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ABSTRACT 

IMPACTS OF SPRING-INTERSEEDED COVER CROPS ON LATE-EMERGING 

WEED SUPPRESSION AND GROUND COVER IN CORN (ZEA MAYS L.) 

PRODUCTION SYSTEMS 

Alex D. Bich 

 2013 

Any alternative crop management strategy will only be adopted by growers if 

yield is not negatively impacted, fits within a current management practice, is easily 

implementable with minimal cost, or provides other beneficial features such as weed 

control or suppression.  Corn production that incorporates a cover crop as an alternative 

weed control strategy and ground cover may support a sustainable system that is less 

dependent on herbicidal weed control.  In addition, the cover crop may be used as a fall 

forage, act as a slow release fertilizer source the following year, and provide ground 

cover to reduce soil erosion. 

 In South Dakota, cover crop establishment cannot occur after corn harvest, as the 

growing season is too short, cold, and often dry.  Therefore, interseeding cover crops into 

standing corn has the potential to establish, suppress late-emerging weeds, and provide 

late season ground cover.  The purpose of this research was to examine if a cover crop 

mixture could be established in a standing corn crop at V5 growth stage, suppress weeds, 

and provide ground cover after corn harvest without negatively impacting corn yield. 

 Crimson clover (Trifolium incarnatum), winter wheat (Triticum aestivum) and 

lentil (Lens culinaris) were planted using broadcast or drill methods, as a mixture at a rate 
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of 5.4, 8.9, and 9.8 kg ha
-1

, respectively, into V5 corn in field studies from 2010 – 2012. 

In 2010 - 12, the mix was planted at summit (SMT) and toeslope (TSP) locations in corn 

fields near Andover, SD.  In 2011 – 12 the mix also was planted at SMT and TSP 

locations near Trail City, and in a flat field near Aurora, SD.  Corn and cover crop and 

weed biomass were collected each fall.   

 Cover crops emerged about 14 d (days) after planting.  Winter wheat and crimson 

clover were the only species that survived until corn harvest.  The drill interseeding 

method had 76% more cover crop biomass than the broadcast method.  Cover crops drill 

seeded reduced grass weed biomass by 38%.  Regardless of seeding method, cover crops 

had no impact on corn grain yield. 

 These results indicate that cover crops could be established in standing corn 

with no adverse yield impact.  These crops provided ground cover during and after the 

corn growing season and suppressed late-emerging grass weed growth.  Therefore, 

interseeding this cover crop mix into standing corn may be a feasible alternative 

management strategy for getting a cover crop established, as SD weather is too cold, dry, 

and season too short for after harvest planting.
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CHAPTER ONE 

GENERAL INTRODUCTION 

South Dakota Corn Production. 

 In South Dakota (SD), 95% of corn (Zea mays L.) production is performed under 

“dryland” farming conditions (USDA-NASS, 2012).  Dryland farming is depicted as the 

method of farming that lacks the assistance of an alternative water source (e.g. irrigation), 

is uniquely dependent on the natural environmental precipitation, and requires specialized 

farming techniques and management practices to adapt to the restricted/limited moisture 

available during critical crop growth and developmental stages (Peterson et al., 2006).  

Furthermore, corn production has dramatically increased in SD, becoming the highest 

produced grain commodity in the state.  Cropland utilized for corn production has 

increased about 57% from 1984 [1.38 million hectares (M ha)] to 2012 (2.43 M ha), 

respectively (USDA-NASS, 2012).  In 2012, corn production accounted for 

approximately 36% of the 7.1 M ha of cropland in SD, followed by soybeans (Glycine 

max) (1.82 M ha), wheat (Triticum aestivum) (0.99 M ha), and sunflower (Helianthus 

annuus) (0.24 M ha), which accounted for close to 26, 14, and 3% of the total cropland in 

SD, respectively (USDA-NASS, 2012).  The vast majority (92%) of the corn production 

hectares is located east of the Missouri River (Figure 1-1) (USDA-NASS, 2012).   

 Agricultural practices used in SD corn production have changed dramatically 

since the 1960’s.  High soil disturbance tillage practices, such as using a moldboard plow 

histrionically has declined due to the development the chisel plow and no-till systems.  

The no-till corn production hectares have increased from approximately 330,250 ha in  
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Figure 1-1.  Major corn producing regions in South Dakota (accounts for approximately 92% of total corn production cropland) [Data 

obtained from the USDA-NASS [(United States Department of Agriculture:  National Agricultural Statistics Service) accessed in 

2013] 
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2001 to close to 633,900 ha in 2005 (Horowitz et al., 2010).  The dramatic shifts to no-till 

systems in corn production have led to increased amounts of soil surface residue 

remaining after harvest.  Therefore, in SD, the baling of corn stalk (stover) surface 

residue remaining after grain harvest has recently become a common practice to remove 

excess soil surface corn residue and to provide an alternative resource for livestock feed 

and bedding (Carlson et al., 2010).  Baling of corn stover increased from about 16% in 

2007 to nearly 60% in 2009 (Mamani-Pati et al., 2010).  The baling of corn stalk residue 

often results in minimal amounts of soil surface residue, which could potentially increase 

soil erosion, surface runoff, and decrease soil organic matter. 

 The ability to sustain or potentially increase corn grain and stover productivity is 

difficult due to abiotic and biotic stressors.  Various parameters including climate change, 

weed pressure, plant pathogens, and insects can have detrimental impacts on corn 

germination, emergence (e.g. plant populations), growth (e.g. plant height), development 

(e.g. biomass production), grain quality (e.g. seed quality), and overall yield potential.  

Weed pressure is a common problem throughout the corn growing season, negatively 

impacting corn growth and development by resource independent mechanisms such as 

down regulating critical physiological pathways (Horvath et al., 2006) that slow down 

growth and development and resource dependent mechanisms when weeds out compete 

corn for critical limited resources. 

Weed Pressure Impacts on Corn. 

 During early developmental stages in corn [within the critical weed-free period 

(CWFP)], weed presence can detrimentally impact corn productivity by altering critical 
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physiological pathways when nutrient resources (e.g. water and nitrogen) are sufficient 

enough for both corn and weed growth.  For instance, Moriles et al. (2012) reported that 

the presence of velvetleaf (Abutilon theophrasti) and canola (Brassica napus L.) from 

corn emergence to the vegetative 8-leaf corn growth stage (V8) down-regulated 

ontologies associated with photosynthesis, energy conversion and signaling, whereas at 

V11 Horvath et al. (2006) observed repressed genes associated with photosynthesis, 

carbon dioxide (CO2) assimilation, cell growth and division,  corn responses to oxidative 

stress (e.g. physiological processes like disease resistance and abiotic stress), and down-

regulated genes involved in protein degradation/stabilization processes and auxin-

regulation in corn at the V11 corn growth stage, respectively.   

In addition to the negative impacts of weed presence on critical physiological 

pathways, weeds also negatively impact corn by direct or indirect competition for critical 

limited nutrients.  The competition ensuing from weed pressure throughout corn growth 

and development is denoted as interspecific competition.  Interspecific competition is 

broadly defined as the reduction in fecundity (e.g. reproduction), survivorship, growth, 

and development of one species (e.g. corn) resulting from resource exploitation or 

interference by individuals of a second species (e.g. weeds).  The resources critically 

limited in supply include:  photosynthetically active radiation (e.g. sunlight), soil 

moisture, soil mineral nutrients [e.g. macronutrients including nitrogen (N) and 

micronutrients], and field area (e.g. space) (Hellwig et al., 2002; Gower et al., 2003; 

Hamill et al., 2004; Moeching et al., 2003; Dalley et al., 2006; Walker et al., 1988; Clay 

et al., 2009; Chikoye et al., 2008; Tharp et al., 2004; Page et al., 2010).  Weed 

interference, often, results in reduced corn emergence (plant population), growth (e.g. 
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plant height), physiological development (e.g. photosynthesis, photosynthate 

accumulations, and maturity), and productivity (e.g. ear length, kernels per row, and seed 

weight) (Beckett et al., 1988). 

 Weeds ability to compete with corn is influenced by weed density, distribution, 

and species diversity (Vangessel et al., 1995).  For instance, high weed densities, 

distributions (e.g. dense cover), and the diversity of species (e.g. broadleaves and grasses) 

can lead to greater weed leaf area indexes (LAI) and reduce photosynthetically active 

radiation available by shading of corn, and ultimately leads to reductions in corn 

photosynthetic rates and total amount of available photosynthates (Cox et al., 2006; 

Scholes et al., 1995; Walker et al., 1988).  For instance, Moriles et al. (2012) reported 

that the presence of velvetleaf and canola from corn emergence to corn growth V8 stage, 

down-regulated genes associated with photosynthesis.  This down regulation could 

account for a portion of the reductions in corn leaf area and biomass observed at this 

time.  Furthermore, many weeds have well-developed fibrous root systems, which enable 

them to preemptively scavenge for available soil moisture and mineral nutrients, reducing 

the total amounts available for corn during critical growth and developmental stages 

(Cathcart and Swanton., 2004; Horvarth et al., 2006).  Furthermore, weeds have the 

extraordinary ability to rapidly germinate and grow, which enables them to deplete 

vacant spaces and crowd out corn within a given area (Cathcart and Swanton, 2004).  

Consequently, the physiological and environmental advantages weeds have when grown 

in association and with the vegetative growth stages of corn reduce the overall production 

potential of corn. 
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 The reduction in corn yield, directly resulting from early season weed pressure, 

has been extensively documented.  For instance, in Ontario, Canada, Bosnic and Swanton 

(1997) reported corn yield losses of 26 and 35% from early-emerging (1- to 3- leaf corn 

growth stage) barnyardgrass (Echinochloa crus-galli), respectively, at a density of about 

100 plants m
-1

 established within 12.5 cm on either side of the corn row.  Wilson and 

Westra (1991) reported that wild proso millet (Panicum miliaceum) planted immediately 

after corn planting, reduced corn yields between 13 and 22%, at a density of 10 plants m
-

1
.  Similarly, in Aurora, SD, Clay et al. (2005) illustrated that barnyardgrass, redroot 

pigweed (Amaranthus retroflexus L.) and velvetleaf (Abutilon theophrasti L.), emerging 

prior to corn (pre-corn emergence), at corn emergence, or at the V-1 corn growth stage 

(vegetative one-leaf corn growth stage), reduced corn yield by 30, 14, and 9%, 

respectively.  It was also observed that corn yield was reduced by 44 and 50% by 

common lambsquarters (Chenopodium album L.) and green foxtail (Setarias viridis L.) at 

weed densities of 30- and 50 plants m
-2

, respectively (Cox et al., 2006).  Palmer amaranth 

(Amaranthus palmeri), at densities of 0.5 and 8 m
-1

,  reduced corn yield from 11 to 91% 

when emerging with corn, respectively, but was less competitive if emerging post-corn 

emergence up to V-7 corn growth stage, reducing yield from 7 to 35% (Massinga et al., 

2001). 

 The negative responses and detrimental impacts of corn to interspecific 

competition involving weeds, however, is not the only means in which weeds can reduce 

the overall productivity of corn.  Surface and/or buried weed residue can produce toxic 

allelochemicals that reduce corn growth and development (Drost and Doll, 1980; Johnson 

III and Coble, 1986).  For example, in Greece, Vasilakoglou et al. (2005) reported that 
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Johnsongrass (Cynodon dactylon L.) extracts inhibited corn germination, fresh weight, 

and root length by 16, 47, and 59%, respectively.  In addition, in North Carolina (NC), 

Johnson III and Coble (1986) reported that soil-incorporated fall panicum (Panicum 

dichotomiflorum) at a residue concentration level of 0.5% weight per weight (w/w) 

resulted in 17.8 and 19.9% reductions in corn germination and dry matter biomass, 

respectively.  Similarly, in Wisconsin, Drost and Doll (1980) reported that yellow 

nutsedge (Cyperus esculentus) foliage residues, at 0.5 and 0.675% w/w residue 

concentration levels, reduced corn shoot dry weights by 19 and 17%, while yellow 

nutsedge tuber residue, at a 0.675% w/w concentration level, reduced corn root and shoot 

dry matter by 46 and 45%, respectively.  It was also observed that giant foxtail (Setaria 

faberi) root exudates inhibited corn growth (Bell and Koepee, 1972).  Barley (Hordeum 

distichum L.) seedlings were reduced by antagonistic responses to purple nutsedge 

(Cyperus rotundas L.) extracts (Friedman and Horowitz, 1971), and alfalfa (Medicago 

sativa L.) seedling germination and development were inhibited by soil-incorporated 

quackgrass (Agrophyron repens L.) residue (Kommendahl et al., 1959). 

 The extent of reductions in corn physiological growth and development via weed 

pressure ultimately depends on several factors.  These factors include the weed biotypes 

and species (e.g. physiological traits), time of weed seedling emergence (e.g. pre- or post-

corn emergence), abundance of weed seedlings (e.g. density of weed numbers), and 

length of time that weeds are present and interfering with corn during critical growth and 

developmental stages (Dalley et al., 2006).  Therefore, to reduce the negative impacts on 

corn productivity by weed pressure, the incorporation of a quality weed management 
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program that takes into consideration the previously stated weed impact factors is crucial 

in the ability to maintain or potentially increase corn productivity. 

Conventional Weed Control Strategies. 

 In corn production systems, the three most commonly utilized approaches for 

weed suppression and control are chemical (herbicide) application, crop rotation, and 

tillage.  Weed control by herbicide application and tillage practices are utilized on a short 

term (e.g. in-season) basis, whereas crop rotation involves a greater period of time (e.g. 

years).  In addition, corn producers also utilize a combination of these control practices 

like:  herbicide and crop rotation, crop rotation and tillage, or crop rotation, tillage, and 

herbicide application. 

Reicosky and Allmaras (2003) broadly defined tillage as the sequence of 

mechanical operations that involves disrupting the soil profile and burial of surface 

residue for the primary purpose of forming a quality seedbed for crop planting. The 

mechanical control of weeds through tillage can be performed prior to corn planting (e.g. 

pre-plant) and pre- and post-corn emergence via inter-row cultivation and/or rotary hoe.  

Tillage controls and suppresses weeds primarily by uprooting, disarticulating, and 

burying emerged weed seedlings (Shrestha et al, 2006; Kayode and Ademiluyi 2004).  

Furthermore, tillage also manages weed pressures by minimizing weed seed germination 

via mechanically moving and burying weed seeds below the germination zone, and by 

altering the level of environmental dynamics (e.g. soil temperature, soil moisture, and 

available oxygen) essential for weed seed germination, growth, and development 

(Shrestha et al., 2006; Leon and Owen, 2006).  For instance, in Wisconsin, Buhler and 
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Mester (1991) reported from taking 25-cm-diameter cores to a depth of 20 cm, that in the 

upper one centimeter (cm) of the soil profile, only 15% and 25% of green and giant 

foxtail emerged under the conventional tillage (moldboard plowed and disked twice) and 

chisel plow (chisel plowed and disked once) treatments, compared to more than 40% in 

no-tillage.  Similarly, Pareja et al. (1985) reported that 28% of weed seeds were located 

in the top 5-cm of the soil profile for conventional tillage treatments (fall moldboard plow 

followed by spring disking and harrowing), compared to 85% in the reduced tillage 

treatments (slot-planting in the row of the previous crop without any tillage practices).  It 

was also observed that total biomass, weed populations, and average weed covers for the 

perennial weeds Canada thistle (Cirsium arvense L.), field bindweed (Convolvulus 

arvensis L.), common plaintain (Plantago major L.), quackgrass (Elymus repens L.), 

tuberous sweetpea (Lathrus tuberosus L.), and dandelion (Taraxacum officinale) were 

lower in the conventional tillage (plowed) (21.4%) than in the no-tillage (37.5%), 

respectively (Lehozky et al., 2009). 

 The age of modern day herbicide usage started with the commercialization of 2,4-

D [(2,4-dichlorophenoxy)-acetic acid] in the 1950’s.  Today, about 15 different herbicide 

mode-of-actions are used in corn.  Herbicide applications, similar to tillage, can be 

applied at several times throughout the corn growing season (e.g. pre-plant, pre- and post-

corn emergence) to suppress and control weeds.  Herbicides are chemicals that inhibit or 

interrupt normal plant growth and development, and are commonly classified according 

to time of application (e.g. pre-plant, pre-plant incorporated, pre- and post-emergence), 

selectivity (e.g. nonselective or selective), translocation in plants (e.g. systemic or 

contact), and mode-of-action.  Pre-plant herbicides are soil applied herbicides (which 
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some require incorporation into the soil through tillage) are applied prior to corn planting.  

Pre-emergence herbicides are applied post-corn planting but prior to crop and weed 

emergence, and require adequate precipitation for activation.  Pre-plant and pre-

emergence herbicides control weeds either by direct contact with weed seeds or seedlings 

or by being taken up into the plants.  Post-emergence herbicides are applied post-corn 

emergence, and injure susceptible weeds that come into contact with the herbicide.  In 

association with some post-emergence herbicides, genetically modified crop species 

which are genetically tolerant or resistant to the applied post-emergence herbicide mode-

of-action are used.  Herbicides can provide exceptional control and suppression of weeds.  

For instance, in Missouri, Monnig and Bradley (2008) reported that fall applied and 45 

days pre-plant applied simazine, glyphosate [N-(phosphonomethyl)glycine), and 

rimsulfuron+thifensulfuron controlled approximately 90% of all winter annuals in no-till 

corn.  In Oregon and Idaho, Felix and Newberry (2012), reported a 99% control at 8 and 

24 days after treatment (DAT) of large crabgrass (Digitaria sanquinalis L.), 

barnyardgrass, common lambsquarters, and redroot pigweed in furrow-irrigated corn with 

pre-plant incorporated S-metolachlor or EPTC followed by a post-emergence application 

of halosulfuron and dicamba+glyphosate, and glyphosate alone treatments.  It was also 

observed that weed seed density in the weed seedbank was significantly reduced by 

glyphosate and glufosinate herbicide treatments (Simard et al., 2011). 

 Crop rotation is broadly defined as the farming system of growing a series of 

different crops in systematic and recurring sequence on the same cropland area in 

sequential seasons instead of growing the same crop continuously (monoculture).  Crop 

rotation helps diversify the cropping system with commodities of different life cycles, 
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seasonal growth patterns, and planting and harvesting dates.  The diversification within a 

crop rotation reduces weed establishment, thus, reducing weed reproductive cycle, and 

the number of weed seeds in the seedbank.  Crop rotations also maintain soil fertility, 

which helps crops outgrow present weeds by improving the overall health and production 

potential of the crop, thereby increasing the crops ability to compete with weeds.  

However, the overall success of crop rotation systems ultimately depends on the crop 

sequence chosen so that it creates varying patterns of resource competition, allelopathic 

interference, soil disturbance, and mechanical damage, to provide an unstable 

environment and prevent the proliferation of specific weed species (Liebman and Dyck, 

1993).  For instance, in Ontario, Canada, Murphy et al. (2006) reported that a six-year no-

till plus corn-soybean-winter wheat rotation, decreased the mean weed seed density from 

approximately 41000 weed seeds per cubic meter (m
-3

) in 1994 to 8000 weed seeds m
-3

 in 

1999.  It was also observed that rotations consisting of hay-hay-corn-soybean-wheat/hay-

hay and hay-hay-corn-soybeans-wheat/hay, effectively suppressed smooth pigweed 

(Amaranthus hybridus) populations and reduced the weed seedbank (Murphy et al., 

2006). 

 The conventional practices for weed management have been shown to 

successfully control and suppress weeds.  However, all three of these weed management 

practices have problems associated with them. 

Problems with Conventional Weed Control Strategies. 

 Tillage degrades soil structure, water infiltration and movement, biological 

activity, surface residue and organic matter (Liu et al., 2006).  The level of soil 
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degradation by tillage is dependent on the tillage practice (e.g. moldboard plow>chisel 

plow>mulch till) (EPA, 2012).   Reductions in soil surface plant residue decreases soil 

carbon and nitrogen levels, and water holding capacity, and increases the potential for 

soil erosion and soil surface crusting (Ghidey and Alberts, 1998; Golabi et al., 1995; 

Rassmussen and Collins, 1991).  It has been observed that tillage decreased water 

infiltration by 11 and 49% (Truman et al., 2003), water storage and precipitation storage 

efficiency by 12 and 16% (Tanaka and Anderson, 1997), surface residue by about 49% 

(Buman et al., 2004), soil organic carbon by 92% in the top 6-cm of soil, and had 1.8 and 

8.7 times more soil loss than no-till (Truman et al., 2003).  Consequently, the increase in 

soil erosion associated with some tillage practices cause environmental and soil 

degradation which are deleterious to long-term crop production.  

Crop rotations may be wide-ranging and be comprised of crops that are 

unprofitable [e.g. planting of alfalfa by a producer who does not have livestock or 

buckwheat (Fagopyrum esculentum) that has a low commodity price and a very limited 

market] or deplete soil moisture content and availability.  Also, some short crop rotations 

(e.g. corn-soybean), can result in a decrease of soil organic matter and residual nitrogen 

and deteriorate soil physical properties such as increase bulk density, decrease water 

infiltration and organic matter content, and foster a heavy reliance on high synthetic 

fertilizer application rates to maintain or increase yield (Bullock, 1992; Karlen et al., 

2006; Stanger and Lauer, 2008).  For instance, corn-soybean rotations has been shown to 

decrease organic matter content by 8% (Karlen et al., 2006), NO3-N content by 31% 

(Riedell et al., 2009), and increase bulk density by 7% (Karlen et al., 2006), when 

compared to more extensive crop rotations.  In addition, Stanger and Lauer (2008) 
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reported that grain yield trends consistently decreased and were substantially lower in 

corn-soybean rotations compared to 5-yr crop rotations when no nitrogen was applied.  

The market for alternative crops (e.g. alfalfa) are limited and producers may not have the 

equipment necessary to harvest these crops (Powers, 1987).  Therefore, there is potential 

for a decrease in total production and an increased need for livestock to make long-term 

crop rotations comprised of alternative crops feasible (Powers, 1987). 

Herbicides account for approximately 82% of the total pesticides used in the 

United States, of which about 60% are used in the “Corn Belt” region (Illinois, Indiana, 

Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South 

Dakota, and Wisconsin) (EPA, 2011; USGS, 1998).  In 2006, South Dakota producers 

applied herbicides to close to 99% of their corn and soybean hectares (USDA-NASS, 

2012).  The high percentage of hectares being treated with herbicides have increased 

concern about environmental issues involving herbicide residues leaching into and 

contaminating surface and/or groundwater, negatively impacting water quality, and 

leading to toxic effects on humans and/or aquatic life (USGS, 2006; USGS, 1998; Wyse, 

1992; Goodman, 1987). 

Herbicides used for agricultural practices are recognized as a leading source of 

non-point water contamination of surface and groundwater (USGS, 2006).  A nation-

wide survey from 1992-2001 by the National Water-Quality Assessment (NAWQA) 

Program of the United States Geological Survey (USGS) reported that in 97% of 

agricultural, 97% of urban, and 94% of mixed-land-use watersheds had at least one 

pesticide identified in the stream water (USGS, 2006).  In the “Corn Belt” regions of the 

Midwest, water samples were collected from 149 sites in 122 river basins throughout 
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May and June in 1989-1990 and analyzed for pesticides.  Detectable concentrations of 

alachlor (2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide), atrazine (6-

chloro-N-ethyl-N’-(1-methylethyl)-1,3,5-triazine-2,4-diamine), metolachlor (2-chloro-N-

(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide), metribuzin (4-

amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5-(4H)-one), propazine (6-

chloro-N,N’-bis-(1-methylethyl)-1,3,5-triazine-2,4-diamine), prometon (6-methoxy-N,N’-

bis-(1-methylethyl)-1,3,5-triazine-2,4-diamine), and simazine (6-chloro-N,N’-diethyl-

1,3,5-triazine-2,4-diamine) were detected in 23 to 98% of the samples (Thurman et al., 

1991).   

In the last two decades, close to 143 pesticides and 21 pesticides transformation 

products have been identified in ground waters of more than 43 states, with atrazine, 

simazine, alachlor, and metolachlor being the most frequently identified pesticides 

(USGS, 2007).  Pesticides are more commonly located in surface water or shallow 

ground water below agricultural and urban areas than deeper wells.  This is directly 

associated with the increase surface applications of herbicides in agricultural practices 

(USGS, 2006).  Furthermore, some pesticide contamination levels in ground and surface 

waters exceed the maximum contaminant levels (MCL) or health advisory levels (HAL) 

for drinking water (Thurman et al., 1991; USGS, 1998). 

The occurrences and impacts of surface and ground water contaminations from 

agricultural herbicides by soil surface runoff and/or leaching have recently declined due 

to the introduction of transgenic herbicide-resistant crops (e.g. glyphosate-resistant corn) 

and which led to the adoption of conservation tillage systems (e.g. no-till) (Givens et al., 

2009; Cerdeira and Duke, 2006).  Survey results reported by Givens et al. (2009) 
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indicated that after the introduction of glyphosate-resistant crops, 25% of conventional 

farmers transitioned to no-till and 31% to reduced-till systems.  The transitions to 

conservation tillage systems and adoption of glyphosate-resistant crops, has resulted in a 

dramatic increase in glyphosate use from about 2 million (M) kg acid equivalent (ae) in 

2000 to about 23.6 M kg ae in 2010 (USDA-NASS, 2010).  The increase in glyphosate 

applications has reduced the applications of some persistent, residual herbicides 

(Shipitalo et al., 2008).  For example, in 1990, about 16.3, 26.4, and 16.3 M kg active 

ingredient (ai) of alachlor, atrazine, and metolachlor were applied in the U.S., however, 

in 2010, application amounts of each chemical were reduced to close to 0.2, 23.2, and 9.9 

M kg ai, respectively, resulting in reductions of about 98, 12, and 39%, respectively 

(USDA-NASS, 2010).  Although glyphosate applications have increased, the chemical is 

considered more environmentally benign.  Glyphosate is strongly absorbed by the soil, 

rapidly degraded by soil microbes, does not leach, and dissipates at a greater rate than 

most herbicides (Wauchope et al., 2002). 

The over use of some herbicides has had negative impacts in agricultural systems, 

more specifically, the progression of herbicide-resistant weed biotypes.  The first 

reported incidence of weed resistance in the United States was in the 1960’s with 

atrazine-resistant common groundsel (Senecio vulgaris) (Ryan, 1970).  Since then, more 

atrazine-resistant weed biotypes have been reported, followed by other resistant-weed 

biotypes to different herbicide families (e.g. ACCase and ALS inhibitors) in the 1980’s.  

Reports of herbicide-resistant and multi-herbicide-resistant weed biotypes have increased 

from 183 in 42 countries in 1997 to 393 (124 dicots and 87 monocots) in 61 countries and 

680,000 fields in 2012 (Table 1-1) (Heap, 1997; Weed Science, 2012).  In the United 
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Table 1-1.  Herbicide-resistant weed biotypes reported in 2012 (Data obtained from Weed Science International Survey of Herbicide 

Resistant Weeds accessed on 2013).  

Country Total Country Total Country Total 

Argentina 9 Greece 9 Saudi Arabia 1 

Australia 61 Guatemala 1 Slovenia 1 

Austria 2 Honduras 1 South Africa 14 

Belgium 18 Hungary 1 South Korea 12 

Bolivia 7 India 3 Spain 33 

Brazil 27 Indonesia 1 Sri Lanka 2 

Bulgaria 4 Iran 11 Sweden 2 

Canada 58 Ireland 1 Switzerland 14 

Chile 16 Israel 27 Taiwan 1 

China 34 Italy 29 Thailand 5 

Colombia 6 Japan 18 The Netherlands 7 

Costa Rica 5 Kenya 1 Tunisia 1 

Cyprus 1 Malaysia 17 Turkey 15 

Czech Republic 16 Mexico 5 United Kingdom 24 

Denmark 8 New Zealand 10 USA 141 

Ecuador 1 Nicaragua 1 Venezuela 9 

Egypt 1 Norway 5 Yugoslavia 6 

El Salvador 1 Panama 1 Poland 14 

Ethiopia 1 Paraguay 2 Portugal 3 

Fiji 1 Philippines 3 
  France 34 Germany 26 
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States alone, herbicide-resistant weed biotypes have increased from 49 resistant biotypes 

in 1997 to 141 resistant biotypes in 2012 (Heap, 1997; Weed Science, 2012).  Target-site 

resistance (e.g. monogenic) attributed to high rates of herbicide applications and 

“creeping-resistance” (e.g. polygenic) attributed to reduced herbicide rates are two 

mechanisms that aid in the evolution of herbicide-resistance weed-biotypes (Owen and 

Zelaya, 2005).  Furthermore, the spread and increase of herbicide-resistant weed biotypes 

is also due to weeds ability to produce vast number of seeds.  For instance, a single 

redroot pigweed plant can produce 500,000 seeds per plant, therefore, if the redroot 

pigweed is an herbicide-resistant biotype, it has great potential to spread and negatively 

impact more cropland (Green, 2007).  The spread of herbicide-resistant weeds, therefore, 

can increase cost of production, limit the types of crop commodities that can be grown, 

and lower yields and possibly land values (Green, 2007).   

Herbicide-resistant weed biotypes have been identified for several herbicide 

mode-of-actions (Table 1-2).  About 50%, of herbicide-resistant weed biotypes are 

identified within the photosystem II and ALS inhibitor herbicide groups (Weed Science, 

2012).  Photosystem II inhibitors inhibit photosynthesis by binding to the chloroplast and 

blocking electron transport at plastiquinone (PQ), stopping the electron flow, the 

production of ATP and NADPH2, and carbon dioxide (CO2) fixation (Shumway and 

Scott, 2012; Hiraki et al., 2004).  In past years, photosystem II inhibitor-resistant weed 

biotypes have infested over three million hectares, primarily in corn production systems 

in the United States and corn and orchard production systems in Europe, making them the 

most worldwide herbicide-resistance problem (Heap, 1997).  Furthermore, as of 2012, 

there are approximately 69 identified photosystem II inhibitor-resistant weed biotypes  
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Table 1-2.  Total herbicide-resistant weeds worldwide with associated herbicide group in 2012 (Data obtained from Weed Science 

International Resistant Weeds accessed on 2013). 

Herbicide Group 
HRAC 

Group 
Site of Action Total Herbicide Group 

HRAC 

Group 
Site of Action Total 

ALS inhibitors B 
Inhibition of acetolactate synthase 

ALS 
127 Nitriles and Others C3 

Inhibition of photosynthesis at 
photosystem II 

4 

Photosystem II 
inhibitors 

C1 
Inhibition of photosynthesis at 

photosystem II 
69 

Chloroacetamides and 
Others 

K3 
Inhibition of cell division (Inhibition 

of very long chain fatty acids) 
4 

ACCase inhibitors A Inhibition of acetyl CoA carboxylase 42 
Carotenoid 

Biosynthesis Inhibitors 
F1 

Bleaching: Inhibition of carotenoid 

biosynthesis at the phytoene 
desaturase step (PDS) 

3 

Synthetic Auxins O Synthetic auxins 30 
Glutamine Synthase 

Inhibitors 
H Inhibition of glutamine synthetase 2 

Bipyridiliums D Photosystem-I-electron diversion 28 
Arylaminopropionic 

Acids 
Z Unknown 2 

Glycines G Inhibition of EPSP synthase 24 Unknown Z Unknown 2 

Ureas and Amides C2 
Inhibition of photosynthesis at 

photosystem II 
22 4-HPPD Inhibitors F2 

Bleaching: Inhibition of 4-
hydroxyphenyl-pyruvate-
dioxygenase (4-HPPD) 

1 

Dinitroanilines and 
Others 

K1 Microtubule assembly inhibition 11 Mitosis Inhibitors K2 
Inhibition of mitosis / microtubule 

polymerization inhibitor 
1 

Thiocarbamates and 
Others 

N 
Inhibition of lipid synthesis - not 

ACCase inhibition 
8 Cellulose Inhibitors L 

Inhibition of cell wall (cellulose) 
synthesis 

1 

PPO inhibitors E 
Inhibition of protoporphyrinogen 

oxidase 
6 Organoarsenicals Z Unknown 1 

Triazoles, Ureas, 
Isoxazolidiones 

F3 
Bleaching: Inhibition of carotenoid 

biosynthesis (unknown target) 
5 
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worldwide (Weed Science, 2012).  ALS inhibitors inhibit acetolactate synthase (ALS) 

and the synthesis of branched-chain amino acids (isoleucine, leucine, and valine) 

(Shumway and Scott, 2012; Zhou et al., 2007).  Within the branched-chain amino acid 

biosynthesis pathway, the ALS enzyme catalyzes the following two reactions:  two 

pyruvate molecules are condensed to form 2-acetolactate for valine and leucine 

biosynthesis, while 2-acetohydroxybutyrate is synthesized from pyruvate and 2-

ketobutyrate for isoleucine (Zhou et al., 2007).  ALS-inhibiting herbicides are extensively 

utilized because of their high selectivity in over 12 different crop species.  Today, there 

are over 50 different ALS-inhibiting herbicides in five different chemical classes 

(sulfonylureas, imidazolinones, triazolopyrimidines, pryimidinylthiobenzoates, and 

sulfonlyamino-carbonyl-triazolinones) have been commericialized (Green, 2007).  In 

addition, in 1994, 17% of the global herbicide sales were for ALS-inhibiting herbicides, 

which were greater than any other herbicide group (Heap, 1997).  Therefore, with the 

widespread usage and ease that weeds have become resistant to them, ALS-inhibiting 

herbicide-resistant weed biotypes have increased from 33 biotypes in 1994 to 127 

biotypes in 2012, which is a greater annual rate than any other herbicide mode of action 

in the past 10 years (Weed Science, 2012).     

The development and usage of transgenic crops that provide resistance to specific 

herbicidal compounds have increased the development of herbicide-resistant weed 

biotypes. For example, glyphosate is a non-selective, broad spectrum, systemic herbicide 

that rapidly binds to the soil, thus resistant to leaching, rapidly biodegrades, and has 

extremely low toxicity to animals and aquatic life (Pline-Srnie, 2006; Nandula et al., 

2005).  In addition, glyphosate was considered a low risk herbicide for the development 
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of herbicide-resistant weed biotypes because of its mode-of-action, chemical structure, 

limited metabolism in plants, and lack of residual activity (Heap, 1997).  Following its 

introduction and commercialization in 1974, glyphosate was primarily used in short, 

intense selection events as a non-selective burndown weed control on emerged plants 

prior to crop seeding with few glyphosate-resistant weed biotypes being identified.  

However, the introduction of transgenic crops in 1996 (e.g. glyphsate-resistant crops) 

caused a dramatic change in the use of glyphosate (Powles, 2008) and increased resistant 

weed biotypes. 

In 2012, approximately 88 and 93% of corn and soybeans planted in the United 

States consisted of glyphosate-resistant varieties (USDA-NASS, 2012).  The adoption of 

glyphosate-resistant crops has resulted in a severe reduction in the use of selective 

herbicides to a heavy reliance on the non-selective glyphosate for primary weed control.  

Consequently, this has resulted in a strong selection intensity favoring glyphosate-

resistant weed biotypes (Powles, 2008).  As of today, there are a total of 24 glyphosate-

resistant weed species, compared to only 10 in 2005, respectively (Weed Science, 2012).  

This substantial increase is a direct result of the high adaption of glyphosate-resistant 

crops and the increased use of glyphosate (Nandula et al., 2005). 

The rapid changes in weed communities and the level of selection pressures and 

evolved herbicide-resistant weed biotypes show that the current implementations of 

agrochemicals for long term weed management and production are not sustainable (Owen 

and Zelaya, 2005; Green, 2007).  In addition, the concerns about contamination of water 

resources and pesticide residues in food due to agricultural chemical applications, and 

soil erosion and depletion of natural resources due to tillage have prompted research into 
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an alternative weed management strategy for to maintain sustainable production systems 

(Lu et al., 2000).  

Alternative Weed Management Strategies. 

 The research and development into viable alternative weed management strategies 

that are effective at managing weeds, maintaining crop performance and quality, reducing 

soil erosion and dependency on agrochemicals, and conserving soil resources are critical 

for maintaining sustainable agricultural systems.  In addition, the alternative weed 

management strategies must be economically feasible and, for wide-spread adoption, 

should be easily implemented into current production and management practices.  

Research into using cover crops as an alternative weed management strategy has been 

successful in some crop rotations in some areas (Fisk et al., 2001), however, further 

research is still needed to quantify if cover crops can be successfully used for weed 

management in South Dakota to reduce or eliminate the use of chemical control within 

the alternative weed management plan. 

Cover Crops. 

 Cover crops can be defined as crops primarily grown during periods in which the 

field is fallow (Dabney et al., 2001).  Cover crops often have been integrated and 

established into cropping systems in the fall and/or spring and consist of legumes or 

brassica, grass or other species (Table 1-3).  Cover crops have shown to play an 

important role in sustainable agriculture because of their ability to reduce soil erosion and 

nitrate leaching and by increase soil water infiltration rate, soil organic matter content, 

and nutrient availability, and break disease cycles (Barberi and Mazzoncini, 2001;  
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Table 1-3. Common legume and non-legume cover crop species (Obtained from SARE 2007:  Managing Cover Crops Profitably, 3
rd

 

Ed.  accessed on 2013) 

  

Legume Cover Crops Non-Legume Cover Crops 

Common Name Scientific Name 
Growing 

Season 

Common 

Name 
Scientific Name 

Growing 

Season 

Crimson Clover Trifolium incarnatum Annual 
Annual 

Ryegrass 
Lolium multiflorum Annual 

Hairy Vetch Vicia villosa Annual Barley Hordeum vulgare Annual 

Field Peas 
Pisum sativum subsp. 

arvense 
Annual Oats Avena sativa Annual 

Subteranean 
Clover 

Trifolium subterraneum Annual Rye Secale cereale Annual 

Trifolium yanninicum Annual Winter Wheat Triticum aestivum Annual 

Trifolium brachycalcycinum Annual Buckwheat Fagopyrum esculentum Annual 

Cowpea Vigna unguiculata Annual Sorghum-sudan 
Sorghum bicolor var. 

sudanese 
Annual 

Berseem Clover Trifolium alexandrinum Annual White Mustard Brassica hirta Annual 

Burr Medic Medicago polymorpha Annual Brown Mustard Brassica juncea Annual 

Barrel Medic Medicago truncatula Annual 
Rapeseed 

Brassica napus Annual 

Black Medic Medicago lupulina Perennial Brassica rapa Biennial 

Red Clover Trifolium pratense Perennial Forage Radish Raphanus sativus Annual 

White 
Sweetclover 

Melilotus officinalis Biennial Turnips Brassica rapa rapa Annual 

Yellow 
Sweetclover 

Melilotus alba Biennial 
   

White Clover Trifolium repens Perennial 
   

Woollypod Vetch Vicia villosa ssp. Dasycarpa Annual 
   

Lentil Lens culinaris Annual 
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Sarrantonio and Gallandt, 2003; Fageria et al., 2005; Hartwig and Ammon, 2002; Dabney 

et al., 2001; Lu et al., 2000; Teasdale et al. 2007).  An additional positive feature 

associated with utilizing cover crops into cropping systems is their ability to suppress 

weeds.  

 Cover crop suppress weeds as living plants by smothering growth of establishing 

or established weeds or by creating an environment that interferes or competes with weed 

emergence and establishment by depriving weeds of essential growth elements (e.g. light, 

mineral nutrients, water) and space.  Cover crops also suppress weeds as surface plant 

residue (e.g. mulch) after cover crop senescence by eliminating or altering environmental 

signals for weed germination (e.g. light or alternating temperatures), creating physical 

obstructions that hinders weed emergence following germination, or by releasing 

phytotoxic (e.g. allelopathic) compounds that impede germination and growth of weeds 

(Teasdale et al., 2007; Moonen and Barberi, 2004; Fageria et al., 2005; Sarrantonio and 

Gallandt, 2003; Dabney et al., 2001; Hartwig and Ammon, 2002; Lu et al., 2000).  

 Several alternative weed management systems utilizing cover crops for weed 

suppression have been researched.  For instance, Fisk et al. (2001) reported that fall-

seeded Santiago burr medic (Medicago polymorpha), barrel medic (Medicago 

truncatula), red clover (Trifolium pratense), and berseem clover (Trifolium 

alexandrinum) reduced winter annual weed densities by 41, 68, 78, and 68% and winter 

annual weed dry weights by 72, 78, 78, and 80%, respectively.  Similar results were 

noted by De Haan et al. (1994), who reported that yellow mustard (Brassica compestriss) 

seeded at 2120 seeds m
-2

 and at a height of 10-cm reduced weed dry weight by 

approximately 82%.  It was also observed that a cover crop mixture containing alsike 
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clover (Trifolium hybridum L.), balansa clover (Trifolium michelianum), berseem clover 

(Trifolium alexandrinum), crimson clover (Trifolium incarnatum), Persian clover 

(Trifolium resupinatum), red clover (Trifolium pratense), and white clover (Trifolium 

repens) reduced brown mustard (Brassica juncea) biomass between 29 and 57% (Ross et 

al., 2001).  However, the degree of weed suppression via cover crops greatly depends on 

the quantity of cover crop biomass that is produced.  For instance, Teasdale and Daughtry 

(1991) presented a model that showed that weeds were not suppressed until soil coverage 

by cover crop residue had reached 42% and that 97% coverage was required to reduce 

weed density by 75%, respectively.  Similar results were reported by Teasdale and 

Mohler (2000), showing that hairy vetch (Vicia villosa) and crimson clover mulches had 

to reach a total of 200 g m
-2

 before declines in velvetleaf biomass were significant. 

The integration of cover crops into corn cropping systems has shown to be 

successful as an alternative weed management source, but cover crops also have 

problems associated to them.   Some cover crops species have been shown to reduce corn 

yields by immobilizing and/or delaying N release (Vos, 1999; Snapp et al., 2005; De 

Bruin et al., 2005; Smeltekop et al., 2002), delaying or prolonging soil warming 

(Teasdale et al., 2007; Lu et al., 2000), depleting stored soil moisture (Williams III et al., 

2000), and altering soil water use patterns (Reddy and Koger, 2004; Unger and Vigil, 

1998), and by releasing phytotoxins (Fageria et al., 2005).  In addition, some cover crops 

are overly vigorous and must be treated with a herbicide to eliminate the detrimental 

impacts on corn productivity (Snapp et al., 2005; DeHaan et al., 1994).  For example, rye 

(Secale cereal) has great winter hardiness and growth in the early spring; therefore it 

could be used as a cover crop in corn for weed suppression.  However, rye has been 
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shown to delay corn maturation and decrease corn yields by immobilizing N, decreasing 

soil temperature and water content if not controlled or desiccated at the correct time by 

herbicide applications or tillage treatments (Raimbault et al., 1990; Vaughan and 

Evanylo, 1998).  In addition, Vos (1999) reported that medic over-seeded in a broadcast 

application at 50 kg ha
-1

 into corn at corn planting, reduced yields by approximately 22% 

compared to the control mainly due to N immobilization (Smeltekop et al., 2002). 

The ability of cover crops to suppress weeds without adversely affecting corn 

productivity is directly related to the cover crop species selected, timing of sowing and 

establishment, and quantity of cover crop biomass that is produced (Barberi and 

Mazzoncini, 2001; Vos, 1999; Teasdale et al., 2007; Teasdale and Mohler, 2000; 

Teasdale and Daughtry, 1991; Swanton and Weise, 1991).  Furthermore, cover crops 

used for weed suppression should ideally reduce soil erosion (Buhler et al., 1998; 

Raimbault et al., 1990; Eadie et al., 1992), reduce dependency on herbicide applications 

and tillage practices (Johnson et al., 1993; De Haan et al., 1994), increase water 

infiltration and retention (Tollenaar et al., 1993; Vaughan and Evanylo, 1998; Galloway 

and Weston, 1996), provide N to subsequent crops (Reddy and Koger, 2004; Hartwig and 

Ammon, 2002; Wagger, 1989), reduce environmental contaminations from herbicide and 

fertilizer surface runoff and leaching (De Bruin et al., 2005; Unger and Vigil, 1998), 

improve soil quality through organic matter enrichment (Sarrantonio and Gallandt, 2003; 

Fageria et al., 2005), and reduce economic and production costs (Snapp et al., 2005).  

Cover crops can also decrease soil compaction (Galloway and Weston, 1996), improve 

soil nutrient cycling (Sarrantonio and Gallandt, 2003), fix atmospheric N (Unger and 
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Vigil, 1998; Hartwig and Ammon, 2002), provide habitat for wildlife (Lu et al., 2000), 

and can be used as a forage or renewable energy resource (Tollenaar et al., 1993).  

In South Dakota, the implementation and establishment of cover crops as an 

alternative weed control strategy in corn is difficult due to environmental niches (e.g. 

cold fall temperatures and dry soil conditions) and the dominant corn-soybean crop 

rotation which shortens the period of time for cover crop establishment (SARE, 2007).  

Interseeding of a cover crop into standing corn after the critical weed-free period could 

provide a greater length of time for cover crop growth which may provide a more rapid 

and consistent establishment of cover crops in corn fields in South Dakota (Hively and 

Cox, 2001).  Smeltekop et al. (2002) showed that annual snail medic broadcast 

interseeded into corn, directly after corn planting, produced an average of about 604 kg 

biomass ha
-1

 with no added nitrogen, and about 912 kg biomass ha
-1

 when 134 kg N ha
-1

 

was applied.  Also, Vos (1999) reported that broadcast interseeded annual medic 

produced an average of approximately 640 kg biomass ha
-1

 when planted two weeks prior 

to corn planting.  However, caution must be taken as these medic cover crops seeded at or 

before corn planting competed with the corn and reduced yields.  A cover crop that does 

not grow until or after the critical weed free period (e.g. interseeded after corn planting) 

may help with this problem. 

Interseeding of a cover crop into standing corn has been shown to be a successful 

method for establishing cover crops.  For instance, in Ontario, Canada, Eadie et al. (1992) 

reported that winter rye and spring barley produced 169.6 and 174.6 g m
-2

 of dry matter 

in the fall when broadcast interseeded approximately 31 days after corn (DAP) planting.  

It was also observed in Michigan (MI) that chickling vetch (Lathyrus sativus L.) and red 
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clover were successfully established in corn when broadcast interseeded at V5-V7 corn 

growth stages (Baributsa et al., 2008).  However, interseeding of a cover crop at planting 

can adversely impact corn yields.  For example, in Iowa, Schaller and Larson (1955) 

reported that a cover crop mixture of rye, alfalfa, red clover, and timothy (Phleum 

pratense) interseeded at corn planting had a 65% lower corn yield compared to being 

planted on June 24
th 

following the third cultivation practice.  Similarly, Nordquist and 

Wicks (1974) reported corn yield losses ranged from 1000 to 3000 kg ha
-1

 when alfalfa 

was interseeded at corn planting.  In contrast, cover crops interseeded 28 days after corn 

planting (Jeranyama et al., 1998), between V4 and V6 corn growth stages showed no 

yield reductions (Baributsa et al., 2008), or seeded to emerge in the middle of the 

vegetation period of the main crop (Brandsaeter and Netland, 1999). 

  Weed suppression by cover crop integration and establishment via interseeding 

into standing corn is dependent on the species of cover crop.  A smother plant is a 

specialized cover crop species that has potential to suppress weeds when interseeded into 

standing corn without adversely impacting corn yield (De Haan et al., 1997).  Interseeded 

smother plants could provide a living mulch during corn growth which may potentially 

inhibit weed germination and establishment of weeds indirectly by reducing light 

transmittance and soil temperature and directly by competing with weeds for essential 

growth resources (e.g. soil nutrients and water) (Severino and Christoffoleti, 2004).  

Therefore, interseeded smother plants could provide a nonchemical means of weed 

suppression (De Haan et al., 1997) while assisting in improving soil quality (e.g. 

increased infiltration), fertility, and reducing soil wind and water erosion (Brainard et al., 

2004; Abdin et al., 1998).  De Haan et al. (1994) stated that an ideal smother plant variety 
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for the north central region of the United States (e.g. South Dakota) would consist of the 

following criteria:  rapid seedling emergence under cool weather conditions, horizontal 

leaf angle, two- by three-cm mature leaf size, 25 cm rooting depth, a maximum height of 

10 cm, short life cycle, non-dormant seed, and a seed production potential of at least 500 

kg seeds ha
-1

.  In addition, smother plants incorporated into corn by interseeding should 

also be shade tolerant.  Crimson clover, lentil (Lens culinaris), and winter wheat cover 

crop species correlate well with the stated criteria for quality smother plants for the North 

Central regions. 

Crimson Clover. 

Crimson clover is a legume native to Europe where it is primarily cultivated as a 

forage or green manuring crop (Hannaway and Myers, 2004).  In 1818, crimson clover 

was introduced to the U.S. and by 1855 crimson clover seed was widely distributed by 

the U.S. Patent Office.  A rapid increase in crimson clover occurred in 1942 due to the 

development of reseeding or volunteering varieties, the additional benefit of crimson 

clover to possibly provide substantial amounts of nitrogen, its rapid stand establishment 

and vigorous growth, and its value for winter grazing (Knight and Hollowell, 1973).  

Furthermore, in the southern regions of the U.S., crimson clover is primarily used as a 

winter forage legume that is overseeded into perennial and warm-season grasses because 

of its excellent seedling vigor, early forage production, and early maturation time (Smith 

et al., 2008; Butler et al., 2002).  In recent years, researchers have begun to successfully 

use crimson clover as a cover crop in corn rotations, orchards, berry fields and vineyards 

as a living mulch because of its shade tolerance and reseeding potential (Anderson, 

2010). 
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Crimson clover is an annual that can grow up to 76 cm tall, has light-green 

colored pubescent foliage, and a root system consisting of a central taproot supported by 

many fibrous branch roots (Sattell et al., 1998).  The normal seeding rate ranges between 

16.8 and 33.6 kg ha
-1

, depending on application (SARE, 2007).  Crimson clover can 

produce approximately 336 kg seeds ha
-1

, which have a hardseededness [def:  where 

seeds do not imbibe water or oxygen from the soil (Cabrera et al., 1995)] ranging from 

30-75%, respectively.  Crimson clover seeds can germinate in cool conditions and rapidly 

grow in the fall (Brink, 1990).  Knight and Hollowell (1973) stated that crimson clover 

seeds withstood and germinated at temperature of -12°C, respectively.  Crimson clover 

begins flowering when the day length exceeds 12 hours (Butler et al., 2002), is 

determinant, with growth terminating following the development of a pointed, conical 

flower head that is commonly composed of 75-125 florets (Knights and Hollowell, 1973).  

 Crimson clover cover crops have been shown to provide several benefits to 

agricultural production such as increasing soil N supply for subsequent crops, reducing 

soil runoff and erosion, improving soil physical and chemical properties, improving water 

use efficiency, conserving leachable plant nutrients, and providing weed suppression 

(Decker et al., 1994).  For instance, crimson clover was shown to contain between 93 and 

133 kg N ha
-1

 (Rannells and Wagger, 1992), increased grass weed control by 46 to 61% 

(Yenish et al., 1996) and reduced soil surface water runoff between 18 and 23% and 

sediment runoff by 89% (Stearman and Wells, 1997).  Crimson clover can accumulate 

approximately 5466 kg ha
-1

 of dry matter (Dyck and Liebman, 1994) which will provide 

additional surface cover, organic matter, help retain soil moisture, and can suppress 

weeds (through release of toxic allelochemicals from decomposing plant material). 
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Lentil. 

 Lentil is one of the oldest legumes that originated in Near East more than 10,000 

years ago.  Lentil has been widely adapted cause of its ability to grow in dry soils, cold 

climates and harsh conditions.  In 1916 lentils were introduced to the U.S and Canada in 

1969 (Erskine et al., 2009).  The majority of lentil production areas in North America are 

located in Saskatchewan, Alberta, Manitoba, Washington, and Idaho (Nielsen, 2001).  

Lentils are primarily utilized in the semiarid regions of the Canadian Prairies to lengthen 

the wheat-fallow crop rotations.  Recently, lentil cultivation has progressed as an 

accelerated rate in the Great Plains of the U.S. due to climate warming and the crop’s 

tolerance to dry conditions and adaptive ability to harsh environments (Cutforth et al., 

2007; Rao et al., 2005). 

 Lentil plant height can range between 30.5- to 52 cm and has compound leaves 

with upper leaves having tendrils while lower leaves are mucronate (Oplinger et al., 

1990).  Lentil has a shallow root system that penetrates to approximately 0.6 m into the 

soil profile (Vandenberg and Risula, 2010).  The normal seeding rate ranges between 

33.6 and 112 kg ha
-1

, depending on application (SARE, 2007).  Lentils have been shown 

to produce about 654 kg seeds ha
-1

 (Nielsen, 2001).  Lentil seeds have the ability to 

germinate and emerge in cool soil temperatures.  Cutforth et al. (2007) state that lentil 

seeds can germinate at base temperatures near 0°C and can withstand moderate frost 

temperatures ranging from -2 to -18°C.  Furthermore, lentil requires few growing degree-

days to reach anthesis (540 degree-days at a base of 5°C (DD5)) and to attain full maturity 

(1060 DD5) (Cutforth et al., 2007).  In addition, lentil has been shown to produce about 

3510 kg ha
-1

 of biomass in the semiarid climates of Oregon (Pikul Jr. et al., 2004). 
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 Lentil cover crops have been shown to benefit agricultural production systems by 

providing N (Rao et al., 2005), improving water use efficiency, reducing greenhouse gas 

emissions, suppressing weeds (Chen et al., 2012), and reducing soil erosion by providing 

surface residue (Krupinsky et al., 2007).  For instance, lentils have been shown to 

accumulate 129 kg N ha
-1

 from N2 fixation (Kessel, 1994), extract water from a depth of 

only 80 cm and had an average extractable soil water of 90 mm (Zhang et al., 2000), and 

reduced soil erosion from 18 to 58% (Raya et al., 2006).  Lentils, therefore, may have 

great potential for growing as a main or cover crop in the Great Plains due to limited 

water use, drought tolerance, and cold germination and growth requirements (Cutforth et 

al., 2007). 

Winter Wheat. 

 Winter wheat has thought to have been developed as a crop in the Middle East 

around 9000 years ago.  Winter wheat was first introduced into the U.S. around 1600’s 

(Australian Government, 2008).  Presently, the U.S. is now the major wheat-producing 

country next to China and ranks third among U.S. grain commodities.  Winter wheat 

accounts for approximately 40% of the total wheat produced in the U.S. (USDA, 2012).  

Winter wheat is primarily used for produce food for humans and animal feed (Beuerlein, 

2001).  However, recently winter wheat has been utilized as a cover crop due to its ability 

to provide the benefits of other cereal cover crops and as an alternative grazing feed 

source (SARE, 2007). 

 Winter wheat can grow up to 1.2 m tall and has flat narrow leaves that are 

between 20-38 cm long and 1.3 cm wide (Duke, 1983).  Winter wheat has two distinct 
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types of roots which are commonly classified as seminal (e.g. primary) and nodal (e.g. 

adventitious) roots (Nakamoto and Oyanagi, 1994).  Seminal roots develop in the 

embryonic hypocotyl of the germinating seed while nodal roots emerge from the base of 

the apical culm and tillers.  The root system of winter wheat generally has a horizontal 

spread of 20-60 cm and a vertical depth of approximately 30 cm (Reynolds et al., 2001).  

The normal seeding rate ranges from 67.2 to 168 kg ha
-1

, depending on application 

(SARE, 2007).  Winter wheat seed production in the U.S. has been shown to be 

approximately 2100 kg ha
-1

 (Duke, 1983).  Winter wheat germinates in cool soil 

temperatures.  Lindstrom et al., (1976) stated that winter wheat has potential to germinate 

at temperatures ranging from 3.5 to 5.5°C.  Furthermore, winter wheat fall biomass 

production has been shown to range between 971 to 1650 kg ha
-1

, respectively 

(MacKown and Carver, 2005). 

 When utilized as a cover crop, winter wheat has been shown to provide many 

benefits to agricultural production such as erosion control, nutrient scavenging and weed 

suppression.  For instance, winter wheat was shown to have an N concentration and 

content level close to 17.7 g N kg
-1

 (McVay et al., 1989) and reduce weed pressure 

between 14 and 52% while producing an average biomass of 1600 kg ha
-1

 (Reeves et al., 

2005).  The biomass produced can potentially aid in reducing soil erosion and increase 

soil organic matter. 

 These findings suggest that crimson clover, lentil, and winter wheat sown into a 

corn crop in South Dakota should readily germinate and grow through the fall because 

each of these plant varieties having the ability to germinate under cool soil temperatures, 

have early maturation potentials and vigorous growth capabilities.  Establishment prior to 
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corn harvest is needed because of very short or non-existent growth periods after corn 

grain harvest.  These plants should be able to grow as corn senesces, providing cover and 

forage late in the fall after corn grain is harvested and corn stover is baled. 

Research Objectives. 

 Research was conducted in 2010-2012 at Andover  and at Trail City and Aurora, 

SD in 2011-2012.  The objective of this experiment was to examine the broadcast and 

drill seed placements, time of sowing, and field position of an interseeded cover crop 

mixture consisting of crimson clover, lentil, and winter wheat and the cover crops ability 

to control or suppress late-emerging weeds in corn, and provide a fall surface ground 

cover.  The specific objectives of this experiment were to determine if interseeding 

crimson clover, lentil, and winter wheat into corn at the V3 and V5 growth stages would: 

1. provide a suitable environment for cover crop establishment and growth; 

2. suppress late-emerging broadleaf and grass weeds, and 

3. be present after corn grain harvest to provide soil surface residue  
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Figure 2-1:  The Trail City (Red), Andover (Green), 

and Aurora (Orange) field experiment locations. 

CHAPTER TWO 

MATERIALS AND METHODS 

Experimental Locations and Descriptions. 

 Field experiments were 

conducted from 2010 to 2012 on 

dryland cropland hectares at three 

separate geographic locations in 

South Dakota (SD).  The field 

experiments were located in Day 

County near Andover (Andover), 

Corson County near Trail City (Trail City), and at the Aurora Experimental Farm in 

Brookings County near Aurora (Aurora) (Figure 2-1).  In 2010, a single field experiment 

was conducted at the Andover location, whereas in 2011 and 2012 three field 

experiments were conducted at Andover, Trail City, and Aurora.  Furthermore, at the 

Andover and Trail City field experimental locations, two research sites were selected, one 

on a summit (SMT) position (uppermost section of the field (e.g. top of a hill) and a 

second on a toeslope (TSP) position (lowermost section of the field (e.g. bottom of a hill), 

whereas, at the Aurora field experimental locations, a single research site was selected on 

a flat-plain (e.g. level ground) (Table 2-1). 

 The farming systems and crop rotation sequences utilized at the Andover and 

Trail City research sites were:  full no-tillage wheat (Triticum aestivum)-corn (Zea mays 

L.) crop rotation.  At the Aurora research sites, the farming system and crop rotation  
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 Table 2-1.  Andover, Trail City, and Aurora research sites, field positions, and plot locations. 

 

Geographical Location Research Period Field Location Field Position Research Plot Location 

Andover 

2010 44°22'29"N, 97°58'46"W 
Summit 45°22'30"N, 97°58'47"W 

Toeslope 45°22'31"N, 97°58'46"W 

    

2011 45°27'41"N, 97°57'49"W 
Summit 45°22'43"N, 97°57'46"W 

Toeslope 45°22'38"N, 97°57'46"W 

    

2012 45°22'47"N, 97°57'49"W 
Summit 45°22'42"N, 97°56'27"W 

Toeslope 45°22'53"N, 97°56'28"W 

     

Trail City 

2011 45°33'19"N, 100°49'42"W 
Summit 45°33'51"N, 100°49'43"W 

Toeslope 45°33'43"N, 100°49'43"W 

    

2012 45°33'19"N, 100°50'25"W 
Summit 45°33'28"N, 100°49'58"W 

Toeslope 45°33'28"N, 100°49'58"W 

     

Aurora 

2011 44°18'20"N, 96°40'12"W Flat-plain 44°18'20"N, 96°40'12"W 

    
2012 44°18'18"N, 96°40'24"W Flat-plain 44°18'18"N, 96°40'24"W 
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sequence utilized each year was:  conventional tillage [fall chisel-plow after soybean 

(Glycine max) harvest] plus a spring cultivation (seedbed preparation for corn planting), 

which resulted in less than 15% soil surface residue remaining at corn planting, with a 

corn following soybean crop rotation. 

 The Andover and Trail City research sites were selected and plots were 

established in late-August to early-September immediately following wheat harvest.  

Furthermore, in late-April to early-May, the Aurora research sites were selected and plots 

were established after spring cultivation of the soybean stubble and prior to corn planting 

(Table 2-2). 

Experimental Design and Plot Dimensions. 

 The experimental design incorporated into the Andover, Trail City, and Aurora 

research plots was a randomized split-block split-plot experimental design.  The variables 

used within the experimental design were:  cover crop as the main treatments (plot), and 

three cover crop interseeding methods [none (NoCC), broadcast (BRD), and drill (DRL)] 

at vegetative five-leaf (V5) (Andover, Trail City, and Aurora each experimental year) 

(subplots) (Figures 2-2 and 2-3).  In addition, cover crops were interseeded with both 

methods at Aurora at the vegetative three-leaf (V3) corn growth stage.  Therefore, the 

sub-subplots at Andover and Trial City were BRDV5 and DRLV5, whereas at Aurora, 

the sub-subplots were BRDV5, DRLV5, BRDV3, and DRLV3.  Four replications were 

used at each research site and field position.  
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Table 2-2.  Andover, Trail City, and Aurora research site soil texture and  types [Data obtained from Web Soil Survey (USDA-NRCS) 

accessed in 2013]. 

 

Research Site 

Location 

Experimental 

Year 
Soil Description 

Soil Content 

Sand Silt Clay 
Organic 

Matter 

   
(%) 

Andover 

2010 
Forman-Aastad Loams, 1 to 6 percent slopes (fine-loamy, 

mixed, frigid, Udic Argiborolls) 
36 36 28 2.69 

2011 
Forman-Buse-Aastad loams, 1 to 6 percent slopes (fine-loamy, 

mixed, frigid Udic Argiborolls) 
33 38 29 2.69 

2012 
Kranzburg-Brookings silt loams, 0 to 2 percent slopes (fine-

silty, mixed, frigid Udic Haploborolls) 
8 67 25 3.84 

Trail City 2011 and 2012 
Reeder loam, 2 to 6 percent slopes (fine-loamy, mixed, frigid 

Typic Argiborolls) 
37 28 25 2.29 

Aurora 2011 and 2012 
Brandt silty clay loam, 0 to 2 percent slopes (fine-silty, mixed, 

frigid Udic Haploborrols) 
7 63 30 3.38 
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Figure 2-2.  Andover (A) and Trail City (B) experimental design (block, plot, subplot and sub-subplot design and dimensions). 
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Figure 2-3.  Aurora 2011 (A) and 2012 (B) experimental design (block, plot, subplot, and sub-subplot design and dimensions).  
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The plot dimensions at the Andover and Trail City research sites were: 56 to 64 

corn rows wide [42.7 to 48.8 meters (m)] by 27.4 m long (block), 14 to 16 corn rows 

wide (10.7 to 12.2 m) by 27.4 m long (plot), and 6 corn rows wide (4.6 m) by 27.4 m 

long (subplots) (Figure 2-2).  The plots dimensions at the Aurora research sites in 2011 

and 2012 were:  25 to 36 corn rows wide (19.1 to 22.9 m) by 27.4 m long (block), 5 to 6 

corn rows wide (3.8 to 4.6 m) by 27.4 m long (plot), and 3 (2011) to 4 (2012) corn rows 

wide (2.3 to 3.1 m) by 27.4 m long (subplots) (Figure 2-3).  The corn row width at all 

sites was 76 cm. 

Corn Planting. 

 At the Andover research sites, Mycogen 2J463 (96 day corn maturity), Stine 9204 

(89 day corn maturity), and Mycogen 2J339 (92 day corn maturity) corn varieties were 

seeded directly into wheat stubble on April 21, 2010, May 11, 2011, and May 3, 2012, 

respectively, with a 18.3 m corn planter at populations close to 74100, 76570, and 71605 

seeds ha
-1

.  At the Trail City research sites, REA 3V375 (89 day corn maturity) corn 

variety was seeded directly into wheat stubble with a Kinze 2700 planter on May 16, 

2011 and May 6, 2012 with a population of approximately 61750 seeds ha
-1

.  At Aurora, 

DKC48-12 (98 day corn maturity) corn variety was planted on May 4, 2011 and May 15, 

2012 with a John Deere 7000 four-row corn planter at a population of approximately 

79040 seeds ha
-1

, respectively. 

Herbicide Applications. 

 Herbicides were applied pre-corn (PRE) and post-corn (POST) emergence (prior-

to cover crop interseeding) at the Andover and Trail City research sites.  At Aurora, a 
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single POST herbicide application was made each experimental year prior to cover cover 

crop planting at the research sites.  Herbicides were applied with a 30.5 m sprayer 

(Andover), a 27.4 m (Trail City), and a 3.1 m sprayer (Aurora). 

At Andover, the PRE herbicides were applied on May 6, 2010, May 17, 2011, and 

April 20, 2012.  The herbicides and rates applied PRE in 2010 and 2011 were:  1.7 kg a.i. 

ha
-1

 of Atrazine 4L (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine) plus 1.1 kg 

a.e. ha
-1

 of Roundup Weathermax [N-(phosphonomethyl)-glycine in the form of its 

potassium salt].  In 2012, the PRE herbicide and rate applied was 1.2 kg a.e. ha
-1

 of 

Durango [N-(phosphonomethyl)-glycine, isopropylamine salt].  Furthermore, POST 

herbicides were applied on May 31, 2010, June 21, 2010, May 25, 2011, and May 23, 

2012, respectively.  In 2010 (two applications) and 2011 (single application), the POST 

herbicide and rate applied was 1.1 kg a.e. ha
-1

 of Roundup Weathermax.  In 2012, the 

herbicides and rates applied on May 23, 2012 were 1.1 kg a.e. ha
-1

 of Roundup 

Powermax plus 1.7 kg a.i. ha
-1

 Aatrex 4L (2-chloro-4-ethylamino-6-isopropylamino-s-

triazine). 

At Trail City, a PRE burndown herbicide was applied on May 23, 2011 and May 

15, 2012 and a POST herbicide was applied when corn was approximately 30.5 cm tall.  

The herbicide and rate applied for both PRE (burdown) and POST was 0.77 kg a.e. ha
-1

 

RT3 [N-(phosphonomethyl)-glycine in the form of its potassium salt]. 

In 2011 and 2012 a single POST herbicide application was made to the research 

sites at Aurora immediately before the V3 cover crop interseeding on June 1, 2011 and 
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Figure 2-5:  The single-row push drill used 

for drill cover crop interseeding procedure. 

June 3, 2012.  The POST herbicide and rate applied each year was 1.1 kg a.e. ha
-1

 of 

Roundup Weathermax. 

Cover Crop V3 and V5 Interseeding. 

At Andover, Trail City, and Aurora, crimson clover (Trifolium incarnatum), lentil 

(Lens culinaris), and winter wheat (Triticum aestivum) cover crops were BRD and DRL 

interseeded into standing corn at the V5 corn growth stage on June 22, 2010, June 28, 

2011, and June 12, 2012 at Andover, June 30, 2011 and June 20, 2012 at Trail City, and 

on June 20, 2011 and June 18, 2012 at Aurora into the subplot areas within the 

experimental design.  Furthermore, at Aurora, additional subplots were established where 

cover crops were BRD and DRL interseeded at V3 corn growth stage on June 3, 2011 

and June 8, 2012, respectively.  The selected cover crop species were interseeded as a 

mixture ‘cover crop cocktail’ at the selected rates of:  5.4 kg ha
-1

 (crimson clover), 9.8 kg 

ha
-1

 (lentil), and 8.9 kg ha
-1

 (winter wheat).     

The BRD interseedings were completed by walking down the center of 6 

(Andover and Trail City) and 3 or 4 (Aurora) sub-subplot corn rows and uniformly 

distributing the cover crop mixture by 

hand (Figure 2-4).  The DRL 

interseedings were completed by using a 

single-row push drill (calibrated prior to 

cover crop interseeding) to plant the cover 

crop mixture in the center of 6 (Andover 

and Trail City) and 3 or 4 (Aurora) sub-  
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Figure 2-4.  Interseeded cover crops at Andover (A.), Trail City (B.), and Aurora (C.) by surface broadcasting.  

 

 

A B C 
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subplot rows at a depth close to 1.3 cm, respectively (Figure 2-5 and Figure 2-6). 

Midseason Interseeded Cover Crop Growth Examination. 

 The interseeded cover crops at Aurora, Andover, and Trail City research sites 

were visually examined in mid-July.  Visual estimations were made on the percentage of 

cover crop growth and row coverage achieved by the interseeded cover crops (Figure 2-

7).   

Cover Crop and Weed Biomass Harvest. 

 Cover crop and weed biomass harvests were completed prior to corn grain harvest 

at the Andover, Trail City, and Aurora research sites each year (Figure 2-8).  The cover 

crop and weed biomass at Andover and Trail City were harvested on:  September 30, 

2010, August 22, 2011, and August 22, 2012 (Andover), and September 14, 2011 (Trail 

City).  In 2012 at Trail City, cover crop and weed biomass were not collected due to 

severe drought resulting in no cover crop or weed growth.  At Aurora, the cover crop and 

weed biomass were harvested on September 22, 2011 and August 29, 2012, respectively. 

The cover crop and weed biomass were harvested by placing a PVC square (1/10
th
 

m
2
) randomly in the center of an interseeded corn row (or in the center of a row of a 

control plot) on the soil surface.  The living cover crop and weed biomass within the PVC 

square was clipped at the soil surface with scissors, separated by cover crop and weed 

broadleaves and grasses, then placed into properly labeled paper bags.   Twelve random 

samples were collected within each subplot (BRD and DRL).  The collected biomass 

samples were weighed to obtain fresh weight, and were dried at 30°C until constant 

weight, and dry weight was measured.  The cover crop and weed biomass weights  
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Figure 2-6.  Drill interseeded cover crops at Andover (A.), Trail City (B.), and Aurora (C.).  

A. C. B. 
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Figure 2-7.  Mid-season drilled cover crops 15 days after planting (DAP) at Andover (A.), 10 DAP at Aurora (B.), and 14 DAP at 

Trail City (C.).   

A. B. C. 
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Figure 2-8.  Broadcasted cover crops at Andover (A.) and drilled cover crops at Aurora (B.) at cover crop and weed biomass harvest.   

 

A. B. 



48 
 

recorded were adjusted to provide the amount of broadleaf and grass cover crop and weed 

biomass on a kg ha
-1

 basis. 

Corn Grain Harvest. 

 Corn grain harvests were completed following cover crop and weed biomass 

harvests at the Andover, Trail City, and Aurora research sites.  At Andover and Trial 

City, corn grain was harvested on September 28 to October 1, 2010, October 13 to 

October 18, 2011, and September 21 to September 23, 2012 (Andover), and on October 5 

to October 6, 2011 (Trail City).  At Aurora, corn grain was harvested on September 29, 

2011 and October 17, 2012. Corn grain was hand-picked on 12 (3.1 m long) sections 

marked within the three center corn rows of each sub-subplot.  Samples were then 

weighed, sub-sampled to 25 ears, weighed again, and dried at 30°C until constant 

moisture.  The sub-samples were then shucked, to separate the corn grain from cobs, and 

individually weighed.  The grain weights were adjusted to 15% moisture content and 

grain weight and yield on a kg ha
-1

 basis was calculated. 

Interseeded Cover Crop Fall Observation. 

 In the fall (late-September to early-October), after corn grain harvest, visual 

examinations were made of the cover crop interseeded sub-subplots.  Examinations were 

made to see if any cover crops remained or if regrowth occurred after corn grain harvest.  

If there was living cover crop mulch, visual estimations were made on the percentage of 

corn row cover (Figure 2-9).  
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Figure 2-9.  Drill interseeded cover crop growth during fall season examination Aurora (A.) and Andover (B.).   

 

A. B. 
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Statistical Analysis. 

 Analysis of Variance was performed on the broadleaf and grass weed cover crop 

and weed biomass and corn yield data that was collected at each field research site each 

experimental year.  The significant differences and mean separations were determined 

using LSD values at P< 0.10.  All data analyses and interactions were performed and 

completed by using PROC GLM Procedure of SAS 9.2.  This procedure provided outputs 

similar to PROC MIXED Procedure of SAS 9.2.  
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CHAPTER THREE 

RESEARCH RESULTS 

 Significant differences in precipitation amounts and average temperatures 

occurred among the 2010, 2011, and 2012 growing seasons and research locations.  In 

addition, differences in water availability were noted between the summit and toeslope 

locations at the Andover and Trail City locations.  These differences influenced 

interseeded cover crop and weed biomass accumulations and corn grain yield.  Therefore, 

the data are presented by the geographical location (Andover, Trail City, and Aurora), 

research site [summit (SMT) and toeslope (TSP)] (Andover and Trail City only), and 

experimental year. 

Andover Weather Conditions. 

 2010 Research Site. 

 Climate conditions during the 2010 growing season (April through August) was 

warmer and drier than the 30-year averages (Table 3-1).  Although the total annual 

(January through December) precipitation accumulation was slightly above the 30-year 

average, the precipitation accumulation from April through August was about 13% below 

the 30-year average.  The precipitation amounts in April, May, July, and August were 

33%, 29%, 7%, and 28% below the 30-year averages, respectively.  Precipitation in June 

was 15% above 30-year average.  In April, the average temperature was about 37% above 

the 30-year average, whereas May and August were about 10% above the 30-year 

averages.  
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 Table 3-1.  Andover average monthly temperature and total precipitation amounts, and growing degree days (GDD) for 2010 to 2012 

and the 30-year average [Data obtained from the NOAA (National Oceanic and Atmospheric Administration) recording station 5.8 km 

from research sites].  

 
2010 

 
2011 

 
2012 

 
1980-2010 

Month Temp. Precip. GDD   Temp. Precip. GDD   Temp. Precip. GDD   Temp. Precip. GDD 

 
(C°) (cm) (C°) 

 
(C°) (cm) (C°) 

 
(C°) (cm) (C°) 

 
(C°) (cm) (C°) 

 
               January -12.2 1.4 - 

 

-14.4 5.7 - 

 

-5.6 1.8 - 

 

-10.7 1.2 - 

February -11.6 1.4 - 

 

-11.0 3.7 - 

 

-4.1 2.4 - 

 

-7.8 1.4 - 

March 2.3 4.3 - 

 

-5.0 3.9 - 

 

7.1 1.3 - 

 

-1.0 3.2 - 

April** 10.8 3.5 106.9 

 

5.9 6.4 42.8 

 

9.5 10.4 91.4 

 

6.8 5.2 53.6 

May** 13.8 5.6 164.4 

 

12.6 8.6 141.7 

 

16.0 4.5 202.8 

 

14.1 8.0 158.3 

June** 19.5 11.9 287.5 

 

18.8 11.0 266.9 

 

21.3 4.6 340.0 

 

19.1 10.2 273.9 

July** 22.6 7.9 384.7 

 

24.6 13.5 439.2 

 

25.2 4.3 434.7 

 

22.0 8.6 371.9 

August** 23.5 4.8 404.4 

 

21.7 4.3 356.1 

 

20.7 1.7 325.8 

 

21.2 6.7 346.4 

September 14.7 11.2 162.5 

 

15.5 2.2 199.4 

 

18.2 0.2 232.8 

 

15.6 7.1 189.2 

October 10.6 4.6 120.0 

 

10.8 2.5 130.6 

 

7.4 6.7 68.6 

 

8.1 5.1 67.8 

November 0.3 0.4 - 

 

2.7 0.4 - 

 

0.8 0.8 - 

 

-0.9 2.1 - 

December -11.4 2.8 - 

 

-2.8 0.9 - 

 

-7.8 1.1 - 

 

-8.4 1.4 - 

                                

 

**Significant growing season months
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2011 Research Site. 

 The 2011 growing season climate conditions were wetter (April through July) and 

warmer (April through August) than the 30-year averages (Table 3-1).  The total annual 

precipitation accumulation was slightly above the 30-year average, whereas the 

precipitation amount from April through August was 12% above the 30-year average, and 

varied from 7% (May and June) to 36% (July) above the 30-year averages.  August was 

dry, with rainfall 36% below the 30-year average.  In April, the average temperature was 

approximately 13.8% above 30-year average, whereas May was about 10% above 30-

year average, respectively.  In June and August, the average temperatures were slightly 

above the 30-year averages, whereas July was 11% above the 30-year average. 

2012 Research Site. 

 The 2012 climate conditions during May through August were very dry (44% to 

74.3% below the monthly 30-year averages) and very warm (ranging from 10.3% to 

28.1% warmer than the monthly 30-year averages) (Table 3-1).  The precipitation 

accumulation and average temperature during the growing season (April through August) 

were 34% below and 10.3% above the 30-year averages. The precipitation amount in 

April was 49.9% above the 30-year average, whereas May, June, July, and August were 

44%, 54.5%, 49.9%, and 74.3% below the monthly 30-year averages, respectively.  In 

addition, in April, May, June, and July, the average temperatures were 28.1%, 12.2%, 

10.2%, and 12.8% above the 30-year averages.  In August, the average temperature was 

slightly below the 30-year average. 
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Andover Research Site Weather Condition Comparisons. 

 The 2011 growing season was wetter than 2010 and 2012.  In 2011, the 

precipitation accumulation during April through August was 9.8% and 10.1% greater 

than 2010 and 2012, respectively.  Furthermore, the 2012 growing season was drier than 

2010 and 2011.  The average temperature during April through August was 7.4% and 

14% greater than 2010 and 2011, respectively. 

Andover Cover Crop Data. 

 The cover crop mixture was interseeded into standing corn at the V5 growth stage 

62 (2010), 48 (2011), and 40 (2012) days after corn planting (DACP) into dry soil 

conditions.  Precipitation amounts 14 days prior-to and after the cover crop interseeding 

dates were approximately 9.4 and 4.3 cm (2010), 9.2 and 6.3 cm (2011), and 2.4 and 3 

cm (2012).  In 2010 and 2011, all three cover crop species had emerged 9 (2010) and 14 

(2011) days after interseeding (DAI) in both the broadcast (BRD) and drill (DRL) 

treatments.  In 2012, 16 DAI, all three cover crop species had emerged in the DRL 

treatment only. 

Cover crop biomass was harvested on September 30, 2010 (100 DAI), August 22, 

2011 (55 DAI), and August 22, 2012 (71 DAI) and only crimson clover and winter wheat 

were present.  Differences were noticed in the crimson clover, winter wheat, and total 

cover crop biomass when comparisons were made among research years (Table 3-2a) 

and when the research years were examined individually (Table 3-2b). 

In 2010, at the summit (SMT) and toeslope (TSP) sites, the crimson clover 

biomass in the BRD and DRL treatments accounted for 93% and 80% (SMT) and 100%  
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 Table 3-2a.  Source of variation and P-values from PROC GLM procedure on crimson clover (CC), winter wheat (WW), and total 

cover crop (TC) biomass at the summit (SMT) and toeslope (TSP) research sites at Andover, SD from 2010-2012. 

 

 

 
  SMT 

 
TSP 

Source of Variation DF  CC WW TC 
 

CC WW TC 

Interseeding Technique (IT) 2  <0.0001 <0.0001 <0.0001 
 

<0.0001 <0.0001 <0.0001 

Year (Y) 2  <0.0001 0.5902 <0.0001 
 

0.0020 <0.0001 <0.0001 

IT x Y 4  <0.0001 0.2626 0.0013 
 

0.0064 <0.0001 <0.0001 

 

 

 

 

Table 3-2b.  Source of variation and P-values from PROC GLM procedure on crimson clover (CC), winter wheat (WW), and total 

cover crop (TC) biomass at the 2010, 2011, and 2012 research sites at Andover, SD. 

 

 

 
  2010 

 
2011 

 
2012 

Source of Variation DF  CC WW TC 
 

CC WW TC 
 

CC WW TC 

Interseeding Technique (IT) 2  <0.0001 0.2233 <0.0001 
 

<0.0001 <0.0001 <0.0001 
 

<0.0001 <0.0001 <0.0001 

Field Position (FP) 1  0.0002 0.1008 <0.0001 
 

<0.0001 <0.0001 <0.0001 
 

0.1357 0.0112 0.0051 

IT x FP 2  0.0248 0.2847 0.0175 
 

<0.0001 <0.0001 <0.0001 
 

0.1096 0.0019 0.0005 
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and 97% (TSP) of the total cover crop biomass, respectively (Table 3-3a).  In 2011, 

dissimilar to 2010 where crimson clover was the dominant species, the winter wheat 

biomass at the SMT and TSP sites accounted for 54.7% and 85.7% (SMT) and 86.7% and 

84.6% (TSP) of the total cover crop biomass (Table 3-3a).  Similar to 2011, in 2012 

winter wheat was the dominant cover crop species, with biomass in the DRL treatment 

accounting for 80% and 76.5% of the total cover crop biomass, respectively (Table 3-

3a).    

There were several differences noted in the total cover crop and individual cover 

crop species biomass from 2010 through 2012 at the SMT and TSP sites (Table 3-3b).  

Crimson clover grew very well at the SMT site in 2010 and averaged 79.4 kg ha
-1

 over all 

treatments, whereas in 2011 and 2012 at the SMT sites the stands were very poor and had 

on average 94.4% less crimson clover biomass than 2010.  In addition, at the TSP sites in 

2010 and 2011, crimson clover grew very well and averaged 20.8 and 15.6 kg ha
-1

 over 

all treatments, whereas in 2012 stands were poor and had on average 83.8% less crimson 

clover biomass than 2010 and 2011, respectively (Table 3-3b).  Furthermore, the winter 

wheat biomass was similar across all years and treatments at the SMT sites, whereas, at 

the TSP sites, the winter wheat grew very well in 2011 and averaged 86.5 kg ha
-1

 over all 

treatments and had on average 94.3% more winter wheat biomass than 2010 and 2012, 

respectively (Table 3-3b).  In addition, at the SMT and TSP sites, because crimson 

clover at the 2010 SMT site and winter wheat at the 2011 TSP site made up the majority 

of the total biomass when averaged over all treatments, the total cover crop biomass 

showed the same trends (Table 3-3b).  
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Table 3-3a.  Comparisons between the crimson clover (CC), winter wheat (WW), and total cover crop (TC) biomass harvested on 

September 30, 2010, August 22, 2011, and August 22, 2012 in the broadcast (BRD) and drill (DRL) interseeding treatments at 

Andover, SD. 

 
2010 

 
2011 

 
2012 

Interseeding 

Treatment 

SMT TSP 
 

SMT TSP 
 

SMT TSP 

CC WW TC CC WW TC 
 

CC WW TC CC WW TC 
 

CC WW TC CC WW TC 

 
(kg ha

-1
) 

 
(kg ha

-1
) 

 
(kg ha

-1
) 

                     BRD 120.6 8.8 129.4 23 0 22.5 
 

3.9 4.8 8.7 1.6 10.2 11.8 
 

0 0 0 0 0 0 

DRL 117.5 30 147.5 40 1.3 41.3 
 

8.8 53 62 45 249.2 294.6 
 

14.4 57.7 72.1 8.8 28.5 37.3 

                     LSD (0.10 NS NS NS NS NS NS 
 

3.9 13 13 11 53.9 58.5 
 

3.9 12 14.1 3.3 9.7 8.9 

 

 

 

Table 3-3b.  Comparisons between the crimson clover (CC), winter wheat (WW), and total cover crop (TC) biomass harvested on 

September 30, 2010, August 22, 2011, and August 22, 2012 averaged over all treatments at the SMT and TSP research sites at 

Andover. 

 

 
SMT 

 

TSP 

Research Site CC WW TC 

 

CC WW TC 

 
(kg ha

-1
) 

 

(kg ha
-1

) 

        2010 79.4 12.9 92.3 

 

20.8 0.4 21.3 

2011 4.2 19.2 23.4 

 

15.6 86.5 102.1 

2012 4.8 19.2 24 

 

2.9 9.5 12.4 
        

 
      

LSD (0.10) 19.2 NS 22.9 

 

10.6 18 20.9 
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The DRL treatment, when averaged over all years, produced more biomass by 

species and total than the BRD treatment, with exceptions to crimson clover at the SMT 

site (Table 3-4).  The cover crop biomass in the DRL treatments were 51% to 90% 

greater at the SMT sites and 75% to 90% greater at the TSP sites than the BRD 

treatments.   Similar results were noted also at the 2011 and 2012 SMT and TSP research 

sites when examined individually (Table 3-3a).  Furthermore, the SMT sites two out of 

the three research years had produced more biomass than the TSP sites.   

In 2010, at the SMT site, the crimson clover biomass in the interseeding 

treatments (BRD and DRL) was about 94.6% greater than 2011 and 2012, respectively.  

In addition, at the TSP site, the crimson clover biomass in the 2010 BRD treatment was 

approximately 96.4% greater than the BRD treatments in 2011 and 2012, whereas the 

cover crop biomass in the DRL treatment in 2011 was 12% and 80% greater than 2010 

and 2012 DRL treatments, respectively.  Winter wheat biomass was similar across all 

years and interseeding methods at the SMT sites, whereas at the TSP site in 2011, the 

BRD and DRL treatments had on average 97% more winter wheat biomass than 2010 and 

2012.   

The total cover crop biomass averaged over the interseeding treatments at the 

2010 SMT site had 93.3% and 58.3% more biomass than 2011 and 2012, respectively.  

Also in 2010, at the TSP site, the BRD and DRL treatments had 48% and 100% more 

total cover crop biomass than those in 2011 and 2012.  In addition, the DRL treatment in 

2011 had on average 86.7% more total cover crop biomass than DRL treatments in 2010 

and 2012, respectively.  
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Table 3-4.  Comparisons between the crimson clover (CC), winter wheat (WW), and total cover crop (TC) biomass harvested on 

September 30, 2010, August 22, 2011, and August 22, 2012 averaged over all years at the summit (SMT) and toeslope (TSP) research 

sites at Andover, SD. 

 

 

 
SMT 

 
TSP 

Research Site CC WW TC 
 

CC WW TC 

 
(kg ha

-1
) 

 
(kg ha

-1
) 

        
BRD 41.5 4.5 46 

 
8 3.4 11.4 

DRL 46.9 46.8 93.7 
 

31.4 93 124.4 

        
LSD (0.10) NS 11.7 22.9 

 
8.5 18 20.9 
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Andover Weed Data. 

The grass and broadleaf weed biomass were harvested on September 30, 2010, 

August 22, 2011, and August 22, 2012.  The most prominent grass and broadleaf weed 

species each year were:  yellow foxtail (Setaria pumila), green foxtail (Setaria viridis), 

barnyardgrass (Echninochloa crus-galli), kochia (Kochia scoparia), redroot pigweed 

(Amaranthus retroflexus), common lambsquarters (Chenopodium album), and eastern 

black nightshade (Solanum ptychanthum) (2010 only).  Differences were noticed in the 

grass weed, broadleaf weed, and total weed biomass when comparisons were made 

between each research year (Table 3-5a) and when the research years were examined 

individually (Table 3-5b). 

In 2010, at the SMT site, the broadleaf weed biomass in the BRD and DRL 

treatments accounted for 55.9% and 53.6% of the total weed biomass, whereas at the TSP 

site, the grass weed biomass in the interseeding treatments accounted for about 98.9% of 

the total weed biomass (Table 3-6a).  Similar to the 2010 TSP site, the grass weed 

biomass in the BRD and DRL treatments at the SMT and TSP sites in 2011 and 2012 on 

average accounted for 95.1% of the total weed biomass (Table 3-6a).   

There were differences noticed in the total weed and individual weed biotypes 

biomass from 2010 through 2012 at the SMT and TSP sites (Table 3-6b).  In 2010, the 

SMT and TSP research sites had a high weed infestation by which the grass weed, 

broadleaf weed, and total weed biomass averaged over all treatments were between 

62.2% and 99.6% greater than 2011 and 2012, respectively.  Furthermore, when averaged 

over all years, the BRD and DRL treatments reduced the grass weed biomass at the SMT  
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 Table 3-5a.  Source of variation and P-values from PROC GLM procedure on grass weed (GW), broadleaf weed (BW), and total 

weed (TW) biomass at the summit (SMT) and toeslope (TSP) research sites at Andover, SD from 2010-2012. 

 

 
  SMT 

 
TSP 

Source of Variation DF  GW BW TW 
 

GW BW TW 

Interseeding Technique (IT) 2  0.0003 0.5156 0.2375 
 

0.0356 0.2771 0.0307 

Year (Y) 2  <0.0001 0.1100 <0.0001 
 

0.0003 0.0732 0.0002 

IT x Y 4  0.0003 0.7257 0.4727 
 

0.2756 0.2612 0.2334 

 

 

 

 

 

Table 3-5b.  Source of variation and P-values from PROC GLM procedure on grass weed (GW), broadleaf weed (BW), and total weed 

(TW) biomass at the 2010, 2011, and 2012 research sites at Andover, SD. 

 

 

 
  2010 

 
2011 

 
2012 

Source of Variation DF  GW BW TW 
 

GW BW TW 
 

GW BW TW 

Interseeding Technique (IT) 2  0.0017 0.622 0.0500 
 

0.0403 0.3455 0.3480 
 

0.1068 0.3719 0.1098 

Field Position (FP) 1  0.4511 0.1534 0.8495 
 

0.5067 <0.0001 <0.0001 
 

0.9531 0.3200 0.9648 

IT x FP 2  0.9594 0.5276 0.9210 
 

0.2242 0.9798 0.8580 
 

0.7782 0.3719 0.7688 
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Table 3-6a.  Comparisons between the grass weed (GW), broadleaf weed (BW), and total weed (TW) biomass harvested on September 

30, 2010, August 22, 2011, and August 22, 2012 in the broadcast (BRD) and drill (DRL) interseeding treatments at Andover, SD. 

 
2010 

 
2011 

 
2012 

Interseeding 

Method 

SMT TSP 
 

SMT TSP 
 

SMT TSP 

GW BW TW GW BW TW 
 

GW BW TW GW BW TW 
 

GW BW TW GW BW TW 

 
(kg ha

-1
) 

 
(kg ha

-1
) 

 
(kg ha

-1
) 

                     BRD 160 203 363 261 0 261 
 

54 0 54 190 0 190 
 

13 0 13 40 0 40 

DRL 119 138 257 229 5 234 
 

41 19 60 46 1 47 
 

20 0 20 0 0 0 

                     Control 604 10 614 643 18 661 
 

51 0 51 192 0 192 
 

79 0 79 77 0 77 

                     LSD (0.10) 228 NS NS 392 NS 391 
 

NS 9.2 NS 127 NS 127 
 

NS NS NS 59 NS 59 

 

 

 

Table 3-6b.  Comparisons between the grass weed (GW), broadleaf weed (BW), and total weed (TW) biomass harvested on 

September 30, 2010, August 22, 2011, and August 22, 2012 averaged over all treatments at the SMT and TSP research sites at 

Andover. 

 

 
SMT 

 

TSP 

Research Site GW BW TW 

 

GW BW TW 

 
(kg ha

-1
) 

 
(kg ha

-1
) 

        2010 294.2 116.7 410.9 

 

377.5 7.5 385 

2011 48.8 6.3 55.1 

 

142.6 0.2 142.8 

2012 37.4 0.4 37.8 

 

39 0 39 
     

 
   

LSD (0.10) 81.9 102.4 135.3 

 

136.8 6.1 136.6 
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and TSP sites by 69% and 75% (SMT) and 46% and 69% (TSP), respectively (Table 3-

7).  However, although the BRD and DRL treatments influenced the grass weed biomass 

at the SMT and TSP sites when averaged over all the research years, reductions were 

only noticed in 2010 (SMT and TSP site) and at the TSP sites in 2011 and 2012 when the 

research sites were examined individually (Table 3-6a).   

Andover Corn Grain Yield Data. 

 The corn grain was harvested on September 28 to October 1, 2010, October 13 to 

October 18, 2011, and September 21 to September 23, 2012.  There were differences 

noticed when comparing research years (Table 3-8a) and when individually examining 

each year (Table 3-8b).  In 2010, the corn grain yield at the SMT site, averaged over all 

treatments, was close to 31% and 40% greater than 2011 and 2012, whereas at the TSP 

site, the 2010 and 2011 corn grain yields were similar and about 43.7% greater than 2012, 

respectively (Table 3-9).  Furthermore, when averaged over all treatments, the grain 

yield in 2011 and the TSP site was 30% greater than the SMT site, whereas, in 2010, the 

SMT was 6% greater than the TSP site, respectively.  The interseeding methods (BRD 

and DRL) and the no cover crop (control) treatment were similar across all years (Table 

3-10a and Table 3-10b). 

Andover Fall Ground Cover Observations. 

 In mid-October to early-November, observations were made in the fall to see if 

any of the interseeded cover crops were present.  In 2010 and 2011 it was observed that 

crimson clover and winter wheat both remained in the DRL treatments, with winter wheat 

being the most prominent.  However, there was no growth or regrowth in the BRD  
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Table 3-7.  Comparisons between the grass weed (GW), broadleaf weed (BW), and total weed (TW) biomass harvested on September 

30, 2010, August 22, 2011, and August 22, 2012 averaged over all years in the broadcast (BRD), drill (DRL), and no cover crop 

(control) treatments at the summit (SMT) and toeslope (TSP) research sites at Andover, SD. 

 

 

 
SMT 

 
TSP 

Treatments GW BW TW 
 

GW BW TW 

 
(kg ha

-1
) 

 
(kg ha

-1
) 

        
BRD 75.8 45.8 121.6  163.6 0 163.6 

DRL 60 74.2 134.2  91.6 1.9 93.5 

        

Control 244.6 3.3 247.9  303.9 5.8 309.7 

 
       

LSD (0.10) 81.9 NS NS  136.8 NS 139.6 
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Table 3-8a.  Source of variation and P-values from PROC GLM procedure on corn grain yield (CY) at the summit (SMT) and toeslope 

(TSP) research sites at Andover, SD from 2010-2012. 

 

 

 
  SMT 

 
TSP 

Source of Variation DF  CY 
 

CY 

Interseeding Technique (IT) 2  0.6567 
 

0.9722 

Year (Y) 2  <0.0001 
 

<0.0001 

IT x Y 4  0.5960 
 

0.9209 

 

 

 

 

 

Table 3-8b.  Source of variation and P-values from PROC GLM procedure on corn grain yield (CY) at the 2010, 2011, and 2012 

research sites at Andover, SD. 

 

 

 
  2010 

 
2011 

 
2012 

Source of Variation DF  CY 
 

CY 
 

CY 

Interseeding Technique (IT) 2  0.2604 
 

0.6145 
 

0.8910 

Field Position (FP) 1  0.5005 
 

<0.0001 
 

0.0636 

IT x FP 2  0.9335 
 

0.6908 
 

0.9380 
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Table 3-9.  Comparisons between the corn grain yield (CY) harvested on September 28 to October 1, 2010, October 13 to October 18, 

2011, and September 21 to September 23, 2012 averaged over all treatments at the summit (SMT) and toeslope (TSP) research sites. 

 

 
SMT 

 
TSP   

Research Year CY 
 

CY  LSD (0.10) 

 
(kg ha

-1
) 

 
(kg ha

-1
)   

    
  

2010 13185 
 

13404  NS 

2011 8980 
 

12850  957 

2012 7854 
 

7387  414 

    
  

LSD (0.10) 766 
 

571  - 
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Table 3-10a.  Comparisons between the corn grain yield (CY) harvested on September 28 to October 1, 2010, October 13 to October 

18, 2011, and September 21 to September 23, 2012 in the broadcast (BRD), drill (DRL), and no cover crop (control) treatments at the 

summit (SMT) and toeslope (TSP) research sites at Andover, SD. 

 

 
SMT 

 
TSP 

Research Year CY 
 

CY 

 
(kg ha

-1
) 

 
(kg ha

-1
) 

    BRD 9939 
 

11241 

DRL 9836 
 

11167 

    
Control 10244 

 
11241 

    LSD (0.10) NS 
 

NS 

 

 

Table 3-10b.  Comparisons between the corn grain yield (CY) harvested on September 28 to October 1, 2010, October 13 to October 

18, 2011, and September 21 to September 23, 2012 in the broadcast (BRD), drill (DRL), and no cover crop (control) treatments at the 

summit (SMT) and toeslope (TSP) research sites at Andover, SD. 

 

 
SMT   TSP 

Interseeding Method 2010 2011 2012  2010 2011 2012 

 
(kg ha

-1
)  (kg ha

-1
) 

    
 

   
BRD 13520 8452 7845  13596 12708 7419 

DRL 12742 8797 7968  13112 12982 7406 

Control 13263 9692 7748  13505 12861 7336 

    
 

   
LSD (0.10) NS NS NS  NS NS NS 
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treatments or in the BRD and DRL treatments in 2012.  In addition, the inter-row ground 

cover remaining after corn grain harvest in the DRL treatments were visually estimated to 

be from 15% to 45% respectively. 

Trail City Weather Conditions. 

2011 Research Site. 

Climate conditions during the 2011 growing season were cooler and wetter than 

the 30-year averages (Table 3-11).  The total annual precipitation was 16% above the 30-

year average, whereas the precipitation amount from April through August was 

approximately 28% above the 30-year average.  In April, May, June, and August the 

precipitation amounts were 37%, 13%, 47%, and 35% above the 30-year averages, 

respectively.  Precipitation in July was 19% below the 30-year average.  In April and 

May, the average temperatures were about 28% and 18% below the 30-year average.  In 

June the average temperature was slightly below the 30-year average, whereas the 

average temperatures in July and August were slightly greater than the 30-year average, 

respectively.  

2012 Research Site. 

 The 2012 growing season climate conditions were drier and warmer than the 30-

year averages (Table 3-11).  Although the total annual (January through December) 

precipitation was 21% below the 30-year average, the precipitation accumulation from 

April through August was slightly below the 30-year average.  In April, May and July, 

the precipitation amounts were 47%, 2%, and 7% above the 30-year averages, whereas  
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Table 3-11.  Trail City average monthly temperature and total precipitation amounts and growing degree days (GDD) for 2011 to 2012 

and the 30-year average [Data obtained from the NOAA (National Oceanic and Atmospheric Administration) recording station 11.4 

km from research sites].  

 
2011 

 
2012 

 
1980-2010 

Month Temp. Precip. GDD 
 

Temp. Precip. GDD 
 

Temp. Precip. GDD 

 
(C°) (cm) (C°) 

 
(C°) (cm) (C°) 

 
(C°) (cm) (C°) 

            
January -11.5 2.4 - 

 
-4.1 0.9 - 

 
-7.8 1.1 - 

February -10.4 1.7 - 
 

-4.6 2.3 - 
 

-5.4 1.5 - 

March -4.6 4.3 - 
 

8.4 1.2 - 
 

0.2 2.9 - 

April** 5.5 6.8 46.1 
 

9.8 8.1 117.5 
 

7.7 4.3 73.3 

May** 11.4 8.3 122.2 
 

14.1 7.4 180.3 
 

13.8 7.2 166.1 

June** 18.8 15.7 268.1 
 

20.6 4.7 317.5 
 

18.9 8.4 268.3 

July** 24.1 5.4 406.4 
 

25.8 7.5 428.3 
 

22.7 6.7 390.6 

August** 22.5 6.7 363.3 
 

21.4 2.3 335.3 
 

22.0 4.3 370.0 

September 16.2 1.0 221.9 
 

16.8 0.1 251.4 
 

16.2 3.7 213.9 

October 10.6 2.4 128.3 
 

7.4 0.8 80.3 
 

8.5 4.0 81.7 

November 0.8 0.0 - 
 

0.3 1.0 - 
 

-0.2 1.5 - 

December -3.3 0.6 - 
 

-6.5 0.9 - 
 

-6.8 1.2 - 

            
 

**Significant growing season months. 
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June and August were 45% and 47% below the 30-year averages, respectively.  From 

April through August, the average temperatures ranged from slight to 37% above the 30-

year averages. 

Trail City Research Site Weather Condition Comparisons. 

 The 2011 growing season was wetter and cooler than 2012.  In 2011, the 

precipitation accumulation during the growing season (April through August) was 31% 

greater than 2012.  In addition, the average temperature during the 2011 growing season 

was 10% cooler than 2012.  

Trail City Cover Crop Data. 

 The cover crop mixture was interseeded into standing corn at the V5 growth stage 

45 (2011) and 24 (2012) DACP into dry soil conditions.  Precipitation amounts 14 days 

prior-to and after the cover crop interseeding dates were approximately 13 and 1.9 cm 

(2011) and 4.6 and 1.4 cm (2012).  In 2011, all three cover crop species had emerged at 

the V12 corn growth stage in both the BRD and DRL treatments, whereas, in 2012 no 

cover crop species had emerged in the interseeding treatments.  Therefore, only cover 

crop data from 2011 will be discussed. 

 When the cover crop biomass was harvested on September 14, 2011 (76 DAI), 

only crimson clover and winter wheat were present.  There were several differences 

noticed in the total and individual cover crop species when comparisons were made 

between sites (Table 3-12a).  In addition, there were also differences noticed in the 

interseeding methods (BRD vs DRL).  
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Table 3-12a.  Source of variation and P-values from PROC GLM procedure on crimson clover (CC), winter wheat (WW), and total 

cover crop (TC) biomass at Trail City, SD in 2011. 

 

 
Cover Crop 

Source of Variation CC WW TC 

Interseeding Technique (IT) <0.0001 <0.0001 <0.0001 

Field Position (FP) <0.0001 0.9967 <0.0001 

IT x FP 0.0002 1.0000 0.0002 

 

 

 

 

 

Table 3-12b.  Comparisons between the crimson clover (CC), winter wheat (WW), and total cover crop (TC) biomass harvested on 

September 14, 2011 in the broadcast (BRD) and drill (DRL) interseeding methods at the summit (SMT) and toeslope (TSP) research 

sites at Trail City, SD. 

 

 

 
SMT 

 
TSP 

Interseeding Methods CC WW TC 
 

CC WW TC 

 
(kg ha

-1
) 

 
(kg ha

-1
) 

        
BRD 1.2 0 1.2 

 
118.6 0 118.6 

DRL 26.9 15.5 42.4 
 

306.6 15.4 322.1 

        
LSD (0.10) 19.8 5.2 17.9 

 
105.6 11.3 107.8 
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 In 2011, at the SMT and TSP research sites, the crimson clover biomass in the 

BRD and DRL treatments accounted for 100% and 63.4% (SMT) and 100% and 95.2% 

(TSP) of the total cover crop biomass, respectively (Table 3-12b).  Furthermore, there 

were differences noticed in the interseeding methods (BRD vs DRL) in the total cover 

crop and individual cover crop species biomass.  When averaged over the SMT and TSP 

sites, the DRL treatment had about 64%, 100%, and 67% greater crimson clover, winter 

wheat, and total cover crop biomass than the BRD treatment. 

 The crimson clover grew very well in the BRD and DRL treatments at the TSP 

site, and was on average 95% greater than the SMT site.  Because crimson clover made 

up the majority of the total biomass in the BRD and DRL treatments at the TSP site, the 

total cover crop biomass showed the same trends.  In addition, the winter wheat biomass 

in the interseeding treatments at the SMT and TSP sites were similar. 

Trail City Weed Data. 

  The grass and broadleaf weed biomass were harvested on September 30, 2011.  

The most prominent grass and broadleaf weed species were:  yellow and green foxtail, 

barnyardgrass, kochia, redroot pigweed, common lambsquarters, and turnips (Brassica 

rapa rapa) (TSP site only).  The turnips at the TSP site were regrowth from the fall cover 

crop mixture that was drill seeded immediately after wheat harvest in 2010.  Differences 

were noticed in the interseeding method (BRD vs DRL) and field position (SMT vs TSP) 

(Table 3-13a). 

 In 2011, at the SMT site, the broadleaf weed biomass in the BRD and DRL 

treatments accounted for 74.3% and 95.5% of the total weed biomass.  Similar to the  
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Table 3-13a.  Source of variation and P-values from PROC GLM procedure on grass weed (GW), broadleaf weed (BW), and total 

weed (TW) biomass at Trail City, SD in 2011. 

 

 
  Weed Biomass 

Source of Variation DF  GW BW TW 

Interseeding Technique (IT) 2  0.0403 0.3455 0.3480 

Field Position (FP) 1  0.5067 <0.0001 <0.0001 

IT x FP 2  0.2242 0.9798 0.8580 

 

 

 

 

Table 3-13b.  Comparisons between the grass weed (GW), broadleaf weed (BW), and total weed (TW) biomass harvested on 

September 14, 2011 in the broadcast (BRD) and drill (DRL) interseeding methods and the no cover crop (control) treatments at the 

summit (SMT) and toeslope (TSP) research sites at Trail City, SD. 

 

 

 
SMT 

 
TSP 

Treatment GW BW TW 
 

GW BW TW 

 
(kg ha

-1
) 

 
(kg ha

-1
) 

        
BRD 33.5 97 130.5 

 
9.5 265.7 275.2 

DRL 2.3 49.1 51.4 
 

27.4 202.9 230.3 

        
Control 41.5 51.9 93.4 

 
67.1 265.7 332.8 

        
LSD (0.10) NS 44.6 60.3 

 
38.5 NS NS 
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SMT site, the broadleaf weed biomass in the interseeding treatments at the TSP site 

accounted for on average 92.3% of the total weed biomass, respectively (Table 3-13b).  

Furthermore, when averaged over all treatments, the TSP site had close to 71.2% more 

broadleaf weed biomass than the SMT site, whereas the grass weed biomass were similar 

between sites (Table 3-14a).  In addition, because the broadleaf weed biomass made up 

the majority of the total weed biomass at the TSP and SMT sites, total weed biomass 

followed the same trends. 

 When averaged over the SMT and TSP sites, the BRD and DRL treatments had 

an influence on the grass weed biomass (Table 3-14b).  In the control (no interseeded 

cover crop) the grass weed biomass averaged 54.3 kg ha
-1

 over all treatments which was 

60.4% and 72.6% greater than the BRD and DRL treatments, respectively.  However, 

although the interseeding methods had reduced the grass weed biomass when averaged 

over both sites (SMT and TSP), the reduction in grass weed biomass was only noticed at 

the TSP site (Table 3-13b). 

Trail City Corn Yield Data. 

 The corn grain was harvested on October 5 to October 6, 2011.  Differences were 

noticed between the research sites and interseeding methods (Table 3-15a).  The corn 

grain yield at the TSP site was 42.4% greater than the SMT site when averaged over all 

treatments (Table 3-15b).  In addition, when averaged over the SMT and TSP sites, the 

corn grain yield in the BRD and DRL treatments were similar to the control (Table 3-

16a).  In addition, when the sites were individually examined, the corn grain yield in the 

BRD and DRL treatments were similar to the control (Table 3-16b).  
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Table 3-14a.  Comparisons between the grass weed (GW), broadleaf weed (BW), and total weed (TW) biomass harvested on 

September 14, 2011 averaged over all treatments at the summit (SMT) and toeslope (TSP) research sites at Trail City, SD. 

 

 

Field Position GW BW TW 

 
(kg ha

-1
) 

    
SMT 25.8 66 91.8 

TSP 34.7 229.2 263.9 

    
LSD (0.10) NS 54.8 60.7 

 

 

Table 3-14b.  Comparisons between the grass weed (GW), broadleaf weed (BW), and total weed (TW) biomass harvested on 

September 14, 2011 at the summit (SMT) and toeslope (TSP) research sites averaged over the broadcast (BRD), drill (DRL), and 

control (no cover crop) treatments at Trail City, SD. 

 

 

Treatment GW BW TW 

 
(kg ha

-1
) 

    
BRD 21.5 181.4 202.9 

DRL 14.9 126 140.9 

    
Control 54.3 135.5 189.8 

    
LSD (0.10) 27.2 NS NS 
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Table 3-15a.  Source of variation and P-values from PROC GLM procedure on corn grain yield (CY) at Trail City, SD in 2011. 

 

Source of Variation DF  CY 

Interseeding Technique (IT) 1  0.1543 

Field Position (FP) 2  <0.0001 

IT x FP 2  0.4353 

 

 

 

 

 

Table 3-15b.  Comparisons between the corn grain yields harvested on October 5 to October 6, 2011 averaged over all treatments at 

the summit (SMT) and toeslope (TSP) research sites at Trail City, SD. 

 

 

Research Site CY 

 
(kg ha

-1
) 

  
SMT 5464.8 

TSP 9483.7 

  
LSD (0.10) 524.5 
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Table 3-16a.  Comparisons between the corn grain yield (CY) harvested on October 5 to October 6, 2011 averaged over the broadcast 

(BRD), drill (DRL), and no cover crop (control) treatments from the summit (SMT) and toeslope (TSP) research sites at Trail City, 

SD. 

 

Treatment CY 

 
(kg ha

-1
) 

  
BRD 7774.3 

DRL 7598.1 

Control 7050.3 

  
LSD (0.10) NS 

 

 

Table 3-16b.  Comparisons between the corn grain yield (CY) harvested on October 5 to October 6, 2011 in the broadcast (BRD), drill 

(DRL), and no cover crop (control) treatments at the summit (SMT) and toeslope (TSP) research sites at Trail City, SD. 

 

 
SMT 

 
TSP 

Research Year CY 
 

CY 

 
(kg ha

-1
) 

 
(kg ha

-1
) 

    
BRD 5760.8 

 
9787.9 

DRL 5346.6 
 

9849.6 

Control 5287 
 

8813.6 

    
LSD (0.10) NS 

 
NS 
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Trail City Fall Ground Cover Observations. 

 In mid-October to early-November, observations were made in the fall to see if 

any of the interseeded cover crops were present.  In 2011, at both the SMT and TSP 

research sites, it was visually observed that none of the interseeding cover crops were 

present in the BRD or DRL treatments.  

Aurora Weather Conditions. 

2011 Research Site. 

 Climate conditions during the 2011 growing season (April through August) was 

wetter and warmer than the 30-year averages (Table 3-17).  Although the annual 

(January through December) precipitation was slightly below the 30-year average, the 

precipitation accumulation from April through August was about 19% above the 30-year 

average.  The precipitation accumulations in April and May were 19% and 52% above 

the 30-year averages, whereas, in June and July, the precipitation amounts were about 7% 

below and 33% above the 30-year averages.  Precipitation in August was 51% below the 

30-year average.  In April, May, and June the average temperature ranged from slight to 

16% below the 30-year averages.  In July and August, the average temperature ranged 

from slight to 13% above the 30-year averages, respectively. 

2012 Research Site. 

 The 2012 growing season (April through August) climate conditions were drier 

and warmer than the 30-year averages (Table 3-17).  The total annual precipitation was 

18% below the 30-year average, whereas, from April through August it was slightly  
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Table 3-17.  Aurora average monthly temperature and total precipitation amounts and growing degree days (GDD) for 2009 to 2012 

and the 30-year average [Data obtained from the NOAA (National Oceanic and Atmospheric Administration) recording station  7.2 

km from research sites].  

 
2011 

 
2012 

 
1980-2010 

Month Temp. Precip. GDD 
 

Temp. Precip. GDD 
 

Temp. Precip. GDD 

 
(C°) (cm) (C°) 

 
(C°) (cm) (C°) 

 
(C°) (cm) (C°) 

            
January -13.9 3.4 - 

 
-6.4 1.3 - 

 
-10.6 0.9 - 

February -11.0 2.6 - 
 

-4.8 1.6 - 
 

-7.8 1.0 - 

March -4.2 2.1 - 
 

6.5 1.4 - 
 

-1.1 2.9 - 

April** 5.6 6.7 34.4 
 

9.2 7.0 92.2 
 

6.7 5.4 47.2 

May** 12.5 15.7 136.4 
 

15.4 17.6 191.1 
 

13.4 7.5 147.8 

June** 18.5 10.1 254.2 
 

20.5 4.0 317.2 
 

18.7 10.9 261.9 

July** 24.4 12.4 431.1 
 

25.1 3.6 439.4 
 

21.3 8.3 351.1 

August** 20.5 3.9 321.7 
 

19.8 6.3 303.6 
 

20.1 7.8 314.7 

September 14.4 0.4 189.4 
 

15.3 0.2 215.3 
 

15.0 8.1 181.1 

October 10.2 1.3 131.7 
 

6.2 2.7 66.9 
 

7.6 5.2 66.9 

November 0.8 0.3 - 
 

0.5 0.9 - 
 

-0.7 2.4 - 

December -3.8 0.6 - 
 

-7.7 4.2 - 
 

-8.5 1.2 - 

            
 

 

**Significant growing season months
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below the 30-year average.  In April and May, the precipitation amounts were 23% and 

57% above the 30-year averages, respectively.  In June through August, the precipitation 

accumulations were approximately 63%, 57%, and 19% below the 30-year averages.  In 

April through July, the average temperatures were 28%, 13%, 9%, and 15% above the 

30-year averages, respectively.  In August, the average temperature was slightly below 

the 30-year average. 

Aurora Weather Condition Comparisons. 

 In 2011, the annual precipitation amount was approximately 15% greater than 

2012.  In addition, the precipitation accumulation from April through August in 2011 was 

49 cm which was 21% greater than 2012, respectively.  Furthermore, the average 

temperature from April through August in 2012 was approximately 9% greater than 

2011. 

Aurora Cover Crop Data. 

 The cover crop mixture was interseeded into standing corn at the V3 and V5 corn 

growth stages 30 and 47 DACP (2011) and 24 and 34 DACP (2012) into dry soil 

conditions.  Precipitation amounts 14-days prior-to and after the cover crop V3 

interseeding dates were about 10.8 and 2.1 cm (2011) and 5 and 3.9 cm (2012), whereas 

the after the V5 interseeding dates the precipitation amounts were 2.1 and 10.7 cm (2011) 

and zero and 4 cm (2012), respectively.  In 2011, all three cover crop species had 

emerged 53 (V3) and 36 (V5) DAI in both the BRD and DRL treatments.  In 2012, all 

three cover crop species had emerged 18 (V3) and 8 (V5) DAI in the DRL treatment 

only.  The broadcast seed was seen to have washed into alleyways due to a 4 cm 
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downpour, which some seeds germinated, but where killed due to severely dry topsoil 

conditions. 

 When the cover crop biomass were harvested on September 22, 2011 [111 (V3) 

and 94 (V5) DAI] and August 29, 2012 [81 (V3) and 71 (V5) DAI] only crimson clover 

and winter wheat were present.  There were differences noticed in the crimson clover 

biomass, winter wheat biomass, and total cover crop biomass when comparisons were 

made between the 2011 and 2012 research years.  In addition, differences were noticed in 

the total and individual cover crop species when the research years were examined 

individually (Table 3-18a). 

 In 2011, the crimson clover biomass accounted for on average 94% of the total 

cover crop in both BRD treatments the DRL V3 treatment (all were lower than the 

seeding rate), whereas, winter wheat accounted for 89% of the total biomass in the DRL 

V5 treatment, respectively.  In 2012, the winter wheat biomass accounted for 

approximately 52% and 76% of the total biomass in the DRL V3 and V5 treatments 

(Table 3-18b).  Furthermore, when the total and individual cover crop species biomass in 

the interseeding treatments were averaged over both years, the crimson clover and total 

biomass in 2012 were 73.3% and 54.1% greater than 2011, respectively (Table 3-19a). 

    At Aurora, the DRL treatments always resulted in a greater cover crop biomass 

than the BRD treatments when averaged over both years (Table 3-19b).  In 2011, the 

BRD V3 and BRD V5 treatments had 100% more crimson clover biomass than 2012, 

whereas the crimson clover biomass in the DRL V3 and DRL V5 treatments were 96.3 % 

and 66.5% greater in 2012 than 2011, respectively.  The crimson clover biomass  
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Table 3-18a.  Source of variation and P-values from PROC GLM procedure on crimson clover (CC), winter wheat (WW), and total 

cover crop (TC) biomass at Aurora, SD from 2011 to 2012. 

 

Source of Variation CC WW TC 

Interseeding Technique (IT) <0.0001 <0.0001 <0.0001 

Year (Y) <0.0001 0.2196 0.0204 

IT x Y <0.0001 0.4264 0.0059 

 

 

 

 

 

Table 3-18b.  Comparisons between the crimson clover (CC), winter wheat (WW), and total cover crop (TC) biomass harvested on 

September 22, 2011 and August 29, 2012 in the broadcast (BRD) and drill (DRL) interseeding methods at Aurora, SD. 

 

 
2011 

 
2012 

Treatment CC WW TC 
 

CC WW TC 

 
(kg ha

-1
) 

 
(kg ha

-1
) 

        
BRD V3 4.1 0.4 4.5 

 
0 0 0 

BRD V5 1.2 0.1 1.3 
 

0 0 0 

DRL V3 1 0 1 
 

27.1 28.8 55.9 

DRL V5 5.4 44.5 49.8 
 

16.1 51.4 67.5 

        
LSD (0.10) 3 NS 20.3 

 
2.8 NS 21 
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Table 3-19a.  Comparisons between the crimson clover (CC), winter wheat (WW), and total cover crop biomass (TC) harvested on 

September 22, 2011 and August 29, 2012 averaged over the interseeding treatments at Aurora, SD from 2011 to 2012.  

 

 

Research Year CC WW TC 

 
(kg ha

-1
) 

    
2011 2.3 9 11.3 

2012 8.6 16 24.6 

    
LSD (0.10 1.3 NS 9.4 

 

 

 

Table 3-19b.  Comparisons between the crimson clover (CC), winter wheat (WW), and total cover crop (TC) biomass harvested on 

September 22, 2011 and August 29, 2012 averaged in the broadcast (BRD) and drill (DRL) interseeding treatments at Aurora, SD. 

 

 

Treatment CC WW TC 

 
(kg ha

-1
) 

    
BRD V3 1.8 0.2 2 

BRD V5 0.5 0.1 0.6 

DRL V3 15.9 16.5 32.4 

DRL V5 11.5 48.4 59.9 

    
LSD (0.10) 2.1 14.8 14.7 
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accumulated in the 2011 BRD V3 and BRD V5 treatments, however, was greater than 

2012, but were below the initial seeding rate.  Similar results were noticed in the total 

cover crop biomass accumulations in both the BRD and DRL V3 and V5, treatments.  In 

addition, the winter wheat biomass was similar between treatments and years.   

Aurora Weed Data. 

The grass and broadleaf weed biomass were harvested on September 22, 2011 and 

August 29, 2012.  The most prominent grass and broadleaf weed species were:  yellow 

foxtail, green foxtail, barnyardgrass, kochia, redroot pigweed, common lambsquarters, 

and soybeans (Glycine max) (2011 only).  There were differences noticed in the total and 

grass weed biomass when comparisons were made between research years and when 

examined individually (Table 3-20a). 

In 2011, the grass weed biomass in the BRD and DRL V3 and V5 treatment 

accounted for approximately 66.3% (BRD V3), 90.9% (BRD V5), 91.1% (DRL V3), and 

49.9% (DRL V5) of the total weed biomass (Table 3-20b).  In 2012, the grass weed 

biomass made up 100% of the total weed biomass in all treatments.  Furthermore, in 

2012, the grass weed and total weed biomass were 50% and 38.5% greater than 2011, 

whereas the broadleaf biomass was 100% greater in 2011 than 2012 (Table 3-21a).  

The interseeding methods all had a reduced grass weed and total weed biomass 

when averaged over both years when compared to the control (Table 3-21b).  For 

instance, the BRD treatments had reduced grass weed biomass by 49.1% (BRD V3) and 

47.7% (BRD V5), whereas the DRL treatments had reduced it by 76.3% (DRL V3) and 

75.2% (DRL V5), respectively.  Because the grass weed biomass accounted for the  
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Table 3-20a.  Source of variation and P-values from PROC GLM procedure on grass weed (GW), broadleaf weed (BW), and weed 

(TW) biomass at Aurora, SD from 2011 to 2012. 

 

Source of Variation DF  GW BW TW 

Interseeding Technique (IT) 4  <0.0001 0.4156 <0.0001 

Year (Y) 1  0.0002 0.0004 0.0045 

IT x Y 4  <0.0001 0.2661 <0.0001 

 

 

 

 

 

Table 3-20b.  Comparisons between the grass weed (GW), broadleaf weed (BW), and total weed (TW) biomass harvested on 

September 22, 2011 and August 29, 2012 in the broadcast (BRD) and drill (DRL) interseeding methods at Aurora, SD. 

 

 
2011 

 
2012 

Treatment GW BW TW 
 

GW BW TW 

 
(kg ha

-1
) 

 
(kg ha

-1
) 

        
BRD V3 66.8 33.9 100.7 

 
208.3 0 208.3 

BRD V5 203.9 20.5 224.4 
 

111.9 0 111.9 

DRL V3 62.6 6.1 68.7 
 

73 0 73 

DRL V5 38.5 38.7 77.2 
 

96.9 0 96.9 

        
Control 92.1 7.3 99.4 

 
438.1 0 438.1 

        
LSD (0.10) 56.6 NS 69.2 

 
100.1 NS 100.1 
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Table 3-21a.  Comparisons between the grass weed (GW), broadleaf weed (BW), and total weed biomass (TW) harvested on 

September 22, 2011 and August 29, 2012 averaged over the interseeding treatments at Aurora, SD.  

 

Research Year GW BW TW 

 
(kg ha

-1
) 

    
2011 92.8 21.3 114.1 

2012 185.6 0 185.6 

    
LSD (0.10 39.6 9.6 41 

 

 

 

Table 3-21b.  Comparisons between the grass weed (GW), broadleaf weed (BW), and total weed (TW) biomass harvested on 

September 22, 2011 and August 29, 2012 averaged in the broadcast (BRD) and drill (DRL) interseeding treatments at Aurora, SD. 

 

Treatment GW BW TW 

 
(kg ha

-1
) 

    
BRD V3 147.6 15.5 162.1 

BRD V5 151.3 8.8 160.1 

DRL V3 68.6 2.6 71.2 

DRL V5 71.8 16.6 88.4 

    
Control 289.8 3.1 292.9 

    
LSD (0.10) 62 NS 64.2 
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majority of the weed biomass, the total weed biomass had the same trend.  Furthermore, 

when comparing the interseeding methods between years, in 2011, the BRD V3, DRL V3 

and V5 all had grass weed and total weed than 2012. 

Aurora Corn Grain Yield. 

 The corn grain yield was harvested on September 29, 2011 and October 17, 2012.  

There were differences noticed when comparing research years and within the 

interseeding treatments (Table 3-22a).  In 2012, the corn grain yield was 6.1% greater 

than 2011, respectively (Table 3-22b).  Furthermore, when averaged over both years, the 

interseeding treatments had no impacts on corn grain yield, with exceptions to the DRL 

V3 treatment (Table 3-23a).  The corn grain yield in the DRL V3 treatment had close to 

10.2% and 8% less corn grain yield than the BRD V3 and the no cover crop control.  

However, when examining the years individually, the interseeding methods were similar 

to the control, with the only difference being between the DRL V3 and BRD V3 

treatments in 2012 (Table 3-23b). 

Aurora Fall Ground Cover Observations. 

 In mid-October to early-November, observations were made in the fall to see if 

any of the interseeded cover crops were present.  In 2011 and 2012, it was observed that 

no cover crops had regrown or emerged in either of the interseeding treatments.  

Therefore, there was no ground cover provided by the interseeded cover crops.  



   
8
8 

Table 3-22a.  Source of variation and P-values from PROC GLM procedure on corn grain yield (CY) at Aurora, SD from 2011 to 

2012. 

 

 

Source of Variation DF  CY 

Interseeding Technique (IT) 4  0.0589 

Year (Y) 1  0.0167 

IT x Y 4  0.9026 

 

 

 

 

Table 3-22b.  Comparisons between the corn grain yields harvested on September 29, 2011 and October 17, 2012 averaged over all 

treatments at Aurora, SD. 

 

Research Site CY 

 
(kg ha

-1
) 

  
2011 9050.2 

2012 9633.2 

  
LSD (0.10) 398.1 
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Table 3-23a.  Comparisons between the corn grain yield (CY) harvested on September 29, 2011 and October 17, 2012 averaged over 

the broadcast (BRD), drill (DRL), and no cover crop (control) treatments at Aurora, SD. 

 

Treatment CY 

 
(kg ha

-1
) 

  BRD V3 9875.1 

BRD V5 9235.6 

DRL V3 8870 

DRL V5 9083.8 

  Control 9643.9 

  LSD (0.10) 629.5 

 

 

Table 3-23b.  Comparisons between the corn grain yield (CY) harvested on September 29, 2011 and October 17, 2012 in the broadcast 

(BRD), drill (DRL), and no cover crop (control) treatments at Aurora, SD. 

 

 
2011 

 
2012 

Treatment CY 
 

CY 

 
(kg ha

-1
) 

 
(kg ha

-1
) 

    BRD V3 9231.6 
 

10266.2 

BRD V5 8989.6 
 

9381.9 

DRL V3 8809.7 
 

9073.8 

DRL V5 8936.4 
 

9559.2 

    Control 9333.7 
 

9885 

    LSD (0.10) NS 
 

927.8 
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Andover, Trail City, and Aurora Research Site Comparisons. 

Cover Crop Biomass. 

 At Trail City, the crimson clover biomass in the BRD and DRL treatments was 

21.4 and 49.9 times greater (BRD) and about 83.8% and 96.8% more than at Andover 

and Aurora, respectively.  However, the winter wheat biomass in the BRD and DRL 

treatments at Andover were greater, averaging about 100% and 98.7% greater in the BRD 

and about 9.7 and 3.4 times greater in the DRL than Trail City and Aurora.  Similar to the 

crimson clover biomass, at Trail City, the BRD and DRL treatments averaged about 5.9 

and 46.1 times greater in the BRD and 1.1 and 3.7 times greater in the DRL total cover 

crop biomass than Andover and Aurora, respectively.  In addition, at all three locations, 

the DRL interseeding treatments always had a greater total and individual species 

biomass than the BRD. 

Weed Biomass 

 Grass weeds were the most prolific weed species at all three research sites.  The 

BRD and DRL interseeding methods reduced the grass weed biomass at all three 

locations.  However, due to limited cover crop growth in the BRD treatments and the 

inconsistency of the grass weed reductions in the DRL treatments, the reductions in grass 

weed biomass were inconsistent.  Furthermore, reductions were noticed in the total weed 

biomass, however this is a direct result grass weed biomass accounting for the majority of 

the total weed biomass.  In addition, the interseeding methods had no influence on 

broadleaf weed biomass at either location. 
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Corn Grain Yield. 

 At the three locations, the BRD and DRL treatments did not impact the corn grain 

yield, with exceptions to the DRL V3 treatment at Aurora in 2012.  This reduction could 

have been a result of the early planting or the high cover crop growth which may have 

directly competed with corn for critical limited nutrients.  This is feasible since there was 

no yield reduction in 2011, which had a total cover crop biomass of about 1 kg ha
-1

. 

Fall Ground Cover Observations. 

 At the research locations, cover crops were only noticed at Andover in 2010, 

2011, and 2012 in the DRL treatments, which had an inter-row ground cover ranging 

from 10 to 30%.  This is most likely to the increased precipitation amounts that the 

Andover research sites had received after the corn grain harvest.  
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  DISCUSSION 

 The results from these experiments indicated that the establishment of interseeded 

cover crops into standing corn at the V5 corn growth stage and the response of corn and 

weeds to the broadcast and drill interseeded cover crops varied from location to location 

and year to year.  The outcomes indicated that cover crops can at times be established 

into standing corn, provide a limited suppression of late-emerging grass weeds, and 

provide ground cover in the fall.  However, they may be difficult to establish due to 

growing season weather conditions, interseeding method, field position, and pre-

emergence corn herbicide choice. 

 In this experiment, the cover crop mixture [crimson clover (Trifolium 

incarnatum), winter wheat (Triticum aestivum), and lentil (Lens culinaris)] was drill and 

broadcast interseeded into standing corn at the V5 corn growth stage.  All cover crop 

species emerged but at the end of the growing season only crimson clover and winter 

wheat remained.  The early desiccation and disappearance of lentil may be due to the 

lentil being very sensitive to competition from seedling establishment to early flowering 

stage (Fesehaie, 1994; Oplinger et al., 1990).  For instance, Rahman et al. (2009) reported 

that lentil growth was reduced by 28% up to 46% when lentil was intercropped compared 

to sole cropping.   

Drilling seeds always resulted in greater total cover crop biomass (104.4 kg ha
-1

) 

which was 76.5% great biomass in the broadcast treatment.  The lower level of cover 

crop biomass in the broadcast interseeding treatment may be due to less than uniform 

seed distribution, poor seed-to-soil contact and seeding depth, and the below adequate 
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available moisture required by the broadcasted cover crops seeds for rapid germination 

and emergence (Jasa, 2011).  In addition, the greater total cover crop establishment in the 

drill treatments led to fall ground covers ranging from 15% to 55%, while there was zero 

in the broadcast treatments.  Furthermore, the total cover crop biomass on the toeslope 

field positions averaged 70.7 kg ha
-1

 over all research sites and was about 45.5% greater 

than the summit field positions.  This may be a result of the toeslope position having 

more or maintaining a greater moisture content level.  For instance, Hanna et al. (1982) 

reported that the toeslope position contained on average 4 cm more of available water 

when compared to the summit position. 

 In this experiment, the broadcast and drill interseeded cover crops had no impact 

on the broadleaf weed biomass since very little broadleaf weeds were present throughout 

the growing seasons at each experimental location, but did impact the grass weed 

biomass.  The drill treatment averaged over all research sites had approximately 38.2% 

less grass weed biomass than the broadcast treatment.  In addition, reductions in the grass 

weed biomass ranging from 64% to 100% were observed in the drilled cover crops when 

compared to the control.  Similar results were noticed by Buhler et al. (1990) who 

reported that caliph medic (Medicago truncatula), santiago medic (Medicago 

polymorpha), sava medic (Medicago scutellata), berseem clover (Trifolium 

alexandrinum), and yellow mustard (Brasicca compestriss) interseeded and incorporated 

directly after corn and soybean planting had suppressed weeds from 19% to 90%.  Also, 

Carruthers et al. (1997) reported that annual ryegrass (Lolium multiflorum), perennial 

ryegrass (Lolium perenne), and red clover (Trifolium pratense) interseeded after corn 

planting had reduced the dicot weed density and biomass between corn rows by 73% to 
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100% when compared to the weedy control. The reductions noticed by the drill 

interseeded cover crops and not the broadcast interseeded cover crops may be due to the 

increased vegetation cover in the drill treatment which may have had the ability to out 

compete and reduce the amount of photosynthetically active radiation absorbed by the 

grass weeds. 

The drill and broadcast interseeded cover crops had no impacts on corn grain 

yield throughout the experiment.  This is in agreement with Abdin et al. (1998), who 

reported no effects on corn grain yield due to interseeded cover crops of fall rye (Secale 

cereal L.), hairy vetch (Vicia villosa), a mixture of red clover (Trifolium pratense L.) and 

ryegrass (Lolium multiflorum), a mixture of white clover (Trifolium repens L.) and 

ryegrass, subterranean clover (Trifolium subterraneum L.), yellow sweetclover (Mililotus 

officinalis), black medic (Medicago lupulina L.), Persian clover (Trifolium resupinatum 

L.), strawberry clover (Trifolium fragiferum L.), alfalfa (Medicago sativa L.), and 

berseem clover (Trifolium alexandrinum L.) into standing corn when corn was 

approximately 11 and 30 cm tall.  Similar results were observed by Wall et al. (1991), 

who reported that red clover did not reduce corn yields when drill interseeded into 

standing corn at the vegetative four-leaf (V4) corn growth stage, respectively.  However, 

the cover crops drill interseeded at the V3 corn growth stage did reduce corn yield one 

out of two years.  This could be a result of greater weed biomass or direct competition 

with corn for the critical limited soil nutrients and moisture, and photosynthetically active 

radiation. 

Therefore, the results from this experiment shows that a drilled and broadcast 

cover crop into standing corn at the V5 corn growth stage is feasible, can provide ground 
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cover, and suppress late-emerging grass weeds without adversely impacting corn grain 

yield.  However, to become an agronomically viable alternative cropping system, further 

research will have to be conducted to identify cover crop genotypes that are less 

susceptible to competition when interseeded as a mixture, more resistant to drought, and 

have a greater shade tolerance.  Also, further research needs to be conducted to identify if 

a cover crop genotype is interseeded as a monoculture (e.g. not as a mixture) would 

establish better, provide greater ground cover, and be present after the corn growing 

season.  In addition, further research into interseeded stages and techniques should be 

examined to identify the best corn growth stages and ease of interseeding that would 

provide the greatest cover crop biomass without negatively impacting corn grain yield. 

 

 

  

 

 

 

 

 

 

 



96 
 

LITERATURE CITED 

 

Abdin, O., Coulman, B.E., Cloutier, D., Faris, M.A., Zhou, X., and Smith, D.L.  1998.   

Yield and Yield Components of Corn Interseeded with Cover Crops.  Agron. J.  

90:63-68. 

 

Anderson, N.P.  2010.  Improving Cover Crops with Crimson Clover.  Oregon State  

Univeristy.  Available Online:  

http://www.oregonclover.org/downloads/files/improvingCoverCropsCrimsonClov 

erBrochure.pdf 

 

Australian Government.  2008.  The Biology of Triticum aestivum L. em Thell. (Bread  

Wheat).  Department of Health and Ageing:  Office of the Gene Technology  

Regulator.  Version 2. 

 

Barberi, P. and Mazzoncini, M.  2001.  Changes in Weed Community Composition as  

Influences by Cover Crop and Management System in Continuous Corn.  Weed  

Sci.  49:491-499. 

 

Baributsa, D.N., Foster, E.F., Thelen, K.D., Kravchenko, A.N., Mutch, D.R., and  

Ngouajio, M.  2008.  Corn and Cover Crop Response to Corn Density in an  

Interseeding System.  Agron. J.  100:981-987. 

 

Beckett, T.H., Stoller, E.W., and Wax, L.M.  1988.  Interference of Four Annual Weeds  

in Corn (Zea mays).  Weed Sci.  36:764-769. 

 

Bell, D.T. and Koeppe, D.E.  1972.  Noncompetitive Effects of Giant Foxtail on The  

Growth of Corn.  Agron. J.  64:321-325.  

 

Beuerlein, J.  2001.  Classes and Uses of Wheat.  Ohio State University Extension Fact  

Sheet:  Horticulture and Crop Science.  AGF-146-01. 

 

Bosnic, A.C., and Swanton, C.J.  1997.  Influence of Barnyardgrass (Echinochloa crus- 

galli) Time of Emergence and Density on Corn (Zea mays).  Weed Sci.  45:276-

282. 

 

Brainard, D.C., Bellinder, R.R., and Miller, A.J.  2004.  Cultivation and Interseeding for  

Weed Control in Transplanted Cabbage.  Weed Technol.  18:704-710. 

 

Brandsaeter, L.O. and Netland, J.  1999.  Winter Annual Legumes for Use as Cover  

Crops in Northern Regions:  I. Field Experiments.  Crop Sci.  19:1369-1379. 

 

Brink, G.E.  1990.  Seasonal Dry Matter, Nitrogen, and Dinitrogen Fixation Patterns of  

Crimson and Subterranean Clovers.  Crop Sci.  30:1115-1118. 

 

 

http://www.oregonclover.org/downloads/files/improvingCoverCropsCrimsonClov


97 
 

Buhler, D.D., Kohler, K.A., and Foster, M.S.  1998.  Spring-Seeded Smother Plants for  

Weed Control in Corn and Soybean.  J. Soil and Water Cons.  3:272-275. 

 

Buhler, D.D. and Mester, T.C.  1991.  Effect of Tillage Systems on the Emergence Depth  

of Giant (Setaria faberi) and Green Foxtail (Setaria viridis).  Weed Sci.   

39:200-203. 

 

Buman, R.A., Alesii, B.A., Hatfield, J.L., and Karlen, D.L.  2004.  Profit, Yield, and Soil  

Quality Effects of Tillage Systems in Corn-Soybean Rotations.  J. Soil and Water 

Cons.  59:260-270. 

 

Bullock, D.G.  1992.  Crop Rotation.  Critical Review in Plant Sciences.  11:309-326. 

 

Butler, T.J., Evers, G.W., Hussey, M.A., and Ringer, L.J.  2002.  Flowering in Crimson  

Clover as Affected by Planting Date.  Crop Sci.  42:242-247. 

  

Cabrera, E.R., Baskin, C.C., and Nsapato, L.E.  1995.  Seed Maturation and  

Establishment of Hardseededness in Pinkeye Purple Hull Southernpea in  

Mississippi.  Mississippi State, MS.  39762. 

 

Carlson, C.G., Clay, D.E., Wright, C., and Reitsma, K.D.  2010.  Potential Impacts of  

Linking Ethanol, Crop Production, and Backgrounding Calves on Economics, 

Carbon, and Nutrient Budgets.  SDSU Extension Publication.  Brookings, SD.  

Available Online:  

http://pubstorage.sdstate.edu/AgBio_Publications/articles/exex8165.pdf. 

 

Cathcart, R.J., and Swanton, C.J.  2004.  Nitrogen and Green Foxtail (Setaria viridis)  

Competition Effects on Corn Growth and Development.  Weed Sci.  52:1039-

1049. 

 

Cerdeira, A.L. and Duke, S.O.  2006.  The Current Status and Environmental Impacts of  

Glyphosate-Resistant Crops:  A Review.  J. Environ. Qual.  35:1633-1658. 

 

Chen, C., Neill, K., Burgess, M., and Bekkerman, A.  2012.  Agronomic Benefit and  

Economic Potential of Introducing Fall-Seeded Pea and Lentil into Coventional 

Wheat-Based Crop Rotations.  Agron. J.  104:215-244. 

 

Chikoye, D., Ekeleme, F., and Udensi, U.E.  2007.  Congongrass Suppression by  

Intercropping Cover Crops in Corn/Cassava Systems.  Weed Sci.  49:658-667. 

 

Chikoye, D., Lum, A.F., Abaido, R., Menkir, A., Kamara, A., Ekeleme, F., and Sanging,  

N.  2008.  Response of Corn Genotypes to Weed Interference and Nitrogen in  

Nigeria.  Weed Sci.  56:424-433. 

 

 

 



98 
 

Ciuberkis, S., Bernotas S., Raudonius, S., and Felix, J.  2007.  Effect of Weed Emergence  

Time and Intervals of Weed and Crop Competition on Potato Yield.  Weed  

Technol.  21:612-617. 

 

Clay, S.A., Clay, D.E., Horvarth, D.P., Pullis, J., Carlson, C.G., Hansen, S., and Reicks,  

G.  2009.  Corn Response to Competition:  Growth Alteration vs. Yield Limiting  

Factors.  Agron. J.  101:1522-1529. 

 

Clay, S.A., Kleinjan, J., Clay, D.E., Forcella, F., and Batchelor, W.  2005.  Growth and  

Fecundity of Several Weed Species in Corn and Soybean.  Agron. J.   

97:294-302. 

 

Cox, W.J., Hahn, R.R., and Stachowski, P.J.  2006.  Time of Weed Removal with  

Glyphosate Affects Corn Growth and Yield Components.  Agron. J.   

98:349-353. 

 

Cutforth, H.W., McGinn, S.M., McPhee, K.E., and Miller, P.R.  2007.  Adaptation of  

Pulse Crops in the Changing Climate of the Northern Great Plains.  Agron. J.  

99:1684-1699. 

 

Dabney, S.M., Delgado, J.A., and Reeves, D.W.  2001.  Using Winter Cover Crops to  

Improve Soil and Water Quality.  Comm. Soil Sci. Plant Anal.  32:1221-1250. 

 

Dalley, C.D., Bernards, M.L., and Kells, J.J.  2006.  Effect of Weed Removal Timing and  

Row Spacing on Soil Moisture in Corn (Zea mays).  Weed Technol.  20:399- 

409. 

 

De Bruin, J.L., Porter, P.M., and Jordan, N.R.  2005.  Use of a Rye Cover Crop following  

Corn in Rotation with Soybean in the Upper Midwest.  Agron. J.   

97:587-598. 

 

Decker, A.M., Clark, A.J., Meisinger, J.J., Mulford, F.R., and McIntosh, M.S.  1994.   

Legume Cover Crop Contributions to No-Tillage Corn Production.  Agron. J.  

86:126-133. 

 

De Haan, R.L., Sheaffer, C.C., and Barnes, D.K.  1997.  Effect of Annual Medic Smother  

Plants on Weed Control and Yield in Corn.  Agron. J.  89:813-821. 

 

De Haan, R.L., Wyse, D.L., Ehlke, N.J., Maxwell, B.D., and Putnam, D.H.  1994.   

Simulation of Spring-Seeded Smother Plants for Weed Control in Con (Zea  

mays).  Weed Sci.  42:35-43. 

 

Drost, D.C. and Doll, J.D.  1980.  The Allelopathic Effect of Yellow Nutsedge (Cyperus  

esculentus) on Corn (Zea mays) and Soybeans (Glycine max).  Weed Sci.   

28:229-233. 

 



99 
 

 

Duke, J.A.  1983.  Handbook of Engergy Crops:  Triticum aestivum L.  Purdue  

University.  Available Online:  

http://www.hort.purdue.edu/newcrop/duke_energy/triticum_aestivum.html 

 

Dyck, E. and Liebman, M.  1994.  Soil Fertility Management as a Factor in Weed  

Control:  The Effect of Crimson Clover Residue, Synthetic Nitrogen Fertilizer, 

and Their Interaction on Emergence and Early Growth of Lambsquaters and 

Sweet Corn.  Dev. Plant and Soil Sci.  167:227-237. 

 

Eadie, A.G., Swanton, C.J., Shaw, J.E., and Anderson, G.W.  1992.  Integration of Cereal  

Cover Crops in Ridge-Tillage Corn (Zea mays) Production.  Weed Technol.   

6:553-560. 

 

EPA.  2011.  Pesticides Industry Sales and Usage:  2006 and 2007 Market Estimates.   

United States Environmental Protection Agency.  Available Online:   

http://www.epa.gov/opp00001/pestsales/07pestsales/market_estimates2007.pdf 

 

EPA.  2012.  Soil Preparation.  United States Environmental Protection Agency.   

Available Online:  http://www.epa.gov/oecaagct/ag101/cropsoil.html. 

 

Erskine, W., Muehlbauer, F., Sarker, A., and Sharma, B. (Eds.).  2009.  The Lentil:   

Botany, Production, and Uses.  CABI Series.  Stylus Pub. LLC. 

 

Fageria, N.K., Baligar, V.C., and Bailey, B.A.  2005.  Role of Cover Crops in Improving  

Soil and Row Crop Productivity.  Comm. Soil Sci. Plant Anal.  36:19-20, 2733-

2757. 

 

Felix, J. and Newberry, G.  2012.  Yellow Nutsedge Control and Reduced Tuber  

Production with S-metolachlor, Halosulfuron plus Dicamba, and Glyphosate in  

Furrow-Irrigated Corn.  Weed Technol.  26:213-219. 

 

Fesehaie, R.  1994.  Weed Research In Cool-Season Food Legumes.  National Cool- 

Season Food Legumes Review Conference, Addis Abeba (Ethiopia).  Pp:  16-20. 

 

Fisk, J.W., Hesterman, O.B., Shrestha, A., Kells, J.J., Harwood, R.R., Squire, J.M., and  

Sheaffer, C.C.  2001.  Weed Suppression by Annual Legume Cover Crops in No-

Tillage Corn.  Agron. J.  93:319-325. 

 

Friedman, T. and Horowitz, M.  1971.  Biologically Active Substances in Subterranean  

Parts of Purple Nutsedge.  Weed Sci.  19:398-401. 

 

Galloway, B.A. and Weston, L.A.  1996.  Influence of Cover Crop and Herbicide  

Treatment on Weed Control and Yield in No-Till Sweet Corn (Zea mays L.) and  

Pumpkin (Cucurbita maxima Duch.).  Weed Technol.  10:341-346. 

 

http://www.epa.gov/opp00001/pestsales/07pestsales/market_estimates2007.pdf


100 
 

 

Ghidey, F. and Alberts, E.E.  1998.  Runoff and Soil Losses as Affected by Corn and  

Soybean Tillage Systems.  J. Soil and Water Cons.  53:64-70. 

 

Givens, W.A., Shaw, D.R., Kruger, G.R., Johnson, W.G., Weller, S.C., Young, B.G.,  

Wilson, R.G., Owens, M.D.K., and Jordan, D.  2009.  Survey of Tillage Trends 

Following the Adoption of Glyphosate-Resistant Crops.  Weed Technol.  23:150-

155. 

 

Golabi, M.H., Radcliffe, D.E., Hargrove, W.L. and Tollner, E.W.  1995.  Macropore  

Effects in Conventional Tillage and No-Tillage Soils.  J. Soil and Water  

Cons.  50:205-210. 

 

Goodman, R.M.  1987.  Future Potential, Problems, and Practicalities of Herbicide- 

Tolerant Crops from Genetic Engineering.  Weed Sci.  35:28-31. 

 

Gower, S.A., Loux, M.M., Cardina, J., Harrison, K.S., Sprankle, P.L., Probst, N.J.,  

Bauman, T.T., Bugg, W., Curran, W.S., Currie, R.S., Harvey, G.R., Johnson,  

W.G., Kells, J.J., Owen, M.D.K., Regehr, D.L., Slack, C.H., Spaur, M., Sprague,  

C.L., Vangessel, M., and Young, B.G.  2003.  Effect of Postemergence  

Glyphosate Application Timing on Weed Control and Grain Yield in Glyphosate- 

Resistant Corn:  Results of a 2-Yr Multistate Study.  Weed Technol.  17:821- 

828. 

 

Green, J.M.  2007.  Review of Glyphosate and ALS-Inhibiting Herbicide Crop Resistance  

and Resistant Weed Management.  Weed Technol.  21:547-558. 

 

Hamill, A.S., Weaver, S.E., Sikkema, P.H., Swanton, C.J., Tardif, F.J., and Ferguson,  

G.M.  2004.  Benefits and Risks of Economic vs. Efficacious Approaches to  

Weed Management in Corn and Soybean Weed Technol.  18:723-732.   

 

Hanna, A.Y., Harlan, P.W., and Lewis, D.T.  1982.  Soil Available Water as Influences  

by Landscape Position and Aspect.  Agron. J.  74:999-1004. 

 

Hannaway, D.B. and Myers, D.  2004.  Crimson Clover (Trifolium incarnatum L.).   

Oregon State University.  Available Online:   

http://forages.oregonstate.edu/php/fact_sheet_print_legume.php?SpecID=40&use 

=Soil 

 

Hartwig, N.L. and Ammon, H.U.  2002.  Cover Crops and Living Mulches.  Weed  

Sci.  50:688-699. 

 

Heap, I.M.  1997.  The Occurrence of Herbicide-Resistant Weeds Worldwide.  Pestic.  

Sci.  51:235-243. 

 

 

http://forages.oregonstate.edu/php/fact_sheet_print_legume.php?SpecID=40&use


101 
 

Hellwig, K.B., Johnson, W.G., and Scharf, P.C.  2002.  Grass weed interference and  

nitrogen accumulation in no-tillage corn.  Weed Sci.  50:757-762. 

 

Hiraki, M., Vredenberg, W.J., van Rensen, J.J.S., and Wakabayashi, K.  2004.  A  

Modified Fluorometric Method to Quantify the Concentration Effect (pI50) of 

Photosystem II-Inhibiting Herbicides.  Pestic Biochem. Physiol.  80:183-191. 

 

Hively, W.D. and Cox, W.J.  2001.  Interseeding Cover Crops into Soybean and  

Subsequent Corn Yields.  Agron. J.  93:208-313. 

 

Horowitz, J., Ebel, R., and Ueda, K.  2010.  No-Till Farming Is a Growing Practice.   

USDA Bulletin 70. 

 

Horvath, D.P., Guiden, R., and Clay, S.A.  2006.  Microarray Analysis of Late-Season  

Velvetleaf (Abutilon theophrasti) Effect on Corn.  Weed Sci.  54:983-994. 

 

Jasa, P.  2011.  Cover Crops for Soil Health.  University of Nebraska, Lincoln Extension.   

Available Online:  

http://flood.unl.edu/c/document_library/get_file?uuid=28d20c75-028c-426c-9afa-

890cefe2f283&groupId=4571136&.pdf. 

 

Jeranyama, P., Hesterman, O.B., and Sheaffer, C.C.  1998.  Medic Planting Date Effect  

on Dry Matter and Nitrogen Accumulation When Clear-Seeded or Intercropped  

with Corn.  Agron. J.  90:616-622. 

 

Johnson, G.A., Defelice, M.S., and Helsel, Z.R.  1993.  Cover Crop Management and  

Weed Control in Corn (Zea mays).  Weed Technol.  7:425-430. 

 

Johnson III, C.W. and Coble, H.D.  1986.  Effects of Three Weed Residues on Weed and  

Crop Growth.  Weed Sci.  34:403-408. 

 

Karlen, D.L., Hurley, E.G., Andrews, S.S., Cambardella, C.A., Meek, D.W., Duffy,  

M.D., and Mallarino, A.P.  2006.  Crop Rotation Effects on Soil Quality at Three  

Northern Corn/Soybean Belt Locations.  Agron. J.  98:484-495. 

 

Kayode, J. and Ademiluyi, B.  2004.  Effect of Tillage Methods on Weed Control and  

Maize Performance in Southwestern Nigeria Location.  J. Sustain. Agr.  23:3, 39-

45. 

 

Kessel, C.V.  1994.  Seasonal Accumulation and Partitioning of Nitrogen by Lentil.   

Dev. Plant and Soil Sci.  164:69-76. 

 

Knight, W.E. and Hollowell, E.A.  1973.  Crimson Clover.  Adv. Agron.  25:48-73 

 

 

 



102 
 

Kommendahl, T.J., Kotheimer, J.D., and Bernardini, J.V.  1959.  The Effects of  

Quackgrass on Germination and Seedling Development of Certain Crop Plants.   

Weeds.  7:1-12. 

 

Krupinsky, J.M., Merrill, S.D., Tanaka, D.L., Liebig, M.A., Lares, M.T., and Hanson,  

J.D.  2007.  Crop Residue Coverage of Soil Influences by Crop Sequence in a No- 

Till System.  Agron. J.  99:921-930. 

 

Lehozky, E., Kismanyoky, A., and Nemeth, T.  2009.  Weediness and Nutrient Uptake by  

Weeds in Relation to the Soil Tillage.  Comm. Soil Sci. Plant Anal.  40: 1-6, 871-

878. 

 

Leon, R.G. and Owen, M.D.K.  2006.  Tillage Systems and Seed Dormancy Effects on  

Common Waterhemp (Amaranthus tuberculatus) Seedling Emergence.  Weed  

Sci.  54:1037-1044. 

 

Liebman, M. and Dyck, E.  1993.  Crop Rotation and Intercropping Strategies for Weed  

Management.  Ecol. Appl.  3:92-122. 

 

Lindstrom, M.J., Papendick, R.I., and Koehler, F.E.  1976.  A Model to Predict Winter  

Wheat Emergence as Affected by Soil Temperature, Water Potential, and Depth 

of Planting.  Agron. J.  68:137-141. 

 

Liu, X., Herbert, S.J., Hashemi, A.M., Zhang, X., and Ding, G.  2006.  Effects of  

Agricultural Management on Soil Organic Matter and Carbon Transformation-A  

Review.  Plant, Soil, and Insect Sciences.  12:531-543. 

 

Lu, Yao-Chi, Watkins, B., Teasdale, J.R. and Abdul-Baki, A.A.  2000.  Cover Crops in  

Sustainable Food Production.  Food Reviews.  16:121-157. 

 

MacKown, C.T. and Carver, B.F.  2005.  Fall Forage Biomass and Nitrogen Composition  

of Winter Wheat Populations Selected from Grain-only and Dual-Purpose 

Environments.  Crop Sci. Soc. of Amer. J.  45:322-328. 

 

Mamani-Pati, F., Clay, D.E., Carlson, C.G., Clay, S.A., Reicks, G., and Kim, K.  2010.   

Nitrogen Rate, Landscape Position, and Harvesting of Corn Stover Impacts on  

Energy Gains and Sustainability of Corn Production Systems in South Dakota.   

Agron. J.  102:1535-1541. 

 

Massinga, R.A., Currie, R.S., Horak, M.J., and Boyer Jr., J.  2001.  Interference of  

Palmer amaranth in corn.  Weed Sci.  49:202-208. 

 

McVay, K.A., Radcliffe, D.E., and Hargrove, W.L.  1989.  Winter Legume Effects on  

Soil Properties and Nitrogen Fertilizer Requirements.  Soil Sci. Soc. Amer. J.  

53:1856-1862. 

 



103 
 

Moonen, A.C. and Barberi, P.  2004.  Size and Composition of the Weed Seedbank after  

7 Years of Different Cover-Crop-Maize Management Systems.  European Weed  

Research Society:  Weed Res.  44:163-177. 

 

Moechnig, M.J., Boerboom, C.M., Stoltenberg, D.E., and Binnin, L.K.  2003.  Growth  

Interactions in Communities of Common Lambsquarters (Chenopodium album),  

Giant Foxtail (Setaria faberi), and Corn.  Weed Sci.  51:363-370. 

 

Monnig, N. and Bradley, K.W.  2008.  Influence of Fall and Early Spring Herbicide  

Applications on Winter and Summer Annual Weed Populations in No-Till Corn.   

Weed Technol.  22:42-48. 

 

Moonen, A.C. and Barberi, P.  2004.  Size and Composition of Weed Seedbank after 7  

Years of Different Cover-Crop-Maize Management Systems.  Weed Res.  44:163-

177 

 

Moriles, J., Hansen, S., Horvath, D.P., Reicks, G., Clay, D.E., and Clay, S.A.  2012.   

Microarray and Growth Analyses Identify Differences and Similarities of Early 

Corn Response to Weeds, Shade, and Nitrogen Stress.  Weed Sci.  60:158-166. 

 

Murphy, S.D., Clements, D.R., Belaoussoff, S., Kevan, P.G., and Swanton, C.J.  2006.   

Promotion of Weed Species Diversity and Reduction of Weed Seedbanks with  

Conservation Tillage and Crop Rotation.  Weed Sci.  54:69-77. 

 

Nakamoto, T. and Oyanagi, A.  1994.  The Direction of Growth of Seminal Roots of  

Triticum aestivum L. and Experimental Modification Thereof.  Ann. Bot.  73:363-

367. 

 

Nandula, V.K., Reddy, K.N., Duke, S.O., and Poston, D.H.  2005.  Glyphosate-Resistant  

Weeds:  Current Status and Future Outlook.  Outlooks on Pest Management.   

16:183-187. 

  

Nielsen, D.C.  2001.  Production Functions for Chickpea, Field Pea, and Lentil in the  

Central Great Plains.  Agron. J.  93:563-569. 

 

Nordquist, P.T. and Wicks, G.A.  1974.  Establishment Methods for Alfalfa in Irrigated  

Corn.  Agron. J.  66:377-380. 

 

Oplinger, E.S., Hardman, L.L., Kaminski, A.R., Kelling, K.A., and Doll, J.D.  1990.   

Alternative Field Crops Manual.  University of Wisconsin-Extension and  

University of Minnesota. 

 

Owen, M.D.K., and Zelaya, I.A.  2005.  Herbicide-Resistant Crops and Weed Resistance  

to Herbicides.  Pest Manag. Sci.  61:301-311. 

 

 



104 
 

Page, E.R., Tollenaar, M., Lee, E.A., Lukens, L., and Swanton, C.J.  2010.  Timing,  

Effect, and Recovery from Intraspecific Competition in Maize.  Agron. J.   

102:1007-1013. 

 

Pareja, M.R., Staniforth, D.W., and Pareja, G.P.  1985.  Distribution of Weed Seed  

Among Soil Structural Units.  Weed Sci.  33:182-189. 

 

Peterson, G.A., Unger, P.W., Payne, W.A., Anderson, R.L., Baumhardt, R.L., Lindstrom,  

M., and Rasmussen, P.  2006.  Dryland Agriculture Research Issues.  USDA- 

ARS. Available Online:  

http://portal.sciencesocieties.org/Downloads/pdf/B40714.pdf 

 

Pikul, Jr, J.L., Aasc, J.K., and Cochran, V.L.  2004.  Alternative Crops:  Water Use and  

Biomass Production of Oat-Pea Hay and Lentil in a Semiarid Climate.  Agron. J.  

96:298-304. 

 

Pline-Srnie, W.  2006.  Physiological Mechanisms of Glyphosate Resistance.  Weed  

Technol.  20:290-300. 

 

Powers, J.F.  1987.  Legumes:  Their Potential Role in Agriculture Production.  Amer.  

J. Alternative Agric.  2:69-73. 

 

Powles, S.B.  2008.  Review:  Evolved Glyphosate-Resistant Weeds Around the World:   

Lessons to be Learnt.  Pest Manag. Sci.  64:360-365. 

 

Rahman, M.M., Awal, M.A., and Parvej, M.R.  2009.  Compatibility, Growth, and  

Production Potentials of Mustard/Lentil Intercrops.  Int. J. Bot.  5:100-106. 

 

Raimbault, B.A., Vyn, T.J., and Tollenaar, M.  1990.  Corn Response to Rye Cover Crop  

Management and Spring Tillage Systems.  Agron. J.  82:1088-1093. 

 

Ranells, N.N. and Wagger, M.G.  1992.  Nitrogen Release from Crimson Clover in  

Relation to Plant Growth Stage and Composition.  Agron. J.  84:424-430. 

 

Rao, S.C., Northup, B.K., and Mayeux, H.S.  2005.  Candidate Cool-Season Legumes for  

Filling Forage Deficit Periods in the Southern Great Plains.  Crop Sci.   

45:2068-2074. 

 

Rassmussen, P.E. and Collins, H.P.  1991.  Long-Term Impacts of Tillage, Fertilizer, and  

Crop Residue on Soil Organic Matter in Temperate Semiarid Regions.  Adv.  

Agron.  45:93-134. 

 

Raya, A.M., Zuazo, V.H.D, and Martinez, J.R.F.  2006.  Soil Erosion and Runoff  

Response to Plant-Cover Strips on Semiarid Slopes (SE Spain).  Land Degrad. 

Dev.  17:1-11. 

 

http://portal.sciencesocieties.org/Downloads/pdf/B40714.pdf


105 
 

Reddy, K.N. and Koger, C.H.  2004.  Live and Killed Hairy Vetch Cover Crop Effects on  

Weeds and Yield in Glyphosate-Resistant Corn.  Weed Technol.  18:835-840. 

 

Reeves, D.W., Price, A.J., and Patterson, M.G.  2005.  Evaluation of Three Winter  

Cereals for Weed Control in Conservation-Tillage Nontransgenic Cotton.  Weed 

Technol.  19:731-736. 

 

Reicosky, D.C. and Allmaras, R.R.  2003.  Advances in Tillage Research in North  

American Cropping Systems.  J. Crop Prod.  8:1-2, 75-125. 

 

Riedell, W.E., Pikul, J.L., Jaradet, A.A., and Schumacher, T.E.  2009.  Crop Rotation and  

Nitrogen Input Effects on Soil Fertility, Maize Mineral Nutrition, Yield, and Seed  

Composition.  Agron. J.  101:870-879. 

 

Reynolds, M.P., Monasterio, J.I.O., and McNab, A.  2001.  Application of Physiology in  

Wheat Breeding.  CIMMYT.  Pp:240. 

 

Ross, S.M., King, J.R., Izaurralde, R.C., and O’Donovan, J.T.  2001.  Weed Suppression  

by Seven Clover Species.  Agron. J.  93:820-827. 

 

Ryan, G.F.  1970.  Resistance of Common Groundsel to Simazine and Atrazine.  Weed  

Sci.  18:614-616. 

 

SARE.  2007.  Managing Cover Crops Profitably.  3
rd

 Edition.  Available Online:   

http://www.sare.org/Learning-Center/Books/Managing-Cover-Crops-Profitably- 

3rd-Edition 

 

Sarrantonio, M. and Gallandt, E.R.  2003.  The Role of Cover Crops in North American  

Cropping Systems.  J. Crop Prod.  8:1-2, 53-74. 

 

Sattell, R., Dick, R., Hemphill, D., Luna, J., and McGrath, D.  1998.  Crimson Clover.   

Oregon State University.  Publication:  EM8696.   

 

Schaller, F.W. and Larson, W.E.  1955.  Effect of Wide Spaced Corn Rows on Corn  

Yields and Forage Establishment.  Agron. J.  47:271-276. 

 

Scholes, C., Clay, S.A., and Brix-Davis, K.  1995.  Velvetleaf (Abutilon theophrasti)  

Effect on Corn (Zea mays) Growth and Yield in South Dakota.  Weed  

Technol.  9:665-668. 

 

Severino, F.J. and Christoffoleti, P.J.  2004.  Weed Suppression by Smother Crops and  

Selective Herbicides.  Scientia Agricola.  61:21-26. 

 

Shipitalo, M.J., Malone, R.W., and Owens, L.B.  2008.  Impact of Glyphosate-Tolerant  

Soybean and Glufosinate-Tolerant Corn Production on Herbicide Losses in 

Surface Runoff.  J. Environ. Qual.  37:401-408. 

http://www.sare.org/Learning-Center/Books/Managing-Cover-Crops-Profitably-


106 
 

 

Shrestha, A., Lanini, T., Wright, S., Vargas, R., and Mitchell, J.  2006.  Conservation  

Tillage and Weed Management.  Publication 8200.  University of California.   

Available Online:  http://anrcatalog.ucdavis.edu/pdf/8200.pdf 

 

Shumway, C.R. and Scott, B.  2012.  Herbicide Symptomology Training Manual.   

Available Online:   

http://agri.astate.edu/weeds/training/HERBICIDE%20SYMPTOMOLOGY%20T 

RAINING%20MANUAL.pdf 

 

Simard, M-J., Rouane, S., and Leroux, G.D.  2011.  Herbicide Rate,  

Glyphosate/Glufosinate Sequence and Corn/Soybean Rotation Effects on Weed  

Seed Banks.  Weed Sci.  59:398-403. 

 

Smeltekop, H., Clay, D.E., and Clay, S.A.  2002.  The Impact of Intercropping Annual  

‘Sava’ Snail Medic on Corn Production.  Agron. J.  94:917-924. 

 

Smith, G.R., Evers, G.W., Rouquette, Jr., F.M., and Pemberton, I.J.  2008.  Improvement  

of Reseeding in Crimson Clover.  Texas AgriLife Research, Texas A&M System,  

Overton, TX.  Available Online.   

http://www.naaic.org/Meetings/National/2008meeting/Smith.pdf 

 

Snapp, S.S., Swinton, S.M., Labarta, R., Mutch, D., Black, J.R., Leep, R., Nyiraneza, J.,  

and O’Neil, K.  2005.  Evaluating Cover Crops for Benefits, Costs and  

Performance within Cropping System Niches.  Agron. J.  97:322-332. 

 

Stanger, T.F. and Lauer, J.G.  2008.  Corn Grain Yield Response to Crop Rotation and  

Nitrogen over 35 Years.  Agron. J.  100:643-650. 

 

Stearman, G.K. and Wells, M.J.M.  1997.  Leaching and Runoff of Simazine, 2,4-D, and  

Bromide from Nursery plots.  J. Soil and Water Cons.  52:137- 

144. 

 

Swanton, C.J., and Weise, S.F.  1991.  Integrated Weed Management:  The Rationale and  

Approach.  Weed Technol.  5:657-663. 

 

Tanaka, D.L. and Anderson, R.L.  1997.  Soil Water Storage and Precipitation Storage  

Efficiency of Conservation Tillage Systems.  J. Soil and Water Cons.  52:363-

367. 

 

Teasdale, J.R., Brandsaeter, L.O., Calegari, A., and Skora Neto, F.  2007.  Cover Crops  

and Weed Management.  Non-Chemical Weed Management:  Principles, 

Concepts and Technology.  pp:49-64. 

 

Teasdale, J.R., and Daughtry, C.S.T.  1991.  Weed Suppression by Live and Desicatted  

Hairy Vetch (Vicia villosa).  Weed Sci.  41:207-212. 

http://anrcatalog.ucdavis.edu/pdf/8200.pdf
http://agri.astate.edu/weeds/training/HERBICIDE%20SYMPTOMOLOGY%20T


107 
 

 

Teasdale, J.R., and Mohler, C.L.  2000.  The Quantitative Relationship Between Weed  

Emergence and the Physical Properties of Mulches.  Weed Sci.  48:385-392. 

 

Tharp, B.E., Kells, J.J., Bauman, T.T., Harvey, R.G., Johnson, W.G., Loux, M.M.,  

Martin, A.R., Maxwell, D.J., Owen, M.D.K., Regehr, D.L., Warnke, J.E., Wilson,  

R.G., Wrage, L.J., Young, B.G., and Dalley, C.D.  2004.  Assessment of Weed 

Control Strategies for Corn in the North-Central United States.  Weed Technol.  

18:203-210. 

 

Thurman, E.M., Goolsby, D.A., Meyer, M.T., and Kolpin, D.W.  1991.  Herbicides in  

Surface Waters of the Midwestern United States:  The Effect of Spring Flush.   

J. Environ. Sci. Tech.  25:1794-1796. 

 

Tollenaar, M., Mihajlovic, M., and Vyn, T.J.  1993.  Corn Growth Following Cover  

Crops:  Influence of Cereal Cultivar, Cereal Removal, and Nitrogen Rate.   

Agron. J.  85:251-255. 

 

Truman, C.C., Reeves, D.W., Shaw, J.N., Motta, A.C., Burmester, C.H., Raper, R.L., and  

Schwab, E.B.  2003.  Tillage Impacts on Soil Property, Runoff, and Soil Loss  

Variations from a Rhodic Paleudult Under Simulated Rainfall.  J. Soil  

and Water Cons.  58:258-267 

 

Unger, P.W. and Vigil, M.F.  1998.  Cover Crop Effects on Soil Water Relationships.   

J. Soil and Water Cons.  3:200-207. 

 

USDA-NASS.  2012.  Quick Stats:  U.S. & All States County Data-Crops (South  

Dakota).  Available Online:  http://quickstats.nass.usda.gov/ 

 

USDA-NASS.  2010.  Agricultural Chemical Use:  Corn, Upland Cotton, and Fall  

Potatoes 2010.  Available Online:  

http://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Chemical_Use/Fiel

dCropChemicalUseFactSheet06.09.11.pdf 

 

USDA.  2012.  Wheat:  Background.  Available Online:   

http://www.ers.usda.gov/topics/crops/wheat/background.aspx 

 

USGS.  1998.  Herbicides in Ground Water of the Midwest:  A Regional Study of  

Shallow Aquifers, 1991-94.  USGS Fact Sheet.  076-98. 

 

USGS.  2006.  Pesticides in the Nation’s Streams and Ground Water, 1992-2001:  A  

Summary.  USGS Fact Sheet.  2006-3628. 

 

USGS.  2007.  Pesticide National Synthesis Project:  Pesticides in Ground Water.  USGS  

Fact Sheet:  FS-244-95.  

 

http://quickstats.nass.usda.gov/


108 
 

Vandenberg, A. and Risula, D.  2010.  Red Lentil.  Government of Saskatchewan.   

Available Online:  http://www.agriculture.gov.sk.ca/default.aspx?dn=a88f57f0- 

242b-40f6-8755-1fc6df4dfa14 

 

Vasilakoglou, I., Dhima, K., and Eleftherohorinos.  2005.  Allelopathic Potential of  

Bermudagrass and Their Interference with Cotton and Corn.  Agron. J.  97:303-

313. 

 

Vaughan, J.D. and Evanylo, G.K.  1998.  Corn Response to Cover Crop Species, Spring  

Dessication Time, and Residue Management.  Agron. J.  90:536-544. 

 

Vos, R.J.  1999.  Effect of Spring-Seeded Annual Medics on Weed Management in Zea  

mays Production.  Ph.D.  diss.  South Dakota State Univ., Brookings. 

 

Wagger, M.G.  1989.  Cover Crop Management and Nitrogen Rate in Relation to Growth  

and Yield of No-Till Corn.  Agron. J.  81:533-538. 

 

Walker, G.K., Blackshaw, R.E., and Dekker, J.  1988.  Leaf Area and Competition for  

Light between Plant Species using Direct Sunlight Transmission.  Weed  

Teachnol.  2:159-165. 

 

Wauchope, R.D., Estes, T.L., Allen, R., Baker, J.L., Hornsby, A.G., Jones, R.L.,  

Richards, R.P., and Gustafson, D.I.  2002.  Predicted Impacts of Transgenic, 

Herbicide-Tolerant Corn on Drinking Water Quality in Vulnerable Watersheds of 

the Mid-Western USA.  Pest Manag. Sci.  58:146-160. 

 

Weed Sci.  2012.  International Survey of Herbicide Resistant Weeds.  Available  

Online:  www.weedscience.org/In.asp. 

 

Williams III, M.M., Mortensen, D.A., and Doran, J.W.  2000.  No-tillage Soybean  

Performance in Cover Crops for Weed Management in the Western Corn Belt.   

J. Soil and Water Cons.  1:79-84. 

 

Wilson, R.G., and Westra, P.  1991.  Wild Proso Millet (Panicum milliaceum)  

Interference in Corn (Zea mays).  Weed Sci.  29:217-220. 

 

Wyse, D.L.  1992.  Future Impact of Crops with Modified Herbicide Resistance.  Weed  

Technol.  6:665-668. 

 

Yenish, J.P., Worsham, A.D., and York, A.C.  1996.  Cover Crops for Herbicide  

Replacement in No-Tillage Corn (Zea mays).  Weed Technol.  10:815-821. 

 

Zhang, H., Pala, M., Oweis, T., and Harris, H.  2000.  Water use and water-use efficiency  

of chickpea and lentil in a Mediterranean environment.  Aust. J. Agr. Res.  

51:295-34. 

 

http://www.agriculture.gov.sk.ca/default.aspx?dn=a88f57f0-


109 
 

Zhou, Q., Liu, W., Zhang, Y., and Liu, K.K.  2007.  Action Mechanisms of Acetolactate  

Synthase-Inhibiting Herbicides.  Pestic. Biochem. Physiol.  89:89-96. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



110 
 

APPENDIX 

 

Table 3-3a  PROC GLM Procedure for the crimson clover, winter wheat, and total cover 

crop biomass in the broadcast and drill treatments at the summit (SMT) and toeslope 

(TSP) research sites at Andover, SD from 2010 to 2012. 

 

2010 Andover SMT Crimson Clover Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 151287 75643 7.88 0.0012 

Error 45 432145 9603 
  

Corrected Total 47 583433 
   

 

2010 Andover SMT Winter Wheat Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 7616 3808 1.4 0.257 

Error 45 122375 2719 
  

Corrected Total 47 129991 
   

 

2010 Andover SMT Total Cover Crop Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 207054 103527 8.09 0.001 

Error 45 576105 12802 
  

Corrected Total 47 783159 
   

 

2010 Andover TSP Crimson Clover Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 12866 6433 4.26 0.0202 

Error 45 67900 1508 
  

Corrected Total 47 80766 
   

 

2010 Andover TSP Winter Wheat Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 16 8 1 0.3759 

Error 45 375 8 
  

Corrected Total 47 391 
   

 

2010 Andover TSP Total Cover Crop Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 13650 6825 4.55 0.0158 

Error 45 67475 1499 
  

Corrected Total 47 81125 
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Table 3-3a  continued 

 

2011 Andover SMT Crimson Clover Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 618 309 7.31 0.0018 

Error 45 1903 42 
  

Corrected Total 47 2521 
   

 

2011 Andover SMT Winter Wheat Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 27208 13604 30.92 <.0001 

Error 45 19798 439 
  

Corrected Total 47 47007 
   

 

2011 Andover SMT Total Cover Crop Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 35434 17717 38.71 <.0001 

Error 45 20597 457 
  

Corrected Total 47 56032 
   

 

2011 Andover TSP Crimson Clover Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 21219 10609 30.48 <.0001 

Error 45 15663 348 
  

Corrected Total 47 36883 
   

 

2011 Andover TSP Winter Wheat Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 636399 318199 38.57 <.0001 

Error 45 371289 8250 
  

Corrected Total 47 1007689 
   

 

2011 Andover TSP Total Cover Crop Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 890028 445014 45.85 <.0001 

Error 45 436769 9705 
  

Corrected Total 47 1326798 
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Table 3-3a  continued 

 

2012 Andover SMT Crimson Clover Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 2215 1107 24.68 <.0001 

Error 45 2019 44 
  

Corrected Total 47 4235 
   

 

2012 Andover SMT Winter Wheat Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 35512 17756 42.91 <.0001 

Error 45 18622 413 
  

Corrected Total 47 54135 
   

 

2012 Andover SMT Total Cover Crop Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 55468 27734 49.51 <.0001 

Error 45 25205 560 
  

Corrected Total 47 80674 
   

 

2012 Andover TSP Crimson Clover Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 812 406 12.99 <.0001 

Error 45 1405 31 
  

Corrected Total 47 2217 
   

 

2012 Andover TSP Winter Wheat Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 8648 4324 16.3 <.0001 

Error 45 11940 265 
  

Corrected Total 47 20589 
   

 

2012 Andover TSP Total Cover Crop Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 14760 7380 32.3 <.0001 

Error 45 10282 228 
  

Corrected Total 47 25043 
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Table 3-3b  PROC GLM Procedure for crimson clover, winter wheat, and total cover 

crop biomass averaged over all treatments at the summit (SMT) and toeslope (TSP) 

research sites at Andover, SD from 2010 to 2012. 

 

SMT Crimson Clover Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 63233 31616 9.79 0.0001 

Research Year 2 179308 89654 27.76 <.0001 

CvrCrpTrt*Research Year 4 90887 22721 7.03 <.0001 

 

SMT Winter Wheat Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 64008 32004 26.87 <.0001 

Research Year 2 1261 630 0.53 0.5902 

CvrCrpTrt*Research Year 4 6329 1582 1.33 0.2626 

 

SMT Total Cover Crop Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 210734 105367 22.87 <.0001 

Research Year 2 150500 75250 16.33 <.0001 

CvrCrpTrt*Research Year 4 87223 21805 4.73 0.0013 

 

TSP Crimson Clover Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 25484 12742 20.24 <.0001 

Research Year 2 8166 4083 6.49 0.002 

CvrCrpTrt*Research Year 4 9413 2353 3.74 0.0064 

 

TSP Winter Wheat Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 266872 133436 46.96 <.0001 

Research Year 2 214528 107264 37.75 <.0001 

CvrCrpTrt*Research Year 4 378192 94548 33.27 <.0001 

 

TSP Total Cover Crop Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 453442 226721 59.49 <.0001 

Research Year 2 234555 117277 30.77 <.0001 

CvrCrpTrt*Research Year 4 464997 116249 30.5 <.0001 
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Table 3-4  PROC GLM Procedure for crimson clover, winter wheat, and total cover crop 

biomass averaged over all years in the broadcast and drill treatments at the summit 

(SMT) and toeslope (TSP) research sites at Andover, SD from 2010 to 2012. 

 

SMT Crimson Clover Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 63233 31616 9.79 0.0001 

Research Year 2 179308 89654 27.76 <.0001 

CvrCrpTrt*Research Year 4 90887 22721 7.03 <.0001 

 

SMT Winter Wheat Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 64008 32004 26.87 <.0001 

Research Year 2 1261 630 0.53 0.5902 

CvrCrpTrt*Research Year 4 6329 1582 1.33 0.2626 

 

SMT Total Cover Crop Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 210734 105367 22.87 <.0001 

Research Year 2 150500 75250 16.33 <.0001 

CvrCrpTrt*Research Year 4 87223 21805 4.73 0.0013 

 

TSP Crimson Clover Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 25484 12742 20.24 <.0001 

Research Year 2 8166 4083 6.49 0.002 

CvrCrpTrt*Research Year 4 9413 2353 3.74 0.0064 

 

TSP Winter Wheat Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 266872 133436 46.96 <.0001 

Research Year 2 214528 107264 37.75 <.0001 

CvrCrpTrt*Research Year 4 378192 94548 33.27 <.0001 

 

TSP Total Cover Crop Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 453442 226721 59.49 <.0001 

Research Year 2 234555 117277 30.77 <.0001 

CvrCrpTrt*Research Year 4 464997 116249 30.5 <.0001 
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Table 3-6a  PROC GLM Procedure for grass weed, broadleaf weed, and total weed 

biomass in the broadcast, drill, and control treatments at the summit (SMT) and toeslope 

(TSP) research sites at Andover, SD from 2010 to 2012. 

 

2010 Andover SMT Grass Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 2313816 1156908 7.87 0.0012 

Error 45 6614150 146981 
  

Corrected Total 47 8927966 
   

 

2010 Andover SMT Broadleaf Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 306866 153433 0.56 0.5763 

Error 45 12374200 274982 
  

Corrected Total 47 12681066 
   

 

2010 Andover SMT Total Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 992716 496358 1.1 0.3413 

Error 45 20287250 450827 
  

Corrected Total 47 21279966 
   

 

2010 Andover TSP Grass Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 1693850 846925 1.95 0.1545 

Error 45 19575450 435010 
  

Corrected Total 47 21269300 
   

 

2010 Andover TSP Broadleaf Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 2600 1300 1.32 0.2771 

Error 45 44300 984 
  

Corrected Total 47 46900 
   

 

2010 Andover TSP Total Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 1821050 910525 2.1 0.1346 

Error 45 19535350 434118 
  

Corrected Total 47 21356400 
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Table 3-6a  continued 

 

2011 Andover SMT Grass Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 1526 763 0.19 0.8248 

Error 45 177638 3947 
  

Corrected Total 47 179165 
   

 

2011 Andover SMT Broadleaf Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 3820 1910 8 0.0011 

Error 45 10738 238 
  

Corrected Total 47 14558 
   

 

2011 Andover SMT Total Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 608 304 0.07 0.9307 

Error 45 190167 4225 
  

Corrected Total 47 190775 
   

 

2011 Andover TSP Grass Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 223612 111806 2.43 0.0992 

Error 45 2067886 45953 
  

Corrected Total 47 2291499 
   

 

2011 Andover TSP Broadleaf Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 3 2 1 0.3759 

Error 45 86 2 
  

Corrected Total 47 90 
   

 

2011 Andover TSP Total Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 221763 110881 2.41 0.1011 

Error 45 2068395 45964 
  

Corrected Total 47 2290158 
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Table 3-6a  continued 

 

2012 Andover SMT Grass Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 41461 20730 0.82 0.4455 

Error 45 1133095 25179 
  

Corrected Total 47 1174556 
   

 

2012 Andover SMT Broadleaf Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 0 0 . . 

Error 45 0 0 
  

Corrected Total 47 0 
   

 

2012 Andover SMT Total Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 40819 20409 0.81 0.4509 

Error 45 1132661 25170 
  

Corrected Total 47 1173480 
   

 

2012 Andover TSP Grass Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 47964 23982 2.41 0.1014 

Error 45 447997 9955 
  

Corrected Total 47 495962 
   

 

2012 Andover TSP Broadleaf Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 0 0 . . 

Error 45 0 0 
  

Corrected Total 47 0 
   

 

2012 Andover TSP Total Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 47964 23982 2.41 0.1014 

Error 45 447997 9955 
  

Corrected Total 47 495962 
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Table 3-6b  PROC GLM Procedure for grass weed, broadleaf weed, and total weed 

biomass averaged over all treatments at the summit (SMT) and toeslope (TSP) research 

sites at Andover, SD from 2010 to 2012. 

 

SMT Grass Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 1005726 502863 8.57 0.0003 

Research Year 2 2019905 1009952 17.2 <.0001 

CvrCrpTrt*Research Year 4 1351077 337769 5.75 0.0003 

 

SMT Broadleaf Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 122154 61077 0.67 0.5156 

Research Year 2 411708 205854 2.24 0.11 

CvrCrpTrt*Research Year 4 188547 47136 0.51 0.7257 

 

SMT Total Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 465184 232592 1.45 0.2375 

Research Year 2 4255441 2127720 13.29 <.0001 

CvrCrpTrt*Research Year 4 568960 142240 0.89 0.4727 

 

TSP Grass Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 1118588 559294 3.42 0.0356 

Research Year 2 2888066 1444033 8.82 0.0003 

CvrCrpTrt*Research Year 4 846838 211709 1.29 0.2756 

 

TSP Broadleaf Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 851 425 1.3 0.2771 

Research Year 2 1753 876 2.67 0.0732 

CvrCrpTrt*Research Year 4 1751 437 1.33 0.2612 

 

TSP Total Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 1168263 584131 3.58 0.0307 

Research Year 2 3026605 1513302 9.26 0.0002 

CvrCrpTrt*Research Year 4 922514 230628 1.41 0.2334 
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Table 3-7  PROC GLM Procedure for grass weed, broadleaf weed, and total weed 

biomass averaged over all years in the broadcast, drill, and control treatments at the 

summit (SMT) and toeslope (TSP) research sites at Andover, SD from 2010 to 2012. 

 

SMT Grass Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 1005726 502863 8.57 0.0003 

Research Year 2 2019905 1009952 17.2 <.0001 

CvrCrpTrt*Research Year 4 1351077 337769 5.75 0.0003 

 

SMT Broadleaf Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 122154 61077 0.67 0.5156 

Research Year 2 411708 205854 2.24 0.11 

CvrCrpTrt*Research Year 4 188547 47136 0.51 0.7257 

 

SMT Total Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 465184 232592 1.45 0.2375 

Research Year 2 4255441 2127720 13.29 <.0001 

CvrCrpTrt*Research Year 4 568960 142240 0.89 0.4727 

 

TSP Grass Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 1118588 559294 3.42 0.0356 

Research Year 2 2888066 1444033 8.82 0.0003 

CvrCrpTrt*Research Year 4 846838 211709 1.29 0.2756 

 

TSP Broadleaf Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 851 425 1.3 0.2771 

Research Year 2 1753 876 2.67 0.0732 

CvrCrpTrt*Research Year 4 1751 437 1.33 0.2612 

 

TSP Total Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 2 1168263 584131 3.58 0.0307 

Research Year 2 3026605 1513302 9.26 0.0002 

CvrCrpTrt*Research Year 4 922514 230628 1.41 0.2334 
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Table 3-9  PROC GLM Procedure for corn grain yield averaged over all treatments at the 

summit (SMT) and toeslope (TSP) research sites at Andover, SD from 2010 to 2012. 

 

SMT Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Research Year 2 757975765 378987882 73.88 <.0001 

CvrCrpTrt 2 4328291 2164145 0.42 0.6567 

CvrCrpTrt*Research Year 4 14281470 3570367 0.7 0.596 

 

TSP Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Research Year 2 1061948537 530974269 186.48 <.0001 

CvrCrpTrt 2 160527 80264 0.03 0.9722 

CvrCrpTrt*Research Year 4 2623645 655911 0.23 0.9209 
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Table 3-10a  PROC GLM Procedure for corn grain yields averaged over all years in the 

broadcast, drill, and control treatments at the summit (SMT) and toeslope (TSP) research 

sites at Andover, SD from 2010-2012. 

 

SMT Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Research Year 2 757975765 378987882 73.88 <.0001 

CvrCrpTrt 2 4328291 2164145 0.42 0.6567 

CvrCrpTrt*Research Year 4 14281470 3570367 0.7 0.596 

 

TSP Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Research Year 2 1061948537 530974269 186.48 <.0001 

CvrCrpTrt 2 160527 80264 0.03 0.9722 

CvrCrpTrt*Research Year 4 2623645 655911 0.23 0.9209 
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Table 3-10b  PROC GLM Procedures for corn grain yield in the broadcast, drill, and 

control treatments at the summit (SMT) and toeslope (TSP) research sites at Andover, SD 

from 2010 to 2012. 

 

2010 Andover SMT Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Nitrogen Rate 3 8542115 2847371 1.15 0.3406 

CvrCrpTrt 2 5119364 2559682 1.03 0.3649 

 

2010 Andover TSP Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Nitrogen Rate 3 4431235 1477078 0.57 0.6411 

CvrCrpTrt 2 2113831 1056915 0.4 0.67 

 

2011 Andover SMT Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Nitrogen Rate 3 36299582 12099860 1.03 0.3891 

CvrCrpTrt 2 13101817 6550908 0.56 0.5768 

 

2011 Andover TSP Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Nitogen Rate 3 20763000 6921000 1.75 0.1710 

CvrCrpTrt 2 605860 302930 0.08 0.9263 

 

2012 Andover SMT Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Nitrogen Rates 3 6419967 2139989 2.05 0.1209 

CvrCrpTrt 2 388580 194290 0.19 0.8300 

 

2012 Andover TSP Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Nitrogen Rates 3 4571241 1523747 0.81 0.4952 

CvrCrpTrt 2 64480 32240 0.02 0.983 
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Table 3-12b  PROC GLM Procedure for crimson clover, winter wheat, and total cover 

crop biomass in the broadcast and drill treatments at the summit (SMT) and toeslope 

(TSP) research sites at Trail City, SD in 2011. 

 

SMT Crimson Clover Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 2554 1277 16.69 <.0001 

Error 45 3444 76 
  

Corrected Total 47 5999 
   

 

SMT Winter Wheat Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 7416 3708 3.33 0.045 

Error 45 50169 1114 
  

Corrected Total 47 57586 
   

 

SMT Total Cover Crop Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 18670 9335 10.29 0.0002 

Error 45 40840 907 
  

Corrected Total 47 59511 
   

 

TSP Crimson Clover Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 765013 382506 12.1 <.0001 

Error 45 1422471 31610 
  

Corrected Total 47 2187484 
   

 

TSP Winter Wheat Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 2542 1271 3.54 0.0375 

Error 45 16177 359 
  

Corrected Total 47 18719 
   

 

TSP Total Cover Crop Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 849009 424504 12.89 <.0001 

Error 45 1481816 32929 
  

Corrected Total 47 2330825 
   

 

 

 

 



124 
 

Table 3-13b  PROC GLM Procedure for grass weed, broadleaf weed, and total weed 

biomass in the broadcast, drill, and control treatments at the summit (SMT) and toeslope 

(TSP) research sites at Trail City, SD in 2011. 

 

SMT Grass Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 13712 6856 1.57 0.2198 

Error 45 196877 4375 
  

Corrected Total 47 210589 
   

 

SMT Broadleaf Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 23115 11557 2.05 0.1411 

Error 45 254222 5649 
  

Corrected Total 47 277337 
   

 

SMT Total Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 50133 25066 2.43 0.0994 

Error 45 463951 10310 
  

Corrected Total 47 514085 
   

 

TSP Grass Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 27839 13919 3.32 0.0452 

Error 45 188737 4194 
  

Corrected Total 47 216577 
   

 

TSP Broadleaf Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 34012 17006 0.37 0.6957 

Error 45 2091808 46484 
  

Corrected Total 47 2125820 
   

 

TSP Total Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 2 27946 13973 0.26 0.7718 

Error 45 2413008 53622 
  

Corrected Total 47 2440954 
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Table 3-14a  PROC GLM Procedure for grass weed, broadleaf weed, and total weed 

biomass averaged over all treatments at the summit (SMT) and toeslope (TSP) research 

sites at Trail City, SD in 2011 

 

Grass Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

Field Position 2 28525 14262 3.33 0.0403 

CvrCrpTrt 1 1904 1904 0.44 0.5067 

CvrCrpTrt*Field Position 2 13026 6513 1.52 0.2242 

 

Broadleaf Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

Field Position 2 56063 28031 1.08 0.3455 

CvrCrpTrt 1 639287 639287 24.52 <.0001 

CvrCrpTrt*Field Position 2 1064 532 0.02 0.9798 

 

Total Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

Field Position 2 68275 34137 1.07 0.348 

CvrCrpTrt 1 710979 710979 22.24 <.0001 

CvrCrpTrt*Field Position 2 9805 4902 0.15 0.858 
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Table 3-14b  PROC GLM Procedure for grass weed, broadleaf weed, and total weed 

biomass averaged over the summit and toeslope research sites in the broadcast, drill, and 

control treatments at Trail City, SD in 2011. 

 

Grass Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

Field Position 2 28525 14262 3.33 0.0403 

CvrCrpTrt 1 1904 1904 0.44 0.5067 

CvrCrpTrt*Field Position 2 13026 6513 1.52 0.2242 

 

Broadleaf Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

Field Position 2 56063 28031 1.08 0.3455 

CvrCrpTrt 1 639287 639287 24.52 <.0001 

CvrCrpTrt*Field Position 2 1064 532 0.02 0.9798 

 

Total Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

Field Position 2 68275 34137 1.07 0.348 

CvrCrpTrt 1 710979 710979 22.24 <.0001 

CvrCrpTrt*Field Position 2 9805 4902 0.15 0.858 
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Table 3-15b  PROC GLM Procedure for corn grain yield averaged over all treatments at 

the summit and toeslope research sites at Trail City, SD in 2011. 

 

Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Field Position 1 387632550 387632550 162.2 <.0001 

CvrCrpTrt 2 9123976 4561988 1.91 0.1543 

CvrCrpTrt*Field Position 2 3814049 1907024 0.80 0.4535 
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Table 3-16a  PROC GLM Procedure for corn grain yield averaged over the summit and 

toeslope research sites in the broadcast, drill, and control treatments at Trail City, SD in 

2011. 

 

Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Field Position 1 387632550 387632550 162.2 <.0001 

CvrCrpTrt 2 9123976 4561988 1.91 0.1543 

CvrCrpTrt*Field Position 2 3814049 1907024 0.80 0.4535 
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Table 3-16b  PROC GLM Procedure for corn grain yield in the broadcast, drill, and 

control treatments at the summit (SMT) and toeslope (TSP) research sites at Trail City, 

SD in 2011. 

 

SMT Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Nitrogen Rates 3 40316632 13438877 16.8 <.0001 

CvrCrpTrt 2 2130633 1065316 1.33 0.275 

 

TSP Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Nitrogen Rates 3 97044485 32348161 30.76 <.0001 

CvrCrpTrt 2 10807393 5403696 5.14 0.0101 
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Table 3-18b  PROC GLM Procedure for crimson clover, winter wheat, and total cover 

crop biomass in the broadcast and drill treatments at Aurora, SD from 2011 to 2012. 

 

2011 Aurora Crimson Clover Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 4 249 62 3.17 0.0205 

Error 55 1082 19 
  

Corrected Total 59 1331 
   

 

2011 Aurora Winter Wheat Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 4 18869 4717 6.52 0.0002 

Error 55 39773 723 
  

Corrected Total 59 58643 
   

 

2011 Aurora Total Cover Crop Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 4 22351 5587 6.35 0.0003 

Error 55 48434 880 
  

Corrected Total 59 70786 
   

 

2012 Aurora Crimson Clover Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 4 9939 2484 106.59 <.0001 

Error 75 1748 23 
  

Corrected Total 79 1168 
   

 

2012 Aurora Winter Wheat Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 4 34913 8728 6.22 0.0002 

Error 75 105219 1402 
  

Corrected Total 79 140132 
   

 

2012 Aurora Total Cover Crop Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 4 74172 18543 14.54 <.0001 

Error 75 95661 1275 
  

Corrected Total 79 169833 
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Table 3-19a  PROC GLM Procedure for crimson clover, winter wheat, and total cover 

crop biomass averaged over all treatments at Aurora, SD from 2011 to 2012. 

 

Crimson Clover Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 4 5970 1492 68.55 <.0001 

Research Year 1 1366 1366 62.78 <.0001 

CvrCrpTrt*Research Year 4 4218 1054 48.44 <.0001 

 

Winter Wheat Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 4 49456 12364 11.09 <.0001 

Research Year 1 1696 1696 1.52 0.2196 

CvrCrpTrt*Research Year 4 4326 1081 0.97 0.4264 

 

Total Cover Crop Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 4 79673 19918 17.97 <.0001 

Research Year 1 6109 6109 5.51 0.0204 

CvrCrpTrt*Research Year 4 16850 4212 3.8 0.0059 
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Table 3-19b  PROC GLM Procedure for crimson clover, winter wheat, and total cover 

crop biomass averaged over both years in the broadcast and drill treatments at Aurora, 

SD from 2011 to 2012. 

 

 Crimson Clover Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 4 5970 1492 68.55 <.0001 

Research Year 1 1366 1366 62.78 <.0001 

CvrCrpTrt*Research Year 4 4218 1054 48.44 <.0001 

 

Winter Wheat Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 4 49456 12364 11.09 <.0001 

Research Year 1 1696 1696 1.52 0.2196 

CvrCrpTrt*Research Year 4 4326 1081 0.97 0.4264 

 

Total Cover Crop Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 4 79673 19918 17.97 <.0001 

Research Year 1 6109 6109 5.51 0.0204 

CvrCrpTrt*Research Year 4 16850 4212 3.8 0.0059 
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Table 3-20b  PROC GLM Procedure for grass weed, broadleaf weed, and total weed 

biomass in the broadcast, drill, and control treatments at Aurora from 2011 to 2012. 

 

2011 Aurora Grass Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 4 202614 50653 7.39 <.0001 

Error 55 377201 6858 
  

Corrected Total 59 579816 
   

 

2011 Aurora Broadleaf Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 4 10677 2669 0.98 0.4277 

Error 55 150264 2732 
  

Corrected Total 59 160941 
   

 

2011 Aurora Total Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 4 191903 47975 4.67 0.0026 

Error 55 564934 10271 
  

Corrected Total 59 756837 
   

 

2012 Aurora Grass Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 4 1443748 360937 12.48 <.0001 

Error 75 2168970 28919 
  

Corrected Total 79 3612719 
   

 

2012 Aurora Broadleaf Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 4 0 0 0 0 

Error 75 0 0 
  

Corrected Total 79 0 
   

 

2012 Aurora Total Weed Biomass 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 4 1443748 360937 12.48 <.0001 

Error 75 2168970 28919 
  

Corrected Total 79 3612719 
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Table 3-21a  PROC GLM Procedure for grass weed, broadleaf weed, and total weed 

biomass averaged over all treatments at Aurora, SD from 2011 to 2012. 

 

Grass Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 4 901601 225400 11.51 <.0001 

Research Year 1 295629 295629 15.09 0.0002 

CvrCrpTrt*Research Year 4 744761 186190 9.51 <.0001 

 

Broadleaf Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 4 4575 1143 0.99 0.4156 

Research Year 1 15550 15550 13.45 0.0004 

CvrCrpTrt*Research Year 4 6101 1525 1.32 0.2661 

 

Total Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 4 855395 213848 10.17 <.0001 

Research Year 1 175575 175575 8.35 0.0045 

CvrCrpTrt*Research Year 4 780256 195064 9.28 <.0001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



135 
 

Table 3-21b  PROC GLM Procedure for grass weed, broadleaf weed, and total weed 

biomass averaged over both years in the broadcast, drill, and control treatments at 

Aurora, SD from 2011 to 2012. 

 

Grass Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 4 901601 225400 11.51 <.0001 

Research Year 1 295629 295629 15.09 0.0002 

CvrCrpTrt*Research Year 4 744761 186190 9.51 <.0001 

 

Broadleaf Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 4 4575 1143 0.99 0.4156 

Research Year 1 15550 15550 13.45 0.0004 

CvrCrpTrt*Research Year 4 6101 1525 1.32 0.2661 

 

Total Weed Biomass 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 4 855395 213848 10.17 <.0001 

Research Year 1 175575 175575 8.35 0.0045 

CvrCrpTrt*Research Year 4 780256 195064 9.28 <.0001 
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Table 3-22b  PROC GLM Procedure for corn grain yield averaged over all treatments at 

Aurora, SD from 2011 to 2012. 

 

Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 1 10199002 10199002 5.9 0.0167 

Research Year 4 16224378 4056094 2.35 0.0589 

CvrCrpTrt*Research Year 4 1801522 450380 0.26 0.9026 
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Table 3-23a  PROC GLM Procedure for corn grain yield averaged over both years in the 

broadcast, drill, and control treatments at Aurora, SD from 2011 to 2012. 

 

Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

CvrCrpTrt 1 10199002 10199002 5.9 0.0167 

Research Year 4 16224378 4056094 2.35 0.0589 

CvrCrpTrt*Research Year 4 1801522 450380 0.26 0.9026 
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Table 3-23b  PROC GLM Procedure for corn grain yield in the broadcast, drill, and 

control treatments at the 2011 and 2012 research sites at Aurora, SD. 

 

2011 Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Nitrogen Rates 3 68715540 22905180 16.64 <.0001 

CvrCrpTrt 4 2995961 748990 0.54 0.7039 

 

2012 Corn Grain Yield 

Source DF Type I SS Mean Square F Value Pr > F 

Nitrogen Rates 3 9037457 3012485 1.64 0.1923 

CvrCrpTrt 4 10148267 2537066 1.38 0.2544 

 

 

 

 

  

 

 

 


	South Dakota State University
	Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange
	2013

	Impacts of Spring-interseeded Cover Crops on Late-emerging Weed Suppression and Ground Cover in Corn (Zea mays L.) Production Systems
	Alex D. Bich
	Recommended Citation


	tmp.1501276625.pdf.HpF4F

