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Effect of nutrient status in gestating beef cows has been shown to impact dam 

performance and may affect developmental processes in the fetus that could influence 

offspring throughout their lives.  One hundred eight Angus × Simmental heifers were 

utilized in a randomized complete block design with control (CON = slightly exceeding 

MP requirements) and restricted (R = approximately 80% of MP requirements) 

treatments applied during mid- and/or late gestation.  Diets were formulated to be 

isocaloric and meet net energy requirements.   

Dam performance measures were collected at the beginning and end of each 

gestation period.  In a mid-gestation treatment × time interaction, R heifers lost BW and 

LM area (P < 0.05), and % IMF tended (P < 0.10) to decrease compared to CON heifers.  

Heifers restricted in late gestation gained less BW and lost BCS and LM area compared 

to CON heifers (P < 0.05).  Dietary treatment did not affect milk production or 

subsequent reproductive performance (P > 0.05).   

Progeny were evaluated for growth performance from birth through harvest.  

Gene expression in longissimus dorsi muscle was evaluated at birth and before harvest 

for a subset of calves.  There were no differences due to maternal nutritional treatments 
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for calf birth, weaning, feedlot entry, or harvest BW (P > 0.10).  There were no 

differences in DMI, ADG, or the majority of carcass characteristics (P > 0.10); however, 

LM area was increased in progeny from dams restricted in late gestation (P = 0.04).  This 

was not significant when adjusted using HCW as a covariate (P > 0.10).   

Maternal MP restriction throughout mid- and late gestation (R-R) or in late 

gestation only (CON-R) down-regulated (P < 0.05) genes involved in muscle tissue 

development compared to CON-CON progeny at birth.  Prior to harvest, progeny 

restricted in late gestation only (CON-R) had decreased expression (P < 0.05) of genes 

related to muscle development compared to progeny restricted in mid-gestation (R-CON) 

or throughout gestation (R-R).   

Despite differences in dam performance and gene expression of progeny, it 

appeared that offspring were able to recover from moderate MP restriction imposed 

during gestation.   
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CHAPTER I 

Review of Literature 

Janna J. Kincheloe 

Department of Animal Science 

South Dakota State University, 57007 

INTRODUCTION 

Feeding strategies that optimize livestock production while maintaining efficiency 

and minimizing input costs are necessary for a profitable and sustainable ranching 

operation.  Feed costs (purchased feed, harvested forage, and grazing) account for 

approximately two-thirds of the total operating costs of a cow-calf operation (USDA, 

ERS, 2010), indicating that profitability is largely dependent on managing these inputs.  

In addition, the relationship between nutrition and reproduction in beef females has been 

studied for decades, with reproductive failure estimated to cost the beef industry between 

$400 to $500 million per year through decreased production, delayed reproduction, and 

treatment costs (Bellows et al., 2002).  Reports in the literature indicate that insufficient 

prepartum nutrition results not only in reduced pregnancy rates (Wiltbank et al., 1964; 

Selk et al., 1988) and increased interval from calving to first estrus (Bellows and Short, 

1978; Dunn and Kaltenbach, 1980), but also in reduced calf birth BW (Spitzer et al., 

1995; Houghton et al., 1990), decreased calf survival (Corah et al., 1975), and decreased 

weaning BW (Stalker et al., 2006). 

Recently, an increasing amount of interest has been directed toward controlled 

nutrition studies investigating the impacts of maternal nutrition on long-term 

physiological impacts on offspring.  The ‘fetal origins’ hypothesis was developed using 
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epidemiological data from humans showing that conditions encountered in utero resulted 

in altered metabolism, long-term growth and development, and susceptibility to disease 

(Barker et al., 1993).  Subsequent studies using animals have focused on determining a 

variety of long-term implications for health, productivity, and profitability of livestock, in 

addition to utilizing animals as models for human biomedical research (Bell, 2006).  A 

number of factors can influence impacts of maternal nutrition on subsequent production, 

including environment, duration and severity of nutrient restriction, and ability of the 

dam to buffer negative effects to the fetus (Robinson et al., 2013).  Efficient growth, 

development, and reproduction are key components of profitability in the livestock 

industry.  Research aimed at understanding the mechanisms involved in response of 

offspring to maternal nutrient status is critically important for developing management 

strategies that will increase efficiency and ultimately profitability.  

Nutrition in the Gestating Cow 

The majority of cow-calf producers in the Northern Great Plains are dependent on 

grazed or harvested forage; however, research indicates that forage quality and/or 

quantity may be limiting factors in meeting nutrient requirements of gestating beef cattle 

(DelCurto et al., 2000).  There are several factors that contribute to poor nutritional status 

during pregnancy in most forage-based production settings.  Calving in many parts of the 

country typically occurs in winter or early spring, when rangeland forages are dormant 

and protein and energy concentrations are low.  Beef cows are typically unable to 

consume adequate energy from forage to meet requirements for maintenance, gestation, 

or milk production (NRC, 2000).  Energy and crude protein requirements in the third 

trimester are increased by approximately 20% and 14%, respectively, as compared to the 
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second trimester, resulting in a mismatch between cow requirements and nutrients 

available in forage (Adams et al., 1996).  This situation results in the potential for nutrient 

shortages to occur in many production situations.  Meeting nutrient requirements is 

important for proper growth and development of the fetus in addition to ensuring the dam 

has adequate BCS to calve successfully, produce adequate milk, and rebreed within 80 

days of calving (NRC, 2000).   

Nutrients are partitioned for various body functions including maintenance, 

growth, pregnancy, and lactation, and reserves can be repartitioned depending on 

demands (Short and Adams, 1988).  The relative order of priority for nutrient partitioning 

is: 1) maintenance; 2) activity; 3) growth; 4) energy reserves; 5) pregnancy; 6) lactation; 

7) additional energy reserves; 8) estrous cycles and initiation of pregnancy; and 9) excess 

reserves; although priorities may change depending on physiological stage (Short et al., 

1990).  Age can play an important role in the response of the animal to nutrient 

deficiency. In general, nutrients are partitioned to maternal tissues according to their 

metabolic rate, with greater priority toward maternal tissue growth and fat deposition in 

adolescent pregnancy compared to adults where the gravid uterus is second only to the 

brain and central nervous system (Redmer et al., 2004).  Heifers bred to calve at two 

years of age have increased nutrient requirements for growth in addition to those for fetal 

development, which may lead to a nutrient deficiency when grazing low-quality pastures 

(Ciccioli et al., 2003).  Increased susceptibility to nutrient deficiencies can result in 

delayed puberty and extended postpartum periods in young cows (Hawkins et al., 2000).  

Wiltbank (1970) reported that young cows nursing their first calves required 15 to 25 
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days longer to return to estrus than older cows, which could have negative impacts on 

reproductive performance the following year.  

Although impacts of nutrient deficiency may be more pronounced in young cows, 

there is a strong relationship between adequate nutrition and reproductive performance 

for all cows in the herd, regardless of age (Short et al., 1990; Randel, 1990).  Dunn and 

Kaltenbach (1980) developed several regression equations that described relationships 

between energy status, BW change, and reproductive performance.  They found that if no 

BW loss occurred during gestation, 91% of multiparous and 64% of primiparous cows 

would return to estrus by 60 d postpartum.  Since cows must conceive within 80 days 

postpartum in order to maintain a 365-day calving interval (Dunn and Kaltenbach, 1980), 

reducing the number of days of postpartum anestrus is a critical factor in determining 

reproductive efficiency and profitability.  

An effective system to help producers in estimating energy reserves and nutrient 

status of cows is through the use of body condition scoring (BCS) as described by 

Wagner et al. (1988) where 1 = emaciated and 9 = obese.  It is common for dam BW to 

fluctuate throughout the year depending on nutrient availability and management 

strategy; however, there are critical time points in the production cycle that may impact 

response to loss of condition.  Morrison et al. (1999) demonstrated the ability to 

successfully manage a herd with a wide range of BCS during mid-gestation to calve at a 

BCS of 5 to 6.  In a review of factors affecting reproduction in beef cattle, Dzuik and 

Bellows (1983) suggested that increasing BCS through higher quality forages and 

supplement is more cost-effective and efficient during gestation than after calving.  

Research indicates that BCS at calving is a useful indicator of postpartum reproductive 
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performance factors including reduced postpartum interval (Richards et al., 1986) and 

subsequent pregnancy rate (Selk et al., 1988).  A BCS of 5 or greater at calving has been 

suggested to be the critical level for ensuring acceptable postpartum reproduction (Dziuk 

and Bellows, 1983; Richards et al., 1986; DeRouen et al., 1994).   

Supplementation Strategies 

Alternative grazing strategies and supplemental feeding are commonly used to 

meet increased nutrient requirements of cattle during biologically important times of the 

year, such as pre-calving, lactation, and pre-breeding.  Both protein and energy 

supplements can result in positive responses to reproduction through higher energy 

intake, maintenance of or slight increases in BCS, and increased reproductive 

performance (DelCurto et al., 2000).  Factors that contribute to variation in supplement 

intake and response to supplementation include supplement type and formation, delivery 

method, frequency of supplementation, and cow age and nutritional status (Bowman and 

Sowell, 1997).   

Protein supplementation is a common strategy during times of low forage quality 

and/or quantity, and cow performance responses to various formulations, amounts, and 

feeding strategies have been well documented.  However, impacts of protein 

supplementation at various stages of gestation on subsequent calf birth BW and 

performance are somewhat variable.  Vanzant and Cochran (1994) provided 

supplemental alfalfa at 0.48%, 0.72%, or 0.96% of BW to pregnant cows grazing 

tallgrass prairie for approximately 90 days pre-calving.  Although all cows lost BCS 

across the supplementation period, cows receiving the highest level of alfalfa lost the 

least amount of BW.  Overall conception rate was not affected by treatment; however, 
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postpartum interval was reduced and calf weaning BW was increased in dams receiving 

greater levels of alfalfa.   

Short et al. (1996) conducted a 4-year experiment to determine effects of feeding 

3 kg of 34% protein supplementation to dams during fall grazing.  Supplementation 

increased ADG of calves and increased cow BW gain, but results were highly dependent 

on forage quality and environmental conditions.  Responses in terms of calf weaning BW 

or pregnancy rates from one year to the next were variable, indicating that supplement 

effects did not carry over into the subsequent production year.  Stalker et al. (2006) found 

that supplemental protein fed to cows grazing dormant upland range during the third 

trimester resulted in improvements in BCS prior to calving, and increased the percentage 

of live calves at weaning.  Calf birth BW was similar between treatments but progeny 

from protein-supplemented dams had 14 kg greater weaning BW compared to calves 

from unsupplemented dams.  However, supplementation did not affect subsequent 

pregnancy rates or feedlot dry matter intake, average daily gain, or carcass weight of steer 

progeny.   

Fike et al. (1995) reported no differences in calf birth or weaning BW in cows fed 

no supplement or 2 kg/d of low (12% CP), moderate (20.1% CP), or high (31.7% CP) 

protein supplement.  Weight gain and BCS was greatest in cows receiving the high 

protein supplement, although average calving dates, percentage of cows cycling at the 

beginning of the breeding season, and overall conception rates were similar among 

treatments.  A similar study conducted by Weder et al. (1999) also resulted in greater 

dam BW gains and heavier calf birth BW in cows fed high (18.8% CP) or low (15.2% 

CP) quality alfalfa compared to unsupplemented cows, but again, there were no effects 
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on reproductive characteristics.  Zehnder et al. (2010) provided soybean meal (SBM) or 

alfalfa meal (ALM) to heifers receiving hay-based diets for 100 days prior to calving at 

either 100% or 112.5% of NRC (1996) recommendations for CP intake.  Body condition 

score was not affected by protein source or amount, although heifers fed the higher level 

of supplement had greater ADG.  There was no effect of treatments on calving ease, calf 

birth BW, or calf vigor.   

Nutrient source and site of digestion may be one factor influencing response to 

protein supplementation.  Rusche et al. (1993) utilized soybean meal (low ruminal escape 

protein) or corn gluten meal/blood meal (high in ruminally undegraded protein (RUP)) 

fed at 100% or 150% of NRC (1984) recommendations for CP intake to primiparous 

cows.  Feeding a higher level of ruminal escape protein increased calf ADG; however, 

source and amount of protein did not affect overall conception rates.  Mulliniks et al. 

(2012) reported that calves from dams that received a self-fed supplement in late 

gestation that contained 50% animal protein sources and 50% mineral had a lower 

incidence of sickness compared to calves from dams fed cottonseed meal supplement on 

a routine or intermittent basis.  Authors speculated that results may be due to composition 

and quality of the metabolizable amino acid component in the self-fed supplement, which 

consisted of a high level of ruminally undegraded protein (RUP).   

Energy supplements are typically utilized to meet nutrient deficiencies during 

times of low forage quality and/or quality, although responses to energy supplementation 

in the literature are mixed.  Many researchers have reported no effect on production or 

just slight reductions in BW and BCS loss, and there are few reports of improvements in 

reproductive performance due to energy supplementation (Caton and Dhuyvetter, 1997).  
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However, potential negative consequences of energy deficiencies in the gestating cow 

and her fetus have been well documented, including impacts on cyclicity (Houghton et 

al., 1990; Wiley et al., 1991), decreased maternal BW, lighter calf birth BW (Tudor, 

1972), and calf morbidity and mortality (Corah et al., 1975).   

Energy supplements typically include feedstuffs that contain either structural 

(highly digestible fiber sources such as soyhulls, wheat middlings, or corn gluten feed) or 

nonstructural carbohydrates (NSC; high-starch feedstuffs such as corn, wheat, and 

barley).  In general, supplementation with NSC may result in decreased forage intake and 

digestibility, which could influence response to supplementation.  Bowman et al. (2004) 

reported no effect on calf birth BW, weaning BW, pregnancy rate, or calving interval due 

to supplementation with low (0.32 kg), intermediate (0.64 kg), and high (0.96 kg) levels 

of non-structural carbohydrate (NSC).  Cows on all levels of NSC supplementation lost 

BW compared to the unsupplemented control during the first year of the study, but BW 

loss in the second year increased linearly with higher levels of NSC supplementation.  

This was likely due to the negative impact of NSC on forage intake and digestibility.   

Radunz et al. (2012) investigated the effects of three types of energy sources 

consisting of grass hay, corn, or dried corn distillers grains fed to mature beef cattle at 

day 160 of gestation through parturition.  Calf birth BW was greater for progeny from 

cows fed corn or distillers grains than those fed hay, and weaning BW tended to be less in 

calves from cows fed hay versus corn.  As stated by Radunz et al. (2012), high-

concentrate diets may allow more energy to be partitioned to the fetus, which could help 

explain increased fetal growth in calves from dams fed corn or distillers grains.  Cows in 

this study were fed to meet or exceed nutrient requirements; therefore, no nutrient 
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restriction was imposed.  There were no differences in ADG, hot carcass weight, or yield 

grade in finished steer calves; however, calves from corn-fed dams had the lowest 

marbling scores and intramuscular fat content.  This response disagrees with most feedlot 

trials in the literature that report increased marbling in high-starch vs. low starch diets, 

suggesting that energy composition of maternal diet may affect fetal adipose tissue 

development and alter responses to diets fed postnatally.   

Few studies have directly compared responses to protein and energy supplements.  

In a 4-year grazing study conducted by Huston et al. (1993), supplement was formulated 

to provide equal amounts of CP and 10%, 20%, or 40% of required dietary energy (DE).  

Supplementation resulted in reduced dam BW and BCS loss and increased calf weaning 

BW compared to progeny from unsupplemented dams.  Marston et al. (1995) fed 

supplemental protein or energy for approximately 120 days prior to calving.  Cows fed 

energy supplement had slightly greater BW gains and 11% greater pregnancy rates over 

protein-supplemented cows.  Calf weaning BW was not affected by supplementation.  

Authors reported that cow BW and BCS changes were relatively low, indicating that 

influences on reproduction may occur even without major changes in other measurements 

of performance. 

Sanson et al. (1990) fed ear corn alone, ear corn with a protein supplement, and 

protein supplement alone to pregnant cows grazing Sandhills winter range or receiving 

grass hay.  Prior to calving, cows fed ear corn alone lost 10% of their BW; however, 

during calving, cows fed either treatment of ear corn gained BW, and protein-supplement 

fed alone resulted in BW loss.  There was no effect of treatment on conception rate, 

calving date, or calf birth or weaning BW. These results are in agreement with those 
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reported by Beck et al. (1992), who fed pregnant cows diets of ammoniated wheat straw 

with supplement treatments of 1) no supplement (control); 2) LSG (1.36 kg of sorghum 

grain); 3) HSG (2.72 kg of sorghum grain; or 4) SG + SBM (1.02 kg of sorghum grain 

and 0.34 kg of soybean meal).  All supplements increased cow BW gain over the control 

treatment, although there was no effect of treatment on calf birth BW, calf gain, or dam 

reproductive measures.   

Nutrient availability and intake vary widely in production situations and can be 

affected by factors such as diet quality and quantity and environmental conditions.  

Although positive responses to supplementation in terms of reproductive performance 

and calf growth are not consistent across studies, negative impacts on production 

measures due to deficient prepartum CP and energy levels have been well documented 

(Rasby and Funston, 2016).   

Concept of Developmental or Fetal Programming 

Developmental Programming Hypothesis 

The ‘fetal origins hypothesis’ refers to the concept that negative influences 

occurring during fetal development can result in permanent changes in physiology and 

metabolism in offspring (Barker, 1995).  Dr. David Barker, a human physician and 

researcher, and his colleagues at the University of Southampton, suggested evidence of a 

relationship between impaired growth and development during gestation and incidence of 

several major diseases later in life, including coronary heart disease, high blood pressure, 

and Type 2 diabetes (Godfrey and Barker, 2000).  Based on this hypothesis, the response 

to fetal undernutrition is thought to vary with the trimester of pregnancy in humans 

(Wilson, 1999).  Birth BW is typically reduced due to nutritional restriction during the 
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first and second trimester, with increased blood pressure later in life associated with first 

trimester restriction and hypertension and diabetes associated with second trimester 

restriction.  In the third trimester, nutrient restriction usually does not affect birth weight, 

but postnatal effects include hypertension, cholesterol, and increased potential for heart 

disease (Wilson, 1999).    

One of the most studied cases related to the fetal origins hypothesis occurred 

during World War II in the German-occupied Netherlands.  An interruption in rail 

transport of supplies by the Germans caused a severe famine, often referred to as the 

“Dutch Hunger Winter” (Lumey et al., 2007).  The famine lasted approximately seven 

months, with many people forced to survive on less than 1,000 kcal per day.  Food 

supplies were restored immediately after liberation in May of 1945.  The famine was 

well-defined in terms of length of nutrient restriction and the population affected was 

typically well-fed before and after the famine, which created a ‘natural experiment’ used 

to examine potential impacts on offspring due to maternal undernutrition during specific 

times throughout gestation.  The famine affected fertility and weight gain during 

pregnancy, maternal blood pressure, infant size at birth, and central nervous system 

development.  There were also indications of postnatal metabolic issues and potential for 

increased risk of disease (Lumey et al., 2007).     

Godfrey and Barker (2000) proposed that the effects of nutrition are not only 

related directly to reduced availability of nutrients, but also to a secondary response of 

hormonal effects that alter the development of fetal tissues during sensitive periods of 

human development.  During normal pregnancy, hormones including glucocorticoids, 

insulin-like growth factors (IGF’s), and leptin play important regulatory roles in fetal 
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development (Belkacemi et al., 2010).  Maternal nutrient restriction changes level and 

exposure of the fetus to these hormones, contributing to effects on fetal growth, neural 

and cognitive deficits, muscle hypertrophy, and links to obesity later in life (Belkacemi et 

al., 2010).  In addition to metabolic and physiological adaptations of the fetus, it has been 

suggested that epigenetic modifications in the fetus can result from a variety of internal 

and external stimuli.  These epigenetic changes are heritable and allow gene expression in 

the fetus to respond to its maternal environment (Funston and Summers, 2013).   

Although mechanisms that define the fetal programming hypothesis have not been 

fully determined, research in livestock has shown that compromised fetal growth may 

result in increased neonatal morbidity and mortality, reductions in feed efficiency and 

performance, negative impacts on body composition and meat quality, and even lifetime 

production (Wu et al., 2006).  Recently, there has been increased focus by animal 

scientists to determine the extent to which nutritional status of the dam during pregnancy 

impacts postnatal productivity factors in beef cattle, including growth, feed intake and 

efficiency, reproductive performance, muscle development and meat quality.  In addition 

to determining impacts of developmental programming on livestock production, animals 

are frequently utilized as a model to determine the mechanisms and long-term outcomes 

of maternal environment in humans.   

Influence of Maternal Nutrition on Placental and Fetal Development, Birth BW, and 

Growth 

Because of the potential for sheep to serve as a model for human fetal 

development, a great deal of research has focused on consequences of maternal nutrition 

in this species.  Luther et al. (2005) reported that undernutrition in mid-gestation in sheep 
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resulted in variable impacts on placental and fetal growth; however, prolonged nutrition 

restriction through late gestation can compromise fetal growth.  In sheep, placental 

weight ceases to increase after d 90 of gestation, while placental weight of cattle 

increases exponentially throughout gestation (Reynolds and Redmer, 1995).  Although 

several studies in cattle have indicated that fetal growth may be altered, results are not 

consistent.  It appears that sheep may be more susceptible to maternal nutrient restriction 

than cattle, perhaps due to differences in the timing, level, and length of nutrient 

restriction, as well as patterns of fetal growth (Caton and Hess, 2010).  Additionally, it 

can be difficult to separate environmental influences such as milk production on postnatal 

growth and performance from maternal influences experienced during gestation 

(Robinson et al., 2013).  Regardless of mixed responses, it is clear that maternal nutrient 

status during gestation has the potential to impact pre- and post-natal growth in offspring 

(Funston et al., 2010).   

The normal length of gestation in cattle is 283 days or approximately 9 months.  

The gestation period is commonly divided into the first, second, and third trimester, with 

each trimester consisting of approximately three months.  A great deal of research has 

focused on response of gestating cows to increased plane of nutrition during the third 

trimester since most of the fetal growth is occurring at this time; however, there is 

increasing evidence that adequate nutrition is important throughout all stages of gestation 

(Funston et al., 2010).  Although impacts of nutrition may be more easily observed in the 

cow herd in terms of BW and reproductive measures, maternal nutrition and hormonal 

state can influence the growth rate of the placenta and fetus as early as several days after 

fertilization (Robinson et al., 1995).  The influence of maternal environment on the 
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placenta is very important because it serves as the sole source of nutrients for the fetus 

(Vonnahme et al., 2013).   

Formation and development of the placenta, known as placentation, occurs early 

in gestation and is critical in meeting the metabolic demands of the fetus (Reynolds and 

Redmer, 1995).  In ruminants, knob-like structures called caruncles on the uterine wall 

serve as attachment sites for the fetal placenta through villi referred to as cotyledons. The 

caruncules and cotyledons form a unit called a placentome, which is the primary 

functional area of all respiratory, nutrient, and waste product exchange between the 

mother and fetus (Vonnahme, 2012).   Uterine and placental blood flow is critical in 

delivering nutrients to the developing fetus, and will typically increase throughout 

gestation in a normal pregnancy (Reynolds et al., 2010).  The majority of placental 

growth occurs in the first half of gestation; however, vascular growth continues to 

increase throughout gestation, along with increased transport capacity to support fetal 

growth and metabolism (Reynolds and Redmer, 1995).  Inadequate placental 

environment leads to reduced nutrient availability in plasma, decreased oxygen carrying 

capacity of the umbilical vein, and decreased expression of growth factors necessary for 

development of new blood vessels, thereby reducing the ability of the fetus to uptake 

nutrients and potentially affecting postnatal growth and performance (Vonnahme, 2012).   

Impaired growth and development of the embryo/fetus or its organs during 

pregnancy is known as intrauterine growth retardation (IUGR), and can cause significant 

fetal losses during all stages of gestation (Wu et al., 2006).  Insufficient uterine capacity 

and inadequate nutrient absorption are two major factors that can contribute to 

embryonic/fetal loss, in addition to genetic factors, environmental temperatures, stress, 
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and management (Wu et al., 2006).  A model developed in rats by Anderson et al. (2005) 

demonstrated reduced uteroplacental blood flow as a result of IUGR that not only 

impaired fetal growth but also resulted in persistent hypertension in following 

generations.  Long et al. (2009) fed thirty multiparous beef cows to meet NRC (1996) 

recommendations (control, n = 15) or to provide 68.1% of NEm and 86.7% of MP 

requirements (nutrient-restricted, n = 15) from d 30 to d 125 of gestation.  At d 125 of 

gestation, necropsies were conducted in 10 cows from each treatment.  Remaining 

nutrient-restricted cows were realimented to achieve similar BW and BCS of control 

cows, and both groups were necropsied on d 245 of gestation.  Long et al. (2009) 

observed reduced cotyledonary weights, increased fetal brain weight, and tendencies for 

increased fetal heart weight and reduced placentome surface area in over half of nutrient-

restricted cows affected by IUGR at d 125 of gestation.  Reduced cotyledonary weights in 

nutrient-restricted cows were also observed at d 245 of gestation; however, fetal weights 

and caruncle weights were similar between treatments.  In contrast, increased growth in 

the cotyledon and chorioallantois (vascular placental membrane) was reported in cows 

fed to achieve a thin BCS vs. those fed to achieve a moderate BCS when evaluated at d 

259 of gestation (Rasby et al., 1990).  Although impacts on placental development due to 

nutrient restriction were inconsistent in these two studies, it appears that compensatory 

mechanisms may reduce the influence of nutrient intake and BCS of the dam on fetal 

development in late gestation.  In the study by Long et al. (2009), nutrient-restricted cows 

that appeared to be affected by IUGR were younger than restricted cows that were 

unaffected (3.5 vs. 5 years), which could indicate that younger cows are more susceptible 

to the effects of nutrient deficiency than older cows (Long et al., 2009).  This concept is 
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supported by earlier work by Bellows and Short (1978), who found that calves from 

heifers had consistently lower birth BW than calves from mature cows.   

Vonnahme et al. (2007) imposed a nutrient restriction (NR) on multiparous beef 

cows from days 30 to 125 of gestation, at which point half the cows were harvested.  

They noted a reduction in caruncular, cotyledonary, and total placentome weight in NR 

cows compared to control cows.  The suppression in total placentome weight was still 

evident at day 250 in the remaining NR cattle, even after they were realimented to reach 

BCS similar to control cows.  Fetal weight was not different between NR and control 

cows at d 125 or d 250; however, authors suggested that this could have been a result of 

the placenta compensating for reduced nutrient availability by increasing blood flow 

through the tissue (Vonnahme et al., 2007).   

Fetal organogenesis occurs simultaneously with placental development in cattle 

(Funston et al., 2010).  Organ development in the bovine fetus begins with the heart as 

early as d 21 of pregnancy, followed by limb and other organ development as early as 

day 25.  Development of sex organs begins by day 45 in males and day 50 to 60 in 

females (Funston et al., 2010).  Primordial follicle assembly in females begins around day 

80 and occurs through day 150, and these follicles represent the oocyte supply available 

to a female after puberty (Funston and Summers, 2013).  Maternal nutrient restriction 

during the first third of gestation can result in female offspring with smaller ovarian 

reserves, resulting in potential suboptimal fertility (Mossa et al., 2013).   

Meyer et al. (2010) evaluated the effects of maternal nutrient restriction and stage 

of gestation on maternal and fetal visceral organ mass.  Cows were fed native grass hay 

to meet NRC (2000) requirements for BW gain during early gestation (Control) or fed a 
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nutrient-restricted (NR) diet of millet straw that provided 68.1% of NEm and 86.7% of 

MP requirements to lose BW (restricted) from d 30 to d 125 of gestation.  At that point, 

some cows were slaughtered and necropsied to measure vascular density and fetal and 

maternal placental tissues.  Remaining restricted cows were fed to achieve BCS equal to 

control cows and then slaughtered and necropsied on day 245.  In this study, nutrient 

restriction from early to mid-gestation had little effect on fetal weight or organ growth, 

although NR fetuses had greater reticular mass at d 245.  This suggests that compensatory 

gain may have occurred in fetal organs as cows were realimented.  Nutrient restriction 

did reduce stomach complex, liver, and pancreas mass of dams, indicating that the 

maintenance of fetal tissue could have been at the expense of maternal tissue.  

Houghton et al. (1990) found that low-energy diets after day 190 of gestation 

caused reductions in calf birth BW and 105-d BW compared to cows fed at maintenance.  

This agrees with results reported by Corah et al. (1975), who determined that restricted 

energy intake for 100 days prepartum in heifers (65% of NRC (1970) energy levels) and 

in cows (50% of NRC (1970) energy levels) caused a reduction in birth and weaning BW 

of calves.  Additionally, calving death loss was 7% greater in heifers on the restricted diet 

compared to control heifers.  The percentage of calves from restricted cows that were 

alive at weaning was 71%, compared to 100% in control cows.  Prepartum nutrition level 

did not affect the level of milk production in heifers, indicating that weaning BW 

differences could have been a carryover effect of reduced fetal growth. Nutrient uptake 

by the fetus is greatest during the last trimester (Reynolds et al., 2010), which supports 

the conclusion by many researchers that energy restrictions in the dam during that time 

can have lasting impacts on fetal development. 
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Fetal growth restriction resulting in lower birth BW may limit the ability of cattle 

to experience compensatory growth (Greenwood et al., 2005).  A summary of studies by 

Greenwood et al. (2010) provides evidence of this relationship.  Authors reported that 

fetal growth restriction resulting in a decrease of 26% or 10.2 kg of birth BW limited the 

ability of cattle to exhibit compensatory gain.  Cattle whose dams were severely nutrient 

restricted from d 80 of gestation until parturition remained smaller up to 30 months of 

age compared to counterparts whose dams were not nutrient restricted.  Freetly et al. 

(2000) fed cows to: 1) maintain BCS from the second trimester until the subsequent 

breeding season (H-H-H); 2) lose BCS during the second trimester and regain during the 

third to be similar to maintenance cows at breeding (L-H-H); and 3) lose BCS during the 

second trimester and regain after 28 days of lactation to be equal to the other two 

treatments at breeding (L-L-H).  Calf birth BW did not differ between the H-H-H and L-

H-H groups, but were lowest in calves from L-L-H cows.  Pregnancy diagnosis at 

weaning did not differ among treatments.  The feed restriction in this study was moderate 

and was followed by additional feed in the third trimester; however, fetal growth was 

affected in cows restricted throughout late pregnancy (L-L-H treatment).  These results 

differ from those of Morrison et al. (1999), who reported no differences in calf birth BW 

or calf 205-d BW in three groups of cows managed to maintain 1) BCS of less than or 

equal to four; 2) BCS of five or six; or 3) BCS of seven or greater.  However, cows in the 

study conducted by Morrison et al. (1999) were placed on a higher plane of nutrition 

about 90 days prior to calving so that all cows would calve at a BCS of 5 to 6, which may 

have impacted results.   
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Influence of Maternal Nutrition on Growth, Feed Efficiency, and Carcass Characteristics 

Nutritional deficiency during gestation is a common occurrence in many livestock 

production situations (Caton and Hess, 2010).  One of the major principles of 

developmental programming as outlined by Nathanliesz (2006) is that there are critical 

periods of vulnerability during development wherein specific tissues and organ systems 

may be affected.  Correlation between timing of nutrient restriction and stage of 

development appears to be a critical factor in determining mechanisms that influence 

postnatal performance and ultimately meat quality and yield. Development of 

economically important tissues such as skeletal muscle and fat begins in the ruminant 

within the first two months of conception.  It is important to note that development of fat 

cells (adipocytes), structural cells (fibroblasts), and muscle cells (myocytes) occurs 

simultaneously, primarily through differentiation of mesenchymal stem cells (MSC; Du 

et al., 2010a).  Alterations to the nutrient supply to the fetus can impact signaling 

pathways that dictate differentiation of cells, potentially altering composition of tissues 

(Zhu et al., 2004; Du et al., 2010a).  Prenatal skeletal muscle development can be 

separated into an embryonic stage (primary myogenesis) and a fetal stage (secondary 

myogenesis; Du et al., 2010b).  The majority of skeletal muscle fibers are formed 

between two and eight months of gestation, and there is no further net increase of 

formation after birth (Du et al., 2013).  Skeletal muscle has a lower priority in nutrient 

partitioning when compared to other organs such as the brain, heart, and liver, and 

insufficient maternal nutrition in early gestation has been shown to reduce the number 

and size of myofibers in skeletal muscle (Zhu et al., 2004; Zhu et al., 2006; Du et al., 
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2010a).  This reduction in the formation of fibers may result in irreversible long-term 

effects on growth, performance, and meat quality (Du et al., 2010a).   

The fetal stage may be the most important in terms of nutritional impacts of the 

dam on marbling of offspring.  Adequate maternal nutrition increases the number of cells 

that are committed to adipogenesis, which will increase the number of intramuscular fat 

cells and therefore affect marbling (Du et al., 2010a).  Accumulation of fat cells 

intramuscularly occurs mainly during late gestation, while adipose tissue accumulation in 

visceral, subcutaneous, or intermuscular tissue sites occurs during mid- to late-gestation 

(Du et al., 2013).  Because adipocyte formation occurs sequentially, there is an 

opportunity to enhance marbling while not increasing overall fatness through strategic 

supplementation, although the mechanisms for this have not been defined (Du et al., 

2013).  When skeletal muscle development is impaired as a result of maternal nutrient 

restriction, activity of enzymes controlling fatty acid oxidation are reduced, contributing 

to undesirable increases in intramuscular triglyceride and visceral fat contents in skeletal 

muscle of lambs (Zhu et al., 2006).  These results indicate a complex relationship 

between maternal nutrition levels and fat and muscle cell formation in the fetus.  While 

undernutrition can negatively impact muscle development and increase fat deposition, 

overnutrition may also lead to increased fat deposition (Du et al., 2010a).  Bispham et al. 

(2003) reported increased adipose tissue in fetuses that were on a low plane of nutrition 

during gestation, supporting research in humans that has found that increased circulation 

of hormones such as insulin-like growth factors (IGF’s) and leptin can contribute to 

obesity later in life (Belkacemi et al., 2010).   
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In general, muscle fiber formation in ruminant species is stopped during late 

gestation, and muscles begin to increase in size and length (Du et al., 2013).  However, 

differing responses in terms of fetal growth, development, and postnatal performance 

between cattle and sheep have been noted.  Fahey et al. (2005) reported that restricting 

ewes to 50% of requirements prior to fetal muscle fiber formation (d 30 through 70 of 

gestation) resulted in fewer muscle fibers, although there was no effect on the number of 

muscle fibers when restriction occurred during (d 55 to 95) or after (d 85 to 115) fiber 

formation.  However, restriction late in gestation (d 85 to 115) reduced muscle weight 

(Fahey et al., 2005).  This data supports the hypothesis that restriction early in gestation 

during myogenesis can impact development of new muscle cells (hyperplasia), while 

restriction late in gestation may have more of an impact on growth (hypertrophy) of 

muscle cells.  Nordby et al. (1987) found no detrimental effects on muscle fiber 

characteristics of lambs at slaughter that were born to ewes fed at 70% of NRC (1975) 

requirements during the first 100 days of gestation and then fed 70% of the amount of 

alfalfa hay fed to non-restricted ewes.  Authors did note that differences may have been 

observed if measured at birth rather than at market weight, after elongation and 

overlapping of muscle fibers had occurred.   

Another study utilizing a 50% restriction of TDN according to NRC (1985) 

requirements in early to mid-gestation resulted in reduced muscle fiber numbers of 

progeny in sheep (Zhu et al., 2004).  In a study conducted by Ford et al. (2007), lambs 

from ewes fed 50% of NRC (1985) requirements from d 28 through d 78 of gestation 

followed by realimentation through lambing had increased slaughter weights, increased 

back fat and KPH fat, and tended to have reduced muscle mass as a percentage of HCW.  
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This suggests that restriction during mid-gestation resulted in reductions in skeletal 

muscle growth and increases in adipose tissue development that led to differences in BW 

gain.  Similar to differential responses in birth BW between cattle and sheep due to 

nutrient restriction, it appears that muscle and adipose development in sheep may be 

more susceptible to restriction.  Differences between cattle and sheep in the way that they 

respond to maternal nutrition could be due to a variety of factors, one of which may 

simply be differences in gestation length and developmental timelines. 

Larson et al. (2009) conducted a three-year trial measuring steer growth 

performance from dams grazing either winter range (WR) or corn stalk residue (CR) and 

receiving no supplement (NS) or a protein supplement (PS).  Cows grazing CR had 

increased calf birth BW compared to cows grazing WR.  Weaning BW was least for 

calves from cows receiving NS and grazing WR; however, only 62% of cows on that 

treatment calved in the first 21 days, indicating that this result could partially be due to 

calf age.  This supports other reports in the literature of increased postpartum interval in 

cows grazing low quality native range and receiving no supplementation prior to calving.  

There was no impact due to winter grazing system or protein supplement on external fat 

thickness or yield grade; however, steers from protein-supplemented dams had increased 

marbling scores and a greater proportion which graded Choice or higher.  It is important 

to note that calves from this study were grazed on sub-irrigated meadows and fed a 

protein supplement for eight weeks following weaning, which may have influenced the 

lack of differences observed for carcass traits.  Authors suggested that the increased 

marbling scores in calves from protein supplemented dams are potentially due to changes 

in the site of nutrient deposition and intramuscular fat deposition from late gestation 
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supplementation (Larson et al., 2009).  These results are in partial agreement with 

Summers et al. (2011), who found no differences in 12th rib fat thickness, LM area, or 

yield grade in steers born to dams receiving high (HN; 0.95 kg/d) and low (LN; 0.37 

kg/d) levels of protein supplement; however, increased marbling scores, final BW, and 

hot carcass weight were increased in steers from HN dams.  Mulliniks et al. (2012) fed 

supplements consisting of 1) 36% CP cottonseed meal (CSM); 2) self-fed supplement 

containing 50% animal protein sources and 50% mineral (SMP); and 3) brief and 

intermittent supplementation of cottonseed meal (VAR) to cows in late gestation.  Across 

four years of data collection, no treatment differences were reported for calf weaning, 

initial and final BW, or carcass characteristics (hot carcass weight, dressing percentage, 

marbling score, 12th rib fat thickness, LM area, and yield grade).   

Data from Underwood et al. (2010) indicated that mid-gestation responses to 

maternal nutrition may include adipose tissue development and subsequent tenderness in 

beef steaks.  In this study, cows were placed on improved pasture (IP) or native range 

(NR) during mid-gestation.  Treatment had no impact on calf birth BW; however, 

increased weaning BW was observed in steer progeny from cows on IP, which could 

have been partially due to increased forage quality.  Steers from dams grazing NR had 

lower ADG and tended to finish at a lighter final BW.  Steaks from steers whose dams 

grazed IP had a lower shear force value, which is an indication of increased tenderness.  

Fat thickness was greater for IP carcasses; however, marbling score was similar between 

treatments.  It should be noted that a small number of animals were used in this study (IP: 

n=12; NR: n=14) and that differences in carcass characteristics may have been observed 

if a greater number of animals were utilized.   
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Results from an unpublished study described by Du et al. (2011) demonstrated the 

impact of maternal nutrition and protein supplementation during gestation on muscle and 

adipose tissue development in steer offspring of beef cows.  Thirty-six crossbred beef 

cows were randomly placed on a control diet receiving 100% (control) or 70% (NR) of 

NRC requirements or a nutrient-restricted diet with protein supplement (NRP).  The NRP 

diet was designed to provide a similar amount of AA’s to the small intestine as the 

control diet from d 45 to 185 of gestation.  Steer offspring of NR dams had less fat 

thickness, although there were no significant differences between NR and NRP 

treatments.  Steers from dams on the NRP treatment had reduced kidney, pelvic, and 

heart fat percentages and tended to have larger semitendinosus muscles.  Adipocyte 

diameter tended to be greater in NR steers, although NRP steers tended to have a higher 

number of adipocytes.    

In contrast to results reported above, there are other studies indicating few 

differences in carcass characteristics between progeny from dams on restricted or 

adequate levels of nutrition.   Long et al. (2010) reported that steer calves from crossbred 

heifers fed a low-nutrition diet (LN; 55% of NRC (1996) requirements) or moderate 

nutrition diet (MN; 100% of NRC (1996) requirements) during early gestation were not 

different in terms of calf birth BW, gain from birth to weaning, or weaning BW.  

However, heifers fed in this study were commingled after day 115 and fed a diet that 

exceeded NRC (1996) requirements, which may have allowed fetuses to overcome 

potential effects of the nutrient deficiency experienced in early gestation, as demonstrated 

by Freetly et al. (2008).  There were also no differences in hot carcass weight, fat 

thickness, dressing percentage, yield grade, or marbling score of steer progeny born to 
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LN or MN heifers.  However, researchers did note increased area of individual muscle 

fibers and increased concentrations of DNA in the complexus muscle for steer progeny 

from dams receiving the LN diet, and speculated that this result could affect meat quality 

and tenderness.  Greenwood et al. (2006) evaluated carcass characteristics of 

Piedmontese- or Wagyu-sired cattle with low (28.6 kg) and high (38.8 kg) birth BW and 

slow (554 g/day) or rapid (875 g/day) growth to weaning.  Low birth BW calves weighed 

56 kg less at 30 months of age, and carcasses and amount of retail beef product were 32 

and 18 kg lighter, respectively.   There were no differences in any other carcass quality 

measurements, indicating that reduction in birth BW of animals does not necessarily 

translate to impacts on carcass traits.  Relationships among muscle fiber characteristics, 

growth, and meat quality have not been well defined (Lefaucheur, 2010), and factors 

controlling growth and development of skeletal muscle are of great interest to 

researchers.  Also, the competitive relationship between muscle and fat development 

offers the opportunity to formulate maternal diets that could increase adipose 

development and potentially impact marbling without increasing subcutaneous fat.  

Increased understanding of the pathways affecting these processes is necessary to 

develop management strategies that allow for manipulation of tissue growth and lead to 

improved production efficiency and meat quality.    

Influence of Maternal Nutrition on Gene Expression 

Research indicates that nutrition during various stages of pregnancy can result in 

significant changes in structure, metabolism, and physiology of offspring.  In the ‘thrifty 

phenotype’ hypothesis described by Hales and Barker (1992), it was suggested that 

metabolic adaptations are made during fetal life based on nutrient supply from the mother 
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with the expectation that a similar environment will be encountered at birth.  Based on 

epidemiological evidence in humans, these adaptations can be detrimental to offspring if 

nutrient availability in the pre- and post-natal environment differ, resulting in alterations 

in cardiovascular and metabolic homeostasis and growth and body composition (Godfrey 

et al., 2007).  Knowledge of mechanisms underlying responses is critical for preventing 

negative consequences on health and productivity of livestock.  Fetal growth is a complex 

series of events influenced by factors such as size and capacity of the placenta, 

uteroplacental blood flow, nutrient transfer, and metabolic pathways (Wu et al., 2006).  

Long-term impacts on offspring as a result of nutrient restriction during gestation are 

likely due to both structural defects such as alterations in tissue and organ structure and 

functional defects such as changes in gene expression that can alter tissue function 

(Reynolds and Caton, 2012).   

The term ‘epigenetics’ refers to biochemical modifications of the genome that 

impact gene function without changing DNA sequence.  Increasing evidence indicates 

that maternal nutritional status can result in permanent alterations in gene expression and 

modifications in the fetal genome that alter the epigenetic state of the fetus (Wu et al., 

2006).  Epigenetic change is a normal physiological process that contributes to regulation 

of gene expression in an organism (Nilsson and Skinner, 2015).  However, there are 

windows of time representing critical periods of development in which certain 

environmental conditions such as nutritional insults can interfere with normal epigenetic 

processes and result in changes that could be considered epimutations (Nilsson and 

Skinner, 2015).  There are several mechanisms believed to regulate gene expression.  The 

two most studied mechanisms include DNA methylation and histone modification.  
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Methylation of DNA involves the addition of methyl groups to the cytosine bases of 

DNA.  This is regarded as an inhibitory mechanism since it causes condensation of the 

chromatin which determines structure of DNA, thereby silencing gene expression 

(Doherty et al., 2014).  Histones are the primary protein components of chromatin, which 

determines the coiling and looping structure of DNA.  Post-translational modifications to 

histone proteins that occur through enzymatic activity such as methylation and 

acetylation affect function of gene regulation (Doherty et al., 2014).  An additional 

mechanism that has demonstrated a function in gene regulation but is less understood is 

the role of microRNAs or miRNAs.  These are a family of non-coding RNAs that can 

negatively regulate gene expression through modification of sequences, structure, and 

expression of mRNA during and following transcription (He and Hannon, 2004).  The 

processes outlined above often affect the way that an organism reacts to the environment, 

thereby influencing changes in gene expression.   

Research has shown that maternal nutrition in beef cattle can alter placental 

growth and function, impact uterine blood flow and nutrient transfer to the fetus, and 

affect organ development and differentiation of various tissues such as fat and muscle 

(Funston and Summers, 2013).  However, overall effects of developmental programming 

remain focused on phenotypic responses in offspring, with the underlying mechanisms 

responsible for these differences rarely investigated and consequently not well 

understood.  Some of the challenges facing livestock scientists are widely varying 

nutrient concentrations in various feedstuffs and differences in bioavailability and 

metabolism of nutrients based on genetic diversity among individuals (Neibergs and 

Johnson, 2012).  However, recent availability of the bovine genome sequence has 
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allowed for additional understanding of genes and mechanisms that play a role in 

regulation of developmental programming.  Several recent experiments have analyzed 

differential gene expression in muscle and fat, both of which are economically important 

tissues in the beef industry.   

A relationship between maternal nutrition and muscle, fat, and connective tissue 

development in offspring has been established (Du et al., 2015); however, mechanisms 

are not well understood.  Reed et al. (2014) measured muscle fiber characteristics of 

lambs born to ewes fed 60%, 100%, or 140% of NRC (2007) requirements beginning on 

d 31 of gestation.  At birth, lambs were allowed to nurse their mothers for up to 24 h.  

After euthanizing a portion of the lambs for muscle characteristics on d 1, remaining 

lambs were fed milk replacer until 60 d of age and then fed water, creep fed, and hay for 

3 months.  Compared with the control treatment, muscle fiber cross-sections were similar 

between ewes fed at 60% and 140% of NRC (2007) requirements in lambs at 1 d and 3 

months of age.  Interestingly, muscle lipid content was increased in offspring from 

overfed and restricted ewes compared to the control treatment at 1 d of age; however, 

muscle lipid content was increased in overfed ewes and decreased in restricted ewes 

compared to the control treatment at 3 months.  Differential responses for muscle growth 

and fat deposition within muscle indicate that mechanisms for these responses could vary 

and may be highly specific depending on the timing, length, and severity of nutrient 

restriction, in addition to postnatal management strategies.  Despite similar phenotypic 

responses in muscle tissue between overfed and restricted treatments, global gene 

analysis of offspring indicated that nutrient restriction affected genes involved in muscle 

growth and signal transduction, while overfeeding caused changes in expression of genes 
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that regulate muscle protein synthesis (Hoffman et al., 2016).  Additional research to 

determine gene expression differences at various stages of fetal development could 

provide increased understanding of how these mechanisms may change depending on a 

specific nutrient restriction.       

Impacts of maternal undernutrition and protein supplementation during early- and 

mid-gestation on growth, adipocyte size, and expression of nutrient transporters and 

transcription factors in offspring was investigated by Long et al. (2012).  Cows received 

native grass hay containing 6.2% CP (DM basis) and one of three supplement treatments 

including control (CON; soybean meal-based supplement), nutrient-restricted (NR; 70% 

of NEm and CP supplied by CON diet), and nutrient-restricted + protein-supplemented 

(NRP; 70% of NEm supplied by the CON diet plus a RUP supplement formulated to 

provide duodenal essential AA flow equivalent to the CON diet).  Average adipocyte 

diameter in perirenal, subcutaneous, mesenteric, and omental adipose tissue was 

increased in offspring from NR dams compared with CON, with NRP offspring either 

intermediate or similar to CON offspring.  Concentrations of DNA in adipose tissue 

depots were reduced and mRNA expression of fatty acid transporter 1 was increased in 

subcutaneous adipose tissue in NR offspring.   

Micke et al. (2011a) fed heifers 240% or 70% of CP recommendations during the 

first and second trimesters of gestation, resulting in a 2 × 2 factorial treatment structure 

(high or low protein during the first or second trimester).  Skeletal muscle fibers and key 

regulators of adipogenesis (IFG1, IGF2, and their receptors) in skeletal muscle were 

measured in offspring at 680 d of age.  Cross-sectional areas of longissimus dorsi (LD) 

and semitendinosus (ST) muscles measured via ultrasound were greater for male 
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offspring born to dams fed low protein diets in the first trimester compared to dams fed 

high protein diets; however, there were no differences in muscle size of female offspring 

during either trimester due to maternal treatment.  Additionally, mRNA expression of 

IFG1, IGF2, and the IGF2 receptor was increased in ST muscle of male offspring born to 

heifers that were on a protein-restricted diet during the first trimester.  Authors suggested 

that changes in maternal metabolic and placental hormones in response to maternal 

dietary treatment may have signaled mRNA expression, with the majority of differences 

occurring during the first trimester of gestation.  They speculated that there may be an 

interaction between fetal sex steroid and maternal nutrient intake that resulted in sex-

specific effects on fetal muscle development.  Micke et al. (2011b) also evaluated 

expression of leptin (LEP) in addition to IGF1, IGF2, and their receptors in various 

depots (subcutaneous, perirenal, and omental) of adipose tissue in offspring.  High 

protein diets in the first trimester increased LEP and IGF1 in perirenal fat depots of all 

progeny.  High protein diets in the second trimester increased IGF1 in perirenal and 

omental fat depots of both steers and heifers, with increased LEP in perirenal depots of 

male progeny only.  It appears that various depots of adipose tissue may have different 

responses to maternal nutrient status.     

Increased concentrations of DNA were reported in complexus muscle and adipose 

tissue of finished steers whose dams were fed a low-nutrition diet (55% of NRC (1996) 

requirements) compared to steers from dams fed at 100% of NRC (1996) requirements in 

early gestation (Long et al., 2010).  These results indicate that there were a greater 

number of nuclei in skeletal muscle and a greater number of adipocytes in offspring 

restricted during gestation.  Also, abundance of mRNA for genes involved in fat 
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metabolism and glucose uptake were decreased in perirenal adipose tissue of steers from 

dams on the low-nutrition diet, but similar in subcutaneous adipose tissue between 

treatments.   

A study investigating differing maternal energy supply during mid-gestation and 

effects on muscle histology and genes regulating fetal adipose and muscle development 

was conducted by Jennings et al. (2016).  Heifers were assigned to dietary treatments 

providing 146% (HIGH), 87% (INT), or 72% (LOW) of energy requirements from d 85 

to d 180 of gestation, with fetuses removed at d 180 of gestation via cesarean section.  

There were no differences in fetal growth or muscle histology characteristics of LM or 

semitendinosus muscles among treatments.  Gene expression of subcutaneous fat samples 

did not differ among treatments; however, there were differences in gene expression of 

fetal LM.  This could be due to differences in timing of development of fat and muscle 

tissues, with fetuses harvested before appreciable amounts of adipose tissue had an 

opportunity to develop.  Two prominent transcription factors involved in differentiation 

of adipocytes (preadipocyte factor-1; PREF-1, and CCAAT/enhancer-binding protein-β; 

C/EBP-β) were differentially expressed in LM muscle.  Expression of PREF-1 was 

upregulated in fetal LM of HIGH fetuses compared to INT; however, expression was 

similar between LOW and HIGH treatments.  Expression of C/EBP-β was upregulated in 

LOW fetuses as compared to INT.  These responses indicated that both over- and under-

feeding can activate changes in differentiation and development of adipocytes within the 

LM.  There were no differences in gene expression of transcription factors necessary for 

myoblast proliferation (myogenic factor 5; Myf5, myoblast determination protein 1; 

MyoD) among treatments in fetal LM samples.  Myogenin is thought to play a role in 
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terminal differentiation of muscle fibers, and expression was upregulated in LOW 

fetuses.  This could indicate that the overall number of myofibers might be reduced due 

to energy restriction; however, lack of differences in muscle fiber number among 

treatments did not support this.  Similarly, upregulation of μ-calpain (important for 

protein turnover) in HIGH compared to INT fetuses could suggest increased migration, 

fusion, and proliferation of myoblasts due to overfeeding; however, this was not 

supported by differences in number or size of muscle fibers.   

The combination of the genome and the epigenome determines the response of the 

animal to its environment.  The concept of epigenetics and its role in gene expression has 

been well-established; however, the ability to differentiate between epigenetic changes 

integral to development and those due to environmental changes is limited.  Results of 

production studies evaluating subcutaneous fat deposition of offspring due to nutrient 

restriction have resulted in highly variable responses, including no differences 

(Greenwood et al., 2006; Larson et al., 2009; Summers et al., 2011, Micke et al., 2011b), 

reductions (Greenwood et al., 2010), and increases (Ford et al., 2007) in adipose tissue 

between progeny from restricted vs. control dams.  Similar conflicting responses have 

been observed for impacts of maternal nutrition on skeletal muscle development, with 

results highly variable depending on timing and severity of the nutritional insult as well 

as the species being investigated (Zhu et al., 2006; Hoffman et al., 2016; Jennings et al., 

2016).   

Despite lack of phenotypic differences in many of the studies described above, 

measurable differences in gene expression suggest that potential fetal adaptations to 

nutrient restriction may have taken place in preparation for a nutrient-poor environment 



33 
 

at birth.  Although knowledge of processes affecting DNA modification is increasing, it 

is unclear how these patterns change in response to maternal nutrition and the postnatal 

environment.  Additional research to determine how these processes may change in 

relation to each other will improve the ability to select animals based on genetic potential 

and develop targeted nutritional management strategies to improve animal health and 

production.  

CONCLUSION 

Forage-based livestock production systems often result in reduced quality or 

overall quantity of nutrients necessary to meet requirements at critical periods in 

gestation.  A majority of research is conducted in late gestation, yet organ development, 

fetal skeletal muscle growth, and adipogenesis begin earlier in gestation.  More 

information is needed to determine the specific relationship between maternal nutrition 

and differentiation of stem cells in muscle, which could affect overall carcass quality.  

Since most research is focused on production responses, there is need for a greater 

understanding of the mechanisms that influence response.  Although several researchers 

have examined effects on placental growth and development, knowledge of the 

mechanisms that control nutrient flow to the fetus and how these mechanisms may shift 

in times of nutrient deficiencies is somewhat limited.  It is well understood that nutrient 

requirements are increased as a result of fetal growth, particularly in the third trimester; 

however, mechanisms utilized by the dam in meeting these requirements are not well 

understood.  

The consequences of prenatal nutrition on economically important traits such as 

feed efficiency, gain, and carcass quality are varied.  Though there are often differences 
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in weaning BW attributed to fetal programming, factors such as postnatal nutrition and 

subsequent milk production appear to provide potential for confounding effects.  Further 

studies in a controlled research environment are needed to separate pre- and postnatal 

responses to maternal nutrition and develop a more thorough understanding of the 

mechanisms that influence the relationship between prenatal development and postnatal 

performance, growth, and carcass characteristics.    

The timing and severity of nutrient restriction may affect performance in the dam 

and her offspring.  In addition, diet composition, various protein and energy sources, and 

nutrient profiles may influence nutrient availability and uptake by the fetus.  Additional 

research is needed to explore the effects of how energy and protein source may influence 

fetal development when total nutrient intake is limited.  To date, most research has 

investigated impacts of nutrient restrictions during the first and third trimester on 

phenotypic responses of offspring in terms of growth and carcass characteristics.  To our 

knowledge, there is not another beef cattle study focused on MP restriction during mid- 

and/or late gestation to evaluate potential differences in timing of the restriction on 

progeny performance.   

Therefore, the objectives of this dissertation were to: 

1. determine the effects of dietary MP restriction in mid- and/or late gestation on 

measurements associated with cow BCS, BW, and metabolic indicators of 

protein and energy status and postnatal calf performance to weaning;  

2. determine the effects of dietary MP restriction in mid- and/or late gestation on 

growth performance, feed efficiency, and carcass characteristics of progeny; 

and 
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3. determine the effects of dietary MP restriction in mid- and/or late gestation on 

differential gene expression in skeletal muscle of progeny at birth and prior to 

harvest 
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CHAPTER II 

Influence of maternal protein restriction in primiparous heifers during mid- and/or 

late gestation on dam and suckling calf performance through weaning 
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Department of Animal Science 
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ABSTRACT 

Effects of nutrient status in gestating beef cows has been shown to impact 

performance of the dam and offspring; however, most research is focused on energy or a 

total diet restriction and a single period of gestation.  The objective of this study was to 

evaluate the effects of maternal metabolizable protein (MP) restriction in primiparous 

heifers during mid- and/or late gestation on dam and suckling calf performance through 

weaning. One hundred eight two-year-old Angus × Simmental heifers were allocated to a 

randomized complete block design with a 2 × 2 treatment structure.  Pens within each 

block were randomly assigned to either CON (slightly exceeding MP requirements) or R 

(approximately 80% of MP requirements) treatments.  Diets were formulated to be 

isocaloric and meet net energy requirements.  Half of the pens on the CON treatment 

were reassigned to the R treatment at the end of mid-gestation and vice versa in a 

crossover design.  Heifer BW, BCS, ultrasound body composition, blood metabolites, 

milk production and composition, calving data, and calf weaning weights were measured.  

There was an interaction for mid-gestation treatment × time for change in BW during 

mid-gestation, with heifers on the R treatment losing BW while CON heifers maintained 

BW (P = 0.002).  In a late gestation treatment × time interaction, restricted heifers gained 
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approximately half as much BW and lost BCS compared to CON heifers (P < 0.05).  

There was a mid-gestation treatment × time interaction for LM area change, with R 

heifers losing over twice as much LM area as CON heifers (P = 0.04).  A mid-gestation × 

time interaction (P = 0.03) indicated a tendency (P < 0.10) for increased IMF loss in 

heifers on the R treatment at the end of mid-gestation.  In a late gestation treatment × 

time interaction, MP restriction in late gestation increased loss of LM area by 4-fold (P = 

0.03).  There were no changes in 12th rib subcutaneous fat thickness (P > 0.05) across 

treatments or time.  Concentration of β-hydroxybutyrate was reduced (P = 0.02) and 

NEFA concentration tended (P = 0.06) to be decreased for R vs. CON heifers in mid-

gestation.  Dietary treatment did not affect calf birth BW, milk production, milk 

composition, calf weaning BW, or subsequent reproductive performance (P > 0.05).  

Decreased available MP appeared to result in mobilization of maternal body reserves 

during the restriction; however, it did not impact calf birth BW or growth to weaning. 
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INTRODUCTION 

Nutrient status of gestating beef cows can have various long-term implications on 

growth, feed intake and efficiency, and performance of offspring (Funston et al., 2012).  

Research indicates that developmental status of the fetus at the time of a maternal nutrient 

deficiency plays a role in postnatal responses of the offspring (Freetly et al., 2000; 

Morrison, et al., 1999; Wiley et al., 1991).  Inadequate nutrition from early to mid-

gestation has been shown to impact organ development, muscle fiber formation, weaning 

weights, carcass weights, and meat tenderness (Du et al., 2010; Long et al., 2012; 

Underwood et al., 2010; Zhu et al., 2004).  Additionally, supplementation provided 

during late gestation in beef cattle has resulted in improved calf weaning weights, 

improved feed efficiency, and increases in marbling scores and quality grades (Martin et 

al., 2007b; Stalker et al., 2006; Larson et al., 2009).  However, much of the available 

research has been limited to a single period of development (e.g. early or late gestation) 

and has evaluated the effects of an energy restriction or a reduction of total dietary dry 

matter intake.   

Metabolizable protein is defined as true protein absorbed in the intestine, 

consisting of microbial protein and ruminally undegraded protein (RUP; National 

Academies of Sciences, Engineering, and Medicine, 2016).  Reports are available in the 

literature that describe performance responses of cattle due to various levels of ruminally 

degraded protein (RDP) and ruminally undegraded protein (RUP) (Martin et al., 2007a; 

Engel et al., 2008; Larson et al., 2009).  However, limited data is available on the effect 

of a protein restriction during gestation and the subsequent developmental programming 

effect, particularly utilizing the metabolizable protein (MP) system.  Evidence in rodent 
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models indicates that maternal protein restriction reduced birth weight, elevated blood 

pressure, and resulted in metabolic changes that led to insulin resistance in offspring 

(Langley-Evans et al., 1996; Zeng et al., 2012).  However, results of these studies cannot 

be directly applied to ruminants due to the complexities of the ruminant digestive tract 

and differences in placental and fetal development among species.  To our knowledge, 

there are no studies that have investigated the effects of an individual nutrient deficiency 

such as metabolizable protein across multiple stages of gestation in beef cattle.   

While the primary goal of research examining maternal nutrient levels during 

gestation is to evaluate lifetime performance of offspring, particularly post-weaning, it is 

also important to characterize the impact of a gestational nutrient restriction on 

performance of the dam and early postnatal life of the calf.  Therefore, the objective of 

this study was to evaluate the effect of maternal protein restriction from mid- to late 

gestation in first-calf heifers on dam nutrient status and performance and suckling calf 

performance through weaning.  
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MATERIALS AND METHODS 

Animals and Experimental Design 

The South Dakota State University Institutional Animal Care and Use Committee 

approved all procedures involving animals.  One hundred eight two-year-old Angus x 

Simmental heifers were pen-fed at the SDSU Cottonwood Range and Livestock Field 

Station near Philip, SD during the time gestational nutrient restrictions were imposed.  

Prior to the beginning of the study, yearling heifers were synchronized and time-bred to a 

single Angus sire on June 7, 2013.  Following AI, all heifers were exposed naturally to 

Angus bulls for 60 days.  Rectal ultrasonography was conducted in mid-September to 

detect pregnancy and fetuses were sexed and aged.   

Treatments were arranged in a 2 × 2 factorial structure with 2 levels of dietary 

metabolizable protein (MP) provided during two stages of gestation (mid and late).  

Dietary MP levels included: control (CON; slightly exceeding MP requirements) and 

restricted (R; approximately 80% of MP requirements supplied based on Level 2 of NRC 

(2000).  Heifers were blocked by BW as well as age and sex of the fetus, resulting in 3 

blocks with 4 pens per block.  At the end of the mid-gestation treatment period, half of 

the pens on the CON treatment were reassigned to the R treatment and half of the pens on 

the R treatment were reassigned to the CON treatment, resulting in four treatment 

combinations (CON-CON, CON-R, R-CON, and R-R).  Each treatment combination was 

randomly assigned to one pen per block for a total of 3 pen replicates per treatment 

combination.   

Diets were based on calcium hydroxide treated wheat straw, crude glycerin, and 

concentrates (Table 2.1).  Wheat straw was ground through a 12.7 cm screen using a tub 
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grinder and treated with Ca(OH)2 using the SecondCropTM process (ADM Animal 

Nutrition, Quincy, IL) to increase energy value.  Targeted Ca(OH)2 was 6.6% DM basis 

and water was added to achieve approximately 50% moisture.  Treated straw was packed 

into production-scale Ag-Bags (Ag-Bag, St. Nazianz, WI).  Both CON and R concentrate 

formulations contained ground corn, ground corn cobs, a rumen-protected fat product 

(Energy Booster 100®, Milk Specialties Global, Eden Prairie, MN), urea, and crude 

glycerin.  Most ingredients were chosen to be sources of energy so diets were isocaloric 

and met NEm and NEg requirements as predicted by NRC (2000).  Urea was utilized to 

meet bacterial N requirements and ensure that fermentation capacity would not limit 

energy value of the diet. The CON concentrate also contained porcine bloodmeal to 

slightly exceed the MP requirement.  Diets were formulated to be isocaloric and meet 

predicted NRC (2000) requirements for NEm and NEg in both CON and R treatments.   

Dry supplement was mixed with crude glycerin on a daily basis immediately 

before feeding using two batch mixers to avoid cross-contamination between CON and R 

diets.  Supplement was offered at around 1000 hours daily and was completely consumed 

in approximately 1 hr.  Following supplement consumption, heifers were offered access 

to calcium hydroxide treated wheat straw.  Dietary straw samples were collected on a 

daily basis and composited.  Bunks were cleaned and orts were weighed and sampled 

once weekly.  Straw and ort DM was determined by drying for 24 h at 60°C in a forced 

air oven.  Diet formulations and amount of feed offered were adjusted throughout 

gestation to account for increased energy needs for the growing heifer and the developing 

fetus.  Despite balancing diets to achieve predicted MP and energy concentrations in the 

diets, consumption of wheat straw by heifers was less than predicted.  Although desired 



53 
 

MP and energy levels were not consistently achieved for each diet formulation based on 

calculated intakes, percentage of MP requirements supplied was 101% for CON heifers 

and 81% for R heifers when averaged across the study (Table 2.1). 

Calf Management 

Heifers were removed from their respective pens and dietary treatments 

immediately before or following calving.  Within 24 h of birth, calves were weighed and 

tagged, and male calves were banded using a premium castration ring plier (Neogen 

Corp., Lansing, MI).  Calving information, cow BCS at calving, and Beef Improvement 

Federation (BIF) scores for calving difficulty (1= No difficulty, no assistance; 2 = Minor 

difficulty, some assistance (easy pull); 3 = Major difficulty, often mechanical assistance 

(hard pull); 4 = Caesarian section or other surgery; 5 = Abnormal presentation (i.e., 

breech)) and calf vigor (1= Nursed immediately, healthy; 2= Nursed on own but took 

time; 3= Required assistance to suckle; 4= Died shortly after birth; 5= Dead on arrival) 

were recorded.  Pairs were managed as a common group on native pastures through 

weaning, with no further nutritional restrictions imposed on dams or their offspring.   

Heifer Performance Measurements 

Heifer performance data were collected at the initiation of the trial, at the time of 

treatment crossover, and approximately 3 weeks prior to calving.  Individual heifer BW 

was recorded, and body condition score (BCS) was determined using a 9-point scale (1 = 

extremely emaciated, 9 = extremely obese; Wagner et al., 1988) with observations from 

three trained, independent observers.  Ultrasound images were recorded and analyzed to 

determine 12th rib subcutaneous fat thickness, percent intramuscular fat (% IMF), and 

longissimus muscle area (LMA) for each heifer using an Aloka 500V (Aloka, 
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Wallingford, CT).  Blood samples were collected via coccygeal or jugular venipuncture 

using 10 mL evacuated serum tubes (BD Vacutainer, Becton, Dickinson, and Company, 

Franklin Lakes, NJ).  Blood samples were immediately placed on ice, allowed to clot, and 

then centrifuged at 1,500 × g for 10 minutes.  Serum was decanted into 12 × 75 mm 

plastic tubes, capped, and immediately frozen (-20˚ C).  Serum samples were 

subsequently shipped to the South Dakota State University Animal Disease Research and 

Diagnostic Laboratory and analyzed for metabolites to indicate protein and energy status, 

including β-hydroxybutyrate (BHB), non-esterified fatty acids (NEFA), bovine serum 

albumin (BSA), blood urea nitrogen (BUN), total protein (TP), and glucose (GLC).  All 

samples were analyzed using standardized reagents (β-Hydroxybutyrate Reagent Set, 

Point Scientific, Canton, MI; HR Series NEFA-HR (2), Wako Diagnostics, Richmond, 

VA; ACE Albumin, BUN/UREA, Total Protein, and Glucose Reagent kits, Alfa 

Wasserman Diagnostic Technologies, Inc., West Caldwell, NJ) on an automated 

chemistry analyzer (VetACE Clinical Chemistry System, Alfa Wasserman Diagnostic 

Technologies, Inc., West Caldwell, NJ).   

Milk Production and Composition 

A sub-set of 34 AI-bred heifers representing each treatment combination (n = 8 in 

CON-CON and R-CON treatments; n = 9 in CON-R and R-R treatments) was randomly 

selected to measure milk production on d 62 ± 5 of lactation.  Heifers were gathered from 

pasture and separated from their calves.  Heifers received 1 mL of oxytocin via IM 

injection 5 min prior to milking.  A portable milking machine (Porta-Milker, The Coburn 

Company, Inc., Whitewater, WI) was used, followed by hand stripping until dry.  Time 

was recorded when milking was complete and milk was discarded.  Heifers remained 
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separated from calves and the milking process was repeated approximately 4 h later.  

After the second milking, milk was weighed to determine production, and samples were 

collected and shipped to the Heart of America Dairy Herd Improvement Association 

laboratory (Manhattan, KS) for analysis of fat, protein, somatic cell count, lactose, total 

solids, and milk urea nitrogen.  All analyses were conducted via near-infrared 

spectroscopy using a Bentley FTS/FCM (Bentley Instruments, Inc., Chaska, MN).  This 

instrument exceeds the IDF 148A standard and ICAR requirements for somatic cell 

counting and IDF 141C:2000 and ICAR requirements for component measurement using 

AOAC approved methodology.  Twenty-four hour milk yield was calculated using the 

following equation: 

24 h yield = (Total wt. of 2nd milking ÷ time between end of milkings) × 24 

Subsequent Heifer Reproductive Response  

To determine potential carryover effects of MP restriction on return to cyclicity, 

blood samples were collected and processed using sampling procedures described above 

on d -10 and 0 relative to initiation of an estrus synchronization protocol.  Circulating 

concentrations of progesterone were analyzed in serum samples by RIA using 

methodology described by Engel et al. (2008).  Intra- and interassay coefficients of 

variation were 3.6% and 6.7%, respectively, and assay sensitivity was 0.4 ng/mL.  

Heifers were considered to be cycling if serum progesterone concentrations were > 1 

ng/ml in either sample.  Heifers were synchronized utilizing a modified 7-day controlled 

internal drug release (CIDR) CO-Synch protocol, followed by artificial insemination on 

July 2 and 3, 2014.  Heifers were exposed to a bull for an additional 60 d.  Conception to 
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AI was determined via ultrasound 41 d post-AI, and final pregnancy rates were 

determined via ultrasound 117 d post-AI. 

Statistical Analysis 

Data were analyzed as a 2 × 2 factorial treatment structure in a randomized 

complete block design using the MIXED procedure of SAS (SAS Institute, Cary, NC) 

with pen as the experimental unit.  Denominator degrees of freedom were approximated 

using the Kenward-Roger option in the model statement (Kenward and Roger, 1997) for 

all analyses.   

Measures repeated over time (BW, BCS, ultrasound measurements, and blood 

collection) included time and its interactions with maternal nutritional treatment as fixed 

effects.  For these variables, initial BW, BCS, ultrasound measurements, and blood 

metabolite levels were included in the model as covariates.  Covariance structures were 

evaluated for each variable in the repeated measures analysis, and were selected based on 

the best model structure fitting the data based on Schwarz’s Bayesian Information 

Criteria (BIC).  Repeated measure variables were also analyzed as change in each 

variable during each period of gestation (e.g. final BW – initial BW).  Calf data were 

analyzed using the same model with calf sex included as a fixed effect.   

Milk production and composition data were analyzed using the MIXED procedure 

of SAS (SAS Institute, Cary, NC) to determine the effects of mid- and late gestation 

treatment and their interaction with individual animal as the experimental unit.  Means 

were separated using the PDIFF option of the LSMEANS statement of SAS and were 

considered significant at P < 0.05, with tendencies considered at 0.05 ≤ P < 0.10.      



57 
 

The influence of maternal nutritional treatments on subsequent reproductive 

response was analyzed using a binary distribution in the GLIMMIX procedure of SAS.  

Mid- and late gestation treatments and their interaction were included as fixed effects 

with pen as the experimental unit.   
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RESULTS AND DISCUSSION 

Heifer Body Weight and BCS  

Body weights, BCS, ultrasound measurements, and blood samples were collected 

from all heifers in each treatment group at the beginning and end of each treatment period 

in order to determine effects of MP restriction on heifer performance in mid- and late 

gestation.  Inadequate nutrition during gestation is common in many range-based 

livestock production systems due to increased nutrient requirements and reduced forage 

quality and quantity (DelCurto et al., 2000).  Cows may experience a negative energy 

balance when energy expenditures for physiological functions such as maintenance and 

reproduction exceed intake of energy or protein (Dunn and Moss, 1992).  Although 

specific mechanisms have not been determined, it appears that decreases in dam body 

condition due to nutrient deficiency can result in negative impacts on placental 

development and vascularization as well as organ and tissue development in progeny, 

potentially impacting long-term growth and performance (Funston et al., 2010).   

By design, there were no differences (P > 0.20) in initial BW or BCS between 

treatments (mean 437 kg ± 17.2 and 5.25 ± 0.147, respectively).  A mid-gestation 

treatment (CON vs. R) × time (treatment crossover and end of study) interaction was 

observed for change in heifer BW and BCS (P < 0.05; Table 2.2).  However, when means 

were separated for these variables, only BW change from the beginning to the midpoint 

of the study was different between treatments.  Heifers on the R treatment lost 19 kg 

while heifers on the CON treatment maintained BW during mid-gestation (P = 0.002), 

despite diets being balanced to slightly exceed energy requirements. There was a 

tendency (P < 0.10) for increased BCS loss in heifers on the R treatment during mid-
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gestation.  Similarity among means during late gestation indicated there was no carryover 

effect of mid-gestation treatment into the late gestation period.  

A late-gestation treatment (CON vs. R) × time interaction was also observed for 

change in heifer BW and BCS (P < 0.05; Table 2.2).  When means were separated for 

these variables, there was a tendency (P < 0.10) for increased BCS and reduced BW and 

BCS loss for R heifers during mid-gestation as a result of late gestation treatment.  

Because late gestation treatments had not yet been applied in mid-gestation, these results 

were anomalous.  Although all heifers gained BW during late gestation, the MP 

restriction resulted in lower BW gains (P = 0.001) compared to the CON treatment.  In 

addition, restricted heifers lost BCS in late gestation whereas heifers on the CON 

treatment maintained BCS (P = 0.007).   

There was a tendency (P = 0.058) for an interaction between mid- and late 

gestation treatments for BW change, wherein heifers on the R diet during one or both 

periods of gestation (CON-R, R-CON, and R-R) gained less weight than heifers on the 

CON diet throughout gestation (CON-CON; mean 3 vs. 12 kg ± 5.7, respectively).     

Despite equal and adequate levels of NEm and NEg based on NRC (2000) across 

treatments, MP restriction reduced the ability of restricted heifers to maintain BW and 

BCS.  Insufficient intake of either protein or energy can result in a negative energy 

balance, which is often accompanied by loss of BW and body condition (Dunn and Moss, 

1992).  Research indicates that pregnant dams encountering a nutrient restriction may 

compensate for the fetus by catabolizing fat stores and lean body tissue to maintain 

pregnancy and normal body function (Freetly et al., 2008).  Body weight change 

responses are in agreement with Sasser et al. (1988), who assigned gestating heifers to 
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two dietary groups at 150 d prepartum designed to provide 100% of NRC energy 

requirements and either adequate or deficient CP.  Animals on the protein-deficient diet 

consistently weighed less at 112 and 56 d prepartum, at calving, and at 40 d postpartum 

(Sasser et al., 1988).  Carstens et al. (1987) also observed reduced maternal BW gain 

during the last trimester of gestation due to a protein restriction.   

Van Emon et al. (2014) conducted a 2-year study in which treatments with similar 

energy content but differing levels of MP (100%, 60%, or 40% of NRC requirements in 

yr 1; 60%, 100%, or 140% of NRC requirements in yr 2) to pregnant ewes in late 

gestation (~ d 100 of gestation through lambing).  Across both years of the study, ewe 

BW change increased linearly throughout gestation as MP in the diet increased; however, 

linear increases in BCS change due to increasing dietary MP were only observed in year 

1.  Similar to results observed in the present study, all ewes gained BW during the last 

trimester of gestation; however, lower intakes of MP reduced BW gains (Van Emon et 

al., 2014).  It appeared mobilization of body tissues occurred as a result of the MP 

restriction in mid-gestation.  Earlier research by Reeves et al. (1972) reported bovine 

fetuses increased in weight from 3.6 kg at d 163 of gestation to 30 kg at d 281 of 

gestation.  Therefore, it is reasonable to assume the majority of BW change in the last 

trimester may have been due to fetal growth.  Although heifers on both treatments in late 

gestation gained weight, loss of BCS observed for heifers on the R treatment indicated 

heifers appeared to be mobilizing body tissue stores to compensate for fetal demands, 

while CON heifers were able to maintain BCS.    
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Heifer Ultrasound Measurements 

A mid- gestation treatment (CON vs. R) × time interaction (P = 0.042) was 

observed for changes in LM area as determined by ultrasound measurements (Table 2.3).  

From the beginning of the study to treatment crossover at the end of mid-gestation, MP-

restricted heifers lost over twice as much LM area as heifers on the CON treatment (P = 

0.042).  When means were separated for LM area change, there was no carryover effect 

of mid-gestation treatment on change from treatment crossover to the end of the study (P 

> 0.10).   

There was a significant interaction (P = 0.006) for late gestation treatment (CON 

vs. R) × time (treatment crossover vs. end of study; Table 2.3) for LM area; however, 

there were no differences (P > 0.10) between treatments for either time point when means 

were separated for this variable.   A late gestation treatment × time interaction was also 

observed (P = 0.031) for LM area change.  From treatment crossover to the end of the 

study, restricted heifers lost over 4 fold the amount of LM area as CON heifers.  These 

results suggested muscle tissue was being catabolized to mobilize tissue protein in 

compensation for the dietary MP restriction.   

There were no differences (P > 0.05) in 12th rib fat thickness or change in fat 

thickness due to main effect of treatment or any treatment × period of gestation 

interactions.  Despite significant interactions between mid-gestation treatment × time for 

percentage of IMF (P = 0.005), there were no differences between treatments for either 

midpoint or final percentage of IMF when means were separated for this variable (P > 

0.10).  There was a mid-gestation treatment × time interaction for IMF change (P = 

0.026); however, means only tended (P = 0.096) to be different between treatments, with 
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increased IMF loss for restricted heifers at the mid-point of the study.  There were no 

differences (P > 0.10) between treatments for this interaction at the end of the study.   

A mid-gestation treatment × late gestation treatment × time interaction was 

observed for IMF (P = 0.013; Fig. 2.1).  For the ultrasound conducted at treatment 

crossover, percentage of IMF tended (P < 0.10) to be greatest for the CON-CON 

treatment and least for R-CON and R-R, with CON-R intermediate and not different from 

any other treatment combination.  For the ultrasound conducted at the end of the study, 

percentage of IMF was similar (P > 0.10) for heifers from CON-CON, R-CON, and R-R 

treatments.  Heifers on the CON-R treatment had the lowest amount of IMF, and tended 

to be different (P < 0.10) from the CON-CON treatment and similar to other treatments.  

It appeared the greatest impact on IMF resulted from an MP restriction imposed only in 

late gestation (CON-R).  The increase in percentage of IMF observed in the R-R 

treatment could be attributed to loss of LM area for heifers restricted in late gestation 

(i.e., IMF as a proportion of LM area increased as the total LM area decreased).   

There was also a tendency (P = 0.081) for an interaction between mid- and late 

gestation treatments for change in IMF; however, there were no differences (P > 0.14) 

among any treatment combinations (CON-CON, CON-R, R-CON, and R-R) when means 

were separated.  Additionally, least square means for heifers on the CON-CON and R-R 

treatments were not different from zero (P > 0.63), indicating % IMF did not change for 

these treatment × period of gestation combinations.  Least square means for the CON-R 

treatment was less than zero (P = 0.041), and the least square means for the R-CON 

treatment tended (P = 0.064) to be less than zero, indicating heifers restricted during both 

mid- and late gestation lost IMF during the time that MP was restricted in their diet.  
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Despite minor differences in percentage of IMF, there was not strong evidence to support 

impacts on heifer IM fat depots as a result of MP restriction.   

Mobilization of body tissues in response to nutrient deficiency is not uncommon.  

Taylor et al. (2016) measured change in BW, BCS, 12th rib fat thickness, and LM area 

from the beginning to the end of mid-gestation for cows fed to maintain BCS of 5 to 5.5 

(positive energy status) vs. cows fed at 80% of maintenance energy requirements.  

Inducing a negative energy status resulted in reduced final BW and BCS, smaller LM 

area, and decreased 12th rib fat thickness compared to cows in a positive energy status 

(Taylor et al., 2016).  Observed reductions in BW, BCS, and LM area in the current 

study, without substantial impacts on subcutaneous or IM fat, indicate MP restriction 

resulted in catabolism of maternal muscle tissue with minimal impacts on adipose tissue. 

Heifer Blood Metabolite Concentrations 

Blood metabolite analyses were conducted at multiple time points throughout the 

trial to provide a more comprehensive view of the metabolic status of heifers, assuming 

MP restriction would result in changes in concentrations of various metabolites.  

However, there were no differences (P > 0.10) due to main effects of treatment or any 

mid- × late gestation treatment interactions for the majority of blood metabolites (Table 

2.4).  Additionally, there were no differences for changes in blood metabolites due to 

main effect of treatment or any treatment × time interactions (P > 0.05).  Concentration 

of BHB was reduced (P = 0.018) for heifers on the R treatment in mid-gestation, and 

there was also a tendency (P = 0.061) for reduced concentrations of NEFA for R heifers 

during mid-gestation.  Little research is available on plasma metabolite concentrations in 

gestating beef cows; however, elevated NEFA and BHB and reduced glucose 
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concentrations are often used as indicators of negative energy balance in dairy cows 

(Adewuyi et al., 2005).  Reduced concentrations of BHB and NEFA for restricted heifers 

in the current study were not expected since these metabolites are typically produced as a 

result of lipolysis when other sources of energy such as glucose and amino acids are not 

available.  However, other reports in the literature examining the effect of diet on 

metabolic status have also yielded mixed responses. 

Rusche et al. (1993) provided 100% or 150% of NRC recommendations for CP to 

primiparous heifers based on low (L; soybean meal) or high (H; corn gluten 

meal/bloodmeal) sources of RUP, and reported no differences for NEFA or insulin 

concentrations.  However, higher levels of CP in the diet increased plasma urea N and 

tended to increase plasma glucose (Rusche et al., 1993).  In addition, feeding high levels 

of RUP decreased plasma glucose and urea N.  Anthony et al. (1986) fed isocaloric diets 

containing low CP (LP; 81% of NRC requirements) or high CP (HP; 141% of NRC 

requirements) in late gestation.  At 10 d prepartum, daily blood samples were collected 

via jugular vein cannulae, which showed reduced BUN and glucose concentrations for 

heifers receiving the LP diet.   

Sletmoen-Olson et al. (2000) provided no supplement or one of three supplements 

providing low, medium or high levels of RUP (53, 223, or 412 g RUP/kg supplement 

DM, respectively) to cows in late gestation and early lactation.  Plasma glucose of the 

low RUP treatment group was consistently higher than cows fed the medium or high 

RUP supplement during late gestation.  Plasma insulin concentration was also increased 

by supplementation compared to the control treatment, while plasma NEFA levels were 

reduced in supplemented vs. control cows.  Sletmoen-Olson et al. (2000) concluded that 
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various levels of RUP can alter plasma concentrations of metabolites in gestating and 

lactating beef cows.   

Rhind et al. (1991) reported differences in NEFA profiles for lactating sheep with 

different rates of milk production; however, feed intake and glucose profiles were similar 

among groups.  Consequently, Rhind (2004) suggested while circulating levels of 

nutrients and metabolites are good indicators of animal well-being, they are often 

dependent on pool size and entry rates and not clearly or consistently related to protein or 

energy intake.  Minimal differences in metabolite concentrations in our study, despite 

differences in cow performance, indicate additional research is warranted to further 

characterize the relationship between blood metabolite levels and MP restriction.        

Calf Birth BW and Performance  

There were no interactions (P > 0.05) of mid- by late-treatment for any calf 

variables; therefore, only main effect means are presented. Late gestation treatment 

influenced cow BCS at calving, with 0.2 greater BCS in CON vs. R heifers (P = 0.042; 

Table 2.5).  However, nutritional treatments experienced by heifers during mid- and/or 

late gestation did not affect calving difficulty, calf vigor, or calf birth BW (P > 0.05; 

Table 2.5).  Moreover, calf weaning BW was not affected (P > 0.05) by mid- or late-

gestation treatment.  As expected, sex was a significant factor in the model, with bull 

calves heavier than heifer calves at birth (31 vs. 28 ± 1.79 kg respectively; P = 0.0005) 

and weaning (212 vs. 204 ± 8.71 kg; P = 0.018).  In beef cattle, severe nutrient restriction 

from the last half to one-third of pregnancy appears to be required to reduce fetal growth 

(Greenwood et al., 2005).  Although our study did encompass the majority of the second 

and all of the third trimester of pregnancy, lack of birth weight response agrees with 
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previous research indicating energy available to the dam may have a greater influence on 

birth weight than protein (Holland and Odde, 1992).  Since treatments utilized in the 

current study were formulated to be isocaloric, it is possible MP-restricted dams were 

able to overcome a protein deficiency by mobilizing body stores (particularly LM area; 

Table 2.3), thereby reducing potential impacts on offspring.   

Several studies have reported differences in calf birth weight due to energy 

restrictions (Corah et al., 1975; Bellows and Short, 1978; Dunn et al., 1969), while 

supplying various levels of protein during gestation have shown mixed results.  Sasser et 

al. (1988) reported calf birth BW and calving difficulty scores were not affected by CP 

deficiency, similar to results in the current study.  However, Sasser et al. (1988) found 

calves from dams fed adequate protein tended to be heavier than calves from protein-

deficient dams at 2 months and 105 d of age.   In the previously described study by Van 

Emon et al. (2014), there were no differences in lamb BW at birth due to differing levels 

of MP in yr 1 of the study; however, there was a tendency for ADG to weaning and lamb 

weaning BW to increase as maternal MP intake increased.  In yr 2, there were no 

significant effects of MP on lamb birth BW, ADG, or weaning weight.  In the current 

study, it appeared that MP restriction had no impact on suckling calf performance from 

birth to weaning.     

Heifer Milk Production and Composition 

An estimate of peak milk production was conducted due to the potential for 

prepartum nutrition to influence milk production and postnatal growth of calves (Corah et 

al., 1975; Houghton et al., 1990).  In the current study, no differences (P > 0.05) were 

observed for peak milk production due to maternal dietary treatment (Table 2.5).  This is 
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in contrast to results reported by Bartle et al. (1984), who conducted a study in which 

dams received 150% vs. 85% of NRC crude protein requirements for the last 60 d of 

gestation followed by reallocation to an adequate (100%) or low (80%) energy diet.  Milk 

production did not differ due to postpartum dietary treatment; however, milk production 

for dams on the high protein diet prepartum was increased by 0.8 kg/d vs. those on the 

low protein diet (Bartle et al., 1984).   

There were no differences in our study (P > 0.05) for milk composition in terms 

of somatic cell count, fat, or total solids (mean 110 ± 65, 3.28% ± 0.108, and 9.30% ± 

0.076, respectively).  Heifers on the R treatment in mid-gestation had reduced milk urea 

nitrogen compared to control heifers (P = 0.021; 14.05% ± 0.496 vs. 15.77% ± 0.478, 

respectively).  There was also a tendency (P = 0.090) for slightly reduced milk protein for 

heifers on the R treatment in late gestation vs. CON heifers (mean 3.20 vs. 3.40% ± 

0.081, respectively).  Heifers on the R treatment in late gestation tended (P = 0.060) to 

have slightly increased lactose content in their milk compared to the CON treatment 

(mean 4.92% ± 0.092 vs. 5.16% ± 0.083, respectively); however, this result would not 

likely be considered to have biological significance.  Despite these responses, it has been 

reported that dietary protein has minimal effects on milk fat or protein concentrations due 

to complex interactions among ruminal degradation of nutrients, hormonal influences, 

and biochemical pathways necessary for synthesis and secretion of milk solids (Sutton, 

1989).  Therefore, it is possible that additional factors outside of maternal dietary 

treatments may have influenced results.  Lack of differences in milk production and 

minimal differences in milk composition indicate these were not confounding factors in 
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the ability to measure postnatal growth and performance of offspring due to maternal 

nutritional treatment in the current study.   

Subsequent Heifer Reproductive Response 

Proportion of heifers returning to cyclicity by the beginning of the breeding 

season following calving was not influenced by MP restriction during mid- or late 

gestation or their interaction (P > 0.05; Table 2.5).  Heifer BW and BCS were similar (P 

> 0.10) at breeding (Table 2.5). In addition, there were no differences (P > 0.10) between 

nutritional treatments in regard to proportion of heifers that conceived to AI.  Mulliniks et 

al. (2013) grazed heifers post-weaning on dormant forage and provided supplement 

containing 36% CP with either 36% RUP (36RUP) or 50% RUP (50RUP).  Heifers that 

received the 50% RUP supplement had 13% greater pregnancy rates than those that 

received 36% RUP, despite lack of differences in BW from initiation of supplementation 

until pregnancy diagnosis.  Although heifers were not protein-restricted and were 

provided MP at a different phase in physiological development, these results still 

indicated reduced RUP may result in less than optimal effects on reproductive response.  

It is possible restricted heifers in the current study were able to overcome any potential 

negative impacts on reproduction that may have been expected due to gestational dietary 

treatments between calving and breeding.   

It should be noted that a study investigating time of AI (36 vs. 60 h) and fresh vs. 

frozen semen was imposed on heifers in the current study at the time of AI.  While there 

were no interactions among our treatments and treatments in the superimposed study (P 

> 0.5); semen type in itself was highly significant (P = 0.02), as was time of AI (P = 

0.001).  Additionally, heifers from our study were not equally stratified across treatments 
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from the superimposed study; therefore, percentage of heifers that conceived from AI 

cannot be attributed directly to nutritional treatments they received during gestation.  

Data for overall pregnancy rates could not be statistically analyzed because all except 2 

cows became pregnant.  The GLIMMIX model would not converge when all treatments 

had virtually 100% overall pregnancy.  

It is well-documented that BCS at calving is an important factor in length of 

postpartum interval and subsequent pregnancy rates (Selk et al., 1988; Richards et al., 

1986).  Morrison et al. (1999) fed a group of cows to achieve BCS ranging from 3 to 8 up 

to the last trimester of pregnancy, and then managed each group to achieve BCS of 5 at 

calving.  There were no differences in pregnancy rates, date of conception, or calf birth 

weight reported in that study (Morrison et al., 1999).  Although heifers did respond to MP 

restriction in terms of losses in BW, BCS, LM area, and slight changes in % IMF, it is 

possible that subsequent reproductive performance differences were not observed in the 

current study because BCS losses were not severe and heifers across our treatments 

calved at BCS near 5 (Table 2.5).   
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IMPLICATIONS 

In summary, this study provided evidence that MP-restricted heifers mobilized 

body reserves at the time that the restriction was imposed based on responses observed 

for changes in BW, BCS, ultrasound LM area and % IMF.  However, MP restriction in 

mid- and late gestation did not impact calf birth or weaning BW.  In addition, MP 

restriction did not impact heifer blood metabolite levels, 12th rib subcutaneous fat 

thickness, milk quantity or composition, or subsequent reproductive performance.  These 

results imply the MP restriction in this study may have been moderate enough for dams 

to make metabolic adaptations that allowed sufficient nutrients to be supplied to the 

developing conceptus.  Further investigations on maternal metabolic changes and effects 

of nutrient restriction are necessary to understand mechanisms of responses.  Gestational 

MP restriction may influence offspring performance post-weaning, but elicited minor 

responses in offspring growth from birth to weaning in this study. 
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Table 2.1.  Dietary components and nutrients consumed by heifers receiving a control (CON = slightly exceeding MP requirement) 

or restricted (R = approximately 80% of MP requirement supplied) diet during mid- and/or late gestation based on NRC (2000) 

calculations1 

   Diet formulation 12 Diet formulation 22 Diet formulation 32 

 CON R CON R CON R 

Item ---- % DM basis ---- 

Wheat straw3    59.81 59.62 54.14 53.65 51.22 51.28 

Crude glycerin4 15.66 17.97 13.27 15.27 14.52 14.54 

Dry supplement5       

  Ground corn - - 10.27 10.02 10.79 11.03 

  Ground corn cobs 16.77 16.56 11.33 11.43 11.84 12.51 

  Energy Booster 100®6 3.42 3.06 7.38 7.46 7.74 8.20 

  Porcine bloodmeal 1.62 - 1.65 - 1.54 - 

  Sodium phosphate (XP 40) 1.57 1.56 1.39 1.43 1.73 1.62 

  Urea, 46% 1.08 1.18 0.51 0.67 0.54 0.75 

  Magnesium oxide, 54% 0.032 0.034 0.032 0.031 0.034 0.034 

  TM Green7 0.015 0.014 0.020 0.019 0.010 0.010 

  Selenium, 0.06% yellow 0.009 0.012 0.011 0.013 0.013 0.015 

  Vitamin AD 10:1 0.004 0.004 0.004 0.004 0.005 0.005 

 ---- Nutrient composition of diet predicted by NRC (2000) based on actual intake ---- 

Diet CP, % 7.0 5.3 5.7 4.6 5.7 4.9 

Bacterial N balance, g/d 11 11 -1 -1 2 2 

MP, % 108.7 88.4 101.4 78.3 93.2 77.2 

NEm, Mcal/kg 1.24 1.17 1.37 1.40 1.44 1.44 

NEg, Mcal/kg 0.67 0.61 0.79 0.82 0.85 0.85 
1 Diets formulated based on NRC (2000) predictions for MP, NEm, and NEg requirements for heifers throughout gestation 
2 Diet formulation 1 fed from 11/2/13 – 12/14/13, diet formulation 2 fed from 12/15/14 – 1/18/14, and diet formulation 3 fed from 

1/19/14 – calving.  Amounts of supplement using each formulation were adjusted throughout gestation. 
3 Nutrient composition of wheat straw: 49.39% DM; 4.75% CP; 57.48% ADF; 66.78% NDF; 49.75% TDN; 0.95 Mcal/kg NEm; 0.40 

Mcal/kg NEg 
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Table 2.1 continued… 
4 Crude glycerin contained 82.3% glycerol, 9.5% water, 0.56% CP, 0.04% methanol, 8.07% ash, and 0.90% MONG (matter organic 

non-glycerol; defined as 100 – glycerol content (%) + water content (%) + ash content (%)).  Crude glycerin sourced from 

Minnesota Soybean Processors, Brewster, MN 
5 Dry supplement formulated and mixed by Hubbard Feeds Inc., Mankato, MN 
6 Milk Specialties Global, Eden Prairie, MN 
7 TM Green mineral mix contained 15.2% S; 330 ppm Co; 33,000 ppm Cu; 1,650 ppm I; 132,000 ppm Mn; 99,000 ppm Zn, 3,300 

ppm CuCl; 1,856 ppm EDDI; 132,000 ppm MnSO4; and 99,000 ppm ZnSO4 
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Table 2.2.  Least square means for mid- and late gestation treatments (CON = slightly exceeding MP requirements; R = 

approximately 80% of MP requirements) × time (treatment crossover and end of study) interactions for heifer BW, BW change, 

body condition score (BCS), and BCS change1  

 Treatment crossover  End of study   

Item CON R  CON R SEM P-value 

 --- Mid-gestation treatment × time ---   

BW, kg 431 418  453 443 8.61 0.295 

BW change, kg -5a -19b  21 26 5.74 0.002 

BCS 4.92 4.82  4.74 4.78 0.046 0.106 

BCS change -0.30c -0.46d  -0.18 -0.04 0.081 0.027 

 --- Late gestation treatment × time ---   

BW, kg 421 428  451 445 8.60 0.011 

BW change, kg -16c -9d  30a 17b 5.73 0.001 

BCS 4.81c 4.92d  4.81 4.71 0.046 0.022 

BCS change -0.46c -0.30d  0.00a -0.22b 0.081 0.007 
1 Statistical analysis was not conducted for initial BW and BCS because these values were utilized as covariates for analysis of 

midpoint and final BW and BCS 
a,b Within gestation period, means lacking a common superscript differ (P < 0.05) 
c,d Within gestation period, means lacking a common superscript tend to differ (P < 0.10) 
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Table 2.3.  Least square means for mid- and late gestation treatments (CON = slightly exceeding MP requirements; R = 

approximately 80% of MP requirements) × time (treatment crossover and end of study) interactions for heifer ultrasound 

measurements1  

 Treatment crossover  End of study   

Item CON R  CON R SEM P-value 

 --- Mid-gestation treatment × time ---   

LM area, cm2 48.21 47.29  47.30 46.72 0.348 0.208 

LM area change, cm -0.70a -1.59b  -0.89 -0.58 0.273 0.042 

12th rib fat thickness, cm 0.54 0.51  0.46 0.45 0.020 0.477 

12th rib fat thickness change, cm 0.00 -0.03  -0.08 -0.06 0.017 0.235 

IMF, % 5.84 5.70  5.77 5.77 0.075 0.005 

IMF change, % -0.06c -0.20d  -0.07 0.06 0.054 0.026 

 --- Late gestation treatment × time ---   

LM area, cm2 47.57 47.92  47.29 46.73 0.348 0.006 

LM area change, cm -1.33 -0.96  -0.27a -1.20b 0.273 0.031 

12th rib fat thickness, cm 0.53 0.51  0.46 0.45 0.020 0.903 

12th rib fat thickness change, cm -0.01 -0.01  -0.06 -0.08 0.017 0.538 

IMF, % 5.82 5.73  5.79 5.75 0.075 0.146 

IMF change, % -0.09 -0.18  -0.03 0.03 0.058 0.184 
1 Statistical analysis was not conducted for initial ultrasound measurements because these values were utilized as covariates for 

analysis of midpoint and final ultrasound measurements 
a,b Within gestation period, means lacking a common superscript differ (P < 0.05) 
c,d Within gestation period, means lacking a common superscript tend to differ (P < 0.10) 
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Table 2.4.  Least square means for main effects of mid- and late gestation treatments (CON = slightly exceeding MP requirements; 

R = approximately 80% of MP requirements) for concentrations of heifer blood metabolites1 

 Mid-gestation  Late gestation  Mid Late  

Item CON R  CON R SEM P-value P-value 

Albumin (BSA), g/dL 3.11 3.07  3.11 3.07 0.043 0.494 0.475 

Glucose (GLU), mg/dL 75.26 73.81  74.92 74.15 1.218 0.415 0.659 

Blood urea nitrogen (BUN), mg/dL 4.52 4.35  4.13 4.73 0.452 0.798 0.376 

Total protein (TP), g/dL 6.37 6.25  6.36 6.26 0.120 0.419 0.450 

β-hydroxybutyrate (BHB), mg/dL 1.98a 1.66b  1.76 1.88 0.072 0.018 0.255 

Non-esterified fatty acids (NEFA), mmol/L 0.33c 0.28d  0.30 0.31 0.014 0.061 0.778 
1 Initial blood metabolite levels utilized as covariates for analysis of repeated measures 
a,b Within gestation period, means lacking a common superscript differ (P < 0.05) 
c,d Within gestation period, means lacking a common superscript tend to differ (P < 0.10) 
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Table 2.5  Least square means for main effects of mid- and late gestation treatments (CON = slightly exceeding MP requirements; R 

= approximately 80% of MP requirements) on calf performance from birth to weaning and subsequent heifer reproductive response1 

 Mid-gestation  Late gestation  Mid Late 

Item CON R  CON R SEM P-value P-value 

Heifer BCS at calving 4.9 4.8  4.9a 4.7b 0.112 0.568 0.042 

Calving difficulty score 1.07 1.07  1.13 1.00 0.060 1.000 0.132 

Calf vigor score 1.05 1.13  1.16 1.02 0.062 0.347 0.127 

Calf birth BW, kg 30 29  29 30 1.82 0.282 0.247 

Peak milk production, kg 9.05 9.27  9.12 9.20 0.540 0.763 0.916 

Calf weaning BW, kg 211 204  207 208 8.96 0.221 0.926 

Return to cyclicity, % 91 87  89 89 5.33 0.523 0.945   

Heifer BW at breeding 444 442  445 441 16.0 0.646 0.489 

Heifer BCS at breeding 4.7 4.7  4.8 4.7 0.072 0.893 0.248 

Pregnant to AI, % 44.2 62.9  50.2 57.1 7.17 0.110 0.521 

Overall pregnancy rate1 96 100  98 98 - - - 
1 Data shown are means for each treatment group.  Overall pregnancy rates did not converge because only 2 heifers failed to become 

pregnant 
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a,b In mid-gestation, means lacking a common superscript tend to differ (P < 0.10) 
x,y In late gestation, means lacking a common superscript tend to differ (P < 0.10) 

Figure 2.1. Least square means for mid-gestation treatment × late gestation treatment × time interaction for % IMF based on 

ultrasound measurements for heifers receiving a control (CON; slightly exceeding MP requirement) or restricted (R; 

approximately 80% of MP requirement supplied) diet during mid- and/or late gestation 
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CHAPTER III 

Influence of maternal protein restriction in primiparous heifers during mid- and/or 

late gestation on progeny feedlot performance and carcass characteristics 

Janna J. Kincheloe 

Department of Animal Science 

South Dakota State University, 57007 

ABSTRACT 

 

Maternal nutrient restriction in beef cows impacts developmental processes in the 

fetus that may influence lifetime performance.  This study investigated impacts of MP 

restriction in primiparous heifers during mid- and/or late-gestation on progeny feedlot 

performance and carcass characteristics. One hundred eight Angus × Simmental heifers 

were blocked by BW, method of conception (AI or natural service, based on fetal age at 

ultrasound), and calf sex and allocated to 12 pens in a randomized complete block design 

with a 2  2 factorial treatment structure including 2 stages of gestation (mid- and late) 

and 2 levels of dietary protein (control [CON]; slightly exceeding MP requirements and 

restricted [R]; approximately 80% of MP requirements).  Pens were randomly assigned to 

CON or R treatments within blocks during mid- and/or late gestation.  Heifers were 

removed from treatments after calving and pairs were managed as a common group.  

Following weaning, calves were backgrounded for two weeks then finished in a 

GrowSafe feeding system on a typical feedlot diet.  Individual carcass measurements 

were collected.  No differences were observed for initial or final calf BW, DMI, or ADG 

due to maternal nutritional treatments throughout the feeding period (P > 0.10).  There 

was a tendency (P < 0.10) for improved G:F for progeny from dams restricted in late 
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gestation.  Hot carcass weight, adjusted 12th rib fat thickness, KPH, USDA Yield Grade, 

marbling score, and proportion of carcasses in each USDA Quality Grade were not 

influenced (P > 0.10) by maternal diet.  Progeny of dams on the R treatment in late 

gestation had greater LM area (P = 0.04) vs. progeny from CON dams, but not when 

adjusted on a HCW basis (P > 0.10).  Proportion of progeny receiving USDA Yield 

Grade 3 designation was least from dams restricted only in late gestation (CON-R), and 

greatest from dams restricted throughout gestation (R-R; P < 0.05).  Minimal differences 

in animal performance and carcass characteristics suggest MP restriction during mid- and 

late gestation did not have a significant developmental programming effect. 
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INTRODUCTION 

   

The fetal origins hypothesis suggests that exposing the fetus to an adverse 

environment in utero leads to permanent programming of tissue function and increased 

risk of disease (Drake and Walker, 2004).  Nutrient restriction during gestation in 

livestock may result in unfavorable fetal and postnatal growth, nutrient utilization, and 

health as well as changes in body composition and meat quality (Wu et al., 2006).   

Metabolizable protein (MP) is defined as true protein absorbed in the intestine, 

consisting of microbial protein and ruminally undegraded protein sources (RUP; National 

Academies of Sciences, Engineering, and Medicine, 2016).  Because MP represents the 

supply of amino acids available for absorption, it should be utilized as an indicator of 

how protein intake during gestation can affect offspring performance.  Research in sheep 

has indicated a reduction in availability of amino acids to the fetus due to nutrient 

restriction (Lekatz et al., 2011; Lemley et al., 2013); however, little research has been 

conducted investigating the effects of maternal MP restriction on progeny growth, feed 

efficiency, and carcass characteristics of beef cattle.   

Most of the literature referencing fetal programming in livestock has focused on 

fetal development and performance of offspring; however, nutrients available to the fetus 

can impact numerous tissues relevant to meat production.  Skeletal development begins at 

an early stage of embryonic development, with primary muscle fibers in cattle estimated 

to begin forming at less than 47 d of fetal life and secondary muscle fibers around 90 d of 

fetal life (Brameld et al., 2010).  Skeletal muscle is particularly susceptible to maternal 

nutrient deficiency due to its reduced priority in nutrient partitioning compared with other 

organs during development and the fact that muscle fiber numbers do not increase after 
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birth in ruminants (Du et al., 2013, Zhu et al., 2006).  Myocytes, adipocytes, and 

fibroblasts are all derived from mesenchymal stem cells, and evidence suggests factors 

shifting cell differentiation away from myogenesis can result in replacement of muscle 

fibers with fat cells (Du et al., 2010b).   

Maternal under-nutrition at various stages of development can alter tissue 

development in the offspring and influence postnatal performance and feed efficiency 

during the finishing phase (Funston et al., 2010b).  The “thrifty phenotype” hypothesis as 

described by Hales and Barker (2001) suggests inadequate nutrition during fetal life 

“programs” offspring to develop a postnatal metabolism adapted to survive in a nutrient-

poor environment, which can result in obesity later in life if adequate nutrition is 

provided.   

Mature mass and body composition can be altered by starvation or protein 

deficiency early in fetal life (Owens et al., 1993), potentially leading to performance and 

production differences regardless of whether early measures such as calf birth weight are 

affected (Funston et al., 2012).  In growing animals, muscle is energetically more 

efficient than fat (Wu et al., 2006).  Thus, it would be reasonable to assume progeny born 

to dams that were nutritionally restricted during gestation would have reduced skeletal 

muscle development and efficiency of nutrient utilization.  Our hypothesis was that MP 

restriction in mid- and late gestation would result in reductions in postnatal growth and 

skeletal muscle, increased carcass adiposity, and reduced feed efficiency.  Therefore, the 

objectives of this study were to investigate the impacts of MP restriction in mid- and late 

gestation on feedlot performance and carcass characteristics of progeny.     
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MATERIALS AND METHODS 

  

Animals and Experimental Design 

The South Dakota State University Institutional Animal Care and Use Committee 

approved all procedures involving animals.  One hundred eight Angus × Simmental 

heifers were pen-fed at the SDSU Cottonwood Range and Livestock Field Station near 

Philip, SD during the time gestational nutrient restrictions were imposed.  Prior to the 

beginning of the study, yearling heifers were synchronized and time-bred to a single 

Angus sire on June 7th, 2013.  Following AI, all heifers were exposed naturally to Angus 

bulls for 60 days.  Rectal ultrasonography was conducted in mid-September to detect 

pregnancy and fetuses were sexed and aged.  

Treatments were arranged in a 2 × 2 factorial structure with 2 levels of dietary 

metabolizable protein provided during two stages of gestation (mid and late).  Dietary 

MP levels included: control (CON; slightly exceeding MP requirements) and restricted 

(R; approximately 80% of MP requirements supplied based on Level 2 of NRC (2000).  

Heifers were blocked by BW as well as age and sex of the fetus, resulting in 3 blocks 

with 4 pens per block.  At the end of the mid-gestation period, half of the pens on the 

CON treatment were reassigned to the R treatment and half of the pens on the R 

treatment were reassigned to the CON treatment, resulting in four treatment combinations 

(CON-CON, CON-R, R-CON, and R-R).  Each treatment combination was randomly 

assigned to one pen per block for a total of 3 pen replicates per treatment combination.  

Diets were based on calcium hydroxide treated wheat straw and concentrates, and 

were adjusted throughout gestation to maintain MP balance across treatments and 

account for increased nutrient and energy requirements for the growing heifer and the 
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developing fetus (NRC, 2000; Table 3.1).  Concentrate formulations between treatments 

were similar, except that porcine bloodmeal was added to the CON formulation to 

slightly exceed the MP requirement.  Diets were formulated to be isocaloric and meet 

predicted NRC (2000) requirements for NEm and NEg in both CON and R treatments.  

Despite balancing diets to achieve predicted MP and energy concentrations in the diets, 

consumption of wheat straw by heifers was less than predicted.  Although desired MP 

and energy levels were not consistently achieved for each diet formulation based on 

calculated intakes, percentage of MP requirements supplied was 101% for CON heifers 

and 81% for R heifers when averaged across the study (Table 3.1).  Immediately after 

calving, heifers were removed from treatments and pairs were managed as a common 

group through weaning.  There were no further treatments applied to dams or progeny 

beyond gestational treatments of the dam. 

Progeny Weaning and Feedlot Management   

Five calves were removed from the study prior to weaning due to death or issues 

with their dam that inhibited study protocols and objectives.  Two calves died due to 

weather-related stressors shortly after birth.  One calf was removed from the study and 

sold when its dam died of complications due to post-calving vagal nerve paralysis.  One 

calf was early-weaned by its dam, and both cow and calf were removed from the study 

and sold.  One calf was injured when pairs were grazing summer pasture and was 

humanely euthanized prior to weaning.  The remaining 103 steer and heifer calves 

received pre-weaning vaccinations on September 2, 2014, including killed vaccines for 

clostridial diseases (Vision 7 Somnus with SPUR, Merck Animal Health, Madison, NJ) 

and Pasteurellosis (Mannheimia Haemolytica, Colorado Serum Company, Denver, CO), 
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plus a modified live vaccine for respiratory viruses (Vista 5 SQ, Merck Animal Health, 

Madison, NJ).  Calves were weaned, dewormed (Dectomax Pour On, Pfizer, New York, 

NY), and received booster vaccines on October 6, 2014.  They were backgrounded on 

high quality grass hay and dried distillers grains for two weeks at the SDSU Cottonwood 

Range and Livestock Field Station before being shipped approximately 430 km to the 

University of Nebraska-Lincoln West Central Research and Extension Center in North 

Platte, NE.     

Calves were allocated to four feedlot pens based on sex and method of conception 

(AI or clean-up through natural service) and adapted to a final finishing diet over 110 d 

using 4 step-up diets (Table 3.2).  Calves remained within these four groups and were 

placed in a GrowSafe feeding system (GrowSafe Systems Ltd., Airdrie, AB Canada) to 

collect individual feed intake data beginning November 22 for AI-bred calves and 

December 13 for bull-bred calves due to space limitations in the facility.  All calves 

received the same diet whether they were being fed in standard feedlot pens or in the 

GrowSafe system, as the only treatment applied to calves in this study was maternal 

dietary treatment.  Initial feedlot weights were collected on November 20 and 21, 2014 

for AI-bred calves, and on December 11 and 12, 2014 for bull-bred calves, following 10 

d of adaptation in the GrowSafe feeding system.  All steers received an initial feedlot 

implant of Revalor-IS (80 mg trenbolone acetate and 16 mg estradiol), and heifers 

received Revalor-IH (80 mg trenbolone acetate and 8 mg estradiol; Merck Animal 

Health, Madison, NJ) on November 20, 2014.  Cattle were re-implanted with Revalor-

200 (200 mg trenbolone acetate and 20 mg estradiol; Merck Animal Health, Madison, 
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NJ) and dewormed with Agrimectin (Agri Laboratories Ltd., St. Joseph, MO) on March 

3, 2015.   

Progeny Harvest and Carcass Evaluation 

Cattle were fed and managed to maintain health and achieve an industry average 

endpoint of approximately 1.3 cm of backfat at harvest.  The AI-bred steers and heifers 

were shipped approximately 100 km to Tyson Fresh Meats in Lexington, NE on May 13, 

2015, and bull-bred steers and heifers were shipped to the same processing facility on 

June 3, 2015.  Individual carcass measurements included HCW, LM area, 12th rib fat 

thickness, and estimated percentage of KPH.  Yield Grade was calculated according to 

USDA guidelines, and marbling score and carcass maturity were recorded and used to 

determine USDA Quality Grade.  Cattle were not weighed prior to shipping to the 

processing facility to reduce incidence of bruising and injury; therefore, final live BW 

was determined as HCW divided by 0.625 (assumed dressing percentage).   

Statistical Analysis 

All progeny feedlot performance and carcass data were analyzed using original 

dam pen assignments as the experimental unit.  Initial and final BW, feedlot performance 

measures (DMI, ADG, and G:F), and carcass characteristics (HCW, LM area, 12th rib fat 

thickness, KPH, USDA Yield Grade, and marbling score) were analyzed using the 

MIXED procedure of SAS to determine differences due to the fixed effects of maternal 

nutritional treatment during mid- and late-gestation and their interaction.  Fixed effect of 

calf sex was also included in the model for all analyses.  Denominator degrees of freedom 

were approximated using the Kenward-Roger option in the model statement (Kenward 

and Roger, 1997) for all analyses.  Least squares means and SEM were estimated and 
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separated by LSD (i.e. the PDIFF option) and were considered significant at P ≤ 0.05, 

with tendencies considered at P < 0.10.   

The influence of maternal nutritional treatments on proportion of cattle assigned 

to each USDA Yield and Quality Grade were analyzed using a binary distribution in the 

GLIMMIX procedure of SAS.  Fixed effects of mid- and late gestation treatments and 

their interaction were included in the model.  Least squares means and SEM of the 

proportions were estimated using the ILINK option and separated as described above.     
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RESULTS AND DISCUSSION 

There were no interactions (P > 0.10) observed for mid- or late gestation 

treatment for feedlot performance measures or carcass characteristics of progeny; 

therefore, only overall main effect means are presented.   

Progeny Feedlot Performance  

There were no differences (P > 0.10) in initial or final BW, DMI, or ADG of 

progeny due to maternal nutritional treatment during the backgrounding and finishing 

phase; however, there was a tendency (P = 0.084) for slightly improved G:F for progeny 

whose dams were on the R treatment in late gestation (Table 3.3).  Small differences in 

G:F were inconsistent with similar treatment means for DMI and ADG, therefore would 

not be considered biologically relevant. 

Lack of BW differences during the finishing period were consistent with lack of 

differences among treatments for BW at birth and weaning (P > 0.20; mean 30 ± 1.8 kg 

and 208 ± 9.0 kg, respectively).  Greenwood and Cafe (2007) reported severe growth 

restriction of cattle early in life resulted in reduced growth potential throughout the 

production cycle, although BW equivalent to normally grown cattle could be obtained 

given more time on feed.  Therefore, it seems reasonable to assume differences in 

progeny BW due to maternal dietary treatment would not appear during the finishing 

period given the lack of influence on birth and weaning weights in the current study.        

Stalker et al. (2006) conducted a study in which mixed-age cows were provided 

either no supplement or a 42% CP supplement at 0.45 kg/d while grazing dormant native 

range forage during the last trimester of gestation.  Although a nutrient restriction was not 

technically imposed, it would be reasonable to assume cows on the control treatment 
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would be deficient in protein in late gestation.  Stalker et al. (2006) did not observe 

differences for feedlot ADG, DMI, or feed efficiency for steer progeny due to maternal 

dietary treatment.  Three follow-up studies with slight variations in treatment 

arrangements resulted in no influence of maternal nutrition on heifer progeny ADG or 

G:F (Martin et al., 2007); a tendency for increased ADG and feed intake for steer 

progeny from protein-supplemented cows, but no overall difference among treatments for 

overall BW gain efficiency (Larson et al., 2009); and similar DMI and RFI for heifer 

progeny from control and supplemented dams (Funston et al., 2010a).   

Summers et al. (2011) conducted a two-year study wherein spring-calving cows 

grazed dormant forage in late gestation, with cows at one location receiving 0.95 kg/d of 

31.6% CP supplement (HN) and cows at a second location receiving 0.37 kg/d of the 

same supplement delivered 3 times per week (LN).  Although there were differences 

between years, final feedlot BW, ADG, DMI, and G:F were not different among progeny 

due to maternal nutritional treatment.  Another protein supplementation study by Banta et 

al. (2006) provided evidence of a similar lack of response for feedlot performance of 

progeny from dams fed soybean meal, soybean hull-based supplement, or whole 

sunflower seeds for 76 d in mid- to late gestation.   

Results from these studies indicate little, if any, influence of protein 

supplementation during mid- to late gestation on subsequent feedlot performance of 

offspring.  In contrast, progeny from cows grazing native range vs. improved pasture 

from mid- to late gestation had reduced ADG, less total BW gain and a tendency for 

decreased final BW despite similar initial weights upon entering the feedlot (Underwood 

et al., 2010).  Variable performance responses observed in supplementation studies in 
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grazing livestock are inherent due to differences in formulation, amount, and timing of 

supplementation, in addition to environmental differences affecting forage quality.  When 

comparing the results of the current study to available literature, it is important to note 

few studies have evaluated protein requirements and responses to supplementation on the 

basis of MP rather than CP.  In addition, there is a paucity of data from researchers who 

have isolated the influence of protein alone by ensuring diets are balanced to provide 

similar amounts of energy.   

In a study designed to evaluate the effects of energy restriction in mid-gestation 

on growth performance of offspring, Taylor et al. (2016) fed cows at a level to achieve or 

maintain BCS of 5 to 5.5 (positive energy status) or at 80% of energy requirements for 

BW maintenance (negative energy status).  Dam energy status had no effect on birth BW, 

weaning weight, or feedlot performance measures.  Taylor et al. (2016) only applied 

dietary treatments during mid-gestation, after which point cows were realimented and fed 

a common diet through weaning.  While cow weight and BCS were not evaluated prior to 

calving, it is possible that cows experienced compensatory growth from the end of the 

treatment period to parturition.  Although the current study was focused on the effects of 

MP restriction rather than energy and the duration of the nutritional restriction was 

increased to encompass mid- and late gestation, the level of restriction compared with 

Taylor et al. (2016) was similar.  It appears gestating cows may be able to compensate for 

reduced nutrient intake at this level and that a more severe restriction would be required 

to observe effects on birth weight and postnatal growth of progeny.   

Long et al. (2010) fed low (55% of NRC requirements for NEm and 50% for CP) 

or moderate (100% of NRC requirements) nutrition diets to cows beginning on d 32 of 
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gestation through d 115 of gestation, at which point cows were commingled and fed in 

excess of requirements to calving.  There were no differences in ADG of progeny from 

low or moderate nutrition dams.  However, steers from restricted dams were heavier at 

the beginning of the finishing period and tended to have greater slaughter weights 

compared with steers from dams on the moderate nutrition treatment, indicating prenatal 

nutrition in early pregnancy had a moderate developmental programming effect on 

postweaning growth.  A greater degree of variation in response might be expected given 

the severity of the restriction.   

Summers et al. (2015) compared the effects of meadow hay fed during late 

gestation with no supplement (CON) vs. two supplements providing 28% CP but with 

differing levels of ruminally undegraded protein (59% RUP; HI or 34% RUP; LO).  

There were no differences in ADG, reimplant or final BW, or G:F; however, RFI was 

improved for calves born to supplemented dams (HI and LO) vs. CON dams.  In contrast, 

Underwood (2007) induced a global nutrient restriction in gestating cows by providing 

68% of energy and 87% of MP requirements from d 31 through d 125 of gestation 

followed by realimentation to achieve similar BCS to control cows by d 220 of gestation.  

Steers from nutrient-restricted dams had slightly increased ADG and feed efficiency 

compared to steers from dams on the control treatment.  In addition, the proportion of 

lean tissue in 9-10-11 rib sections was increased for progeny restricted in gestation, 

indicating a potential compensatory or “thrifty phenotype” response.   

Robinson et al. (2013) conducted a stepwise regression analysis to determine the 

influence of maternal nutritional status during pregnancy on production characteristics up 

to 30 months of age.  Despite large numbers of experimental units used in a multi-year 
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study, no specific influences of chronic severe nutritional restriction from mid-gestation 

through calving on feed use efficiency were detected.  These results suggest environment 

and other factors affecting postnatal calf growth still play a large role in lifetime 

performance of beef cattle, perhaps in conjunction with or in addition to the specific 

nutritional environment encountered during gestation.   

Progeny Carcass Characteristics  

There was no influence (P > 0.10) of maternal diet during gestation for progeny 

HCW, adjusted 12th rib fat thickness, KPH, USDA Yield Grade, marbling score, or 

proportion of carcasses in each USDA Quality Grade (Table 3.4).  Longissimus muscle 

area for calves whose dams were restricted in late gestation was greater (P = 0.039) 

compared with those from dams on the control treatment; however, there was no 

difference among treatment groups (P = 0.231) when LM area was analyzed using HCW 

as a covariate (Table 3.4).  Although it may have appeared MP restriction during late 

gestation resulted in increased LM area of progeny, similar treatment means between 

groups with the HCW adjustment indicated this response was primarily a function of 

body size.    

There was a mid- × late gestation treatment interaction (P = 0.049) for proportion 

of progeny in the USDA Yield Grade 3 category (Figure 3.1).  Progeny from dams 

restricted throughout gestation (R-R) had the greatest proportion of USDA Yield Grade 3 

designations, while progeny from dams restricted only in late gestation (CON-R) had the 

least (72.1% ± 10.02 vs. 37.6% ± 10.84, respectively).  Progeny from CON-CON and R-

CON treatments were intermediate (63.1% ± 10.61 and 55.9% ± 11.33, respectively) and 

similar to other treatments (P > 0.05).  This response is difficult to interpret since there 
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were no significant main effects or interactions observed for any other USDA Yield 

Grade category.  In addition, mean USDA Yield Grade and all carcass characteristics 

included in yield grade calculations (HCW, KPH, fat thickness) were similar (P > 0.10) 

among treatments.  The USDA Yield Grade 3 category is considered acceptable by 

industry standards (i.e. would not be discounted), and it is unlikely that differences 

among treatment groups can be directly attributed to developmental programming.   

Impacts of maternal nutrient restriction on muscle fiber development and 

ultimately meat quality are evident based on available literature; however, most reports 

have utilized sheep as the experimental unit.  Studies conducted in pregnant ewes 

restricted to 50% of nutrient requirements from d 28 to 78 of gestation resulted in down-

regulation of protein synthesis in fetal muscle, reduction of secondary myofibers, and an 

increase in intramuscular triglyceride content, which is known to predispose insulin 

resistance in skeletal muscle (Zhu et al., 2004; 2006).  Fahey et al. (2005) found changes 

in muscle characteristics of lambs born to ewes restricted to 50% of nutrient requirements 

from d 30 to 70 of gestation, while restriction late in gestation (d 85 to 115) reduced 

weight of LM, semitendinosus, and vastus lateralis muscles of offspring.  Lambs were 

harvested in order to determine muscle characteristics; therefore, longer-term impacts on 

muscle growth, performance, and carcass quality were not measured.   

Ford et al. (2007) fed multiparous ewes at 100% or 50% of nutrient requirements 

between d 28 and 78 of gestation, then fed all ewes at 100% of requirements from d 79 of 

gestation through lambing.  Lambs from nutrient-restricted ewes had increased finish 

weights, greater amounts of KPH fat, and tended to have reduced LM and semitendinosis 

muscle weights as a percentage of HCW.  The results of the above studies support the 
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hypothesis that maternal undernutrition dur ing early to mid-gestation will result in 

increased BW and fat deposition and impact skeletal muscle development in sheep.  

However, severe restrictions implemented in many of these examples may not be 

applicable across a wide variety of practical production situations.  In addition, responses 

appear to be less consistent for beef cattle.  Greenwood et al. (2005) reported significant 

differences in BW and growth characteristics at all stages of life (birth, weaning, 

backgrounding, feedlot entry, feedlot ADG, and final end BW) for cattle severely 

nutrient-restricted from d 80 to 90 of gestation until birth; however, there were no 

differences in carcass composition at similar carcass weights.  It is important to carefully 

consider mechanisms by which maternal nutrition can impact various developmental 

processes such as morphology and metabolism of fetal tissues and how responses may 

vary depending on the timing, level, and duration of dietary restriction.   

Primary myogenesis occurs early in gestation and forms muscle cell templates for 

secondary myogenesis, which occurs up to around d 180 of gestation and forms the 

majority of muscle fibers in beef cattle (Du et al., 2013).  Research indicates the number 

of primary myofibers in beef cattle is determined genetically, while the number of 

secondary fibers is more likely to be impacted by factors such as maternal nutrition, with 

the majority of differentiation occurring in the last third of gestation (Picard et al., 2002).  

Adipogenesis, or the process of fat cell development, begins during mid-gestation in 

ruminants, which overlaps with the period of secondary myogenesis (Du et al., 2010a).  

Because myogenesis and adipogenesis are competitive processes, there is potential for 

both muscle and fat to be impacted by maternal nutrition.  Nutrient restriction earlier in 

development appeared to affect muscle hyperplasia or cell number, while late restriction 
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had more impact on hypertrophy or growth of muscle cells (Fahey et al., 2005).  

Additionally, nutrient restriction in mid gestation has been shown to enhance fat 

deposition during late gestation (Symonds et al., 2003).   

Treatments for the current study were initiated during mid-gestation, with heifers 

either remaining on their original treatment or changing to the alternative treatment in 

late gestation in order to elucidate the effects of timing of nutrient restriction on progeny 

muscle and adipose development and ultimately feedlot performance and carcass 

characteristics.  It was hypothesized that a restriction of MP in mid-gestation would 

reduce nutrient supply available to muscle cells, resulting in reduced protein synthesis 

and skeletal muscle growth.  An MP restriction in late gestation was expected to result in 

increased fatness of progeny as more cells would be expected to differentiate into 

adipocytes rather than muscle fibers.  However, progeny from dams restricted in late 

gestation had increased LM area compared with progeny from dams on the control 

treatment, which was unexpected.  Nonetheless, this response appeared to be primarily a 

function of HCW, and no differences were observed for fat thickness or marbling.  

Similarly, Micke et al. (2010) reported LM area of both steer and heifer carcasses was 

increased in progeny from dams receiving low (70% of CP requirements) vs. high (240% 

of CP requirements) nutrition diet during mid-gestation, with significant effects removed 

when LM area was corrected for HCW.  In contrast, Underwood et al. (2010) also found 

no differences in LM area of steers whose dams were placed on improved pasture (IP) or 

native range (NR) in mid- to late-gestation; however, heavier HCW and increased 12th rib 

fat thickness were observed in progeny from IP dams.  In another study, there were no 
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differences in HCW, fat thickness, dressing %, Yield Grade, marbling score, or LM area 

for progeny from dams fed 100% vs. 55% of nutrient requirements (Long et al., 2010).   

Restricting dams to 80% of NEm in mid- gestation did not influence progeny 

HCW, LM area, KPH, or marbling score; however, tendencies for decreased 12th rib 

backfat and lower final USDA Yield Grade were observed in progeny from dams in a 

negative energy status due to the restriction (Mohrhauser et al., 2015).  In the study 

described previously by Summers et al. (2011), marbling scores were greater for steer 

progeny from HN dams compared with progeny from LN dams; however, there were no 

differences in 12th rib fat thickness, LM area, or USDA Yield Grade and Quality Grade.  

Minimal differences in performance and carcass characteristics were likely due to the fact 

there was not a true nutrient restriction imposed in their study; however, it appears 

increased supplementation during late gestation had an effect on intramuscular fat 

development.  This response appeared to support a hypothesis presented by Du et al. 

(2010a) stating that adequate maternal nutrition can influence marbling by enhancing 

adipogenesis in fetal skeletal muscle.   

Other researchers have reported improvements in carcass quality of offspring due 

to maternal protein supplementation; however, results have not been consistent.  Steer 

progeny from cows receiving 0.45 kg/d of 28% CP supplement during the last trimester 

of gestation had greater marbling scores and a greater proportion of carcasses grading 

USDA Choice than progeny from dams that did not receive a protein supplement, with no 

effect on Yield Grade (Larson et al., 2009).  These results were in contrast to those of 

Stalker et al. (2006), who found no effect of protein supplementation on carcass 

characteristics of steer progeny.  Further conflicting responses were reported by Long et 
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al. (2012), as Yield Grade and adipocyte diameter were increased in progeny from dams 

fed a nutrient-restricted diet (NR; 70% of Con) vs. progeny from dams fed a control 

(Con; 100% of NRC recommendations) or nutrient-restricted + protein supplement 

(NRP; 70% of Con + essential AA supply to small intestine equal to Con) diet from d 45 

to d 185 of gestation.  These authors attributed the increase in adipocyte size to a 

reduction in skeletal muscle in NR offspring as verified by a tendency for reduced 

semitendinosus muscle as a percentage of HCW.  Reductions in skeletal muscle mass due 

to nutrient restriction would be expected to enhance fat accumulation as excess energy is 

diverted to adipose development (Du et al., 2015).  Additional amino acids supplied by a 

protein supplement should result in the opposite effect by enhancing protein synthesis 

and muscle growth and reducing fat accumulation; however, differences in supplement 

composition may have contributed to this response.     

The majority of phenotypic responses for feedlot performance and carcass 

characteristics were non-significant or were inconsistent with expected results; therefore, 

the hypothesis that MP restriction would result in reductions in postnatal growth and 

skeletal muscle, increased carcass adiposity, and reduced feed efficiency was rejected.  

Skeletal muscle reaches maturity at around d 105 of gestation in sheep and d 210 of 

gestation in beef cattle, and nutrient restriction after that point had little impact on muscle 

fiber number (Du et al., 2010a).  Although differences in muscle fiber development in 

offspring were not directly measured in the current study, lack of differences in feedlot 

performance and carcass characteristics indicate maternal dietary treatment had minimal, 

if any, effect on muscle fiber development.  The mid-gestation treatment was initiated 

around d 150 of gestation, which would be near the end of secondary myogenesis based 
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on the fetal development timeline developed by Du et al. (2010a).  Although there was 

potential for MP restriction to affect adipogenesis and potentially muscle fiber 

hypertrophy, it is possible the treatment was applied too late to impact the critical 

window of muscle fiber development.  Additionally, the late gestation treatment did not 

begin until after skeletal muscle is estimated to have reached maturity, which also could 

have impacted observed responses.  Although researchers have attributed responses in 

lifetime performance of livestock to the maternal nutritional environment, inconsistent 

results suggest the need to continue to elucidate mechanisms of response and separate 

postnatal factors such as environment and milk production from factors thought to be 

programmed during gestation.  

 

  



103 
 

IMPLICATIONS 

  

Metabolizable protein restriction of heifers in mid- and late gestation did not 

substantially influence efficiency, feedlot performance, or carcass characteristics.  

Although results of this study do not agree with reports in the literature of long-term 

effects on performance and carcass quality of beef cattle offspring, the concept of 

developmental programming merits further investigation to elucidate complex 

relationships of maternal nutrition, fetal development, and postnatal response.   

Inconsistency in developmental programming research results may be due to timing, 

intensity, and duration of nutrient restriction, influence of specific dietary restriction, and 

a host of environmental factors.  Results indicate offspring may be able to recover from 

moderate MP restriction during development when exposed to an unrestricted nutritional 

environment postnatally.  Future investigation is warranted to determine specific impacts 

of maternal nutrient restriction on metabolic changes and development of specific tissues 

in the fetus that can impact lifetime performance and production of beef cattle.  
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Table 3.1.  Dietary components and nutrients consumed by heifers receiving a control (CON = slightly exceeding MP requirement) 

or restricted (R = approximately 80% of MP requirement supplied) diet during mid- and/or late gestation based on NRC (2000) 

calculations1 

   Diet formulation 12 Diet formulation 2 Diet formulation 3 

 CON R CON R CON R 

Item ---- % DM basis ---- 

Wheat straw3    59.81 59.62 54.14 53.65 51.22 51.28 

Crude glycerin4 15.66 17.97 13.27 15.27 14.52 14.54 

Dry supplement5       

  Ground corn - - 10.27 10.02 10.79 11.03 

  Ground corn cobs 16.77 16.56 11.33 11.43 11.84 12.51 

  Energy Booster 100®6 3.42 3.06 7.38 7.46 7.74 8.20 

  Porcine bloodmeal 1.62 - 1.65 - 1.54 - 

  Sodium phosphate (XP 40) 1.57 1.56 1.39 1.43 1.73 1.62 

  Urea, 46% 1.08 1.18 0.51 0.67 0.54 0.75 

  Magnesium oxide, 54% 0.032 0.034 0.032 0.031 0.034 0.034 

  TM Green7 0.015 0.014 0.020 0.019 0.010 0.010 

  Selenium, 0.06% yellow 0.009 0.012 0.011 0.013 0.013 0.015 

  Vitamin AD 10:1 0.004 0.004 0.004 0.004 0.005 0.005 

 ---- Nutrient composition of diet predicted by NRC (2000) based on actual intake ---- 

Diet CP, % 7.0 5.3 5.7 4.6 5.7 4.9 

Bacterial N balance, g/d 11 11 -1 -1 2 2 

MP, % 108.7 88.4 101.4 78.3 93.2 77.2 

NEm, Mcal/kg 1.24 1.17 1.37 1.40 1.44 1.44 

NEg, Mcal/kg 0.67 0.61 0.79 0.82 0.85 0.85 
1 Diets formulated based on NRC (2000) predictions for MP, NEm, and NEg requirements for heifers throughout gestation 
2 Diet formulation 1 fed from 11/2/13 – 12/14/13, diet formulation 2 fed from 12/15/14 – 1/18/14, and diet formulation 3 fed from 

1/19/14 – calving.  Amounts of supplement for each formulation were adjusted throughout gestation. 
3 Nutrient composition of wheat straw: 49.39% DM; 4.75% CP; 57.48% ADF; 66.78% NDF; 49.75% TDN; 0.95 Mcal/kg NEm; 0.40 

Mcal/kg NEg 
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Table 3.1 continued… 
4 Crude glycerin contained 82.3% glycerol, 9.5% water, 0.56% CP, 0.04% methanol, 8.07% ash, and 0.90% MONG (matter organic 

non-glycerol; defined as 100 – glycerol content (%) + water content (%) + ash content (%)).  Crude glycerin sourced from 

Minnesota Soybean Processors, Brewster, MN 
5 Dry supplement formulated and mixed by Hubbard Feeds Inc., Mankato, MN 
6 Milk Specialties Global, Eden Prairie, MN 
7 TM Green mineral mix contained 15.2% S; 330 ppm Co; 33,000 ppm Cu; 1,650 ppm I; 132,000 ppm Mn; 99,000 ppm Zn, 3,300 

ppm CuCl; 1,856 ppm EDDI; 132,000 ppm MnSO4; and 99,000 ppm ZnSO4 
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 Table 3.2.  Diet composition (DM basis) of backgrounding and finishing rations for progeny of heifers fed a control (CON = 

slightly exceeding MP requirement) or restricted (R = approximately 80% of MP requirement supplied) diet during mid- and/or late 

gestation1  

Item  Step-up rations 1-4  Finishing ration 

Dates fed  10/20-10/27/14 10/27-11/2/14 11/3-12/19/14 12/20-2/8/15  2/9/15-Harvest 

Dry rolled corn, %  20 30 41 48  48 

Grass hay, %  35 25 14 7  7 

Corn gluten feed, %  35 35 35 35  40 

Grower supplement2, %  10 10 10 10  - 

Finisher supplement3, %  - - - -  5 

Nutrient composition4        

   DM, %  74.25 75.25 75.91 77.07  75.05 

   CP, %  12.91 12.99 11.48 13.13  11.47 

   NEm, mcal/kg  1.54 1.63 1.77 1.80  1.79 

   NEg, mcal/kg  1.33 1.41 1.53 1.56  1.61 
1 Dietary MP levels based on NRC (2000) predicted requirements; mid-gestation treatment applied mean d 148 through 216 of 

gestation; late gestation treatment applied mean d 217 of gestation through parturition 
2 Supplement formulated to provide minerals and vitamins to meet nutrient requirements (NRC, 2000) using dried distillers grains, 

limestone, iodized salt, ammonium chloride, trace mineral mix, Vitamins A, D, and E, monensin (Rumensin, Elanco Animal Health, 

Greenfield, IN), and tylosin phosphate (Tylan 40, Elanco Animal Health Greenfield, IN) 
3 Supplement formulated to provide minerals and vitamins to meet nutrient requirements (NRC, 2000) using ground corn, limestone, 

iodized salt, ammonium chloride, trace mineral mix, Vitamins A, D, and E, monensin (Rumensin, Elanco Animal Health, 

Greenfield, IN), and tylosin phosphate (Tylan 40, Elanco Animal Health Greenfield, IN) 
4 Nutrient composition for each ration based on wet chemistry analyses as reported by Ward Laboratories, Inc., Kearney, NE  
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Table 3.3.  Main effect least square means for feedlot performance for progeny of heifers fed a control (CON = slightly exceeding 

MP requirement) or restricted (R = approximately 80% of MP requirement supplied) diet during mid- and/or late gestation1  

 Mid-gestation Late gestation   P-value 

Item CON R  CON R  SEM Mid  Late  

Initial BW2, kg 259 254  255 259  4.99 0.434 0.550 

Final BW3, kg 573 565  562 575  9.30 0.401 0.225 

DMI, kg 10.06 10.06  10.06 10.06  0.143 0.984 0.972 

ADG, kg 1.82 1.80  1.79 1.84  0.029 0.557 0.176 

G:F 0.182 0.179  0.178 0.183  0.002 0.369 0.084 
1 Dietary MP levels based on NRC (2000) predicted requirements; mid-gestation treatment applied mean d 148 through 216 of 

gestation; late gestation treatment applied mean d 217 of gestation through parturition 
2 BW based on average of 2-day weights 
3 BW based on HCW/0.625 (assumed dressing percentage) 
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Table 3.4.  Main effect least square means for carcass characteristics for progeny of heifers fed a control (CON = slightly exceeding 

MP requirement) or restricted (R = approximately 80% of MP requirement supplied) diet during mid- and/or late gestation1  

 Mid-gestation  Late gestation   P-value 

Item CON R  CON R  SEM Mid  Late  

  HCW, kg 358 353  352 359  5.82 0.400 0.222 

  Adj. 12th rib FT2, cm 1.59 1.54  1.63 1.50  0.073 0.661 0.248 

  LM area, cm2 91.7 91.3  90.0a 92.9b  1.63 0.774 0.039 

  Adj. LM area3, cm2 91.3 91.7  90.6 92.3  1.88 0.756 0.231 

  KPH, % 2.24 2.13  2.14 2.23  0.085 0.230 0.342 

  Yield grade 2.76 2.67  2.79 2.65  0.135 0.597 0.443 

   Marbling score4 514 515  520 509  22.8 0.982 0.601 

USDA Quality Grade5          

   All Choice, % 81.0 86.1  80.7 86.4  5.82 0.622 0.588 

   Prime, % 19.0 13.9  19.3 13.6  5.82 0.622 0.588 

USDA Yield Grade6          

   Yield grade 2, % 20.5 15.6  15.0 21.1  6.18 0.650 0.581 

   Yield grade 3, % 50.4 64.4  59.6 55.5  9.18 0.181 0.695 

   Yield grade 4, % 19.3 16.0  21.6 14.2  10.33 0.671 0.341 
1 Dietary MP levels based on NRC (2000) predicted requirements; mid-gestation treatment applied mean d 148 through 216 of 

gestation; late gestation treatment applied mean d 217 of gestation through parturition 
2 Adj. 12th rib FT, cm = (Preliminary Yield Grade – 2) / 2.5) × 2.54 
3 Adj. LM area determined using HCW as a covariate in the model 
4 400 = Small00; 500 = Modest00; 600 = Moderate0 

5 No animals received a select Quality Grade  

6 GLIMMIX analysis failed to converge for USDA Yield Grade 1 (n = 1) or Yield Grade 5 (n = 2) 
a,b Within gestation period, means lacking a common superscript differ (P < 0.05) 
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Figure 3.1. Least square means for mid-gestation treatment × late gestation treatment interaction for proportion of USDA Yield 

Grade 3 designations for progeny of heifers receiving a control (CON; slightly exceeding MP requirement) or restricted (R; 

approximately 80% of MP requirement supplied) diet during mid- and/or late gestation1 

 

1 P = 0.049 
a,b Means lacking a common superscript differ (P < 0.05)  

ab 
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CHAPTER IV 

Influence of maternal protein restriction in primiparous heifers during mid- and/or 

late gestation on progeny gene expression in longissimus dorsi muscle 

Janna J. Kincheloe 

Department of Animal Science 

South Dakota State University, 57007 

ABSTRACT 

 

 Maternal nutrient restriction has long-term consequences for postnatal 

performance of offspring due to impacts on metabolism and development of 

economically important tissues such as muscle and fat.  This study investigated impacts 

of maternal MP restriction in mid- and late gestation on the transcriptome of beef cattle at 

birth and prior to harvest.  One hundred eight Angus × Simmental heifers were blocked 

by BW, method of conception (AI or natural service, based on fetal age at ultrasound), 

and calf sex and allocated to 12 pens in a randomized complete block design with a 2  2 

factorial treatment structure including 2 stages of gestation (mid- and late) and 2 levels of 

dietary protein (control [CON]; approximately 102% of MP requirements and restricted 

[R]; approximately 80% of MP requirements).  Within 48 h of birth, biopsy samples were 

collected from longissimus muscle of a sub-set of 3 male calves per treatment 

combination.  Pairs were managed as a common group from calving through weaning, 

and calves were finished in a GrowSafe feeding system on a typical feedlot diet.  

Additional biopsy samples were collected from the same sub-set of male calves 

approximately 3 weeks prior to harvest.  Total RNA was extracted and gene expression 

analysis was conducted using RNA sequencing (RNA-Seq).  Pairwise comparisons for 
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each treatment combination (CON-CON, CON-R, R-CON, and R-R) were conducted at 

the gene level, with differentially expressed genes analyzed for Gene Ontology (GO) 

terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) Pathways.  Total number 

of differentially expressed genes was greatest for CON-CON vs. CON-R progeny in 

samples collected at birth and prior to harvest.  Maternal MP restriction throughout mid- 

and late gestation (R-R) or in late gestation only (CON-R) down-regulated (P < 0.05) 

genes involved in muscle tissue development compared to CON-CON progeny at birth.  

Restriction during mid-gestation only (R-CON) down-regulated genes in triglyceride 

metabolic processes compared to CON-CON (P < 0.05).  Prior to harvest, progeny 

restricted in late gestation only (CON-R) had decreased expression (P < 0.05) of genes 

related to muscle development compared to progeny restricted only in mid-gestation (R-

CON) or throughout gestation (R-R).  Key genes and pathways related to growth, 

development, and metabolism of skeletal muscle of beef cattle were impacted by MP 

restriction, with differential responses based on timing and duration of restriction.    
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INTRODUCTION 

The ‘developmental programming’ hypothesis was originally developed based on 

epidemiological evidence in humans that showed a relationship between poor maternal 

nutrition and low birth weight, followed by increased incidence of metabolic diseases 

such as heart disease, stroke, diabetes, and hypertension (Barker et al., 2002).  Hales and 

Barker (1992) described a ‘thrifty phenotype’ hypothesis, suggesting that the nutritional 

environment encountered by the fetus during development results in metabolic 

adaptations to prepare it for a similar environment at birth.   

Based on epidemiological evidence in humans, it appears that the early 

developmental environment and the environment encountered later in life often result in a 

‘mismatch’ that can result in increased risk of disease (Godfrey et al., 2007).  There is 

increasing evidence indicating that the developmental programming hypothesis is 

relevant to livestock production, with compromised fetal growth linked to increased 

fatness, reduced muscle growth, and increased incidence of metabolic disorders 

(Reynolds and Caton, 2012).  Research conducted in livestock over the past 50 years has 

shown that meeting nutrient requirements in late gestation is important in reducing 

postpartum anestrous interval, obtaining optimal pregnancy rates, and maximizing 

survival and health of offspring (Wiltbank et al., 1964; Corah et al., 1975; Bellows and 

Short, 1978).  More recently, there has been increased focus on investigating the 

relationship between maternal environment and long-term physiological impacts in 

offspring that can impact livestock health, productivity, and profitability (Bell, 2006).   

Muscle growth is the primary determinant of meat production in beef cattle, and 

the prenatal environment appears to have a great deal of influence on muscle 
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development.  The majority of muscle fibers in beef cattle are formed during the second 

to eighth month of gestation, with no further net increase in muscle fiber number after 

birth (Du et al., 2010).   Several studies have shown that nutritional restriction of dams 

during mid- to late gestation can influence muscle fiber development and ultimately 

affect growth and meat quality characteristics of offspring (Greenwood et al., 2009; 

Larson et al., 2009; Underwood et al., 2010).  Although the precise mechanisms for these 

responses have not been fully elucidated, Reynolds and Caton (2012) stated that long-

term effects on progeny due to insults encountered during fetal life likely include both 

irreversible changes in tissue and organ structure and epigenetic changes such as DNA 

methylation or histone modification that silence or activate gene expression without 

changing DNA sequence.  Development of muscle and fat tissues in livestock may be 

impacted by inadequate maternal nutrition through reductions in muscle fiber number and 

through epigenetic modifications to genes involved in cell differentiation and tissue 

development (Du et al., 2011).   

It is fundamentally understood that a given genotype can result in different 

phenotypes depending on environmental conditions (Gicqel, 2008). There is increasing 

interest in the role that nutritional and environmental factors play in determining 

regulation of genes that can influence livestock performance potential (Neibergs and 

Johnson, 2012).   However, little research is available that documents global changes in 

the transcriptome of muscle tissue related to developmental programming effects.  

Therefore, the objective of this study was to characterize changes in gene expression 

related to muscle and adipose tissue development and metabolism in neonates and mature 

offspring as a result of maternal MP restriction experienced during development.   
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MATERIALS AND METHODS 

Animals and Experimental Design 

The South Dakota State University Institutional Animal Care and Use Committee 

approved all procedures involving animals.  One hundred eight two-year-old Angus x 

Simmental heifers were pen-fed at the SDSU Cottonwood Range and Livestock Field 

Station near Philip, SD during the time gestational nutrient restrictions were imposed.  

Prior to the beginning of the study, yearling heifers were synchronized and time-bred to a 

single Angus sire on June 7, 2013.  Following AI, all heifers were exposed naturally to 

Angus bulls for 60 days.  Rectal ultrasonography was conducted in mid-September to 

detect pregnancy and fetuses were sexed and aged.   

Treatments were arranged in a 2  2 factorial treatment structure with 2 levels of 

dietary protein: control (CON; slightly exceeding MP requirements) and restricted (R; 

approximately 80% of MP requirements) provided during 2 stages of gestation: mid- 

(mean d 148 through 216 of gestation) and late (mean d 217 through parturition).  Heifers 

were blocked by BW as well as age and sex of the fetus, resulting in 3 blocks with 4 pens 

per block.  At the end of the mid-gestation period, half of the pens on the CON treatment 

were reassigned to the R treatment and half of the pens on the R treatment were 

reassigned to the CON treatment, resulting in four treatment combinations (CON-CON, 

CON-R, R-CON, and R-R).  Each treatment combination was randomly assigned to one 

pen per block for a total of 3 pen replicates per treatment combination.   

Diets were based on calcium hydroxide treated wheat straw and concentrates, and 

were adjusted throughout gestation to maintain MP balance across treatments and 

account for increased nutrient requirements for the growing heifer and the developing 

fetus (NRC, 2000).  Concentrate formulations between treatments were similar, except 
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that porcine bloodmeal was added to the CON formulation as a source of RUP to slightly 

exceed the MP requirement. The NRC (2000) requirements for NEm and NEg were met in 

both dietary treatments, and diets were formulated to be isocaloric (Table 4.1).  

Immediately after calving, heifers were removed from treatments and pairs were 

managed as a common group through weaning, with no further nutritional restrictions 

implemented in dams or progeny.   

Progeny Weaning and Feedlot Management   

Five calves were removed from the study prior to weaning due to death or issues 

with their dam that precluded study protocols and objectives.  One hundred three steer 

and heifer calves were weaned on October 6, 2014, and backgrounded on high quality 

grass hay and dried distillers grains for two weeks at the SDSU Cottonwood Range and 

Livestock Field Station before being shipped approximately 430 km to the University of 

Nebraska-Lincoln West Central Research and Extension Center in North Platte, NE.  

Calves were allocated to four feedlot pens based on sex and method of conception (AI or 

clean-up through natural service) and received standard feedlot rations consisting of dry 

rolled corn, grass hay, corn gluten feed, and supplement.  Individual feed intake data 

were collected beginning November 22 for AI-bred calves and December 13 for bull-

bred calves following 10 d of adaptation in a GrowSafe feeding system (GrowSafe 

Systems Ltd., Airdrie, AB Canada).  All calves received the same diet whether they were 

being fed in standard feedlot pens or in the GrowSafe system, as the only treatment 

applied to calves in this study was maternal dietary treatment.   
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Muscle Biopsy Sample Collection 

Biopsy samples (approximately 40 mg) were collected from the longissimus dorsi 

muscle for analysis of gene expression on a subset of three male AI-bred calves from 

each treatment combination within 48 h of birth (BIRTH) and again approximately 3 

weeks prior to harvest (PRE-HARVEST).  Calves were pre-selected by choosing dams 

representative of treatment means for BW and BCS at the beginning of the study and at 

treatment crossover.  An area approximately 12.7 cm2 was shaved using surgical 

precision blades and scrubbed with a povidone-iodine solution, followed by a 70% 

alcohol solution.  A total of 5 mL of lidocaine was injected in a circle of beads around the 

planned incision site.  After local anesthesia was established, a 10 mm incision was made 

using a sterile No. 11 scalpel, and a BARD Magnum Reusable Core Biopsy System with 

a 12 G × 10 cm needle was used to collect muscle tissue (C.R. Bard, Inc., Tempe, AZ).  

Tissue was immediately removed from the biopsy needle and snap frozen in liquid N 

before storage at −80°C.  The injection site was sprayed with Vetericyn antimicrobial 

topical spray (Vetericyn, Rialto, CA) and calves were closely monitored until fully 

recovered.  No ill effects were observed in any calves on either biopsy date. 

Total RNA Extraction and Gene Expression Analysis 

Total RNA was extracted from muscle samples using the miRNeasy Mini kit 

(Qiagen, Valencia, CA) according to manufacturer’s instructions.  Purity of the RNA was 

evaluated by spectroscopy to ensure samples had an optical density 260:280 ≥ 2.0.  All 

purified total RNA samples were stored at −80°C prior to analysis.  A transcriptome 

library was created using 2 μg total RNA from each individual RNA sample and 

sequenced (2 sequencing lanes per sample) using the sample preparation protocol for the 
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Illumina HiSeq 2000 genome analyzer (Illumina Inc., San Diego, CA).  Single-end reads 

of 50 nt for each sample were generated, and the 3' adaptor 

(TGGAATTCTCGGGTGCCAAGG) for sequencing was removed from the raw reads. 

After removing the 3' adaptor, reads with lengths less than 10 nt were excluded.   

Raw individual RNA sequence reads were aligned to the reference beef cattle 

genome (Ensembl UMD3.1) using the software package Tophat (v2.0.12; available at: 

https://ccb.jhu.edu/software/tophat/index.shtml), with transcript abundance normalized 

and evaluated in Fragments Per Kilobase of transcript per Million mapped reads (FPKM) 

using the Cuffdiff module of Cufflinks (v2.2.1; available at: http://cole-trapnell-

lab.github.io/cufflinks/).  Transcriptome library preparation, sequencing, and expression 

analysis was completed by LC Sciences, LLC (Houston, TX). 

Statistical Analysis 

Pairwise comparisons were conducted at the gene level, with differentially 

expressed genes (DEG) analyzed for Gene Ontology (GO) terms and KEGG (Kyoto 

Encyclopedia of Genes and Genomes) Pathways using GAGE (Generally Applicable 

Gene-set Enrichment for Pathway Analysis) v2.18 of Bioconductor 

(https://www.bioconductor.org/packages/release/bioc/html/gage.html) and DAVID 

(Database for Annotation, Visualization, and Integrated Discovery) v6.8 

(https://david.ncifcrf.gov/conversion2.jsp).  Significance for DEG was determined using 

a q-value of < 0.05, which is an adjusted P-value using an optimized false discovery rate 

(FDR) approach (Benjamini and Hochberg, 1995).  Significance for GO terms and 

KEGG pathways was determined based on fold enrichment differences > 1.5 and 

adjusted P-values < 0.05.   
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RESULTS AND DISCUSSION 

A summary of read alignments for birth and harvest samples is presented in Table 

4.2.  The total number of mapped reads in samples collected at birth ranged from 18 

million to nearly 29 million, with a mapping percentage of approximately 99%.  Mapped 

reads in samples collected at harvest were between 9 million and 14 million, with a 

mapping percentage of approximately 97%.   

Across both sampling points, the greatest number of DEG were among progeny 

from dams restricted in late gestation (CON-R) compared to dams on the control diet 

throughout mid- and late gestation (CON-CON), with notably fewer DEG in other 

treatment comparisons involving the CON-CON treatment (Table 4.3).   

In a study examining gene expression profiles in fetal longissimus dorsi muscle of 

beef cattle at various stages of myogenesis and muscle maturation, Lehnert et al. (2007) 

reported the most marked increase or decrease in gene expression was observed in late 

gestation.  Therefore, it is possible that gene expression was more responsive to maternal 

nutritional treatments in our study during that time (i.e. gene expression differences being 

greatest in the CON-R treatment).  It is also possible that progeny from the R-CON 

treatment may have been able to overcome potential consequences of MP restriction 

when realimented to the CON diet in late gestation.  Based on the reduced number of 

differentially expressed genes between CON-CON and R-R progeny, it seems that some 

type of genetic adaptation may occur when restriction is implemented for a greater 

proportion of the gestational period.  Timing of the restriction (mid- vs. late) resulted in a 

number of differentially expressed genes; however, there were minimal pathways that 

were significantly different among progeny from these treatments at either time point.   
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Pairwise Comparisons 

CON-CON vs. CON-R: Birth 

Inadequate maternal nutrition can negatively impact fetal skeletal muscle 

development, which involves multiple processes of cell differentiation and specialization, 

including myogenesis, adipogenesis, and fibrogenesis (Du et al., 2011).  Genes involved 

in the GO pathway for muscle tissue development (GO:0060537; DEG including 

ZFAND5, MYL3, HOMER1, PLN, and PPP3CA) were down-regulated (P = 0.032) in 

progeny from dams on the CON-R treatment compared to CON-CON progeny.  The MP 

restriction imposed on CON-R progeny would have occurred toward the end of 

secondary myogenesis, at a time when existing muscle fibers are undergoing hypertrophy 

(Du et al., 2010).  Although the majority of muscle fibers should have already formed 

prior to MP restriction, gene expression differences between the restricted and control 

treatments in late gestation indicate that development of muscle tissue may still be 

impacted at that time.   

Additional GO terms down-regulated (P < 0.05) in progeny from CON-R dams 

included energy reserve metabolic process (GO:0006112), protein catabolic process 

GO:0030163), and fatty acid metabolic process (GO:0006631).  The KEGG pathway for 

insulin signaling was also down-regulated in the CON-R treatment (P = 0.037).  Progeny 

of ewes restricted to 50% of nutrient requirements from early to mid-gestation had a 

decreased number of secondary myofibers and reduced protein synthesis in muscle (Zhu 

et al., 2004).  Ford et al. (2007) also reported hyperglycemia and altered insulin secretion 

in male lambs from ewes restricted in early gestation.  Although muscle fiber 

development and enzyme activity were not characterized in this study, differences in 
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gene expression for muscle tissue development, energy and protein metabolic processes, 

and insulin signaling indicate that MP restriction late in gestation had a negative impact 

on genes involved in skeletal muscle development and potentially predisposed offspring 

to insulin resistance.       

In progeny from dams on the CON-R treatment, GO terms that were up-regulated 

(P < 0.03) included protein processing (GO:0016485), protein maturation (GO:0051604), 

and negative regulation of cell proliferation (GO:0008285).  It appears that MP restriction 

in late gestation caused shifts in pathways that resulted in reductions in the rate of cell 

proliferation and specifically affected protein synthesis.  Shang et al. (2007) reported that 

the Wnt signaling pathway enhanced myogenesis and inhibited adipogenesis in cultured 

mesenchymal stem cells.  Progeny from dams in the CON-R treatment in the current 

study showed increased gene expression of the SFRP family, which can function as 

inhibitors of the Wnt signaling pathway (Logan and Nusse, 2004).  These results indicate 

that MP restriction, particularly in late gestation, may have shifted gene expression in 

favor of adipogenosis rather than myogenesis.   

CON-CON vs. CON-R: Pre-harvest 

Decreases in gene expression for pathways related to muscle structure 

development (GO:0061061) and muscle tissue morphogenesis (GO:0060415) were 

observed among progeny from CON-R compared to CON-CON treatments prior to 

harvest (P < 0.05).  Pre-harvest GO terms up-regulated (P < 0.05) in the CON-R 

compared to the CON-CON treatment included lipid transport (GO:0006869), fat cell 

differentiation (GO:0045444), and fatty acid metabolic process (GO:0006631).  In 

general, expression of genes related to protein and muscle were decreased in the CON-R 
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treatment and genes related to adipose and metabolic adaptations were increased in the 

CON-R treatment in muscle samples collected at birth and at harvest.   

CON-CON vs. R-CON: Birth 

Expression of DGAT2 and LPL, genes involved in the triglyceride metabolic 

process (GO:0006641), were decreased in R-CON vs. CON-CON progeny (fold 

enrichment -38.03; P = 0.047).  Diacylglycerol acyltransferase (DGAT2) is a key enzyme 

in the rate-limiting step of triglyceride synthesis and has been shown to impact carcass 

traits in beef cattle.  Li et al. (2009) investigated single nucleotide polymorphisms (SNP) 

in bovine DGAT2 and reported associations with carcass traits such as hot carcass weight 

and KPH fat, although no associations were found between DGAT2 polymorphisms and 

marbling score.  Wang et al. (2012) reported that expression of DGAT2 in adipose tissue 

was positively correlated with backfat thickness, and was increased in steers classified as 

having thick vs. thin backfat.  It has been suggested that adequate maternal nutrition may 

increase fat deposition in offspring (Du et al., 2010), and gene expression results indicate 

that progeny from unrestricted dams compared to those restricted early in gestation may 

have increased potential for carcass fatness.  This is somewhat contradictory to results 

observed in the pairwise comparison between CON-CON and CON-R progeny, 

indicating that MP restriction increased expression of genes in pathways related to lipid 

metabolism and fat cell development.  However, adipogenesis occurs primarily in the last 

trimester of gestation (Du et al., 2010).  It is plausible that a restriction early (R-CON) 

rather than late (CON-R) in gestation (R-CON) would have different influences on 

pathways related to adipose development and metabolism.          
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CON-CON vs. R-CON: Pre-harvest 

Number of gene expression differences among progeny from CON-CON and R-

CON were the least of the pairwise comparisons in our study (Table 4.3) at both birth and 

prior to harvest.  Although there were no significant KEGG pathways or GO terms 

observed in the pre-harvest samples, there were some interesting gene expression 

differences.  Growth hormone-releasing hormone was down-regulated (fold enrichment -

3.96; P = 0.044) in R-CON progeny.  Growth hormone (GH) is a lipolytic hormone that 

activates lipase, which mobilizes fat from adipose tissue (Heffernan et al., 2001).  

Uncoupling protein 3 (UCP) was also down-regulated in R-CON progeny (fold 

enrichment -1.51; FDR P = 0.002).  Research results indicate that this gene is up-

regulated in muscle when fatty acids are available as an energy source (Weigle et al., 

1998).  Reduced gene expression results for genes related to lipolytic processes in 

restricted progeny could indicate reduced availability of free fatty acids and metabolic 

signals that would preserve available adipose tissue rather than utilizing it as an energy 

source.   

CON-CON vs. R-R: Birth 

Similar to results with the CON-CON vs. CON-R pairwise comparison, we found 

that genes involved in muscle tissue and muscle organ development (ZFAND5, MYL3, 

HOMER1, and PLN) were down-regulated (fold enrichment -14.35; P = 0.033) in 

progeny from dams restricted throughout gestation (R-R) vs. those on the control 

treatment (CON-CON).  Additionally, positive regulation of fat cell differentiation 

(GO:0045600) and triglyceride metabolic process (GO:0006641) were up-regulated in R-

R progeny (P < 0.03).  It appears that late gestation is a critical time for development of 
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muscle and fat since differences in gene expression that affect development of these 

tissues were not as pronounced when the restriction occurred in mid-gestation.  It is also 

possible that R-CON progeny were able to compensate for the nutritional restriction after 

being placed on the control diet in late gestation, and that differential expression of genes 

would have been observed if fetuses had been harvested at the end of mid-gestation 

instead of being allowed to develop to term.    

CON-CON vs. R-R: Pre-harvest 

The mitogen-activated protein kinase (MAPK) pathway was down-regulated in 

the R-R treatment compared to CON-CON (P = 0.01), with differentially expressed genes 

including MAX, CACNA2D4, GADD45A, GADD45G, and RPS6KA1.  The MAPK 

signaling pathway plays a role in proliferation, differentiation, development, 

transformation, and apoptosis of cells (Zhang and Liu, 2002).  Gene ontology terms for 

triglyceride metabolic process (GO:0006641) and regulation of cell growth 

(GO:0001558) were up-regulated in R-R progeny (P < 0.05).  These results indicate that 

MP restriction throughout mid- and late gestation may have negatively impacted gene 

expression for pathways related to cell growth and differentiation. 

CON-R vs. R-CON: Birth 

The CON-R treatment resulted in up-regulation (fold enrichment 2.42; P  = 0.025) 

of genes involved in proteolysis (GO:0006508; DEG including MMP2, CPXM1, PAMR1, 

MMP23B, C2, CISH, MMP14, ADAMTS2, CPZ, and ADAMTS4).  This supports research 

suggesting that maternal undernutrition may result in increased protein degradation and 

decreased protein synthesis in fetal skeletal muscle (Wu et al., 2006).  Thus, it appears 
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that an MP restriction late in gestation resulted in increased activation of pathways that 

degrade proteins in muscle, possibly as a conservation mechanism.    

Gene ontology pathways terms that were up-regulated (P < 0.05) in progeny from 

the R-CON treatment included protein transport (GO:0015031) and protein catabolic 

process (GO:0030163).  Interestingly, the histone modification biological process 

(GO:0016570) showed greater expression in the R-CON treatment compared to CON-R 

(fold enrichment 4.12; P = 0.021).  While epigenetic mechanisms pertaining to DNA 

modification were not measured in the current study, it appears that histone modification 

(a potential mechanism for epigenetic change) may have been affected by our treatments.     

Two KEGG pathways that were up-regulated in the R-CON treatment were the MAPK 

signaling pathway and the Wnt signaling pathway (FDR P < 0.02).  Genes up-regulated 

in the R-CON treatment that play a role in the Wnt signaling pathway included PPP3CA, 

PPP2CB, PPP3R1, MAPK8, CACYBP, MAP3K7, CSNK2A1, MAPK9, PPP3CB, 

PRKACB, and SIAH1. 

CON-R vs. R-CON: Pre-harvest  

While there were a large number of genes that were differentially expressed 

among CON-R and R-CON, there were no significant GO terms or KEGG pathways for 

muscle, adipose tissue, protein or energy metabolism that were up-regulated in the CON-

R treatment.  In contrast, GO terms for muscle structure development (GO:0055001), 

muscle cell differentiation (GO:0042692) and muscle cell development (GO:005001) 

were up-regulated for the R-CON treatment (P < 0.05).      
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CON-R vs. R-R: Birth 

There were a number of genes and GO terms up-regulated (P < 0.05) for progeny 

from the R-R treatment, including fatty acid metabolic process (GO:0006631; DEG 

including EHHADH, ELOVL5, GHR, ELOVL6, GPAM, PRKAR2B, LPL, ACSM1); lipid 

biosynthetic process (GO:0008610; DEG including ABHD5, ELOVL5, DGAT2, ELOVL6, 

FDX1, GPAM, LPL, ACSM1); and neutral lipid metabolic processes (GO:0006638; DEG 

including DGAT2, GPAM, LPL, ABHD5).  Restriction of MP throughout gestation 

appeared to play a major role in processes related to a variety of lipid-related metabolic 

pathways compared to a restriction in mid-gestation only.   

CON-R vs. R-R: Pre-harvest  

Although there were a number of differentially expressed genes between CON-R 

and R-R progeny, differences in pathways related to fatty acid and lipids observed in 

muscle tissue samples collected at birth were not maintained in the samples taken prior to 

harvest.   

R-CON vs. R-R: Birth 

Genes in metabolic processes related to protein were up-regulated (P < 0.01) in 

the R-CON treatment, including GO:0009309~amine biosynthetic process, 

GO:0006563~L-serine metabolic process, and GO:0008652~cellular amino acid 

biosynthetic process (DEG including ASNS, PHGDH, PSAT1, CBS, and PSPH).  The 

KEGG pathway for glycine, serine, and threonine metabolism (DEG including PHGDH, 

PSAT1, CBS, ALAS2, and PSPH) was also up-regulated (P = 0.019) in this treatment. 

Similar to responses in other pairwise comparisons, pathways related to lipid 

metabolism were up-regulated in progeny from dams restricted throughout gestation (R-
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R).  The acylglycerol metabolic process (GO:0006639) and fatty acid metabolic process 

(GO:006631) were up-regulated (P < 0.05) in the R-R treatment.  Two KEGG pathways 

up-regulated (P < 0.05) in R-R vs. R-CON were the PPAR signaling pathway (DEG 

including PPARG, PLIN1, UCP1, ANGPTL4, and LPL) and glycerolipid metabolism 

(DEG including AGPAT2, DGAT2, GPAM, and LPL). 

R-CON vs. R-R: Pre-harvest  

When comparing two treatment groups that both experienced an MP restriction 

during mid-gestation, it is interesting to note that muscle tissue development 

(GO:0060537) and muscle cell differentiation (GO:0042692) were up-regulated (P < 

0.05) in the R-CON treatment compared to R-R.  It is possible that increased duration of 

the MP restriction in the R-R treatment resulted in differential gene expression among 

progeny.  There were no KEGG pathways up-regulated in R-CON, and no GO terms or 

KEGG pathways up-regulated in the R-R treatment.   

SUMMARY 

Overall, an increase in the number of DEG in pre-harvest samples compared to at-

birth samples was observed.  This agrees with a report by Sudre et al. (2003), who 

collected muscle samples from bovine fetuses at different stages of development (d 110, 

180, 210, and 260 of gestation), and also from 15-month-old bulls of the same breed 

types to generate differential expression patterns over time.  Although samples from 

mature animals in their study were not collected from the same experimental animals as 

was the case in our study, there were similarities in overall gene expression based on 

developmental stage of the animal. Small differences in gene expression were observed 

from d 110 to d 210 of gestation, with increased differences observed from d 210 of 
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gestation on (Sudre et al., 2003).  Moreover, they found differences in gene expression 

were more pronounced at 15 months of age.  In the current study, the proportion of DEG 

with fold change differences ≥ 1.5 were greater in samples collected at birth vs. those 

collected prior to harvest; however, this could be a function of the reduced number of 

total raw and mappable reads in the pre-harvest samples (Table 4.2). 

Differentiation of mesenchymal stem cells to myogenic, adipogenic, or fibrogenic 

cells is a competitive process shaped by a number of regulatory factors (Yan et al., 2013).  

In the at-birth samples, genes in pathways associated with muscle tissue development 

(ZFAND5, MYL3, HOMER1, PLN) were down-regulated in calves whose dams were 

restricted throughout gestation (R-R) or only in late gestation (CON-R) compared to 

those on the control diet throughout gestation (CON-CON).  In addition, genes related to 

positive regulation of fat cell development were upregulated in calves from dams on the 

R-R treatment compared with CON-CON.  Gene expression differences between the 

CON-CON and CON-R in terms of muscle development vs. adipose development 

appeared to be maintained throughout the life of the animal.    

Peñagaricano et al. (2014) provided diets containing various energy sources 

(alfalfa haylage (HY; fiber), corn (CN; starch), or dried distillers grains (DG; fiber, 

protein, and fat)) to ewes during mid- to late gestation.  Fetal muscle and adipose tissue 

were collected on d 130 of gestation, and RNA was sequenced.  Expression of genes 

associated with skeletal muscle development and skeletal muscle cell differentiation were 

decreased in fetal longissimus dorsi muscle in the CN diet compared to HY and DG diets.  

Although the primary focus was to investigate the impact of maternal energy source on 

the fetal transcriptome, it is interesting to note that the CN diet was lower in protein than 
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either DG or HY diets.  Results from our study provide additional evidence that 

expression of genes related to muscle tissue development are affected by reduced 

maternal protein availability. 

Genes involved in fatty acid, lipid, and triglyceride metabolic processes (DGAT2, 

LPL, GPAM, LIPE) were up-regulated in calves from the R-R treatment compared with 

the CON-R treatment at birth, providing evidence that MP restriction throughout mid- 

and late-gestation may stimulate lipogenesis.  Zhu et al. (2006) restricted pregnant ewes 

at 50% of requirements from d 28-78 of gestation, and reported that intramuscular 

triglyceride content (IMTG) was increased in skeletal muscle of lambs from nutrient-

restricted (NR) ewes.  Additionally, reductions in insulin sensitivity and glucose 

utilization in skeletal muscle of NR progeny suggested that lambs would be predisposed 

to obesity and diabetes.  In the current study, MP restriction in late gestation (CON-R) 

resulted in down-regulation of genes involved in the KEGG pathway for insulin signaling 

compared to the control treatment (CON-CON) in the at-birth samples.   

Epigenetic change is defined as alterations in DNA function without alterations in 

DNA sequence that occurs through a variety of mechanisms such as DNA methylation, 

histone modification, and non-coding RNA (Scholtz et al., 2014).  Although changes in 

gene expression are regulated by epigenetic modifications, we did not utilize 

experimental protocols that would allow us to determine the mechanisms responsible for 

the observed responses.  Measurable differences in gene expression indicate that fetal 

adaptations to MP restriction may have occurred; however, these results conflict with 

measured phenotypic responses in offspring.  Although MP restriction resulted in 

decreases in dam BW and BCS in addition to reductions in dam longissimus dorsi muscle 
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area based on ultrasound measurements, there were no differences (P > 0.10) among 

treatments for progeny birth weight, weaning weight, or feedlot performance, with 

minimal differences in carcass characteristics.   

Epigenetic modifications of the genome allows for heritable changes in gene 

expression; however, epigenetic states are reversible and can be modified over time by 

environmental factors (Jaenisch and Bird, 2003).  Following the gestational environment 

experienced by animals in this study, there were no further dietary restrictions and all 

animals were exposed to the same postnatal environment.  Noticeable changes in gene 

expression over the lifetime of the animals could be due to a variety of external factors in 

addition to the original gestational environment.   
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IMPLICATIONS 

Differentially expressed genes among all treatment combinations in our study 

provided evidence that maternal nutrient status in mid- and late gestation can impact 

programming of muscle and fat tissues and metabolic processes in beef cattle.  However, 

inconsistency in expression of genetic pathways taken at two time points suggest that 

these processes are influenced by external factors such as environment.  Asynchrony 

among gene expression differences, live animal performance, and carcass quality 

characteristics indicate that further research is needed to characterize the biological 

relevance of genetic pathways related to developmental processes in beef cattle.   
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Table 4.1.  Dietary components and nutrients consumed by heifers receiving a control (CON = slightly exceeding MP requirement) 

or restricted (R = approximately 80% of MP requirement supplied) diet in mid- or late gestation based on NRC (2000) calculations1 

   Diet formulation 12 Diet formulation 22 Diet formulation 32 

 CON R CON R CON R 

Item ---- % DM basis ---- 

Wheat straw3    59.81 59.62 54.14 53.65 51.22 51.28 

Crude glycerin4 15.66 17.97 13.27 15.27 14.52 14.54 

Dry supplement5       

  Ground corn - - 10.27 10.02 10.79 11.03 

  Ground corn cobs 16.77 16.56 11.33 11.43 11.84 12.51 

  Energy Booster 100®6 3.42 3.06 7.38 7.46 7.74 8.20 

  Porcine bloodmeal 1.62 - 1.65 - 1.54 - 

  Sodium phosphate (XP 40) 1.57 1.56 1.39 1.43 1.73 1.62 

  Urea, 46% 1.08 1.18 0.51 0.67 0.54 0.75 

  Magnesium oxide, 54% 0.032 0.034 0.032 0.031 0.034 0.034 

  TM Green7 0.015 0.014 0.020 0.019 0.010 0.010 

  Selenium, 0.06% yellow 0.009 0.012 0.011 0.013 0.013 0.015 

  Vitamin AD 10:1 0.004 0.004 0.004 0.004 0.005 0.005 

 ---- Nutrient composition of diet predicted by NRC (2000) based on actual intake ---- 

Diet CP, % 7.0 5.3 5.7 4.6 5.7 4.9 

Bacterial N balance, g/d 11 11 -1 -1 2 2 

MP, % 108.7 88.4 101.4 78.3 93.2 77.2 

NEm, Mcal/kg 1.24 1.17 1.37 1.40 1.44 1.44 

NEg, Mcal/kg 0.67 0.61 0.79 0.82 0.85 0.85 
1 Diets formulated based on NRC (2000) predictions for MP, NEm, and NEg requirements for heifers throughout gestation 
2 Diet formulation 1 fed from 11/2/13 – 12/14/13, diet formulation 2 fed from 12/15/14 – 1/18/14, and diet formulation 3 fed from 

1/19/14 – calving.  Amounts of supplement using each formulation were adjusted throughout gestation. 
3 Nutrient composition of wheat straw: 49.39% DM; 4.75% CP; 57.48% ADF; 66.78% NDF; 49.75% TDN; 0.95 Mcal/kg NEm; 0.40 

Mcal/kg NEg 



141 
 

Table 4.1 continued… 
4 Crude glycerin contained 82.3% glycerol, 9.5% water, 0.56% CP, 0.04% methanol, 8.07% ash, and 0.90% MONG (matter organic 

non-glycerol; defined as 100 – glycerol content (%) + water content (%) + ash content (%)).  Crude glycerin sourced from 

Minnesota Soybean Processors, Brewster, MN 
5 Dry supplement formulated and mixed by Hubbard Feeds Inc., Mankato, MN 
6 Milk Specialties Global, Eden Prairie, MN 
7 TM Green mineral mix contained 15.2% S; 330 ppm Co; 33,000 ppm Cu; 1,650 ppm I; 132,000 ppm Mn; 99,000 ppm Zn, 3,300 

ppm CuCl; 1,856 ppm EDDI; 132,000 ppm MnSO4; and 99,000 ppm ZnSO4 
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Table 4.2.  Summary of sequencing read alignments to the reference genome for tissue samples collected at two time points (birth 

and harvest) from longissimus dorsi muscle of steer progeny from dams fed a control (CON = slightly exceeding MP requirement) 

or restricted (R = approximately 80% of MP requirement supplied) diet in mid- and late gestation1 

 Treatment  Birth samples  Pre-harvest samples 

Steer Mid2 Late3  
Raw reads Mappable 

reads4 

% 

Mapped 

Removed 

reads 
 Raw reads 

Mappable 

reads 

% 

Mapped 

Removed 

reads 

Z203 CON CON  26,690,902 26,515,482 99.34 175,420  14,276,006 13,990,361 98.00 285,645 

Z226 CON CON  24,887,739 24,701,390 99.25 186,349  10,682,350 10,329,494 96.70 352,856 

Z229 CON CON  27,064,239 26,808,234 99.05 256,005  10,585,765 10,432,651 98.55 153,114 

Z227 CON R  28,718,632 28,298,679 98.54 419,953  13,617,536 12,942,078 95.04 675,458 

Z242 CON R  29,140,538 28,980,870 99.45 159,668  13,668,862 13,349,107 97.66 319,755 

Z251 CON R  22,730,624 22,573,795 99.31 156,829  9,937,893 9,724,247 97.85 213,646 

Z202 R CON  24,740,798 24,550,900 99.23 189,898  11,318,922 10,982,190 97.03 336,732 

Z259 R CON  20,825,399 20,651,418 99.16 173,981  10,987,327 10,835,861 98.62 151,466 

Z266 R CON  22,798,163 22,669,242 99.43 128,921  12,241,258 11,993,495 97.98 247,763 

Z224 R R  23,961,591 23,803,135 99.34 158,456  10,326,352 9,592,745 92.90 733,607 

Z239 R R  21,043,500 20,894,110 99.29 149,390  13,801,773 13,200,467 95.64 601,306 

Z272 R R  18,301,822 18,051,561 98.63 250,261  12,831,619 12,546,200 97.78 285,419 
1 Dietary MP levels based on NRC (2000) predicted requirements based on mean heifer BW and stage of gestation 
2 Mid-gestation treatment applied mean d 148 through 216 of gestation 
3 Late gestation treatment applied mean d 217 of gestation through parturition 
4 The 3' adaptor (TGGAATTCTCGGGTGCCAAGG) for sequencing was removed from the raw reads, with lengths less than 10 

subsequently excluded.  Remaining reads were mappable reads. 
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Table 4.3.  Number of differentially expressed genes of sequencing read alignments to the reference genome for tissue samples 

collected at two time points (birth and harvest) from longissimus dorsi muscle of steer progeny from dams fed a control (CON = 

slightly exceeding MP requirement) or restricted (R = approximately 80% of MP requirement supplied) diet in mid- or late 

gestation1 

 At-birth samples  Pre-harvest samples 

Pairwise comparisons2 DEG3 Up-regulated Down-regulated  DEG3 Up-regulated Down-regulated 

CON-CON vs. CON-R 652 411 241  1,357 220 1,137 

CON-CON vs. R-CON 81 40 41  103 44 59 

CON-CON vs. R-R 191 64 127  216 77 139 

CON-R vs. R-CON 642 120 522  1,169 1,034 135 

CON-R vs. R-R 184 76 108  726 678 48 

R-CON vs. R-R 168 72 96  129 53 76 
1 Dietary MP levels based on NRC (2000) predicted requirements; mid-gestation treatment applied mean d 148 through 216 of 

gestation; late gestation treatment applied mean d 217 of gestation through parturition 
2 Pairwise comparisons based on nutritional treatment combinations of dams throughout mid- and late gestation (i.e., CON-CON 

represents dams on the CON treatment in mid- and late gestation; CON-R represents dams on the CON treatment in mid-gestation 

and the R treatment in late gestation, etc.) 
3 DEG = differentially expressed genes; significance determined by using False Discovery Rate (FDR) Adjusted P-value ≤ 0.05 
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