. Being deep-rooted, N2-fixing and high 

yielding, alfalfa has great economic, ecological and nutritional benefits. While alfalfa is a 

high yielding crop, its high productivity depends on irrigation water in many areas and 

consumes the greatest amount of water among all the major crops. With a growing demand 

for water resources due to an increase in human population and industrial water use, plus 

frequent drought due to climate change, irrigation water has become increasingly scarce 

and expensive. To sustain high production of alfalfa with limited water resource, alfalfa 

cultivars with improved water use efficiency (WUE) is urgently needed. As a first step, we 

started screening alfalfa germplasms for difference in WUE and identified an alfalfa 

collection, River side (RS), with a greater WUE under drought compared to other ten 

alfalfa collections. RS is a naturalized alfalfa collected from the Grand River National 

Grassland in South Dakota. The objective of this study was to identify physiological and 

morphological traits that may contribute toward higher WUE in RS. Plants were subjected 

to two water regimes, by supplying either 100% (well-watered) or 50% (water-stressed) of 

their transpirational water needs. RS showed the smallest stomatal conductance and used 

the least amount of water under drought compared to other two alfalfa collections, 

suggesting that a greater WUE in RS is associated with a reduced transcriptional water 
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loss. We found that RS developed smaller but more numerous stomata under drought that 

might facilitate a more rapid stomatal closure when water is limited but enhance water and 

nutrient uptake when water is sufficient. RS has also exhibited different changes on two 

sides of the leaf that may contribute to the regulation of water loss. The abaxial surface 

developed a greater number of leaf hairs that can potentially increase the boundary layer 

resistance for transpiration. The adaxial surface developed the stomata with a greater 

sensitivity to ABA. By examining the leaf epidermal cell size, it is clear that RS showed 

the greatest reduction in cell size, resulting in a great increase in cell density. The change 

in cell density may explain an increased stomatal and leaf hair density observed. Our study 

provided a great insight into the factors that may contribute to a high WUE in alfalfa. We 

hope that the knowledge developed in this study and in the future study will build a 

foundation for developing alfalfa with improved WUE.  
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CHAPTER 1. LITERATURE REVIEW 

1. ALFALFA AND ITS INTRODUCTION 

Alfalfa (Medicago sativa L.), known as queen of forage, is the most important and the 

oldest forage crop in the world (Michaud et al. 1988). Alfalfa is a perennial leguminous 

crop which is cultivated worldwide for hay, pasture and silage because of its highly 

nutritious value, broad adaptability, and significance in other applications. The center 

of origin of alfalfa is Asia Minor, Transcaucasia, Turkmenistan and Iran (Quiros and 

Bauchan 1988). Alfalfa was introduced to the US from different sources. It was 

introduced from British Isle to Georgia in 1836 and to Utah in 1850, from Chile and 

Mexico to California in 1850 and 1851, from Germany to Minnesota in 1857. However, 

the introduction to California from Chile in 1850 caused its eventual spread across USA 

(Brough et al. 1973).  

2. IMPORTANCE OF ALFALFA  

2.1. Economic importance 

 Alfalfa is a highly valued crop because of its close link with the dairy and beef 

industries (Sumner and Rosen-Molina 2011). Alfalfa production and productivity 

has increased during the past several years in the US. The total  area harvested was 

16.75, 17.67, 18.44 million acres in 2012, 2013, and 2014, respectively (NASS 

2015), with a productivity of  3.01, 3.24, and 3.33 tons per acre in 2012, 2013, and 

2014 respectively. In 2014,  alfalfa hay produced in the US valued 10.7 billion 

dollars (NASS 2015). Since alfalfa is used in animal feed for dairy cows, horses, 
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sheep, turkey, chicken and other farm animals, the total value of alfalfa is worth 

145 billion dollars (Edminster et al. 2001) 

2.2. Ecological importance 

Alfalfa is ecologically important because of its deep root system and perennial 

nature. It limits soil erosion and improves soil texture (Li and Brummer 2012). 

Being a legume, alfalfa has a symbiotic relationship with N2 fixing bacterium 

Sinorhizobium meliloti that fixes atmospheric nitrogen and improves the fertility 

of soil for subsequent crops. Thus, less nitrogenous fertilizer is needed for 

subsequent crops during crop rotation. This rotation of alfalfa with other crops not 

only reduces the expense on fertilizer application but also minimizes the runoff of 

excessive fertilizer that negatively impacts the environment (Acharya et al. 2013). 

Alfalfa is also used for phytoremediation,  preventing surface water pollution 

(Vadas et al. 2008). Alfalfa also provides habitat to different wildlife species 

(Putnam et al. 2001; Shebl et al. 2008; Putnam 2004). 

2.3. Industrial importance 

In addition to its high value in dairy and ranch industry, alfalfa shows its potential 

in other industrial applications. For example, alfalfa has recently been proposed a 

great source for cellulosic biomass for biofuel production. Alfalfa is one of the 

highest biomass producers among all the major crops.  Since alfalfa production 

needs little nitrogen fertilizer, it is considered a low-input cellulosic biomass crop. 

Alfalfa has about 50% of polysaccharides in dry weight that can be used for 

producing biofuel and chemical products (del Pozo et al. 2017). Great effort has 

been made to improve alfalfa biomass production for biofuel production purpose 
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such as using unique germplasm (Lamb et al. 2007). The stem cell wall alternation 

such as reducing lignin content is another approach used to change cell wall quality 

and to improve the efficiency of cellulosic ethanol production (Lamb et al. 2007; 

Gronwald 2009). 

2.4. Nutritional importance 

Forage and legume crop is the foundation of dairy and meat production for centuries 

(Russelle et al. 2001). Alfalfa has a high content of digestible energy and protein 

which makes it an extremely valuable feed (Yi et al. 2013). When included in 

livestock ration it can reduce or eliminate the need of supplemental protein feed. 

Alfalfa is also high in calcium, magnesium and phosphorous (Garry Lacefield 

2009).  

3. ALFALFA PRODUCTION AND ITS CONSTRAINTS  

Although alfalfa is a high-yield crop and is grown worldwide for different purposes, 

there are many constraints that limit its production and productivity.  

3.1. Alfalfa production  

North America, Europe and South America are leading alfalfa producers. In term 

of acreage leading alfalfa producing countries are the USA, Argentina, Canada, 

Russia, Italy and China. In USA alfalfa is the fourth largest crop in terms of area 

cultivated after corn, wheat and soybean (Yuegao and Cash 2009). The primary 

global center for alfalfa cultivation is North America which has more than half the 

total worldwide acreage (Bagavathiannan and Van Acker 2009). While the 

production of alfalfa increased in the US in the past, global alfalfa production 
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declined slightly since the start of  the 21st century due to fluctuations in economics 

of grain crops, animal husbandry and expansion of soybean and corn for bioenergy 

(Yuegao and Cash 2009). Alfalfa production in Europe has also declined since 

2000. Due to a rapid expansion of the dairy industry, demand for alfalfa is high in 

China. Although China is currently an importer of alfalfa, it has the huge potential 

to become a sustainable production system. The USA exports a large quantity of 

alfalfa hay to China, Japan, Korea, Taiwan, and the UAE. Alfalfa production in 

North America and Europe is expected to increase in response to an increases in 

alfalfa price in international markets (Yuegao and Cash 2009) 

3.2. Constraints of alfalfa production  

In general, alfalfa is relatively tolerant to different abiotic stresses like drought, 

heat and cold, and it thus has been  grown in many regions of the world (Leach 

and Clements 1984). However, its potential for high yield is limited by these 

abiotic stresses. In this study, we mainly focused on the impact of water 

availability on alfalfa production and responses of plants to water deficit. 

3.2.1. Irrigation water availability 

Agriculture uses 70% of overall withdrawal of global water resources 

(Morison et al. 2008), and low water availability is the primary factor limiting 

plant growth and yield worldwide (Chaves et al. 2003). Alfalfa consumes a 

great amount of water and its yield is limited by irrigation rather than any 

other management factors. Evapotranspiration (total water use) for alfalfa 

generally varies from 0.1 to 0.35 inches per day (Irmak et al. 2007). Alfalfa is 

ranked number one for irrigation water use among the major crops when 
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irrigation is used in many regions in order to achieve high yields (Irmak et al. 

2007; Putnam 2012) 

There is, however, an increasing competition for water use between 

agricultural and other purposes due to limited water availability. Increasing 

water demand for municipal and urban use and decreasing ground water level 

and precipitation have caused the reduced quantities of irrigation water 

available in agriculture (Lindenmayer et al. 2008). Climate change may 

exacerbate the present water shortage and increase the pressure on irrigation 

water use in agriculture (Alley and Berntsen 2007). Many countries have 

made laws to regulate water use, and farmers are under legislative restriction 

for irrigation water use (e.g. the 2003 Water Act in the UK). These laws are 

made to secure safe and adequate water for domestic use (Morison et al. 2008). 

The UAE government decided to stop alfalfa production in the kingdom in 

2008 due to their increasingly scarce water resources. Saudi Arabia purchased 

a large acreage of land in California to produce alfalfa to preserve their own 

scare water resource and transport alfalfa hay from California to the Middle 

East (Jeff Denials, 2015).  

Alfalfa is grown on 12% of irrigated land in the USA (NASS, 2007) and the 

cost for irrigation is high and is increasing. The cost is even higher during dry 

seasons as it produced the lowest yield per unit water used. This is because 

high irrigation at hot and dry conditions is wasteful through high 

evapotranspiration (Morison et al. 2008). Thus, reduced irrigation on alfalfa 

could save great quantities of water without negative impact on overall 
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financial return for alfalfa growers in some drought conditions (Parry et al. 

2005).  

 

3.2.2. Climate change and drought  

Sixty seven percent of crop loss in the USA for the past 50 years is due to 

drought. The 2012 drought in the USA was the worst in the last 60 years.  

Intergovernmental Panel on Climate Change has predicted that there will be a 

decrease in precipitation and rising evapotranspiration (Alley and Berntsen 

2007). As a result, more frequent water shortages are expected due to the 

climate change and increasing competition of water use between agriculture, 

industrial areas and urban area (Field 2012; von Mogel 2013). The problem 

of drought for legume production will be worsened as it is projected that 

rapidly increasing water stressed areas in the world will expand from 28 to 30 

countries in 2000 to 50 countries with 3 billion people by 2030 (Postel 2000). 

Alfalfa production is also facing the challenge of frequent drought. 

Identification and generation of alfalfa cultivars that remain highly productive 

with less irrigation is urgently needed.  

4. WATER USE EFFICIENCY (WUE)  

Water use efficiency (WUE) is defined as a ratio of biomass production to water use. 

WUE is considered an important trait that determines yield during drought. A higher 

WUE is derived mainly due to plant traits that reduce transpiration and crop water use 

(Blum 2009). Reducing transpiration would decrease water loss but often decrease 

biomass production as well due to a lower photosynthesis. Thus, one strategy is to 
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develop a crop with high WUE with little effect on biomass yield. Alternatively, 

breeding alfalfa for increased soil moisture capture can be an important target to 

improve yield under drought.   

When plants are under moderate water deficit stress, stomata are closed by sensing 

physical and chemical signals such as hydraulic pressure and abscisic acid (ABA). This 

decline in stomatal conductance reduced both photosynthetic rate and transpiration. 

Transpiration is the major cause of water loss in photosynthetic plants. An increase in 

WUE often occurs because inhibition of transpiration is more than photosynthesis (Xu 

et al. 2010). WUE has a genetic basis, and breeding for high WUE has become a main 

objective for the breeding program of many crops (Condon et al. 2004). Studies have 

demonstrated that genetic variation in WUE is mainly due to a variation in stomatal 

conductance but not net assimilation (Blum 2009). Thus, the key to improve WUE in 

plants is to control stomatal conductance.   

 

5. IMPACT OF DROUGHT ON PLANT GROWTH AND PLANT RESPONSES 

TO DROUGHT  

Alfalfa is a relatively “drought-tolerant” as compared to other crops due to its deep root 

system which allows to extract water deeper in the soil (Tang et al. 2013; Moran et al. 

1994). Plant growth and survival depend on water availability. When water availability 

changes, plants modulate their physiological and developmental processes and keep 

balances between water use and water uptake (Hamanishi et al. 2012) 
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5.1. Plant growth 

The abiotic and biotic stress has caused the evolution of modern plants from the 

primitive living organisms. Among many abiotic stress which shaped the form of 

plant evolution, water stress or drought is the most important one (Zhu 2002). 

Since water is a key substrate for photosynthesis and sustains turgor pressure that 

drives cell expansion, photosynthesis and cell elongation are primarily affected by 

drought. The sensitivity and response time to drought differ among species, and 

different mechanisms have been adopted by plants to respond to drought stress 

(Aasamaa and Sõber 2011). Two of the important mechanisms in response to 

drought are to minimize water use by mainly limiting leaf and shoot growth and to 

reduce water loss by mainly reducing transpiration. 

5.1.1.  Leaf growth, development and morphology  

Plants respond to water deficit condition by reducing leaf area, which reduces 

water use needed for cell expansion. At the same time, other morphological 

and physiological changes occur in plants that allows plants to reduce 

transpiration and retain water thus increasing WUE (Xu and Zhou 2005).  

5.1.1.1. Leaf area and thickness  

During drought, leaf area expansion is suppressed earlier than 

photosynthesis (Tardieu et al. 1999). Reduced leaf area, leaf area index 

(defined as the ratio of total one sided area of leaf tissue to ground surface 

area) and reduced plant size are important mechanisms to reduce water 

use (and loss) and minimize stress during drought (Mitchell et al. 1998). 

Specific leaf area is also changed during drought, which is an indicator 
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of leaf thickness. These modified leaf morphologies allows plants to 

increase leaf protein density thus consequently increases photosynthesis 

per unit volume of leaf (Marcelis et al. 1998) 

 

5.1.1.2. Leaf hair density 

Leaf hairs play important physiological and ecological roles in plants. 

Leaf hairs help in defense against herbivores, and it also affects gas 

exchange and leaf temperature. The trichrome (leaf hair) prevents the 

absorption of short wave length of light and makes leaf cooler (Baldocchi 

et al. 1983). Leaf hairs also keep water droplets off the leaf and stomata 

thus facilitating gas exchange (Brewer and Smith 1995). Leaf hairs 

influence transpiration also. The transpiration is directly proportional to 

water vapor concentration between ambient air and sub stomatal cavity. 

Thus, thickening of boundary layer by leaf hairs increases the resistance 

to water vapor diffusion and decreases the transpirational water loss 

(Wuenscher 1970). Effect of drought stress on leaf hair density was 

observed in Piriqueta caroliniana, which produced less leaf hairs in 

wetter climate and more leaf hairs in drier climate (Picotte et al. 2009). 

Leaf hair density has shown to increase WUE in drought condition 

(Picotte et al. 2007).  
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5.1.1.3.  Stomatal development  

Stomata are the pores on the leaf epidermis that consist of two 

specialized guard cells that surround the central aperture. Stomata 

control the gaseous exchange between leaf and atmosphere. 

Development of stomata is said to be the most important development in 

plant evolution (Brodribb and McAdam 2011). Stomatal evolution is a 

result of response to selection pressure to optimize the ratio of CO2 

uptake to water loss during photosynthesis (Raven 2002). The short term 

response of plants to water deficit is the decrease in stomatal aperture to 

reduce water loss, which often negatively impacts photosynthesis at the 

same time (Chaves et al. 2003). During persistent water stress conditions, 

plants can control the stomatal number by modulating stomatal 

development during new leaf development (Chaves et al. 2003). The 

stomatal effects are the most important factor limiting photosynthesis 

during moderate drought while biochemical limitations in 

photosynthesis are more important during severe drought (Grassi and 

Magnani 2005). 

5.2. Signaling molecules and action under drought 

Multiple signaling molecules or systems have been reported to be important for 

drought response in plants. These molecules are produced in roots under drought 

stress and then transported to shoots via xylem to reduce leaf growth and stomatal 

aperture thus transpirational water loss. Among those stress signaling molecules, 

abscisic acid (ABA) is known as a key stress hormone that is involved in root-
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shoot communication (Chaves et al. 2003). Water deficit activates biosynthesis, 

accumulation and redistribution of ABA which reduces the stomatal aperture in 

leaf and thus minimizing transpirational water loss (Hirayama and Shinozaki 

2007). Besides ABA, other phytohormones like jasmonic acid, cytokinin, ethylene 

or brassinosteroids are also involved in stomatal response to stress (Daszkowska-

Golec and Szarejko 2013). Other signal molecules, such as nitric oxide (NO), 

hydrogen peroxide (H2O2), reactive oxygen species (ROS) are also involved in 

drought response and tolerance. A major role of these molecules in stress response 

is to act in the pathways of ABA to regulate stomatal closure under drought (Lu et 

al. 2009; Bright et al. 2006; Cruz de Carvalho 2008).  

5.3. Regulation of stomatal closure and opening under drought 

Stomata control the gaseous exchange between leaf and atmosphere thus 

regulating CO2 uptake and transpiration, thus effecting the plant productivity and 

WUE (Lawson and Blatt 2014). Ninety percent of water loss from plants is through 

stomatal pores. The balance between CO2 uptake and transpiration depends on 

stomatal response to environmental conditions and internal cues. There exist 

significant differences in sensitivity and responsiveness of stomata to different 

environmental conditions such as light and humidity and internal cues such as 

hormones and CO2 level (Lawson et al. 2012). These external and internal factors 

control the stomatal closure and opening by mostly regulating the turgor pressure 

inside the guard cells.  

The stomatal opening occurs when a guard cell becomes turgid because of osmotic 

uptake of water into the guard cells and stomata close when guard cells lose water 
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and become flaccid. Change in guard cell turgor is controlled largely by influx and 

efflux of K+ ion in exchange with Cl- or malate ion across plasma and tonoplast 

membrane (Hetherington 2001). ABA controls activity of three major channels, 

inward and outward K+ channel and anion channel at guard cell plasma membrane 

to achieve net efflux of osmotic solutes (thus water) to achieve stomata closure 

(Armstrong et al. 1995). Extensive studies have revealed a sophisticated signaling 

network in guard cells involving stress hormone ABA (Fig.1) (Daszkowska-Golec 

and Szarejko 2013). ABA regulates many downstream components such as protein 

kinase, phosphatase, increase in cytosolic pH, increase of free Ca+ in guard cells, 

which in turn regulates ion channel activity and turgor pressure (Hetherington 

2001). Hydrogen peroxide (H2O2) (Pei et al. 2000) and nitrous oxide (NO) (Neill 

et al. 2002) has been identified as key signaling molecules in ABA-mediated 

stomatal closure. ABA induces H2O2 production, and H2O2 then activates the Ca2+ 

channels to increase cytosolic calcium in guard cells (Pei et al. 2000). 

A difference in ABA metabolism and signaling was observed in Vitis genotypes 

that showed different levels of drought adaptation (Rossdeutsch et al. 2016). While 

a stress-induced accumulation of ABA is a key to the stomatal closure in many 

plants, many studies also showed that guard cells in some plants become more 

sensitive or responsive to ABA. Differences in stomatal response to ABA were 

observed among Vitis and wheat genotypes (Hopper et al. 2014; Chen et al. 2013). 

A correlation between ABA sensitivity and drought tolerance has been observed 

in synthetic wheat (Kurahashi et al. 2009). 
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6. OBJECTIVE OF THE STUDY 

Alfalfa has high WUE in terms of biomass production vs irrigation water input and 

it is one of the crop with highest WUE  (Putnam 2012; Asseng and Hsiao 2000). 

Although alfalfa has high WUE, it is one of the crop that consumes the greatest 

amount of irrigation water among all the major crops (Schneekloth and Andales 

2009; Hanson et al. 2008). The high water use in alfalfa is due to its longer growing 

season, dense canopy cover and high biomass yield. Irrigated alfalfa has a high 

evapotranspiration demand, which probably is linked to its morphology. Alfalfa 

has a higher stomata density compared to most of the plants. In addition, alfalfa 

leaves have stomata on both adaxial and abaxial surfaces (amphistomatous). While 

it is not uncommon in many plants that stomata can be found on both surfaces, 

plants usually have more stomata on the lower or abaixal surface (Tari 2003). 

Leaves of alfalfa, however, have  more stomata on adaxial surface than abaxial 

surface (Cole and Dobrenz 1970). Amphistomaty is related with high conductance 

to CO2 and is advantageous to plants that benefit from high maximum conductance 

and adaptive for plants with high photosynthetic capacity, living on high sunlight 

areas and able to utilize water quickly when available (Mott 1982). Stomata 

distribution on abaxial surface would reduce transpiration (Rushin and Anderson 

1981). Alfalfa also has deep roots that can extract water from deeper soil when 

surface water is limited. This allows them to avoid mild drought stress. These 

characteristics suggest that alfalfa is a high-yielding but high water consuming 

plant that may not have been subjected to selection for WUE, since it is able to 

compete for water with other plants through its advanced root system. Despite its 
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high biomass production and high WUE in using irrigation water, its large 

consumption of irrigation water may not be sustainable in the environment that 

water resources become increasingly scarce. Thus, it is urgent to develop alfalfa 

with improved WUE. As a first step, we examined 11 alfalfa collections for 

variation in WUE under drought. Water supply was adjusted based on their 

transpirational water loss and water supply for individual plants was maintained at 

100%, 75%, 50% and 25% of transpirational water loss. We identified one alfalfa 

accession, River side, that showed significantly higher WUE under drought 

conditions compared to other accessions (Anower et al. 2015).  In this present 

study, we examined morphological and physiological traits that may contribute 

towards the high WUE in River side. 
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Figure 1. ABA induced stomata closure (Daszkowska-Golec and Szarejko 2013) 
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Chapter 2. Identification of physiological and morphological traits governing high 

WUE in alfalfa 

INTRODUCTION 

Alfalfa is an important leguminous forage crop and cultivated worldwide. It is used as 

green forage, hay and silage. The alfalfa production is negatively affected by various biotic 

and abiotic factors. The most significant abiotic stress limiting crop production is drought. 

Plants have developed various physiological and morphological traits to adapt to drought 

conditions (Blum 1996) and are shaped by evolution to reduce water use during drought 

(Blum 2009). Irrigation is used to alleviate yield reduction due to drought. Agriculture use 

70% of global water withdrawn from surface water and underground water (Wisser et al. 

2008). The increasing incidence of drought has put more pressure on irrigation as there will 

be more water demand for domestic and industrial use because of growing human 

population. Because of insufficient irrigation water, agriculture will shift from the goal of 

more production per unit area toward more production per unit water used (Fereres and 

Soriano 2007). Thus, improving the water use efficiency of crop will be an important target 

of crop breeding programs.  

Water use efficiency (WUE) is defined as the biomass produced per unit water used and is 

a critical factor determining yield under drought (Saranga et al. 1999). Drought affects 

stomatal conductance, which influences overall photosynthesis and transpiration. In 

general, there is a strong positive correlation between photosynthesis and stomata 

conductance (Jones 1998; Sperry et al. 2002). Drought induced stomatal closure 

significantly reduces stomatal conductance and transpiration but also decreases 

photosynthesis (Miyashita et al. 2005), but overall WUE of plants increases because the 
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decrease in stomatal conductance/water loss is more than in photosynthesis (Edwards et al. 

2012). Thus, the variation of WUE of crops under drought is mostly determined by total 

water use rather than net biomass accumulation (Blum 2005). The plants exhibit high WUE 

when stomatal conductance is lower than the potential maximum. Therefore, WUE can be 

improved without much negative impact on yield. Increasing WUE is critical for the 

regions with increasing drought and diminishing ground water level (Franks et al. 2015).  

In addition, plants with higher WUE are expected to survive more arid conditions than 

plants with lower WUE (Franco et al. 2005; Ares et al. 2000) 

The stomatal conductance determines the rate of gas exchange (movement of carbon 

dioxide for photosynthesis into leaf and transpiration of water vapor out of leaf) through 

leaf’s stomata. Thus, stomatal conductance is the function of number of stomata and its 

distribution in abaxial and adaxial surface, size of stomata, and degree of opening of 

stomata. During drought plants increase WUE by reducing the stomatal aperture as a short-

term response.  Under prolonged drought, some plants increase WUE by developing leaves 

with altered stomatal density and size as well as with reduced stomatal conductance 

(Doheny-Adams et al. 2012). In addition to stomatal density and size, the distribution of 

stomata and leaf epidermal structure such as wax deposition and leaf hairs may also 

contribute to transpiration thus WUE. Studies showed that stomatal density increases 

(Yang and Wang 2000; Zhang et al. 2005) while the size decreases under drought (Xu and 

Zhou 2008; Martínez et al. 2007). The decrease in size with respect of increase in density 

help plants regulate water use more efficiently as there are suggestion that small stomata 

can be easily closed and opened (Raven 2014). Smaller stomata shows higher water use 

efficiency (Aasamaa et al. 2001; Hetherington and Woodward 2003). Many plants have 
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dense trichomes or leaf hairs on their leaf surface. They may serve as a barrier against 

external herbivores, protection against UV-B radiation, high temperature and excessive 

water loss (Werker 2000). Trichomes reduce transpiration by increasing boundary layer 

(Skelton et al. 2012) and significantly contribute towards the overall gas (including water 

vapor) exchange resistance in some plants (Ripley et al. 1999). 

Stomata are the gateways that help gaseous exchange between plant and environment. Two 

guard cells that surround the stomatal pore help to optimize the tradeoff between water 

vapor loss and carbon gain (Kim et al. 2010). The regulation of stomatal aperture size is 

critical, and it is dynamic and reversible process that allows regulation of loss of water and 

influx of CO2 tuned with environmental signals and internal cues like light, CO2 and plant 

hormone abscisic acid (Schroeder et al. 2001). Abscisic acid (ABA), also known as a stress 

hormone, accumulates under drought. ABA produced in roots moves to shoot through 

xylem acting as a long distance signal for water stress response and reduces stomata 

aperture as well as leaf growth (Zhang and Davies 1989) (Davies and Zhang 1991). ABA 

triggers various downstream responses and helps plants resist drought stress (Shinozaki 

and Yamaguchi-Shinozaki 1997). One of the major functions of ABA is regulating the 

water status of plants by controlling the guard cells therefore stomatal closure under 

drought. Extensive studies have revealed a complex signaling cascade triggered by ABA 

to induce stomatal closure under drought (Fig. 1). 

Alfalfa is a high biomass-producing crop. However, its production in many areas consumes 

the greatest amount of agricultural irrigation water (Hanson et al. 2008; Schneekloth and 

Andales 2009). Improving WUE in alfalfa is one of the major strategies to reduce irrigation 

use. Our lab recently identified an alfalfa germplasm, River side (RS), that is naturally 
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adapted to the Grand River National Grassland region in South Dakota and has exhibited 

higher WUE over several other germplasms under drought condition (Anower et al. 2015). 

The aim of this study is to identify the morphological and physiological traits that may 

contribute to a higher WUE in RS.  

 

MATERIALS AND METHODS 

Plant materials 

Three alfalfa (Medicago sativa L.) collections, River side (RS), a collection that is 

naturalized to the Grand River National Grassland in South Dakota (SD), Foster ranch (FR) 

collected from Thunder Butte Creek (45°N, 101°W), North of Faith, SD, and Alfagraze 

(AF), a commercial variety, were used in this study. The plants for the experiment were 

propagated through cuttings and rooting in cone containers. Each cone container was filled 

with 40 grams potting mixture (Sunshine Mix #3, Sun Gro Horticulture Canada Ltd., Seba 

Beach, AB, Canada). The bottom of cone container was blocked with a paper towel to hold 

the soil while the excess water could drip out of the container. For cutting, healthy shoots 

from mother plants were selected. The apical 2-3 internodes and the basal internodes were 

cut and discarded. The middle 2-3 internodes were retained. A slanting cut was made at 

the basal end. The slanting end was quickly dipped into rooting hormone (IBA) (Hormex 

rooting power no. 16, Brooker Chemical, Chastsworth, CA, USA) and planted into the 

cone container containing water saturated potting mix. The cuttings were watered daily. 

Once the new branch emerged from the cuttings the healthy plants with similar size were 

selected and used for the experiments.  
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Drought treatment 

Two irrigation treatments were conducted based on transpirational water loss of individual 

plants. The selected plants were fully watered at the day of onset of experiment, and the 

containers along with plant were weighed. The top surface of each cone container was 

covered with aluminum foil to eliminate evaporation form soil surface. Each container was 

weighed in 3-day intervals to determine the transpirational water loss. The plants were 

either irrigated with the amount of water to fully compensate for the water loss due to 

transpiration (W100 or control) or to only compensate for 50% of transpirational water loss 

(W50 or drought treatment). The water was delivered slowly to each cone container using 

a plastic pipette to ensure all the water was captured by the potting mix. The treatments 

were continued for four weeks. A mild water stress was used in this study so that the 

features examined in this study can be associated with transpirational regulation.    

Stomatal conductance measurement  

The stomatal conductance was measured using a portable leaf porometer (SC-1, Decagon, 

city?, State?). The leaf porometer was first calibrated by following the protocol provided 

in the manual (https://www.decagon.com/en/support/videos/sc-1-leaf-porometer-

calibration). The mature leaves were selected for measurement. The stomatal conductance 

was recorded on both abaxial and adaxial surfaces of the leaf. The conductance 

measurements were done from 10 am to noon.  

Stomata number 

Leaf imprints technique was used to count the stomata number on both surfaces of the leaf. 

A thin layer of clear nail polish was applied on leaf surface. Once the nail polish was dry, 
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the film on the leaf surface was peeled off using a clear tape. The nail polish film with 

imprints of leaf was mounted on a microscope slide and observed under a light microscope 

(ATC 2000, Leica). A stage micrometer was used to determine the area of view to calculate 

the stomatal density. Stomata were counted at random spots on each surface of the leaf. At 

least three leaves were selected for measuring stomata number from each of the three plants 

in each treatment. 

Leaf hair density  

The leaf hair density was measured on the abaxial leaf surface. The leaves were harvested 

and directly observed under a dissecting microscope. Total number of leaf hairs visible 

within the field of view was counted. The field of view was determined using a scale to be 

4.5 mm in diameter, i.e. 15.9 mm2. 

Stomatal sensitivity to abscisic acid 

The youngest mature leaves were selected for measurement. The harvested leaves were 

incubated in MES-KCl buffer (10 mM MES, 5 mM KCl, 50 μM CaCl2, pH 6.15) under 

light for 3 hours with adaxial surface facing up. Once the stomata were fully open, the leaf 

epidermis was peeled from the adaxial surface. The epidermal peels were incubated in the 

buffer alone, the buffer with 10 μM ABA, or the buffer with 5 μM ABA. The stomata were 

observed under a microscope at 0, 15, 30 or 45 min after incubating in the solutions. The 

epidermal peel was observed under a compound light microscope to determine the length 

and width of stomata using a calibrated micrometer on the ocular lens. One ocular unit was 

equivalent to 0.4 μm. 

Abscisic acid quantification 
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Abscisic acid quantification was done on leaf samples of plants after 14 days or 28 days of 

treatment. The samples were freeze dried, and abscisic acid measurement was done with a 

mass spectrometry by a collaborator at the University of Florida.  

Statistical analysis  

Statistical analysis was performed using R (programming language). Analysis of variance 

test was done with completely randomized design. Fisher's least significant difference 

(LSD) test (at 0.05 level of significance) was done to determine significant difference 

between means. 

 

RESULTS 

In a previous study, our lab identified RS, an alfalfa collection that is naturalized to the 

Grand River National Grassland in South Dakota (SD), with a greater WUE compared to 

the other ten alfalfa collections. To understand what contributes to a higher WUE in RS, 

we examined morphological and physiological parameters that may be associated with a 

higher WUE by comparing with two controls, AF and FR. AF is a commercial variety with 

a low WUE, and FR is another alfalfa collection adapted to South Dakota dry environment 

but with a lower WUE compared to RS (Anower et al. 2015) 

Under the same conditions that were described in our previous study (Anower et al. 2015), 

we demonstrated again that RS showed the highest WUE compared to AF and FR (Fig. 2). 

Under well-watered condition, AF produced significantly more biomass than RS or FR. 

All three genotypes showed a significant reduction in biomass production after they were 

subjected to a progressive drought stress treatment for 28 days compared to well-watered 
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plants. The decrease in biomass production was 40%, 25%, and 31% for AF, RS and FR, 

respectively. All three genotypes produced similar dry shoot biomass under drought 

conditions (Fig. 2a). AF used the greatest amount of water under well-watered condition. 

RS and FR used a similar amount of water which was less compared to AF. Under drought 

stress conditions (W50 or 50% water regime), AF transpired more water than RS (Fig. 2b). 

As a consequence, WUE was similar in all three genotype in well-watered conditions, and 

it was increased in all three genotypes under drought conditions. The increase was 16%, 

46%, and 27% for AF, RS and FR respectively. RS showed significantly higher WUE than 

AF and FR (Fig. 2c) as reported in our previous study. 

Transpirational water use is closely associated with stomatal conductance. We thus 

examined the stomatal conductance on both sides of the leaf. Stomatal conductance of the 

adaxial surface of the leaf was similar among AF, RS, and FR under well-watered 

conditions. Stomatal conductance of the abaxial surface was the same when compared to 

that of the adaxial surface in AF. In RS and FR, however, stomatal conductance on the 

abaxial surface was significantly lower than that of the adaxial surface (Fig. 3). As a 

consequence, stomatal conductance of the abaxial surface in AF was significantly greater 

than those in RS and FR.  

Water stress treatment resulted in a significant reduction in stomatal conductance of both 

sides of the leaf in all three genotypes. For the adaxial surface, stomatal conductance 

reduced 41%, 65% and 51% for AF, RS, and FR, respectively. For the abaxial surface, 

stomatal conductance reduced 65%, 72%, 68% for AF, RS, and FR respectively. As a 

consequence, RS showed the lowest stomatal conductance on both leaf surfaces, followed 
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by FR. In all three genotypes, stomatal conductance was lower on the abaxial surface than 

on the adaxial surface under water stress conditions (Fig. 3).     

The difference in stomatal conductance in three genotypes may be due to a difference in 

stomatal density, thus stomatal number per unit leaf area was examined. Three genotypes 

had the same stomatal density on the adaxial surface. Stomatal density on the adaxial 

surface was greater compared to the abaxial surface under well-watered conditions in RS 

and FR, while AF has a similar number of stomata on both surfaces. Water stress treatment 

had no effect on stomatal density in AF, but slightly increased the stomatal density in RS 

(12%) and FR (11%) on adaxial surfaced and RS (8%) and FR (6%) on abaxial surface 

(Fig. 4).                     

An increase in stomatal density in RS and FR was unexpected, since they showed lower 

stomatal conductance. Thus, the stomatal pore area in three genotypes was investigated. 

An example of leaf stomatal aperture measuremnt was shown in Figure 5 and the results 

were summarised in Figure 6. The stomatal pore area on adaxial surface in RS and FR is 

the same but is significantly smaller than that in AF under well-watered conditions. Water 

stress treatment reduced stomatal pore size by 25%, 25%, and 17% in AF, RS and FR, 

respectively. RS showed the smallest stomatal pore area compared to AF and FR under 

water stress conditions (Fig. 6).  

The data in Figure 5 represent the pore area of stomata on the adaxial surface after placing 

leaf on a stoma opening buffer (MES-KCl) for 3 hours under light. The data suggested that 

either plants under drought develop smaller stomata or some factors in the water-stressed 

leaf limited the stomatal opening to full size.  
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Since plants accumulate ABA under drought stress, and ABA is a major regulator to close 

stomata, we determined the amount of ABA in these plants and stomatal sensitivity to ABA 

treatment. We found that AF contained more ABA than RS under both well-watered and 

drought conditions. AF has 11 times and 1.7 times more ABA in well-watered condition at 

14 days and 28 days of the experiment compared to RS. Under drought conditions, AF has 

3 times more ABA at 14 days and 2.4 times more at 28 days. Both RS and AF showed an 

increase in ABA 28 days after drought. The increase was 60% for AF and almost 100% in 

RS (Fig. 7). Due to a high data variation, the increase was not statistically significant in 

RS. Even so, the amount of ABA accumulated in the leaf could not explain the small 

stomata aperture in RS, suggesting that RS may show a higher sensitivity to ABA 

compared to that in AF. We thus examined stomata response to ABA treatment.    

Stomata of all three genotypes closed rapidly when the leaf epidermal peels were treated 

with 10 µM ABA. Although all three genotypes decreased the width of stomata 

significantly within the first 15 minutes of ABA treatment, the closure of RS was greater 

than AF and FR. The decrease in width was 14%, 20% and 17% for AF, RS and FR 

respectively. The slope of the line graph for first 15 minutes was -0.043, -0.059, -0.051 for 

AF, RS and FR respectively. RS also showed significantly smaller stomatal width at 30 

and 45 min after ABA treatment. FR showed a significantly smaller stomatal width than 

AF but greater than RS 30 min after ABA treatment. FR showed the same stomatal width 

as AF at 45 min after ABA treatment. The width of stomata was similar among genotypes 

without ABA treatment and remained unchanged during measurement (Fig. 8).  

We also examined the stomatal response to ABA in drought stressed leaves. The stomatal 

width was smaller compared to the well-watered plants (compare to Fig. 8) and stayed the 
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same size in an incubation buffer without ABA treatment. Treatment of 10 µM ABA also 

resulted in a rapid closure of stomata in all three genotypes. The decrease in width after 15 

minutes was 15%, 24% and 16% for AF, RS and FR respectively (Fig. 9). The slope of the 

line was -0.042, -0.064, -0.044 for AF, RS and FR, respectively. RS showed consistently 

smaller stomatal width after ABA treatment compared to AF and FR. FR showed smaller 

stomatal width at 30 and 45min after ABA treatment compared to AF. After 15 minutes, 

the response to ABA of all three genotypes was similar (the lines are nearly parallel). 

Since 10 µM ABA treatment caused a rapid stomatal closure in all genotypes, which may 

have made the difference less distinguishable at the early stages of ABA treatment, we thus 

measured the stomatal width after 5 µM ABA treatment. Again, ABA treatment resulted 

in closure of stomata but the rate of closure was smaller (compared to Fig. 8). In well-

watered plants RS again showed the greatest reduction in stomatal width (16%), while FR 

showed the second greatest reduction (11%) and AF the least reduction (8%) (Fig. 10). The 

slope of the line was -0.024, -0.045, -0.030 for AF, RS and FR, respectively. The rate of 

stomatal closure was again similar after the first 15 minutes. 

In water stressed plants, RS showed a rapid reduction in stomatal width within 15 min of 

ABA treatment. However, the rate of closure was similar among there genotypes after 15 

minutes. FR and AF showed nearly identical response to 5 µM ABA treatment, except at 

45 min where FR showed a significant reduction in stomatal width. The decrease in width 

of stomata after 15 minute was 8%, 19% and 11% for AF, RS and FR respectively (Fig. 

11). The slope of line was -0.025, -0.052, -0.031 for AF, RS and FR respectively. 

Leaf hairs increase the boundary layer and thus decreases water loss. We examined whether 

leaf hair features differ in the three genotypes. As shown in Figure 12a, RS showed the 
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densest leaf hair among three genotypes in well-watered conditions, it showed 36% and 

12% more dense compared to FR and AF, respectively. Under drought conditions RS 

showed an 8% increase in leaf hair density, resulting in 43% and 16% more leaf hairs 

compared to FR and AF, respectively. Since drought stress frequently inhibits cell 

expansion in leaf and stem, an increase in leaf hair number in RS may simply be due to 

smaller cells and thus a greater cell density. Figure 13 showed that the epidermal cell 

density on abaxial surface is similar among three genotypes under well-watered condition. 

Thus, the greater leaf hair density in RS under well-watered condition was not due to 

smaller leaf cells. Under drought conditions, RS showed a 22% increase in cell density 

compared to well-watered plants. Thus, the results suggested that a decrease in leaf hair 

development occurred in RS under drought despite a greater density of leaf hairs when 

compared to well-watered plants. The same is true for FR plants (Fig. 12a and Fig. 13). We 

also examined the number of epidermal cells on adaxial leaf surface. In well-watered 

condition, AF, RS and FR has similar epidermal cell number. Under drought conditions, 

cell density increased in all three genotypes. The increase of cell number per mm2 was 8%, 

10% and 15% for AF, RS and FR, respectively (Fig. 13).  

 

We also determined the length of leaf hairs. In well-watered conditions, RS showed 10% 

longer leaf hair than AF and was similar to FR. In drought stressed conditions, leaf hair 

length decreased 7% and 10% in RS and FR, respectively. AF, however, did not show a 

significant decrease in the leaf hair length after drought treatment. As a result, hair length 

was similar in RS and AF in drought stressed condition (Fig. 14).  
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Figure 2. Net shoot dry matter (DM)(a), total water usage(b), and water 

use efficiency (WUE)(c) under well-watered and drought conditions in 

three different alfalfa collections. Different letters indicate significant 

difference (p<0.05). Data are shown as mean ± s.e. (n=21) 
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Figure 3. Stomatal conductance on adaxial and abaxial leaf surface under well-

watered and drought condition. Different letters indicate significant difference 

(p<0.05). Data are shown as mean ± s.e (n=6) 
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Figure 4. Stomata Density on adaxial and abaxial leaf surface under well-

watered and drought conditions. Different letter indicates significant 

differences (p<0.05). Data are shown as mean ± s.e (n=35) 
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Figure 5. Measuring stomata width with calibrated ocular micrometer 
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Figure 6. Area of stomatal pore opening of well-watered and drought stressed 

plants. Different letters indicate significant difference (p<0.05) Data are 

presented as mean ± s.e (n=90) 
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Figure 7. Abscisic acid accumulation in well-watered and 

drought stressed conditions. Different letters indicate 

significant differences. Data are presented as mean±s.e (n=3) 



34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W
id

th
 o

f 
st

o
m

a
ta

 

(µ
m

) 
 

1

2

3

4

5

0 min 15 min 30 min 45 min

Alfagraze (-ABA) Alfagraze (+ABA)

River side (-ABA) River side (+ABA)

Foster ranch (-ABA) Foster ranch (+ABA)

Figure 8. Stomatal closure of well-watered plants in response to 10 µM ABA 

treatment. Data are presented as mean ± s.e. (n=90) 



35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

1

2

3

4

5

0 min 15 min 30 min 45 min

Alfagraze Control Alfagraze ABA

River side Control River side ABA

Foster ranch Control Foster ranch ABA

W
id

th
 o

f 
st

o
m

a
ta

 

(µ
m

) 
 

Figure 9. Stomatal closure of drought stressed plants in response to10 µM 

ABA treatment. Data are presented as mean ± s.e. (n=90) 



36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W
id

th
 o

f 
st

o
m

a
ta

 

(µ
m

) 
 

1

2

3

4

5

0 min 15 min 30 min 45 min

Alfagraze (-ABA) Alfagraze (+ABA)

River side (-ABA) River side (+ABA)

Foster ranch (-ABA) Foster ranch (+ABA)

Figure 10. Stomatal closure of well-watered plants treated with 5 µM ABA. 

Data are presented as mean ± s.e. (n=90) 
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Data are presented as mean ± s.e. (n=90) 
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Figure 12a. Leaf hair number of well-watered and drought stressed plants 

observed on abaxial leaf surface. Different letters indicate significant 

difference (p<0.05). Data are presented as mean ±s.e (n=36) 



39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AF 

RS 

FR 

Figure 12b. Cell size in abaxial surface of AF, RS 

and FR 



40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Cell number on adaxial and abaxial leaf surface under well-watered 

and drought condition. Different letters indicate significant difference (p<0.05). 

Data are shown as mean ± s.e (n=6) 
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Figure 14. Leaf hair length of well-watered and drought stressed plants 

observed on abaxial leaf surface. Different letters indicate significant 

difference (p<0.05). Data are presented as mean ±s.e (n=60) 
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DISCUSSION 

In an effort to improve WUE in alfalfa, our lab identified an alfalfa collection, RS, with a 

greater WUE among 11 alfalfa collections examined (ref). In this study, we investigated 

various traits that may contribute to a higher WUE in RS. AF performed the best in terms 

of biomass production under well-watered condition, but it consumed the greatest amount 

of irrigation water, resulting in a similar WUE to RS. The greater usage of water in AF is 

mostly due to a higher transpirational rate shown in Figure 2. The results also suggest that 

three alfalfa collections examined in this study may have similar activity in photosynthetic 

assimilation, since WUE is mostly decided by transpirational water loss and the capacity 

of photosynthetic assimilation (Keenan et al. 2013) 

Under drought conditions, all three genotypes showed a significant increase in WUE.  An 

increase in WUE during drought, especially under mild drought, is often due to the fact 

that inhibition of transpiration is more than inhibition of photosynthesis (Xu et al. 2010). 

This is probably true for our study, since the increase in WUE in all three genotypes is 

associated with a significant decrease in stomatal conducatnce and RS showed the the 

greatest reduction in stomatal conductance. Various studies have shown that the genetic 

variation in WUE is mainly due to variation in stomatal conductance but not net 

assimilation (Blum 2009; Yoo et al. 2009). A decrease in CO2 assimilation under drought 

is moslty due to a redcution in stomatal conductance because a reduced condcutance also 

decreases influx of CO2 for photosythesis. For this reason, we mostly investigated the 

features that may control stomatal conductance, including stomata density and size 

(Bergmann and Sack 2007; Xu and Zhou 2008), leaf hair (Picotte et al. 2007), stomatal 
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aperture size and stomatal movements (opening and closing) (Hetherington and Woodward 

2003; Yoo et al. 2009).  

With response to drought one might expect plants to decrease stomata number or density 

to minimize transpiration. Indeed, a decrease in stomatal density was correlated with a 

decrease in transpiration (Lake and Woodward 2008). Unexpectedly, we observed a 

significant increase in stomatal density in RS on both sides of the leaf, especially on the 

adaxial surface under drought. Thus, a change in stomatal density dose not contribute to 

the decrease in stomatal conductance in RS. Researchers has reported both decrease (Xu 

and Zhou 2008) and increase (Fraser et al. 2009; Yang and Wang 2000; Zhang et al. 2005; 

Ennajeh et al. 2010) of stomata number under drought conditions. An increase in stomatal 

density in drought condition has been proposed to increase transpiration in an attempt to 

increase nutrient uptake (Yoo et al. 2009; Hepworth et al. 2015). Since RS did not show an 

increase in stomatal conductance, it is unclear of the biological significance of an increase 

in stomatal density. Alfalfa is amphistomatous with more stomata on adaxial surface while 

most amphistomatous plants has more stomata on abaxial surface (Tari 2003; Willmer and 

Fricker 1996). While this presents a challenge to plants since this will enhance 

transpirational water loss and decrease WUE, having more stomata on the adaxial surface 

may be needed for water uptake and extraction for plants like alfalfa with a very deep root 

system. Thus, it is possible that an enhanced stomata density in RS and FR under drought 

may facilitate water uptake. Through examining leaf epidermal cell size and density, we 

found that the increase in stomatal density in RS and FR under drought could be explained 

by the greater cell density (due to reduced cell size in these two collections). In fact, RS 
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showed a greater increase in cell density than the stomatal density, suggesting that drought 

stress may inhibit the production of stomata in RS. 

Since the change in stomatal density cannot explain the decrease in stomatal conductance 

in RS, we measured the size of stomatal pore. Stomatal pore size controls transpiration, 

CO2 uptake and thus WUE (Bergmann and Sack 2007; Kim et al. 2010). We measured the 

stomatal pore area of the stomata on the adaxial leaf surface by estimating their maximum 

potential of opening after floating leaf epidermal peels in a buffer. Two reasons that we 

only examined the stomata on the adaxial surface are: 1) stomata on the adaxial showed 

more transpiration and 2) leaf epidermal were difficult to peel on abaxial surface due to 

leaf hairs. RS and FR showed smaller stomata apertures than AF, however, stomatal 

conductance was similar, suggesting stomata aperture was not directly correlated with 

stomatal conductance under well-watered conditions for these alfalfa plants. Nevertheless, 

drought stress decreased stomata aperture in all three genotypes, which is correlated with 

a decrease in stomatal conductance in all the genotypes. In addition, RS showed the 

smallest stomatal aperture and showed the smallest conductance. A decrease in stomatal 

pore size during drought was reported by (Bosabalidis and Kofidis 2002). It is reported that 

size and density are negatively correlated and a smaller stomatal size and a higher density 

is associated with high WUE in Arabidopsis (Franks et al. 2009). Thus, RS may have 

employ the same strategy to improve its WUE under drought.  

Another important leaf trait that can affect transpiration is leaf hairs, also known as 

trichomes. They play various roles like structural defense against herbivory, fungal 

infection and against abiotic stress like drought, heat and excess light and uv radiation 

(Hauser 2014). They form a boundary layer on leaf surface and resist transpiration. RS 
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showed a significantly higher number of leaf hairs compared to AF and FR under both 

well-watered and drought conditions. In addition, RS is the only genotype showed an 

increase in leaf hairs. An increase in leaf hairs under drought has been reported and it is 

linked with a decrease in transpiration (Wuenscher 1970) and increase WUE (Picotte et al. 

2007; Choinski and Wise 1999). Since RS also showed an increase of epidermal cell 

density on the abaxial surface under drought, the increase in leaf hair density is probably 

due to the change in cell density. While RS showed an increase in leaf hair density under 

drought, RS and FR also showed a significant reduction in hair length. It is not clear how 

this will affect stomatal conductance. Since RS and AF has the same length of leaf hairs 

and RS showed a lower stomatal conductance despite a greater stomatal density, it is very 

possible that the leaf hair density may play a more important role in impacting stomatal 

conductance. 

It is very interesting that alfalfa has more stomata and higher conductance on the adaxial 

surface, while leaf hairs are only observed on the abaxial surface. Thus, two sides of the 

leaf may use different mechanisms for regulating transpiration, i.e. regulation of stomatal 

aperture for the stomata on the adaxial surface may be the key to regulate stomatal 

conductance.   

ABA is accumulated in plants under drought and plays a major role in closing stomata and 

reducing transpiration, resulting in a higher WUE in plants (Guo et al. 2016; Kim et al. 

2010). We found that the ABA content after 14 days of drought treatment increased slightly 

in both AF and RS compared to well-watered plants but the increase was not statistically 

significant, indicating that the intensity of drought stress was minimum at 14 days. AF 

plants, however, showed a significant increase in ABA content after 28 days of drought 
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treatment, while RS did not show a significant increase. The results were surprising since 

the plants were subjected to a similar stress level adjusted based on their transpirational 

rate and a reduction in biomass production and stomatal conductance in RS was obvious. 

No changes in ABA content in RS suggests that an ABA accumulation may not be a major 

mechanism in RS to control stomatal conductance under drought. Therefore, the amount 

of ABA accumulated in stressed plants could not explain a higher WUE and smaller 

stomatal aperture in RS. It is noticeable that there is an increase in ABA content in RS 

under well-watered conditions when compared the plants at 28 days to that at 14 days. The 

results suggested that an endogenous ABA level may also under a developmental control.  

Since an ABA accumulation under drought did not seem to be involved in regulating WUE 

in RS, we examined response of stomata to ABA treatment to determine whether the 

sensitivity to ABA has changed. Although the width of stomata of all three genotypes was 

decreased in response to ABA, RS showed a greater response than AF and FR in both well-

watered and water-stressed plants within the first 15 min of treatment of two different ABA 

concentrations. Thus, an early and efficient response of stomata to ABA might also 

contribute to higher WUE in RS.  

Differences in plants in response to ABA and stomatal closure have been reported (Chen 

et al. 2013; Hopper et al. 2014; Pantin et al. 2013; Rossdeutsch et al. 2016). ABA is 

produced in the root and transported into the shoot via xylem and received in guard cells 

for stomatal closure (Mishra et al. 2006; Comstock 2002; Davies et al. 2005). ABA induced 

stomatal closure is achieved through other signal molecules such as H2, NO, and H2O2 (Xie 

et al. 2014). Thus, the difference is ABA response in RS vs AF might be due to a higher 

number of ABA receptors or a greater accumulation of different secondary messengers in 
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the ABA signaling pathway like NO, H2O2 in RS. We only measured stomatal sensitivity 

to ABA on the stomata of adaxial surface again due to the difficulty to make epidermis 

peels from the abaxial surface (due to the presence of leaf hairs). Differential regulation of 

adaxial and abaxial stomata for transpiration under drought (Pachepsky et al. 2000) and for 

light response (Yera et al. 1986; Turner 1970) has been reported. Abaxial stomata of broad 

bean were reported to be more sensitive to ABA than adaxial stomata and may use different 

pathways for ABA signal transduction on the abaxial and adaxial surface (Wang et al. 

1998).  

In summary, RS showed a higher WUE when compared to AF and FR under drought. This 

higher WUE in RS is associated with a reduced stomatal conductance. Through examining 

various morphological and physiological traits, we found that two sides of the leaf of RS 

may developed different mechanisms to reduce stomatal conductance. For the adaxial 

surface, an increased stomatal sensitivity to ABA may at least partially contribute to a low 

stomatal conductance and for the abaxial surface, an enhanced leaf hair density may at least 

partially, contribute to the lower conductance. RS is one of the alfalfa collections that have 

been naturalized to the Grand River National Grassland region where drought is frequent 

and severe. These complex morphological and physiological changes are a consequence of 

natural selection, allowing them to survive and reproduce under the arid growth conditions.   

 

CONCLUSIONS 

WUE is a complex trait given by the equation WUE=
������� ���	�	
�����

���� 	��
. Thus, WUE 

might be influenced by any trait that can increase or decrease biomass accumulation 



48 

 

 

(photosynthesis) and/or evapotranspiration. In our study, we revealed complex changes in 

morphology and physiology that may contribute to the regulation of stomatal conductance 

thus an improved WUE in RS under drought.  RS developed smaller stomata under drought 

that might facilitate a more rapid stomatal closure when water is limited but enhance water 

and nutrient uptake when water is sufficient. RS has also exhibited different changes on 

two sides of the leaf that may contribute to the regulation of water loss. The abaxial surface 

developed a greater number of leaf hairs that can potentially increase the boundary layer 

resistance for transpiration. The adaxial surface developed the stomata with a greater 

sensitivity to ABA. Our study provided a great insight into the factors that may contribute 

to a high WUE in alfalfa. More studies are needed to identify other factors that may be 

important in controlling WUE in alfalfa. For example, both chemical and hydraulic signals 

are involved in stomatal regulation to minimize water use (Comstock 2002; Pantin et al. 

2013; Tombesi et al. 2015). Thus, more investigation into root hydraulic conductance and 

root architecture is needed to understand their role in controlling WUE in alfalfa. It is also 

important to address the genetic and molecular mechanisms that determine the stomatal 

sensitivity to ABA. The knowledge developed in this study and in the future study will 

build a foundation for developing alfalfa with improved WUE.  
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