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Climatologists predict that global air tem-
peratures will continue to increase into the
future (Bates et al. 2008), and individual species,
communities, and ecosystems will be forced to
respond to these changes or face extirpation
(Thomas et al. 2004, Parmesan 2006). In fish-
eries biology, recent work addressing the antici-
pated impacts of climate change has focused
on the thermal criteria of fishes (e.g., Buisson
et al. 2008). Water temperature regulates the
distribution of stream fishes through direct
and indirect effects (Ferguson 1958, Matthews
1998). Temperature directly affects fish metabo -
lism, feeding, growth, and reproductive physi-
ology (Hutchinson and Maness 1979, Matthews
1998, Clarke and Johnston 1999) and indi-
rectly affects food availability (Brylinsky and
Mann 1973, Hinz and Wiley 1998) and condi-

tion-specific competition (Baltz et al. 1982, De
Staso and Rahel 1994, Tanguchi et al. 1998).
For these reasons, temperature is one of the
most commonly measured and manipulated
variables in laboratory (e.g., Fry 1947, Brett
1952, Feminella and Matthews 1984, Smith
and Fausch 1997) and field fisheries studies
(e.g., Eaton et al. 1995, Welsh et al. 2001, Huff
et al. 2005, Wehrly et al. 2007).

Fish abundance in a stream reach is a re -
sponse to abiotic and biotic variables, including
temperature. An individual fish can survive
anywhere that conditions are within its range
of tolerance, but the abundance of a species
depends on the ability of individuals to grow
and reproduce, and is generally greatest when
conditions are closest to optimum (Huey and
Stevenson 1979). Laboratory assessments of 
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AN ASSESSMENT OF THE LETHAL THERMAL MAXIMA 
FOR MOUNTAIN SUCKER

Luke D. Schultz1,2 and Katie N. Bertrand1

ABSTRACT.—Temperature is a critical factor in the distribution of stream fishes. From laboratory studies of thermal
tolerance, fish ecologists can assess whether species distributions are constrained by tolerable thermal habitat availability.
The objective of this study was to use lethal thermal maxima (LTM) methodology to assess the upper thermal tolerance
for mountain sucker Catostomus platyrhynchus, a species of greatest conservation need in the state of South Dakota.
Adult fish were captured from wild populations in the Black Hills of South Dakota and acclimated to 20, 22.5, and 25 °C.
Four endpoints (3 sublethal, 1 lethal) were recorded, with death being the most precise (lowest SE, easily discernible).
The LTM for mountain sucker was 34.0 °C at 25 °C acclimation, 33.2 °C at 22.5 °C acclimation, and 32.9 °C at 20 °C
acclimation. Compared to co-occurring species in the Black Hills, the LTM of mountain sucker is higher than that of
salmonids but lower than that of 3 cypriniforms. Mountain sucker LTM is intermediate compared to other species in the
family Catostomidae. These results suggest that the mountain sucker is not currently limited by water temperatures in the
Black Hills but may be affected by stream warming as a result of climate change.

RESUMEN.—La temperatura es un factor crítico en la distribución de peces de río. Mediante estudios de laboratorio
sobre la tolerancia termal, los ecólogos de peces pueden evaluar si las distribuciones de especies están limitadas por la
disponibilidad de un hábitat termalmente tolerable. El propósito de este estudio fue evaluar la tolerancia termal superior
del lechón de montaña Catostomus platyrhynchus, una especie con la máxima necesidad de conservación en el estado de
Dakota del Sur, con metodología de la temperatura letal superior (TLS). Se capturaron peces adultos de poblaciones
silvestres en las Colinas Negras de Dakota del Sur, y se aclimataron a los 20, 22.5 y 25 °C. Se registraron cuatro temper-
aturas límite (tres subletales y una letal), siendo la letal la más precisa (error estándar más bajo y fácilmente discernible).
La TLS del lechón de montaña fue de 34.0 °C a una aclimatación de 25 °C, 33.2 °C a una aclimatación de 22.5 °C y 32.9 °C
a una aclimatación de 20 °C. Cuando se comparó con especies que cohabitan las Colinas Negras, la TLS del lechón de
montaña es mayor a la de los salmónidos, pero menor a la de tres cypriniformes. La TLS del lechón de montaña es inter-
media cuando se compara con otras especies de la familia Catostomidae. Estos resultados sugieren que el lechón de
montaña no  está limitado por las temperaturas en las Colinas Negras, pero podría ser afectado por el calentamiento de la
corriente como resultado del cambio climático.



thermal tolerance can be used to draw infer-
ences about the distribution of a species along
a temperature gradient. Great Plains stream
fishes evolved in habitats often characterized
by high temperatures, high salinity, and low dis-
solved oxygen (Dodds et al. 2004), and the dis-
tribution of fishes reflects interspecific differ-
ences in physicochemical tolerance (Matthews
1987). In the Brazos and South Canadian rivers,
spe cies distributions and abundances in warm
and drying pools matched the temperature
and salinity tolerances estimated from labora-
tory studies (Matthews and Maness 1979,
Ostrand and Wilde 2001). Thus, thermal toler-
ance measured in the laboratory may be a pre-
dictor of fish presence and abundance in the
field and an important variable to consider in
the conservation of imperiled fishes (e.g., Smith
and Fausch 1997, Torgersen et al. 1999, Selong
et al. 2001, Harig and Fausch 2002).

Low and high water temperatures limit fish
distributions. Low temperatures have sublethal
effects, including delayed egg and larval devel -
opment (Harig and Fausch 2002), whereas
high temperatures may increase susceptibility
to predation or direct mortality. The effects of
climate change are likely to increase the
occurrence of high air and stream tempera-
tures (IPCC 2007). Based on an evaluation of
stream water temperatures and fish distribu-
tions in the United States, a global mean sur-
face air-temperature increase of 4.4 °C would
reduce available habitat for cold- and cool-
water fish by 50% rangewide (Eaton and Schel -
ler 1996). Laboratory studies can estimate
thermal tolerance of fishes, assess the relative
vulnerability of different fishes to increasing
water temperatures (e.g., Smith and Fausch
1997), and predict habitat overlap between
native and nonnative species (Carveth et al.
2006), all of which aid in selecting suitable
conservation areas.

This study empirically derived the lethal
thermal maxima for mountain sucker Catosto -
mus platyrhynchus. Although the mountain
sucker is secure across its range (NatureServe
2011), regional trends suggest declines at finer
scales. A series of long-term studies on Sage-
hen and Martis creeks and Stampede Reser-
voir in eastern California indicated declines
in mountain sucker total abundance, relative
abundance, and spatial distribution between
the 1950s and 1980s (Erman 1973, 1986, Gard

and Flittner 1974, Moyle and Vondracek 1985,
Decker 1989). In the Missouri River drainage
of Wyoming, Patton et al. (1998) found that
mountain sucker distribution had declined on
at least 3 spatial scales (i.e., site, stream, and
subdrainage) since the 1960s. In South Dakota,
mountain sucker is listed as a species of great-
est conservation need (SDGFP 2006), and a
long-term analysis indicated that the species
had significantly declined in density and spa-
tial distribution since routine sampling began
in the 1960s (Schultz and Bertrand in press).

Since the mountain sucker inhabits mostly
coolwater streams (Hauser 1969, Scott and
Crossman 1973, Baxter and Stone 1995, Sig -
ler and Sigler 1996, Belica and Nibbelink 2006)
and other catostomids show temperature-regu-
lated distribution (e.g., Li et al. 1987, Eaton et
al. 1995, Huff et al. 2005), high water tempera -
tures likely constrain mountain sucker distibu-
tion. As the climate warms (Bates et al. 2008),
mountain sucker distribution may be further
limited by warming stream temperatures. The
objective of this study was to assess the upper
thermal tolerance of mountain sucker in the
laboratory. These results will improve under-
standing of mountain sucker biology and fac-
tors that threaten peripheral populations. They
will also inform management decisions and
predictions of the consequences of elevated
stream temperatures resulting from climate
change in the Black Hills of South Dakota and
across the range of mountain sucker.

METHODS

Field Collection and Laboratory Acclimation

Mountain suckers (TL 78–179 mm) were
captured in August 2010 by electrofishing from
Whitewood Creek near Whitewood, South
Dakota (44.4722°N, 103.6242°W), and Elk
Creek near Lead, South Dakota (44.2769°N,
103.6956°W), in the Black Hills. Mean August
water temperature in Whitewood Creek was
18.1 °C (+–0.2 °C) for the period 2007–2010.
Fish were transported in an aerated transport
truck and placed into holding tanks at South
Dakota State University (Brookings, SD). Prior
to beginning preexperiment manipulations, we
allowed fish to adjust to our laboratory condi-
tions (temperature, feeding, dissolved oxygen)
for 6 days. Pilot studies identified proper
feeding and handling protocols. Fish were
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held in 5000-L rectangular tanks that were
supplied with rock and wood cover, ex posed to 
a 12-hour light : 12-hour dark photo period, and
supplied with a diet of attached periphyton
collected from local waterbodies, supplemented
with live and frozen chironomid larvae. Water
was circulated using small submersible pumps
to ensure homogeneous water temperatures
throughout the holding tank. Mortality associ-
ated with transport and adjustment to labora-
tory conditions was <3%. Following the initial
adjustment period, 18 fish (mean TL = 124
mm, SD = 25.42 mm) were placed into each
of 3 separate tanks and ac cli mated (i.e., tem-
perature change <1 °C per hour) to different
temperatures: 20, 22.5, and 25 °C (n =18 for
each acclimation temperature). These acclima-
tion temperatures were based on field data
from streams across the Black Hills, and
should represent the highest pro longed (12+
hour) temperatures that mountain sucker ex -
periences in natural conditions (Simpson 2007).
To mimic the natural diel conditions to which
fish would normally be exposed, daily tempera-
ture fluctuations (+–1.5 °C) occurred during
the acclimation period; the mean daily tem-
perature in each tank remained constant. Water
was continuously aerated and replaced every
3 days to reduce nontemperature-related stress.
Following the onset of acclimation conditions,
fish were held for at least 10 days before fur-
ther testing.

Lethal Thermal Maxima Procedure

We used the lethal thermal maxima (LTM)
procedure to assess the upper thermal toler-
ance of mountain sucker. With the LTM method,
fish are subjected to progressively higher water
temperatures until they reach the death end-
point (Becker and Genoway 1979); we re corded
1 lethal and 3 sublethal estimates of thermal
tolerance (Carveth et al. 2006) for mountain
sucker. The temperature was recorded at (1)
initial loss of equilibrium (the ability to main-
tain an upright position); (2) final loss of equi-
librium (no longer able to self-right; Becker
and Genoway 1979, Lutterschmidt and Hutch-
inson 1997); (3) flaring opercula (fish movement
except for opercula flaring ceased; Beitinger
et al. 2000); and (4) death (no heartbeat or
other motion visible). Our observation of ini-
tial loss of equilibrium is ecologically important
because, in this condition, a fish demonstrates

that physiological damage has occurred, and
that it may be unable to escape predation or
other threats.

Assessment of LTM involved randomly select -
ing and removing one fish at a time from accli -
mation tanks and transferring it to a 3.8-L glass
container on an electric hot plate filled with
water from the acclimation tank. The container
was continuously monitored (digital thermome-
ter) and aerated to ensure consistent and homo-
geneous temperature and oxygen levels. Water
temperature in the container was raised at a
constant rate of 0.3 °C per minute, as Beitinger
et al. (2000) recommended for small-bodied
fishes. Hot-plate settings were adjusted to main-
tain a constant rate of in crease. The 4 endpoints
(Carveth et al. 2006) were recorded to the
nearest 0.1 °C, and each individual was mea-
sured (total length, mm) following death.

Statistical Analyses

We assessed the influence of total length on
thermal tolerance using linear regression. We
used a one-way ANOVA to compare tem perature
endpoints between acclimation temperatures.
To infer the relative thermal tolerance of moun-
tain sucker, we compared the LTM of mountain
sucker to that of co-occurring species in the
Black Hills and across mountain sucker range,
and to that of other catostomids.

RESULTS

The LTM was 34.0 °C for mountain sucker
acclimated to 25 °C, 33.2 °C for those accli-
mated to 22.5 °C, and 32.9 °C for those accli-
mated to 20 °C (Table 1). LTM did not vary sig-
nificantly with total length (r2 = 0.03, P = 0.25),
so all fish tested were pooled in subsequent
analyses. Ending temperatures increased signifi-
cantly with acclimation temperature for all end-
points (initial equilibrium loss: F2, 43 = 46.95,
P < 0.01; final loss of equilibrium: F2, 43 =
40.23, P < 0.01; flaring opercula: F2, 43 = 33.38,
P < 0.01; death: F2,43 = 42.09, P < 0.01). All
fish reacted similarly during the LTM proce-
dure: swimming activity increased as tempera-
ture approached the endpoints. The most sta-
tistically precise endpoint was death (SE =
0.094), followed closely by final loss of equilib-
rium (SE = 0.106) and flaring opercula (SE =
0.107). Initial loss of equilibrium, a commonly
used endpoint in other studies, was difficult to 
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discern and provided the least statistically
precise endpoint (SE = 0.156).

DISCUSSION

The LTM provided more statistically precise
estimates of upper thermal tolerance than 3
sublethal endpoints we examined for mountain
sucker. Death was also the most easily distin-
guishable endpoint in our tests, because we
were able to observe the loss of heartbeat. In
other fishes, this criterion may be more difficult
to discern. Although the rapid rate of tempera-
ture change we employed does not mimic the
rates predicted to occur under climate change,
it provides an empirical measure of thermal
tolerance that is easily comparable with other
studies. For mountain sucker, the LTM was
34.0 °C when the fish were acclimated to 25 °C.
The mountain sucker appears to have an inter-
mediate thermal tolerance among fishes in the
Black Hills but is considerably more tolerant to
high temperatures than the 3 co-occurring spe -

cies of salmonids (i.e., brook trout Salvelinus
fontinalis, brown trout Salmo trutta, and rainbow
trout Oncor hynchus mykiss) in the Black Hills
and elsewhere, indicating that mountain sucker
is less susceptible to elevated water tem -
peratures and climate change than these sal -
monids (Table 2). Our laboratory results are
consistent with field studies of mountain sucker–
dominated assemblages, which occupied warmer
habitats in Utah than assemblages characterized
by introduced brown trout (Giddings et al. 2006).

On the basis of recent available field tem-
perature data from 11 streams (Simpson 2007,
Schultz unpublished data), mountain sucker
does not appear to be thermally limited in the
Black Hills of South Dakota. During the drought
summer of 2005, Simpson (2007) sampled
streams across the Black Hills and observed a
maximum stream temperature of 27.4 °C in
Whitewood Creek (44.4172°N, 103.6933°W),
which is only 5.0 °C less than the mean tem-
perature at which we observed initial loss of
equilibrium. Because LTM methods do not
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TABLE 1. Measured lethal thermal maximum temperatures at 4 measured endpoints for mountain sucker Catostomus
platyrhynchus acclimated to 20.0, 22.5, and 25.0 °C. Confidence intervals (95%) are reported in parentheses.

Acclimation temperature (°C)___________________________________________________________________
Endpoint 20.0 22.5 25.0

Initial equilibrium loss 31.5 (30.8–32.2) 32.4 (32.2–32.6) 33.4 (33.2–33.6)
Final equilibrium loss 32.3 (32.0–32.6) 32.6 (32.4–32.8) 33.6 (33.3–33.9)
Flaring opercula 32.5 (32.1–32.9) 32.7 (32.4–33.0) 33.7 (33.5–33.9)
Death 32.9 (32.6–33.2) 33.2 (33.0–33.4) 34.0 (33.8–34.2)

TABLE 2. Comparison of the laboratory thermal tolerance for catostomids and other fishes that may occur with moun-
tain sucker Catostomus platyrhynchus. Endpoints include EQ loss (final loss of equilibrium) and FO (flaring opercula).

CTMaxima Acclimation
Co-occurring species (Black Hills region) (°C) temp. (°C) Endpoint Reference

Fathead minnow Pimephales promelasa 36.1 25 EQ loss Carveth et al. (2006)
Creek chub Semotilus atromaculatusa 35.7 26 EQ loss Smale and Rabeni (1995)
Desert sucker Catostomus clarkii 35.1 25 EQ loss Carveth et al. (2006)
White sucker Catostomus commersonia 34.9 26 EQ loss Smale and Rabeni (1995)
Leatherside chub Lepidomeda copei (juvenile) 34.6 23 EQ loss Billman et al. (2008)
Mountain sucker Catostomus platyrhynchus 33.6 25 EQ loss This study
Shortnose sucker Catostomus brevirostris 32.7 20 EQ loss Castleberry and Cech (1992)
Klamath largescale sucker Catostomus snyderi 32.6 20 EQ loss Castleberry and Cech (1992)
Speckled dace Rhinichthys osculus 32.4 20 EQ loss Castleberry and Cech (1992)
Longnose dace Rhinichthys cataractaea 31.4 15 FO Kowalski et al. (1978)
Mottled sculpin Cottus bairdi 30.9 15 FO Kowalski et al. (1978)
Northern hogsucker Hypentelium nigricans 30.8 15 FO Kowalski et al. (1978)
Brown trout Salmo truttaa 29.8 20 EQ loss Lee and Rinne (1980)
Brook trout Salvelinus fontinalisa 29.8 20 EQ loss Lee and Rinne (1980)
Rainbow trout Oncorhynchus mykissa 29.4 20 EQ loss Lee and Rinne (1980)
Arctic grayling Thymallus arcticus 29.3 20 EQ loss Lohr et al. (1996)
Cutthroat trout Oncorhynchus clarkii clarkii 27.6 10 EQ loss Heath (1963)
aOccurs with mountain sucker in the Black Hills.



assess fish responses over extended periods of
exposure, our results provide a very conserva-
tive baseline at which mountain sucker might
experience negative effects of increased tem-
perature resulting from climate change. It is
likely that negative effects will be observed in
situ at temperatures <32.4 °C, if exposure to
those temperatures is extended over multiple
days. Of the 8 streams in the Black Hills in
which the mountain sucker still occurs, White -
wood Creek contains the greatest densities
(Schultz and Bertrand in press). From 2008 to
2010, we collected mountain sucker from the
warmest streams in the Black Hills (i.e., high-
est mean weekly stream temperatures were
20.5 °C; Schultz unpublished data).

In warmer areas of its range, mountain
sucker has the potential to be thermally lim-
ited, but habitat overlap with other native and
nonnative species is more important in ex -
plaining its distribution and abundance. Moun-
tain sucker is thought to be replaced by bridge-
lip sucker Catostomus columbianus (both belong
to subgenus Pantosteus) along thermal and
channel slope gradients in Pacific Northwest
streams (Li et al. 1987). In Oregon, bridgelip
sucker was not found in streams exceeding
25.7 °C (Huff et al. 2005), and white sucker
Catostomus commersonii occurs in habitats
with weekly mean temperatures up to 27.3 °C
(Eaton et al. 1995). These findings suggest
that white sucker could outcompete both
bridgelip and mountain sucker in warmer
stream segments and represents a threat to
these fishes outside its native range.

LTM methodology is commonly used for
assessing thermal tolerance in fishes. Critical
thermal maximum (CTM) and upper incipient
lethal temperature (UILT) methods are 2 com -
mon alternatives to LTM. Both LTM and CTM
provide a standard measure of thermal tolerance
for an organism with a limited number of indi -
viduals, and are often used to make comparisons
among species and infer ecological patterns (e.g.,
Matthews and Maness 1979, Carveth et al. 2006).
In both procedures, test fish are subjected to
linearly increasing or decreasing temperature
until a predefined endpoint is reached (Beitinger
et al. 2000). In the CTM method, the predefined
endpoint is generally sublethal (e.g., loss or
failure of equilibrium, flaring opercula), and
fish typically survive following the test. The
UILT procedure involves acclimatizing fish at
different temperatures prior to exposure to a

series of constant test temperatures and tracking
fish survival over time (Fry 1947). Although
numerous researchers have tried to predict UILT
using CTM or LTM data (e.g., Kilgour et al.
1985, Kilgour and McCauley 1986, Lohr et al.
1996), the 2 procedures provide different mea-
surements. Abrupt transfer procedures (UILT)
measure only death, while CTM and LTM
procedures measure both mortification and par-
tial acclimation (Kil gour and McCauley 1986,
Beitinger et al. 2000). Disadvantages of LTM
and CTM procedures include their inability to
account for exposure time and potentially un -
realistic rates of temperature increase; how-
ever, the advantage of these procedures is that
they generate standardized measurements of
thermal tolerance that are easily comparable
across species. Additionally, because these pro-
cedures require smaller numbers of animals to
complete the test, they are especially valuable
for species of concern (Beitinger et al. 2000).

An understanding of mountain sucker ther-
mal criteria will aid in the conservation of this
native stream fish and help explain observed
distribution patterns in the Black Hills and
across its range. An assessment of the realized
thermal niche (e.g., Bettoli 2005, Huff et al.
2005) for mountain sucker would further aid
in understanding the ecological mechanisms
under lying observed fish assemblages in the
Black Hills. Of particular interest would be
the overlap of preferred temperature ranges
between mountain sucker and introduced sal -
monids to evaluate negative interactions be -
tween these species. Finally, these results dis-
tinguish between suitable and unsuitable habi-
tat for mountain sucker across its range and
contribute to predictions of the potential con-
sequences of elevated stream temperatures
resulting from climate change (Mohseni et al.
1999). In the Black Hills, the distribution of
mountain sucker currently does not appear to
be constrained by temperature; however, cli-
mate change scenarios (IPCC 2007) predict
mean annual global air-temperature increases
of 1.8–4.0 °C (range 1.1–6.4 °C). If the upper
range of these projections is realized, water
temperature will surpass the temperature at
which we estimated initial loss of equilibrium
for mountain sucker. Thermally suitable habi-
tat for mountain sucker in streams of the Black
Hills would diminish considerably under these
conditions, including substantial loss in areas
with the highest recorded mountain sucker
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densities (i.e., Whitewood Creek). However,
this outlook is highly conservative because it
accounts for only climatic thermal effects. The
potential consequences of altered flood and
drought intensity and duration, industrial ther-
mal pollution, and interactions with introduced
species will likely increase the sensitivity of
native fishes to increasing stream temperatures.
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