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Foraging Ecology of Fall-Migrating Shorebirds in the
Illinois River Valley
Randolph V. Smith1*, Joshua D. Stafford1¤, Aaron P. Yetter1, Michelle M. Horath1, Christopher S. Hine1,

Jeffery P. Hoover2

1 F. C. Bellrose Waterfowl Research Center, Forbes Biological Station, Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign,

Havana, Illinois, United States of America, 2 Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois, United

States of America

Abstract

Populations of many shorebird species appear to be declining in North America, and food resources at stopover habitats
may limit migratory bird populations. We investigated body condition of, and foraging habitat and diet selection by 4
species of shorebirds in the central Illinois River valley during fall migrations 2007 and 2008 (Killdeer [Charadrius vociferus],
Least Sandpiper [Calidris minutilla], Pectoral Sandpiper [Calidris melanotos], and Lesser Yellowlegs [Tringa flavipes]). All
species except Killdeer were in good to excellent condition, based on size-corrected body mass and fat scores. Shorebird
diets were dominated by invertebrate taxa from Orders Diptera and Coleoptera. Additionally, Isopoda, Hemiptera,
Hirudinea, Nematoda, and Cyprinodontiformes contribution to diets varied by shorebird species and year. We evaluated
diet and foraging habitat selection by comparing aggregate percent dry mass of food items in shorebird diets and core
samples from foraging substrates. Invertebrate abundances at shorebird collection sites and random sites were generally
similar, indicating that birds did not select foraging patches within wetlands based on invertebrate abundance. Conversely,
we found considerable evidence for selection of some diet items within particular foraging sites, and consistent avoidance
of Oligochaeta. We suspect the diet selectivity we observed was a function of overall invertebrate biomass (51.264.4 [SE]
kg/ha; dry mass) at our study sites, which was greater than estimates reported in most other food selection studies. Diet
selectivity in shorebirds may follow tenants of optimal foraging theory; that is, at low food abundances shorebirds forage
opportunistically, with the likelihood of selectivity increasing as food availability increases. Nonetheless, relationships
between the abundance, availability, and consumption of Oligochaetes for and by waterbirds should be the focus of future
research, because estimates of foraging carrying capacity would need to be revised downward if Oligochaetes are truly
avoided or unavailable for consumption.
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Introduction

Populations of many shorebird species appear to be declining

throughout North America [1–5]. The mid-continent region of the

United States is primarily used by shorebirds as stopover habitat

during migration [2,5–7]. Thus, the best way to affect shorebird

fitness in this region is through management of habitat quantity

and quality [2,5–7]. Supporting this notion is evidence that

migration habitat quality can influence shorebird populations

[8,9], and migratory patterns [10]. Because shorebirds may spend

little time at individual stopover locations, their energy demands

should require them to forage efficiently and opportunistically

[11–13]. Indeed, several researchers have reported shorebirds

using this foraging strategy [11–13]. Additionally, optimal foraging

theory may predict that animals would forage opportunistically

when food resources are abundant [14,15], and we suspect food

resources to be abundant at most highly used stopover locations

[6,16].

Wetlands in the mid-continent region are critically important to

shorebirds as ‘‘refueling’’ habitats during migrations between

Central American wintering areas and arctic breeding grounds

[7,17]. Previous investigations of shorebird foraging ecology have

largely been conducted outside of the Upper Mississippi River and

Great Lakes Region Joint Venture (hereafter JV) focal region

[5,12,13,18–22]. Few researchers have investigated foraging

ecology of shorebirds in the mid-continent region [23,24], or

existing studies were of limited scale (i.e., [25,26]). However, to

emphasize the area’s importance, Chautauqua National Wildlife

Refuge (hereafter CNWR) lies within the Illinois River valley

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e45121



(IRV) focus area [27] and has been designated a Western

Hemisphere Shorebird Reserve Network site. CNWR may host

100,000–250,000 shorebirds annually during fall [28], and $5%

of the global Pectoral Sandpiper (Calidris melanotos) population

migrates through Illinois annually [29]. Understanding shorebird

foraging ecology at this important bird area could help guide

conservation planning throughout mid-latitude migration areas by

identifying characteristics associated with use and selection (see

[30:20]).

The U.S. Shorebird Conservation Plan identified several

research priorities to stimulate investigation of these long-distance

migrants [2]. Many of these included some aspect of foraging

ecology, including analyses of dietary requirements and prefer-

ences, and studies elucidating the relationship between wetland use

and forage characteristics [2]. Similarly, Oring et al. [30]

suggested investigation of resource use by highly congregated

shorebirds was needed to improve our understanding of migratory

stopover sites and the potential for foraging habitat to limit

populations. Finally, the JV Shorebird Conservation Strategy

identified food abundance, diet, and energetic carrying capacity

for migrating shorebirds as specific research needs to improve

shorebird conservation in this region [5].

We framed our research to address questions developed by the

U.S. Shorebird Conservation Plan [2] and the JV [5], which were

pertinent to our study area. Specific topics included, shorebird

health in relation to habitat, diet composition of different

shorebird foraging guilds, and food availability and abundance

at migration areas [5:36]. Therefore, we studied the foraging

ecology of Pectoral and Least Sandpipers (Calidris minutilla), Lesser

Yellowlegs (Tringa flavipes), and Killdeer (Charadrius vociferus) during

fall migration. We collected foraging shorebirds and substrate core

samples from foraging sites to estimate food abundance at

shorebird-collection and random locations during fall migrations

2007 and 2008 within selected wetlands in the central IRV. Our

objectives were to: 1) estimate body condition of migrating Least

and Pectoral Sandpipers, Lesser Yellowlegs, and Killdeer during

fall; 2) identify foods consumed by the 4 target species and evaluate

their relative importance, and; 3) use data on invertebrate foods

from shorebird diets and core samples to investigate potential

selection of foraging patches within wetlands (i.e., third-order

selection; [31]) and diet items at specific foraging sites (i.e., fourth-

order selection). We predicted that: 1) shorebird mass (corrected

for structural size) would be within published ranges, based on the

high-quality habitat we perceived to exist in our study area; 2)

shorebirds would select foraging patches within wetlands based on

food abundance, as food availability can influence habitat use

[10,32], and; 3) that the diets of individual birds would consist of

items relative to their availability in foraging locations.

Methods

Ethics Statement
We made every attempt to reduce disturbance, stress, and other

impacts to target specimens and all other local fauna. We collected

specimens using standard protocols and followed the Standard

Conditions for Federal Migratory Bird Scientific Collecting Permit

(United States Fish and Wildlife Service regulations 50 CFR

21.23). The University of Illinois at Urbana-Champaign Institu-

tional Animal Care and Use Committee approved our experi-

mental protocols (protocol number 06211). Collections were made

under authorization of the United States Fish and Wildlife Service

(scientific collection permit number MB145466-1) and the Illinois

Department of Natural Resources (scientific permit numbers

NH07.4071, NH08.4071, and NH09.4071). Permission and

authorization to conduct research on, and remove habitat samples

from, state-owned and managed property was issued by the Illinois

Department of Natural Resources (research permit numbers

SS07-49, and SS08-36). Authorization to work on CNWR was

granted by the United States Fish and Wildlife Service (special use

permit number 33653-07-06). Permits were not required to

conduct research, collect specimens or habitat samples from

privately owned property, but collections were included under the

jurisdiction of the state and federally issued collection permits.

Appropriate permission was received prior to entering or working

on private lands.

Study Area
Our study sites included backwater lakes and wetlands

associated with the LaGrange Pool of the Illinois River (river

miles 80.2–157.6) in Fulton, Mason, and Tazewell counties,

Illinois. The importance of these floodplain wetlands to migratory

waterbirds has been described in detail [33–35]. Many wetlands in

our study area were managed to promote moist-soil vegetation, an

important food for migratory waterfowl [36]. Moist-soil manage-

ment typically requires natural or managed dewatering of

wetlands to expose mud flats during the growing season. Thus,

the region commonly provides abundant foraging habitat for

shorebirds during fall migration.

CNWR (Figure 1) was considered the most important of our

collection sites and may host substantial numbers of shorebirds

during migration [28]. Other publicly- and privately-owned and

managed wetlands in the IRV also receive considerable use by fall-

migrating shorebirds. Areas managed by the Illinois Department

of Natural Resources (IDNR) included: Rice Lake, Anderson

Lake, and Spring Lake State Fish and Wildlife Areas (Figure 1).

Privately-owned wetlands included Grand Island, Crane Lake and

Clear Lake (Figure 1). Finally, unmanaged backwater wetlands

occasionally drawdown naturally and attract foraging shorebirds.

Therefore, we collected shorebirds at 1 unmanaged wetland,

Quiver Lake, at which water levels were dictated by the Illinois

River (Figure 1). Typical habitat features of these sites included at

least one large (200–925 ha) bottomland lake that was at least

partially dewatered during summer (all sites except Quiver Lake).

Five sites (Anderson, Clear, Crane, Rice, and Spring lakes) also

had smaller (15–100 ha) leveed impoundments that were managed

independently of the larger bottomland lakes. Water levels at all

sites varied within and among years due to precipitation,

fluctuating levels of the Illinois River, and site-specific manage-

ment actions. Therefore, we were able to collect birds in only one

of the two years at most sites, but did collect birds during both

years at 2 sites (Grand Island, Clear Lake).

Field
We collected foraging Killdeer, Least and Pectoral Sandpipers,

and Lesser Yellowlegs with shotguns and non-toxic shot (Hevi-shot

H, Environ-metal, Inc.) during July and August 2007–2008

(Table 1). We observed feeding shorebirds for $10 minutes prior

to collection to ensure they had not been feeding at another

location and that they contained sufficient food for analysis.

Immediately following collection, we injected a 10% buffered

formalin solution into the upper digestive tract of each bird to stop

digestion and placed a plastic cable-tie around the neck at the base

of the head to prevent loss of ingesta. We uniquely labeled and

bagged each bird and placed them in a cooler until we could

transport them to the laboratory for processing (#6 hours). We

recorded the location of each collected bird using a handheld GPS

unit and removed a wetland substrate core sample from the

feeding location (5 cm diameter and 5 cm depth; [37]). Following

Shorebird Foraging Ecology
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all daily collections, we used a random numbers table to select an

easting and northing distance (m) for each bird and collected a

core sample from this randomly-selected location. Thus, each

collected shorebird was paired with 2 core samples; one taken

from the feeding site and one at a random location within the

wetland (hereafter, ‘‘collection-site’’ and ‘‘random’’, respectively).

We preserved and stored all core samples in plastic bags with 10%

buffered formalin solution stained with rose bengal until processed

in the laboratory.

Laboratory Methods
We weighed shorebirds (60.1 g) and recorded structural

measurements to compute size-corrected body mass (hereafter,

body mass) indices and scored body fat content using the

Monitoring Avian Productivity and Survivorship (MAPS) method

[38]. We placed hemostats at the proximal end of the esophagus

and distal end of the proventriculus to prevent mixing or loss of

ingesta prior to removal. Gizzard contents were not examined due

to differential rates of digestion [39]. We considered only animal

food items because they are the primary prey of shorebirds and

their abundance may influence shorebird distributions (e.g.,

[12,16]). Esophageal and proventricular contents were combined

and rinsed through a #35 (500 mm) mesh sieve to remove

substrate and formalin. Core samples were processed similarly,

except samples with a large number (.200) of a single invertebrate

taxa were occasionally sub-sampled (up to J) using a Folsom

plankton splitter. We sorted all items remaining in sieves under

dissecting microscopes and classified invertebrate food items to

Family or the lowest practical taxonomic level (e.g., Oligochaeta)

following Merritt and Cummins [40] and Smith [41]. Individual

taxa from each sample were dried to constant mass at 60uC and

weighed on a digital balance (60.1 mg).

Most invertebrates found in diet and core samples were small

enough that several individuals of particular taxon were required

to measure dry mass. Because many taxa were too small and

Figure 1. Map depicting our study area within La Grange Pool (dotted line) of the Illinois River in central Illinois, and specific study
wetlands (labeled).
doi:10.1371/journal.pone.0045121.g001

Shorebird Foraging Ecology
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encountered too infrequently to weigh, we computed an average

mass per individual in each taxon and multiplied it by the number

of food items not weighed in such instances. Average masses were

calculated using the most similar dataset (e.g., same shorebird

species’ diet), but became more coarse as taxa became increasingly

rare (e.g., all samples within a year).

We converted dry mass (measured or estimated) of important

food items to aggregate percent dry mass (hereafter, dry mass) for

each shorebird or core sample [42]. We also calculated percent

occurrence of food items, and constrained our analyses to items

with $5% frequency of occurrence for a given shorebird species

and year. This strategy eliminated food items that occurred in

single individuals and greatly reduced the number of zeros in our

dataset.

Statistical Procedures
Fat scoring and size-corrected body mass. We summa-

rized annual MAPS scores of body fat using the MEANS

procedure in SAS v9.2, and inferred interannual differences if

95% confidence intervals of mean MAPS scores did not overlap.

We used the following morphometrics to compute body mass of

shorebirds: 1) head length (60.1 mm); 2) culmen length

(60.1 mm); 3) tarsus length (60.1 mm); 4) keel length

(60.1 mm), and; 5) wing-cord length (61 mm). First, we

conducted a principal-components analysis of all morphometric

measurements using the PRINCOMP procedure in SAS v9.2

[43,44]. Then, we included the scores from the first principal

component as a covariate in an analysis of covariance for each

species (separate analyses) using the MIXED procedure, where

body mass was the dependent variable. This allowed us to estimate

least-squared means of body mass, which accounted for variation

in structural size based on morphometrics (i.e., body mass); we

used these least-squares means as our index of body condition. As

with fat scoring, we used 95% confidence intervals about averaged

body mass estimates to interpret interannual differences.

Diet, food abundance, and selection. We attempted to

analyze dry mass of important invertebrate taxa found in

shorebird diets, collection-site, and random core samples; howev-

er, diet proportions were not independent due to the unit-sum

constraint (i.e., all proportions of each food item from an

individual will sum to 1 and are not independent). Other studies

have used compositional analysis to account for this lack of

independence [45], but our data set contained many zeros, and

this approach may have led to severely inflated Type I error rates

[46,47]. Examination of residual plots indicated our errors were

not multivariate-normal distributed and arcsine square-root

transforming the data did not significantly improve error

distributions and complicated interpretability. Therefore, we

followed the approach of other avian diet studies and used

species- and year-specific multivariate analysis of variance with

proportional dry mass as the dependent variable [47–49]. This

approach allowed us to evaluate overall variation in important

invertebrate taxa (i.e., $5% occurrence; dependent variables)

found in ingesta, collection-site and random cores for each

shorebird species.

We conducted analyses using the MANOVA statement in

PROC GLM, SAS v9.2, and included wetland location as a

random effect to account for dependence among characteristics

within individual wetlands [44]. We used Wilk’s Lambda to

evaluate statistical significance of each MANOVA because it is

considered robust to violations of the assumption of multivariate

normality [45]. If results indicated a significant (P#0.05) difference

in composition of invertebrate taxa, we conducted Tukey-Kramer

post-hoc comparison tests of least-squares means using the PDIFF

option of the LSMEANS statement (P#0.05). Although contrasts

were performed on least-squares means, we present arithmetic

means in tables and text for easier interpretation. Finally, we

interpreted results of pairwise contrasts similar to Johnson [31].

That is, we considered comparisons between collection-site and

random core samples to be relevant to third-order selection (i.e.,

selection of specific foraging sites), whereas we considered

comparisons of contents of ingesta and collection-site cores

relevant to fourth-order selection (i.e., procurement of specific

resources; [31,50]).

We converted dry mass estimates in random core samples to

kg/ha and used these data to estimate the average biomass of

invertebrate foods found in random samples annually and overall.

Biomass estimates are presented 61 SE and with 95% confidence

intervals.

Results

Body Condition
Shorebirds that sustained damage to body parts during

collection were excluded from analyses of body mass; therefore,

we included 149 shorebirds from 4 wetlands in 2007 and 131

shorebirds from 6 wetlands in 2008 in analyses of body condition

(Table 1). Estimated body mass of our focal species were within or

above reported ranges (Table 2). Estimates of body mass for Least

Sandpipers and Lesser Yellowlegs were not different between years

(Table 2). Killdeer body mass was 4.2% less in 2008 than 2007,

whereas Pectoral Sandpiper body mass was 13% greater in 2008

than in 2007 (Table 2).

Diet and Food Availability
Killdeer. We collected 35 Killdeer from 4 wetlands in 2007

and 34 Killdeer from 5 wetlands in 2008. Of these, 27 (77%) from

2007 and 18 (53%) from 2008 contained adequate amounts of

invertebrate food items (i.e., percent occurrence $5%) for

analyses. We identified 13 taxa in Killdeer diets in 2007 and 6

taxa in 2008 (14 total; see Table S1 for complete taxa list).

Table 1. Number of Killdeer (KILL), Least Sandpipers (LESA),
Lesser Yellowlegs (LEYE), and Pectoral Sandpipers (PESA)
collected and included in analyses of size-corrected body
mass by site, year, and species.

Species

Study Site and Year KILL LESA LEYE PESA Total

Chautauqua Lake 2007 12 16 24 29 81

Clear Lake 2007 5 0 3 6 14

Grand Island 2007 15 14 12 4 45

Quiver Lake 2007 3 6 0 0 9

Total 2007 35 36 39 39 149

Anderson Lake 2008 2 6 4 25 37

Clear Lake 2008 7 13 12 0 32

Crane Lake 2008 7 2 1 7 17

Grand Island 2008 0 0 15 4 19

Rice Lake 2008 6 5 0 0 11

Spring Lake 2008 12 3 0 0 15

Total 2008 34 29 32 36 131

Grand Total 69 65 71 75 280

doi:10.1371/journal.pone.0045121.t001

Shorebird Foraging Ecology

PLOS ONE | www.plosone.org 4 September 2012 | Volume 7 | Issue 9 | e45121



Coleoptera (36.7% [2007], 16.7% [2008]), Diptera (36.7% [2007],

22.2% [2008]), and Nematoda (66.7% [2007], 55.6% [2008])

occurred most frequently in Killdeer diets in each year. Dry mass

of invertebrate taxa differed among Killdeer diets, collection-site

and random core samples in 2007 (Wilks’ l= 0.15; F22, 130 = 9.42,

P,0.001) and 2008 (Wilks’ l= 0.26; F22, 74 = 3.20, P,0.001).

Foraging site and diet selection. Only dry mass of

Ostracoda in 2007 was significantly different between collection

(5%) and random sites (0%; Table 3), suggesting there was little

support for third-order (foraging site) selection by Killdeer

(Table 3). However, significant differences in dry mass of

invertebrate Orders found in Killdeer diets and collection-site

core samples indicated active selection or avoidance of some diet

items (i.e., fourth-order selection occurred; Table 3). In both years,

Killdeer consumed significantly more Nematoda than were found

in collection site samples, and significantly fewer Oligochaetes

compared with their high dry mass at collection sites (Table 3). In

2007, Killdeer diets contained significantly greater dry mass of

Coleoptera than were found at collection sites; this trend was also

present in 2008, but was not statistically significant. Finally,

Killdeer consumed significantly less Ostracoda in 2007 than were

present in collection site samples, although this difference (4% dry

mass) was relatively small.

Least Sandpiper
We collected 36 Least Sandpipers from 3 wetlands in 2007

and 29 Least Sandpipers from 5 wetlands in 2008. Of these, 30

(83%) from 2007 and 17 (59%) from 2008 contained adequate

food in the upper digestive tract for analyses. Least Sandpipers

consumed 9 taxa in 2007 and 5 taxa in 2008 (10 total; see Table

S2 for complete taxa list). Diptera (70.0% [2007], 77.8% [2008])

and Coleoptera (30.0% [2007], 11.1% [2008]) were the most

common taxa consumed in each year. Dry mass of invertebrate

taxa differed among Least Sandpiper diets, collection-site core

samples, and random core samples in 2007 (Wilks’ l= 0.22; F22,

150 = 7.77, P,0.001) and 2008 (Wilks’ l= 0.19; F22, 70 = 4.14,

P,0.001).

Foraging site and diet selection. There was little support

for third-order selection by Least Sandpipers (Table 4). Statistically

more Nematoda were found in collection-site than random core

samples in 2007, although the mean difference was only 0.7% dry

mass. In 2008, dry mass of Oligochaeta was significantly greater in

collection-site than random samples, but both estimates were

relatively great. Significant differences in dry mass of invertebrate

taxa found in Least Sandpiper diets and collection-site core

samples indicated that fourth-order selection occurred (Table 4).

In both years, contrasts of least-squares means indicated that Least

Sandpipers avoided consuming Oligochaeta, but selected Diptera

(Table 4). In 2007, Least Sandpipers consumed fewer Ostracoda

and Nematoda than were found in collection-site samples, though

both mean differences were relatively small (1.0–5.2% dry mass;

Table 4).

Lesser Yellowlegs
We collected 39 Lesser Yellowlegs from 3 wetlands in 2007, of

which 34 (87%) contained food in the upper digestive tract. In

2008, we collected 32 Lesser Yellowlegs from 4 wetlands, of which

20 (63%) contained food in the upper digestive tract. We identified

11 invertebrate taxa in Lesser Yellowlegs diets in 2007 and 9 in

2008 (15 total; see Table S3 for complete taxa list). Diptera were

the most important food by percent occurrence (33.3% [2007],

40.0% [2008]) and dry mass in both years (Table 5). Coleoptera

occurred relatively frequently in 2007 (25.0%) but not in 2008

(5.0%), whereas the converse was true for fishes (Gambusia sp.;

absent in 2007, 20.0% in 2008). Dry mass of invertebrate taxa

differed among Lesser Yellowlegs diets, collection-site, and

random core samples in 2007 (Wilks’ l= 0.24; F24, 172 = 7.39,

P,0.001) and 2008 (Wilks’ l= 0.25; F24, 88 = 3.60, P,0.001).

Foraging site and diet selection. Pairwise comparisons

revealed no differences in dry mass of invertebrate taxa found in

collection and random site core samples in 2007 or 2008,

indicating no support for third-order selection (Table 5). However,

multiple comparison of dry mass of invertebrate taxa between

collection sites and diets supported fourth-order selection (Table 5).

Lesser Yellowlegs clearly avoided Oligochaeta in both years,

whereas they contained greater dry mass of Hemiptera, Ostracoda

and Coleoptera than found in collection-site cores, although the

differences were only significant in 2007 (Table 5). In 2008, Lesser

Yellowlegs diets contained significantly more Nematoda and fish

(Gambusia sp.) than found in collection-site samples, though the

latter diet items were attributable to 4 individuals that had

relatively great dry masses and our sampling strategy was not

designed to capture vertebrates.

Table 2. Mean MAPS score (0–7), size-corrected body mass (SCBM; grams), standard error (SE), and 95% lower and upper
confidence limits (LCL and UCL) of shorebirds collected in central Illinois during fall migrations 2007 and 2008, and published mass
ranges (grams) for target species.

SCBM Mass Range1, 2

Year Species MAPS Mass SE LCL UCL Lower Upper

2007 Killdeer 0.5 92.5 1.0 90.5 94.5 65 128

Least Sandpiper 3.5 27.0 0.6 25.8 28.2 9 36

Lesser Yellowlegs 4.4 113.3 3.4 106.4 130.1 48 114

Pectoral Sandpiper 4.6 91.5 2.2 87.1 96.0 50 117

2008 Killdeer 1.2 88.6 0.9 86.7 90.4 65 128

Least Sandpiper 4.9 28.4 0.9 26.5 30.2 9 36

Lesser Yellowlegs 4.9 112.2 3.5 105.1 119.3 48 114

Pectoral Sandpiper 5.9 102.9 2.5 97.9 107.9 50 117

1Poole, A. ed. (2005) The Birds of North America Online: http://bna.birds.cornell.edu/BNA/. Cornell Laboratory of Ornithology, Ithaca, NY.
2O’Brien M, Crossley R, and Karlson K (2006) The Shorebird Guide. Houghton Mifflin Company. New York, USA.
doi:10.1371/journal.pone.0045121.t002
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Pectoral Sandpiper
We collected 39 Pectoral Sandpipers from 3 wetlands in 2007

and 36 from 3 wetlands in 2008, of which 37 (95%) and 28 (78%),

respectively, contained food in the upper digestive tract. We found

9 invertebrate taxa in Pectoral Sandpiper diets in 2007 and 7 in

2008, respectively (13 total; see Table S4 for complete taxa list).

Diptera, specifically Chironomidae, were the predominant food by

percent occurrence (73.7% [2007], 71.4% [2008]) and dry mass

(Table 6) in both years. Dry mass of invertebrate taxa differed

among Pectoral Sandpiper diets, collection-site core samples, and

core samples taken at random locations in 2007 (Wilks’ l= 0.36;

F22, 192 = 5.80, P,0.001) and 2008 (Wilks’ l= 0.17; F22,

136 = 8.97, P,0.001).

Foraging site and diet selection. Pairwise comparisons

revealed no differences in dry mass of invertebrate taxa found

in collection-site and random core samples for Pectoral

Table 3. Aggregate percent mass (dry) of taxa found in fall-migrating Killdeer ingesta and core samples taken at collection and
random sites in 2007 and 2008.

2007 2008

Taxa Diet Collection Random Diet Collection Random

Amphipoda . . . 0 A 0.3 A 0 A

Bivalvia 0 A 0.7 A 4.9 A . . .

Cladocera . . . 0 A 2 A 0 A

Coleoptera 33 A 3.5 B 10.3 B 16.7 A 8.1 A 26.9 A

Diptera 24.7 A 15.1 A 12 A 22.2 A 27.2 A 13.8 A

Ephemeroptera 0 A 0.3 A 0 A . . .

Fish . . . 0 A 0 A T A

Gastropoda 0 A 7 AB 13.8 B 0 A 10.7 AB 20.3 B

Hemiptera 9.1 A 3.7 A 0.4 A 0 A 0.1 A 2.6 A

Hirudinea 6.7 A 1.5 A 1.8 A 16.3 A 0 A 5.4 A

Isopoda 0 2.3 0 0 0.2 0

Nematoda 20.2 A 1.2 B 1.2 B 39.3 A 0.4 B 1.7 B

Oligochaeta 0.9 A 59.5 B 51.5 B 5.6 A 42.2 B 28.1 B

Ostracoda 1 A 5 B 0 A 0 A 0.1 A 0 A

Trichoptera 4.3 A 0.2 A 4.1 A 0 A 8.8 A 1.3 A

*Values with different letters within rows indicate significant differences of least-squares means (Tukey-Kramer test: P#0.05) within that year.
T indicates a trace amount of material present.
doi:10.1371/journal.pone.0045121.t003

Table 4. Aggregate percent mass (dry) of taxa found in fall-migrating Least Sandpiper ingesta and core samples taken at
collection and random sites in 2007 and 2008.

2007 2008

Taxa Diet Collection Random Diet Collection Random

Arachnida 0 A 0 A 2.9 A . . .

Bivalvia 0 A 2.1 A 1.1 A 0 A 0 A 0.4 A

Cladocera . . . 0 A T A 0 A

Coleoptera 28 A 6.2 B 7.8 B 11.8 A 8.8 A 1.8 A

Diptera 63.7 A 15.5 B 19.4 B 82.4 A 17.1 B 36.3 B

Gastropoda 0 A 2.9 A 1.8 A 0 A 0 A 2.1 A

Hemiptera 0.3 A 1.6 A 0.9 A 0 A 0 A 4 A

Hirudinea 4.5 A 3.6 A 2.6 A 0 A 0 A 3.7 A

Isopoda 0 A 1.1 A 0 A 0 A 0.2 A 4.1 A

Nematoda 0 A 1 B 0.3 A 0 A 0.6 A 6.1 A

Oligochaeta 3.5 A 60.2 B 59.3 B 5.9 A 72.7 B 41.5 C

Ostracoda 0.3 A 5.5 B 0.3 A 0 A T A 0 A

Trichoptera 0 A 0.4 A 3.5 A 0 A 0.5 A 0 A

*Values with different letters within rows indicate significant differences of least-squares means (Tukey-Kramer test: P#0.05) within that year.
T indicates a trace amount of material present.
doi:10.1371/journal.pone.0045121.t004
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Sandpipers in 2007 or 2008, indicating no support for third-

order selection (Table 6). Conversely, pairwise comparisons of

dry mass of invertebrate taxa supported fourth-order selection

by Pectoral Sandpipers in 2007 and 2008 (Table 6). As with the

other 3 species we collected, Pectoral Sandpipers avoided

Oligochaetes in both years, whereas dry mass of Diptera was

greater in collection-site samples in both years. Some year-

specific differences in Pectoral Sandpiper diets also existed. In

2007, diets contained significantly more Hemiptera than

collection-site samples, whereas selection for Isopoda at foraging

sites occurred in 2008 (Table 6).

Invertebrate Biomass
Estimated biomass of invertebrates found in core samples

collected at random was 47.064.3 (SE) kg/ha (dry mass; 95% CI:

38.5–55.5) in 2007 and 56.068.1 (SE) kg/ha (dry mass; 95% CI:

40.0–72.1) in 2008. Confidence intervals about annual inverte-

brate biomass estimates overlapped considerably; thus, estimated

Table 5. Aggregate percent mass (dry) of taxa found in fall-migrating Lesser Yellowlegs ingesta and core samples taken at
collection and random sites in 2007 and 2008.

2007 2008

Taxa Diet Collection Random Diet Collection Random

Bivalvia 0 A 0.6 A 0.4 A 4.2 A 0 A 2.1 A

Cladocera 0 A T A 0 A 0 A 0.1 A 0 A

Coleoptera 23.7 A 0.4 B 3.2 B 0.3 A 0 A 0 A

Diptera 24.4 A 33.5 A 21.9 A 31.4 A 29.6 A 34 A

Ephemeroptera 2.7 A 0 A 0 A . . .

Fish . . . 19.6 A 0 B 0 B

Gastropoda 0 A 5.7 A 5.6 A 0 A 0 A 1 A

Hemiptera 18.9 A 3.4 B 3.2 B 12.8 A 0.1 A 4.3 A

Hirudinea 4 A 5.4 A 9.1 A 0 A 4.4 A 3.7 A

Isopoda 0 A 0 A 0.1 A 1.6 A 1.4 A 1.1 A

Nematoda 3.6 A 3 A 1.1 A 22.5 A 0.5 B 0.4 B

Oligochaeta 0 A 46.8 B 53.4 B 5 A 57.3 B 53.3 B

Ostracoda 13.4 A 0.2 B 0.2 B 2.6 A 0 A 0 A

Trichoptera 9.5 A 1 A 1.8 A 0 A 6.5 A 0.2 A

*Values with different letters within rows indicate significant differences of least-squares means (Tukey-Kramer test: P#0.05) within that year.
T indicates a trace amount of material present.
doi:10.1371/journal.pone.0045121.t005

Table 6. Aggregate percent mass (dry) of taxa found in fall-migrating Pectoral Sandpiper ingesta and core samples taken at
collection and random sites in 2007 and 2008.

2007 2008

Taxa Diet Collection Random Diet Collection Random

Arachnida 0 A T A 0 A 0 A 0 A 0.1 A

Bivalvia 0 A 3 A 2.6 A 3.4 A 3.6 A 0.9 A

Cladocera . . . 0 A T A 0 A

Coleoptera 3.7 A 0.4 A 4.2 A 0 A 0.5 A 0 A

Diptera 67.1 A 38.3 B 30.7 B 72.9 A 24.3 B 21.7 B

Gastropoda 2.7 A 5.5 A 2.2 A 0 A 1.5 A 0.4 A

Hemiptera 13.6 A 3.8 B 0.9 B 0 A 0.1 AB 0.7 B

Hirudinea 0 A 3.7 A 5.2 A 0 A 0.6 A 0 A

Isopoda 0 A 0 A 0.2 A 19.8 A 2.5 B 4.1 B

Nematoda 7.2 A 1.7 A 2.6 A 3.8 A 0.5 A 0.7 A

Oligochaeta 1.5 A 41.1 B 50.5 B 0 A 65.9 B 71.5 B

Ostracoda 2.7 A 0.8 A T A 0 A T A 0 A

Trichoptera 1.5 A 1.8 A 0.8 A 0 A 0.7 A 0 A

*Values with different letters within rows indicate significant differences of least-squares means (Tukey-Kramer test: P#0.05) within that year.
T indicates a trace amount of material present.
doi:10.1371/journal.pone.0045121.t006

Shorebird Foraging Ecology

PLOS ONE | www.plosone.org 7 September 2012 | Volume 7 | Issue 9 | e45121



average biomass across all years and sites was 51.264.4 (SE) kg/ha

(dry mass; 95% CI: 42.5–59.9).

Discussion

Foraging Site and Diet Selection
Third-order selection. Our results provided sparse evidence

for third-order, or habitat patch selection [31] of feeding sites by

fall-migrating shorebirds in the IRV (Tables 3, 4, 5, and 6).

However, we did find support for selection of specific food items

(i.e., fourth-order selection [31]) and consistent avoidance of

Oligochaeta among our focal shorebird species. Although

relatively few studies have examined selection among diet,

foraging site, and random sites, our results contrast others who

suggest that shorebirds may select foraging sites based on food

abundance [16,26,32,51,52]. Previous studies have documented

selection of foraging sites by shorebirds; however, many of these

used sampling designs that constrained inference or resulted in

multiple interpretations (e.g., [12,20,53]). In contrast, by compar-

ing random and foraging site samples we found little support for

third-order selection by shorebirds. We perceived individual

wetlands in our study to be relatively homogeneous in terms of

mudflat habitat and invertebrate availability, but nonetheless we

suspected that proximate cues, such as micro-topography or

perceived predation risk, might have allowed shorebirds to select

foraging sites that were more profitable than expected at random

[52]. Further, we acknowledge that sample sizes may have been

too small in some instances to detect differences if they existed. For

example, although not statistically different, dry mass of Coleop-

tera was 232% greater in random samples (26.9%) than collection-

site samples (8.1%) taken for Killdeer in 2008. Nonetheless, most

differences between collection and random site dry mass were

inconsistent among shorebird species and years, and were small in

comparison to the differences between dry mass of diets and

collection site samples.

Fourth-order selection. In addition to studies of third-order

foraging habitat selection in shorebirds, several studies have

evaluated selection of diet items at collection sites (i.e., fourth-

order selection; [31]); [12,13,24,32,54,55]. Our results indicated

selection of specific invertebrate taxa by four study species, which

contrasts results of some published research [12,13,24,54], but

supports others [32,55]. Previous studies reported that shorebirds

typically consume prey opportunistically with little relation to

nutritional or energetic value [12,13]. An opportunistic approach

and flexible, compositional diet, theoretically allows shorebirds to

consume a variety of prey in the highly variable wetland habitats

of North America [11,17]. Similar to studies of third-order

selection, many previous studies had constraints that may have

limited inference, such as insufficient invertebrate sampling and

diet preservation [54], sampling of invertebrates that may have

been physically unavailable to foraging shorebirds [13], and

generalized analyses and summarization of diet contents [24]. Our

results provide particularly strong evidence for selection of Diptera

(Pectoral and Least Sandpipers), Coleoptera (Least Sandpipers and

Lesser Yellowlegs), Nematoda (Killdeer), and Hemiptera (Pectoral

Sandpipers and Lesser Yellowlegs).

Several possible mechanisms could explain the selective foraging

observed in our study, and each may have implications for

conservation planning and habitat management. First, we

documented considerably greater invertebrate biomass at foraging

sites compared with other shorebird food selection studies.

Previous research has reported that the availability of benthic

invertebrates (dry biomass) varies dramatically among wetland

systems and seasons. Estimates range from very low (e.g., 1.8–

9.2 kg/ha dry biomass; [12,13,56,57]) to extremely high (e.g.,

278.2 kg/ha dry biomass; [58]), and many values in between [59–

61]. Our overall estimate of invertebrate biomass (51.2 kg/ha)

represents a value closer to the median of the biomass range and is

similar to other estimates from nearby wetlands in the IRV and

Mississippi River [62–64]. In contrast, most previous shorebird

food selection studies reported substantially lower invertebrate

biomasses, and indicated that shorebirds in those areas foraged

opportunistically [12,13,56,57]. Optimal foraging theory generally

predicts that absolute abundance of potential food items (control-

ling for handling time; i.e., equal availability of different food

types) influences dietary specialization [65,66]. Specifically, as total

food abundance increases, foragers should increase selectivity to

where, eventually, only one prey type might be consumed even if

all were equally available [66]. We suggest that the selective

foraging we observed may be a function of absolute abundance

and biomass of invertebrate foods, and similar research in other

high-biomass habitats may yield similar results [32].

Another potential explanation for the diet selectivity we

observed may relate to the condition of birds in our study. The

majority of shorebirds we collected were in good to excellent body

condition (Table 2); however, we do not know how long shorebirds

were present at our study sites prior to collection. It is well

established that diet affects body condition, but body condition

may in-turn dictate diet [67]. Thus, if shorebirds arrived at our

study area in good condition, they may have been more selective

in their diet. In contrast, migrants arriving in poorer condition

may be more likely to consume food opportunistically to quickly

improve condition. Other researchers have suggested the opposite,

whereby birds in better condition forage opportunistically, and

those in poor condition seek out higher quality foods [68,69].

Clearly, relationships between body condition and diet may be

complex, and more explicit research is needed to clarify these

relationships. Understanding such relationships may yield impor-

tant implications for management, such as quantifying the true

value of foraging habitats in our study region compared to other

stopover sites.

Finally, the diet selectivity we documented may have been

related to the composition of invertebrate foods at our study sites.

Past results of shorebird diet studies were likely biased towards

invertebrates with hard body parts, because soft-bodied inverte-

brates may have been lost or degraded due to post-mortem

digestion if not properly preserved [26,39,70]. Many taxa in our

study were considered soft-bodied, and if these invertebrates were

consumed but not preserved prior to digestion it is possible our

analyses would indicate avoidance of these taxa. Oligochaetes

were the primary soft-bodied taxa that were consumed consider-

ably less than found in collection-site samples, which would not

have been predicted if shorebirds foraged opportunistically. Other

researchers have suggested that Oligochaetes may be underrep-

resented in waterbird diets because of their fragility and small size

[26,53,71]. Further, it is difficult to imagine a functional reason for

avoidance of Oligochaetes. For example, gross energy and crude

protein of Oligochaetes is similar to, or greater than that of

Chironomidae [60], which are readily consumed by many

waterbird species. We do not believe the apparent avoidance of

Oligochaetes in our study was a function of methodology. We

were keenly aware of potential post-mortem digestion of soft-

bodied invertebrates and irrigated the upper digestive tract of each

shorebird with a formalin solution as quickly as possible, typically

within 1–2 minutes of collection. Additionally, Oligochaetes were

common in diets but greatly underrepresented in aggregate

percent dry mass, precluding the possibility that they were missed
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entirely. Thus, we contend avoidance of Oligochaetes in our study

was a real phenomenon.

Other researchers have also reported apparent avoidance or

lack of consumption of Oligochaetes by shorebirds

[25,56,60,71,72] and other waterbirds [73], despite the fact they

are often the most abundant taxa in benthic substrates. Indeed,

growing evidence suggests that waterbirds consume Oligochaetes

less than their availability. One possibility for this is that shorebirds

do not actively avoid Oligochaetes, but rather Oligochaetes are

able to avoid foraging shorebirds [74,75], either by moving away

from the forager or by avoiding detection [76]. Predator avoidance

in invertebrates is not universal; it occurs in some taxa [77–79] but

not in others [80]. However, Oligochaetes have the ability to

migrate in response to chemical (dissolved oxygen, [75]) or

physical (drying, [74]) stimuli. Thus, it seems plausible that

Oligochaetes might be able to detect the presence of predators

moving near them (e.g., pressure) and migrate away from the

surface. Additionally, some shorebirds forage using fine sensory

mechanoreceptors in their bill-tips, which are capable of detecting

small vibrations created by buried invertebrates [76], or through

some other form of remote sensing [78,81]. Perhaps Oligochaetes

avoid these forms of detection, and are functionally undetectable

to foraging shorebirds except when encountered tactilely. Finally,

Oligochaetes may be associated with plant roots and other organic

material, which could make them difficult to exploit [72].

Oligochaetes at our IRV sites appeared to be widely and relatively

homogeneously distributed, although we did not specifically

explore subsurface associations. Additional research examining

the role of Oligochaetes as food in various wetland systems with

inconsistent invertebrate biomass is warranted.

Body condition. Results of size corrected body mass support

the notion that our study wetlands in the IRV provided high-

quality foraging habitats for shorebirds, given that Killdeer, Least

and Pectoral Sandpipers, and Lesser Yellowlegs were in good to

excellent body condition during our study. Mass of Killdeer varies

considerably (65–128 g, [82,83]), but our 2007 and 2008 body

mass estimates (Table 2) were within the reported range. Body

mass of Least Sandpipers collected in 2007 and 2008 (Table 2)

were near the upper range of reported body mass ([83,84]; 9–

36 g). Lesser Yellowlegs’ body mass (Table 2) in both years was

greater than average masses reported by Tibbitts and Moskoff

([85]; 67–94 g), but at the upper extent of that reported by

O’Brien et al. ([83]; 48–114). Pectoral Sandpiper body mass

(Table 2) in 2007 and 2008 was also within the reported range of

body masses (50–117 g, [6,83]). Killdeer and Pectoral Sandpiper

body mass differed between years (body mass was higher for

Killdeer in 2007 and Pectoral Sandpiper in 2008) which may be

associated with different habitat conditions. We speculate that

specific habitat conditions created by variation in timing, duration,

and intensity of spring and summer flooding within the IRV may

have created drier conditions that favored Killdeer in 2007 [5,82],

whereas wetter conditions may have favored Pectoral Sandpipers

in 2008 [18].

If shorebirds acquired fat resources at our study wetlands, the

magnitude of accumulation would have been somewhat depen-

dent on the time they spent at our study site. Thomas [86]

reported that Least and Pectoral Sandpipers arrived at stopover

locations with excess fat stores, and fat stores and body condition

were not significant predictors of stopover duration. We were

unable to evaluate stopover duration of shorebirds in our study,

but suggest that high food abundance, coupled with the fact that

some shorebird species can increase body mass by 70% or more at

migratory stopovers [87], supports the notion that fat stores were

gained at our study wetlands. Since fat stores acquired before

migration can have a pronounced impact on survival [3], fat

acquisition at our study area would be indicative of high-quality

foraging habitat.

Prey depletion. We did not specifically address prey

depletion during our study, but several other authors have

suggested shorebird foraging can substantially reduce prey

abundance over the course of migration [10,12,26]. Although

we found sparse evidence for selection of specific foraging sites

during our study, it is possible those quantitative and qualitative

differences in dry mass between foraging and random sites were

due to depletion. However, the relative abundance of shorebird

prey items and high body condition of birds in our study suggested

that adequate food was acquired quickly before birds moved on

(e.g., a short-hop strategy; [26,88]) and depletion was not

significant.

Conservation and Management Implications
A primary goal of shorebird conservation is to provide and

maintain adequate carrying capacity (in terms of energy) to

support migrating shorebirds and meet regional population

objectives, which are based on proportions of species-specific

objectives under the continental shorebird plan [5:24]. To meet

these goals, habitat objectives must be met in target areas relative

to population estimates. Most continental and regional estimates of

shorebird population sizes are tenuous; therefore, it is difficult to

provide precise and targeted recommendations regarding habitat

availability and abundance. Despite these uncertainties, functional

habitat is essential to support migrating shorebirds in mid-

continent areas. We propose our results of relatively high

invertebrate biomass, diet selectivity, and generally good to

excellent body condition demonstrate that when shorebird

foraging habitat is available in the IRV (and perhaps other

bottomland wetlands in the region) it is not only functional, but

likely of high quality.

Safran et al. [53] proposed that suitable water level may be a

more important determinant of foraging habitat selection by

shorebirds than food abundance or availability of specific foods.

To this end, most wetlands in the IRV (both publicly- and

privately-owned) are dewatered annually during mid-summer (i.e.,

moist-soil management) which results in water levels that provide

extensive foraging habitat for migrating shorebirds. Our research

concurs with the body of literature that suggests these draw-downs

often provide expansive mud flats for foraging shorebirds

[32,36,71,89], even though management for shorebirds is not

likely a goal of private or some public land managers. However,

abundance and availability of shorebird foraging habitat in the

IRV can be incredibly variable due to the dynamic and altered

hydrology of the Illinois River [33,35]. Indeed, foraging habitat

may vary within a season from .20 large (e.g., .100 ha)

dewatered wetland basins in La Grange Pool with expansive

mudflats, to virtually no foraging habitat for shorebirds in a matter

of days following substantial upstream precipitation events (e.g.,

$5 cm of rain). Such expansive flooding during late-spring

through summer prevents managers from dewatering wetlands,

which effectively eliminates all shorebird foraging habitats in the

IRV. Thus, the current hydrology of the Illinois River frequently

results in an ‘‘all or nothing’’ scenario for shorebird foraging

habitat.

Most previous shorebird studies have been conducted on public

lands, but our study included several private wetlands that were in

close proximity to publicly-managed sites of known importance to

migrating shorebirds. It is likely that some, or even most, of these

private wetlands have not been previously surveyed for shorebirds.

Although we did not record shorebird abundances, substantial
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numbers of shorebirds used private wetlands in our study area,

indicating greater shorebird abundance in the region than

previously reported, including species that the JV identifies as

having population deficits during migration [5]. We speculate that

at least some of this deficit may be due to a lack of survey data for,

or access to, lesser-known stopover areas, especially in the interior

of the continent, but surveys of these areas may provide critical

information to refine, and perhaps even reduce, population and

habitat objectives [5].

Our results indicated that foraging shorebirds avoided Oligo-

chaetes, and if this taxon is truly avoided or unavailable to fall

migrating shorebirds, they should not be considered in estimates of

forage biomass. In this scenario, our overall biomass estimate

would be reduced by 51% to 25.0 kg/ha. We note, however, that

each of our 4 focal shorebird species consumed Oligochaetes in at

least 1 year (Tables 3, 4, 5, and 6), indicating that, although not

preferred, foraging shorebirds will, at least occasionally, consume

this common invertebrate. Further, other researchers have

reported Oligochaetes in shorebird diets [24,26], or that they

were considered important shorebird foods [57,90]. Thus, it is

likely not appropriate to dismiss Oligochaetes as food items, but

research to understand the relationship between shorebird

foraging and Oligochaete abundance, behavior, distribution

(including vertical), and microhabitat associations would enhance

our understanding of food availability and, hence, carrying

capacity for migrating shorebirds. We recommend targeted

investigations that focus on relationships between abundance,

movements, and spatial distributions of Oligochaetes and other

wetland taxa in relation to shorebird foraging ecology. Such

studies might be best accomplished through controlled experi-

ments [76,78,81].

Our biomass estimates originated from backwater wetlands of a

large inland river system in the Midwestern United States, and our

study wetlands had similar management strategies and histories.

Thus, it may be inappropriate to apply our estimates of

invertebrate biomass to other regions or drastically different

aquatic systems. Conversely, similar estimates exist for backwater

wetlands of the Illinois and Mississippi River systems within and

near our study region [26,63,64]. Thus, we believe that wetlands

associated with large river systems in the mid-continental United

States may support appreciably greater invertebrate biomasses

than isolated palustrine or lacustrine wetlands [91]. Therefore,

these wetlands associated with large rivers have greater carrying

capacity, and the ability to support substantial numbers of

shorebirds during migration periods. Spatially clustered wetlands

that form complexes, similar to those in the IRV, may be

perceived by migrating shorebirds as single, large wetlands [92],

thereby increasing their attractiveness over individual wetlands

[57,93]. Consequently, we suggest habitat creation, improvement,

or protection focused within floodplains of large river corridors

[94], with special consideration given to wetlands with flood

protection. This focus would promote wetlands that avoid

complete inundation (i.e., habitat loss) during critical times of

the year, as shorebirds have few mid-continent options for

migration habitat [86]. We suggest that these wetlands will

provide greater conservation value as opposed to individual

wetlands or complexes with lower invertebrate biomass potential

[92]. Although our study should be replicated in other locations

with high invertebrate biomass, we advise that focusing limited

conservation resources on such habitats will provide greater

habitat value than could be achieved by non-targeted conservation

actions [5]. Such actions may include creation, enhancement, or

protection of shorebird habitat isolated from traditional stopover

locations or with low invertebrate biomass potential.
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