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ABSTRACT 

LONG-TERM IMPACTS OF ANNUAL CATTLE MANURE AND FERTILIZER ON 

SOIL QUALITY UNDER CORN-SOYBEAN ROTATION 

 IN EASTERN SOUTH DAKOTA 

EKREM OZLU 

2016 

 

Dairy and beef manure have been used to enhance soil quality; however, their impacts 

under long-term application in corn-soybean rotation need to be evaluated. Nutrient based 

recommended rates of manure applications on soils are important and also need to be 

monitored. This study, therefore, was conducted at two long-term sites to assess the 

impacts of manure and inorganic fertilizer application rates on some of the soil quality 

indicators and greenhouse gas emissions (GHGs) in a corn (Zea mays L.) - soybean 

(Glycine max L.) rotation system located at Beresford and Brookings in Eastern South 

Dakota. Study treatments included: three manure [phosphorus (P) based recommended 

manure application rate, nitrogen-based recommended manure application rate (N), 

nitrogen-based double of recommended manure application rate (2N)], and two 

fertilizers; recommended fertilizer (F) and (HF) high fertilizer and a control (CK) with no 

manure management. Soil samples were extracted in four replicates under randomized 

complete block design from 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm depths to 

analyze selected soil quality indicators, and intact core samples were taken from 0-10 and 

10-20 cm depths to measure soil hydrological properties in 2015. Soil GHG fluxes were 

observed once a week from June 2015 through October 2015 and May 2016 to August 



xv 
 

 
 

2016 depending on the climatic conditions. Results showed that manure maintained the 

soil pH for 0-10 cm depth and inorganic fertilizer decreased it compared to the control 

treatment at either site. Manure improved soil organic carbon (SOC), total nitrogen (TN), 

soil aggregate stability (WAS), soil water retention (SWR), water infiltration (qs) but 

decreased the soil bulk density (BD) in comparison with inorganic fertilizer and control. 

 The CO2 fluxes were significantly impacted by manure application, whereas, 

there were insignificant impacts on CH4 flux. Soil surface nitrous oxide (N2O) fluxes 

were significantly impacted by inorganic fertilizer in 2016, whereas, there were non-

significant differences in 2015. Air temperature and soil moisture content were strongly 

correlated with soil CO2 fluxes. As a result, this study concluded that manure produced 

better soil quality by improving soil properties and developing better soil structure, 

whereas, manure also increased soil surface GHGs emission. The rate of manure 

application is consequently important for use in agriculture to offer better environmental 

quality. 
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CHAPTER 1 

INTRODUCTION 

Soil organic carbon (SOC) is the long-term studied parameter due to its direct or 

indirect impacts on soil quality (Franzluebbers, 2002). The SOC is the source of energy 

for soil microbial activities and processes (Reeves, 1997). Therefore, the addition of soil 

organic amendments is important for enhancing the soil quality. The addition of organic 

materials such as manure improves SOC and hence reduces soil compaction, erosion, 

degradation and also improves soil structure (Celik, Gunal, et al., 2010).  

Livestock manure generally decreases the soil bulk density and increases total 

porosity, soil water retention, macro and microporosities and infiltration (Rasoulzadeh 

and Yaghoubi, 2014, Zhang, Yang, et al., 2006).  Organic manure which originated from 

livestock is very helpful to improve soil productivity and quality, and also challenges soil 

degradation by improving soil nutrients especially SOC in the agricultural fields 

(Domingo-Olivé, Bosch-Serra, et al., 2016, Jones, Panagos, et al., 2012). Manure is the 

only available source of organic nutrient in considerable amounts to enrich SOC 

(Dunjana, Nyamugafata, et al., 2012, Zingore, Delve, et al., 2008). The application of 

manure as soil amendment can improve soil properties and provide various additional 

benefits to enrich soil quality and crop productivity (Lal, 2006). However, some studies 

reported insignificant changes in bulk density, water infiltration and available water due 

to the application of manure (Asada, Yabushita, et al., 2012, Blanco-Canqui, Hergert, et 

al., 2015). Livestock manure is a very important management to enhance productivity 

and quality of soil and also decreases soil degradation by SOC addition. However, if 

manure application and rate not managed properly, it can negatively impact to soils and 
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environment. Manure is responsible for the significant amount of total greenhouse gas 

emissions (Bennetzen, Smith, et al., 2016, Liang, Lal, et al., 2013).  

Inorganic fertilizer is the most commonly amendment used by the producers for 

enhancing the crop production. However, inorganic fertilizer addition might impact soil 

properties (Bronick and Lal, 2005). Some inorganic fertilizers may increase crop 

production but not soil hydrological parameters (Dunjana, Nyamugafata, et al., 2014). 

Soil fertility degradation related to declining in pH, organic matter and exchangeable 

cations in the soil (Lawal and Girei, 2013) and GHGs emission especially N2O (Kim, 

Rafique, et al., 2014) might be the result of inorganic fertilizer application. The long-term 

application of inorganic fertilizer may not keep SOC content sustainable in the soil (Hati, 

Swarup, et al., 2008), and NH4
+ concentration of N fertilizers and role of dispersing 

organic agents by moving into the soil aggregates and colloids might be a possible reason 

of reduction for aggregate stability (Haynes and Naidu, 1998). The addition of chemical 

fertilizers can impact soil physical properties (Bronick and Lal, 2005). Further, 

application of inorganic fertilizer can reduce the pH of the soil (Eghball, 2002). A review 

study conducted by Guo, Liu, et al. (2010) also reported that plots received inorganic 

fertilizer decreased the soil pH compared to manure application at the top soil depth. 

Therefore, manure can be alternative option to inorganic fertilizers if the rate and 

application of manure in soils can be managed properly. 

 

Study Objectives 

Manure management practices based on the nutrient content are significant to 

improve crop productivity and mitigate soil surface GHG emissions. Therefore, the 
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purpose of this study was to understand influences of organic manure and inorganic 

fertilizer on soil quality and GHGs emissions. Thus study was divided into three separate 

objectives and those are listed below as: 

 

Study 1 To assess the impacts of manure and inorganic fertilizer applications on selected 

soil quality parameters in the long-term reduced-tillage corn-soybean rotation.  

Study 2 To study the influences of manure and inorganic fertilizer applications on soil 

hydrological properties in long-term reduced-tillage corn-soybean rotation. 

Study 3 To investigate the impacts of long-term manure and inorganic fertilizer 

application on soil surface greenhouse gas (GHG) fluxes in long-term reduced-tillage 

corn-soybean rotation. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Understanding the impacts of agricultural management practices on soil quality 

indicators is very crucial (Peukert, Griffith, et al., 2016). It is important to determine the 

influences of alternative management systems and soil amendments such as animal 

manure and inorganic fertilizers on soils and crop productivity (Haynes and Naidu, 

1998). Soil amendments such as manures and inorganic fertilizer impact soils and crop 

yield by influencing especially the soil organic carbon (Reeves, 1997). The application of 

manure as soil amendment can improve soil properties and provide various additional 

benefits to enhance the soil quality (Domingo-Olivé, Bosch-Serra, et al., 2016, Jones, 

Panagos, et al., 2012, Lal, 2006). The present review will focus on investigating the 

impacts of manure and inorganic fertilizer application on soil quality indicators. 

 

2.1. Manure Management in Agroecosystems  

 Addition of manure to soils can improve soil organic matter (SOM) in both 

temperate and tropical regions (Khaleel, Reddy, et al., 1981, Lal and Kang, 1982). Some 

of the benefits of manure additions include: increase in soil microbial communities, 

microbial biomass (McGill, Cannon, et al., 1986), earthworm populations (Standen, 

1984) and enzyme activities (Dick, Rasmussen, et al., 1988). Improved soil microbial 

community enhances soil properties such as soil aggregation, porosity (Haynes and 

Naidu, 1998), nutrients and crop yield (Sharpley, Chapra, et al., 1994). Addition of 
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manure to agricultural soils is an important economic practice to manage organic wastes, 

however, higher rate of manure application can be environmental concerns such as heavy 

metal accumulation (van der Meer, 1987), surface crusting due to detrimental effects, 

decreased hydraulic conductivity, increased detachment (Mazurak, Chesnin, et al., 1975, 

Olsen, Hensler, et al., 1970, Weil and Kroontje, 1979), higher soil salinity (Epstein, 

Taylor, et al., 1976), pollution of groundwater (Haynes and Naidu, 1998) and greenhouse 

gas emissions (especially ammonia and nitrous oxide) (Nkoa, 2014). The high 

monovalent cations (Na+ and particularly K+) concentration in the animal based 

amendments and NH4+ content (due to mineralization of organic waste N ) are the initial 

reasons of soil structural breakdown by dispersion of soil colloids (Haynes and Naidu, 

1998). The phosphorus loss from manure applied soils can deteriorate the water quality of 

streams (Sharpley, Chapra, et al., 1994). Therefore, an optimum rate of manure 

application is very important. 

The type and amount of bedding material, time of accumulation, water amount 

and quality, location in the storage and length of storage before application are variables 

which can affect manure quality at the time of application (Sharpley, Chapra, et al., 1994) 

and can result in a wide range of manure nutrient concentration (Edwards and Daniel, 

1992). Over application of nutrients might create a harmful situation. For instance, it has 

been reported that high P inputs can impair the quality of water bodies (Sharpley, Chapra, 

et al., 1994). Due to a wide variation of nutrient concentrations, the application rates 

should be based on manure analysis (Igo, Sims, et al., 1991) and it is recommended that 

the P and N content in the soil should also be examined as soon as possible before 

application of manure to the soils (Sharpley, Chapra, et al., 1994). To maximize 
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application of organic material and minimize environmental risk, the optimum amount of 

manure is important to be used (Asada, Yabushita, et al., 2012).  

 Application of organic manure to soils at recommended rates to supply nutrients 

is a traditional agricultural practice (Haynes and Naidu, 1998) and beneficial for soil 

physical properties (Low, 1954). Nutrient content of manure is important in calculating 

land application rates and determining treatment techniques. The characteristics to 

determine manure application rates suggested that manure application rates should be 

based on P or N (Sharpley, Chapra, et al., 1994). Since the N ratio to P in the manure is 

much lower than in grain, this can lead to over application of P because more P will be 

applied than is needed by the crop and also N/P ratio of manure is lower than crop 

requirements. There is a need to comply with the South Dakota Department of 

Environment and Natural Resources (DENR) rules (February, 2003) pertaining to manure 

application rates that are based on nitrogen and phosphorus (Gelderman, Gerwing, et al., 

2006). Manure application is dependent on crop nutrient needed, available soil nutrients 

and manure nutrient contents. Therefore, it can be summarized that application of manure 

should be at recommended rates and nutrient based according to analysis of soil and 

manure under consideration of yield and environmental risks. 

 

2.2. Inorganic Fertilizer Application in Soils 

 Mineral fertilizers are used to manage nutrient concentration in the soil for 

enhancing the crop production. These inorganic fertilizers in the long-term increase the 

crop yield which is associated with the increase in SOM and soil biological activities 

(Haynes and Naidu, 1998). Addition of P as an inorganic fertilizer, sometimes increase 
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the water holding capacity, develops soil physical structure and increases the crop 

production (Lutz, Pinto, et al., 1966), however, it does not always produce reliable 

economic returns (Yeoh and Oades, 1981). Applications of inorganic fertilizer including 

Na+ which favor the dispersion of soil colloids (Haynes and Naidu, 1998). Inorganic 

fertilizer can contribute to negative effects such as lowering the soil pH and soil moisture, 

and increasing the accumulated NH4+ levels (Haynes and Naidu, 1998). Intensive 

mineral fertilization can be costly, and enhance the nitrate pollution and loss of carbon in 

the soil. In addition, inorganic fertilizers from agricultural lands might be negatively 

impacting the human health (Campbell and Campbell, 2005). Therefore, there is strong 

need to explore for alternatives or application of these fertilizers in the right amount 

without negatively impacting the soils and the environment. 

 

2.3. Manure and Inorganic Fertilizer Impacts on Soils 

2.3.1. Soil Organic Matter (SOM) 

 Globally, over the last 160 years, there has been a wide area of research 

examining the influences of fertility practices on SOC because changes in SOC needs 

long duration of years to be detectable (Ludwig, Geisseler, et al., 2011). Organic matter is 

a major parameter to crop growth and productivity not only directly by providing 

nutrients but also indirectly by modifying soil properties (Darwish, Persaud, et al., 1995, 

Ding, Han, et al., 2012, Lal, Follett, et al., 1999) and it eases global warming, delivers 

“win–win” advantages (Lal, 2004). For example, decline in SOM causes compaction, 

negatively impacts water holding properties, aggregation, porosity and hence contributes 
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to erosion  (Barik, 2011). Soil aggregate stability is strongly correlated with SOC (Celik, 

Gunal, et al., 2010, Mikha, Hergert, et al., 2015). It has been reported that SOC is also 

strongly related with soil physical properties (Hati, Swarup, et al., 2007), such as 

decreased soil compaction, stabilized soil structure and soil more resistant to erosion 

(Martınez and Zinck, 2004). Soil quality is an important perspective for sustainable 

agriculture (Lawal and Girei, 2013).  Livestock manure holds about 15% C content 

(Blanco-Canqui, Hergert, et al., 2015). Manure application and benefits to increase SOC 

and soil fertility is well documented (Miller, Sweetland, et al., 2002). Therefore, any 

nutrient management practice which can improve SOM in the complex and dynamic soil 

system is important. 

 Organic manure influences on SOC is well documented (Bottinelli, Menasseri‐

Aubry, et al., 2013, Mikha, Hergert, et al., 2015, Rasoulzadeh and Yaghoubi, 2014) under 

different soils and cropping systems (Agbede, Ojeniyi, et al., 2008, Barik, 2011, Ibrahim, 

Hassan, et al., 2011, Shirani, Hajabbasi, et al., 2002). Soil fertility strategies which can 

increase SOM assist to sustain crop productivity at higher levels (Bandyopadhyay, Misra, 

et al., 2010). However, the highest improvements in soil properties are associated with 

the addition of manure (Mellek, Dieckow, et al., 2010). The SOM amount accrued can 

differ significantly contingent to its decomposition rate (Haynes and Naidu, 1998). 

Inorganic fertilizers application does not directly increase SOC, indicating that by itself 

application of inorganic fertilizers is not a significant practice to influence SOC 

sequestration (Liang, Chen, et al., 2012). It is obvious, inorganic fertilizers are more 

commonly used soil fertility practice in comparison with manure in modern farming but 

it is not as effective as manure application in terms of increases in SOC level. 
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Consequently, comparison of inorganic fertilizer and organic manure is important for 

sustainable agriculture (Blanco-Canqui, Hergert, et al., 2015).  

 

2.3.2.  Soil Bulk Density and Soil Penetration Resistance 

 Soil bulk density is one of the soil properties that indicate the degree of soil 

compaction. For sustainable agricultural management to improve soil properties, soil 

resilience or resistance against compaction is important. Addition of the manure to 

croplands is an important management strategy to minimize soil degradation and 

increased soil productivity. Long-term manure practices can be strongly associated with 

changes in SOC and soil physical properties (Blanco-Canqui, Hergert, et al., 2015). 

Duration of manure addition is one of the controllers affecting manure impacts on soil 

properties (Sweeten and Mathers, 1985). Addition of manure has been reported to 

decrease bulk density associated with SOM (Celik, Ortas, et al., 2004, Hati, Mandal, et 

al., 2006, Hou, Wang, et al., 2012, Mandal, Chandran, et al., 2013, Shirani, Hajabbasi, et 

al., 2002), but it is also been reported insignificant changes in bulk density (Iordache and 

Borza, 2012), while long-term studies frequently indicate improvement in soil quality 

parameters (Blanco-Canqui, Hergert, et al., 2015). This highlights the need for long-term 

experiments to assess changes in soil parameters. The more rate and level of manure 

increase, the more decrease will be monitored in bulk density (Rasoulzadeh and 

Yaghoubi, 2014). 

 As it is for manure, inorganic fertilizer impacts on soil properties is also important 

(Blanco-Canqui, Hergert, et al., 2015). Inorganic fertilization does not significantly 

influence bulk density (Celik, Gunal, et al., 2010, Xin, Zhang, et al., 2016). Indeed, 
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inorganic fertilizers are more widely used than cattle manure in modern agriculture. 

Knowledge and comparison of the impacts of inorganic fertilizers and animal manure on 

soil properties are vital for the management of soil resources and long-term sustainability 

of cropping systems. Long-term experiments (>50 yr) of manure and N fertilizer 

applications can provide valuable information on the extent to which such applications 

can modify soil physical properties (Blanco-Canqui, Hergert, et al., 2015).  

 

2.3.3. Soil Aggregate Stability and Structure 

 Soil aggregation is vital in agriculture due to impacts on, plant growth and the 

environment; therefore, addition of organic substances perform important roles in 

improving soil properties (Celik, Gunal, et al., 2010). Decline in soil aggregates and 

hence in soil structure limit plant root growth (Darwish, Persaud, et al., 1995). It has been 

reported by many studies explain a strong correlations among soil aggregate stability, soil 

structure, SOM (Haynes and Naidu, 1998) and erosion (Tebrügge, 2003) indicated that 

SOC explains for 70 to 90% of the variability in stable aggregates (Bottinelli, 

Menasseri‐ Aubry, et al., 2013). Organic matter addition such as manure application has 

been monitored as improving soil aggregation and hence soil structure (Busari and 

Salako, 2015, Dunjana, Nyamugafata, et al., 2012, Kukal and Bawa, 2014, Leroy, Herath, 

et al., 2008, Liu, Li, et al., 2013, Wortmann and Shapiro, 2008). Addition of heavy 

manure application alters the soil redox circumstances by developing soil aggregation 

and structure and also produced the oxidizing and anoxic states in inter or intra aggregate 

pores (Asada, Yabushita, et al., 2012).  
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 On the other hand, mineral fertilizers do not significantly develop soil aggregate 

stability and structure (Khalid, Tuffour, et al., 2014). Inorganic fertilizer addition means 

only enriching nutrient availability in the soil, however, some problems appear related to 

the use as exclusive soil amendment source (Lawal and Girei, 2013). Phosphoric 

fertilizers and phosphoric acid can favor aggregation by the formation of Al or Ca 

phosphate binding agents whilst where fertilizer NH4+ accumulates in the soil at high 

concentrations, dispersion of clay colloids can be favored (Haynes and Naidu, 1998).  

 

2.3.4. Water Infiltration 

 Improved steady state infiltration rate which is significantly increased (P < 0.05) 

by fertility management compared with the control, contributes to greater absorption of 

rainfall and lower surface runoff (Dunjana, Nyamugafata, et al., 2014). Decreased soil 

compaction is highly associated with higher soil water infiltration and water-holding 

capacity (Dexter, 2004). Increases in SOM produce an increase in soil quality indicators 

like infiltration rate, water holding capacity, structure. (Rasoulzadeh and Yaghoubi, 

2014) stated that SOM is important for soil structural stability, aiding the infiltration of 

air and water, promoting water retention, and reducing erosion. 

  Organic amendments, such as manure, generally increase infiltration compared to 

control (without manure) (Busari and Salako, 2015, Miller, Beasley, et al., 2015). 

Organic wastes can improve soil hydraulic properties such as infiltration rate and 

hydraulic conductivity whereas, the inorganic fertilizer alone did not show any significant 

improvement (Khalid, Tuffour, et al., 2014). 
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2.3.5.  Water Retention and Pore Size Distribution 

 Soil water retention describes the relation between wetness and water potential of 

soil and has impacts on soil redox conditions (Asada, Yabushita, et al., 2012). Soil 

organic carbon has significant positive correlation with water retention at field capacity 

(Hati, Swarup, et al., 2007), total porosity, saturated hydraulic conductivity and hence 

bulk density (Fares, Abbas, et al., 2008). Soil compaction impacts have been monitored 

as decreasing macro porosity and water infiltration but also increase in bulk density, and 

soil strength (Dexter, 2004). Addition of organic amendments such as manure improves 

soil structure, water retention capacity (Bhagat and Verma, 1991, Hati, Mandal, et al., 

2006), pore size distribution, soil water transmission (Fares, Abbas, et al., 2008), 

aggregation, water-holding capacity, hydraulic conductivity, total porosity, resistance to 

water and erosion but decreases bulk density and compaction (Leroy, Herath, et al., 

2008). However, some reports state little or no effect on soil water retention (Miller, 

Sweetland, et al., 2002). Manure addition as a soil fertility practice reflects more benefits 

than chemical fertilizers due to manure potential to moderate soil physical condition such 

as improvement in water holding capacity, aeration, drainage, friability and microbial 

activities (Goladi and Agbenin, 1997). However, manure amount is associated with 

important differentiations in these parameters (Mellek, Dieckow, et al., 2010, Miller, 

Sweetland, et al., 2002). 

 Due to its impacts as increasing in biomass production and C input, N fertilization 

can positively influence soil water retention and compatibility (Blanco-Canqui, Hergert, 

et al., 2015). However, some studies show insignificant increases in any of the 

parameters by addition of inorganic fertilizers to soil (Khalid, Tuffour, et al., 2014). 



15 
 

 
 

 

2.4.  Manure and Inorganic Fertilizer Impacts on Soil Surface GHGs 

Greenhouse gas (GHG) emissions play an important role to global warming, 

stratospheric ozone depletion and also regulate the earth’s atmospheric temperature and 

altered precipitation regimes (Rafique, Kumar, et al., 2014). Agricultural activities add 

importance to global GHG emissions, namely carbon dioxide (CO2), methane (CH4), 

nitrous oxide (N2O) and ammonia (NH3), which are the main GHG which cause global 

warming (Houghton, Ding, et al., 2001). Concentrations of the three most important long-

lived greenhouse gases, CO2, CH4 and N2O  have increased dramatically over the past 

255 years in the atmosphere (Marble, Prior, et al., 2011). Concerns about the global 

warming and dependence on foreign fossil fuels in the United States, which is second 

highest worldwide GHGs emitter where China is first (Kumar, Nakajima, et al., 2014), 

triggered a search for more sustainable sources of energy (Marble, Prior, et al., 2011). It 

is essential to assess GHG emissions at chronological and spatial scales to intend the way 

to decrease environmental degradation (Liang, Lal, et al., 2013). There is growing 

interest such as GRACE net in decreasing the potential threat of global warming and 

enhance soil carbon sequestration by decline of GHG release into the atmosphere (Moss, 

Jouany, et al., 2000) without reducing the economic viability of initiatives (Sejian, Lal, et 

al., 2011). 

Multiple studies observed major differences in GHGs in the summer period due to 

drought conditions, reduced precipitation and higher temperatures. The water-filled pore 

space (WFPS) in soil determines by precipitation impacts GHG fluxes and the soil 

aeration. Complex interactions in soil C, drainage, moisture, returned C, gas diffusivity, 
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temperature, and soil biological activity impacts GHG (Dijkstra, Prior, et al., 2012, 

Wagle and Kakani, 2014). Rising atmospheric GHGs add an increase to the atmospheric 

temperature and hence global warming (Newsroom, 2006). The relief and differentiation 

in CO2 and CH4 from small amount of carbon due to SOM produce pertinent atmospheric 

GHGs variability because SOM has more organic carbon than is in the atmosphere and 

global flora (Lehmann and Kleber, 2015). Therefore, agricultural management impacts 

GHG emission (Poch, Hopmans, et al., 2006) due to SOC concentration (Osher, Matson, 

et al., 2003). Nitrate increase rates of denitrification processes under anaerobic conditions 

(Myrold, 1998). Soil organic carbon serves as substrate to soil microorganisms that 

generate CO2 in aerobic conditions (Davidson, Verchot, et al., 2000). Higher WFPS and 

lower porosity reduce aerobic conditions and restrict CO2 diffusivity and microbial 

access to substrate (Beare, Gregorich, et al., 2009). The combination of lower SOC, 

lower porosity, high bulk density, and higher WFPS resulted in lower CO2 fluxes in the 

shoulder compared to the foot slope during the growing season (Mbonimpa, Hong, et al., 

2015). 

 It has been reported that fertilization (N and P) has mixed effects on soil surface 

GHGs emissions. Soil surface GHG (CH4, N2O and CO2) emissions from soils are 

sensitive to climate change and land management practices (Rafique, Kumar, et al., 

2014). Soil CH4 fluxes are a result of microbial processes which exhibit two behaviors; 

uptake and release (Mbonimpa, Hong, et al., 2015). Both methanogens and CH4-

oxidizing bacteria are present in solid manure (Sejian, Samal, et al., 2015). The CH4 is 

oxidized mainly by aerobic bacteria (Sejian, Samal, et al., 2015). Methanogens occur 

only under strict anaerobic conditions where it is coupled to other processes involved in 



17 
 

 
 

the breakdown of manure organic matter (Sejian, Samal, et al., 2015). Principal factors 

affecting CH4 emissions from manure are the amount of manure produced and the portion 

of the manure that decomposes anaerobically (Mbonimpa, Hong, et al., 2015). The soil 

surface N2O emissions are the major contributor to the global agricultural emissions (Li, 

Watson, et al., 2013). Globally, manure production and use contribute more N2O to the 

atmosphere than synthetic fertilizer N (Li, Watson, et al., 2013). However, to meet the 

nutritional needs of a growing human population, more N inputs to agriculture are likely 

needed for enhancing the productivity (Li, Watson, et al., 2013). The use of N fertilizers 

and animal manures are the main anthropogenic sources, estimated at about 24% of 

annual N2O emissions (Kim, Rafique, et al., 2014). It has been suggested that N fertilizer 

use, land use and its management, and climate are the major controlling factors of N2O 

emissions from agricultural lands (Kim, Rafique, et al., 2014). Increases in N2O 

concentrations add to the greenhouse effect and ozone depletion (Kim, Rafique, et al., 

2014). In a 100-year time horizon, the global warming potential of N2O is 298 times than 

that of carbon dioxide (CO2) and 12 times that of methane (CH4) (Kim, Rafique, et al., 

2014). Almost 90% of global N2O emissions are a result of the microbial processes of 

nitrification and denitrification of nitrogen (N) compounds in soils (Li, Watson, et al., 

2013). Nitrification does not occur under anaerobic conditions (Sejian, Samal, et al., 

2015). Denitrification is transformation of nitrites and nitrates to N2O and dinitrogen (N2) 

(Li, Watson, et al., 2013). Soil with a history of manure application had a much higher 

propensity for N2O production than does non-manured soil (Graham, van Es, et al., 

2013). In summary, the production and emission of N2O from managed manures require 

the presence of either nitrites or nitrates in an anaerobic environment preceded by aerobic 
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conditions necessary for the formation of these oxidized forms of N (Sejian, Samal, et al., 

2015). 

 Carbon dioxide is lost from agricultural soils by respiration and decomposition of 

soil organic matter (Rafique, Kumar, et al., 2014). Soil CO2 fluxes are generated from 

autotrophic metabolism of plant roots and associated mycorrhizae, and heterotrophic 

respiration from soil organisms (Mbonimpa, Hong, et al., 2015). Soil organic carbon 

serves as substrate to soil microorganisms that generate CO2 in aerobic conditions 

(Mbonimpa, Hong, et al., 2015). Carbon dioxide emissions per unit product were the least 

contributor to GHG emission (Sejian, Rotz, et al., 2011). While CO2 receives the most 

attention as a factor relative to global warming, the CH4 and N2O also cause significant 

radiative forcing (Sejian, Lal, et al., 2011). Variations in climatic factors strongly affect 

the GHG balance in agricultural systems (Rafique, Kumar, et al., 2014). The GHGs 

fluxes increase by reduced precipitation and increased temperatures (Mbonimpa, Hong, et 

al., 2015). Precipitation determines the water filled pore space (WFPS) in soil which 

impacts GHG fluxes by influencing the oxygen status of the soil (Rafique, Kumar, et al., 

2014). Agricultural GHG emissions are complex and heterogeneous due to the combined 

effect of meteorological drivers as well as land management and soil properties 

(Mbonimpa, Hong, et al., 2015). Not only it is necessary to reduce GHGs emissions but 

also it is needed to return the GHGs to the soil and sustain normal condition of the nature. 

This might be possible with management practices because soil and land management 

practices influence the organic carbon (SOC) content of the soils, and hence influence the 

GHG emissions (Kumar, Nakajima, et al., 2014). Improved livestock and grassland 

management, and soil nutrient management can be strategies to deliver on both 
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mitigation and improved local livelihoods, and create further resilience to climate change 

(Bennetzen, Smith, et al., 2016). However, uncertainty still remains about overall 

implications of fertilization rate, climate and soil conditions on GHG emissions 

(Mbonimpa, Hong, et al., 2015). Its effective biomass productivity and carbon (C) 

sequestration potential are also believed to reduce greenhouse gases (GHGs) (Mbonimpa, 

Hong, et al., 2015). The nature of the N cycle and its interaction with the C cycle 

demands a holistic approach for addressing gaseous emissions and mitigation research by 

developing suitable abatement strategies for manure management (Sejian, Samal, et al., 

2015).  
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CHAPTER 3 

LONG-TERM ANNUAL LIVESTOCK MANURE APPLICATION IMPACTS ON 

SELECTED SOIL QUALITY INDICATORS UNDER A CORN-SOYBEAN 

ROTATION IN SOUTH DAKOTA 

 

ABSTRACT 

 

 Manure can be used to enhance soil fertility and crop yield. However, an optimum 

rate of manure application is very important to avoid any environmental impacts. This 

study was conducted to assess the long-term impacts of manure and inorganic fertilizer 

rates on some of the soil quality indicators such as SOC, total nitrogen (TN), aggregate 

stability, pH and electrical conductivity (EC) under corn (Zea mays L.)-soybean (Glycine 

max L.) rotation system at two sites of South Dakota. Study treatments included: three 

manure [phosphorus based recommended manure application rate (P), nitrogen-based 

recommended manure application rate (N), nitrogen-based double of recommended 

manure application rate (2N)], two fertilizers [recommended fertilizer (F) and high 

fertilizer (HF)], and a control (CK) with no manure application]. Soil samples were 

extracted in 4 replicates from 0-10, 10-20, 20-30 and 30-40 cm depths in 2015 to analyze 

selected soil quality indicators. Results showed that manure maintained (no impact) the 

soil pH for 0-10 cm depth, whereas, inorganic fertilizer decreased it compared to the 

control treatment at either site. Further, manure (2N) significantly increased SOC for 

every studied depth increment from 0-40 cm compared to that of inorganic fertilizer at 

either site. A similar trend was observed for the TN but differeneces were not always 

signifcant. Manure (6.95) significantly increased pH by 6.6 and 23% compared to that of 

fertilizer (6.52) for the 0-10 cm depth at Brookings and Beresford, respectively, sites. 
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Manure increased EC (1556 µs cm-1) by 120% compared to fertilizer (708 µS cm-1) for 0-

10 cm depth. On average, manure significantly increased WAS by 7.2 and 5.6% 

compared to that of fertilizer for the 0-10 cm depth for Brookings and Beresford, 

respectively, sites. Data from this study concluded that manure improved soil properties 

compared to that of inorganic fertilizer, however, further research is needed to monitor 

the water quality and environmental impacts associated with different rates of manure 

application. 

Keywords: Manure, inorganic fertilizer, corn-soybean rotation, soil organic carbon, total 

nitrogen, pH, and EC. 

 

INTRODUCTION 

Soil quality reflects the living and dynamic nature of the soil (Karlen, Mausbach, 

et al., 1997, Shukla, Lal, et al., 2006), and the concept of soil quality addresses biological, 

chemical and physical components that are important in sustaining biological 

productivity, environmental quality and plant and animal health (Karlen, Mausbach, et 

al., 1997, Reeves, 1997, Shukla, Lal, et al., 2006). Soil quality parameters are altered by 

various soils and crop management practices and thus used to evaluate the effects of 

alternative management systems, soil amendments such as animal manure, inorganic 

fertilizers, on soils and crop production. Soil is the largest terrestrial organic carbon pool 

(Stockmann, Adams, et al., 2013). Soil organic carbon is the major soil quality indicator 

which strongly impacts physical, chemical and biological properties of soils, therefore, 

this parameter is the most studied attribute for long-term research (Shukla, Lal, et al., 

2006, Stockmann, Adams, et al., 2013). The SOC is the energy source for various soil 
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microbial activities and chemical processes (Reeves, 1997). There are various other soil 

quality indicators such as plant available water capacity, infiltration rate, aggregate 

formation and stability, bulk density and soil strength that are also associated with the 

SOC (Franzluebbers, 2002). Soil amendments such as manures and inorganic fertilizer 

impact soils and crop yield by impacting the carbon concentration in the soil (Reeves, 

1997). Organic manure which originated from livestock is very helpful to improve soil 

productivity and quality, and also challenges soil degradation by improving soil nutrients 

especially SOC in the agricultural fields (Domingo-Olivé, Bosch-Serra, et al., 2016, 

Jones, Panagos, et al., 2012). Manure is an available source of organic nutrient in 

considerable amounts to enrich SOM (Dunjana, Nyamugafata, et al., 2012, Zingore, 

Delve, et al., 2008). The application of manure as soil amendment can improve soil 

properties and provide various additional benefits to enrich soil quality and crop 

productivity (Lal, 2006).  

The application of manure is one of the organic practices for enhancing the crop 

yield and improving soil quality. The application of inorganic fertilizer also impacts soils 

and crop productivity. However, long-term application of inorganic fertilizer may not 

keep SOC content sustainable in the soil (Hati, Swarup, et al., 2008). The NH4
+ 

concentration of N fertilizers and role of dispersing organic agents by moving into the 

soil aggregates and colloids might be a possible reason of reduction for aggregate 

stability (Haynes and Naidu, 1998). The addition of chemical fertilizers can impact soil 

physical properties (Bronick and Lal, 2005). Eghball (2002) reported that application of 

inorganic fertilizer reduced the pH of the soil. A review study conducted by Guo, Liu, et 
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al. (2010) also reported that plots received inorganic fertilizer decreased the soil pH 

compared to manure application at the top soil depth. 

Manure management practices based on nutrient contents are significant to 

improve productivity in the agroecosystems and benefit economically and 

environmentally. Therefore, we hypothesized that different application of manure rates 

and inorganic fertilizer rates based on phosphorous (P) and nitrogen (N) concentrations 

could improve soil quality indicators. Therefore, the specific objective of this study was 

to assess the impacts of manure and inorganic fertilizer applications on selected soil 

quality indicators in the long-term corn-soybean rotation at two different locations of 

South Dakota. 

 

MATERIALS AND METHODS 

Sites Description  

 The experimental sites were located at two different locations; Beresford and 

Brookings in South Dakota. The Brookings site was established in 2008 (7-yr) at South 

Dakota State University Felt Research Farm near Brookings (44o 22’ 07.15” N and 96o 

47’ 26.45” W) on well drained silty loam Vienna soil (Fine-loamy, mixed, frigid Udic 

Haploborolls). The Beresford site was initiated in 2003 (12-yr) near Beresford (43o 02’ 

33.46” N and 96o 53’ 55.78” W) at the Southeast Research Farm of the South Dakota 

State University in Clay County on silty loam Egan soil (Fine-silty, mixed, mesic Udic 

Haplustolls). These sites were initiated to study the effect of manure and mineral fertilizer 

application rates on crop production and soil properties. The plots at Beresford site were 

established in nearly flat areas with the slope and elevation of <1%, and 390 m, 
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respectively. This site was characterized by a humid continental climate having relatively 

humid summers and cold, snowy winters with a mean annual air temperature of -13.6°C 

in the winter and 29.5°C in the summer, respectively. The mean annual precipitation was 

about 678 mm. The plots at Brookings site are nearly flat with the slope of <1% and 

elevation of this site were 518 m, and this site was characterized by a humid continental 

climate having relatively humid summers and cold, snowy winters with a mean annual air 

temperature of -15.8°C in the winter and 27.8°C in the summer, respectively. The mean 

annual precipitation was about 637 mm.  

 

Study Treatments 

The experiment had three manure application rates; recommended phosphorus-

based manure (P), recommended nitrogen-based manure (N), and two times of 

recommended nitrogen-based manure (2N), and two different fertilizer application rates; 

recommended fertilizer (F), high fertilizer application (HF), and control (CK). The 

cropping sequence was corn (Zea mays L.)- soybean (Glycine max L.) rotation system for 

each location. There are total 24 plots at either site, and all the treatments are laid out in a 

randomized complete block design with four replicates. The dimensions of each plot are 

4.6 m (wide) by 20 m (length) in size at Beresford, and 6 m by 18 m at Brookings. 

The manure was applied in the spring in a manual application and incorporated by 

disk at 6-cm deep for 1 to 3 days before planting at either site. Manure of the study was 

analyzed by South Dakota Agricultural Laboratories. Fertilizer treatments for 179.3 kg 

ha-1 yield goal for corn and 44.8 kg ha-1 for soybean were used for both the sites; 

however, no nutrient recommendation of fertilizer for soybean was used. Dairy manure 
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with 31.5% moisture and beef manure with 21.9% moisture for Brookings and Beresford 

sites, respectively, were used in this study. Dairy manure contained 6 g kg-1 total 

nitrogen, 2.7 g kg-1 NH4-N, 3.3 g kg-1 Organic-N, 3.2 g kg-1 available N, 2.5 g kg-1 P2O5 

and 4.2 g kg-1 K2O concentrations. Beef manure contained 10.6 g kg-1 total nitrogen, 1.3 

g kg-1 NH4-N, 9.3 g kg-1 Organic-N, 5.6 g kg-1 available nitrogen, 8.5 g kg-1 P2O5 and 9.9 

g kg-1 concentrations. Annually, P-based recommended rate of manure treatment include 

N (90 kg ha-1)-P (30 kg ha-1)-K (39 kg ha-1) where N-based recommended manure rate 

included N (131 kg ha-1)-P (56 kg ha-1)-K (93 kg ha-1), two times N-based recommended 

manure rate N (261 kg ha-1)-P (111 kg ha-1)-K (187 kg ha-1) at Brookings site. Beresford 

site included N (51 kg ha-1)-P (52 kg ha-1)-K (82 kg ha-1) for P treatment, N (122 kg ha-1)-

P (111 kg ha-1)-K (155 kg ha-1) for N treatment and N (243 kg ha-1)-P (222 kg ha-1)-K 

(310 kg ha-1) for 2N treatment.  On the other hand, F (inorganic fertilizer) treatment 

included N (41 kg ha-1)-P (19 kg ha-1)-K (23 kg ha-1) and HF included N (75 kg ha-1)-P 

(60 kg ha-1)-K (71 kg ha-1)-Zinc (7 kg ha-1)-S (25 kg ha-1) at the Brookings site, wheras, F 

included N (43 kg ha-1)-P (16 kg ha-1)-K (4 kg ha-1) and HF included N (85 kg ha-1)-P (46 

kg ha-1)-K (39 kg ha-1)-Zinc (6 kg ha-1)-S (25 kg ha-1) for Beresford site from 2003 to 

2015.  

 

Soil Sampling and Analysis 

Soil samples were collected from 0-10, 10-20, 20-30, and 30-40 cm depths at 

either site using a push probe auger in summer of 2015. A total of 4 replicated samples 

per plot were collected, and these soil samples were composited for each plot and sieved 

and passed through 2 mm sieve pending analysis.  



32 
 

 
 

Wet aggregate stability of the soil for the 0-10 and 10-20 cm depths was measured 

using the procedure of Kemper and Rosenau (1986). Soil samples were sieved to obtain 

1-2 mm aggregates and air-dried aggregates were pre-moistened to saturation in a 

vaporization chamber and placed on a 0.25 mm screen. Soil samples were immersed in 

deionized water for 3 minutes and then subjected to an oscillating movement in water for 

3 minutes in an apparatus designed according to specifications outlined in Kemper and 

Rosenau (1986). Wet stable aggregates for 0-10 and 10-20 cm depths were described as 

the percentage of stable aggregates retained on the screen compared to the initial sample 

mass corrected for air-dry moisture and sand content.  

The pH of the soil is a measure of the concentration of the hydrogen ion (H+) 

concentrations. Soil pH was determined using a suspension sample with soil (air-dried) to 

the water (soil: water) ratio of 1:1 procedure, and measured with an Orion star pH and EC 

meter. Electrical conductivity (EC) was measured with 1:2 of soil: water ratio using 

electronic pH and EC meter. The method outlined by Stetson, Osborne, et al. (2012) was 

used to determine carbon (C) and nitrogen (N) concentrations after removing visible crop 

residues and sieved through a 0.5 mm. Total C (TC) and nitrogen (TN) were analyzed by 

combustion using a Tru-Spec-CHN analyzer (LECO Corporation, St. Joseph, MI). Soil 

inorganic carbon (SIC) was measured using 1M 10 ml of HCI addition to the one gram of 

the 0.5 mm sieved soil samples. The loss of the weight from the initial weight of the total 

was given as SIC. Soil organic carbon (SOC) was calculated by subtracting SIC from TC 

and expressed in g kg-1. 
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Statistical Analysis  

A statistical test was performed to determine the impacts of treatments on soil 

properties under different levels of manure and inorganic fertilizer applications. An 

estimate for the least significant difference (Duncan’s LSD) among treatments was 

obtained using the Mixed procedure in SAS 9.3 (Institute, 2012). Treatments were 

considered as fixed effects and replications as random effect. The differences among 

treatments were calculated at the significant level of α  0.05. 

 

RESULTS AND DISCUSSION 

Soil pH and EC 

Soil pH and EC data for 0-10, 10-20, 20-30 and 30-40 cm depth under all the 

treatments for Brookings and Beresford sites are shown in Table 1. Treatments 

significantly impacted the soil pH only at 0-10 cm depth for either site. Soil pH was not 

significantly influenced by the treatments at either site beyond 10 cm depth. It was also 

significantly different for Manure vs. Fertilizer contrast only for 0-10 cm depth. Soil pH 

ranged from 6.38 to 7.61 at Brookings and 5.51 to 6.97 at Beresford site and was slightly 

lower at the Beresford compared to that of Brookings site. Data showed that the plots 

received 2N manure application rate had the highest pH and those received HF treatment 

had the lowest pH at the 0-10 cm depth for Brookings site. A similar trend was observed 

for the Beresford site. The 2N treatment (7.05) increased the soil pH by 5.9 and 10.5%, 

respectively, compared to F (6.66) and HF (6.38) treatments at Brookings. Similarly, the 

2N treatment increased pH by 22 and 27% compared to F and HF at Beresford site. The 
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plots received F treatment had a greater pH compared to the plots those received HF at 

Brookings site. The HF treatment had significantly lower pH compared to all other 

treatments at either site. On an average, manure (6.95) significantly increased pH by 6.6 

and 23% compared to that of fertilizer (6.52) for the 0-10 cm depth at Brookings and 

Beresford, respectively, sites. Significant differences on soil pH due to manure and 

inorganic fertilizer treatments were not observed beyond 10 cm depth at either site. 

Data from this study showed that manure application for longer duration 

increased the pH at the surface 0-10 cm depth. However, manure did not impact the pH 

beyond 10 cm depth, indicating that manure maintained the pH of the soil beyond 10 cm 

depth. In general, fertilizer decreased the soil pH. Eghball (2002) reported that manure 

maintained the soil pH, and fertilizer lowered it from an experiment that includes crop 

yield goal depended on manure, compost and fertilizer application to a silty loam textured 

soil in Nebraska. A review study conducted by Guo, Liu, et al. (2010) reported that plots 

received inorganic fertilizer application for 20 years in 7 locations, and those received for 

25 years in 8 locations in China decreased the soil pH compared to manure application at 

the top soil depth. Similarly, Liang, Chen, et al. (2012) reported that soil pH decreased in 

the 0-20 cm depth with the application of inorganic fertilizer for 15 years compared to 

manure under winter wheat-summer maize crop rotation on a silty loam textured soil in 

China. Various researchers (e.g., Guo, Liu, et al., 2010, Liang, Chen, et al., 2012, Wang 

and Yang, 2003) reported that the decrease in soil pH could be attributed to the H- release 

by roots and nitrification and acidification processes stimulated by continuous application 

of inorganic fertilizer for a longer duration. Manure impacts on soil pH depend on 

sources of manure and characteristics of complex and dynamic soil system (Liang, Chen, 
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et al., 2012). Manure contains various constituents such as organic acids, carbonates, 

bicarbonates and large amounts of soluble nutrients (Salter and Schollenberger, 1939). 

Manure decreases the pH because of the organic acid present in the manure and increases 

the pH because of the presence of carbonates and bicarbonates, and carboxyl and 

phenolic hydroxyl (Liang, Chen, et al., 2012).  

The data reported that treatments significantly impacted the EC at all the soil 

depths under either site (Table 2). The higher manure rate (2N) significantly increased the 

EC compared to all other treatments for 0-10, 10-20, 20-30 and 30-40 cm depths at 

Brookings site. The highest EC was observed under 2N treatment (2010 µS/cm) which 

was significantly higher than N (1508 µS/cm) by 33%, P (1149 µS/cm) by 75%,  F (754 

µS/cm) by 167%, HF (662 µS/cm) by 204%  and CK (719 µS/cm) by 180% at the 0-10 

cm depth for Brookings. Similar trends were observed for Beresford site. Significant 

differences were observed for contrast Manure vs. Fertilizer at all the soil depths under 

both the sites. On an average, manure treatments significantly increased EC by 120, 50, 

34 and 19% compared to fertilizer treatments in the 0-10 (1556 vs. 708 µS/cm), 10-20 

(880 vs. 587 µS/cm), 20-30 (861 vs. 641 µS/cm), and 30-40 (827 vs. 694 µS/cm) cm 

depths at Brookings, respectively. A similar trend was alsoobserved at the Beresford site. 

In addition, EC was significant for the contrasts P vs. 2N at 0-10, 10-20, 20-30 and 30-40 

cm depths for either site.  

A study conducted by Eigenberg, Doran, et al. (2002) reported that plots received 

higher manure application on Crete silty loam soil under irrigated field of silage corn and 

winter cover crop in Nebraska, increased the soil EC compared to lower manure and 

compost treatments. Similarly, Eghball (2002) reported that increasing manure rate also 
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increased the soil EC with the application of P and N-based manure compare to compost 

application under continuous corn crop on a clay loam textured soil in Nebraska.  

Soil Organic Carbon 

Data for SOC concentrations (g kg-1) under different manure and inorganic 

fertilizer application rates for Brookings and Beresford sites in the 0-10,10-20, 20-30, and 

30-40 cm depths are shown in Figure 1. Data showed that treatments significantly 

impacted the SOC for all the soil depths for either site. Additionally, SOC was also 

significant for the contrasts P vs. 2N and Manure vs. Fertilizer for all soil depths, except 

at 10-20 cm depth for Manure vs. Fertilizer at Brookings. The highest SOC 

concentrations were observed under 2N manure application (38.3 g kg-1) treatment which 

was significantly higher than N (24%; 30.9 g kg-1), P (39% higher; 27.6 g kg-1), F 

fertilizer application (60% higher; 24.0 g kg-1), HF fertilizer (48% higher; 25.8 g kg-1) 

and CK (64% higher; 23.3 g kg-1) treatments at the 0-10 cm depth (Table 2). Similar 

trends were observed for other depths of Brookings and Beresford site. Averaged across 

all the manure treatments, manure (32.3 g kg-1 and 28.6 g kg-1) significantly increased 

SOC by 29 and 25% compared to that of fertilizer (24.9 g kg-1 and 22.9 g kg-1) for the 0-

10 cm depth at Brookings and Beresford, respectively, sites. Similar trend was observed 

for other depths. 

 Liang, Chen, et al. (2012) showed that farmyard manure application for 15 years 

increased SOC by 56.2, 46.3, and 14% higher for 0-10, 10-20, and 20-30 cm depths, 

respectively, compared to control (without any application) on a silty loam textured soil 

under winter wheat-summer maize rotation under a semi-humid climate in China. 

Similarly, Xin, Zhang, et al. (2016) also reported that SOC contents under manure 
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application under annual rotation of winter wheat-summer maize for 23 years were 138% 

higher compared to mineral fertilizer and compost manure application on a sandy loam 

textured soil. In addition, Barik (2011) reported from a greenhouse study with different 

rates of barnyard manure and sugar beet pulp for six months that higher application of 

manure statistically (P<0.01) increased the SOM. In addition, the higher application rate 

of manure produced the higher SOM content (Barik, 2011).  

 Bandyopadhyay, Misra, et al. (2010) reported that fertilizer did not impact SOC 

on a clay texture soil under a soybean-wheat rotation in a hot sub-humid climate in India. 

Celik, Gunal, et al. (2010) studied the impacts of manure and fertilizer application in 

winter wheat and corn rotation on a clay-loam soil in Mediterranean climate in Turkey 

for 13 years and reported that the application of manure increases SOC compared to 

fertilizer treatments. Similar findings were also reported by Shirani, Hajabbasi, et al. 

(2002) on silty clay loam soil under corn in Iran. Hati, Mandal, et al. (2006) from a study 

that included farmyard manure and inorganic fertilizer application on a deep heavy clay 

soil under soybean and a hot sub-humid climate in India reported that SOC increased for 

0-15 cm depth from an initial level which was 41% higher than that of fertilizer 

application. Dunjana, Nyamugafata, et al. (2012) reported that cattle manure and 

inorganic fertilizer applied on clay and sandy soils under corn, groundnut, sweet potato 

and sunflower under a sub-tropical climate in Zimbabwe for seven consecutive years 

lower SOC concentration in the soil under organic and high inorganic fertilizer 

applications. In general, manure application increases SOC compared to inorganic 

(chemical) fertilizer and hence enhances the crop growth due to leaf shedding and higher 
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root biomass production (Bandyopadhyay, Misra, et al., 2010, Hati, Mandal, et al., 2006, 

Xin, Zhang, et al., 2016). 

 

Total Soil Nitrogen 

Total nitrogen (TN; g kg-1) data for 0-10, 10-20, 20-30 and 30-40 cm depths under 

all the treatments for Brookings and Beresford sites are presented in Table 3. Data 

showed that treatments significantly impacted total soil N (TN) at 0-10 cm (P<0.0008) 

and 30-40 cm depth (P<0.05) for Brookings site, at 0-10 cm (P<0.0001) and 10-20 cm 

(P<0.05) depths for Beresford site. However, TN data showed non-significant impact by 

the treatments for 10-20 and 20-30 cm depths at Brookings and beyond 20 cm depth at 

Beresford site (Table 3). Additionally, TN was also significantly different for contrasts P 

vs. 2N and Manure vs. Fertilizer for 0-10 cm depth for Brookings site, and 0-10 and 10-

20 cm (only Manure vs. Fertilizer) depth for Beresford site. The range of TN was from 

0.11 g kg-1 to 3.45 g kg-1 at Brookings and 1.23 g kg-1 to 3.17 g kg-1 at Beresford site. 

Plots under 2N treatment had the highest TN concentrations, whereas, those under control 

had the lowest at 0-10 cm depth for Brookings site. The similar trend was observed for 0-

10 cm and 10-20 cm depths for Beresford site. The soil under application of 2N treatment 

(3.45 g kg-1) was represented as the highest increased value, which is 50% higher than F 

(2.30 g kg-1) and 31% higher than HF (2.63 g kg-1) treatments at 0-10 cm depth in 

Brookings. Similarly, plots those received 2N manure rate increased TN (3.17 g kg-1) 

content by 42% higher than F (2.23 g kg-1) and 43% higher than HF (2.22 g kg-1) at 0-10 

cm depth for Beresford site. Also, TN for 10-20 cm depth for Beresford under 2N 

treatment was 2.17 g kg-1 which was 14% higher than F (1.91 g kg-1) and 14% than HF 
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(1.92 g kg-1). Higher manure application rate increased the TN in comparison to lower 

rates of manure at either site. On an average, manure treatments significantly increased 

TN content by 19 and 27% compared to fertilizer treatments for the 0-10 cm depth at 

Brookings and Beresford. In addition, manure (2.06 g kg-1) significantly increased TN 

content by 7% in comparison with fertilizer (1.92 g kg-1) at 10-20 cm depth for Beresford 

site. Data from this study showed that manure application for longer duration increased 

the TN content at the 0-10 and 10-20 cm depths; however, manure did not impact the TN 

beyond 20 cm depth. 

A study conducted by Liang, Chen, et al. (2012) on silty loam soil under wheat 

and corn rotation and semi-humid climate in China for 15 years reported that soil fertility 

practices significantly impacted the TN content; manure increased the TN contents by 

43.9% (0-10 cm) and 29.1% (10-20 cm) compared to that of control (no manure 

application). A similar finding was observed in our study for both the study locations. 

Similarly, Blair, Faulkner, et al. (2006) from the Broad balk Wheat Experiment in UK 

established in 1849 studied the farmyard manure, inorganic fertilizer and wheat straw 

applications on an Aquic/Typic Paleudalf for wheat crop under a cool temperate 

climate, and reported that manure increased TN contents by 151% compared to that of 

control, whereas, inorganic fertilizer did not impact TN contents. Liang, Chen, et al. 

(2012) concluded that inorganic fertilizer did not impact TN contents compared to that of 

control. This may be partially attributed to the fact that a part of applied mineral N lost 

because of ammonia volatilization (44.1% of applied N), leaching (14.8%), and 

denitrification (4.4%) as documented by Ju, Xing, et al. (2009) in the wheat-maize 

cropping systems on the North China Plain. In contrast, manure increases TN due to the 
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slow release of N which reduces the N losses, and higher biological N-sequestration 

stimulated by the manure (Kundu, Bhattacharyya, et al., 2007).  

 

Wet Aggregate Stability 

Wet aggregate stability (WAS, %) data for 0-10 and 10-20 cm depths under 

treatments for Brookings and Beresford sites are shown in Table 4. Treatments 

significantly impacted the WAS at 0-10 depth for Brookings and Beresford site. The 

WAS was not significantly influenced by the treatments beyond 10 cm depth at either 

site. The WAS was also significantly different for P vs. 2N contrast at 0-10 cm depth for 

either site whereas Manure vs. Fertilizer contrast for 0-10 cm depth in Brookings and for 

0-10 and 10-20 cm depths in Beresford site was significant (Table 4). Wet aggregate 

stability ranged from 84.6 to 98.6% at Brookings and 88.9 to 96.7% at Beresford site. 

Data showed that the plots received 2N manure application rate had the highest (98.6%) 

WAS and those received HF treatment had the lowest (87.39%) WAS at the 0-10 cm 

depth for Brookings site. Similar trends of WAS were observed for both depths at both 

sites.  

The 2N treatment increased WAS by 11 and 13%, respectively, compared to F 

(89.2%) and HF (87.4%) treatments at 0-10 cm for Brookings. The plots received HF 

treatment decreased the WAS compared to the plots those received F at Brookings site. 

The HF treatment had significantly lower WAS results compared to all other treatments 

at either site. On an average, manure (94.7% and 94.3%) significantly impacted WAS by 

7.2 and 5.6% compared to that of fertilizer (88.3% and 89.3) for the 0-10 cm depth for 

Brookings and Beresford, respectively, sites. Data from this study showed that manure 
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application for longer duration increased the WAS at the surface 0-10 cm depth. 

However, manure did not impact the WAS beyond 10 cm depth for either site. 

 Aggregate stability helps in the development of soil structure, and the other soil 

physical properties (Celik, Gunal, et al., 2010, Xin, Zhang, et al., 2016). Celik, Gunal, et 

al. (2010) reported that SOC is generally the major contributing factor affecting 

aggregate stability according to a study where these researchers studied the manure and 

fertilizer applications under a clay-loam soil for winter wheat-corn rotation in 

Mediterranean climate in Turkey for 13 years. In addition, Barik (2011) reported from a 

greenhouse study with different rates of barnyard manure and sugar beet pulp for six 

months that higher application of manure statistically increased aggregate stability; for 

instance, 5 and 7.5% manure application resulted 31.4 and 43.6% aggregate stability 

which is significantly higher than 0 and 2.5% manure application resulted in 11.6 and 

17.4% aggregate stability. Dunjana, Nyamugafata, et al. (2012) studied a cattle manure 

and inorganic fertilizer treatments which showed that the cattle manure application 

significantly impacted aggregate stability on clay and sandy soils under corn, groundnut, 

sweet potato and sunflower in a sub-tropical climate in Zimbabwe for seven consecutive 

years. The relationship between the SOC and the stable aggregation showed 81% 

correlation as reported by Bandyopadhyay, Misra, et al. (2010) according to the study 

that included inorganic fertilizer and farmyard manure on a clay texture soil under 

soybean–wheat rotation and hot sub-humid climate in India. Hati, Mandal, et al. (2006) 

from a study included farmyard manure and inorganic fertilizer application on a deep 

heavy clay soil under soybean and a hot sub-humid climate in India indicated that organic 

matter increase soil aggregation due to the binding between clay minerals and quartz 
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particles by polysaccharides. Higher manure addition to the soil improves aggregate 

stability (Barik, 2011). Continuous application of inorganic fertilizer especially those 

form NH4
+ reduce aggregate formation and stability by dispersing soil colloids and 

secondary particles (Haynes and Naidu, 1998). Intensive and heavy cultivation can 

disrupt the soil aggregates of 0.25-2 mm size if these are not protected by the organic 

matter (Beare, Hendrix, et al., 1994). Intensively tilled soils with low organic matter can 

form weak structural stabilities reported by Shirani, Hajabbasi, et al. (2002) on silty clay 

loam soil under corn in Iran.  

 

CONCLUSIONS 

A long-term study was conducted at two different locations in South Dakota to 

assess the impacts of manure and inorganic fertilizers on selected soil quality indicators 

that include pH, EC, SOC, TN, and water stable aggerates under corn-soybean rotation at 

two different long-term sites.  The following conclusions can be drawn from this study, 

and those are mentioned below as: 

1. The application of manure did not impact the soil pH, rather it maintained it as 

compared to that of control treatment, however, inorganic fertilizer decreased the soil pH 

as compared to manure and control treatments.  

2. Manure application increased the SOC for all the soil depths at either site as 

compared to inorganic fertilizer and control treatments. A similar trend was observed for 

the TN. However, differences were not always significant for the TN concentrations.  

3. Manure increased the soil EC in comparison to inorganic fertilizer and control, 

respectively.  



43 
 

 
 

4. Manure applications increased water stable aggregation, whereas, fertilizer 

application tend to decrease WAS. 

It can be concluded from this study that the application of higher manure rate 

helps in improving the soil quality indicators as compared to that of inorganic fertilizer in 

corn-soybean cropping systems of South Dakota. However, future study is strongly 

encouraged that can assess the economics and environmental impacts (water quality, 

greenhouse gas emissions) associated with different application rates of manure on soils. 
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Table 3.1. Soil pH (pH) for 0-10, 10-20, 20-30 and 30-40 cm depths as influenced by 

long-term manure and inorganic fertilizer management under corn-soybean rotation at 

Beresford and Brookings locations of South Dakota. 

Treatments 
Brookings 

 
Beresford 

----------------------------Depths (cm)-------------------------------- 

Depths 0-10  10-20 20-30 30-40  
 

0-10  10-20 20-30 30-40  

 ----------------------------pH---------------------------- 

P†† 6.91ba† 6.97a 7.25a 7.57a 

 

6.87a 5.99a 6.32a 6.67a 

N 6.90ba 6.96a 7.25a 7.44a 6.95a 6.24a 6.34a 6.57a 

2N 7.05a 7.04a 7.29a 7.54a 7.02a 6.75a 6.40a 6.73a 

F 6.66b 6.90a 7.26a 7.61a 5.76cb 5.59a 6.02a 6.32a 

HF 6.38c 6.97a 7.32a 7.56a 5.51c 5.91a 6.30a 6.73a 

CK 6.86ba 7.10a 7.30a 7.52a 6.27b 5.86a 6.03a 6.31a 

 
Analysis of Variance (P>F) 

Treatment 0.001 0.52 0.97 0.33 

 

<.0001 0.09 0.5 0.11 

P vs. 2N 0.29 0.54 0.67 0.66 0.58 0.05 0.07 0.77 

Manure vs. 

Fertilizer 
0.01 0.23 0.59 0.16 0.001 0.08 0.32 0.33 

†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to 
manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended 

manure application rate; F, recommended fertilizer; HF, high fertilizer; and CK, control with no manure application. 
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Table 3.2 Soil electrical conductivity (EC; µS/cm) for 0-10, 10-20, 20-30 and 30-40 cm 

depths as influenced by long-term manure and inorganic fertilizer management under 

corn-soybean rotation at Beresford and Brookings locations of South Dakota. 

 

Treatments 
Brookings 

 
Beresford 

----------------------------------Depths (cm)-------------------------------------- 

Depths 0-10  10-20 20-30 30-40  
 

0-10  10-20 20-30 30-40  

 ----------------------------------- EC (µS/cm)-------------------------------- 

P†† 1149c† 734cb 738cb 749cb 
 

768b 369cb 367ba 451ba 

N 1508b 828b 783b 777b 
 

934a 478b 423a 409bc 

2N 2010a 1078a 1062a 954a 
 

1083a 749a 522a 584a 

F 754d 575c 651cd 653d 
 

321c 183c 184c 244d 

HF 662d 599c 631d 736cbd 
 

359c 307cb 408a 479ba 

CK 719d 616c 622d 667cd 
 

437c 265cb 240bc 297dc 

 
Analysis of Variance (P>F) 

Treatment <.0001 0.0004 <.0001 <.0001 

 

<.0001 0.0009 0.003 0.001 

P vs. 2N <.0001 0.001 <.0001 0.0003 0.0005 0.002 0.05 0.06 

Manure vs. 

Fertilizer 
<.0001 0.0012 <.0001 0.008 0.0001 0.01 0.05 0.05 

†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to 
manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended 

manure application rate; F, recommended fertilizer; HF, high fertilizer; and CK, control with no manure application. 
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Table 3.3 Total soil nitrogen (TN; g kg-1) for 0-10, 10-20, 20-30 and 30-40 cm depths as 

influenced by long-term manure and inorganic fertilizer management under corn-soybean 

rotation at Beresford and Brookings locations of South Dakota.  

 

Treatments Brookings 
 

Beresford 

 
--------------------------------Depths (cm)-------------------------------- 

Depths 0-10 10-20 20-30 30-40 
 

0-10 10-20 20-30 30-40 

 ---------------------- TN (g kg-1)---------------------- 

P†† 2.52cb† 2.04a 1.63a 1.17a 
 

2.50c 2.01ba 1.71a 1.32a 

N 2.80b 2.01a 1.62a 1.30a 
 

2.76b 2.00ba 1.73a 1.34a 

2N 3.45a 2.03a 1.66a 1.49a 
 

3.17a 2.17a 1.69a 1.34a 

F 2.30c 2.00a 1.68a 1.17a 
 

2.23d 1.91b 1.65a 1.29a 

HF 2.63cb 1.96a 1.64a 1.45a 
 

2.22d 1.92b 1.65a 1.23a 

CK 2.24c 1.93a 1.55a 1.24a 
 

2.12d 1.85b 1.72a 1.36a 

 
Analysis of Variance (P>F) 

Treatment 0.0008 0.87 0.97 0.06 

 

0.0001 0.05 0.98 0.83 

P vs. 2N 0.0008 0.94 0.84 0.95 0.0001 0.11 0.86 0.85 

Manure vs. 

Fertilizer 
0.01 0.41 0.85 0.16 0.0001 0.02 0.54 0.13 

†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to 

manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended 

manure application rate; F, recommended fertilizer; HF, high fertilizer; and CK, control with no manure application. 
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Table 3.4.  Wet aggregate stability (WAS, %) for 0-10 and 10-20 cm depths as influenced 

by long-term manure and inorganic fertilizer management under corn-soybean rotation at 

Beresford and Brookings locations of South Dakota. 

 

Treatments Brookings 
 

Beresford 

 
---------------Depths (cm)------------------- 

Depths 0-10  10-20 
 

0-10  10-20 

 ---------- WAS (%) -------------- 

P†† 91.90bc† 90.12a 
 

92.86bac 92.31a 

N 93.51ba 92.28a 
 

93.29ba 92.15a 

2N 98.59a 92.40a 
 

96.73a 92.85a 

F 89.22bc 89.11a 
 

89.36c 89.20a 

HF 87.39c 84.55a 
 

89.14c 88.93a 

CK 90.11bc 90.41a 
 

92.42bc 90.52a 

 Analysis of Variance (P>F) 

Treatment 0.01 0.5 
 

0.01 0.08 

P vs. 2N 0.02 0.6 
 

0.05 0.7 

Manure vs. Fertilizer 0.02 0.2   0.001 0.01 
†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to 

manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended 

manure application rate; F, recommended fertilizer; HF, high fertilizer; and CK, control with no manure application. 
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Figure 3.1 Soil organic carbon (g kg-1) for 0-10, 10-20, 20-30 and 30-40 cm depths as 

influenced by long-term manure and inorganic fertilizer management under corn-soybean 

rotation at Beresford and Brookings locations of South Dakota. 
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CHAPTER 4 

RESPONSE OF LONG-TERM CATTLE MANURE APPLICATION ON SOIL 

HYDROLOGICAL PROPERTIES UNDER CORN-SOYBEAN ROTATION OF TWO 

LOCATIONS IN EASTERN SOUTH DAKOTA 

 

ABSTRACT 

 Manure improves soil organic carbon (SOC) and impacts soil hydrological 

properties such as soil water retention (SWR), pore-size distribution (PSD) and water 

infiltration (qs) thatare crucial for crop production. The present study was conducted with 

the specific objective to investigate the impacts of different rates of manure and inorganic 

fertilizers on soil hydrologic properties at two long-term experimental sites located at 

Beresford and Brookings in South Dakota. Study treatments included two fertilizers 

[recommended fertilizer (F) and high fertilizer (HF)], and three manure [phosphorus-

based recommended manure application rate (P), nitrogen-based recommended manure 

application rate (N), and nitrogen-based double of recommended manure application rate 

(2N)], and a control (CK) under reduced-tilled corn (Zea mays L.)-soybean (Glycine max 

L.) rotation. Dairy and beef manure were used at Brookings and Beresford, respectively. 

Results of this study showed that manure application improved the soil properties as 

compared to those of inorganic fertilizer applications. Average manure application 

reduced the soil bulk density by 17%  compared to those inorganic fertilizer applications 

at 0-10 cm depths for Beresford sites.  Water infiltration (qs) was increased by 49 to 75% 

under manure application compared to inorganic fertilizer applied plots for either site. 

Manure tended to positively impact water retention and porosity but not always 

significantly. Data from this study concluded that manure improved soil hydrological 

properties in comparison with those of inorganic fertilizer. However, further investigation 
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is needed that can focus on the environmental impacts associated with the higher rates of 

manure application in comparison with those of inorganic to make recommendations to 

producers.  

Keywords: Manure, inorganic fertilizer, water infiltration, bulk density, corn-soybean 

rotation 

 

INTRODUCTION 

Soil management practices need to have the perspective of improving crop 

production, soil properties, hydrological properties for enhancing the food security 

(Avery and Abernethy, 1995, Conway and Barbier, 2013). However, these practices 

when used inappropriately can negatively impact soils and crop production. Such 

activities that involve continuous tillage and imbalanced use of chemical fertilizers led to 

soil degradation, reduced water infiltration (qs), and enhanced soil erosion (Lawal and 

Girei, 2013). Soil amendments such as cattle manure generally decrease soil bulk density 

and increase total porosity, soil water retention, macro and microporosity and water 

infiltration rate (qs) (Rasoulzadeh and Yaghoubi, 2014, Shi, Zhao, et al., 2016, Xin, 

Zhang, et al., 2016). Manure modifies soil properties (Lawal and Girei, 2013), however, 

changes in these properties are associated with the amount of manure applied (Asada, 

Yabushita, et al., 2012, Bottinelli, Menasseri‐ Aubry, et al., 2013, Fares, Abbas, et al., 

2008, Khalid, Tuffour, et al., 2014). Some studies reported insignificant changes in bulk 

density, water infiltration (qs) and available water under application of manure (Asada, 

Yabushita, et al., 2012, Blanco-Canqui, Hergert, et al., 2015).  
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Soil structure can be  negatively impacted by a long-term lack of phosphorus (P) 

and disproportionate contribution of nitrogen (N) (Xin, Zhang, et al., 2016). Application 

of manure not only reduces soil compaction, erosion, and soil degradation but also 

develops the soil structure by binding the soil particles (Celik, Gunal, et al., 2010). The 

addition of organic amendments such as manure is important for agricultural practices to 

ameliorate problems that occur due to declining of SOM (Celik, Gunal, et al., 2010, 

Celik, Ortas, et al., 2004, Lawal and Girei, 2013). The balanced application of organic 

and mineral fertilizers to agricultural soil have been viewed as an excellent way to 

recycle nutrients and organic matter that can support crop production and maintain or 

improve soil quality indicators such as bulk density, infiltration rate, soil moisture 

retention capacity and soil structure (Khalid, Tuffour, et al., 2014, Lawal and Girei, 

2013). 

 Inorganic fertilizer and manure are one of the main sources of the nutrients for 

crop growth, and use of these soil amendments are beneficial for sustainability (Blanco-

Canqui, Hergert, et al., 2015). Long-term inorganic fertilizer application can modify soil 

properties, for instance, inorganic N-fertilizer improved the macropore density, 

macropore volume, and unsaturated hydraulic conductivity of a clayey soil (Dunjana, 

Nyamugafata, et al., 2014). In contrast, some studies showed that inorganic fertilizer may 

enhance crop yield but not hydrological properties of soil (Dunjana, Nyamugafata, et al., 

2014). However, use of inorganic fertilizers may produce problems such as soil fertility 

degradation by reducing pH, organic matter and exchangeable cations in the soil (Lawal 

and Girei, 2013). The use of organic manure can improve soil physical properties and is 

useful in improving soil fertility (Lawal and Girei, 2013). For instance, manure improves 



55 
 

 
 

SOM, total porosity, water holding capacity, and decreases bulk density in comparison to 

inorganic fertilizer  (Blanco-Canqui, Hergert, et al., 2015, Khalid, Tuffour, et al., 2014, 

Shi, Zhao, et al., 2016). However, combined applications (manure and inorganic 

fertilizer) sometimes showed better performance on soil physical properties (Lawal and 

Girei, 2013).  

The previous studies have explained the recommended application rate of manure 

and fertilizer impacts on soil properties. However, the recommended rates of manure and 

inorganic fertilizer applications based on the nutrient content such as phosphorus and 

nitrogen are important to investigate for improved crop productivity without negatively 

impacting the environment. Therefore, the present study was conducted with the specific 

objective to evaluate the influences of manure and inorganic fertilizer applications on soil 

hydrological properties in long-term reduced-tilled corn-soybean rotation in South 

Dakota. 

 

MATERIALS AND METHODS 

Experimental Sites and Study Treatments 

Two experimental sites were established at two different locations; Beresford and 

Brookings in South Dakota. The research plots were initiated in 2003 at Beresford site 

and 2008 at Brookings to study the effect of manure and inorganic fertilizer application 

rates on crop production and soil properties. The Brookings site is located at South 

Dakota State University Felt Research Farm near Brookings (44o 22’ 07.15” N and 96o 

47’ 26.45” W) on well drained Vienna soil (Fine-loamy, mixed, frigid Udic 

Haploborolls). Dimensions for each plot at this site are 6 m by 18 m. The plots are nearly 
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flat with the slope of <1% with elevation of 518 m. The experimental areas were 

observed with humid continental climate having relatively humid summers and cold, 

snowy winters with a mean air temperature of 27.8°C in the summer and -15.8°C in the 

winter, respectively. The mean annual precipitation was about 637 mm. The Beresford 

(43o 02’ 33.46” N and 96o 53’ 55.78” W) site is located at the Southeast Research Farm 

of the South Dakota State University in Clay County on Egan soil (Fine-silty, mixed, 

mesic Udic Haplustolls). The plots at this site were established on nearly flat areas with 

the slope and elevation of <1%, and 390 m, respectively. The experimental site was 

observed with humid continental climate having relatively humid summers and snowy 

winters with a mean air temperature of 29.5°C in the summer and -13.6°C in the winter, 

respectively. The mean annual precipitation was about 678 mm. Dimensions for each plot 

at Beresford site are 4.6 m (wide) by 20 m (length).  

 Study treatments at either sites included: two fertilizers [recommended fertilizer 

(F) and high fertilizer (HF)], and three manure [phosphorus based recommended manure 

(P), nitrogen based recommended manure (N), and nitrogen based double of 

recommended manure application rate (2N)], and a control (CK) with no manure 

application. The P concentrations of the soil, P content of manure and amount of the P 

needed to reach the desired yield goal were used to calculate P recommended application 

rate by using a tool developed by South Dakota Department of Environment and Natural 

Resources. A similar calculation was used for N recommended application rate. 

Similarly, both the P and Nitrate-N soil tests were used for the fertilizer treatments to 

make the P and N recommendations for the fertilizer treatment. The manure was applied 

in the spring and incorporated using disk for 6-cm before planting at either site. Manure 
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samples were analyzed at South Dakota Agricultural Laboratories. At both the sites, 

fertilizer treatments for 179.3 kg ha-1 yield goal for corn and 44.8 kg ha-1 for soybean 

were applied; however, there is no nutrient recommendation of fertilizer for soybean 

(Gelderman, Gerwing, et al., 2006). Dairy manure with 31.5% moisture and beef manure 

with 21.9% moisture for Brookings and Beresford sites, respectively, were used in this 

study. Dairy manure contained 6 g kg-1 total nitrogen, 2.7 g kg-1 NH4-N, 3.3 g kg-1 

organic -N, 3.2 g kg-1 available N, 2.5 g kg-1 P2O5 and 4.2 g kg-1 K2O concentrations. 

Beef manure contained 10.6 g kg-1 total nitrogen, 1.3 g kg-1 NH4-N, 9.3 g kg-1 organic -N, 

5.6 g kg-1 available nitrogen, 8.5 g kg-1 P2O5 and 9.9 g kg-1 concentrations. Annually, P-

based recommended rate of manure treatment include N (90 kg ha-1)-P (30 kg ha-1)-K (39 

kg ha-1) where N-based recommended manure rate included N (131 kg ha-1)-P (56 kg ha-

1)-K (93 kg ha-1), two times N-based recommended manure rate N (261 kg ha-1)-P (111 

kg ha-1)-K (187 kg ha-1) at Brookings site.In addiiton, Beresford site included N (51 kg 

ha-1)-P (52 kg ha-1)-K (82 kg ha-1) for P treatment, N (122 kg ha-1)-P (111 kg ha-1)-K (155 

kg ha-1) for N treatment and N (243 kg ha-1)-P (222 kg ha-1)-K (310 kg ha-1) for 2N 

treatment.  On the other hand, F inorganic fertilizer treatment included N (41 kg ha-1)-P 

(19 kg ha-1)-K (23 kg ha-1) and HF included N (75 kg ha-1)-P (60 kg ha-1)-K (71 kg ha-1)-

Zinc (7 kg ha-1)-S (25 kg ha-1) at the Brookings site when F included N (43 kg ha-1)-P (16 

kg ha-1)-K (4 kg ha-1) and HF included N (85 kg ha-1)-P (46 kg ha-1)-K (39 kg ha-1)-Zinc 

(6 kg ha-1)-S (25 kg ha-1) for Beresford site from 2003 to 2015, annually. 
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Soil Sampling 

Intact core samples were collected from 0-10 and 10-20 cm depths using the core 

sampler of 5 cm diameter and 5 cm height to measure soil bulk density, soil water 

retention (SWR), and pore size distribution (PSD) from both the sites in summer of 2015. 

Soil cores were collected from each plot, labeled, trimmed from both ends, sealed in 

plastic zip-lock bags and transported to the laboratory. These cores were stored at 4°C 

pending analysis.  

 

Soil Bulk Density, Soil Water Retention, and Pore Size Distribution  

 Soil bulk density (ρb) was determined using the core method (Grossman and 

Reinsch, 2002) for the 0-10 and 10-20 cm depths under all treatments at both the sites. 

Soil was removed from the intact core and was oven-dried at 105°C for 48 hr to get the 

oven-dried weight of the soil, and then bulk density was determined by dividing the 

oven-dried mass with the volume of the core. Soil water retention (SWR) for 0-10 and 

10-20 cm depths was measured for every treatment. The cheese cloth was fixed at the 

bottom of the soil core, and then these were saturated with water by capillarity for 24 to 

48 hours, depending on the sampling depth of these cores. The SWR was measured at 0, -

0.4, -0.1, -2.5, -5.0, -10.0, -30.0 kPa matric potentials using tension and pressure plated 

extractors (Klute and Dirksen, 1986). Soil water content (g g-1) was determined 

gravimetrically by oven-drying the soil samples at 105°C for 48 hr. This gravimetric 

moisture content (w) was converted to volumetric moisture content (θ; m3 m-3) by 

multiplying w with the soil bulk density and dividing with the density of water. Note that 

density of water was used as 1000 kg m-3 for calculating the  . The pore size distribution 
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of soil for 0-10 and 10-20 cm depth was calculated using capillary rise equation from the 

SWR data (Jury, Gardner, et al., 1991). Four categories of pore sizes were estimated 

including macro-pores having (>1000 μm equivalent cylindrical diameter, end), coarse 

mesopores having (60- to 1000-μm ecd), fine mesopores having (10- to 60-μm ecd), and 

micro-pores having (<10 μm ecd).  

 

Water Infiltration Rate  

Water infiltration (qs) rates were measured with a double-ring infiltrometer (ring 

of 20 cm height, 30-cm outer, and 20 cm inner diameters) using a constant-head method 

(Reynolds, Elrick, et al., 2002). Two infiltration measurements were conducted in four 

replicated plots (two for each plot) until the steady state was achieved.  

  

Statistical Analysis 

A statistical analysis was performed to estimate the impacts of treatments on soil 

hydrological properties due to different rates of manure and chemical fertilizer 

applications. The significant differences among treatments were obtained using the 

Mixed procedure in SAS 9.3 (Institute, 2012). Treatments were considered as the fixed 

impacts and replications as the random effect at significant level of α=0.05. Single 

degree-of-freedom contrasts were also determined and were conducted as follows: 

Manure vs. Fertilizer, and P vs. 2N (P-based manure application rate vs. two times N 

based recommended application rate of manure).  
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RESULTS AND DISCUSSION 

Soil Bulk Density 

Soil Bulk Density (ρb; Mg m-3) data for 0-10 and 10-20 cm depths for either site 

are presented in Table 1. Data showed that treatments significantly impacted the ρb for 

the 0-10 cm depth on either site. However, treatments did not impact the ρb beyond 10 

cm depth. High manure rate (2N) significantly lowered the ρb compared to other manure 

applications and fertilizer applications at either site. The lowest ρb was observed under 

2N treatment (0.87 Mg m-3) which was significantly lower than N (1.07 Mg m-3) by 19%, 

P (1.13 Mg m-3) by 24%,  CK (1.20 Mg m-3) by 28%, F (1.22) by 29%  and HF (1.23 Mg 

m-3) by 30% at the 0-10 cm depth (Table 1). In 10-20 cm depth at the Brookings site, the 

2N (1.22 Mg m-3) was significantly lowered in ρb by 6, 7,8, 8, and 10%, respectively, 

compared to  (HF; 1.30 Mg m-3, N; 1.32 Mg m-3, P; 1.33 Mg m-3, CK; 1.33 Mg m-3, F; 

1.36 Mg m-3). Similar trends were observed at the Beresford site. On an average, ρb 

under manure treatments at 0-10cm depth (1.02 Mg m-3) was significantly decreased by 

17%, compared to fertilizer treatment (1.23 Mg m-3) for Brookings site. A similar trend 

was observed at 10-20 cm depth for Beresford site. Also, ρb was significant for the 

contrasts Manure only at 0-10 cm depth for either site, whereas, it was significant for 0-

10 and 10-20 cm depths for P vs. 2N.  

Soil ρb indicates soil compaction and can be affected by tillage and fertilization 

(Xin, Zhang, et al., 2016). Organic amendments usually decrease soil ρb due to the 

dilution effect caused by the mixing of the added lighter organic material with denser 

mineral fractions of the soil (Shepherd, Harrison, et al., 2002). In the present study, 

manure applications for 7 (Brookings) to 12 (Beresford) years decreased soil ρb 
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compared to the fertilizer treatments. Xin, Zhang, et al. (2016) reported that application 

of manure under annual rotation of winter wheat-summer maize for 23 years decreased 

ρb compared to that of control, which attributed to higher SOM content due to the 

production of microbial decomposition from organic amendments, and soil particle 

binding agents, better aggregation, dilution impacts of organic amendments, developed 

root growth on a sandy loam textured soil in China. Similarly, Bandyopadhyay, Misra, et 

al. (2010) supported that manure application decreased ρb owing to higher SOM content, 

better aggregation and more developed root growth on a clay texture soil under a 

soybean-wheat rotation in a hot sub-humid climate in India. Celik, Gunal, et al. (2010) 

also studied the impacts of manure and fertilizer application in winter wheat-corn rotation 

on a clay-loam soil in a Mediterranean climate in Turkey for 13 years and reported that 

the application of manure decreased ρb compared to that of fertilizer and control 

treatments. Similar trends were observed by Shirani, Hajabbasi, et al. (2002) on a silty 

clay loam soil under corn in Iran. The application of manure and chemical fertilizer on a 

dark loamy soil under maize in China observed the decrease in bulk density with manure 

application (Hou, Wang, et al., 2012).  In another study with poultry manure application 

on a tilled Dormont silt soil under Kentucky bluegrass, Mandal, Chandran, et al. (2013) 

documented that the ρb for the surface layer was lower compared to that of subsurface 

depths in all the treatments in Virginia.  

 

Soil Water Retention  

The SWR (m3 m-3) data for 0-10 and 10-20 cm depths under all the treatments are 

shown in Table 2-a and Table 2-b. Treatments significantly impacted the WR at -2.5, -5 
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and -10 kPa potentials in the 0-10 cm depth, and 0 and -0.4 kPa at the 10-20 cm depths 

for the Brookings site. The SWR was also significantly different for Manure vs. Fertilizer 

contrast at -0.4, -1, -2.5, -5, -10 and -30 kPa at 0-10 cm depth for Brookings site. Water 

retention ranged from 0.44 m3 m-3 to 0.64 m3 m-3 for 0-10 cm depth at Brookings and 

0.45 m3m-3 to 0.65 m3 m-3 for 0-10 cm depth at Beresford site. Data showed that the plots 

received 2N manure application rate had the highest (0.64 m3 m-3) SWR and those 

received HF treatment had the lowest (0.59 m3 m-3) SWR for 0 kPa at the 0-10 cm depth 

for Brookings site. Similar trends were observed for other pressure points for 0-10 cm 

depth for both sites. Treatments were significantly different under 0 and -0.4 kPa at 10-20 

cm depth at the Brookings site. Also, there were significant contrasts for Manure and 

Fertilizer under 0 and -0.4 kPa at 10-20 cm depth at the Brookings site. Data was ranged 

from 0.45 m3 m-3 to 0.64 m3 m-3 for 10-20 cm depth at Brookings site and 0.44 m3 m-3 to 

0.62 m3 m-3 for 10-20 cm depth at Beresford site. Trends monitored from Beresford were 

similar to those monitored from Brookings site for 10-20 cm depth as well. On an 

average, manure (0.61, 0.59, 0.57, 0.55, 0.53, 0.51 m3 m-3) significantly impacted SWR 

by 11, 11, 14, 12, 13 and 13% compared to that if fertilizer (0.55, 0.53, 0.50, 0.49, 0.47, 

0.45 m3 m-3) for -0.4, -1, -2.5, -5, -10 and -30 kPa at the 0-10 cm depth at Brookings site. 

A similar trend was represented at 0-10 cm depth for Beresford site, too. Data from this 

study showed that manure application for longer duration increased the WR at the surface 

0-10 cm for all tensions and at 10-20 cm depth for 0 and -0.4 kPa. However, manure did 

not impact the WR at beyond -1 kPa and 10 cm depth for either site. These statements 

indicate that manure had a positive effect on the WR of the soil at 0-10 cm depth.  
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Miller, Beasley, et al. (2015) conducted a study that included an application of 

composted manure and stockpiled manure on irrigated barley, and reported that higher 

organic carbon and number of smaller pores produced greater SWR on a clay loam Dark 

Brown Chernozemic soil in Alberta. The SWR is associated with bulk density, texture 

and organic matter (Miller, Beasley, et al., 2015). As we observed from this study that 

manure significantly impacted SWR at some matric potentials for surface and subsurface 

depths. Blanco-Canqui, Hergert, et al. (2015) reported that manure application increased 

SWR positively and was correlated with SOC content on a Tripp very fine sandy loam 

under reduced-tilled and irrigated corn, sugar beet, potato and alfalfa in Nebraska, 

whearas, inorganic fertilizer did not impact SWR. The present study was conducted under 

the corn and soybean rotation and managed with the reduced tillage system which leave 

higher residue on the surface compared to tilled system that can be helpful in improving 

the soil hydrological properties such as SWR. Similarly, Blanco-Canqui, Stone, et al. 

(2009) mentioned that long-term application of manure might produce greater benefits to 

increase SWR under conservation tillage due to the higher surface residue cover and 

lower soil disturbance. 

 

Pore Size Distribution  

Pore size distribution (PSD; m3 m-3) data for 0-10 and 10-20 cm depths under all 

the treatments for Brookings and Beresford sites are presented in Table 3a and 3b. Data 

shows that treatments did not impact PSD at 0-10 cm depth for either site. However, 2N 

manure numerically performed better than fertilizer treatments for Macropores, Fine 

Mesopores, and Micro pores; whereas, N manure application had the highest observation 
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for Coarse Mesopores compared to fertilizer treatments at 0-10 cm depth at the 

Brookings site. Similar trends were also observed for Fine mesopores and Micropores at 

0-10 cm depth in the Beresford site. Data from this study showed that manure treatments 

did not show any significant differences for fertilizer and control treatments whereas 

fertilizer was also not significantly impacted on PSD compare to control. 

Dunjana, Nyamugafata, et al. (2012) reported that cattle manure and inorganic 

fertilizer application for seven consective years showed non-significant differences 

between fertilizer and manure compared to control for macropores and coarse mesopores 

on clay and sandy soils under corn, groundnut (Arachis hypogaea L.), sweet potato 

(Ipomoea batatas L.) and sunflower (Helianthus annuus L.) under a sub-tropical climate 

in Zimbabwe. It was reported that field type might be an important factor on pore size 

distribution and these observations suggested variability related to macropores at local 

scale (Watson and Luxmoore, 1986). Also, Xin, Zhang, et al. (2016) reported that the 

addition of manure did not impact microporosity. 

 

Water Infiltration 

Water infiltration (qs) data under all the treatments for the Brookings and 

Beresford sites are shown in Table 4. Treatments significantly impacted the qs for either 

site. The qs was significantly different for Manure, P vs. 2N and Manure vs. Fertilizer 

contrasts. The qs ranged from 225 mm hr-1 to 412 mm hr-1 at Brookings and 143 mm hr-1 

to 329 mm hr-1 at the Beresford site. The qs of the soil was slightly lower at the Beresford 

compared to that of Brookings site. Data showed that the plots received 2N manure 

application rate had the highest qs and those received HF treatment had the lowest qs for 
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the Brookings site. It was also observed plots with 2N manure had the highest qs, 

whereas, those received F treatment had the lowest qs at Beresford site. The 2N treatment 

(412 mm hr-1) increased the qs by 71 and 83%, compared to F (241 mm hr-1) and HF (225 

mm hr-1) treatments at Brookings, respectively. Similarly, the 2N treatment increased qs 

by 130 and 85% compared to F and HF at Beresford site, respectively. There was no 

significant difference between F and HF fertilizer treatments. On an average, manure 

(347 and 281 mm hr-1) significantly increased qs by 49 and 75% compared with fertilizer 

(233 and 160 mm hr-1) for Brookings and Beresford, respectively. Data from the study 

showed that manure application for longer duration increased the qs. Also, significant 

differences in qs were not observed between fertilizer and control. However, in general, 

fertilizer decreased the soil qs.  

Fertility x field type interaction might be significant for explaining in higher 

infiltration rate because of more porosity linked with retention of organic material 

(Dunjana, Nyamugafata, et al., 2014). Dunjana, Nyamugafata, et al. (2014) reported a 

study conducted with cattle manure and inorganic fertilizer application on clay and sandy 

soils under corn, groundnut, sweet potato and sunflower and a sub-tropical climate in 

Zimbabwe indicated infiltration rate on the clay soil reported as significantly (P < 0.05) 

increased due to fertility and organic fertility on sandy soils (P<0.05). However, it was 

also reported as insignificant impacted (P>0.05) under inorganic fertilizer on the sandy 

soil by Dunjana, Nyamugafata, et al. (2014). Meek, Graham, et al. (1982) reported an 

high rate manure application on a variety of crops such as water-grass, sorghum, lettuce, 

barley and cotton indicated that application of manure-impacted  the infiltration rate 

slightly between crops but strongly during the cropping season on a Holtville silty clay 
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(Typic Torrifluvents) soil in an irrigated desert region for 9 years (1971-1979) in 

California. It was also reported that a 1% increase in organic matter lowered the 

infiltration time by 31% by Meek, Graham, et al. (1982). Walia, Walia, et al. (2010) 

reported that application of manure increased water infiltration in comparison to that of 

chemical fertilizers for 14 different treatments including dairy manure, wheat cut straw, 

dreen manure with Sesbania aculeate, nitrogen, phosphorus, and potassium fertilizer 

application under rice–wheat system in the Punjab, India perhaps owing to improvement 

in soil physical properties such as bulk density and soil structure. 

 

CONCLUSIONS 

A long-term study was initiated at two different sites in eastern South Dakota to 

examine the influences of cattle manure and synthetic fertilizers on selected soil 

hydrological parameters that include the soil bulk density, soil penetration resistance, 

water infiltration, water retention and pore size distribution.  

Results of this study showed that manure lowered the bulk density at 0-10 cm 

depth compared to fertilizer and control. An opposite trend was monitored for water 

infiltration indicated that manure increased water infiltration rate compared to fertilizer 

application. Manure tended to increase the SWR compared to the control at both sites; 

however, differences were not always significant. There was a trend for manure 

application to increase micropores and fine mesopores at the Brookings site compared to 

other applications; where control and high fertilizer increased the macropores and coarse 

pores distribution at 10-20 cm depths; however, the differences were not statistically 

significant. Manure also increased the distribution of micropores and coarse mesopores at 
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the Beresford site where control was observed to have more macropores and fine-

mesopores. The significant differences were observed at10-20 cm depth of fine 

mesopores where the control showed the highest levels. 
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Table 4.1 Soil bulk density (BD; Mg m-3) for the 0-10 and 10-20 cm depths as influenced 

by long-term manure and inorganic fertilizer management under corn-soybean rotation at 

Beresford and Brookings locations of South Dakota. 

 

 
Brookings 

 
Beresford 

Treatments -------------------Depths (cm) -------------------------- 

Depths 0-10 10-20 
 

0-10 10-20 

 ------------BD (Mg m-3)--------------------- 

P†† 1.13b† 1.33ba 
 

1.10bc 1.34a 

N 1.07b 1.30b 
 

1.08c 1.26a 

2N 0.87c 1.21c 
 

1.06c 1.24a 

F 1.27a 1.36a 
 

1.22a 1.32a 

HF 1.27a 1.30b 
 

1.20ba 1.35a 

CK 1.29a 1.38a 
 

1.22a 1.32a 

 
Analysis of Variance (P>F) 

Treatment <.0001 <.0001  0.008 0.2 

P vs. 2N 0.0001 <.0001  0.4 0.06 

Manure vs. Fertilizer 0.0005 0.003  0.008 0.2 
†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to 

manure and inorganic fertilizer application at P<0.05. 
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended 
manure application rate;F, recommended fertilizer; HF, high fertilizer; and CK, control with no manure application. 
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Table 4.2-a Soil water retention (SWR; m3 m-3) for 0-10 and 10-20 cm depths as influenced by long-term manure and 

inorganic fertilizer management under corn-soybean rotation at Brookings location of South Dakota. 

 

                                      Brookings Location 

Treatments  ---------------------------------------------------------Depth (cm) --------------------------------------------------------- 

Depths 0-10 
 

10-20 

 
--------------------------------------------------------Pressure (kPa) ------------------------------------------------------- 

Pressure 0 -0.4 -1 -2.5 -5 -10 -30 
 

0 -0.4 -1 -2.5 -5 -10 -30 

 --------------------------------------------WR (m3 m-3) -------------------------------------------- 

P†† 0.61ba† 0.60a 0.58a 0.55b 0.53b 0.51a 0.50a 
 

0.59ba 0.57ba 0.56a 0.54a 0.53a 0.51a 0.50a 

N 0.63a 0.63a 0.62a 0.60a 0.58a 0.56a 0.53 a 
 

0.59ba 0.58ba 0.57a 0.55a 0.54a 0.52a 0.50a 

2N 0.64a 0.62a 0.60a 0.57ba 0.55ba 0.53a 0.51 a 
 

0.64a 0.62a 0.60a 0.59a 0.57a 0.56a 0.54a 

F 0.58b 0.53cb 0.51cb 0.48c 0.46c 0.44b 0.43b 
 

0.56b 0.54b 0.53a 0.51a 0.50a 0.49a 0.47a 

HF 0.53c 0.50c 0.48c 0.46c 0.44c 0.43b 0.42b 
 

0.64a 0.63a 0.62a 0.59a 0.57a 0.55a 0.53a 

CK 0.57b 0.54b 0.52b 0.50c 0.48c 0.46b 0.45b 
 

0.56b 0.54b 0.52a 0.50a 0.48a 0.47a 0.45a 

                                         Analysis of Variance (P>F) 

Treatments 0.001 <.0001 <.0001 <.0001 <.0001 0.0001 0.001 
 

0.04 0.04 0.06 0.07 0.08 0.08 0.1 

P vs. 2N 0.2 0.3 0.3 0.4 0.4 0.4 0.7 
 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Manure vs. 

Fertilizer 
0.001 <.0001 <.0001 <.0001 0.0001 0.0002 0.0009 

 
0.8 0.8 0.8 0.6 0.5 0.6 0.5 

†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended manure application rate;F, recommended fertilizer; HF, 

high fertilizer; and CK, control with no manure application. 
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Table 4.2-b Soil water retention (SWR; m3 m-3) for 0-10 and 10-20 cm depths as influenced by long-term manure and 

inorganic fertilizer management under corn-soybean rotation at Beresford location of South Dakota. 

 

                                     Beresford location 

Treatments  ---------------------------------------------------------Depth (cm) --------------------------------------------------------- 

Depths 0-10 
 

10-20 

 
--------------------------------------------------------Pressure (kPa) ------------------------------------------------------- 

Pressure 0 -0.4 -1 -2.5 -5 -10 -30 
 

0 -0.4 -1 -2.5 -5 -10 -30 

 --------------------------------------------WR (m3 m-3) -------------------------------------------- 

P†† 0.62b† 0.61b 0.59b 0.58a 0.55ba 0.54ba 0.52a 
 

0.53a 0.53a 0.51a 0.51a 0.49a 0.48a 0.47a 

N 0.64a 0.64a 0.62a 0.59a 0.55ba 0.53bac 0.50ba 
 

0.61a 0.59a 0.57a 0.55a 0.53a 0.52a 0.50a 

2N 0.64ba 0.63 a 0.61 a 0.59 a 0.57 a 0.55 a 0.52 a 
 

0.62a 0.61a 0.60a 0.58a 0.57a 0.56a 0.54a 

F 0.59d 0.58c 0.57cb 0.55b 0.53b 0.50c 0.46b 
 

0.58a 0.58a 0.57a 0.56a 0.55a 0.54a 0.51a 

HF 0.61dc 0.60bc 0.58c 0.57ba 0.55ba 0.53bac 0.49ba 
 

0.60a 0.60a 0.59a 0.58a 0.57a 0.56a 0.54a 

CK 0.61c 0.61b 0.59b 0.58a 0.54ba 0.51bc 0.48ba 
 

0.56a 0.54a 0.52a 0.51a 0.50a 0.48a 0.44a 

 
  Analysis of Variance (P>F) 

Treatments 0.001 0.0008 <.0001 0.04 0.3 0.1 0.1 
 

0.4 0.4 0.4 0.4 0.4 0.4 0.3 

P vs. 2N 0.1 0.02 0.004 0.3 0.5 0.6 0.9 
 

0.08 0.09 0.09 0.1 0.1 0.1 0.1 

Manure vs. 

Fertilizer 

0.0002 0.0005 0.0007 0.0005 0.05 0.01 0.02 

 
0.7 0.6 0.5 0.3 0.2 0.2 0.3 

†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended manure application rate;F, recommended fertilizer; HF, 

high fertilizer; and CK, control with no manure application. 
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Table 4.3-a Soil pore size distribution (SPSD; m3 m-3) for 0-10 and 10-20 cm depths as influenced by long-term manure and 

inorganic fertilizer management under corn-soybean rotation at Beresford and Brookings locations of South Dakota. 

 

 Brookings Location 

Treatments -----------------------------------------Depths (cm)------------------------------------- 

Depths 0-10 
 

10-20 

 Macropores 
Coarse Fine 

Micropores  Macropores 
Coarse Fine 

Micropores 
Pore sizes Mesopores Mesopores 

 
Mesopores Mesopores 

 
(>1000 μm) (60-1000 μm) (10-60 μm) (<10 μm) 

 
(>1000 μm) (60-1000 μm) (10-60 μm) (<10 μm) 

 ---------------------------------------------SPSD ( m3 m-3) --------------------------------------- 

P†† 0.02bc† 0.07a 0.03a 0.50a 
 

0.017a 0.040a 0.030a 0.50a 

N 0.01c 0.05a 0.05a 0.53a 
 

0.013a 0.040a 0.033a 0.50a 

2N 0.03bsc 0.07a 0.04a 0.51a 
 

0.019a 0.045a 0.030a 0.54a 

F 0.05a 0.08a 0.03a 0.43a 
 

0.018a 0.045a 0.035a 0.47a 

HF 0.03bc 0.06a 0.02a 0.42a 
 

0.014a 0.06a 0.040a 0.53a 

CK 0.03ba 0.06a 0.14a 0.35a 
 

0.023a 0.06a 0.030a 0.45a 

 
Analysis of Variance (P>F) 

Treatment 0.01 0.2 0.4 0.07 
 

0.9 0.5 0.7 0.1 

P vs. 2N 0.2 0.8 0.9 0.9 
 

0.9 0.7 1 0.1 

Manure vs. 

Fertilizer 
0.07 0.7 0.8 0.2 

 
0.9 0.4 0.2 0.5 

†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended manure application rate;F, recommended fertilizer; HF, 

high fertilizer; and CK, control with no manure application. 
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Table 4.3-b Soil pore size distribution (SPSD; m3 m-3) for 0-10 and 10-20 cm depths as influenced by long-term manure and 

inorganic fertilizer management under corn-soybean rotation at Beresford locations of South Dakota. 

 

Beresford Location 

Treatments -----------------------------------------Depths (cm)------------------------------------- 

Depths 0-10 
 

10-20 

 Macropores 
Coarse Fine 

Micropores  Macropores 
Coarse Fine 

Micropores 
Pore sizes Mesopores Mesopores 

 
Mesopores Mesopores 

 
(>1000 μm) (60-1000 μm) (10-60 μm) (<10 μm) 

 
(>1000 μm) (60-1000 μm) (10-60 μm) (<10 μm) 

 ---------------------------------------------- SPSD ( m3 m-3)-------------------------------------------- 

P†† 0.01a 0.06a 0.04c 0.51a 
 

0.007a 0.03a 0.03cb 0.47a 

N 0.008a 0.09a 0.05c 0.50a 
 

0.01a 0.07a 0.03cb 0.50a 

2N 0.009a 0.06a 0.05ba 0.52a 
 

0.009a 0.05a 0.02c 0.54a 

F 0.008a 0.06a 0.07a 0.46a 
 

0.005a 0.03a 0.04b 0.51a 

HF 0.008a 0.06a 0.05ba 0.49a 
 

0.005a 0.03a 0.04cb 0.54a 

CK 0.007a 0.06a 0.06a 0.48a 
 

0.01a 0.05a 0.06a 0.44a 

 

Analysis of Variance (P>F) 

Treatment 0.3 0.5 0.01 0.09 
 

0.2 0.2 0.005 0.3 

P vs. 2N 0.2 0.7 0.04 0.9 
 

0.7 0.2 0.4 0.1 

Manure vs. 

Fertilizer 
0.08 0.2 0.04 0.01 

 
0.2 0.06 0.1 0.3 

†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended manure application rate;F, recommended fertilizer; HF, 

high fertilizer; and CK, control with no manure application. 
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Table 4.4 Water infiltration rate (qs, mm hr-1) as influenced by long-term manure and 

inorganic fertilizer management under corn-soybean rotation at Beresford and Brookings 

locations of South Dakota. 

 

Treatment Brookings Beresford 

 ---Infiltration rate (qs, mm hr-1)--- 

P†† 304bc
† 250bc 

N 326ba 264ba 

2N 412a 329a 

F 241bc 143d 

HF 225c 178dc 

CK 245bc 179dc 

 
Analysis of Variance (P > F) 

Treatment 0.01 0.001 

P vs. 2N 0.04 0.04 

Manure vs. Fertilizer 0.001 0.001 
†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to 
manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended 

manure application rate;F, recommended fertilizer; HF, high fertilizer; and CK, control with no manure application. 
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Figure 4.1 Soil water retention (WR; m3 m-3) for the 0-10 and 10-20 cm depths as 

influenced by long-term manure and inorganic fertilizer management under corn-soybean 

rotation at Beresford and Brookings locations of South Dakota. 
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CHAPTER 5 

RESPONSE OF SURFACE GHG FLUXES TO LONG-TERM MANURE AND 

INORGANIC FERTILZIER APPLICATION IN CORN AND SOYBEAN ROTATION 

 

ABSTRACT 

 This study was conducted to investigate the impacts of dairy manure and 

inorganic fertilizer on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) 

fluxes from soils managed under corn-soybean rotation. The study site was established 

under silty loam soil, and the treatments included three manure application rates 

[phosphorus based recommended rate (P), nitrogen based recommended rate (N) and two 

times recommended nitrogen rate (2N)], two inorganic fertilizer levels [recommended 

fertilizer (F) and high rate of fertilizer (HF)] and control (CK) replicated four times. Soil 

GHG fluxes were observed once a week from June 05, 2015 through October 08, 2015 

depending on the climatic conditions. The CO2 fluxes were significantly impacted by 

manure application. There were not any significant impacts from manure and inorganic 

fertilizer application on CH4 fluxes. Nitrous oxide fluxes were significantly impacted by 

inorganic fertilizer in 2016 whereas non-significant differences on N2O were monitored 

between manure and inorganic fertilizer in 2015. The CO2 flux from plots under CK 

treatment was 119 kg ha-1 day-1 while under 2N manure application was 707 kg ha-1 day-1 

in 2015. However, for 2016 were from 99 kg ha-1 day-1 under CK treatment to 266 kg ha-1 

day-1 under 2N manure application. This indicated that variation of CO2 flux in 2015 was 

higher than variation in 2016. Even though the highest flux was observed under 2N 

manure application in 2015, those under CK treatment (19.10 g ha-1 d-1) impacts were the 
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highest observations in 2016. Results from this study also conclude that, air temperature, 

and soil moisture content strongly impacted soil CO2 fluxes, whereas soil moisture 

impacted the direction of CH4 fluxes. Nitrous oxide was strongly impacted by inorganic 

fertilizer application whereas impacts were for shorter relative to timing of manure 

application.  

Keywords: Greenhouse gas emissions (GHG), manure, inorganic fertilizer, corn-soybean 

rotation, reduced tillage 

 

INTRODUCTION 

 Agricultural emissions are an important contributing factor to global warming and 

stratospheric ozone depletion, and thus, help in regulating the earth’s surface temperature 

and precipitation regimes (Sejian, Samal, et al., 2015). Agricultural soils, covering 37% 

of the earth’s land surface, are responsible for 18% of the global GHGs emissions 

(Massé, Talbot, et al., 2011). Concentrations of the three most important greenhouse 

gases (GHG) namely carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), 

have increased dramatically over the past 255 years in the atmosphere (Marble, Prior, et 

al., 2011). Soil and crop management practices have significantly contributed to these 

GHG emissions. Agricultural production and livestock manure are responsible for 

significant amounts of GHG emissions (Bennetzen, Smith, et al., 2016, Kumar, 

Nakajima, et al., 2014, Sejian, Samal, et al., 2015). The US dairy industry produces 

approximately 2% of the total US GHG emissions that come from the feed, cattle and 

manure management, and climatic factors at the farm level (Cortus, Jacobson, et al., 

2015). GHG emissions from animal production include CH4 from livestock manures, and 
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N2O, from land applied manures and grazed lands (Kebreab, Clark, et al., 2006). 

Therefore, there is an urgent need for the livestock industry to adopt environmentally 

sustainable production practices (Massé, Talbot, et al., 2011).  

 Animal manure as a fertilizer can contribute significantly to GHG emissions. In 

addition, manure stored in confinement barns, manure applied to land for crop nutrients 

(Cortus, Jacobson, et al., 2015), and manure from grazing animals contribute significant 

amount of emissions (Sejian, Samal, et al., 2015, Zhu, Dong, et al., 2011). Manure 

contains complex organic compounds, which are broken down by bacteria resulting in the 

production of CO2 under aerobic and CH4 under anaerobic conditions (Sejian, Samal, et 

al., 2015). In contrast, inorganic fertilizers (N and P) are reported to have a mixed impact 

on GHG emissions. For example, Schmer, Liebig, et al. (2012) reported that in the 

Northern Great Plains, the N fertilizer did not impact CO2 and CH4 emissions. Nitrogen 

fertilizer usage may have important consequences for direct and indirect N2O emissions 

(Kim, Rafique, et al., 2014). Therefore, optimization of N rate is critical to avoid N 

related pollution (GHG emissions) and to support carbon sequestration (Mbonimpa, 

Hong, et al., 2015).  

 Greenhouse gas emissions from soils are sensitive to climate change and land 

management practices (Rafique, Kumar, et al., 2014). Emission of methane (CH4) by 

livestock is a major cause of global warming (Sejian, Rotz, et al., 2011). Methane is the 

single largest source of GHG emission from dairy farms (Sejian, Rotz, et al., 2011). 

Principal factors affecting CH4 emissions from manure are the amount of manure 

produced and the portion of the manure that decomposes anaerobically (Sejian, Samal, et 

al., 2015). The N2O emissions from soil application of manure and fertilizer are also a 
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major contributor to the global agricultural emissions (Li, Watson, et al., 2013, Sejian, 

Samal, et al., 2015). Globally, manure production and use contribute more N2O emissions 

to the atmosphere than does synthetic fertilizer N (Davidson, 2009). However, to meet 

the nutritional needs of a growing human population, more N inputs to agriculture are 

likely needed (Davidson, 2012). The use of N fertilizers and animal manures contributing 

about 24 % of annual N2O emissions (Kim, Rafique, et al., 2014). It has been suggested 

that N fertilizer use, land use and its management are the major controlling factors of 

N2O emissions from agricultural lands (Kim, Rafique, et al., 2014). The soil with a 

history of manure application had a much higher propensity for N2O emission than the 

non-manured soil (Graham, van Es, et al., 2013). Similarly, manure and inorganic 

fertilizer also strongly impact the soil surface CO2 emissions. The latter are generated 

from autotrophic metabolism of plant roots and associated mycorrhizae, and 

heterotrophic respiration from soil organisms (Ryan and Law, 2005) . Soil organic carbon 

serves as substrate to soil microorganisms that generate CO2 in aerobic conditions 

(Davidson, Verchot, et al., 2000). In addition to soil amendments, climatic fluctuations 

also strongly affect the GHG balance in agricultural systems (Rafique, Kumar, et al., 

2014). Agricultural GHG emissions are complex and heterogeneous due to the combined 

effect of meteorological drivers as well as land management and soil properties (Rafique, 

Kumar, et al., 2014). The GHGs fluxes impacted by climatic fluctuations especially with 

changes in precipitation and temperature (Mbonimpa, Hong, et al., 2015). Precipitation 

determines the water filled pore space (WFPS) in soil which impacts GHG fluxes by 

influencing the oxygen status of the soil (Rafique, Kumar, et al., 2014).  
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Improved livestock and grassland management, and soil nutrient management can 

be strategies to mitigate emissions and create further resilience to climate change 

(Bennetzen, Smith, et al., 2016). However, uncertainty still remains about overall 

implications of fertilization rate, climate and soil conditions on GHGs emissions 

(Mbonimpa, Hong, et al., 2015). Therefore, the present study was conducted to assess the 

impacts of long-term manure and inorganic fertilizer application on soil surface GHG 

emissions under corn-soybean rotation systems, and compared these emissions with that 

from control treatment with no manure and inorganic fertilizer. 

 

MATERIALS AND METHODS 

Experimental Site and Experimental Design 

The experimental site was located at the South Dakota State University Felt 

Research Farm (44o 22’ 07.15” N and 96o 47’ 26.45” W) in Brookings County, South 

Dakota (SD). Soil type was Vienna soil (Fine-loamy, mixed, frigid Udic Haploborolls). 

The experimental plots were established in a corn (Zea mays L.)-soybean (Glycine max 

L.) rotation system, and treatments were laid out in a randomized complete block design 

with four replications. The individual plot was of 6 m × 18 m in size and managed under 

a reduced tillage system. Soils of the study site were well drained, and site was 

established on nearly flat areas with the slope of less than 1% with the elevation of about 

518 m. The experimental areas were characterized with a continental climate having 

relatively humid summers and cold, snowy winters. 
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Treatments 

 The study site included three different manure application rates (i) manure rate 

ascertained based on the Phosphorous requirement (P), (ii) recommended manure rate 

based on nitrogen requirement (N), (iii) two times prescribed nitrogen rate (2N), and two 

distinctive fertilizer application rates: (iv) suggested fertilizer rate (F), and (v) high rate of 

fertilizer application (HF), and (vi) control. For manure and inorganic fertilizer 

application, the crop yield goal of 180 kg ha-1 for corn and 44.8 kg ha-1 for soybean was 

used. The manure and fertilizer were applied in the spring in a manual application and 

incorporated by disking at 20 cm before planting. Soybean was mechanically planted in 

the spring and was harvested in the fall.  

 

Sampling and Analysis 

The PVC static chambers (25 cm diameter x 15 cm height) were installed in every 

plot to monitor soil surface GHG fluxes. A chamber was installed between rows in each 

plot throughout the season. Gas samples were taken once a week depending on weather 

conditions from June to October 2015 and May to October 2016. In addition to soil 

surface GHG flux monitoring, soil temperature and moisture data for 0-5 cm depth was 

also collected with a thermometer at every chamber throughout all sampling times. Gas 

samples were collected at 0, 20 and 40 minutes’ intervals using 10-ml syringe. These 

samples were taken via a chamber septum and transferred to a 10-ml, argon-filled vials. 

Concentrations of CO2, CH4, and N2O were measured with 2-3 days of sampling using a 

Gas Chromatograph (Shimadzu 14B with a CombiPal AOC-500 auto sampler, 2-ml 

injection loop, a 1/8” stainless-steel Porapack Q (80/100 mesh) column, a Haysep-D 
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column (columns operated at 60°C), and a flame ionization detector and a lepton capture 

detector each at 260°C)]. Daily flux of gases was estimated from the concentration in the 

chamber headspace over 40 min collection period. Daily flux (F, mass of g gas ha-1 day-1) 

was computed as: 

𝐹 = (
∆𝑔

∆𝑡
) (

𝑉

𝐴
) 𝑘 

where ∆g/∆t is the rate of gas change (CH4, CO2 or N2O) concentration inside the 

chamber (mg CH4-C, CO2-C or mg N2O-N m-2 min-1); V is the chamber volume (m3); A 

is the surface area circumscribed by the chamber (m2) and k is the time conversion factor 

(1440 min day-1). Gas fluxes were calculated from the time vs. concentration data using 

linear regression or, the algorithm of (Hutchinson and Mosier, 1981, Ussiri and Lal, 

2009) when the time vs. concentration data were curvilinear. A positive value of F 

corresponds to a net emission of gas from the soil to the atmosphere, and a negative F 

value corresponds to a net transfer of gas from atmosphere into the soil. These data were 

used to calculate the cumulative emissions over the experimental period by linear 

interpolation of data points between two successive sampling events and numerical 

integration of underlying area using the trapezoid rule (Ussiri and Lal, 2009, Whittaker 

and Robinson, 1967).  

During each sampling date, surface (0-5 cm) soil moisture samples were obtained 

approximately 20 cm away from each chamber and soil water content was measured 

volumetrically by a HH2 moisture sensor (Delta-T-Devices, Cambridge, England). Data 

for soil properties are presented in (Table 1). Water Field Pore Size was calculated by 

using equation (Mbonimpa, Hong, et al., 2015) below; 
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𝑊𝐹𝑃𝑆 =
𝜃

𝑆𝑜𝑖𝑙 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦
∗ 100 

where 𝜃 is the volumetric moisture content (m3 m-3 ). Soil porosity (m3 m-3) was 

calculated using a particle density value of 2.65 Mg m-3, and soil bulk density measured 

from the field using core method. 

 

Statistical Analysis  

 Statistical analysis was performed to determine the impacts of treatments on GHG 

emissions (CO2, CH4, N2O) under different levels of manure and chemical fertilizer 

applications. The least significant difference is estimated (Duncan’s LSD) among 

treatments using the ‘Mixed procedure in SAS 9.3 (Institute, 2012). Treatments were 

considered fixed effects and replications as a random effect. In addition, contrasts were 

also determined as follows: Manure vs. Fertilizer, and P vs. 2N (P-based manure 

application rate versus two times N based recommended application rate of manure). 

 

RESULTS 

Climate and Soil Properties 

The average daily precipitation and air temperature for the sampling period were 

3.53 mm and 19.5°C, respectively (Fig. 1). The long-term (8 years) average annual 

precipitation and minimum and maximum temperature were 367 mm, -15.8°C, and 27.8 

°C, respectively. Annual precipitation in 2015 and 2016 was 2.3% and 18.9% higher than 

the long-term annual average precipitation. Average temperature also influences the soil 
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temperature; it was positively correlated with soil temperature in 2015 (R2 = 0.48), and 

2016 (R2 = 0.16). 

Data on selected soil properties show that the manure applications significantly 

influenced soil properties for the 0–7.5 cm depth (P< 0.05; Table 1). For the 0–10 cm 

depth, soil pH at 2N manure (pH = 7.1) was more alkaline compared to that under HF 

inorganic fertilizer (pH = 6.4). The SOC and TN concentrations at this depth were 48% 

and 35%, respectively, higher at the 2N (38.3 and 3.5 g kg -1) compared to those at the 

HF (25.8 and 2.6 g kg-1). A similar trend was observed for WAS, where it was 13% 

higher at 2N than HF. Results also indicated that soil BD was 18% lower in the 2N as 

compared to that in the HF for the 0–7.5 cm depth.  

 

Soil moisture content (θ), Soil temperature (oC) and Water filled pore space (WFPS, %) 

Soil moisture content (θ; m3 m-3) on a volumetric basis (measured at the time of 

gas sampling), on an average, was higher under the 2N manure treatment for the 0–5 cm 

compared to other treatments (Fig. 1). Moisture content was associated with temperature 

and precipitation. A decline in temperature and precipitation for both 2015 and 2016 

concurs with a severe decline in θ under all treatments. A similar trend was observed 

when there was an increase in the temperature and precipitation. No moisture and gas 

samples were collected from October 2015 to May 2016 due to low temperature (Fig. 1). 

There was not any significant difference on soil temperature observed but it was 

significantly associated with precipitation and air temperature (Fig. 1).  

The water filled pore space (WFPS) was lower at the 2N manure application than 

the inorganic fertilizer application and control (Fig. 2). The WFPS was significantly 
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affected by 2N manure application with lower WFPS than the lower manure rates and 

inorganic fertilizer applications. Monthly variations in the WFPS resemble those of θ 

throughout the sampling period (2015 and 2016). The WFPS was lower during days with 

low precipitation, and low temperature. Further, the trend of WFPS showed a reduction 

from middle of August to October 2015 and a trend with continuous increase from 

beginning of May until August 2016 (Fig. 2).  

 

Daily average of CO2, CH4 and N2O fluxes 

Daily average soil surface CO2 fluxes were higher under the 2N manure 

application (Fig. 3). Higher fluxes occurred in wet and warm periods of the year. Daily 

soil CO2 flux peaks coincide with that of temperature and precipitation. These fluxes 

started increasing from May onwards, peaked in July and started decreasing until around 

September. The largest difference in the soil CO2 fluxes was observed in June 27 of 2015 

between the 2N manure application (70.29 kg ha-1 day-1) and control (8.27 kg ha-1 day-1), 

where the peak of CO2 fluxes was 470% higher under the 2N manure application than the 

HF inorganic fertilizer application. In contrast, the minimum difference (-11%) between 

2N manure and HF was observed on September 22, 2015 (Fig. 3). The CO2 peak was 

observed from soils at the 2N manure application on 27 June, 2015 (70.29 kg CO2-C ha-1 

day-1) and it was 2.7 times higher than that on 30 June 2016 (25.83 kg CO2- C ha-1 day-1), 

whereas CO2 peak at the HF inorganic fertilizer was 2.1 times higher in 2016 (25.83 kg 

CO2-C ha-1 day-1) compared to 2015 (12.31 kg CO2-C ha-1 day-1; Fig. 3).  

Methane fluxes under all the treatments varied with climatic conditions (Fig. 3). 

The summer months of 2015 exhibited alternating episodes of release and uptake. 
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Sharper changes were observed under 2N manure application than under inorganic 

fertilizer applications and control. Higher manure application impacts CH4 flux more than 

lower manure application. The 2N manure exhibited higher differences between uptake 

(10.3 g ha-1 day-1) and release (3.4 g ha-1 day-1) of CH4 in June and October 2015, 

respectively (Fig. 3). However, under HF inorganic fertilizer application, August 2015 

exhibited highest CH4 uptake (4.191 g ha-1 day-1) and June 2016 exhibited the highest 

release (5.0 g ha-1 day-1). Some days also exhibited opposite trends in release and uptake 

of CH4 between manure and fertilizer applications. The N rate from manure application 

impacted daily soil CH4 fluxes; however, it was not always significant. The soil CH4 

release was higher with the high N rate compared to that with the low and medium 

manure N rate applied plots (Fig. 3).  

Daily average soil surface N2O fluxes were higher under the 2N manure 

application in 2015 (Fig. 3). Higher fluxes occurred in wet and warm periods of the year. 

Daily soil N2O flux peaks coincide with that of temperature and precipitation. These 

fluxes started increasing from May onwards, peaked in June and started decreasing until 

around September. The largest difference in the soil N2O fluxes was observed on June 21 

of 2015 between the 2N manure application (129.3 g ha-1 day-1) and HF inorganic 

fertilizer (12.2 g ha-1 day-1), where the peak of N2O fluxes was 9.6 times higher at the 2N 

manure application than the HF treatment. In contrast, the minimum difference (8%) 

between 2N manure and HF was observed on September 15, 2015 (Fig. 3). The N2O peak 

was also observed under the 2N manure application on June 21, 2015 (129.3 g ha-1 day-1). 

On the other hand, there were two different peaks in 2016. Before till June 2, 2016 and 

after July 15 2016, there was a peak observed under N manure application (34.7 g ha-1 
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day-1). However, HF inorganic fertilizer application was observed as highest treatment 

for N2O fluxes from 16 June 2016 to 15 July 2016 when compared to all other treatments. 

The peak point was observed on July 15th 2016 which indicated that HF inorganic 

fertilizer was highest impacted treatment (196.9 g ha-1 day-1) on GHG emissions as 

compared to the other treatments. This might be due to fertilizer application was between 

2 June 2016 and 6 June 2016. It is evident that inorganic fertilizer impacts continue for 

21 days after application (Hensen, Skiba, et al., 2013). The N2O flux under HF inorganic 

fertilizer treatment was 784 times higher than those under 2N manure treatment on July 

15, 2016. 

 

Monthly average of CO2, CH4 and N2O fluxes 

Monthly soil CO2 fluxes were influenced by treatments in 2015 and 2016 (P < 

0.05; Table 3). Monthly soil CO2 fluxes were higher under 2N manure application 

compared to that under lower manure application rates and fertilizer applications (P < 

0.05; Table 3) except on August 2015 and May 2016 where CO2 fluxes were the highest 

under the N manure application treatment. The highest fluxes were observed in June 2015 

under 2N manure application (375.48 kg CO2-C ha-1 day-1). These fluxes under 2N 

manure application in June and July 2015 were 3.04 and 2.6 times higher compared to 

those in June and July of 2016, respectively (Table 3). Similar trend was observed under 

N and P manure applications as well. The inorganic fertilizer rates did not have any 

significant influence on soil CO2 fluxes for either years except July 2015. The HF 

inorganic fertilizer applications (113.39 kg CO2-C ha-1 day-1) in August 2015 had 14.1 

times higher impacts on CO2 flux compare to those (8.04 kg CO2-C ha-1 day-1) in August 
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of 2016. In addition, overall values under all treatments for soybean crop in 2015 were 

higher than those for corn in 2016. On the other hand, HF fertilizer applied plots were 1.4 

times higher for corn in June 2016 compare to those for soybean in June 2015. A similar 

trend was observed from plots under F fertilizer application. 

Monthly soil CH4 fluxes were not impacted either by manure or inorganic 

fertilizer applications, except in June 2015 where, 2N manure application slightly 

influenced CH4 fluxes (Table 2). The 2N manure applied plots (30.75 g ha-1 day-1) were 

99% higher than N manure application (15.44 g ha-1 day-1), 1109% higher than P manure 

application (2.54 g ha-1 day-1), 1285% higher than HF inorganic fertilizer application 

(2.22 g ha-1 day-1) and 1596% higher than control (1.81 g ha-1 day-1) whereas F fertilizer 

impacted plots showed -0.95 g ha-1 day-1 flux. Higher observations were observed under 

manure treatments for June-July in 2015 where temperature was higher; however, 

fertilizer showed higher impacts on CH4 for September.  

Monthly N2O fluxes were impacted by treatments in 2015 and 2016 (P<0.05; 

Table 4). For July 2015 (P<0.03), these fluxes under 2N manure treatment (65.70 g ha-1 

d-1) were higher than those under N (40%; 46.78 g ha-1 d-1), P (1620%; 3.82 g ha-1 d-1), 

HF (3709%;8.76 g ha-1 d-1), F (9267%;3.92 g ha-1 d-1) and CK (278.58 times;0.24 g ha-1 

d-1). Similarly, manure applications emitted higher fluxes in comparison with fertilizer 

applications and control for 2015. Monthly soil N2O fluxes were higher under 2N manure 

application compared to lower manure application rates and fertilizer applications except 

June-July 2016 where HF fertilizer application (391.66 g ha-1 day-1, June and 197.93 g ha-

1 day-1, July) was the highest impacted treatment.  For June 2016 (P<.0001), HF 

inorganic fertilizer applicate plots (391.66 g ha-1 day-1) were higher than those under F 
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(6.88 times; 56.97 g ha-1 d-1), N (9.51 times; 41.20 g ha-1 d-1), 2N (14.85 times; 26.36 g 

ha-1 d-1), P (22.42 times; 17.47 g ha-1 d-1) and CK (2264.41 times; 0.17 g ha-1 d-1).  

Similarly, HF fertilizer treatment (197.93 g ha-1 d-1) was 631.42 times higher than highest 

manure application (2N; 0.31 g ha-1 d-1) and all other treatments for July 2016 (P<0.048). 

However, this trend was not observed in August 2016. The 2N manure treatment was 8 

times higher in June 2015 than those in June 2016, HF fertilizer applicate plots in June 

2016 were 7 times lower than those in June 2015.A similar finding were presented; 

whereas, 2N manure treatment was 209 times higher in July 2015 than those in July 

2016, HF fertilizer applicate plots in July 2016 were 114.75 times lower than those in 

July 2015. 

 

Annual and total Soil Surface CO2, CH4 and N2O Fluxes 

Data showed that the treatment significantly impacted soil CO2 fluxes throughout 

the sampling period (Table 5). Annual CO2 fluxes were higher under 2N manure 

application (707 and 266 kg ha-1 day-1) than N manure (366 kg ha-1 day-1% and 204 kg 

ha-1 day-1%) and P manure (290 kg ha-1 day-1% and 172 kg ha-1 day-1%) applications in 

2015 and 2016, respectively. On the other hand, HF inorganic fertilizer application rate 

(243 kg ha-1 day-1) was 60% higher than F fertilizer application (151 kg ha-1 day-1) in 

2015; whereas, F (164 kg ha-1 day-1) was 4% higher than HF (157 kg ha-1 day-1) in 2016. 

In addition, the highest rate of manure application (2N) was 191% and 69% higher 

impacting CO2 flux in comparison with the highest inorganic fertilizer application (HF) 

and also 496% and 169% than control treatment (CK;119 and 99 kg ha-1 day-1) in 2015 

and 2016. The CO2 flux from plots under CK treatment was 119 kg ha-1 day-1 while under 
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2N manure application was 707 kg ha-1 day-1 in 2015. However, for 2016 were from 99 

kg ha-1 day-1 under CK treatment to 266 kg ha-1 day-1 under 2N manure application. This 

indicated that variation of CO2 flux in 2015 was higher than variation in 2016. Also, 

higher manure produced higher CO2 fluxes compare to lower manure rates and fertilizer 

rates whereas there are no differences between inorganic fertilizer (F and HF) rates.  

Data showed that the treatment did not significantly impacted soil CH4 fluxes for 

sampling periods in 2015 and 2016 (Table 5). Plots under 2N manure treatment (42.57 g 

ha-1 day-1) were higher impacted than those under F (12.76 g ha-1 d-1), P (11.32 g ha-1 d-1), 

HF (11.00 g ha-1 d-1) whereas N (-8.18 g ha-1 d-1) and CK (-37.88 g ha-1 d-1) were 

monitored in 2015. Even though the highest flux was observed under 2N manure 

application in 2015, those under CK treatment (19.10 g ha-1 d-1) impacts was the highest 

observation in 2016. The trend in 2015 clearly showed that 2N manure had higher 

impacts on CH4 fluxes but differences were not significant. 

Data showed that the treatment significantly impacted soil N2O fluxes 

throughout the sampling period (Table 5). 2N manure application (306 g ha-1 d-1) 

performed higher than all other treatments whereas F (8 g ha-1 d-1) was the lowest 

observation in 2015. The 2N manure treatment impacted plots were higher than those 

under N manure application (197 g ha-1 d-1), HF (118 g ha-1 d-1), P (30 g ha-1 d-1), CK (17 

g ha-1 d-1) and F (8 g ha-1 d-1) in 2015.However, differences were not statistically 

significant. In contrast, HF fertilizer (594 g ha-1 d-1) applied plots were higher than those 

under impacts of N manure application (90.35 g ha-1 d-1), F (80.75 g ha-1 d-1), 2N (75.67 g 

ha-1 d-1), P (26.55 g ha-1 d-1) and CK (1.42 g ha-1 d-1) in 2016 (P<0.0003). The year 2015 

had soybean crop on stand so the impacts from inorganic fertilizer treatment were only 
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from long term whereas manure was applied continuously every year. However, there 

was fertilizer application in 2016. This changes indicates that fertilizer application 

strongly impact N2O flux and continuous application of fertilizer might produce much 

more N2O emission. 

 

DISCUSSION 

Soil Properties 

Higher SOC and TN concentrations, moisture content, and soil CO2 fluxes were 

observed under manure application compared to those under inorganic fertilizer 

application. This was attributed to the fact that addition of manure increase soil nutrients 

and organic matter in comparison with that of inorganic fertilizer and control. Higher 

SOC in manure application is often associated with lower bulk density (Schmer, Liebig, 

et al., 2011). Similar findings were observed in this study. Celik, Gunal, et al. (2010) 

reported that bulk density under manure application was 26.7% lower compared to that 

under inorganic fertilizer application, indicating that soil structure for root growth was 

better under manure application which also supported by higher WAS under manure 

application. The higher SOC concentration is also associated with the higher aggregation. 

Soil pH was higher (pH = 7.05) under manure application in comparison to those under 

inorganic fertilizer application (pH = 6.38). This indicates that manure in soils helps to 

maintain soil pH (Eghball, 2002). The influence of fertility practices is associated with 

various factors including antecedent soil nitrogen, type of fertilizer, time of application, 

soil series and local climate (Lee, Doolittle, et al., 2007, Makaju, Wu, et al., 2013).  
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Soil Surface GHG Fluxes 

Manure addition can impact CO2 emissions by improving soil properties. In 

addition, SOC may indirectly impact CO2 emission associated with other soil properties. 

For instance, higher WFPS and bulk density associated with lower porosity decline 

aerobic conditions (Beare, Gregorich, et al., 2009). It also reported by Mbonimpa, Hong, 

et al. (2015) that the combination of lower SOC, lower porosity, high bulk density, and 

higher WFPS resulted in lower CO2 fluxes in N rates (inorganic fertilizer applied plots). 

Data from this study show that the CO2 fluxes were correlated with temperature and 

precipitation. Similarly, Wagle and Kakani (2014) also reported that seasonal CO2 fluxes 

are correlated with temperature and moisture. Warm and moist conditions are one of the 

reasons for higher CO2 fluxes due to higher microbial activity (Smith, Martino, et al., 

2008). Soil microbial activity increases under aerobic conditions, and reduces with the 

decline in oxygen availability (Linn and Doran, 1984). Soil and air temperature strongly 

impact soil surface GHGs fluxes. Differences in soil and air temperature might be a 

reason for increase or decrease in GHGs fluxes.  

Manure and inorganic fertilizer applications did not have any significant impact 

on soil surface CH4 fluxes. The inorganic fertilizer applications to the soil did not 

necessarily translate into higher CH4 release possibly due to lower SOC which serves as 

substrate to methanogens. Inorganic fertilizer applications did not show any significant 

impacts on soil CH4 fluxes partially due to their low impact on soil moisture content. In 

general, well-developed soil structure and higher aeration under the manure treatments 

might be another reason for non-significant CH4 emissions. Changes in CH4 fluxes might 

be due to differentiation of moisture and temperature. The temperature is related to other 
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environmental conditions such as precipitation and WFPS which are local and dominant 

determined factors (Curry, 2009). Soil porosity and temperature promote soil microbial 

activities (Scott, Jenerette, et al., 2009). The differences in CH4 fluxes between 2015 and 

2016 data may be associated with climate, soil conditions and crop. The present study 

indicates that soil CO2 fluxes were strongly correlated with manure application whereas 

inorganic fertilizer did not impact CO2 fluxes. However, CH4 fluxes were not impacted 

by both manure and inorganic fertilizer applications. Some studies reported that there is a 

strong correlation between CH4 and CO2 due to similar source or process (Bjerg, Zhang, 

et al., 2012, Ngwabie, Jeppsson, et al., 2011, Wu, Zhang, et al., 2012) such as enteric 

fermentation and ruminant respiration (Hamilton, DePeters, et al., 2010). 

Soil surface N2O flux does not have strong correlation with other gases because 

the mechanisms and sources are different (Joo, Ndegwa, et al., 2015). Soil N can be lost 

through denitrification, and leaching (Mbonimpa, Hong, et al., 2015). Soil moisture 

content might be associated with a rise in denitrification rates and hence N2O emissions. 

Baggs, Stevenson, et al. (2003) studied on N2O emissions under inorganic N fertilizer 

and crop residues application on a silt loam soil in UK and reported that N2O emissions 

went up more with increased in NH4NO3 fertilizer (200 kg N ha−1) application in 

comparison with  the residues. Baggs, Stevenson, et al. (2003) also mentioned that 

higher emission continued for the first 23 days after application of inorganic fertilizer. 

This statement supports the impacts of inorganic fertilizer on N2O emission in 2016. In 

addition, Eichner (1990) studied an experiment between 1979 and 1987 that included 

104 fields to estimate worldwide N2O emission and reported that N2O emission is 

associated with type and quantity of fertilizer. Petersen (1999) studied N2O emissions 
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under liquid manure (anaerobically digested slurry), and inorganic fertilizers in spring 

barley, and reported that increase in the soil moisture content or NO3
- availability had no 

significant effect on accumulated N2O losses; however, nitrification and denitrification 

are affective processes that influence N2O emission. Petersen (1999) also mentioned that 

anaerobic digestion of slurry potentially could reduce N2O fluxes by 1.2 to 2.5%. 

Davidson (2009) mentioned that soil microbial production is the main source of N2O 

which increased with nitrogen fertilizer application. Davidson (2009) also reported that to 

reduce atmospheric N2O sources, manure management is important to consider. In 

addition, climate is important factor on N2O emissions. It has been reported that 

climatic conditions might significantly enhance estimation of CH4 and N2O emissions 

from animal manure (Sommer, Petersen, et al., 2004). Higher manure and inorganic 

fertilizer applications have higher impacts on N2O emission compare to lower rates of 

manure and inorganic fertilizer. This statement is supported by Meng, Ding, et al. (2005) 

with the application of manures and fertilizers for three different rates 

(300 kg N ha−1 year−1, 150 g N2O-N ha−1 year−1 and 856 g N2O-N ha−1 year−1). 

 

CONCLUSION/SUMMARY 

A long-term study was conducted at one site in South Dakota to monitor the 

influences of organic manure and inorganic fertilizers on GHG emissions that include 

methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O). Results from this study 

showed that soil temperature and moisture which are associated with climatic conditions, 

were significantly correlated with overall GHG emissions. The WFPS was higher under 

inorganic fertilizer application and the WFPS and gas fluxes were significantly 
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correlated. The manure and fertilizer applications did not show significant impacts on 

CH4 emission as compared to the control. Soil surface CO2 was significantly impacted by 

manure application compared to inorganic fertilizer application and control, whereas 

there were significant impacts of inorganic fertilizer on CO2emission. Soil surface N2O 

fluxes were impacted by both manure and inorganic fertilizer however inorganic fertilizer 

impacts were higher than manure especially in 2016. 

Data from this study conclude that higher manure rates result in higher emissions, 

however, soil surface N2O fluxes were higher with the inorganic fertilizer, therefore, and 

manure can be an option for improving the soil organic matter content and lowering the 

GHG emissions as compared to inorganic fertilizer. 
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Table 5.1 Soil Properties for 0-7.5 cm depth as influenced by long-term manure and 

inorganic fertilizer management under corn-soybean rotation at Brookings locations of 

South Dakota. 
 

 Soil Parameters 

Treatments 
SOC††† 

g kg-1 

TN 

g kg-1 
pH 

BD 

Mg m-3 

WAS 

g g-1 

P†† 27.6c† 2.5cb 6.9ba 1.13b 91.9bc 

N 30.9b 2.8b 6.9ba 1.07b 93.5ba 

2N 38.3a 3.5a 7.1a 0.87c 98.6a 

F 24.0d 2.3c 6.7b 1.27a 89.2bc 

HF 25.8dc 2.6cb 6.4c 1.27a 87.4c 

CK 23.3d 2.2c 6.9ba 1.29a 90.1bc 

 Analysis of variance 

Treatment <.0001 0.0008 0.001 <.0001 0.01 

P vs. 2N <.0001 0.0008 0.3 0.0001 0.02 

Manure vs. 

Fertilizer 
<.0001 0.01 0.01 

0.0005 
0.02 

†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to 

manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended 

manure application rate;F, recommended fertilizer; HF, high fertilizer; and CK, control with no manure application. 
†††SOC, Soil organic carbon; TN, Total nitrogen; pH, Soil pH; BD, Soil bulk density; WAS, Water aggregate stability. 
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Table 5.2 Monthly CH4 Fluxes as influenced by long-term manure and inorganic fertilizer management under corn-soybean 

rotation at Brookings locations of South Dakota. 

 

Treatments 

------------------------2015--------------------------  -----------------2016--------------- 

June July August September October  May June July August 

-----------------------------------g CH4-C ha-1 d-1 ----------------------------------------- 

P†† 2.5a† 4.4a 3.6a 0.5a 0.3a  12.5a -0.8a 0.8a 3.1a 

N 15.4a 2.7a 3.4a -9.6a -20.1a  14.7a 0.04a 0.3a 0.2a 

2N 30.8a 9.8a 0.7a 8.0a -6.7a  6.3a -1.9a 0.05a 0.3a 

F -0.9a 0.3a -2.7a 15.3a 0.8a  0.7a 0.04a -1.5a -0.07a 

HF 2.2a 0.4a 10.5a -2.1a -0.08a  -0.04a -9.9a 0.1a 0.02 

CK 1.8a -7.8a 0.2a -32.5a 0.4a  3.8a -0.5a 16.0a -0.2a 

 
 Analysis of variance 

Treatment 0.3 0.4 0.9 0.5 0.8  0.4 0.5 0.2 0.4 

P vs. 2N 0.06 0.5 0.8 0.8 0.7  0.5 0.8 0.9 0.1 

Manure vs. Fertilizer 0.01 0.4 0.9 0.8 0.2  0.05 0.3 0.8 0.2 
†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended manure application rate;F, recommended fertilizer; HF, 

high fertilizer; and CK, control with no manure application. 
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Table 5.3 Monthly CO2 Fluxes as influenced by long-term manure and inorganic fertilizer management under corn-soybean 

rotation at Brookings locations of South Dakota. 

 

Treatments 

----------------------2015----------------------  -----------------2016--------------- 

June July August September October  May June July August 

------------------------------------kg CO2-C ha-1 d-1 ------------------------------------ 

P†† 127.6b† 56.4a 88.0a 13.7b 4.1a  38.9ba 100.6a 22.4a 10.4a 

N 122.5b 94.7a 132.1a 16.6b 0.2a  81.7a 111.5a 1.09a 10.3a 

2N 375.5a 137.3a 130.2a 55.6a 8.5a  69.9a 123.6a 52.8a 19.3a 

F 61.4b 30.4a 34.2a 21.7b 3.5a  21.5b 93.8a 38.9a 9.5a 

HF 68.2b 39.2a 113.4a 20.1b 1.8a  15.9b 95.8a 37.6a 8.04a 

CK 44.4b 5.1a 51.0a 17.6b 0.6a  16.7b 45.7a 36.0a 0.3a 

 
 Analysis of variance 

Treatment 0.0001 0.12 0.3 0.04 0.3  0.04 0.2 0.1 0.7 

P vs. 2N 0.0002 0.1 0.4 0.005 0.3  0.2 0.4 0.1 0.5 

Manure vs. Fertilizer 0.004 0.0002 0.06 0.2 0.5  0.01 0.4 0.2 0.2 
†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended manure application rate;F, recommended fertilizer; HF, 

high fertilizer; and CK, control with no manure application. 
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Table 5.4 Monthly N2O Fluxes as influenced by long-term manure and inorganic fertilizer management under corn-soybean 

rotation at Brookings locations of South Dakota. 
 

 
-----------------------2015-----------------------  -------------------2016---------------- 

Treatments June July August September October  May June July August 

 
---------------------------------------g N2O ha-1 d-1 -------------------------------------------- 

P†† 17.5a† 3.8bc 1.2a 1.7a 6.0a  7.8b 17.5b 1.3b 0.02a 

N 61.2a 46.8ba 67.8a 21.4a 0.2a  45.4b 41.2b 0.1b 3.6a 

2N 213a 65.7a 24.1a 1.6a 1.5a  44.8b 26.4b 0.3b 4.2a 

F 3.1a 0.7c 0.1a 1.3a 2.5a  2.0a 57.0b 21.7b 0.05a 

HF 53.0a 1.7bc 60.2a 0.1a 2.7a  4.6a 391.7a 197.9a 0.06a 

CK 7.7a 0.2c 3.9a 3.0a 1.8a  0.1b 0.2b 1.1b 0.05a 

 
 Analysis of variance 

Treatment 0.3 0.03 0.5 0.2 0.8  0.04 <.0001 0.048 0.6 

P vs. 2N 0.05 0.01 0.6 0.9 0.3  0.05 0.9 0.9 0.2 

Manure vs. Fertilizer 0.2 0.001 0.9 0.2 0.9  0.008 0.0006 0.06 0.06 
†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended manure application rate;F, recommended fertilizer; HF, 

high fertilizer; and CK, control with no manure application. 
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Table 5.5 Annual GHGs Fluxes as influenced by long-term manure and inorganic 

fertilizer management under corn-soybean rotation at Brookings locations of South 

Dakota. 
 

Treatments 

-----CH4---- 

g ha-1 d-1 
 

----CO2---- 

kg ha-1 d-1 
 

----N2O---- 

g ha-1 d-1 

2015 2016  2015 2016  2015 2016 

--------------------------Annual Emissions------------------- 

 P†† 11.3a† 15.6a  290b 172bc  30a 26.6b 

N -8.2a 15.2a  366b 204ba  197a 90.4b 

2N 42.6a 4.6a  707a 266a  306a 75.7b 

F 12.8a -0.9a  151b 164bc  8a 80.8b 

HF 11.0a -9.7a  243b 157bc  118a 594a 

CK -37.9a 19.1a  119b 99c  17a 1.4b 

 
Analysis of variance 

Treatment 0.3 0.3  0.006 0.01  0.2 0.0003 

P vs. 2N 0.4 0.5  0.007 0.03  0.04 0.6 

Manure vs. 

Fertilizer 
0.9 0.2  0.0004 0.1  0.09 0.006 

†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to 

manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended 
manure application rate;F, recommended fertilizer; HF, high fertilizer; and CK, control with no manure application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



118 
 

           

 

Figure 5.1 Soil Moisture and Soil Temperature as influenced by long-term manure and 

inorganic fertilizer management under corn-soybean rotation and Climate at Brookings 

locations of South Dakota. 
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Figure 5.2 Water Filled Pore Space as influenced by long-term manure and inorganic 

fertilizer management under corn-soybean rotation and Climate at Brookings locations of 

South Dakota. 
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Figure 5.3 Daily average GHGs fluxes as influenced by long-term manure and inorganic 

fertilizer management under corn-soybean rotation and Climate at Brookings locations of 

South Dakota. 
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CHAPTER 6 

CONCLUSIONS 

 The present study was conducted at two different sites of Eastern South Dakota to 

examine the long-term influences of cattle manure and inorganic fertilizers on selected 

soil quality indicators that include pH, EC, SOC, TN, and water stable aggerates, soil 

hydrological parameters, and soil surface GHG emissions that include methane (CH4), 

carbon dioxide (CO2) and nitrous oxide (N2O) under corn-soybean rotation at two 

different long-term sites. The following conclusions can be drawn from this study: 

Study 1 – Long-term annual livestock manure application impacts on selected soil quality 

indicators under a corn-soybean rotation in South Dakota. 

(i) The application of manure did not impact soil pH, rather it maintained it as 

compared to that of control treatment. However, inorganic fertilizer decreased the soil pH 

as compared to manure and control treatments.  

(ii) Manure application increased the SOC for all the soil depths at either site as 

compared to inorganic fertilizer and control treatments. A similar trend was observed for 

the TN, however, differences were not always significant. A similar trend was also 

observed for EC that showed manure increased the soil EC in comparison to inorganic 

fertilizer and control. In addition, a higher rate of manure application increased the soil 

EC. 

(iii) In general, manure applications increased water stable aggregation (WAS), 

whereas, fertilizer application decreased the WAS.  

 It can be concluded from this study that the application of manure helped in 

improving the soil quality indicators as compared to that of inorganic fertilizer in corn-
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soybean cropping systems of South Dakota. However, future study is strongly 

encouraged to assess the economics and environmental impacts (water quality) associated 

with different application rates of manure on soils. 

 

Study 2 – Response of long-term cattle manure application on soil hydrological 

properties under corn-soybean rotation of two locations in eastern South Dakota. 

(i) The application of manure lowered the bulk density at 0-10 cm depth compared to 

fertilizer and control treatments. 

(ii) Manure increased the water infiltration compared to that of inorganic fertilizer 

application treatment. 

(iii) Manure tended increase to the soil water retention (SWR) compared to control at 

both sites, however, differences were not always significant. 

(iv) Manure application increased micropores and fine mesopores at the Brookings 

site compared to that of other applications compared to control and fertilizer treatments. 

However, differences were not always statistically significant. Manure also increased the 

distribution of micropores and coarse mesopores at the Beresford site.  

 

Study 3 – Response of surface GHG fluxes to long-term manure and inorganic fertilizer 

application in corn and soybean rotation. 

(i) Results from this study showed that soil temperature and moisture impacted the 

soil surface GHG emissions.  
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(ii) The manure and fertilizer applications did not show significant impacts on CH4 

emissions as compared to that of control treatment. 

(iii) Soil surface CO2 emission was significantly impacted by manure application 

compared to that of inorganic fertilizer application and control treatments, whereas, there 

were not any significant impacts of inorganic fertilizer on CO2 emissions. 

(iv) Soil surface N2O fluxes were impacted by both manure and inorganic fertilizer 

applications; however, inorganic fertilizer impacts were higher than manure especially in 

2016. 

 Data from this study conclude that higher manure rate produce higher emissions, 

however, soil surface N2O fluxes were higher with the inorganic fertilizer; therefore, 

manure as compared to inorganic fertilizer is an option for improving the soil organic 

matter content and lowering the GHG emissions. 
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APPENDICES AND SUPPORTING MATERIALS 

SUPPORTING MATERIALS 

S1. Mean Manure nutrient analysis, Average Treatments, and Nutrients applied at Brookings and Beresford, SD, 2003-2015. 

Mean Manure nutrient analysis 

Manure Moist Total N NH4-N Organic-N Avail N P2O5 K2O 

  --%-- -----------------------------------------------Kg/t--------------------------------------------------- 

Beef 21.9 10.6 1.3 9.3 5.6 8.5 9.9 

Dairy 32.5 6 2.7 3.3 3.2 2.5 4.2 

Average Treatments and Nutrients applied. 

Sites CK F P N 2N HF 

  Manure applied1 (ton/a) 

Beresford 0 0 4.18 9.75 19.5 0 

Brookings 0 0 8.23 18.66 33.79 0 

  -----------------------------N-P2O5-K2O----------------------------------------- -N-P2O5-K2O-Zn-S- 

Beresford 0 0 0 0 0 0 51 52 82 122 111 155 243 222 310 0 0 0 0 0 

Brookings 0 0 0 0 0 0 90 30 39 131 56 93 261 111 187 0 0 0 0 0 

  Fertilizer applied (lb/a) 

  -----------------------------N-P2O5-K2O----------------------------------------- -N-P2O5-K2O-Zn-S- 

Beresford 0 0 0 43 16 4 0 0 0 0 0 0 0 0 0 85 46 39 6 25 

Brookings 0 0 0 41 19 23 0 0 0 0 0 0 0 0 0 75 60 71 7 25 
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S 2. Soil organic carbon (SOC, g kg-1) for 0-10, 10-20, 20-30 and 30-40 cm depths as influenced by long-term manure and 

inorganic fertilizer management under corn-soybean rotation at Beresford and Brookings locations of South Dakota. 

 

Treatments 
Brookings 

 
Beresford 

-------------------------------------Depths (cm)----------------------------------------- 

Depths 0-10 10-20 20-30 30-40 
 

0-10 10-20 20-30 30-40 

 --------------------------- SOC (g kg-1)------------------------------- 

P†† 27.57c† 21.52cb 16.54cb 11.31b 
 

25.56c 20.28b 15.72cb 10.24b 

N 30.89b 21.91b 17.83b 12.56b 
 

29.07b 20.85b 17.82b 10.14b 

2N 38.29a 22.79a 19.97a 16.80a 
 

31.20a 24.81a 20.88a 15.62a 

F 24.03d 21.62cb 16.08c 11.70b 
 

22.22d 15.56d 13.75c 9.21b 

HF 25.78dc 21.05c 15.74c 10.67b 
 

23.64d 17.91c 13.45c 9.95b 

CK 23.34d 21.19c 16.85cb 12.26b 
 

22.90d 18.78c 15.98cb 10.40b 

 
Analysis of Variance (P>F) 

Treatment <.0001 0.0003 0.0001 <.0001 

 

<.0001 <.0001 0.0004 0.0003 

P vs. 2N <.0001 0.0006 0.0001 <.0001 <.0001 <.0001 0.0012 0.0001 

Manure vs. Fertilizer <.0001 0.0593 0.0002 0.0002 <.0001 <.0001 0.003 0.0158 
†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended manure application rate; F, recommended fertilizer; HF, 

high fertilizer; and CK, control with no manure application. 
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S3. The soil C: N ratio for 0-10, 10-20, 20-30 and 30-40 cm depths as influenced by long-term manure and inorganic fertilizer 

management under corn-soybean rotation at Beresford and Brookings locations of South Dakota. 

 

Treatments 
Brookings 

 
Beresford 

-------------------------------Depths (cm)------------------------------ 

Depths 0-10 10-20 20-30 30-40 
 

0-10 10-20 20-30 30-40 

 ------------------------------- C:N Ratio ------------------------------- 

P†† 10.92a† 10.58a 10.17a 9.74a 
 

10.21a 10.11b 9.35b 8.00b 

N 11.07a 10.91a 11.14a 9.63a 
 

10.52a 10.44ba 10.33b 7.79b 

2N 11.11a 11.39a 12.50a 11.09a 
 

9.87a 11.61a 13.11a 12.38a 

F 10.47a 10.84a 9.70a 9.96a 
 

9.99a 8.17c 8.39b 7.27b 

HF 10.11a 10.73a 9.69a 9.12a 
 

10.54a 9.38bc 8.22b 8.25b 

CK 10.42a 10.98a 11.03a 9.85a 
 

10.82a 10.21b 9.26b 7.76b 

 
Analysis of Variance (P>F) 

Treatment 0.4 0.7 0.3 0.6 
 

0.1 0.001 0.001 0.002 

P vs. 2N 0.7 0.1 0.1 0.2 
 

0.3 0.03 0.95 0.0009 

Manure vs. Fertilizer 0.09 0.5 0.1 0.2 
 

0.6 0.0009 0.0004 0.06 
†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended manure application rate; F, recommended fertilizer; HF, 
high fertilizer; and CK, control with no manure application. 
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S4. Global Warming Potential as influenced by long-term manure and inorganic fertilizer management under corn-soybean 

rotation at Brookings locations of South Dakota. 

 

Treatments   ----CH4----   ----CO2----  ----N2O----  -Cumulative-  --Total-- 

  2015 2016  2015 2016  2015 2016  2015 2016    

 -------------------------------------------(GWP CO2-C kg ha-1 d-1)------------------------------------- 

P 0.26a† 0.40a  290b 172bc  8.96a 7.9b  299b 180bc  479bc 

N 0.71a 0.35a  366b 205ba  58.41a 26.7b  425b 232ba  657b 

2N 0.98a 0.15a  707a 266a  90.62a 22.4b  799a 288ba  1087a 

F 0.32a 0.01a  151b 164bc  2.30a 23.9b  154b 188bc  341bc 

HF 0.36a 0.002a  243b 157bc  34.87a 175.9a  278b 333a  611 b 

CK 0.005a 0.45a  119b 99c  4.91a 0.4b  124b 99c  223c 

      Analysis of variance 

Treatment 0.3 0.4  0.006 0.01  0.2 0.0003  0.007 0.005  0.002 

P vs. 2N 0.1 0.4  0.007 0.03  0.04 0.6  0.006 0.053  0.003 

Manure vs. Fertilizer 0.2 0.2  0.0004 0.1  0.09 0.006  0.0003 0.5  0.007 
†Mean values followed by different lower letters between each treatment within each depth represent significant differences due to manure and inorganic fertilizer application at P<0.05.  
††P, phosphorus based recommended manure; N, nitrogen based recommended manure; 2N, nitrogen based double of recommended manure application rate;F, recommended fertilizer; HF, 
high fertilizer; and CK, control with no manure application. 
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APPENDIX 1  

 

A1.1. Soil pH for 0-10 and 10-20 cm depths in 2015 at Brookings site. BRK, Brookings 

site; REP, replication; TRT, treatment. 

0-10 cm 10-20 cm 

Plot Location REP pH TRT Plot Location REP pH TRT 

101 BRK 1 7.33 CNT 101 BRK 1 7.39 CNT 

201 BRK 2 6.89 CNT 201 BRK 2 7.14 CNT 

301 BRK 3 6.81 CNT 301 BRK 3 6.96 CNT 

401 BRK 4 6.39 CNT 401 BRK 4 6.92 CNT 

102 BRK 1 7.24 F 102 BRK 1 7.17 F 

202 BRK 2 6.63 F 202 BRK 2 6.73 F 

302 BRK 3 6.73 F 302 BRK 3 7.21 F 

402 BRK 4 6.05 F 402 BRK 4 6.47 F 

103 BRK 1 7.14 P 103 BRK 1 7.13 P 

203 BRK 2 6.9 P 203 BRK 2 6.83 P 

303 BRK 3 7 P 303 BRK 3 7.13 P 

403 BRK 4 6.6 P 403 BRK 4 6.79 P 

104 BRK 1 7.1 N 104 BRK 1 7.2 N 

204 BRK 2 6.97 N 204 BRK 2 6.91 N 

304 BRK 3 6.8 N 304 BRK 3 6.99 N 

404 BRK 4 6.71 N 404 BRK 4 6.75 N 

105 BRK 1 7.16 2N 105 BRK 1 7.35 2N 

205 BRK 2 7.07 2N 205 BRK 2 7.03 2N 

305 BRK 3 7 2N 305 BRK 3 6.92 2N 

405 BRK 4 6.96 2N 405 BRK 4 6.85 2N 

106 BRK 1 6.96 HF 106 BRK 1 7.25 HF 

206 BRK 2 6.49 HF 206 BRK 2 7.14 HF 

306 BRK 3 6.23 HF 306 BRK 3 6.72 HF 

406 BRK 4 5.84 HF 406 BRK 4 6.75 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.2. Soil pH for 20-30 and 30-40 cm depths in 2015 at Brookings site. BRK, Brookings 

site; REP, replication; TRT, treatment. 

20-30 cm 30-40 cm 

Plot Location REP pH TRT Plot Location REP pH TRT 

101 BRK 1 7.61 CNT 101 BRK 1 7.6 CNT 

201 BRK 2 7.3 CNT 201 BRK 2 7.5 CNT 

301 BRK 3 7.16 CNT 301 BRK 3 7.53 CNT 

401 BRK 4 7.11 CNT 401 BRK 4 7.44 CNT 

102 BRK 1 7.24 F 102 BRK 1 7.47 F 

202 BRK 2 7.27 F 202 BRK 2 7.61 F 

302 BRK 3 7.34 F 302 BRK 3 7.71 F 

402 BRK 4 7.2 F 402 BRK 4 7.66 F 

103 BRK 1 7.29 P 103 BRK 1 7.66 P 

203 BRK 2 7.19 P 203 BRK 2 7.47 P 

303 BRK 3 7.37 P 303 BRK 3 7.68 P 

403 BRK 4 7.15 P 403 BRK 4 7.48 P 

104 BRK 1 7.26 N 104 BRK 1 7.45 N 

204 BRK 2 7.43 N 204 BRK 2 7.3 N 

304 BRK 3 7.1 N 304 BRK 3 7.54 N 

404 BRK 4 7.22 N 404 BRK 4 7.47 N 

105 BRK 1 7.61 2N 105 BRK 1 7.72 2N 

205 BRK 2 7.25 2N 205 BRK 2 7.51 2N 

305 BRK 3 7.15 2N 305 BRK 3 7.54 2N 

405 BRK 4 7.16 2N 405 BRK 4 7.39 2N 

106 BRK 1 7.5 HF 106 BRK 1 7.66 HF 

206 BRK 2 7.47 HF 206 BRK 2 7.62 HF 

306 BRK 3 7.06 HF 306 BRK 3 7.41 HF 

406 BRK 4 7.24 HF 406 BRK 4 7.56 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 

rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.3. Soil pH for 0-10 and 10-20 cm depths in 2015 at Beresford (South East) site. SE, 

Beresford (South East) site; REP, replication; TRT, treatment. 

0-10 cm 10-20 cm 

Plot Location REP pH TRT Plot Location REP pH TRT 

101 SE 1 5.93 CNT 101 SE 1 5.24 CNT 

201 SE 2 5.61 CNT 201 SE 2 5.35 CNT 

301 SE 3 6.1 CNT 301 SE 3 5.54 CNT 

401 SE 4 7.43 CNT 401 SE 4 7.31 CNT 

102 SE 1 5.36 F 102 SE 1 5.52 F 

202 SE 2 5.16 F 202 SE 2 5.36 F 

302 SE 3 6.02 F 302 SE 3 5.62 F 

402 SE 4 6.51 F 402 SE 4 5.84 F 

103 SE 1 6.55 P 103 SE 1 5.13 P 

203 SE 2 6.73 P 203 SE 2 5.83 P 

303 SE 3 7.27 P 303 SE 3 7.19 P 

403 SE 4 6.94 P 403 SE 4 5.8 P 

104 SE 1 6.66 N 104 SE 1 5.46 N 

204 SE 2 6.95 N 204 SE 2 5.93 N 

304 SE 3 7.05 N 304 SE 3 6.78 N 

404 SE 4 7.12 N 404 SE 4 6.78 N 

105 SE 1 6.96 2N 105 SE 1 6.24 2N 

205 SE 2 6.99 2N 205 SE 2 6.91 2N 

305 SE 3 7.06 2N 305 SE 3 6.84 2N 

405 SE 4 7.05 2N 405 SE 4 6.99 2N 

106 SE 1 4.79 HF 106 SE 1 5.32 HF 

206 SE 2 5.09 HF 206 SE 2 5.46 HF 

306 SE 3 6.08 HF 306 SE 3 6.88 HF 

406 SE 4 6.07 HF 406 SE 4 5.96 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 

rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.4. Soil pH for 20-30 and 30-40 cm depths in 2015 at Beresford (South East) site. SE, 

Beresford (South East) site; REP, replication; TRT, treatment. 

20-30 cm 30-40 cm 

Plot Location REP pH TRT Plot Location REP pH TRT 

101 SE 1 5.49 CNT 101 SE 1 5.82 CNT 

201 SE 2 5.57 CNT 201 SE 2 5.83 CNT 

301 SE 3 5.89 CNT 301 SE 3 6.25 CNT 

401 SE 4 7.18 CNT 401 SE 4 7.32 CNT 

102 SE 1 5.81 F 102 SE 1 6.08 F 

202 SE 2 5.92 F 202 SE 2 6.24 F 

302 SE 3 6.06 F 302 SE 3 6.46 F 

402 SE 4 6.27 F 402 SE 4 6.48 F 

103 SE 1 5.59 P 103 SE 1 5.97 P 

203 SE 2 6.2 P 203 SE 2 6.48 P 

303 SE 3 7.13 P 303 SE 3 7.11 P 

403 SE 4 6.36 P 403 SE 4 7.12 P 

104 SE 1 5.8 N 104 SE 1 6.1 N 

204 SE 2 6.16 N 204 SE 2 6.4 N 

304 SE 3 6.5 N 304 SE 3 6.77 N 

404 SE 4 6.88 N 404 SE 4 7.02 N 

105 SE 1 5.76 2N 105 SE 1 6.32 2N 

205 SE 2 6.26 2N 205 SE 2 6.26 2N 

305 SE 3 6.61 2N 305 SE 3 6.92 2N 

405 SE 4 6.96 2N 405 SE 4 7.4 2N 

106 SE 1 5.84 HF 106 SE 1 6.06 HF 

206 SE 2 5.66 HF 206 SE 2 6.16 HF 

306 SE 3 6.98 HF 306 SE 3 7.41 HF 

406 SE 4 6.7 HF 406 SE 4 7.28 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 

rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.5. Soil Electrical Conductivity (µS/cm) for 0-10 and 10-20 cm depths in 2015 at 

Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

0-10 cm 10-20 cm 

Plot Location REP EC TRT Plot Location REP EC TRT 

101 BRK 1 878.2 CNT 101 BRK 1 662.4 CNT 

201 BRK 2 727.5 CNT 201 BRK 2 602.7 CNT 

301 BRK 3 760.8 CNT 301 BRK 3 619.1 CNT 

401 BRK 4 508.7 CNT 401 BRK 4 579 CNT 

102 BRK 1 876 F 102 BRK 1 613.9 F 

202 BRK 2 722.4 F 202 BRK 2 564.3 F 

302 BRK 3 1011 F 302 BRK 3 690 F 

402 BRK 4 405.4 F 402 BRK 4 432.8 F 

103 BRK 1 1254 P 103 BRK 1 794.8 P 

203 BRK 2 1110 P 203 BRK 2 691.9 P 

303 BRK 3 1225 P 303 BRK 3 768 P 

403 BRK 4 1007 P 403 BRK 4 683.2 P 

104 BRK 1 2191 N 104 BRK 1 1179 N 

204 BRK 2 1384 N 204 BRK 2 778.2 N 

304 BRK 3 1430 N 304 BRK 3 795.6 N 

404 BRK 4 1028 N 404 BRK 4 560.2 N 

105 BRK 1 2314 2N 105 BRK 1 1237 2N 

205 BRK 2 2400 2N 205 BRK 2 1244 2N 

305 BRK 3 1772 2N 305 BRK 3 1151 2N 

405 BRK 4 1552 2N 405 BRK 4 678.4 2N 

106 BRK 1 955 HF 106 BRK 1 639.8 HF 

206 BRK 2 670.1 HF 206 BRK 2 685.6 HF 

306 BRK 3 602.1 HF 306 BRK 3 540.1 HF 

406 BRK 4 418.9 HF 406 BRK 4 532.2 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.6. Soil Electrical Conductivity (µS/cm) for 20-30 and 30-40 cm depths in 2015 at 

Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

20-30 cm 30-40 cm 

Plot Location REP EC TRT Plot Location REP EC TRT 

101 BRK 1 705.6 CNT 101 BRK 1 693.6 CNT 

201 BRK 2 584.8 CNT 201 BRK 2 697.7 CNT 

301 BRK 3 628.8 CNT 301 BRK 3 704.8 CNT 

401 BRK 4 567.2 CNT 401 BRK 4 571.4 CNT 

102 BRK 1 688 F 102 BRK 1 618.9 F 

202 BRK 2 647.3 F 202 BRK 2 653.2 F 

302 BRK 3 707 F 302 BRK 3 762.5 F 

402 BRK 4 563.4 F 402 BRK 4 578.2 F 

103 BRK 1 824 P 103 BRK 1 862.9 P 

203 BRK 2 711.4 P 203 BRK 2 685 P 

303 BRK 3 747.7 P 303 BRK 3 764.3 P 

403 BRK 4 667.3 P 403 BRK 4 683.2 P 

104 BRK 1 914 N 104 BRK 1 852.2 N 

204 BRK 2 752.8 N 204 BRK 2 673.7 N 

304 BRK 3 711.8 N 304 BRK 3 850.3 N 

404 BRK 4 752.2 N 404 BRK 4 732.8 N 

105 BRK 1 1022 2N 105 BRK 1 994.1 2N 

205 BRK 2 1136 2N 205 BRK 2 854.8 2N 

305 BRK 3 1087 2N 305 BRK 3 953.97 2N 

405 BRK 4 1001 2N 405 BRK 4 1013 2N 

106 BRK 1 668.5 HF 106 BRK 1 719.3 HF 

206 BRK 2 762.2 HF 206 BRK 2 738.6 HF 

306 BRK 3 571 HF 306 BRK 3 750.8 HF 

406 BRK 4 523.5 HF 406 BRK 4 736.23 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.7. Soil Electrical Conductivity (µS/cm) for 0-10 and 10-20 cm depths in 2015 at 

Beresford (South East) site. SE, Beresford (South East) site; REP, replication; TRT, 

treatment. 

0-10 cm 10-20 cm 

Plot Location REP EC TRT Plot Location REP EC TRT 

101 SE 1 396.8 CNT 101 SE 1 144.6 CNT 

201 SE 2 252.8 CNT 201 SE 2 133.1 CNT 

301 SE 3 344.2 CNT 301 SE 3 169.3 CNT 

401 SE 4 753.9 CNT 401 SE 4 613.7 CNT 

102 SE 1 246.2 F 102 SE 1 189.2 F 

202 SE 2 178.1 F 202 SE 2 135.4 F 

302 SE 3 362.2 F 302 SE 3 170.4 F 

402 SE 4 498.1 F 402 SE 4 236 F 

103 SE 1 729.8 P 103 SE 1 231.5 P 

203 SE 2 810.4 P 203 SE 2 242.9 P 

303 SE 3 770 P 303 SE 3 683.6 P 

403 SE 4 761.3 P 403 SE 4 317.2 P 

104 SE 1 774.2 N 104 SE 1 252.8 N 

204 SE 2 888.5 N 204 SE 2 333.7 N 

304 SE 3 1100 N 304 SE 3 728.8 N 

404 SE 4 973.7 N 404 SE 4 596.3 N 

105 SE 1 977.6 2N 105 SE 1 560.8 2N 

205 SE 2 1103 2N 205 SE 2 839.2 2N 

305 SE 3 1114 2N 305 SE 3 829.7 2N 

405 SE 4 1136 2N 405 SE 4 767.9 2N 

106 SE 1 281.7 HF 106 SE 1 210.7 HF 

206 SE 2 268 HF 206 SE 2 215.3 HF 

306 SE 3 403.5 HF 306 SE 3 536.7 HF 

406 SE 4 483 HF 406 SE 4 265.5 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.8. Soil Electrical Conductivity (µS/cm) for 20-30 and 30-40 cm depths in 2015 at 

Beresford (South East) site. SE, Beresford (South East) site; REP, replication; TRT, 

treatment. 

20-30 cm 30-40 cm 

Plot Location REP EC TRT Plot Location REP EC TRT 

101 SE 1 116 CNT 101 SE 1 144.7 CNT 

201 SE 2 126.3 CNT 201 SE 2 153.7 CNT 

301 SE 3 169.4 CNT 301 SE 3 227.9 CNT 

401 SE 4 549.4 CNT 401 SE 4 662.4 CNT 

102 SE 1 176.2 F 102 SE 1 159.9 F 

202 SE 2 24.9 F 202 SE 2 236.6 F 

302 SE 3 272.6 F 302 SE 3 283.1 F 

402 SE 4 260.8 F 402 SE 4 294.7 F 

103 SE 1 184.1 P 103 SE 1 236 P 

203 SE 2 309.5 P 203 SE 2 331.6 P 

303 SE 3 605.7 P 303 SE 3 518.7 P 

403 SE 4 370.2 P 403 SE 4 718.7 P 

104 SE 1 300.3 N 104 SE 1 278.6 N 

204 SE 2 312.8 N 204 SE 2 366.2 N 

304 SE 3 501.4 N 304 SE 3 498.1 N 

404 SE 4 577.7 N 404 SE 4 492.4 N 

105 SE 1 337.2 2N 105 SE 1 388.4 2N 

205 SE 2 514 2N 205 SE 2 467.7 2N 

305 SE 3 623.7 2N 305 SE 3 706.7 2N 

405 SE 4 613.1 2N 405 SE 4 771.4 2N 

106 SE 1 249.7 HF 106 SE 1 359.1 HF 

206 SE 2 214.8 HF 206 SE 2 255.1 HF 

306 SE 3 506.9 HF 306 SE 3 623.8 HF 

406 SE 4 659.9 HF 406 SE 4 677.2 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.9. Soil Total Nitrogen (gr kg-1) for 0-10 and 10-20 cm depths in 2015 at Brookings 

site. BRK, Brookings site; REP, replication; TRT, treatment. 

0-10 cm 10-20 cm 

Plot Location REP TN TRT Plot Location REP TN TRT 

101 BRK 1 2.1643 CNT 101 BRK 1 1.8344 CNT 

201 BRK 2 2.3525 CNT 201 BRK 2 2.0397 CNT 

301 BRK 3 2.2781 CNT 301 BRK 3 1.9508 CNT 

401 BRK 4 2.1674 CNT 401 BRK 4 1.9028 CNT 

102 BRK 1 2.2237 F 102 BRK 1 2.0179 F 

202 BRK 2 2.3572 F 202 BRK 2 2.0982 F 

302 BRK 3 2.4533 F 302 BRK 3 1.9676 F 

402 BRK 4 2.1666 F 402 BRK 4 1.9011 F 

103 BRK 1 2.5269 P 103 BRK 1 2.0706 P 

203 BRK 2 2.5603 P 203 BRK 2 2.1337 P 

303 BRK 3 2.5577 P 303 BRK 3 1.9864 P 

403 BRK 4 2.4531 P 403 BRK 4 1.9609 P 

104 BRK 1 3.3434 N 104 BRK 1 2.0864 N 

204 BRK 2 2.5384 N 204 BRK 2 1.9747 N 

304 BRK 3 2.7503 N 304 BRK 3 2.0197 N 

404 BRK 4 2.5763 N 404 BRK 4 1.9619 N 

105 BRK 1 3.7983 2N 105 BRK 1 2.2158 2N 

205 BRK 2 3.7735 2N 205 BRK 2 1.6362 2N 

305 BRK 3 3.2551 2N 305 BRK 3 2.2099 2N 

405 BRK 4 2.9858 2N 405 BRK 4 2.0607 2N 

106 BRK 1 2.4868 HF 106 BRK 1 1.9522 HF 

206 BRK 2 3.5391 HF 206 BRK 2 1.9125 HF 

306 BRK 3 2.3186 HF 306 BRK 3 2.0639 HF 

406 BRK 4 2.2017 HF 406 BRK 4 1.9265 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 

rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.10 Soil Total Nitrogen (gr kg-1) for 20-30 and 30-40 cm depths in 2015 at Brookings 

site. BRK, Brookings site; REP, replication; TRT, treatment. 

20-30 cm 30-40 cm 

Plot Location REP TN TRT Plot Location REP TN TRT 

101 BRK 1 1.2668 CNT 101 BRK 1 1.2571 CNT 

201 BRK 2 1.6957 CNT 201 BRK 2 1.3464 CNT 

301 BRK 3 1.7172 CNT 301 BRK 3 1.2678 CNT 

401 BRK 4 1.5033 CNT 401 BRK 4 1.0958 CNT 

102 BRK 1 1.756 F 102 BRK 1 1.0524 F 

202 BRK 2 1.7434 F 202 BRK 2 1.223 F 

302 BRK 3 1.787 F 302 BRK 3 1.2996 F 

402 BRK 4 1.4293 F 402 BRK 4 1.1 F 

103 BRK 1 1.5441 P 103 BRK 1 1.0782 P 

203 BRK 2 1.7505 P 203 BRK 2 1.359 P 

303 BRK 3 1.5792 P 303 BRK 3 1.1575 P 

403 BRK 4 1.6473 P 403 BRK 4 1.0776 P 

104 BRK 1 1.7295 N 104 BRK 1 1.2038 N 

204 BRK 2 1.336 N 204 BRK 2 1.4133 N 

304 BRK 3 1.7559 N 304 BRK 3 1.3806 N 

404 BRK 4 1.6562 N 404 BRK 4 1.1964 N 

105 BRK 1 1.5174 2N 105 BRK 1 1.1112 2N 

205 BRK 2 1.166 2N 205 BRK 2 2.2642 2N 

305 BRK 3 2.0399 2N 305 BRK 3 
 

2N 

405 BRK 4 1.9261 2N 405 BRK 4 1.4557 2N 

106 BRK 1 1.6436 HF 106 BRK 1 1.1455 HF 

206 BRK 2 1.5158 HF 206 BRK 2 1.1262 HF 

306 BRK 3 1.9202 HF 306 BRK 3 1.3633 HF 

406 BRK 4 1.4682 HF 406 BRK 4 1.1001 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 

rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.11. Soil Total Nitrogen (gr kg-1) for 0-10 and 10-20 cm depths in 2015 at Beresford 

(South East) site. SE, Beresford (South East) site; REP, replication; TRT, treatment. 

0-10 cm 10-20 cm 

Plot Location REP TN TRT Plot Location REP TN TRT 

101 SE 1 2.2008 CNT 101 SE 1 1.9938 CNT 

201 SE 2 2.1974 CNT 201 SE 2 1.9097 CNT 

301 SE 3 2.127 CNT 301 SE 3 1.8219 CNT 

401 SE 4 1.946 CNT 401 SE 4 1.6608 CNT 

102 SE 1 2.3903 F 102 SE 1 2.1507 F 

202 SE 2 2.1052 F 202 SE 2 1.887 F 

302 SE 3 2.2144 F 302 SE 3 1.7853 F 

402 SE 4 2.2113 F 402 SE 4 1.8354 F 

103 SE 1 2.7023 P 103 SE 1 2.126 P 

203 SE 2 2.4753 P 203 SE 2 1.9374 P 

303 SE 3 2.4666 P 303 SE 3 1.9558 P 

403 SE 4 2.3514 P 403 SE 4 2.0046 P 

104 SE 1 2.7315 N 104 SE 1 2.0681 N 

204 SE 2 2.7697 N 204 SE 2 2.0207 N 

304 SE 3 2.7898 N 304 SE 3 2.0754 N 

404 SE 4 2.7633 N 404 SE 4 1.8416 N 

105 SE 1 3.0016 2N 105 SE 1 2.3908 2N 

205 SE 2 3.4838 2N 205 SE 2 2.4504 2N 

305 SE 3 3.0108 2N 305 SE 3 1.8575 2N 

405 SE 4 3.2015 2N 405 SE 4 1.9749 2N 

106 SE 1 2.3522 HF 106 SE 1 2.0636 HF 

206 SE 2 2.2439 HF 206 SE 2 1.984 HF 

306 SE 3 2.0612 HF 306 SE 3 1.6315 HF 

406 SE 4 2.2079 HF 406 SE 4 2.0025 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 

rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.12. Soil Total Nitrogen (gr kg-1) for 20-30 and 30-40 cm depths in 2015 at Beresford 

(South East) site. SE, Beresford (South East) site; REP, replication; TRT, treatment. 

20-30 cm 30-40 cm 

Plot Location REP TN TRT Plot Location REP TN TRT 

101 SE 1 1.9438 CNT 101 SE 1 1.7062 CNT 

201 SE 2 1.7825 CNT 201 SE 2 1.2859 CNT 

301 SE 3 1.5214 CNT 301 SE 3 1.0897 CNT 

401 SE 4 1.6415 CNT 401 SE 4 1.3427 CNT 

102 SE 1 1.9272 F 102 SE 1 1.6669 F 

202 SE 2 1.7558 F 202 SE 2 1.3239 F 

302 SE 3 1.3183 F 302 SE 3 1.0784 F 

402 SE 4 1.5955 F 402 SE 4 1.076 F 

103 SE 1 2.1201 P 103 SE 1 1.7644 P 

203 SE 2 1.5651 P 203 SE 2 1.1703 P 

303 SE 3 1.687 P 303 SE 3 1.1525 P 

403 SE 4 1.4697 P 403 SE 4 1.1928 P 

104 SE 1 2.0293 N 104 SE 1 1.8147 N 

204 SE 2 1.5999 N 204 SE 2 1.2199 N 

304 SE 3 1.7952 N 304 SE 3 1.2386 N 

404 SE 4 1.4933 N 404 SE 4 1.1034 N 

105 SE 1 2.053 2N 105 SE 1 1.584 2N 

205 SE 2 2.0979 2N 205 SE 2 1.7509 2N 

305 SE 3 1.3721 2N 305 SE 3 1.0374 2N 

405 SE 4 1.2198 2N 405 SE 4 0.9941 2N 

106 SE 1 1.8275 HF 106 SE 1 1.5301 HF 

206 SE 2 1.7062 HF 206 SE 2 1.2418 HF 

306 SE 3 1.3248 HF 306 SE 3 0.9492 HF 

406 SE 4 1.7371 HF 406 SE 4 1.1792 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 

rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.13. Soil Wet Aggregate Stability (%) for 0-10 and 10-20 cm depths in 2015 at 

Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

0-10 cm 10-20 cm 

Plot Location REP WAS TRT Plot Location REP WAS TRT 

101 BRK 1 89.97 CNT 101 BRK 1 82.95 CNT 

201 BRK 2 89.62 CNT 201 BRK 2 92.48 CNT 

301 BRK 3 91.01 CNT 301 BRK 3 92.75 CNT 

401 BRK 4 89.82 CNT 401 BRK 4 93.45 CNT 

102 BRK 1 92.37 F 102 BRK 1 85.13 F 

202 BRK 2 82.13 F 202 BRK 2 95.27 F 

302 BRK 3 92.03 F 302 BRK 3 91.01 F 

402 BRK 4 90.34 F 402 BRK 4 85.02 F 

103 BRK 1 97.52 P 103 BRK 1 98.97 P 

203 BRK 2 95.27 P 203 BRK 2 97.86 P 

303 BRK 3 88.96 P 303 BRK 3 86.24 P 

403 BRK 4 85.86 P 403 BRK 4 77.41 P 

104 BRK 1 94.12 N 104 BRK 1 95.41 N 

204 BRK 2 98.85 N 204 BRK 2 98.52 N 

304 BRK 3 88.93 N 304 BRK 3 86.14 N 

404 BRK 4 92.16 N 404 BRK 4 89.04 N 

105 BRK 1 97.40 2N 105 BRK 1 98.07 2N 

205 BRK 2 99.64 2N 205 BRK 2 95.54 2N 

305 BRK 3 99.61 2N 305 BRK 3 89.01 2N 

405 BRK 4 97.70 2N 405 BRK 4 86.99 2N 

106 BRK 1 85.81 HF 106 BRK 1 79.77 HF 

206 BRK 2 85.71 HF 206 BRK 2 81.43 HF 

306 BRK 3 88.15 HF 306 BRK 3 89.93 HF 

406 BRK 4 89.87 HF 406 BRK 4 87.10 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 

rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.14. Soil Wet Aggregate Stability (%) for 0-10 and 10-20 cm depths in 2015 at 

Beresford (South East) site. SE, Beresford (South East) site; REP, replication; TRT, 

treatment. 

0-10 cm 10-20 cm 

Plot Location REP WAS TRT Plot Location REP WAS TRT 

101 SE 1 92.98 CNT 101 SE 1 90.30 CNT 

201 SE 2 92.33 CNT 201 SE 2 91.12 CNT 

301 SE 3 91.59 CNT 301 SE 3 89.42 CNT 

401 SE 4 92.76 CNT 401 SE 4 91.23 CNT 

102 SE 1 93.10 F 102 SE 1 87.11 F 

202 SE 2 89.33 F 202 SE 2 93.63 F 

302 SE 3 88.70 F 302 SE 3 85.37 F 

402 SE 4 86.31 F 402 SE 4 90.68 F 

103 SE 1 94.16 P 103 SE 1 92.88 P 

203 SE 2 87.95 P 203 SE 2 91.53 P 

303 SE 3 95.05 P 303 SE 3 91.87 P 

403 SE 4 94.30 P 403 SE 4 92.98 P 

104 SE 1 93.43 N 104 SE 1 94.30 N 

204 SE 2 95.72 N 204 SE 2 92.75 N 

304 SE 3 95.90 N 304 SE 3 87.87 N 

404 SE 4 88.14 N 404 SE 4 93.67 N 

105 SE 1 94.53 2N 105 SE 1 93.95 2N 

205 SE 2 97.18 2N 205 SE 2 93.12 2N 

305 SE 3 96.59 2N 305 SE 3 92.98 2N 

405 SE 4 98.64 2N 405 SE 4 91.35 2N 

106 SE 1 89.07 HF 106 SE 1 85.62 HF 

206 SE 2 91.28 HF 206 SE 2 88.71 HF 

306 SE 3 89.97 HF 306 SE 3 90.00 HF 

406 SE 4 86.25 HF 406 SE 4 91.37 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 

rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.15. Soil Organic carbon (g kg-1) for 0-10 and 10-20 cm depths in 2015 at Brookings 

site. BRK, Brookings site; REP, replication; TRT, treatment. 

0-10 cm 10-20 cm 

Plot Location REP SOC TRT Plot Location REP SOC TRT 

101 BRK 1 22.86 CNT 101 BRK 1 20.00 CNT 

201 BRK 2 24.34 CNT 201 BRK 2 21.45 CNT 

301 BRK 3 22.74 CNT 301 BRK 3 21.54 CNT 

401 BRK 4 23.42 CNT 401 BRK 4 21.78 CNT 

102 BRK 1 22.93 F 102 BRK 1 21.28 F 

202 BRK 2 24.76 F 202 BRK 2 21.89 F 

302 BRK 3 27.85 F 302 BRK 3 21.95 F 

402 BRK 4 24.39 F 402 BRK 4 21.35 F 

103 BRK 1 27.18 P 103 BRK 1 21.27 P 

203 BRK 2 27.29 P 203 BRK 2 21.43 P 

303 BRK 3 29.00 P 303 BRK 3 21.79 P 

403 BRK 4 26.82 P 403 BRK 4 21.61 P 

104 BRK 1 34.74 N 104 BRK 1 21.49 N 

204 BRK 2 28.69 N 204 BRK 2 22.28 N 

304 BRK 3 31.06 N 304 BRK 3 22.03 N 

404 BRK 4 29.06 N 404 BRK 4 21.86 N 

105 BRK 1 40.84 2N 105 BRK 1 23.17 2N 

205 BRK 2 41.79 2N 205 BRK 2 19.28 2N 

305 BRK 3 36.25 2N 305 BRK 3 22.04 2N 

405 BRK 4 34.29 2N 405 BRK 4 23.15 2N 

106 BRK 1 26.48 HF 106 BRK 1 20.79 HF 

206 BRK 2 40.79 HF 206 BRK 2 21.20 HF 

306 BRK 3 25.94 HF 306 BRK 3 22.12 HF 

406 BRK 4 24.93 HF 406 BRK 4 21.15 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 

rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.16. Soil Organic carbon (g kg-1) for 20-30 and 30-40 cm depths in 2015 at Brookings 

site. BRK, Brookings site; REP, replication; TRT, treatment. 

20-30 cm 30-40 cm 

Plot Location REP SOC TRT Plot Location REP SOC TRT 

101 BRK 1 16.14 CNT 101 BRK 1 12.35 CNT 

201 BRK 2 15.84 CNT 201 BRK 2 13.08 CNT 

301 BRK 3 18.58 CNT 301 BRK 3 13.32 CNT 

401 BRK 4 16.86 CNT 401 BRK 4 10.27 CNT 

102 BRK 1 17.84 F 102 BRK 1 10.39 F 

202 BRK 2 17.75 F 202 BRK 2 11.79 F 

302 BRK 3 13.77 F 302 BRK 3 14.75 F 

402 BRK 4 14.93 F 402 BRK 4 9.86 F 

103 BRK 1 14.83 P 103 BRK 1 11.57 P 

203 BRK 2 18.32 P 203 BRK 2 11.69 P 

303 BRK 3 15.92 P 303 BRK 3 11.64 P 

403 BRK 4 17.07 P 403 BRK 4 10.33 P 

104 BRK 1 16.84 N 104 BRK 1 10.39 N 

204 BRK 2 14.22 N 204 BRK 2 14.61 N 

304 BRK 3 19.04 N 304 BRK 3 14.01 N 

404 BRK 4 17.61 N 404 BRK 4 11.23 N 

105 BRK 1 17.09 2N 105 BRK 1 16.67 2N 

205 BRK 2 11.84 2N 205 BRK 2 25.25 2N 

305 BRK 3 21.18 2N 305 BRK 3 0.00 2N 

405 BRK 4 21.64 2N 405 BRK 4 14.82 2N 

106 BRK 1 15.75 HF 106 BRK 1 11.94 HF 

206 BRK 2 16.36 HF 206 BRK 2 14.83 HF 

306 BRK 3 20.21 HF 306 BRK 3 9.54 HF 

406 BRK 4 15.10 HF 406 BRK 4 10.53 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 

rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A1.17. Soil Organic carbon (g kg-1) for 0-10 and 10-20 cm depths in 2015 at Beresford 

(South East) site. SE, Beresford (South East) site; REP, replication; TRT, treatment. 

0-10 cm 10-20 cm 

Plot Location REP SOC TRT Plot Location REP SOC TRT 

101 SE 1 23.77 CNT 101 SE 1 21.69 CNT 

201 SE 2 23.89 CNT 201 SE 2 19.62 CNT 

301 SE 3 22.08 CNT 301 SE 3 18.06 CNT 

401 SE 4 21.86 CNT 401 SE 4 18.65 CNT 

102 SE 1 25.52 F 102 SE 1 22.67 F 

202 SE 2 22.67 F 202 SE 2 14.59 F 

302 SE 3 23.11 F 302 SE 3 17.47 F 

402 SE 4 20.88 F 402 SE 4 16.54 F 

103 SE 1 28.79 P 103 SE 1 22.36 P 

203 SE 2 25.37 P 203 SE 2 19.40 P 

303 SE 3 25.53 P 303 SE 3 20.62 P 

403 SE 4 22.55 P 403 SE 4 18.74 P 

104 SE 1 29.12 N 104 SE 1 21.61 N 

204 SE 2 28.15 N 204 SE 2 20.01 N 

304 SE 3 29.35 N 304 SE 3 20.94 N 

404 SE 4 29.66 N 404 SE 4 15.79 N 

105 SE 1 31.47 2N 105 SE 1 24.85 2N 

205 SE 2 36.29 2N 205 SE 2 24.77 2N 

305 SE 3 31.29 2N 305 SE 3 19.14 2N 

405 SE 4 30.85 2N 405 SE 4 17.40 2N 

106 SE 1 25.89 HF 106 SE 1 21.85 HF 

206 SE 2 23.96 HF 206 SE 2 19.81 HF 

306 SE 3 21.56 HF 306 SE 3 16.83 HF 

406 SE 4 23.16 HF 406 SE 4 17.72 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 

 

 

 

 

 

 

 

 

 

 

 

 



145 
 

           

A1.18. Soil Organic carbon (g kg-1) for 20-30 and 30-40 cm depths in 2015 at Beresford 

(South East) site. SE, Beresford (South East) site; REP, replication; TRT, treatment. 

20-30 cm 30-40 cm 

Plot Location REP SOC TRT Plot Location REP SOC TRT 

101 SE 1 17.96 CNT 101 SE 1 17.51 CNT 

201 SE 2 17.29 CNT 201 SE 2 11.32 CNT 

301 SE 3 13.60 CNT 301 SE 3 7.72 CNT 

401 SE 4 15.07 CNT 401 SE 4 12.17 CNT 

102 SE 1 19.74 F 102 SE 1 15.94 F 

202 SE 2 16.84 F 202 SE 2 12.28 F 

302 SE 3 11.62 F 302 SE 3 7.95 F 

402 SE 4 12.77 F 402 SE 4 7.41 F 

103 SE 1 22.44 P 103 SE 1 18.27 P 

203 SE 2 14.34 P 203 SE 2 9.25 P 

303 SE 3 17.11 P 303 SE 3 9.96 P 

403 SE 4 12.68 P 403 SE 4 11.53 P 

104 SE 1 21.22 N 104 SE 1 18.12 N 

204 SE 2 14.44 N 204 SE 2 9.71 N 

304 SE 3 17.80 N 304 SE 3 11.69 N 

404 SE 4 11.96 N 404 SE 4 9.04 N 

105 SE 1 20.53 2N 105 SE 1 14.27 2N 

205 SE 2 21.23 2N 205 SE 2 16.96 2N 

305 SE 3 12.26 2N 305 SE 3 8.13 2N 

405 SE 4 8.36 2N 405 SE 4 7.91 2N 

106 SE 1 20.43 HF 106 SE 1 16.81 HF 

206 SE 2 17.05 HF 206 SE 2 10.97 HF 

306 SE 3 12.05 HF 306 SE 3 8.08 HF 

406 SE 4 14.85 HF 406 SE 4 10.78 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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APPENDIX 2 

 

A2.1. Soil Bulk Density (gr cm-1) for 0-10 and 10-20 cm depths in 2015 at Brookings 

site. BRK, Brookings site; REP, replication; TRT, treatment. 

0-10 cm 10-20 cm 

Plot Location REP BD TRT Plot Location REP BD TRT 

101 BRK 1 1.37 CNT 101 BRK 1 1.40 CNT 

201 BRK 2 1.24 CNT 201 BRK 2 1.33 CNT 

301 BRK 3 1.29 CNT 301 BRK 3 1.41 CNT 

401 BRK 4 1.25 CNT 401 BRK 4 1.37 CNT 

102 BRK 1 1.21 F 102 BRK 1 1.38 F 

202 BRK 2 1.36 F 202 BRK 2 1.32 F 

302 BRK 3 1.27 F 302 BRK 3 1.38 F 

402 BRK 4 1.23 F 402 BRK 4 1.36 F 

103 BRK 1 1.10 P 103 BRK 1 1.30 P 

203 BRK 2 1.14 P 203 BRK 2 1.33 P 

303 BRK 3 1.13 P 303 BRK 3 1.37 P 

403 BRK 4 1.15 P 403 BRK 4 1.33 P 

104 BRK 1 0.88 N 104 BRK 1 1.32 N 

204 BRK 2 1.14 N 204 BRK 2 1.26 N 

304 BRK 3 1.11 N 304 BRK 3 1.31 N 

404 BRK 4 1.14 N 404 BRK 4 1.29 N 

105 BRK 1 0.82 2N 105 BRK 1 1.21 2N 

205 BRK 2 0.84 2N 205 BRK 2 1.14 2N 

305 BRK 3 0.90 2N 305 BRK 3 1.25 2N 

405 BRK 4 0.91 2N 405 BRK 4 1.25 2N 

106 BRK 1 1.21 HF 106 BRK 1 1.22 HF 

206 BRK 2 1.33 HF 206 BRK 2 1.30 HF 

306 BRK 3 1.20 HF 306 BRK 3 1.37 HF 

406 BRK 4 1.35 HF 406 BRK 4 1.30 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A2.2. Soil Bulk Density (gr cm-1) for 0-10 and 10-20 cm depths in 2015 at Beresford 

(South East) site. SE, Beresford (South East) site; REP, replication; TRT, treatment. 

0-10 cm 10-20 cm 

Plot Location REP BD TRT Plot Location REP BD TRT 

101 SE 1 1.21 CNT 101 SE 1 1.29 CNT 

201 SE 2 1.20 CNT 201 SE 2 1.28 CNT 

301 SE 3 1.18 CNT 301 SE 3 1.28 CNT 

401 SE 4 1.28 CNT 401 SE 4 1.43 CNT 

102 SE 1 1.20 F 102 SE 1 1.24 F 

202 SE 2 1.23 F 202 SE 2 1.29 F 

302 SE 3 1.23 F 302 SE 3 1.34 F 

402 SE 4 1.23 F 402 SE 4 1.41 F 

103 SE 1 0.85 P 103 SE 1 1.30 P 

203 SE 2 1.18 P 203 SE 2 1.37 P 

303 SE 3 1.20 P 303 SE 3 1.34 P 

403 SE 4 1.19 P 403 SE 4 1.36 P 

104 SE 1 0.98 N 104 SE 1 1.03 N 

204 SE 2 1.11 N 204 SE 2 1.33 N 

304 SE 3 1.10 N 304 SE 3 1.31 N 

404 SE 4 1.11 N 404 SE 4 1.35 N 

105 SE 1 1.01 2N 105 SE 1 1.23 2N 

205 SE 2 1.04 2N 205 SE 2 1.18 2N 

305 SE 3 1.10 2N 305 SE 3 1.28 2N 

405 SE 4 1.09 2N 405 SE 4 1.27 2N 

106 SE 1 1.18 HF 106 SE 1 1.38 HF 

206 SE 2 1.18 HF 206 SE 2 1.30 HF 

306 SE 3 1.28 HF 306 SE 3 1.34 HF 

406 SE 4 1.16 HF 406 SE 4 1.39 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 

rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A2.3. Soil Water Retention (m3 m-3) for 0-10 cm depth in 2015 at Brookings site. BRK, 

Brookings site; REP, replication; TRT, treatment. 

Plot Location TRT REP 0 -0.04 -0.1 -2.5 -5 -10 -30 

101 BRK CNT 1 0.53 0.53 0.51 0.49 0.48 0.47 0.44 

201 BRK CNT 2 0.55 0.52 0.49 0.48 0.46 0.45 0.45 

301 BRK CNT 3 0.62 0.58 0.56 0.53 0.51 0.48 0.46 

401 BRK CNT 4 0.59 0.54 0.52 0.49 0.46 0.45 0.43 

102 BRK F 1 0.59 0.55 0.54 0.52 0.50 0.49 0.48 

202 BRK F 2 0.58 0.52 0.49 0.44 0.42 0.40 0.38 

302 BRK F 3 0.59 0.55 0.54 0.52 0.50 0.49 0.48 

402 BRK F 4 0.58 0.52 0.49 0.44 0.42 0.40 0.38 

103 BRK P 1 0.67 0.65 0.63 0.60 0.57 0.56 0.54 

203 BRK P 2 0.61 0.60 0.58 0.55 0.53 0.51 0.50 

303 BRK P 3 0.62 0.60 0.59 0.56 0.54 0.52 0.51 

403 BRK P 4 0.55 0.54 0.51 0.49 0.47 0.46 0.44 

104 BRK N 1 0.62 0.61 0.60 0.58 0.56 0.54 0.52 

204 BRK N 2 0.62 0.62 0.61 0.58 0.56 0.54 0.51 

304 BRK N 3 0.63 0.63 0.62 0.60 0.58 0.56 0.53 

404 BRK N 4 0.66 0.65 0.64 0.62 0.61 0.58 0.56 

105 BRK 2N 1 0.61 0.60 0.58 0.56 0.53 0.51 0.48 

205 BRK 2N 2 0.64 0.60 0.58 0.54 0.52 0.51 0.49 

305 BRK 2N 3 0.64 0.62 0.60 0.57 0.55 0.53 0.51 

405 BRK 2N 4 0.67 0.65 0.63 0.61 0.59 0.57 0.55 

106 BRK HF 1 0.51 0.50 0.49 0.47 0.46 0.45 0.44 

206 BRK HF 2 0.54 0.50 0.46 0.44 0.42 0.41 0.40 

306 BRK HF 3 0.51 0.50 0.49 0.47 0.46 0.45 0.44 

406 BRK HF 4 0.54 0.50 0.46 0.44 0.42 0.41 0.40 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A2.4. Soil Water Retention (m3 m-3) for 10-20 cm depth in 2015 at Brookings site. BRK, 

Brookings site; REP, replication; TRT, treatment. 

Plot Location TRT REP 0 -0.04 -0.1 -2.5 -5 -10 -30 

101 BRK CNT 1 0.56 0.56 0.55 0.54 0.53 0.52 0.51 

201 BRK CNT 2 0.54 0.54 0.50 0.45 0.43 0.41 0.39 

301 BRK CNT 3 0.54 0.55 0.54 0.52 0.52 0.51 0.49 

401 BRK CNT 4 0.52 0.52 0.51 0.49 0.47 0.45 0.44 

102 BRK F 1 0.55 0.56 0.55 0.53 0.52 0.51 0.48 

202 BRK F 2 0.51 0.52 0.50 0.49 0.48 0.47 0.46 

302 BRK F 3 0.60 0.61 0.60 0.58 0.57 0.54 0.53 

402 BRK F 4 0.51 0.51 0.49 0.46 0.44 0.43 0.41 

103 BRK P 1 0.66 0.66 0.65 0.62 0.60 0.58 0.56 

203 BRK P 2 0.53 0.53 0.52 0.50 0.49 0.47 0.46 

303 BRK P 3 0.52 0.52 0.51 0.50 0.49 0.49 0.48 

403 BRK P 4 0.56 0.57 0.56 0.54 0.53 0.51 0.50 

104 BRK N 1 0.55 0.69 0.67 0.64 0.63 0.61 0.59 

204 BRK N 2 0.59 0.59 0.57 0.55 0.53 0.52 0.49 

304 BRK N 3 0.59 0.60 0.59 0.58 0.57 0.54 0.54 

404 BRK N 4 0.59 0.59 0.58 0.57 0.57 0.55 0.54 

105 BRK 2N 1 0.63 0.63 0.62 0.60 0.58 0.57 0.55 

205 BRK 2N 2 0.64 0.64 0.62 0.60 0.58 0.57 0.55 

305 BRK 2N 3 0.59 0.60 0.58 0.57 0.56 0.54 0.52 

405 BRK 2N 4 0.61 0.61 0.60 0.59 0.58 0.57 0.56 

106 BRK HF 1 0.66 0.66 0.64 0.60 0.58 0.56 0.54 

206 BRK HF 2 0.70 0.70 0.69 0.67 0.64 0.62 0.60 

306 BRK HF 3 0.57 0.57 0.56 0.55 0.54 0.53 0.52 

406 BRK HF 4 0.59 0.59 0.58 0.55 0.53 0.50 0.47 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A2.5. Soil Water Retention (m3 m-3) for 0-10 cm depth in 2015 at Beresford (South East) 

site. SE, Beresford (South East) site; REP, replication; TRT, treatment. 

Plot Location TRT REP 0 -0.04 -0.1 -2.5 -5 -10 -30 

101 SE CNT 1 0.61 0.60 0.59 0.58 0.54 0.51 0.49 

201 SE CNT 2 0.62 0.61 0.60 0.59 0.55 0.51 0.48 

301 SE CNT 3 0.61 0.61 0.57 0.58 0.54 0.51 0.48 

401 SE CNT 4 0.61 0.61 0.60 0.58 0.54 0.51 0.48 

102 SE F 1 0.59 0.58 0.57 0.55 0.54 0.52 0.47 

202 SE F 2 0.59 0.58 0.57 0.55 0.54 0.52 0.47 

302 SE F 3 0.59 0.59 0.57 0.55 0.51 0.48 0.45 

402 SE F 4 0.59 0.59 0.57 0.55 0.51 0.48 0.45 

103 SE P 1 0.66 0.64 0.59 0.58 0.55 0.54 0.52 

203 SE P 2 0.60 0.59 0.58 0.57 0.55 0.53 0.51 

303 SE P 3 0.60 0.59 0.59 0.58 0.55 0.54 0.50 

403 SE P 4 0.62 0.61 0.59 0.58 0.57 0.56 0.54 

104 SE N 1 0.64 0.63 0.63 0.54 0.48 0.47 0.42 

204 SE N 2 0.66 0.65 0.64 0.62 0.56 0.54 0.53 

304 SE N 3 0.64 0.63 0.60 0.59 0.56 0.53 0.50 

404 SE N 4 0.63 0.62 0.61 0.60 0.59 0.58 0.56 

105 SE 2N 1 0.63 0.63 0.61 0.60 0.58 0.57 0.52 

205 SE 2N 2 0.65 0.64 0.62 0.57 0.54 0.52 0.50 

305 SE 2N 3 0.63 0.63 0.61 0.60 0.58 0.57 0.52 

405 SE 2N 4 0.64 0.63 0.61 0.59 0.57 0.55 0.52 

106 SE HF 1 0.61 0.60 0.58 0.57 0.55 0.53 0.49 

206 SE HF 2 0.61 0.61 0.60 0.57 0.52 0.50 0.46 

306 SE HF 3 0.62 0.61 0.59 0.58 0.56 0.54 0.52 

406 SE HF 4 0.60 0.59 0.57 0.56 0.55 0.54 0.49 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A2.6. Soil Water Retention (m3 m-3) for 10-20 cm depth in 2015 at Beresford (South 

East) site. SE, Beresford (South East) site; REP, replication; TRT, treatment. 

Plot Location TRT REP 0 -0.04 -0.1 -2.5 -5 -10 -30 

101 SE CNT 1 0.55 0.52 0.49 0.46 0.44 0.42 0.38 

201 SE CNT 2 0.58 0.57 0.56 0.55 0.54 0.52 0.47 

301 SE CNT 3 0.55 0.54 0.51 0.50 0.49 0.47 0.45 

401 SE CNT 4 0.56 0.56 0.54 0.54 0.53 0.52 0.47 

102 SE F 1 0.61 0.61 0.60 0.58 0.57 0.55 0.53 

202 SE F 2 0.60 0.59 0.59 0.57 0.56 0.55 0.53 

302 SE F 3 0.59 0.58 0.57 0.57 0.56 0.55 0.51 

402 SE F 4 0.55 0.55 0.53 0.52 0.52 0.51 0.49 

103 SE P 1 0.62 0.61 0.60 0.58 0.57 0.55 0.54 

203 SE P 2 0.57 0.56 0.56 0.55 0.54 0.53 0.51 

303 SE P 3 0.33 0.33 0.31 0.31 0.30 0.30 0.28 

403 SE P 4 0.62 0.61 0.59 0.58 0.57 0.56 0.54 

104 SE N 1 0.63 0.60 0.57 0.53 0.49 0.48 0.46 

204 SE N 2 0.62 0.61 0.61 0.60 0.59 0.59 0.57 

304 SE N 3 0.64 0.63 0.59 0.57 0.55 0.53 0.51 

404 SE N 4 0.56 0.55 0.53 0.51 0.50 0.49 0.47 

105 SE 2N 1 0.62 0.61 0.61 0.59 0.58 0.56 0.55 

205 SE 2N 2 0.63 0.62 0.61 0.57 0.55 0.54 0.51 

305 SE 2N 3 0.66 0.65 0.63 0.63 0.62 0.62 0.61 

405 SE 2N 4 0.59 0.58 0.56 0.55 0.54 0.53 0.52 

106 SE HF 1 0.56 0.55 0.55 0.54 0.53 0.53 0.51 

206 SE HF 2 0.63 0.63 0.62 0.61 0.58 0.56 0.54 

306 SE HF 3 0.67 0.67 0.66 0.65 0.64 0.63 0.61 

406 SE HF 4 0.56 0.56 0.54 0.54 0.53 0.53 0.50 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A2.7. Soil Pore Size Distribution (m3 m-3) for 0-10 cm depth in 2015 at Brookings site. 

BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location TRT REP 
Macropores 

(>1000 μm) 

Coarse 

Mesopores 

(60-1000 μm) 

Fine 

Mesopores 

(10-60 μm) 

Micropores 

(<10 μm) 

101 BRK CNT 1 0.005 0.049 0.030 0.440 

201 BRK CNT 2 0.034 0.060 0.510 0.000 

301 BRK CNT 3 0.039 0.072 0.050 0.460 

401 BRK CNT 4 0.046 0.076 0.030 0.430 

102 BRK F 1 0.017 0.052 0.020 0.480 

202 BRK F 2 0.007 0.099 0.040 0.380 

302 BRK F 3 0.033 0.052 0.020 0.480 

402 BRK F 4 0.061 0.099 0.040 0.380 

103 BRK P 1 0.020 0.084 0.030 0.540 

203 BRK P 2 0.027 0.070 0.030 0.500 

303 BRK P 3 0.022 0.058 0.030 0.510 

403 BRK P 4 0.009 0.068 0.040 0.440 

104 BRK N 1 0.020 0.047 0.040 0.520 

204 BRK N 2 0.007 0.053 0.050 0.510 

304 BRK N 3 0.018 0.047 0.050 0.530 

404 BRK N 4 0.006 0.041 0.050 0.560 

105 BRK 2N 1 0.013 0.065 0.050 0.480 

205 BRK 2N 2 0.040 0.082 0.030 0.490 

305 BRK 2N 3 0.016 0.067 0.040 0.510 

405 BRK 2N 4 0.026 0.054 0.040 0.550 

106 BRK HF 1 0.037 0.034 0.020 0.440 

206 BRK HF 2 0.062 0.080 0.020 0.400 

306 BRK HF 3 0.012 0.034 0.020 0.440 

406 BRK HF 4 0.040 0.080 0.020 0.400 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A2.8. Soil Pore Size Distribution (m3 m-3) for 10-20 cm depth in 2015 at Brookings site. 

BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location TRT REP 
Macropores 

(>1000 μm) 

Coarse 

Mesopores 

(60-1000 μm) 

Fine 

Mesopores 

(10-60 μm) 

Micropores 

(<10 μm) 

101 BRK CNT 1 0.007 0.029 0.024 0.507 

201 BRK CNT 2 0.054 0.116 0.036 0.392 

301 BRK CNT 3 0.006 0.030 0.026 0.491 

401 BRK CNT 4 0.024 0.057 0.029 0.439 

102 BRK F 1 0.007 0.042 0.037 0.479 

202 BRK F 2 0.009 0.039 0.016 0.461 

302 BRK F 3 0.013 0.035 0.038 0.534 

402 BRK F 4 0.042 0.065 0.037 0.407 

103 BRK P 1 0.014 0.062 0.042 0.559 

203 BRK P 2 0.026 0.045 0.026 0.461 

303 BRK P 3 0.011 0.030 0.017 0.477 

403 BRK P 4 0.018 0.033 0.034 0.500 

104 BRK N 1 0.026 0.064 0.041 0.585 

204 BRK N 2 0.011 0.055 0.042 0.492 

304 BRK N 3 0.008 0.027 0.032 0.538 

404 BRK N 4 0.006 0.023 0.024 0.542 

105 BRK 2N 1 0.017 0.052 0.029 0.553 

205 BRK 2N 2 0.017 0.055 0.034 0.550 

305 BRK 2N 3 0.023 0.034 0.041 0.521 

405 BRK 2N 4 0.014 0.035 0.019 0.560 

106 BRK HF 1 0.024 0.087 0.032 0.544 

206 BRK HF 2 0.009 0.058 0.038 0.603 

306 BRK HF 3 0.007 0.032 0.026 0.516 

406 BRK HF 4 0.015 0.062 0.056 0.474 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A2.9. Soil Pore Size Distribution (m3 m-3) for 0-10 cm depth in 2015 at Beresford (South 

East) site. SE, Beresford (South East) site; REP, replication; TRT, treatment. 

Plot Location TRT REP 
Macropores 

(>1000 μm) 

Coarse 

Mesopores 

(60-1000 μm) 

Fine 

Mesopores 

(10-60 μm) 

Micropores 

(<10 μm) 

101 SE CNT 1 0.006 0.060 0.056 0.485 

201 SE CNT 2 0.008 0.065 0.069 0.478 

301 SE CNT 3 0.007 0.062 0.062 0.482 

401 SE CNT 4 0.007 0.062 0.062 0.482 

102 SE F 1 0.008 0.040 0.071 0.468 

202 SE F 2 0.008 0.040 0.071 0.468 

302 SE F 3 0.007 0.072 0.062 0.452 

402 SE F 4 0.007 0.072 0.062 0.452 

103 SE P 1 0.021 0.085 0.038 0.517 

203 SE P 2 0.008 0.043 0.044 0.507 

303 SE P 3 0.009 0.046 0.048 0.499 

403 SE P 4 0.010 0.048 0.023 0.543 

104 SE N 1 0.007 0.151 0.060 0.424 

204 SE N 2 0.008 0.089 0.037 0.526 

304 SE N 3 0.009 0.078 0.056 0.500 

404 SE N 4 0.008 0.035 0.031 0.559 

105 SE 2N 1 0.007 0.041 0.061 0.524 

205 SE 2N 2 0.013 0.104 0.039 0.499 

305 SE 2N 3 0.007 0.041 0.061 0.524 

405 SE 2N 4 0.009 0.062 0.054 0.515 

106 SE HF 1 0.008 0.056 0.054 0.491 

206 SE HF 2 0.007 0.082 0.063 0.462 

306 SE HF 3 0.010 0.048 0.042 0.517 

406 SE HF 4 0.008 0.038 0.058 0.495 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A2.10. Soil Pore Size Distribution (m3 m-3) for 10-20 cm depth in 2015 at Beresford 

(South East) site. SE, Beresford (South East) site; REP, replication; TRT, treatment. 

Plot Location TRT REP 
Macropores 

(>1000 μm) 

Coarse 

Mesopores 

(60-1000 μm) 

Fine 

Mesopores 

(10-60 μm) 

Micropores 

(<10 μm) 

101 SE CNT 1 0.033 0.075 0.057 0.383 

201 SE CNT 2 0.005 0.034 0.063 0.473 

301 SE CNT 3 0.016 0.051 0.035 0.451 

401 SE CNT 4 0.004 0.026 0.057 0.472 

102 SE F 1 0.004 0.034 0.037 0.534 

202 SE F 2 0.005 0.039 0.030 0.525 

302 SE F 3 0.005 0.025 0.048 0.510 

402 SE F 4 0.006 0.030 0.027 0.490 

103 SE P 1 0.008 0.039 0.028 0.541 

203 SE P 2 0.004 0.024 0.025 0.514 

303 SE P 3 0.006 0.026 0.018 0.283 

403 SE P 4 0.010 0.043 0.027 0.544 

104 SE N 1 0.030 0.109 0.032 0.463 

204 SE N 2 0.005 0.021 0.027 0.566 

304 SE N 3 0.014 0.076 0.037 0.512 

404 SE N 4 0.008 0.046 0.032 0.471 

105 SE 2N 1 0.005 0.039 0.025 0.551 

205 SE 2N 2 0.008 0.076 0.038 0.508 

305 SE 2N 3 0.011 0.028 0.012 0.609 

405 SE 2N 4 0.010 0.046 0.019 0.518 

106 SE HF 1 0.005 0.022 0.020 0.511 

206 SE HF 2 0.005 0.042 0.041 0.542 

306 SE HF 3 0.005 0.026 0.037 0.606 

406 SE HF 4 0.005 0.026 0.035 0.496 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 
rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A2.11. Water Infiltration (mm hr-1) in 2015 at Brookings and Beresford (South East) 

sites. BRK, Brookings; SE, Beresford (South East) site; REP, replication; TRT, 

treatment. 

Brookings Beresford 

Plot Location REP WI TRT Plot Location REP WI TRT 

101 BRK 1 232 CNT 101 BRK 1 225 CNT 

201 BRK 2 264 CNT 201 BRK 2 149 CNT 

301 BRK 3 232 CNT 301 BRK 3 159 CNT 

401 BRK 4 252 CNT 401 BRK 4 182 CNT 

102 BRK 1 267 F 102 BRK 1 232 F 

202 BRK 2 170 F 202 BRK 2 127 F 

302 BRK 3 172 F 302 BRK 3 162 F 

402 BRK 4 353 F 402 BRK 4 51 F 

103 BRK 1 287 P 103 BRK 1 278 P 

203 BRK 2 332 P 203 BRK 2 238 P 

303 BRK 3 349 P 303 BRK 3 240 P 

403 BRK 4 248 P 403 BRK 4 243 P 

104 BRK 1 303 N 104 BRK 1 237 N 

204 BRK 2 355 N 204 BRK 2 375 N 

304 BRK 3 284 N 304 BRK 3 222 N 

404 BRK 4 364 N 404 BRK 4 224 N 

105 BRK 1 396 2N 105 BRK 1 274 2N 

205 BRK 2 368 2N 205 BRK 2 361 2N 

305 BRK 3 535 2N 305 BRK 3 317 2N 

405 BRK 4 349 2N 405 BRK 4 363 2N 

106 BRK 1 274 HF 106 BRK 1 187 HF 

206 BRK 2 207 HF 206 BRK 2 172 HF 

306 BRK 3 291 HF 306 BRK 3 162 HF 

406 BRK 4 128 HF 406 BRK 4 190 HF 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double 

rate of nitrogen based manure application rate; F, Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer.  



157 
 

           

APPENDIX 3 

 

A 3.1. Weather data for June and July 2015. PRCP, precipitation in mm; TMAX, 

maximum temperature in °C; TMIN, minimum temperature in °C. 

DATE PRCP T-MAX T-MIN DATE PRCP T-MAX T-MIN 

6/5/2015 0.0 21.1 13.9 7/1/2015 3.8 26.7 16.7 

6/6/2015 0.0 23.3 16.7 7/2/2015 0.0 22.2 13.3 

6/7/2015 1.8 26.1 15.6 7/3/2015 0.0 22.2 10.0 

6/8/2015 0.0 24.4 13.3 7/4/2015 0.0 25.6 13.9 

6/9/2015 0.0 28.9 15.6 7/5/2015 13.5 27.2 17.8 

6/10/2015 0.0 34.4 15.0 7/6/2015 15.7 30.0 18.3 

6/11/2015 0.0 25.0 14.4 7/7/2015 0.5 21.7 8.3 

6/12/2015 0.0 18.3 8.9 7/8/2015 0.0 20.0 10.0 

6/13/2015 0.0 23.9 13.9 7/9/2015 0.0 22.2 12.2 

6/14/2015 0.0 25.0 15.0 7/10/2015 0.0 27.2 15.6 

6/15/2015 1.3 29.4 15.0 7/11/2015 0.0 27.2 18.3 

6/16/2015 0.0 24.4 11.1 7/12/2015 1.3 29.4 19.4 

6/17/2015 5.8 20.0 12.2 7/13/2015 0.8 32.8 18.3 

6/18/2015 0.0 17.8 10.6 7/14/2015 0.0 31.1 17.8 

6/19/2015 0.0 23.9 12.2 7/15/2015 0.0 29.4 17.8 

6/20/2015 11.7 25.0 17.2 7/16/2015 0.0 28.3 17.8 

6/21/2015 0.0 27.2 16.1 7/17/2015 0.0 27.2 16.7 

6/22/2015 16.8 28.3 16.7 7/18/2015 0.0 32.2 18.9 

6/23/2015 0.0 24.4 11.7 7/19/2015 0.0 28.3 13.3 

6/24/2015 0.0 22.8 13.3 7/20/2015 3.6 27.8 18.3 

6/25/2015 0.0 26.1 13.3 7/21/2015 0.0 25.0 10.0 

6/26/2015 8.1 26.7 16.1 7/22/2015 0.0 25.6 14.4 

6/27/2015 8.9 27.2 12.2 7/23/2015 0.0 27.2 16.1 

6/28/2015 0.0 27.8 16.1 7/24/2015 1.3 29.4 18.3 

6/29/2015 0.0 26.7 15.0 7/25/2015 0.0 29.4 16.7 

6/30/2015 0.0 26.7 14.4 7/26/2015 38.9 28.9 16.7 

    
7/27/2015 0.0 27.2 19.4 

    
7/28/2015 21.3 30.6 18.9 

    
7/29/2015 0.0 25.0 14.4 

    
7/30/2015 0.0 27.2 12.2 

    
7/31/2015 0.0 29.4 13.3 
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A 3.2. Weather data for August and September 2015. PRCP, precipitation in mm; 

TMAX, maximum temperature in °C; TMIN, minimum temperature in °C. 

DATE PRCP T-MAX T-MIN DATE PRCP T-MAX T-MIN 

8/1/2015 0.0 28.3 15.0 9/1/2015 0.0 28.3 17.8 

8/2/2015 0.0 28.9 16.7 9/2/2015 2.3 25.6 17.2 

8/3/2015 0.0 27.2 11.1 9/3/2015 0.0 30.0 18.9 

8/4/2015 0.0 25.6 11.1 9/4/2015 0.0 31.1 20.0 

8/5/2015 0.0 25.0 13.9 9/5/2015 0.0 27.2 20.6 

8/6/2015 8.4 26.1 15.0 9/6/2015 0.0 28.9 21.1 

8/7/2015 44.5 27.8 16.7 9/7/2015 0.0 28.3 10.6 

8/8/2015 1.5 28.9 18.3 9/8/2015 0.5 22.8 12.8 

8/9/2015 0.0 27.2 18.3 9/9/2015 0.0 23.3 10.0 

8/10/2015 21.3 26.1 15.0 9/10/2015 1.5 25.0 11.7 

8/11/2015 0.0 25.6 13.3 9/11/2015 0.0 20.6 4.4 

8/12/2015 0.0 28.9 15.6 9/12/2015 0.0 17.2 2.8 

8/13/2015 0.0 29.4 18.3 9/13/2015 0.0 20.6 4.4 

8/14/2015 0.8 25.0 18.3 9/14/2015 0.0 25.0 8.9 

8/15/2015 0.0 31.1 20.0 9/15/2015 0.0 28.9 15.0 

8/16/2015 22.1 30.6 20.0 9/16/2015 0.0 26.7 17.8 

8/17/2015 14.2 20.6 12.8 9/17/2015 0.0 28.9 19.4 

8/18/2015 12.2 18.3 12.8 9/18/2015 0.0 23.3 8.9 

8/19/2015 51.8 14.4 10.0 9/19/2015 1.3 15.6 2.8 

8/20/2015 0.0 20.0 7.2 9/20/2015 0.0 18.9 7.2 

8/21/2015 0.0 23.9 10.0 9/21/2015 0.0 24.4 11.1 

8/22/2015 0.0 25.6 15.6 9/22/2015 0.0 27.8 12.8 

8/23/2015 0.0 26.7 10.6 9/23/2015 0.0 25.0 13.3 

8/24/2015 0.0 18.9 6.7 9/24/2015 24.9 22.8 16.7 

8/25/2015 0.0 19.4 5.6 9/25/2015 13.2 17.2 14.4 

8/26/2015 0.0 22.2 7.8 9/26/2015 0.0 25.6 11.1 

8/27/2015 0.0 22.2 11.1 9/27/2015 0.0 25.0 12.2 

8/28/2015 0.0 25.6 16.1 9/28/2015 0.0 28.3 14.4 

8/29/2015 0.0 22.8 10.6 9/29/2015 0.0 21.7 9.4 

8/30/2015 0.0 25.0 11.1 9/30/2015 0.0 19.4 6.7 

8/31/2015 0.0 25.6 16.1 
    

 

 

 

 

 



159 
 

           

 

 

 

A 3.3. Weather data for October 2015, May and June 2016. PRCP, precipitation in mm; 

TMAX, maximum temperature in °C; TMIN, minimum temperature in °C. 

DATE PRCP T-MAX T-MIN DATE PRCP T-MAX T-MIN 

10/1/2015 0.0 19.4 7.2 6/1/2016 0.0 21.1 10.6 

10/2/2015 0.0 16.7 5.0 6/2/2016 0.0 18.3 6.7 

10/3/2015 0.0 15.6 3.9 6/3/2016 11.9 24.4 11.1 

10/4/2015 0.0 13.9 4.4 6/4/2016 6.1 23.9 12.8 

10/5/2015 0.0 13.9 6.1 6/5/2016 0.0 21.7 11.7 

10/6/2015 0.0 16.1 10.6 6/6/2016 0.0 26.7 11.7 

10/7/2015 0.0 20.6 4.4 6/7/2016 0.0 20.0 8.3 

10/8/2015 0.0 20.6 5.6 6/8/2016 0.0 22.2 12.8 

5/10/2016 3.3 18.9 11.7 6/9/2016 0.0 29.4 16.7 

5/11/2016 9.7 20.6 11.1 6/10/2016 0.0 33.9 20.6 

5/12/2016 0.0 17.2 7.8 6/11/2016 0.5 32.8 20.0 

5/13/2016 2.5 15.0 2.8 6/12/2016 0.0 33.9 21.7 

5/14/2016 0.5 6.7 -1.7 6/13/2016 0.0 33.9 18.9 

5/15/2016 0.0 12.2 0.0 6/14/2016 1.0 26.7 18.3 

5/16/2016 0.0 17.8 5.0 6/15/2016 1.8 25.6 13.9 

5/17/2016 2.0 19.4 2.8 6/16/2016 0.0 26.7 13.3 

5/18/2016 0.0 18.9 3.3 6/17/2016 0.0 30.0 17.2 

5/19/2016 0.0 20.6 8.3 6/18/2016 70.1 33.9 17.8 

5/20/2016 0.0 21.7 8.3 6/19/2016 0.0 27.8 19.4 

5/21/2016 0.0 19.4 7.8 6/20/2016 0.5 31.7 15.0 

5/22/2016 0.0 23.3 9.4 6/21/2016 0.0 25.6 11.7 

5/23/2016 7.9 28.3 15.0 6/22/2016 2.8 27.8 16.7 

5/24/2016 0.0 22.8 13.3 6/23/2016 0.0 27.8 13.9 

5/25/2016 3.6 28.9 15.0 6/24/2016 0.0 24.4 15.6 

5/26/2016 0.0 23.9 11.1 6/25/2016 0.0 29.4 17.2 

5/27/2016 0.0 24.4 12.8 6/26/2016 0.5 29.4 13.3 

5/28/2016 13.5 21.7 15.0 6/27/2016 0.0 28.9 13.3 

5/29/2016 16.8 17.8 13.3 6/28/2016 0.0 25.0 10.6 

5/30/2016 0.0 23.9 12.8 6/29/2016 0.0 25.0 15.0 

5/31/2016 8.6 27.2 13.9 6/30/2016 0.0 27.2 16.7 
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A 3.4.  Weather data for July and August 2016. PRCP, precipitation in mm; TMAX, 

maximum temperature in °C; TMIN, minimum temperature in °C. 

DATE PRCP T-MAX T-MIN DATE PRCP T-MAX T-MIN 

7/1/2016 0.0 24.4 6.7 8/1/2016 0.0 28.3 19.4 

7/2/2016 0.0 22.2 11.1 8/2/2016 1.8 26.1 19.4 

7/3/2016 0.0 25.0 11.1 8/3/2016 0.0 30.0 20.0 

7/4/2016 0.0 24.4 15.0 8/4/2016 15.7 28.9 18.9 

7/5/2016 0.0 28.9 17.2 8/5/2016 0.0 25.6 12.8 

7/6/2016 3.3 31.7 16.1 8/6/2016 0.0 25.0 11.7 

7/7/2016 11.4 28.3 16.1 8/7/2016 0.0 25.6 13.9 

7/8/2016 1.3 22.8 13.3 8/8/2016 0.0 25.6 14.4 

7/9/2016 0.3 26.1 13.9 8/9/2016 0.0 25.6 16.7 

7/10/2016 60.2 27.8 17.2 8/10/2016 0.0 31.7 20.6 

7/11/2016 23.9 30.0 17.2 8/11/2016 20.3 32.8 18.9 

7/12/2016 0.3 30.0 15.6 8/12/2016 42.7 28.9 16.7 

7/13/2016 0.0 27.8 16.7 8/13/2016 1.3 26.1 13.9 

7/14/2016 0.0 27.2 14.4 8/14/2016 1.8 25.6 13.3 

7/15/2016 0.0 21.7 8.9 8/15/2016 0.0 26.7 16.1 

7/16/2016 0.0 24.4 11.7 8/16/2016 0.0 26.1 17.8 

7/17/2016 27.4 25.6 15.6 8/17/2016 2.3 28.9 13.3 

7/18/2016 0.0 25.6 14.4 8/18/2016 0.0 28.3 17.2 

7/19/2016 3.6 28.3 18.3 8/19/2016 26.2 27.8 17.2 

7/20/2016 0.0 27.8 21.7 8/20/2016 4.8 22.2 13.3 

7/21/2016 0.0 32.2 23.3 8/21/2016 1.3 20.0 8.9 

7/22/2016 0.0 32.2 22.8 8/22/2016 0.0 24.4 12.8 

7/23/2016 17.3 31.7 19.4 8/23/2016 0.0 28.9 16.7 

7/24/2016 3.8 31.7 18.3 8/24/2016 0.0 25.0 13.3 

7/25/2016 0.0 25.6 14.4 
    

7/26/2016 0.0 28.9 18.3 
    

7/27/2016 2.0 29.4 18.9 
    

7/28/2016 0.0 26.1 15.0 
    

7/29/2016 0.0 23.9 11.7 
    

7/30/2016 0.0 25.0 12.2 
    

7/31/2016 0.0 25.6 16.1 
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A3.5 Daily CH4 Fluxes (g CH4-C ha-1 d-1) in 2015 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 06/05 06/13 06/21 06/23 06/27 07/07 07/17 07/29 

101 BRK 1 CK 0.033 -0.035 -0.019 -0.096 4.965 -26.032 1.036 -0.472 

102 BRK 1 F -0.055 0.112 -0.260 -4.071 0.108 0.052 0.431 0.051 

103 BRK 1 P 0.276 0.040 0.100 0.040 0.184 -0.019 1.122 0.156 

104 BRK 1 N -0.052 0.224 0.345 -0.026 -0.102 4.636 1.054 0.246 

105 BRK 1 2N -0.168 0.089 0.006 -0.014 -0.020 -0.035 0.570 37.217 

106 BRK 1 HF 0.131 -0.054 0.231 -0.083 -0.033 0.049 0.202 0.023 

201 BRK 2 CK 0.060 0.096 0.118 0.037 -0.093 0.019 0.951 0.057 

202 BRK 2 F 0.196 -0.094 -0.002 -0.044 -0.062 0.154 0.248 -0.010 

203 BRK 2 P 0.128 0.043 0.055 -0.077 0.217 0.007 -0.165 0.062 

204 BRK 2 N 0.037 0.101 0.165 0.105 0.394 0.046 0.043 0.791 

205 BRK 2 2N 0.020 0.165 0.184 0.672 64.022 0.448 0.529 -0.082 

206 BRK 2 HF 0.065 7.270 -0.011 -0.045 -0.057 -0.005 0.075 0.177 

301 BRK 3 CK -0.050 10.799 -8.704 0.076 -0.022 0.064 1.118 0.073 

302 BRK 3 F 0.005 0.119 -0.042 0.191 0.040 0.289 -0.009 0.138 

303 BRK 3 P -0.076 -0.080 -0.088 -0.041 0.355 0.149 0.241 0.446 

304 BRK 3 N -0.010 0.081 0.016 0.166 0.016 -11.485 1.124 -0.067 

305 BRK 3 2N 0.288 0.068 38.688 0.578 18.349 0.064 0.163 0.047 

306 BRK 3 HF 0.047 -0.010 0.178 0.167 0.041 0.015 0.239 0.051 

401 BRK 4 CK 0.100 0.075 -0.156 -0.034 0.104 0.162 1.039 -9.269 

402 BRK 4 F 0.017 0.141 -0.024 -0.068 0.007 -0.008 0.111 -0.126 

403 BRK 4 P -0.021 0.062 0.173 -0.021 8.902 0.198 0.194 15.216 

404 BRK 4 N -0.029 7.517 0.175 0.082 52.571 10.977 3.577 -0.011 

405 BRK 4 2N -0.030 0.089 -0.093 0.053 0.055 0.094 0.111 0.251 

406 BRK 4 HF 0.073 0.195 0.088 0.243 0.446 0.062 0.711 0.079 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 

of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.6. Daily CH4 Fluxes (g CH4-C ha-1 d-1) in 2015 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 08/02 08/16 08/22 08/25 08/31 09/15 09/20 09/22 10/08 

101 BRK 1 CK 0.184 -0.081 0.330 0.014 -0.040 0.332 -0.161 0.605 1.223 

102 BRK 1 F -0.128 0.134 0.168 -0.176 -0.077 -0.056 -0.027 -0.160 0.178 

103 BRK 1 P -0.056 0.221 13.517 -0.108 0.201 -0.003 0.093 0.296 0.132 

104 BRK 1 N 0.111 0.041 0.139 0.325 0.191 -0.006 40.002 0.443 1.104 

105 BRK 1 2N 0.650 0.137 0.500 0.254 0.213 0.262 30.329 0.718 -0.024 

106 BRK 1 HF -6.952 0.011 0.364 0.084 -0.213 0.015 0.117 -0.322 -0.507 

201 BRK 2 CK 0.431 0.051 0.094 -0.327 -0.690 -0.029 -0.139 0.049 0.115 

202 BRK 2 F -0.004 0.189 0.080 0.151 -0.021 -0.057 -0.285 -0.215 0.113 

203 BRK 2 P -0.041 -0.147 0.186 -0.043 0.097 0.224 0.102 0.365 1.036 

204 BRK 2 N -0.221 -0.053 0.179 0.065 0.470 0.046 -28.311 -22.790 21.639 

205 BRK 2 2N 0.180 0.297 -0.527 0.089 -0.138 -0.035 0.414 -0.076 -26.871 

206 BRK 2 HF 0.546 0.198 0.147 0.228 0.132 0.077 0.294 0.210 0.057 

301 BRK 3 CK -0.142 -0.081 -0.062 0.301 -0.007 -11.725 -119.517 0.154 0.284 

302 BRK 3 F -10.627 0.134 -0.758 0.436 -0.032 0.116 -0.173 62.667 2.114 

303 BRK 3 P 0.091 0.221 -0.025 -0.127 -0.069 1.090 0.472 -0.132 0.224 

304 BRK 3 N -0.026 0.041 -0.069 9.875 2.415 0.069 0.259 -28.259 -103.152 

305 BRK 3 2N 0.020 0.137 -0.109 0.119 0.153 0.435 -0.587 -0.052 0.021 

306 BRK 3 HF -13.598 0.011 0.490 0.044 -0.506 0.081 0.536 0.113 0.263 

401 BRK 4 CK 0.044 0.051 0.161 0.092 0.295 -0.107 0.547 0.181 0.067 

402 BRK 4 F 0.438 0.189 0.030 0.010 -0.809 -0.111 -0.907 0.304 0.654 

403 BRK 4 P -0.022 -0.147 0.119 0.029 0.535 -0.408 0.084 -0.339 -0.153 

404 BRK 4 N 0.001 -0.053 0.450 -0.031 -0.201 -0.082 0.054 -0.061 -0.018 

405 BRK 4 2N 0.377 0.297 -0.184 0.093 0.250 -0.017 -0.012 0.514 0.079 

406 BRK 4 HF 0.240 0.198 32.525 27.401 0.722 -9.192 -0.162 -0.043 -0.150 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 

of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.7. Daily CH4 Fluxes (g CH4-C ha-1 d-1) in 2016 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 05/10 05/15 05/20 05/26 06/02 06/16 06/28 06/30 07/15 07/29 08/24 

101 BRK 1 CK 0.182 0.187 0.417 -0.194 -0.389 -0.292 0.046 -0.188 -0.060 11.948 -0.280 

102 BRK 1 F 0.107 0.870 0.146 0.287 -0.074 -0.199 0.013 0.029 -0.313 0.119 0.116 

103 BRK 1 P -0.025 0.080 48.993 -0.041 0.142 0.514 0.318 0.098 0.664 0.165 -0.028 

104 BRK 1 N 0.009 -0.335 24.981 0.358 0.026 0.212 0.016 -0.081 -0.167 0.275 0.001 

105 BRK 1 2N 0.113 -0.216 0.596 0.046 -0.011 0.489 -8.265 -0.076 -0.221 0.054 -0.109 

106 BRK 1 HF -0.010 -0.098 0.355 0.039 -39.734 0.031 -0.025 0.033 0.130 0.172 0.387 

201 BRK 2 CK 0.126 -0.375 0.238 -0.030 0.209 0.000 0.179 -0.113 0.508 0.592 0.016 

202 BRK 2 F 0.261 0.193 0.128 -0.028 0.003 0.237 -0.035 0.002 -6.576 0.605 -0.039 

203 BRK 2 P 0.269 -0.072 0.122 0.574 -0.096 0.487 -0.299 -0.136 0.633 0.259 12.397 

204 BRK 2 N -20.306 -0.184 36.901 0.096 -0.303 0.109 0.063 0.288 0.662 -0.003 0.040 

205 BRK 2 2N 0.202 -0.134 -0.112 0.193 -0.011 -0.183 0.071 -0.075 0.467 -0.079 0.558 

206 BRK 2 HF 0.010 -0.051 0.012 0.220 -0.195 0.018 0.050 0.020 0.049 0.070 0.118 

301 BRK 3 CK -0.032 -0.042 0.499 -0.107 -0.250 -0.303 -0.044 -0.521 0.112 0.142 -0.499 

302 BRK 3 F 0.067 0.006 -0.081 0.256 -0.313 -0.340 0.128 0.088 -0.024 0.062 -0.165 

303 BRK 3 P -0.050 0.078 0.051 -0.120 0.206 4.297 -0.023 -0.063 0.612 0.038 -0.057 

304 BRK 3 N 0.018 0.279 0.317 -0.075 0.059 -0.181 -0.112 -0.024 -0.294 0.006 0.059 

305 BRK 3 2N -0.104 0.034 0.033 0.191 0.014 0.116 0.032 0.059 -0.102 0.053 0.016 

306 BRK 3 HF 0.243 -0.810 0.063 0.017 -0.125 -0.050 0.126 0.305 -0.112 0.227 -0.021 

401 BRK 4 CK 14.559 -0.136 0.078 -0.076 0.048 -0.233 0.004 -0.147 50.230 0.409 -0.018 

402 BRK 4 F 0.043 0.739 -0.103 -0.061 0.224 0.084 0.128 0.183 -0.172 0.182 -0.175 

403 BRK 4 P 0.205 0.043 -0.098 0.037 0.000 0.048 -0.139 -8.668 0.701 0.047 0.215 

404 BRK 4 N 0.560 0.189 15.986 0.065 -0.232 0.072 -0.008 0.242 0.502 0.264 0.512 

405 BRK 4 2N 23.936 0.134 0.095 0.102 0.205 -0.281 0.213 -0.109 -0.124 0.156 0.599 

406 BRK 4 HF 0.031 -0.211 -0.033 0.081 0.032 -0.139 -0.016 0.035 -0.072 0.104 0.139 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.8. Daily CO2 Fluxes (kg CO2-C ha-1 d-1) in 2015 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 06/05 06/13 06/21 06/23 06/27 07/07 07/17 07/29 

101 BRK 1 CK 0.211 15.068 5.561 12.188 0.618 0.116 0.493 0.410 

102 BRK 1 F 0.172 20.437 0.572 0.306 100.903 31.528 23.371 0.568 

103 BRK 1 P 56.113 31.194 41.920 0.937 132.647 37.016 59.622 0.964 

104 BRK 1 N 0.812 0.624 0.846 0.751 87.797 38.769 0.781 0.673 

105 BRK 1 2N 157.251 22.173 144.616 1.218 223.473 90.728 66.116 0.933 

106 BRK 1 HF 0.305 0.045 0.631 42.121 0.691 25.933 25.278 1.159 

201 BRK 2 CK 24.634 9.463 0.107 27.166 34.894 0.138 0.422 0.589 

202 BRK 2 F 19.878 0.168 0.239 19.368 0.229 0.138 0.251 33.594 

203 BRK 2 P 0.565 14.990 0.566 43.823 80.100 27.358 24.014 0.624 

204 BRK 2 N 0.403 0.466 63.300 84.218 1.959 66.596 0.627 83.413 

205 BRK 2 2N 1.191 35.732 26.300 2.200 250.261 1.451 62.412 1.532 

206 BRK 2 HF 0.136 0.274 0.213 20.491 25.011 0.161 0.267 0.302 

301 BRK 3 CK 0.307 0.180 0.291 0.287 30.628 15.600 0.500 0.560 

302 BRK 3 F 20.223 0.160 0.301 14.129 35.834 0.163 30.317 0.410 

303 BRK 3 P 22.959 16.266 0.275 0.268 39.987 0.171 48.063 26.200 

304 BRK 3 N 79.981 0.141 0.654 98.061 1.787 0.739 0.604 1.054 

305 BRK 3 2N 53.468 125.200 121.453 141.345 1.614 59.296 144.822 79.655 

306 BRK 3 HF 29.473 0.307 23.170 16.496 31.982 4.426 37.465 0.138 

401 BRK 4 CK 0.236 9.848 0.338 5.642 0.055 0.167 0.557 0.628 

402 BRK 4 F 0.076 11.899 0.395 0.325 0.149 0.250 0.401 0.649 

403 BRK 4 P 1.025 25.468 0.543 0.405 0.461 0.365 0.412 0.666 

404 BRK 4 N 60.467 2.487 1.469 1.702 2.005 93.543 2.290 89.560 

405 BRK 4 2N 105.403 0.453 0.852 0.750 86.951 40.707 0.945 0.750 

406 BRK 4 HF 21.563 18.083 0.412 0.516 40.825 19.501 0.641 41.477 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.9. Daily CO2 Fluxes (kg CO2-C ha-1 d-1) in 2015 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 08/02 08/16 08/22 08/25 08/31 09/15 09/20 09/22 10/08 

101 BRK 1 CK 22.477 0.427 0.149 0.084 0.305 4.590 8.811 0.213 0.147 

102 BRK 1 F 0.566 0.469 0.442 23.022 26.276 18.700 12.317 21.487 13.188 

103 BRK 1 P 83.327 1.382 0.638 36.621 0.455 0.295 0.290 37.993 16.103 

104 BRK 1 N 0.747 0.458 0.542 0.309 0.671 0.251 15.751 0.286 0.358 

105 BRK 1 2N 1.223 0.008 0.883 38.611 61.394 45.654 37.835 0.489 23.258 

106 BRK 1 HF 35.125 95.024 0.557 29.226 0.362 0.153 7.751 0.110 -0.058 

201 BRK 2 CK 18.991 23.855 0.412 0.200 0.139 9.940 3.854 10.111 0.103 

202 BRK 2 F 33.694 0.391 0.293 0.248 0.322 0.325 18.361 14.840 0.115 

203 BRK 2 P 31.739 0.346 0.462 0.255 24.731 9.543 5.562 0.281 0.276 

204 BRK 2 N 25.725 0.497 44.446 33.561 39.604 0.128 0.115 0.132 0.231 

205 BRK 2 2N 2.518 0.388 0.979 0.409 35.087 25.667 13.775 20.460 0.148 

206 BRK 2 HF 1.024 0.316 0.293 0.115 14.359 9.893 0.243 14.222 0.057 

301 BRK 3 CK 0.528 0.427 28.748 14.953 25.617 11.601 10.007 0.061 2.044 

302 BRK 3 F 0.387 0.469 0.218 14.101 0.210 0.235 0.065 0.137 0.304 

303 BRK 3 P 0.500 1.382 32.489 23.486 29.936 0.288 0.152 0.050 0.074 

304 BRK 3 N 67.391 0.458 0.091 33.187 0.925 0.168 0.244 0.172 0.067 

305 BRK 3 2N 79.315 0.008 86.071 43.796 78.462 0.324 34.836 0.368 10.716 

306 BRK 3 HF 22.181 95.024 24.636 17.934 0.101 0.258 15.270 9.760 0.105 

401 BRK 4 CK 0.668 23.855 0.365 21.508 20.282 0.167 2.283 8.611 0.058 

402 BRK 4 F 34.725 0.391 0.370 0.211 0.106 0.224 -0.056 0.088 0.206 

403 BRK 4 P 45.602 0.346 0.456 21.422 16.317 0.204 0.138 0.180 0.014 

404 BRK 4 N 140.432 0.497 92.840 44.873 1.012 48.763 0.194 0.258 0.183 

405 BRK 4 2N 0.765 0.388 0.662 45.573 44.426 28.429 14.189 0.228 0.054 

406 BRK 4 HF 61.199 0.316 32.292 23.045 0.437 22.659 0.167 0.083 6.935 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.10. Daily CO2 Fluxes (kg CO2-C ha-1 d-1) in 2016 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 05/10 05/15 05/20 05/26 06/02 06/16 06/28 06/30 07/15 07/29 08/24 

101 BRK 1 CK 8.079 6.672 0.028 0.040 21.716 0.210 35.130 0.131 21.631 0.240 0.144 

102 BRK 1 F 0.832 0.071 1.634 -0.002 0.108 31.526 48.918 33.783 0.569 42.540 36.738 

103 BRK 1 P 14.682 3.810 0.059 0.046 23.960 25.338 32.951 32.868 32.652 0.431 40.122 

104 BRK 1 N 32.185 33.105 29.496 52.114 0.475 90.798 0.532 0.663 0.514 0.520 0.482 

105 BRK 1 2N 22.590 -0.006 0.087 45.610 0.231 85.757 73.967 48.218 41.851 0.714 42.958 

106 BRK 1 HF 0.094 -0.003 0.088 0.053 0.329 44.210 0.413 55.811 0.849 39.657 0.408 

201 BRK 2 CK 0.069 8.014 9.519 33.926 0.079 0.307 36.504 0.505 48.766 0.407 0.425 

202 BRK 2 F -0.003 -1.145 2.276 25.088 0.238 0.239 41.777 28.687 0.391 0.442 0.363 

203 BRK 2 P 23.087 0.173 0.148 35.167 0.525 0.552 0.456 0.492 0.374 0.673 0.412 

204 BRK 2 N 18.682 0.161 0.032 0.159 0.162 0.411 0.519 65.692 0.562 0.535 39.620 

205 BRK 2 2N 0.104 26.676 0.290 76.348 0.391 0.426 0.906 1.574 105.769 0.864 0.633 

206 BRK 2 HF 0.082 0.009 0.099 0.212 0.190 0.108 0.430 64.785 52.503 0.389 30.905 

301 BRK 3 CK 0.007 -0.020 0.003 0.095 0.134 17.710 21.842 0.141 31.081 0.223 0.138 

302 BRK 3 F 0.189 20.047 0.068 36.058 33.116 36.653 0.587 58.276 64.842 0.431 0.429 

303 BRK 3 P 13.581 17.974 0.016 25.548 0.018 62.313 67.506 56.484 53.688 0.533 0.444 

304 BRK 3 N 29.940 0.036 17.455 59.705 60.963 70.605 0.578 0.516 0.471 0.426 0.394 

305 BRK 3 2N 48.017 0.099 43.701 0.101 0.090 61.423 42.295 40.791 28.841 32.066 33.207 

306 BRK 3 HF 16.220 -0.123 0.243 38.100 0.272 39.839 38.650 40.577 55.249 0.495 0.363 

401 BRK 4 CK 0.129 0.023 0.147 0.033 0.358 0.402 47.044 0.466 41.230 0.433 0.282 

402 BRK 4 F 0.018 0.379 0.088 0.200 0.406 0.212 41.539 19.213 45.997 0.383 0.413 

403 BRK 4 P 0.127 2.023 0.030 18.942 42.060 0.544 55.910 0.401 0.585 0.456 0.452 

404 BRK 4 N 0.486 0.019 0.224 52.868 0.729 0.811 68.515 84.014 0.819 0.524 0.532 

405 BRK 4 2N 0.171 0.037 15.556 0.029 0.193 0.516 61.099 76.359 0.639 0.537 0.573 

406 BRK 4 HF 0.053 0.017 8.258 0.122 0.405 0.190 51.657 45.480 0.619 0.523 0.480 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.11. Daily N2O Fluxes (g N2O ha-1 d-1) in 2015 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 06/05 06/13 06/21 06/23 06/27 07/07 07/17 07/29 

101 BRK 1 CK 0.077 0.036 0.000 0.008 8.822 0.031 0.193 0.000 

102 BRK 1 F 0.021 0.042 0.201 0.000 3.117 0.016 0.064 2.574 

103 BRK 1 P 0.109 0.117 17.635 0.379 40.218 0.031 0.065 14.670 

104 BRK 1 N 0.204 0.220 46.052 10.961 0.845 0.158 0.242 8.033 

105 BRK 1 2N 159.78 0.195 515.498 1.094 0.874 65.911 44.618 1.010 

106 BRK 1 HF 0.001 0.008 0.000 0.048 0.049 0.128 0.000 0.062 

201 BRK 2 CK 0.002 1.096 9.600 0.029 7.901 0.000 0.207 0.090 

202 BRK 2 F 0.055 0.042 0.000 0.060 0.177 0.023 0.045 0.010 

203 BRK 2 P 0.152 0.089 0.091 3.805 0.154 0.041 0.051 0.108 

204 BRK 2 N 0.205 0.207 36.711 36.185 1.189 17.291 0.100 0.129 

205 BRK 2 2N 0.170 3.480 0.195 0.621 0.576 0.591 73.367 1.050 

206 BRK 2 HF 0.010 4.400 0.070 0.029 0.168 0.030 0.633 0.063 

301 BRK 3 CK 0.027 0.000 0.030 0.000 0.017 0.004 0.187 0.000 

302 BRK 3 F 0.000 0.011 3.041 0.000 0.136 0.000 0.000 0.023 

303 BRK 3 P 0.017 0.046 0.041 0.030 0.051 0.031 0.078 0.039 

304 BRK 3 N 26.177 0.079 0.726 56.716 0.714 16.437 0.279 0.189 

305 BRK 3 2N 22.070 0.615 0.849 59.723 0.928 0.208 40.904 0.332 

306 BRK 3 HF 38.969 18.813 48.625 0.227 79.813 0.022 0.138 0.040 

401 BRK 4 CK 0.000 0.057 3.014 0.036 0.000 0.010 0.185 0.037 

402 BRK 4 F 0.000 2.922 0.024 2.602 0.000 0.000 0.001 0.050 

403 BRK 4 P 0.163 6.489 0.151 0.109 0.199 0.051 0.031 0.079 

404 BRK 4 N 21.611 1.759 2.169 1.552 0.631 104.926 1.974 37.353 

405 BRK 4 2N 61.126 0.270 0.595 0.551 24.015 9.197 19.913 5.680 

406 BRK 4 HF 12.188 0.061 0.070 7.767 0.839 5.576 0.038 0.167 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.12. Daily N2O Fluxes (g N2O ha-1 d-1) in 2015 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 08/02 08/16 08/22 08/25 08/31 09/15 09/20 09/22 10/08 

101 BRK 1 CK 0.011 0.047 0.000 0.000 0.035 0.108 0.000 0.096 0.104 

102 BRK 1 F 0.002 0.043 0.044 0.019 0.000 0.037 0.000 5.057 9.551 

103 BRK 1 P 3.408 0.280 0.055 0.044 0.080 0.082 0.012 0.047 23.681 

104 BRK 1 N 0.088 0.000 0.070 13.341 0.111 0.034 0.059 11.440 0.201 

105 BRK 1 2N 0.510 0.000 0.359 0.069 18.524 0.103 0.062 0.138 0.012 

106 BRK 1 HF 0.015 119.972 0.022 0.039 0.154 0.059 0.032 0.000 0.000 

201 BRK 2 CK 0.013 0.142 0.021 0.004 0.000 0.040 0.039 0.072 0.155 

202 BRK 2 F 0.052 0.035 0.036 0.000 0.000 0.021 0.034 0.018 0.090 

203 BRK 2 P 0.057 0.031 0.028 0.033 0.057 0.036 0.002 0.145 0.220 

204 BRK 2 N 1.201 0.347 0.127 0.035 0.058 0.000 0.072 0.134 0.244 

205 BRK 2 2N 0.987 0.055 0.708 0.209 14.652 0.173 5.450 0.151 5.815 

206 BRK 2 HF 0.121 0.057 0.069 0.000 0.000 0.008 0.111 0.000 0.000 

301 BRK 3 CK 0.053 0.047 0.043 0.000 11.644 11.458 0.097 0.000 0.000 

302 BRK 3 F 0.040 0.043 0.000 0.027 0.012 0.073 0.000 0.008 0.327 

303 BRK 3 P 0.059 0.280 0.014 0.067 0.035 0.392 0.095 0.045 0.149 

304 BRK 3 N 0.082 0.000 0.038 0.024 0.527 0.142 7.634 0.039 0.000 

305 BRK 3 2N 22.916 0.000 22.773 0.052 0.165 0.019 0.026 0.094 0.000 

306 BRK 3 HF 0.031 119.972 0.038 0.033 0.000 0.060 0.030 0.000 10.766 

401 BRK 4 CK 0.026 0.142 0.068 0.013 3.318 0.042 0.028 0.049 6.784 

402 BRK 4 F 0.029 0.035 0.042 0.017 0.000 0.034 0.000 0.008 0.111 

403 BRK 4 P 0.015 0.031 0.057 0.076 0.084 0.000 5.968 0.044 0.000 

404 BRK 4 N 216.344 0.347 0.414 37.347 0.653 46.032 7.267 12.557 0.226 

405 BRK 4 2N 0.080 0.055 11.659 0.125 2.394 0.065 0.095 0.031 0.000 

406 BRK 4 HF 0.030 0.057 0.057 0.051 0.191 0.071 0.111 0.000 0.042 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended 
rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.13. Daily N2O Fluxes (g N2O ha-1 d-1) in 2016 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 05/10 05/15 05/20 05/26 06/02 06/16 06/28 06/30 07/15 07/29 08/24 

101 BRK 1 CK 0.110 0.006 0.022 0.000 0.046 0.013 0.030 0.000 0.043 0.051 0.000 

102 BRK 1 F 0.008 0.012 0.000 0.002 0.108 11.098 0.095 0.114 0.083 0.064 0.020 

103 BRK 1 P 0.170 0.000 0.000 0.035 0.127 0.094 0.249 0.155 0.105 0.057 0.057 

104 BRK 1 N 0.385 0.388 27.584 0.220 0.265 0.257 0.128 0.064 0.044 0.051 13.957 

105 BRK 1 2N 10.056 0.000 7.640 0.249 0.154 0.098 0.294 0.140 0.118 0.020 0.196 

106 BRK 1 HF 0.050 0.000 0.083 0.000 0.292 212.524 98.259 170.239 1.442 0.356 0.025 

201 BRK 2 CK 0.000 0.000 0.111 0.092 0.062 0.110 0.026 0.087 0.029 0.013 0.106 

202 BRK 2 F 0.023 0.000 0.038 0.000 8.592 0.420 74.668 0.274 85.319 0.142 0.094 

203 BRK 2 P 0.343 8.853 0.239 0.146 0.210 0.220 17.083 0.120 0.080 0.464 0.000 

204 BRK 2 N 0.179 0.078 0.000 0.178 0.083 0.115 0.038 0.094 0.077 0.000 0.000 

205 BRK 2 2N 0.168 22.161 0.582 72.909 0.832 0.542 0.879 1.143 0.367 0.133 15.989 

206 BRK 2 HF 0.000 0.024 0.035 0.077 0.107 1.711 25.393 444.550 408.425 1.343 0.107 

301 BRK 3 CK 0.020 0.005 0.000 0.000 0.029 0.096 0.063 0.000 0.005 0.039 0.000 

302 BRK 3 F 0.052 0.143 0.035 7.302 0.070 16.487 0.049 0.161 0.292 0.041 0.000 

303 BRK 3 P 9.035 11.889 0.000 0.047 0.033 22.522 0.116 0.058 0.050 1.858 0.032 

304 BRK 3 N 33.610 0.000 0.054 67.662 98.141 24.402 0.294 0.117 0.066 0.148 0.283 

305 BRK 3 2N 34.071 0.025 30.718 0.000 0.067 0.069 0.206 0.128 0.009 0.009 0.016 

306 BRK 3 HF 0.000 0.000 0.105 14.319 0.129 342.713 20.110 85.206 377.606 2.417 0.093 

401 BRK 4 CK 0.096 0.000 0.052 0.038 0.117 0.012 0.000 0.000 0.050 4.006 0.094 

402 BRK 4 F 0.017 0.333 0.026 0.000 0.126 1.050 113.986 0.574 0.954 0.050 0.083 

403 BRK 4 P 0.106 0.015 0.049 0.061 17.738 0.000 11.014 0.132 0.066 2.566 0.000 

404 BRK 4 N 0.876 0.097 0.133 50.304 40.344 0.212 0.102 0.148 0.157 0.000 0.069 

405 BRK 4 2N 0.238 0.015 0.310 0.086 0.419 0.643 99.205 0.686 0.511 0.086 0.500 

406 BRK 4 HF 0.000 0.000 0.004 3.786 0.112 0.254 97.683 67.369 0.048 0.089 0.022 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.14. Water Filled Pore Space (WFPS; m3 m-3) in 2015 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 06/05 06/13 06/21 06/23 06/27 07/07 07/17 07/29 08/02 

101 BRK 1 CK 69.55 62.93 52.16 66.65 71.21 70.17 65.52 71.83 61.38 

102 BRK 1 F 54.07 49.52 58.16 61.79 65.52 60.52 59.88 64.61 57.79 

103 BRK 1 P 49.28 38.05 51.51 47.40 52.97 52.79 49.97 54.68 35.40 

104 BRK 1 N 46.75 41.89 46.00 52.42 51.23 51.60 51.68 48.84 42.42 

105 BRK 1 2N 53.34 47.27 49.80 50.45 54.50 52.62 50.38 46.40 39.54 

106 BRK 1 HF 48.02 44.96 55.39 55.14 55.47 56.22 39.66 50.17 41.23 

201 BRK 2 CK 52.88 51.41 50.19 54.87 53.14 48.37 59.21 58.25 56.09 

202 BRK 2 F 66.11 52.87 55.84 61.70 61.90 63.95 54.72 71.76 52.66 

203 BRK 2 P 58.08 47.20 60.63 61.33 66.77 64.31 57.65 64.14 54.49 

204 BRK 2 N 56.82 50.84 61.66 59.81 72.04 65.44 57.96 53.65 43.54 

205 BRK 2 2N 57.10 45.42 48.56 55.49 58.12 57.68 53.08 51.92 44.54 

206 BRK 2 HF 50.54 45.60 49.42 51.82 55.24 47.11 46.55 59.95 44.72 

301 BRK 3 CK 58.26 60.91 64.85 62.38 64.76 57.89 57.53 63.94 45.16 

302 BRK 3 F 56.08 50.01 57.82 59.29 62.51 63.55 58.43 58.69 43.84 

303 BRK 3 P 58.35 59.05 56.87 61.32 60.53 55.91 54.60 59.75 41.95 

304 BRK 3 N 57.27 56.58 58.56 61.76 65.29 62.27 50.20 57.87 47.78 

305 BRK 3 2N 44.53 37.64 44.23 57.63 57.78 57.33 49.15 56.65 44.53 

306 BRK 3 HF 60.95 61.59 62.42 64.52 66.26 62.51 48.41 62.51 48.14 

401 BRK 4 CK 49.16 41.72 47.00 53.23 51.33 52.37 48.30 60.16 39.04 

402 BRK 4 F 49.93 49.74 53.00 50.86 58.02 54.21 59.88 57.37 48.07 

403 BRK 4 P 54.46 39.49 53.75 51.98 53.93 60.30 49.94 60.30 37.10 

404 BRK 4 N 49.07 46.79 63.18 63.27 68.26 67.47 67.39 64.76 46.00 

405 BRK 4 2N 51.27 46.16 47.23 50.20 57.74 55.99 53.78 52.56 34.51 

406 BRK 4 HF 42.92 46.74 47.46 51.52 54.31 50.49 52.87 49.37 40.85 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.15. Water Filled Pore Space (WFPS; m3 m-3) in 2015 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 08/16 08/22 08/25 08/31 09/15 09/20 09/22 10/08 

101 BRK 1 CK 78.97 70.48 62.10 55.99 45.95 44.09 48.33 55.68 

102 BRK 1 F 75.51 64.61 51.71 36.17 49.89 50.80 45.44 48.80 

103 BRK 1 P 72.68 58.45 42.77 43.80 43.20 33.08 35.65 41.05 

104 BRK 1 N 63.18 54.89 44.06 34.87 41.59 35.62 38.38 39.21 

105 BRK 1 2N 53.13 50.96 45.46 38.74 37.37 39.18 25.37 40.40 

106 BRK 1 HF 53.40 56.13 46.61 41.65 38.42 32.70 28.98 33.20 

201 BRK 2 CK 66.23 53.23 39.53 30.08 33.55 34.33 34.94 49.33 

202 BRK 2 F 80.48 63.03 53.69 35.83 50.51 51.33 42.91 54.30 

203 BRK 2 P 68.17 61.42 48.87 50.01 45.36 43.69 38.69 52.29 

204 BRK 2 N 66.58 63.15 50.66 46.35 37.21 42.13 25.33 38.61 

205 BRK 2 2N 56.44 48.19 45.49 39.43 43.45 39.50 27.24 39.87 

206 BRK 2 HF 57.63 55.88 48.47 45.28 42.57 42.33 28.14 52.69 

301 BRK 3 CK 69.89 63.94 39.94 36.27 39.76 42.23 44.15 53.59 

302 BRK 3 F 72.14 59.47 44.10 38.02 41.41 38.81 42.10 50.44 

303 BRK 3 P 73.96 60.27 49.10 45.18 49.54 52.16 44.31 47.62 

304 BRK 3 N 72.97 64.00 57.87 49.77 56.67 52.01 37.86 53.30 

305 BRK 3 2N 55.66 57.93 49.22 37.18 48.47 44.53 33.55 34.61 

306 BRK 3 HF 59.03 66.08 49.97 48.14 57.84 45.03 27.91 46.13 

401 BRK 4 CK 66.13 58.51 45.53 32.03 43.62 44.40 35.75 43.45 

402 BRK 4 F 72.90 52.81 53.84 37.29 41.93 40.07 49.93 48.81 

403 BRK 4 P 68.81 63.67 44.81 33.65 40.73 35.07 27.01 30.37 

404 BRK 4 N 66.33 65.98 48.02 42.94 43.46 38.56 32.51 46.97 

405 BRK 4 2N 58.88 57.59 46.09 42.43 34.20 37.10 21.63 31.99 

406 BRK 4 HF 57.57 51.60 40.61 29.78 36.31 30.18 25.16 29.38 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.16. Water Filled Pore Space (WFPS; m3 m-3) in 2016 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 05/10 05/15 05/20 05/26 06/02 06/16 06/28 06/30 07/15 07/29 08/24 

101 BRK 1 CK 49.163 57.754 57.236 49.163 55.373 58.271 53.820 46.575 63.964 60.031 76.694 

102 BRK 1 F 48.071 39.710 36.712 36.530 48.343 40.983 46.526 29.624 59.793 54.159 67.880 

103 BRK 1 P 47.995 44.395 36.510 35.653 50.309 47.395 40.110 31.882 57.680 51.080 66.850 

104 BRK 1 N 40.101 46.822 41.371 34.351 44.955 39.728 50.108 47.867 44.432 43.312 58.621 

105 BRK 1 2N 30.863 45.102 41.054 36.139 42.645 47.632 39.609 35.489 46.837 43.078 53.848 

106 BRK 1 HF 49.179 47.689 48.020 39.741 50.752 49.510 43.798 42.887 52.491 63.420 66.069 

201 BRK 2 CK 41.264 31.555 37.709 31.381 41.350 39.183 33.115 34.762 51.840 50.279 68.310 

202 BRK 2 F 43.013 56.563 61.080 31.926 45.579 50.917 61.285 47.016 61.183 61.183 76.684 

203 BRK 2 P 53.346 45.098 50.714 39.220 46.853 47.467 45.098 52.205 61.506 50.889 69.490 

204 BRK 2 N 42.044 46.618 41.604 42.132 58.228 45.210 50.048 43.099 55.765 52.423 70.806 

205 BRK 2 2N 48.776 31.616 38.991 34.464 43.810 38.188 33.515 41.912 49.068 55.931 59.947 

206 BRK 2 HF 38.583 35.793 34.198 26.147 40.815 41.452 34.836 33.640 45.040 61.063 63.614 

301 BRK 3 CK 50.106 61.648 49.190 39.572 55.877 51.938 55.236 48.091 54.045 53.129 68.426 

302 BRK 3 F 30.472 39.674 37.764 45.491 47.661 42.973 30.732 35.854 46.098 51.741 66.326 

303 BRK 3 P 33.231 37.243 46.837 32.708 44.569 42.738 38.639 38.028 53.640 50.588 70.125 

304 BRK 3 N 39.158 41.573 40.193 47.524 43.643 51.923 41.573 46.231 55.201 51.406 62.705 

305 BRK 3 2N 46.649 45.589 44.831 35.441 44.453 44.301 33.926 33.396 53.010 58.008 55.131 

306 BRK 3 HF 46.950 52.441 60.586 34.228 51.617 56.925 43.106 40.635 55.918 70.104 68.731 

401 BRK 4 CK 33.151 31.247 42.932 43.797 42.932 40.768 33.930 30.554 53.751 50.202 56.521 

402 BRK 4 F 39.517 43.329 42.027 44.445 46.025 45.003 45.839 40.447 59.787 55.416 71.037 

403 BRK 4 P 49.147 47.642 42.417 40.912 46.225 46.933 46.579 33.650 51.804 51.361 71.197 

404 BRK 4 N 50.649 40.747 40.572 41.273 41.624 56.696 46.093 36.103 54.768 52.227 66.072 

405 BRK 4 2N 43.954 35.651 39.231 42.430 36.412 36.717 27.881 27.347 44.487 58.351 58.275 

406 BRK 4 HF 43.876 34.719 40.293 44.115 40.770 35.913 33.126 29.861 49.370 60.996 60.439 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer.
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A3.17. Soil Temperature (0C) in 2015 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 06/05 06/13 06/21 06/23 06/27 07/07 07/17 07/29 08/02 

101 BRK 1 CK 23.7 23.85 21.6 23 27.55 17.55 25 20.45 22.25 

102 BRK 1 F 25.15 22.25 22.3 22.95 26.4 16.45 24.35 18.75 25 

103 BRK 1 P 21.7 22.25 21.4 23.2 26.05 16.55 23.2 18.7 21.6 

104 BRK 1 N 23.1 21.95 21.65 23.2 26.55 16.5 22.35 19.1 21.7 

105 BRK 1 2N 22.55 21.55 19.95 23.05 27.05 18.15 24.3 21.15 23.25 

106 BRK 1 HF 23.9 22.2 22.8 22.8 28.4 16.85 24 19.7 26.05 

201 BRK 2 CK 22.2 21.5 21.9 21.55 27.45 16.65 23.45 20.1 22.1 

202 BRK 2 F 23.95 22.85 23.15 22.5 28.4 19 24.95 19.9 21.35 

203 BRK 2 P 23.85 21.2 20.6 23.05 28.15 16.6 23.55 19.8 25.6 

204 BRK 2 N 22.8 20.3 20.75 21.75 25.55 16.5 21.75 19.25 22.8 

205 BRK 2 2N 19.6 19.5 19.75 21.7 27.2 17.9 24.75 21.1 22.7 

206 BRK 2 HF 23.9 22.1 23.45 23.95 28.9 17.1 23.8 19.5 21.2 

301 BRK 3 CK 24.45 22.65 23.1 23.3 27.2 18.65 27.2 21 24.4 

302 BRK 3 F 24.2 22.55 23.75 22.45 26.3 18.45 26.2 19.4 23.15 

303 BRK 3 P 21.3 21.05 23.35 23.15 26.9 17.9 27.35 19.45 20.6 

304 BRK 3 N 22.95 21.7 22.4 21.5 25.85 17.55 25.3 21.4 25.8 

305 BRK 3 2N 21.3 20.75 22.35 22 25.4 17.15 23.85 19.6 20.8 

306 BRK 3 HF 23 23.55 23 21.4 26.95 17.25 23.4 19.2 20.65 

401 BRK 4 CK 23.6 22.55 23.6 23.3 26.55 18.35 26.2 20.5 22.8 

402 BRK 4 F 20.75 22.3 21.25 21.7 25.85 18.15 25.8 19.4 20.95 

403 BRK 4 P 22.85 22.6 23.4 23.7 26.65 18.55 26.55 19.75 21.2 

404 BRK 4 N 22.85 22.3 23.3 21.7 25 17.6 25.4 20.9 24.5 

405 BRK 4 2N 21.4 19.05 20.25 20.1 24.9 17.9 30.05 19.55 23.2 

406 BRK 4 HF 23.1 23.15 23.75 22.6 26 17.7 26.65 19.65 21.8 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.18. Soil Temperature (0C) in 2015 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 08/16 08/22 08/25 08/31 09/15 09/20 09/22 10/08 

101 BRK 1 CK 20.55 19.15 16.95 20.2 25 18.2 23.25 15.45 

102 BRK 1 F 20.25 19 14.15 19 20.3 14.75 25.4 14.35 

103 BRK 1 P 20.6 19.1 19.3 19.6 21.2 15.7 18.85 14.65 

104 BRK 1 N 20.35 18.95 18.2 21.45 25.05 16.9 26.45 14.3 

105 BRK 1 2N 20.6 19.35 14.8 17.3 22.4 14.9 25.8 14.35 

106 BRK 1 HF 20.65 19.2 15.55 22.35 24.3 16.4 24.25 14.55 

201 BRK 2 CK 20.35 19.3 16.2 21.55 23 16.1 22.75 13.95 

202 BRK 2 F 20.6 19.35 16.4 21.6 21.45 15.65 25.45 15.25 

203 BRK 2 P 20.5 21.15 17.65 21.8 23.15 17.7 18.9 13.9 

204 BRK 2 N 20.75 19.2 16.35 21.65 21.9 16.7 22.95 14.9 

205 BRK 2 2N 20.55 19.3 15.25 20.65 21.5 15.3 23 14.8 

206 BRK 2 HF 20.65 19.25 14.8 19.4 21.85 16.35 19.55 14.75 

301 BRK 3 CK 20.55 18.7 20.45 22.15 23 16.6 17.75 13.55 

302 BRK 3 F 20.25 18.7 16.5 19.5 20.4 17.25 17.6 13.8 

303 BRK 3 P 20.6 18.5 13.75 19.8 19.35 14.7 16.4 13.7 

304 BRK 3 N 20.35 19 15.9 22.1 20.5 15.45 17.35 7.805 

305 BRK 3 2N 20.6 18.45 14.15 19.5 20.4 14.85 22.8 14.45 

306 BRK 3 HF 20.65 18.4 15.8 19.05 20.4 15.3 21.4 14.65 

401 BRK 4 CK 20.35 18.95 13.95 20.55 20.5 15.55 21.4 14.35 

402 BRK 4 F 20.6 26.6 14.05 18.9 21.25 15.95 18.9 13.65 

403 BRK 4 P 20.5 18.9 14.2 20.1 22.75 15.85 17.2 14 

404 BRK 4 N 20.75 19.15 13.95 22.3 21.6 15.1 20.4 14.1 

405 BRK 4 2N 20.55 18.3 14.7 20 21.2 16.8 22.35 13.8 

406 BRK 4 HF 20.65 19.45 13.9 19.9 20.55 15.1 24 14.7 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.19. Soil Temperature (0C) in 2016 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 05/10 05/15 05/20 05/26 06/02 06/16 06/28 06/30 07/15 07/29 08/24 

101 BRK 1 CK 13.4 15.7 14.85 17.7 29.6 24.5 21.8 21.85 17 19.25 18.2 

102 BRK 1 F 13.15 11.55 13.25 18.6 28.75 27.15 23.15 23.7 17.9 19.4 18.75 

103 BRK 1 P 13.6 14.65 15.5 20.6 28.65 28.55 22.75 23.65 19.4 20.4 19.45 

104 BRK 1 N 13.45 12.95 14.85 19.3 29.3 26.7 23.5 24.7 18.95 20.5 20.4 

105 BRK 1 2N 13.15 17.1 14.55 17.35 31.5 25.3 21.5 22.65 17.9 19.5 18.6 

106 BRK 1 HF 13.05 15.05 14.2 17.5 29.85 28.35 24.75 22.9 18.8 20.05 18.6 

201 BRK 2 CK 13.55 15.85 15.55 21.35 30.75 26.25 23.05 23.8 19.3 20.45 18.95 

202 BRK 2 F 13.1 15.95 14.7 19.2 27.5 28.25 23.35 23.8 18.5 21.75 18.95 

203 BRK 2 P 13.15 13.4 13.8 17.95 28.95 23.2 20.5 21.1 17.4 18.9 18.65 

204 BRK 2 N 12.85 10.3 13 16.75 25.35 26.95 21.4 21.15 17.45 19.35 18.6 

205 BRK 2 2N 12.9 13.05 14.7 21.35 29.4 26.15 21.45 21.45 17.85 19.7 19.05 

206 BRK 2 HF 13.55 14.1 15.4 19.15 28.35 25.95 23.85 23.9 18.15 20.75 19.05 

301 BRK 3 CK 13.05 14.5 13.2 16.85 25.1 22.8 19.8 20.45 17.3 18.8 18.3 

302 BRK 3 F 12.85 10.8 13.9 18.4 23.25 24.25 19.8 20.5 16.65 19 18.35 

303 BRK 3 P 12.9 11.9 13.8 19.9 29.15 26.15 20.95 22.35 17.8 20.1 19.2 

304 BRK 3 N 13.35 12.55 14.35 18.3 28.4 27.15 21.1 22.25 18.75 20.25 19.05 

305 BRK 3 2N 12.55 13.1 13.45 18.1 24.05 23.2 20 20.75 17.75 19.35 18.4 

306 BRK 3 HF 12.3 9.4 12.05 16.25 26.65 24.25 19.8 22.1 18.75 19.5 19.1 

401 BRK 4 CK 13.3 15.45 14.4 18.15 28.1 26.8 21.5 22.1 17.7 20.35 19 

402 BRK 4 F 12.55 12.05 12.7 17.7 25.4 26.55 22.9 22.65 17.95 19.7 18.6 

403 BRK 4 P 13 13.8 14.4 17.5 27.05 25.05 20.6 21.2 17.1 19.25 18.25 

404 BRK 4 N 13.15 15.9 13.55 18.45 27.95 27.8 23.25 22.35 18.25 19.7 18.25 

405 BRK 4 2N 13.25 15.25 14.35 20.35 29.3 26.25 22.2 22.75 17.75 20.2 18.85 

406 BRK 4 HF 13.25 13.5 14.4 19.5 31.1 27.7 23.9 23.2 19.65 20.75 19.85 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.20 Soil Moisture (m3 m-3) in 2015 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 06/05 06/13 06/21 06/23 06/27 07/07 07/17 07/29 08/02 

101 BRK 1 CK 33.6 30.4 25.2 32.2 34.4 33.9 31.65 34.7 29.65 

102 BRK 1 F 29.75 27.25 32 34 36.05 33.3 32.95 35.55 31.8 

103 BRK 1 P 28.75 22.2 30.05 27.65 30.9 30.8 29.15 31.9 20.65 

104 BRK 1 N 31.3 28.05 30.8 35.1 34.3 34.55 34.6 32.7 28.4 

105 BRK 1 2N 36.9 32.7 34.45 34.9 37.7 36.4 34.85 32.1 27.35 

106 BRK 1 HF 29 27.15 33.45 33.3 33.5 33.95 23.95 30.3 24.9 

201 BRK 2 CK 30.5 29.65 28.95 31.65 30.65 27.9 34.15 33.6 32.35 

202 BRK 2 F 32.2 25.75 27.2 30.05 30.15 31.15 26.65 34.95 25.65 

203 BRK 2 P 33.1 26.9 34.55 34.95 38.05 36.65 32.85 36.55 31.05 

204 BRK 2 N 32.3 28.9 35.05 34 40.95 37.2 32.95 30.5 24.75 

205 BRK 2 2N 39.1 31.1 33.25 38 39.8 39.5 36.35 35.55 30.5 

206 BRK 2 HF 31.7 28.6 31 32.5 34.65 29.55 29.2 37.6 28.05 

301 BRK 3 CK 31.8 33.25 35.4 34.05 35.35 31.6 31.4 34.9 24.65 

302 BRK 3 F 32.3 28.8 33.3 34.15 36 36.6 33.65 33.8 25.25 

303 BRK 3 P 33.45 33.85 32.6 35.15 34.7 32.05 31.3 34.25 24.05 

304 BRK 3 N 33.2 32.8 33.95 35.8 37.85 36.1 29.1 33.55 27.7 

305 BRK 3 2N 29.4 24.85 29.2 38.05 38.15 37.85 32.45 37.4 29.4 

306 BRK 3 HF 33.3 33.65 34.1 35.25 36.2 34.15 26.45 34.15 26.3 

401 BRK 4 CK 28.4 24.1 27.15 30.75 29.65 30.25 27.9 34.75 22.55 

402 BRK 4 F 26.85 26.75 28.5 27.35 31.2 29.15 32.2 30.85 25.85 

403 BRK 4 P 30.75 22.3 30.35 29.35 30.45 34.05 28.2 34.05 20.95 

404 BRK 4 N 28 26.7 36.05 36.1 38.95 38.5 38.45 36.95 26.25 

405 BRK 4 2N 33.65 30.3 31 32.95 37.9 36.75 35.3 34.5 22.65 

406 BRK 4 HF 26.95 29.35 29.8 32.35 34.1 31.7 33.2 31 25.65 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate of 
inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.21. Soil Moisture (m3 m-3) in 2015 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 08/16 08/22 08/25 08/31 09/15 09/20 09/22 10/08 

101 BRK 1 CK 38.15 34.05 30 27.05 22.2 21.3 23.35 26.9 

102 BRK 1 F 41.55 35.55 28.45 19.9 27.45 27.95 25 26.85 

103 BRK 1 P 42.4 34.1 24.95 25.55 25.2 19.3 20.8 23.95 

104 BRK 1 N 42.3 36.75 29.5 23.35 27.85 23.85 25.7 26.25 

105 BRK 1 2N 36.75 35.25 31.45 26.8 25.85 27.1 17.55 27.95 

106 BRK 1 HF 32.25 33.9 28.15 25.15 23.2 19.75 17.5 20.05 

201 BRK 2 CK 38.2 30.7 22.8 17.35 19.35 19.8 20.15 28.45 

202 BRK 2 F 39.2 30.7 26.15 17.45 24.6 25 20.9 26.45 

203 BRK 2 P 38.85 35 27.85 28.5 25.85 24.9 22.05 29.8 

204 BRK 2 N 37.85 35.9 28.8 26.35 21.15 23.95 14.4 21.95 

205 BRK 2 2N 38.65 33 31.15 27 29.75 27.05 18.65 27.3 

206 BRK 2 HF 36.15 35.05 30.4 28.4 26.7 26.55 17.65 33.05 

301 BRK 3 CK 38.15 34.9 21.8 19.8 21.7 23.05 24.1 29.25 

302 BRK 3 F 41.55 34.25 25.4 21.9 23.85 22.35 24.25 29.05 

303 BRK 3 P 42.4 34.55 28.15 25.9 28.4 29.9 25.4 27.3 

304 BRK 3 N 42.3 37.1 33.55 28.85 32.85 30.15 21.95 30.9 

305 BRK 3 2N 36.75 38.25 32.5 24.55 32 29.4 22.15 22.85 

306 BRK 3 HF 32.25 36.1 27.3 26.3 31.6 24.6 15.25 25.2 

401 BRK 4 CK 38.2 33.8 26.3 18.5 25.2 25.65 20.65 25.1 

402 BRK 4 F 39.2 28.4 28.95 20.05 22.55 21.55 26.85 26.25 

403 BRK 4 P 38.85 35.95 25.3 19 23 19.8 15.25 17.15 

404 BRK 4 N 37.85 37.65 27.4 24.5 24.8 22 18.55 26.8 

405 BRK 4 2N 38.65 37.8 30.25 27.85 22.45 24.35 14.2 21 

406 BRK 4 HF 36.15 32.4 25.5 18.7 22.8 18.95 15.8 18.45 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.22. Soil Moisture (m3 m-3) in 2016 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 05/10 05/15 05/20 05/26 06/02 06/16 06/28 06/30 07/15 07/29 08/24 

101 BRK 1 CK 23.75 27.9 27.65 23.75 26.75 28.15 26 22.5 30.9 29 37.05 

102 BRK 1 F 26.45 21.85 20.2 20.1 26.6 22.55 25.6 16.3 32.9 29.8 37.35 

103 BRK 1 P 28 25.9 21.3 20.8 29.35 27.65 23.4 18.6 33.65 29.8 39 

104 BRK 1 N 26.85 31.35 27.7 23 30.1 26.6 33.55 32.05 29.75 29 39.25 

105 BRK 1 2N 21.35 31.2 28.4 25 29.5 32.95 27.4 24.55 32.4 29.8 37.25 

106 BRK 1 HF 29.7 28.8 29 24 30.65 29.9 26.45 25.9 31.7 38.3 39.9 

201 BRK 2 CK 23.8 18.2 21.75 18.1 23.85 22.6 19.1 20.05 29.9 29 39.4 

202 BRK 2 F 20.95 27.55 29.75 15.55 22.2 24.8 29.85 22.9 29.8 29.8 37.35 

203 BRK 2 P 30.4 25.7 28.9 22.35 26.7 27.05 25.7 29.75 35.05 29 39.6 

204 BRK 2 N 23.9 26.5 23.65 23.95 33.1 25.7 28.45 24.5 31.7 29.8 40.25 

205 BRK 2 2N 33.4 21.65 26.7 23.6 30 26.15 22.95 28.7 33.6 38.3 41.05 

206 BRK 2 HF 24.2 22.45 21.45 16.4 25.6 26 21.85 21.1 28.25 38.3 39.9 

301 BRK 3 CK 27.35 33.65 26.85 21.6 30.5 28.35 30.15 26.25 29.5 29 37.35 

302 BRK 3 F 17.55 22.85 21.75 26.2 27.45 24.75 17.7 20.65 26.55 29.8 38.2 

303 BRK 3 P 19.05 21.35 26.85 18.75 25.55 24.5 22.15 21.8 30.75 29 40.2 

304 BRK 3 N 22.7 24.1 23.3 27.55 25.3 30.1 24.1 26.8 32 29.8 36.35 

305 BRK 3 2N 30.8 30.1 29.6 23.4 29.35 29.25 22.4 22.05 35 38.3 36.4 

306 BRK 3 HF 25.65 28.65 33.1 18.7 28.2 31.1 23.55 22.2 30.55 38.3 37.55 

401 BRK 4 CK 19.15 18.05 24.8 25.3 24.8 23.55 19.6 17.65 31.05 29 32.65 

402 BRK 4 F 21.25 23.3 22.6 23.9 24.75 24.2 24.65 21.75 32.15 29.8 38.2 

403 BRK 4 P 27.75 26.9 23.95 23.1 26.1 26.5 26.3 19 29.25 29 40.2 

404 BRK 4 N 28.9 23.25 23.15 23.55 23.75 32.35 26.3 20.6 31.25 29.8 37.7 

405 BRK 4 2N 28.85 23.4 25.75 27.85 23.9 24.1 18.3 17.95 29.2 38.3 38.25 

406 BRK 4 HF 27.55 21.8 25.3 27.7 25.6 22.55 20.8 18.75 31 38.3 37.95 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, 
Recommended rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.23. Monthly N2O Fluxes (g N2O ha-1 d-1) in 2015 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT June July August September October 

101 BRK 1 CK 8.943 0.224 0.094 0.204 0.104 

102 BRK 1 F 3.381 2.654 0.109 5.095 9.551 

103 BRK 1 P 58.458 14.766 3.867 0.141 23.681 

104 BRK 1 N 58.282 8.433 13.611 11.533 0.201 

105 BRK 1 2N 677.441 111.540 19.462 0.303 0.012 

106 BRK 1 HF 0.107 0.190 120.202 0.092 0.000 

201 BRK 2 CK 18.628 0.297 0.179 0.150 0.155 

202 BRK 2 F 0.333 0.078 0.123 0.073 0.090 

203 BRK 2 P 4.291 0.201 0.207 0.182 0.220 

204 BRK 2 N 74.496 17.520 1.767 0.206 0.244 

205 BRK 2 2N 5.041 75.009 16.611 5.774 5.815 

206 BRK 2 HF 4.677 0.727 0.246 0.120 0.000 

301 BRK 3 CK 0.074 0.191 11.787 11.555 0.000 

302 BRK 3 F 3.189 0.023 0.123 0.081 0.327 

303 BRK 3 P 0.185 0.148 0.456 0.531 0.149 

304 BRK 3 N 84.413 16.905 0.670 7.816 0.000 

305 BRK 3 2N 84.185 41.445 45.905 0.139 0.000 

306 BRK 3 HF 186.446 0.201 120.073 0.090 10.766 

401 BRK 4 CK 3.106 0.231 3.566 0.118 6.784 

402 BRK 4 F 5.548 0.050 0.123 0.043 0.111 

403 BRK 4 P 7.111 0.161 0.264 6.012 0.000 

404 BRK 4 N 27.723 144.253 255.105 65.856 0.226 

405 BRK 4 2N 86.556 34.790 14.315 0.191 0.000 

406 BRK 4 HF 20.925 5.782 0.386 0.183 0.042 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 

 

 



180 
 

           

A3.24. Monthly N2O Fluxes (g N2O ha-1 d-1) in 2016 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT May June July August 

101 BRK 1 CK 0.138 0.089 0.094 0.000 

102 BRK 1 F 0.022 11.416 0.147 0.020 

103 BRK 1 P 0.204 0.625 0.162 0.057 

104 BRK 1 N 28.577 0.713 0.095 13.957 

105 BRK 1 2N 17.945 0.685 0.138 0.196 

106 BRK 1 HF 0.133 481.314 1.797 0.025 

201 BRK 2 CK 0.203 0.285 0.042 0.106 

202 BRK 2 F 0.061 83.953 85.461 0.094 

203 BRK 2 P 9.581 17.633 0.544 0.000 

204 BRK 2 N 0.435 0.329 0.077 0.000 

205 BRK 2 2N 95.819 3.396 0.501 15.989 

206 BRK 2 HF 0.137 471.761 409.768 0.107 

301 BRK 3 CK 0.025 0.189 0.044 0.000 

302 BRK 3 F 7.531 16.767 0.333 0.000 

303 BRK 3 P 20.971 22.729 1.907 0.032 

304 BRK 3 N 101.326 122.954 0.214 0.283 

305 BRK 3 2N 64.814 0.470 0.018 0.016 

306 BRK 3 HF 14.424 448.158 380.023 0.093 

401 BRK 4 CK 0.187 0.129 4.056 0.094 

402 BRK 4 F 0.375 115.736 1.004 0.083 

403 BRK 4 P 0.231 28.884 2.632 0.000 

404 BRK 4 N 51.411 40.807 0.157 0.069 

405 BRK 4 2N 0.650 100.954 0.597 0.500 

406 BRK 4 HF 3.791 165.418 0.137 0.022 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 

of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.25. Monthly CO2 Fluxes (kg CO2-C ha-1 d-1) in 2015 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT June July August September October 

101 BRK 1 CK 33.646 1.019 23.443 13.614 0.147 

102 BRK 1 F 122.391 55.468 50.776 52.504 13.188 

103 BRK 1 P 262.812 97.602 122.423 38.578 16.103 

104 BRK 1 N 90.830 40.222 2.727 16.288 0.358 

105 BRK 1 2N 548.731 157.778 102.120 83.978 23.258 

106 BRK 1 HF 43.793 52.370 160.293 8.014 -0.058 

201 BRK 2 CK 96.264 1.148 43.596 23.905 0.103 

202 BRK 2 F 39.883 33.983 34.947 33.527 0.115 

203 BRK 2 P 140.043 51.996 57.532 15.385 0.276 

204 BRK 2 N 150.346 150.637 143.834 0.375 0.231 

205 BRK 2 2N 315.685 65.394 39.381 59.901 0.148 

206 BRK 2 HF 46.124 0.730 16.107 24.357 0.057 

301 BRK 3 CK 31.693 16.660 70.273 21.668 2.044 

302 BRK 3 F 70.648 30.889 15.387 0.437 0.304 

303 BRK 3 P 79.755 74.434 87.793 0.490 0.074 

304 BRK 3 N 180.624 2.397 102.053 0.584 0.067 

305 BRK 3 2N 443.079 283.773 287.652 35.527 10.716 

306 BRK 3 HF 101.429 42.029 159.875 25.288 0.105 

401 BRK 4 CK 16.118 1.352 66.678 11.060 0.058 

402 BRK 4 F 12.844 1.300 35.803 0.256 0.206 

403 BRK 4 P 27.902 1.443 84.142 0.522 0.014 

404 BRK 4 N 68.131 185.392 279.654 49.215 0.183 

405 BRK 4 2N 194.409 42.402 91.815 42.846 0.054 

406 BRK 4 HF 81.399 61.619 117.290 22.908 6.935 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.26. Monthly CO2 Fluxes (kg CO2-C ha-1 d-1) in 2016 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT May June July August 

101 BRK 1 CK 14.819 57.187 21.871 0.144 

102 BRK 1 F 2.535 114.336 43.109 36.738 

103 BRK 1 P 18.598 115.117 33.083 40.122 

104 BRK 1 N 146.900 92.468 1.033 0.482 

105 BRK 1 2N 68.281 208.172 42.565 42.958 

106 BRK 1 HF 0.232 100.763 40.506 0.408 

201 BRK 2 CK 51.528 37.394 49.173 0.425 

202 BRK 2 F 26.216 70.941 0.833 0.363 

203 BRK 2 P 58.575 2.026 1.046 0.412 

204 BRK 2 N 19.034 66.785 1.097 39.620 

205 BRK 2 2N 103.418 3.297 106.633 0.633 

206 BRK 2 HF 0.403 65.513 52.892 30.905 

301 BRK 3 CK 0.085 39.827 31.305 0.138 

302 BRK 3 F 56.362 128.632 65.273 0.429 

303 BRK 3 P 57.119 186.319 54.221 0.444 

304 BRK 3 N 107.136 132.662 0.896 0.394 

305 BRK 3 2N 91.917 144.600 60.908 33.207 

306 BRK 3 HF 54.440 119.339 55.744 0.363 

401 BRK 4 CK 0.332 48.270 41.664 0.282 

402 BRK 4 F 0.685 61.370 46.380 0.413 

403 BRK 4 P 21.122 98.915 1.041 0.452 

404 BRK 4 N 53.598 154.069 1.344 0.532 

405 BRK 4 2N 15.792 138.168 1.175 0.573 

406 BRK 4 HF 8.450 97.733 1.142 0.480 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended 
rate of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.27. Monthly CH4 Fluxes (g CH4-C ha-1 d-1) in 2015 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT June July August September October 

101 BRK 1 CK 4.847 -25.468 0.407 0.776 1.223 

102 BRK 1 F -4.166 0.534 -0.078 -0.243 0.178 

103 BRK 1 P 0.641 1.259 13.776 0.386 0.132 

104 BRK 1 N 0.389 5.936 0.806 40.440 1.104 

105 BRK 1 2N -0.106 37.752 1.754 31.309 -0.024 

106 BRK 1 HF 0.192 0.274 -6.706 -0.190 -0.507 

201 BRK 2 CK 0.218 1.028 -0.442 -0.119 0.115 

202 BRK 2 F -0.005 0.392 0.394 -0.556 0.113 

203 BRK 2 P 0.366 -0.096 0.052 0.692 1.036 

204 BRK 2 N 0.803 0.880 0.440 -51.054 21.639 

205 BRK 2 2N 65.062 0.894 -0.100 0.304 -26.871 

206 BRK 2 HF 7.222 0.247 1.252 0.581 0.057 

301 BRK 3 CK 2.099 1.255 0.008 -131.088 0.284 

302 BRK 3 F 0.313 0.418 -10.848 62.610 2.114 

303 BRK 3 P 0.069 0.837 0.091 1.431 0.224 

304 BRK 3 N 0.269 -10.427 12.236 -27.931 -103.152 

305 BRK 3 2N 57.972 0.274 0.319 -0.204 0.021 

306 BRK 3 HF 0.423 0.304 -13.559 0.730 0.263 

401 BRK 4 CK 0.089 -8.068 0.643 0.621 0.067 

402 BRK 4 F 0.072 -0.022 -0.141 -0.714 0.654 

403 BRK 4 P 9.095 15.608 0.515 -0.662 -0.153 

404 BRK 4 N 60.316 14.543 0.164 -0.089 -0.018 

405 BRK 4 2N 0.075 0.456 0.833 0.485 0.079 

406 BRK 4 HF 1.044 0.852 61.086 -9.396 -0.150 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.28. Monthly CH4 Fluxes (g CH4-C ha-1 d-1) in 2016 at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT May June July August 

101 BRK 1 CK 0.592 -0.823 11.888 -0.280 

102 BRK 1 F 1.409 -0.231 -0.195 0.116 

103 BRK 1 P 49.006 1.072 0.829 -0.028 

104 BRK 1 N 25.013 0.173 0.107 0.001 

105 BRK 1 2N 0.539 -7.863 -0.167 -0.109 

106 BRK 1 HF 0.287 -39.695 0.302 0.387 

201 BRK 2 CK -0.042 0.275 1.100 0.016 

202 BRK 2 F 0.555 0.207 -5.971 -0.039 

203 BRK 2 P 0.893 -0.044 0.892 12.397 

204 BRK 2 N 16.507 0.157 0.658 0.040 

205 BRK 2 2N 0.148 -0.200 0.388 0.558 

206 BRK 2 HF 0.191 -0.107 0.118 0.118 

301 BRK 3 CK 0.319 -1.119 0.254 -0.499 

302 BRK 3 F 0.247 -0.436 0.038 -0.165 

303 BRK 3 P -0.041 4.417 0.650 -0.057 

304 BRK 3 N 0.538 -0.258 -0.289 0.059 

305 BRK 3 2N 0.154 0.220 -0.049 0.016 

306 BRK 3 HF -0.486 0.256 0.115 -0.021 

401 BRK 4 CK 14.424 -0.328 50.639 -0.018 

402 BRK 4 F 0.618 0.618 0.010 -0.175 

403 BRK 4 P 0.187 -8.759 0.748 0.215 

404 BRK 4 N 16.800 0.075 0.767 0.512 

405 BRK 4 2N 24.268 0.028 0.032 0.599 

406 BRK 4 HF -0.133 -0.089 0.032 0.139 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 
of inorganic fertilizer; HF, High rate of inorganic fertilizer. 
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A3.29. Annual GHG Emissions at Brookings site. BRK, Brookings site; REP, replication; TRT, treatment. 

Plot Location REP TRT 
g CH4-C ha-1 d-1 kg CO2-C ha-1 d-1 g N2O ha-1 d-1 

2015 2016 2015 2016 2015 2016 

101 BRK 1 CK -18.215 11.377 71.868 94.021 9.568 0.321 

102 BRK 1 F -3.775 1.100 294.327 196.718 20.790 11.605 

103 BRK 1 P 16.193 50.879 537.518 206.920 100.913 1.047 

104 BRK 1 N 48.674 25.295 150.425 240.883 92.059 43.342 

105 BRK 1 2N 70.684 -7.600 915.865 361.977 808.757 18.965 

106 BRK 1 HF -6.936 -38.719 264.412 141.910 120.591 483.270 

201 BRK 2 CK 0.800 1.350 165.016 138.520 19.410 0.636 

202 BRK 2 F 0.338 -5.248 142.455 98.353 0.698 169.569 

203 BRK 2 P 2.050 14.139 265.232 62.060 5.101 27.758 

204 BRK 2 N -27.293 17.362 445.422 126.536 94.233 0.841 

205 BRK 2 2N 39.289 0.894 480.509 213.981 108.250 115.705 

206 BRK 2 HF 9.359 0.321 87.375 149.713 5.770 881.773 

301 BRK 3 CK -127.442 -1.045 142.338 71.354 23.607 0.258 

302 BRK 3 F 54.608 -0.316 117.665 250.697 3.743 24.632 

303 BRK 3 P 2.653 4.968 242.546 298.104 1.470 45.640 

304 BRK 3 N -129.005 0.051 285.724 241.088 109.803 224.776 

305 BRK 3 2N 58.381 0.341 1060.747 330.632 171.675 65.318 

306 BRK 3 HF -11.839 -0.136 328.726 229.886 317.577 842.698 

401 BRK 4 CK -6.648 64.717 95.267 90.547 13.806 4.466 

402 BRK 4 F -0.151 1.072 50.408 108.848 5.874 117.198 

403 BRK 4 P 24.402 -7.608 114.024 121.530 13.548 31.746 

404 BRK 4 N 74.917 18.153 582.576 209.543 493.163 92.443 

405 BRK 4 2N 1.928 24.926 371.526 155.708 135.852 102.701 

406 BRK 4 HF 53.436 -0.051 290.151 107.804 27.317 169.368 
CNT, control; P, Phosphorus based manure application rate; N, Nitrogen based recommended manure application rate; 2N, Double rate of nitrogen based manure application rate; F, Recommended rate 

of inorganic fertilizer; HF, High rate of inorganic fertilizer.
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APPENDIX 4 

 

Figure A4.1. Taking weight of manure for application to field. 
 

 

Figure A4.2. An example of inorganic fertilizer application. 
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Figure A4.3. An example for the soybean planted filed. 

 

 

 

Figure A4.4. An example for the corn planted filed. 
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Figure A4.5. Reduced-tillage in 1to 3 days after manure application. 
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Figure A4.6. Taking soil samples from field to analyze soil properties such as SOC, TN, 

pH, EC and WAS. 
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Figure A4.7. Taking core samples from field to analyze bulk density, soil water retention 

and pore size distribution of soil. 
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Figure A4.8. Examination of water infiltration rate in the field by using double rings 

method. 
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Figure A4.9 Analyzing of soil water retention and pore size distribution. 
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Figure 1.1.10 Preparing vials for GHGs sampling. 

 

 

Figure A4.10. Vacuuming vials before gas sampling. 
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Figure A4.11. Taking gas samples from field to analyze CH4, N2O and CO2 emissions. 
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Figure A4.12. Taking volumetric soil moisture readings from field. 
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Figure A4.13. Plot layout at the Brookings Felt Farm site. 
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Figure A4.14. Plot layout at the Beresford SE Farm site. 
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APPENDIX 5 

 

A5.1. SAS codes used to run all the statistics. 

 
Data BD; 

Input TRT REP BD trt2; 

Cards; 

 

; 

run; 

 

Proc glm; 

Class Rep Trt2; 

Model BD =Trt2 Rep Rep*Trt2; 

Run; 

; 

 

test h = trt2 e = rep*trt2; 

lsmeans trt2/Stderr e = rep*trt2; 

Means trt2 Rep*Trt2/Duncan alpha = 0.05; 

run; 

 

Contrast '1 vs 2' trt2 1 -1 0 / e = rep*trt2; 

Contrast '1 vs 3' trt2 1 0 -1 / e = rep*trt2; 

Contrast '2 vs 3' trt2 0 1 -1 / e = rep*trt2; 

 

run; 

run; 

 

Proc glm; 

Class Rep Trt; 

Model BD =Trt Rep Rep*Trt; 

Run; 

; 

 

test h = trt e = rep*trt; 

lsmeans trt/Stderr e = rep*trt; 

Means trt Rep*Trt/Duncan alpha = 0.05; 

run; 

 

Contrast '2 vs 6' trt 0 1 0 0 0 -1 / e = rep*trt; 

Contrast '3 vs 4' trt 0 0 1 -1 0 0 / e = rep*trt; 

Contrast '3 vs 5' trt 0 0 1 0 -1 0 / e = rep*trt; 

Contrast '4 vs 5' trt 0 0 0 1 -1 0 / e = rep*trt; 

 

run; 
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