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ABSTRACT 

FULLY SOLUTION PROCESSED PEDOT:PSS AND SILVER NANOWIRE SEMI-

TRANSPARENT ELECTRODES FOR THIN FILM SOLAR CELLS  

BJORN VAAGENSMITH 

2016 

 Building integrated photovoltaics (BIPV), such as semitransparent organic solar 

cells (OSC) for power generating windows, is a promising method for implementing 

renewable energy under the looming threat of depleting fossil fuels. OSC require a 

solution processed transparent electrode to be cost effective; but typically employ a non-

solution processed indium tin oxide (ITO) transparent electrode. PEDOT:PSS and silver 

nanowire transparent electrodes have emerged as a promising alternative to ITO and are 

solution processed compatible. However, PEDOT:PSS requires a strong acid treatment, 

which is incompatible with high throughput solution processed fabrication techniques. 

Silver nanowires suffer from a short lifetime when subject to electrical stress. The goals 

of this work were to fabricate a PEDOT:PSS electrodes without using strong acids, a 

silver nanowire electrode with a lifetime that can exceed 6000 hours of constant electrical 

stress, and use these two electrodes to fabricate a semitransparent OSC. Exploring 

optimal solvent blend additives in conjunction with solvent bend post treatments for 

PEDOT:PSS electrodes could provide an acid free method that results in comparable 

sheet resistance and transmittance of ITO electrodes. Silver nanowires fail under 

electrical stress due to sulfur corrosion and Joule heating (which melts and breaks apart 

electrical contact). A silver oxide layer coating the nanowires could hinder sulfur 

corrosion and help redistribute heat. Moreover, nanowires with thicker diameters could 
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also exhibit higher heat tolerance and take longer to corrode. Four layer PEDOT:PSS 

electrodes with optimal solvent blend additives and post treatments were fabricated by 

spin coating. Silver nanowire electrodes of varying nanowire diameter with and without 

UV-ozone treatment were fabricated by spray coating and subject to electrical stress of 

20 mA/cm2 constant current density. PEDOT:PSS electrodes exhibited a sheet resistance 

of 80 Ω/□ and average transmittance of 73%, which were too high and too low, 

respectively. Silver nanowire electrodes, on the other hand, were able to achieve sheet 

resistances below 50 Ω/□ while maintaining a direct transmittance above 80%. Silver 

nanowires electrodes with average nanowire diameters of 80 nm lasted 2 days longer 

with UV-ozone treatment than without; and silver nanowire electrodes with average 

nanowire diameters of 233 nm lasted for 6,312 hours, which met the 6000 hour goal. 

PEDOT:PSS transparent electrode needs to be improved where the sheet resistance is 

below 50 Ω/□ and transmittance above 80%. This could be achieved by adding silver 

nanoparticles (SNP) less than 40 nm in size, which would also have a plasmonic effect 

enabling the solar cell to absorb ultraviolet light. Then a fully solution processed 

semitransparent solar cell utilizing a PEDOT:PSS:SNP and silver nanowire transparent 

electrodes can be fabricated. 
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CHAPTER 1 

1.1 INTRODUCTION 

The standard of living achieved by society has been undeniably linked to its 

energy consumption [1-3]. Alam et al. describes some of the variables associated with 

societies standard of living such as: infant mortality rate, life expectancy, food 

consumption, and percent of literate persons [1]. In developed countries such as the 

United States, energy consumption is high, and none of the aforementioned variables are 

of relative high concern in comparison to countries with low energy consumption. In light 

of this, energy consumption is of paramount importance for a good sustainable quality of 

life where basic human needs for all persons can be met. The great question facing 

engineers today is, “where will this energy come from?” 

The question, “where will this energy come from” only becomes bigger when 

considering 17% and 32% of countries in the world are rated low and medium, 

respectively, according to the human development index scale [4]. The amount of energy 

expenditure needed to improve a society standard of living is much greater than the 

energy needed to sustain the improved standard of living [2]. This is because the social-

economic environment takes time to adjust and reach an equilibrium related to the energy 

consumption. In a country whose food supply relies on famers with only hand tools that 

consume no energy, the famers will have to work long hours for a small amount of crop 

output. Depending on the population, many people may go hungry. Now with the 

assistance of tractors and other energy consuming tools given to the farmers, the modern 

farming tools will require much more energy expenditure in comparison to hand tools but 

they enable farmers to produce far more food than before. Despite this, the economic 
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status of the country may not be ready to support additional food. With time the economy 

may support the additional food, make hunger a less common issue, and develop more 

energy efficient uses of modern farm equipment. When considering the global energy 

need, it is important to be able to predict where more energy will be needed as societies 

seek to improve their standards of living. 

The world’s human population continues to grow and has now surpassed 7 

billion. As underdeveloped countries seek to improve their standards of living, it becomes 

obvious that current energy sources must be reevaluated to ensure future energy security. 

Figure 1.1 shows global energy consumption for OECD (organization for economic co-

operation and development) and non-OECD affiliated countries from 1990 to 2010 and 

predicted energy consumption from 2020 to 2040 [5]. From 2010 to 2040 it is expected 

that the demand for energy will increase by 56%.  

 

Figure 1.1. Global energy consumption for OECD and non-OECD affiliated countries 

from 1990 to 2010 and predicted energy consumption from 2020 to 2040 [5]. 
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 Fossil fuels are the main energy sources used to meet global energy demands. In 

2013 the United States Energy Information Administration estimated that 80% of the 

global energy needs were supplied by fossil fuels [5], which represents a 5% decline from 

2010 [6]. Fossil fuels are mainly composed of oil, natural gas, and coal. According to 

2015 BP statistical review, the oil, natural gas, and coal reserves will last for only 52.5 

years, 54.1 years, and 110 years, respectively [7]. In contrast, the change in the number of 

years left from BP’s 2012 predictions indicate natural gas and coal reserves are being 

depleted faster than expected. Considering that 49% of the world’s populations will need 

a large amount of energy to improve their standard of living and continued growth of the 

human population, it becomes obvious that fossil fuels cannot provide a secure energy 

future.  

 Our fossil fuel supply will vanish quickly if an effective alternative energy source 

is not found to ween the world off its fossil fuel dependence. There are several different 

energy sources in competition for this roll: wind turbines, hydroelectric power, nuclear 

energy, and solar energy. Figure 1.2 shows the global installed capacity of alternative 

energy sources and their predicted growth from 2020 to 2040 put out by the United States 

Energy Information Administration [5].  
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Figure 1.2. Global installed capacity of alternative energy sources and their predicted 

growth from 2020 to 2040. 

Hydroelectric has by far the highest installed global capacity with wind and 

nuclear tied for second place and solar energy last. Hydroelectric energy is by far the 

oldest and most developed form of electrical energy generation of these technologies. 

Although wind energy is much older than nuclear technology, it is now finally starting to 

catch up in terms of energy generation.  Solar technology is the youngest of all these 

alternative forms first demonstrated by Bell Labs in 1954. All of these technologies may 

have a critical part to play in weaning the world off its fossil fuel dependence. 

 Hydroelectric power utilizes the flow of naturally running water, and thus has no 

fuel cost. The major disadvantage of hydroelectric power is its dependence on where 

flowing water occurs. The Hoover Dam is one of the largest dams in the world and 

supplies power to Nevada, Arizona and California. It would not be reasonable to assume 

the Hoover Dam could supply power to New York due to significant energy loss 

associated with long distance traveled over power lines. Moreover, building dams has a 
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great impact on the ecological systems in the surrounding areas [8]. There are great 

efforts underway to better understand the damaging effects dams have on the animal and 

plant life. Although hydroelectric power has a role to play in meeting the future energy 

needs, it is not the ultimate answer in the quest for ubiquitous energy. 

 Wind energy has risen in popularity and continues to be a big player in renewable 

energy sources. Wind can be found nearly anywhere on the earth, but harvesting it is not 

always practical. Specific sites with excellent wind resources play a larger role in 

generating cost effective energy than advanced turbine technology [9]. In the United 

States, most of the wind resources available are located from North Dakota to Texas and 

on the coasts [10]. Other areas would require long transmission lines to deliver power. 

The total onshore energy potential for wind energy has been estimated to be 20 - 50 

petawatt-hours (PWh) [11], which is higher than the global electrical energy consumption 

for 2010 (2.0 PWh) [5], but far below 2010’s world energy consumption (153.5 PWh). 

As the use of fossil fuels (about 80% of the world energy needs) declines, many 

technologies such as cars will likely migrate to using electricity as an alternative power 

source; resulting in a dramatic increase in electrical power demand. In addition, concerns 

about killing wildlife, noise pollution, and turbines become an eyesore have all been 

raised against wind energy [12]. Although wind energy may be practical in the Midwest 

of the United States and well positioned countries such as Denmark, it does not seem to 

be a good solution to take care of all the worlds’ energy demands. 

 Nuclear energy has received the strongest opposition to all energy sources but can 

produce a dependable constant output of energy with very little fuel. Nuclear energy has 

the potential to provide for all global energy needs. Many countries are discontinuing 
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their nuclear programs due to serious safety and environmental concerns [7]. Joseph 

Shuster in his book “Beyond Fossil Fools” makes a strong argument for nuclear 

technology and a detailed plan to remove the world from its fossil fuel dependence [13]. 

He argues that nuclear energy is currently the only non-fossil fuel based source that has 

the ability to meet global energy demands, and strongly urges governments to build more 

light water reactors. He admits that radioactive waste with the light water reactors is a 

significant problem but proposes the use of fast fusion rectors, which can reuse the waste 

from the light water reactors. After the radioactive waste is used for fuel in the fast fusion 

reactors the length of its radioactive toxicity drops from +10,000 years to 500 years and 

reduces the waste size by 95%. With great reductions in the size of nuclear waste and the 

length of its toxicity make current storage plans much more feasible. However, Shuster 

admits on page 183 that fast fusion reactor technology is not yet ready.  

 Shuster blames politics, media and ignorance for the slow progress of nuclear 

energy and calls for a fast reform. Current reports on fast fusion reactors reveal that the 

technology is still under development due to safety concerns and high operation cost [14, 

15]. Furthermore, the 2011 nuclear reactor accident in Japan has brought great alarm to 

safety concerns [16]. Japan completely shut down its nuclear program in 2014. Shuster 

admits that the public opinion is mostly against nuclear energy. Although nuclear energy 

has the potential to supply the world’s energy needs, the negative sentiment towards this 

technology has crippled its development. It is not likely that the world will look with 

approval on nuclear energy in the near future and the consequences of a failed reactor can 

be devastating. History shows if society is not ready to accept a technology, they won’t-

even if it is revolutionary [17]. Until the dangers with nuclear energy can be worked out 
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and trust with public perception can be built up again, nuclear energy does not have a 

bright future. Although Shuster advocates nuclear energy for today, he admits solar 

power will likely become the dominant energy source after it has had more time to 

mature. 

 Every year the sun irradiates a total of 8.33 × 105 PWh on the earth, which is 

several orders of magnitude higher than the predicted global energy needs for 2040. 

Sunlight can be found anywhere on the earth and solar power plants can be built faster 

and easier than hydro, wind, or nuclear power plants. In addition, solar panels have the 

flexibility to be integrated into builds to generate power where it is needed. Many 

corporate giants such as Walmart and Apple have already began integrating photovoltaic 

(PV) panels onto the rooftop of their stores [18] [19]. Another example of building 

integrated photovoltaics (BIPV) is 4 Times Square [20]. A building in 4 Times Square 

integrates the PV on the south side of the building and can generate 13.8 MWh/year. 

BIPV makes effective use of unused space, emits no carbon emission, and has no 

negative impact on the environment. 

 The obvious drawback of solar energy is that no power is produced when the sun 

does not shine. This can be offset by the use of battery storage systems. The addition of 

battery storage can dramatically increase the cost of the system. However, continued 

research and efforts in photovoltaics have resulted in a dramatic decrease in system cost. 

In today’s US currency, the cost of a PV system was estimated at $500/watt in 1977 and 

has dropped to less than $1/watt in 2015 [21]. Future research and improvement are 

needed to make it more cost competitive with fossil fuels. BIPV can cut down the cost of 

PV systems because they use the buildings as a support instead of racking systems. 
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 Power generating windows are good examples of BIPV that does not need a 

racking system. A semi-transparent solar cell is simply integrated into the windows of a 

building. This additional functionality in windows can make use of energy that would 

have normally been wasted. Glass used in commercial applications typically reflect all 

ultraviolet (UV)  (200 - 400 nm) and infrared (IR) (780 - 2500 nm) light and ranged from 

19 – 79% transparent for light in the visible region (400 - 780 nm) [22, 23]. The UV, IR, 

and visible portions of the solar spectrum account for 9.3%, 38.8%, and 51.9% of the 

total energy [24]. Power generating windows could harness the 48.1% of solar energy 

that would have otherwise been reflected back into the environment. 

 The first attempts at window solar cells used silicon. Silicon is not a transparent 

material but was made so by drilling small holes within PV cells. The transmittance and 

efficiency of these devices was 10 - 20% and 6 - 12%, respectively [25-27]. Other 

designs attempted to fabricate micro cells that could be spaced apart on a transparent 

substrate, allowing light to pass though the spaces between them [28, 29]. However, these 

micro cell studies never reported on the efficiency and transmittance of their semi-

transparent PV panels.  From the work that has been done, it is evident that silicon based 

solar cells are limited in their applications as power generating windows due to their low 

transmittance. 

 Organic solar cells (OSCs), on the other hand, are able to exhibit high 

transmittance, which can be used in a wider range of window applications [30-32]. This 

is because OSCs are able to be tuned to absorb different portions of the solar spectrum. 

Mulligan et al. studied OSC economics and indicated that they are now cost competitive 

with silicon solar cells [33]. Although efficiency and device lifetime for OSCs are lower 
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than their silicon counterparts, OSC fabrication is significantly cheaper. The flexibility in 

transmittance and low cost fabrication methods make OSCs a better candidate for power 

generating window applications. 

 The low cost fabrication of OSCs is dependent on the use of solution processing 

techniques. Silicon solar cells are fabricated using high temperature methods and costly 

vacuum deposition techniques which results in an overall PV panel that is rigid and 

heavy. Solution processed OSCs can use roll-to-roll printing methods leading to 

mechanically flexible and lightweight panels. The study by Mulligan et al. assumes that 

all layers of the OSCs are solution processed, which is not always the case. Many OSCs 

make use of vacuum deposited top and bottom electrodes, and, assuming this is the case, 

Azzopardi et al. found that OSCs would not be cost effective [34]. Nearly all reports on 

OSC rely on vacuum deposition technology to deposit indium tin oxide (ITO) as the 

transparent electrode (typically the bottom electrode). OSCs for power generating 

windows will need a solution processed alternative to ITO for both the top and bottom 

electrodes to be cost effective competitive.   

1.2 PREVIOUS WORK 

The first solar cell was invented at Bell Labs by Chapin et al. and achieved 6% 

power conversion efficiency (PCE) in 1954 [35]. The efficiency was later improved to 

15.5% by Lindmayer and Allison in 1973 [36]. They added a tantalum oxide layer on top 

of a silicon solar cell, which was able to prevent blue and violet light from radiating out 

of the device. The trapped blue and violet light had a better chance of being absorbed by 

the silicon to generate electricity. The 20% efficiency barrier was broken by Blakers et al. 

in 1986 [37]. They were able to reduce reflection loss to 0.2% by texturing the top 
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surface of a passive emitter silicon solar cell structure. Zhao et al. achieved a PCE of 24% 

using a crystalline silicon passivated emitter, rear locally-diffused (PERL) structure in 

1996 [38]. They enhanced light absorption by incorporating an inverted pyramid structure 

on the top of the PERL device. They later improved the PERL efficiency to 24.7% by 

using float zone silicon substrates in 1999 [39]. The world record single junction silicon 

solar cell achieved by Panasonic Corporation in 2014 was 25.6% [40]. Panasonic 

researchers developed the heterojunction with an intrinsic thin layer (HIT) silicon solar 

cell device structure. The HIT structure differed from other silicon solar cells in that it 

incorporates both crystalline and amorphous silicon, which Panasonic claims reducing 

recombination losses within the device. By applying a patterned back contact, Panasonic 

improved the efficiency of HIT solar cells. These solar cell devices fall into the first 

generation photovoltaic devices. 

The second generation solar cells attempted to reduce the cost of the first 

generation by reducing device thickness to be on the order of 1 µm. By using less 

material, the second generation solar cells were cheaper but sacrificed device efficiency. 

The first thin film solar cell was reported by Carlson et al. in 1976 [41]. Carlson 

employed amorphous silicon in a p-i-n device structure and achieved 2.4% efficiency. 

Torres et al. reported a microcrystalline silicon thin film solar cell with PCE of 7.7% in 

1996 [42]. Keevers et al. demonstrated the highest reported thin film silicon solar cell 

device with PCE of 10% in 2007 [43]. They used crystalline silicon on glass (CSG) 

device structure and a new abrasive-etch treatment to texture the glass substrate and 

finished the device with an anti-reflection layer on top. 
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Third generation solar cell technology seeks to further reduce the cost of solar cell 

fabrication using solution processed technology to replace vacuum deposition methods 

such as chemical vapor deposition (CVD). Solution processed solar cells could be 

fabricated though printing techniques such as inkjet or roll-to-roll, allowing for fast 

continuous output of light weight and flexible PV modules. Typically, the third 

generation PV technology refers to organic solar cells such as dye sensitized, perovskite 

and polymer solar cells. Although attempts to create a fast continuous output fabrication 

of inorganic solar cells have been made [44], they typically result in low efficiencies and 

require vacuum deposition[45].  

The first OSC was demonstrated by Kearns et al. in 1958 [46]. Kearns produced a 

photovoltage of 200 mV using tetramethyl p-phenylencdiamine coated on a Magnesium 

phthalocyanine disk. A OSC made by merocyaninine 5 dye between Al and Ag 

electrodes exhibited 0.7% efficiency was reported by Morel et al. in 1978 [47]. A bi-layer 

solar cell utilizing a donor and acceptor material stacked on top of one another was 

reported by Tang et al. in 1986 [48]. The bi-layer device exhibited 0.95% efficiency 

under illumination of 75 mW/cm2. The concept of a bulk heterojunction was reported by 

Sariciftci et al. in 1992 [49]. The bulk heterojunction was made by blending a conjugated 

polymer (donor) with a fullerene (acceptor) between two electrodes. The bulk 

heterojunction was first reported in OSC by Yu et al. in 1995 [50]. Using the same 

system reported by Saricifti et al., Yu et al. fabricated an OSC with a PCE of 2.9%. A 

4.4% efficient bulk heterojunction OSC was reported by Li et al. in 2005 [51]. Li et al. 

used a slow drying method to allow the donor (poly(3-hexylthiophene)) and acceptor 

([6,6]-phenyl-C61-butyric acid methyl ester) to arrange themselves in a more optimal 
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morphology. The highest OSC efficiency of 11.2% was reported by Zhao et al. in 2016 

[52]. Zhao et al. used a fullerene free bulk heterojunction solar cell with PBDB-T 

(poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b’]dithiophene))-alt-

(5,5-(1’,3’-di-2-thienyl-5’,7’bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-c’]dithiophene-4,8-

dione))]) as the donor and ITIC (3,9-bis(2-methylene(3-(1,1-dicyanomethylene)-

indanone))-5,5,11,11-tetrakis(4hexylphenyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-

b:5,6-b’] dithiophene) as the acceptor. The PBDB-T:ITIC device outperformed the PCE 

for the PBDB-T:fullerene acceptor device by 3.8%. Zhao et al. also demonstrated that the 

PBDB-T:ITIC was thermally stable, could withstand temperatures of 200 °C and 

maintained efficiency’s greater than 10%. The fullerene-based counterparts, which lost 

over 50% of their original PCE when exposed to the same heat. The record PCE for 

polymer solar cells shows great promise for the future of OPV and strongly suggests they 

may soon become cost competitive to fossil fuels [33, 34]. 

Perovskite solar cells are also a third generation solar cell technology that utilizes 

organic compounds but have earned a right to their own category due to significant 

advancements.  The first perovskite solar cell achieved 3.8% PCE and was reported by 

Kojima et al. in 2009 [53]. Kojima et al. employed a single step method by spin coating a 

precursor solution to form the CH3NH3PbI3-based perovskite solar cell which had good 

light absorption but poor device stability. Four years later a perovskite solar cell with 

15% PCE was reported by Burschka et al. [54]. Burschka et al. employed a two-step 

method by first depositing a PbI2 solution then soaking the PbI2 film in a CH3NH3I 

solution, which resulted in formation of the CH3NH3PbI3 perovskite film. Perovskite 

solar cells with a PCE of 18% were reported by Nie et al. in 2015 [55]. They used a 



13 

 

 

 

single step hot casting technique where a perovskite precursor solution (PbI2 mixed with 

methylamine hydrochloride) is heated to temperatures as high as 180 °C and spin coated 

onto a substrate heated to the same temperature. The perovskite films where highly 

crystalline with grain sizes as large as 1 mm and exhibited improved charge transport. 

The perovskite PCE was then improved to 20% by Yang et al. in 2015 [56]. Yang et al. 

used FAPbI3 instead of MAPbI3 as a perovskite layer because it has a broader light 

absorption. Successful deposition of FAPbI3 is difficult, but Yang et al. employed an 

intramolecular exchange process, which enabled the formation of high quality and thick 

(500 nm) FAPbI3 films. The highest reported efficiency for perovskite solar cells was 

announced by the national renewable energy laboratory (NREL) to be 22.1% in 2016 

[57].  

Since 2009 perovskite solar cells have made remarkable progress from 3.8% PCE 

to 20% in 2015, however all these perovskite solar cells use lead – a water soluble toxin. 

Moreover, the stability of these devices is on the order of months [58]. Lead free 

perovskite solar devices have been explored but these attempts resulted in even worse 

stability and low PCE [59]. The heavy dependence on toxic materials and low stability of 

perovskite solar cell devices dampen the prospect of becoming a commercially viable 

energy solution. 

With the advent of 2nd and 3rd generation photovoltaic devices, semi-transparent 

solar cells for power generating windows began to be explored. Early attempts that 

fabricated semi-transparent solar cells for power generating window used silicon. One of 

the first reports was in 1990 by Ohnishi et al. who attempted to use a laser patterning 

method to create microscopy holes in an amorphous silicon solar cell [60]. Ohnishi et al. 
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reported a 5.0% PCE with 15% transmittance. They found that using the laser patterning 

method resulted in little effect to the devices’ fill factor and that theoretical 

transmittances up to 60% were possible. The drawback was that the transmittance of the 

device had a reddish color due to the nature of the amorphous silicon and that a 

transmittance of 15% was very low. 

Takeoka et al. used a chemical etch method to create pin holes in an amorphous 

silicon solar cell and achieved a transmittance of 10% and a PCE of 4.6% [26]. They used 

photolithography with no photoresist developer to create a hexagonal pattern to be etched 

into the silicon solar cell. Simulations showed this method could allow for transmittances 

up to 50%, although the highest transmittance reported here was 30% with 3.6% PCE. 

The drawback of this work is the low PCE in comparison with the transmittances. These 

devices are limited to security window applications (or sun roofs in a car as suggested by 

Takeoka et al.). 

Kuhn et al. reported a transparent solar cell with 10.4% PCE and a transmittance 

of 18% [27]. Kuhn et al. used a mechanical dicing saw to cut groves into a silicon wafer 

running vertically on one side and horizontally on the other. The locations where the cuts 

interacted formed small holes in the silicon wafer making it semi-transparent. These 

wafers were then fabricated into a monofacial silicon solar cell. The main drawback of 

this work is the low transmittance and the authors did not discuss how increased device 

transmittance would affect its PCE. 

A semi-transparent silicon solar module was fabricated by arranging small silicon 

solar cells in the shape of spears on a plastic substrate by Biancardo et al. in 2007 [29]. 

The spheres were fabricated by dicing p-type silicon wafer into small cubes, which were 
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sequentially rounded into spheres via mechanical grinding. The spheres were oxidized 

followed by the formation of a n-type layer though phosphorous diffusion. Silver and 

aluminum were used as top and bottom electrodes, respectively. The spheres had a 

diameter of 1.8 mm and were able to absorbed light equally from any angle unlike a 

convention planar solar cell. These spherical cells exhibited efficiencies of 23.5% with a 

reflective mirror behind them and 13.5% without a mirror. To fabricate a transparent 

solar cell module, the spheres were spaced apart inside a silicon matrix. However, the 

efficiency and its relationship to transmittance of these modules was not reported.  

Denizot et al. reported a semi-transparent silicon solar cell to be used as a window 

shades in 2009 [25]. The transparent solar cell was fabricated on top of an aluminum\zinc 

oxide (ZnO) substrate with pre-patterned holes in it. The rest of the device was deposited 

via CVD and achieved a PCE of 5.9%. The transmittance of this device was not 

measured, instead photographs of the solar shades were presented where images of 

clouds could be seen though them. This publication, to the best of my knowledge marks 

the latest results presented on this topic. Clearly semitransparent silicon solar cells can 

only be used for low transmittance cases (less than 20% transparent). Reports which 

claimed transmittances of 60% could be achieved did not discuss how the high 

transmittance would affect the PCE. The PCE would most likely be extremely low 

because cutting holes in the device or arranging micro cells on a transparent substrate 

significantly reduces the amount of light absorbed by the solar module. A semi-

transparent solar cell that does not absorb visible light would be a better solution over 

silicon based solar cells.  
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The third generation solar cell have a much better potential over the first and 

second generation solar cells because organic materials can be tuned to only absorb light 

not visible to the human eye, such as infrared light. One of the first reports for semi-

transparent organic solar cells was by Bailey-Salzman et al. in 2006 [31]. Bailey-Salzman 

et al. used a small molecule organic solar cell by thermally evaporating copper 

phthalocyanine (CuPc) and 3,4,9,10-perylenetetracarboxylic bis-benzimidazole (PTCBI) 

as active layer. The device was fabricated on a glass\ITO substrate with a thermally 

evaporated silver\ITO top electrode. The device exhibited 0.28% PCE and a 

transmittance of 60%. An opaque device with Ag as the top electrode exhibited a PCE of 

1.3%. The PCE of this work is a major drawback along with the use of vacuum 

deposition technology making these devices impractically expensive. 

A silver nanowire transparent electrode was first reported by Lee et al. as a 

solution processable alternative to ITO in 2008 [61]. Silver nanowires were fabricated via 

polyol method, deposited on a glass substrate via drop coating, and annealed at 200 °C 

for 30 minutes. The films exhibited a transmittance of 86% and a sheet resistance of 16 

Ω/□. It was found that the transmittance was composed of 66% direct light and 20% 

diffused or scattered light. A renovating sphere is required to detect the addition 20% of 

transmitted diffused light. Polymer solar cells made on top of the silver nanowire 

electrodes and ITO electrodes exhibited a PCE of 0.38% and 0.42%, respectively. This 

work did not report on a transparent solar cell. 

In 2009 Heraeus-CleviosTM produced a PEDOT:PSS (poly(3,4-

ethylenedioxythiophene: polystyrene sulfonate)) ink known as PH 1000 that was able to 

achieve conductivities as high as 1000 S/cm [62]. PEDOT:PSS, commonly used as a 
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solution processed transparent hole transport layer (HTL) in organic solar cells, with 

improved conductivity could now contend as a transparent electrode. One of the first 

reports on transparent PEDOT:PSS was from Kim et al. in 2011 [63]. They experimented 

with ethylene glycol additives in PEDOT:PSS PH 1000 inks and post treatments on 

PEDOT:PSS PH 1000 films and found the films conductivity was enhanced to 735 S/cm 

and 1418 S/cm, respectively. Small molecule solar cells were fabricated on an ITO or 

PEDOT:PSS transparent electrode and exhibited a PCE of 2.6% and 2.0%, respectively. 

The PEDOT:PSS transparent electrode exhibited a high sheet resistance of 65 Ω/□ 

compared to ITO transmittance of 80%. The main drawback of this work was the high 

sheet resistance of the PEDOT:PSS electrode but low PCE of the solar cell. No semi-

transparent solar cells were reported here. 

Silver nanowire electrodes fabricated with very thin nanowires were reported by 

Hu et al. in 2010 [64]. Hu et al. found that using thinner wires with diameters ranging 

from 30-50 nm resulted in silver nanowire transparent electrodes with lower sheet 

resistance and transmittance than electrodes composed of nanowires with diameters 

ranging from 50-100 nm. The thinner nanowires electrodes achieved a sheet resistance of 

8 Ω/□ and a transmittance of 80% (65% transparent without diffused light). Atomic force 

microscopy (AFM) images showed the nanowire surface was extremely rough having 

peaks up to 800 nm which limits the use of these electrodes as a bottom electrode in a 

solar cell. 

Xia et al. reported a PEDOT:PSS 4083 (4083 is a much less conductive ink than 

the PH1000 and typically used as an HTL) transparent electrode for a polymer solar cell 

in 2011 [65]. They used various solvent and water-co-solvent blend post treatments on 
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PEDOT:PSS films. A blend of 80% ethanol and 20% water resulted in the highest 

conductivity of 103 S/cm. The post treatment was drop coated onto the PEDOT:PSS film 

and allowed to evaporate. UV-visible absorption spectrum showed PSS peaks decreasing. 

Xia et al. proposed that the PSS was rearranging itself and allowing for less absorbance 

since no PSS could leave the film. It was postulated that the co-solvent blend was able to 

separate excess PSS species within the film to form PSSH. The hydrophilic PSSH species 

would surround itself with water and the more hydrophobic PEDOT:PSS chains would be 

surrounded by ethanol. As the PEDOT:PSS chains become more isolated they tend to 

form a more conductive linear structure. An ideal solvent will be able to isolate excess 

PSSH groups and penetrate into the PEDOT:PSS groups. Polymer solar cells were 

fabricated and exhibited PCE of 2.87% but this efficiency was never compared to an ITO 

reference device. This work presented excellent theory but the PEDOT:PSS electrode 

conductivity was very poor. 

A semi-transparent small molecule solar cell that used ITO as both the anode and 

cathode was fabricated by Lunt et al. in 2011 [66]. Lunt et al. used thermal evaporation to 

fabricate the entire device. A distributed Bragg refractor (DBR) was incorporated on the 

top ITO electrode by sputtering sequential layers of TiO2 and SiO2. The DBR was tuned 

such that it was transparent too light visible to humans but reflected infrared light back 

into the solar cell. For comparison, an opaque device was fabricated by replacing the top 

ITO electrode with a silver electrode. The semi-transparent solar cell achieved 1.7% 

efficiency with a total transmittance of 55% and the opaque reference device achieved a 

2.4% efficiency. The drawback of this work is the low PCE and the use of ITO and 

vacuum deposition technology. 
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Leem et al. reported a silver nanowire electrode coated with TiO2 based polymer 

solar cell device in 2011 [67]. The silver nanowire\TiO2 electrode was used as a bottom 

electrode with the active layer P3HT:PCBM (poly(3-hexylthiophene):[6,6]-phenyl-C61-

butyric acid methyl ester) spin coated on top. Normally silver nanowire electrodes could 

not be used as a bottom electrode due to their rough surface, but the TiO2 was able to 

smooth out the rough silver nanowire electrode without acting as an insulating barrier. 

The transparent silver nanowire electrode exhibited a transmittance of 98% and sheet 

resistance of 34 Ω/□. The silver nanowire based devices exhibited 3.5% PCE and the ITO 

reference device exhibited 3.6% PCE. This work demonstrates that silver nanowire 

electrodes can compete with ITO. No transparent solar cell was made in this work. 

A polymer solar cell fabricated on top of a silver nanowire/PEDOT:PSS 

transparent electrode was reported by Gaynor et al. in 2011 [68]. Silver nanowires on a 

glass slide were pressed into a PEDOT:PSS/glass substrates, leaving the nanowires 

embedded in the PEDOT:PSS layer. The PEDOT:PSS\silver nanowire transparent 

electrode exhibited a sheet resistance of 12 Ω/□ and transmittance of 86% (including 

diffused light). The silver nanowire electrode was shown to be flexible on a PET 

(polyethylene terephthalate) substrate, whereas the ITO has a brittle nature and exhibited 

a dramatic increase in sheet resistance after being bent. Polymer solar cells with silver 

nanowire/PEDOT:PSS or ITO semitransparent electrode both exhibited 4.2% efficiency. 

This further demonstrated that silver nanowire transparent electrodes can compete with 

ITO. No transparent solar cells were fabricated in this work.  

A semi-transparent solar cell that utilized silver nanowire transparent electrode 

was reported by Chen et al. in 2012 [30]. This device used PBDTT-DPP (poly(2,60-4,8-
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bis(5-ethylhexylthienyl)benzo-[1,2-b;3-4-b]dithiophene-alt-5-dibutyloctyl-3,6-bis(5-

bromothiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4-dione):PCBM as the active layer which 

absorbed only in the infrared region. The device used ITO as the bottom electrode and a 

silver nanowire\ITO nanoparticles top electrode which exhibited a transmittance of 87% 

in the visible light region and a sheet resistance of 30 Ω/□. Devices exhibited a PCE of 

4.0% and transmittance of 66%. A mirror was held on the back side of the device to 

simulate the operation of an opaque solar cell and produced a PCE of 5.3%. The main 

drawback of this work was the use of ITO and a vacuum deposited bottom electrode. 

A silver nanowire\aluminum doped zinc oxide (AZO) and silver nanowire\zinc 

oxide (ZnO) transparent electrode was explored by Stubhan et al. in 2012 [69]. Stubhan 

et al. deposited the silver nanowire transparent electrodes via doctor blading. The active 

layer P3HT:PCBM was also deposited via doctor blading. The AZO or ZnO layers were 

able to smooth out the rough surface of the bare nanowires. Despite the smoother 

surfaces, a reverse bias of -2 V was needed to burn short circuits made from the bottom 

silver nanowire electrode making contact with top thermally evaporated silver electrode. 

The solar cells exhibited a PCE of 2.9%, 2.5%, 3.2%, and 2.9% for devices with silver 

nanowires\AZO, silver nanowire\ZnO, ITO\AZO, and ITO\ZnO bottom transparent 

electrodes, respectively. The main drawback of this work was the need to burn shorts due 

to a rough silver nanowire surface. 

A polymer solar cell with a PEDOT:PSS (PH 1000) transparent electrode was 

reported by Alemu et al. in 2012 [70]. Alemu et al. dropped methanol onto the 

PEDOT:PSS films heated to 140 °C. The resulting transparent electrodes exhibited a 

conductivity of 1110 S/cm. The PCE of ITO based devices and PEDOT:PSS based 
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devices were 3.7% and 3.7%, respectively. However, the PCE of the PEDOT:PSS based 

device was strongly depended on how far the cathode was placed from the PEDOT:PSS 

anode. Anodes placed far away from the cathode on the PEDOT:PSS based device 

resulted in PCE of 3.1%, whereas the ITO device exhibited no PCE degradation. The 

sheet resistance and transmittance of the PEDOT:PSS transparent electrode was 164 Ω/□ 

and 90%, respectively. The high sheet resistance for the PEDOT:PSS electrode compared 

to the ITO (typically 20 Ω/□) seems to make this work unrealistic. No discussion on 

repeatability of this work was presented which likely means that the authors presented the 

devices that exhibited unusually high PCE with the ITO devices of average PCE. 

Reinhard et al. compared silver nanowire\PEDOT:PSS anode with silver 

nanowire\vanadium oxide (V2O5) as an anode in 2013 [71]. Charge mapping from light 

beam induced current demonstrated that the V2O5 based electrodes exhibited poor charge 

transport compared to the PEDOT:PSS alternative. The PCE for devices with a silver 

nanowire\V2O5 vs silver nanowires\PEDOT:PSS electrode was found to be 0.84% vs 

2.4%.  

A fully solution processed polymer solar cell was fabricated by Guo et al. in 2013 

[72]. Guo et al. employed a silver nanowire\AZO and a silver nanowire\PEDOT:PSS 

semi-transparent electrode in an inverted type structure. The PCE of the device with 

silver nanowires as both top and bottom electrodes was 2.2% compared to 3.5% for the 

solar cells with thermally evaporated silver and ITO as top and bottom electrodes. The 

lower PCE for the silver nanowire based device was due to its transparency. No semi-

transparent solar cell was fabricated in this work.  
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The stability of silver nanowires under electrical stress was studied by Khaligh et 

al. in 2013 [73]. Khaligh et al. found that the silver nanowires electrode with a sheet 

resistance of 12 Ω/□ lasted for only 17 days. By increasing the sheet resistance to 37 Ω/□, 

the life time was reduced to less than one day. Khaligh et al. attributed the failure to Joule 

heating breaking electrical connection between nanowires and possible corrosion from 

sulfur present in the air. This work alerted to a big need for improved stability of silver 

nanowire electrodes. 

Kim et al. reported a PEDOT:PSS transparent electrode with conductivity of 4380 

S/cm in 2014 [74]. The high conductivity of the PEDOT:PSS electrode was very similar 

to the conductivity of ITO. Kim et al. achieved a high conductivity by soaking the 

PEDOT:PSS films in sulfuric acid. The proposed mechanism was attributed to the 

sulfuric acid removing excess PSS and hydrolyzing to separate the PEDOT and PSS 

chains and form a more optimal morphology. A transparent PEDOT:PSS electrode with 

sheet resistance of 46 Ω/□ and transmittance of 90% was used to fabricate a polymer 

solar cell. The PCE of ITO and PEDOT:PSS based devices was 7.2% and 6.6%, 

respectively. The main disadvantage of this work was the use of highly corrosive acids to 

enhance the conductivity of PEDOT:PSS. 

A semi-transparent perovskite solar cell was reported by Guo et al. in 2015 [75]. 

Guo et al. used ITO as the bottom electrode and ZnO nanoparticles\silver nanowires as 

top electrode. The ZnO nanoparticles served as a buffer layer to protect the 

perovskite\PCBM layers from spray coated silver nanowire electrodes. This resulted in a 

transparency of 21.5% and PCE of 8.5%, which was comparable to the PCE of 10.7% for 

the device with an opaque silver electrode. The authors noted that devices with nanowire 
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electrodes were extremely unstable even when kept in a nitrogen gas environment. The 

device instability was attributed to iodine ions within the perovskite bonding with silver 

nanowires to form an insulating layer. Along with poor stability, these devices exhibited 

low transmittance due to the perovskite layer absorbing visible light. Semi-transparent 

solar cells should be fabricated with materials that primarily absorb UV or infrared light.  

A perovskite solar cell fabricated on top of a transparent PEDOT:PSS electrode 

reported by Sun et al. in 2015 by dropping methanesulfonic acid (MSA) onto 

PEDOT:PSS films during annealing. A two layer PEDOT:PSS electrode exhibited 

conductivity of 2540 S/cm (50 Ω/□) and transmittance of 92%. The PCE of the 

perovskite solar cells fabricated on top of a glass\ITO, glass\PEDOT:PSS, and 

PET\PEDOT:PSS was 15.6%, 14.7%, and 10.6%, respectively. The disadvantage of this 

work is the use of highly corrosive MSA to enhance the PEDOT:PSS. 

In summary, a fully solution-processsable, ITO-free, semi-transparent solar cell 

has yet to be reported. From the previous works, silver nanowires seem to be a very 

promising candidate, however, very little work has been done to improve electrode 

stability under electrical stress. PEDOT:PSS as a transparent cathode has also emerged to 

have excellent conductivities similar to ITO, however these have only been achieved with 

highly corrosive acids. An acid free method will be needed to realize low-cost, fully-

solution-processed device compatible with roll-to-roll processing. Moreover, all the 

previous work on semi-transparent solar cells has relied on an ITO transparent electrode 

or vacuum deposition technology. This dissertation aims to report the first truly fully 

solution processed semi-transparent solar cell for power generating window applications. 
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1.3 MOTIVATION 

 There is a need for a fully-solution-processed, ITO-free semi-transparent solar 

cell for power generating window applications. 

1.4 OBJECTIVES 

 The goal of this work was to fabricate a fully solution processed semi-transparent 

solar cell without the use of ITO or vacuum deposition technology. To do this, a 

transparent solution processed anode and cathode must be designed and an active layer 

that does not absorb visible light must be selected. PDPP3T was chosen due to its low 

absorbance of light visible to human eyes and high PCE of 4.5% [76]. Silver nanowires 

and PEDOT:PSS were selected as cathode and anode materials, respectively. To develop 

a semi-transparent solar cell, the following tasks were defined: 

1) Fabricate a transparent silver nanowire electrode (cathode) and PEDOT:PSS electrode 

(anode) with transparency greater than 80% and sheet resistance less than 50 Ω/□ 

2) Improve silver nanowire lifetime to longer than 6000 hours of constant electrical stress 

3) Fabricate a semitransparent solar cell with average transmittance greater than 50% 

within the visible light region (450 - 750 nm) and PCE greater than 4% using 

PEDOT:PSS and silver nanowire semitransparent electrodes. 
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CHAPER 2 THEORY 

2.1 OPERATING PRINCIPLES OF SOLAR CELLS 

 Solar cells are devices that convert energy from sunlight into electrical energy. 

Regardless of the type of solar cell, there are common parameters used for 

characterization. All of these parameters can be found or derived from current-voltage (I-

V) curves. These common parameters are short circuit current (𝐼𝑠𝑐), fill factor (𝐹𝐹), open 

circuit voltage (𝑉𝑜𝑐), and efficiency (𝜂).  

 Figure 2.1 shows an I-V curve of a solar cell with 𝑉𝑜𝑐, 𝐼𝑠𝑐, maximum power point 

(𝑃𝑚), voltage at maximum power point (𝑉𝑚), and current at maximum power point (𝐼𝑚) 

labeled. The 𝑉𝑜𝑐 is defined as the maximum output voltage of the solar cell. From the 

graph the 𝑉𝑜𝑐 can be found when no load is attached to the solar cell and current flow is 

zero. The 𝐼𝑠𝑐 is defined as the maximum current output from the device and is found by 

creating a short circuit across the positive and negative terminals of the solar cell. In a 

short circuit, there is no voltage potential between the positive and negative terminals. 

For both open circuit and short circuit cases, no power will flow though the device. 

Power is defined by 

 𝑃 = 𝑉 × 𝐼 (2.1) 

where 𝑃 is power, 𝑉 is voltage, and 𝐼 is current. The operating point where the solar cell 

delivers the maximum amount of power is called the maximum power point (𝑃𝑚). The 

corresponding voltage and current values associated with the maximum power point are 

denoted as 𝑉𝑚 and 𝐼𝑚, respectively. A perfect solar cell with no internal losses would 

have 𝑉𝑚 and 𝐼𝑚 equal to 𝑉𝑜𝑐 and 𝐼𝑠𝑐, respectively. 𝐹𝐹 is used to define how far away from 
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perfect operation a solar cell is and can be understood as the checkered box area divided 

by the gray wavy lined area from Figure 2.1). 𝐹𝐹 can be calculated by 

 𝐹𝐹 =
𝑉𝑚𝐼𝑚

𝑉𝑜𝑐𝐼𝑠𝑐
. (2.2) 

 

 

Figure 2.1. I-V curve of a solar cell with short circuit current (𝐼𝑠𝑐), open circuit voltage 

(𝑉𝑜𝑐), maximum power point (𝑃𝑚), voltage at maximum power point (𝑉𝑚), and current at 

maximum power point (𝐼𝑚) labeled. 

 The solar cell power conversion efficiency (PCE) can be calculated by 

 𝜂 =
𝑉𝑜𝑐𝐼𝑠𝑐𝐹𝐹

𝑃𝑙𝑖𝑔ℎ𝑡
=

𝑉𝑚𝐼𝑚

𝑃𝑙𝑖𝑔ℎ𝑡
 (2.3) 

where 𝑉𝑜𝑐𝐼𝑠𝑐𝐹𝐹 is the power generated by the solar cell and 𝑃𝑙𝑖𝑔ℎ𝑡 is the power from the 

light irradiated on the solar cell. The light used to test solar cell efficiencies is typically 

generated by a Xenon arc lamp with filters that emit a light spectrum similar to that of the 

sun. The distance the solar cell is placed from the lamp will determine the power density 
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of the light irradiated on it. A power density of 100 mW/cm2
 is normally used to 

characterize the solar cell. This power density standard of 100 mW/cm2
 is denoted as AM 

1.5 lighting.  

2.2 EQUIVALENT CIRCUIT OF SOLAR CELLS 

 The single diode model, shown in Figure 2.2, is the simplest solar cell model and 

works very well in most cases. Under dark conditions (Figure 2.2 (a)) no light shines on 

the solar cell, however a small amount of current known as dark current (𝐼𝐷) can be 

measured.  Dark current is generated by thermal excitation of electrons and holes within 

the solar cell and will ultimately degrade the device performance because it flows in 

opposition of the photocurrent (𝐼𝑃ℎ) (as depicted in Figure 2.2 (b)). 𝐼𝑃ℎ is the electrical 

current generated when light radiates on the solar cell.  

 

Figure 2.2. Single diode model of a solar cell under (a) dark and (b) illuminated 

conditions. 

𝐼𝐷 𝐼𝐷 
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 The total output current, 𝐼(𝑉), from the solar cell under illuminated conditions 

can be expressed as a function of voltage 

 𝐼(𝑉) = 𝐼𝑝ℎ − 𝐼𝐷(𝑉) (2.4) 

where 𝐼𝐷(𝑉) is dark current, which can be described by 

 𝐼𝐷(𝑉) = 𝐼0 (𝑒
𝑞𝑉

𝑘𝐵𝑇 − 1) (2.5) 

where 𝐼0 is a constant typically used as a fitting parameter but is related to the flow of 

electrons and holes (charge carriers) under a constant electric field (i.e. drift current) 

within the device, 𝑞 is the elementary charge of an electron, 𝑉 is the operating voltage of 

the solar cell, 𝑘𝑏 is Boltzmann’s constant equal to 8.617 × 10−5 𝑒𝑉

𝐾
, and 𝑇 is the 

temperature of the solar cell typically assumed to be room temperature (298.15 𝐾). 

 By inserting equation 2.5 into equation 2.4 the 𝐼𝑠𝑐 and 𝑉𝑜𝑐 of the solar cell can be 

solved for. 𝐼𝑠𝑐 is found by setting 𝑉 = 0 which yields 

 𝐼𝑠𝑐 = 𝐼𝑝ℎ − 𝐼0, (2.6) 

and 𝑉𝑜𝑐 can be solved for by setting 𝐼(𝑉) = 0 which yields 

 𝑉𝑜𝑐 =
𝑘𝐵𝑇

𝑞
ln (

𝐼𝑝ℎ

𝐼0
+ 1). (2.7) 

𝐼𝑝ℎ can be described by the following equation 

 𝐼𝑝ℎ = 𝑞 ∫ 𝜂𝑐(𝐸)(1 − 𝑅(𝐸))𝑎(𝐸)𝑏𝑠(𝐸)𝑑𝐸
∞

0
 (2.8) 

where E is photon energy, 𝜂𝑐(𝐸) is the probability that generated charge carriers will be 

collected at the solar cell terminals, 𝑅(𝐸) is the fraction of light reflected from the device 

making 1 − 𝑅(𝐸) the fraction of light that enters into the solar cell, 𝑎(𝐸) is the fraction 

of light capable of being absorbed by the solar cell, and 𝑏𝑠(𝐸) is the photon flux 

(typically from the sun) with units 𝑝ℎ𝑜𝑡𝑜𝑛𝑠/𝑠. The (1 − 𝑅(𝐸))𝑎(𝐸)𝑏𝑠(𝐸) portion of 
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Equation 2.8 can be understood as the total number of photons of energy 𝐸 absorbed by 

the solar cell. Equation 2.8 is integrated from 0 to infinity to cover all the different photon 

energies. In the case of solar cells, the integral can be simplified to only include photon 

energies radiated by the sun. Equation 2.8 can be simplified to 

 𝐼𝑝ℎ = 𝑞 ∫ 𝐸𝑄𝐸(𝐸)𝑏𝑠(𝐸)𝑑𝐸
∞

0
 (2.9) 

where 𝐸𝑄𝐸(𝐸) is the external quantum efficiency, which is number of charge carriers 

extracted out of the solar cell divided by the number of photons with energy 𝐸 shined on 

the solar cell. Similar to 𝐸𝑄𝐸(𝐸), internal quantum efficiency, 𝐼𝑄𝐸(𝐸), is the number of 

charge carriers extracted out of the solar cell divided by the number of photons absorbed 

by the solar cell. Equation 2.8 can also be expressed in terms of 𝐼𝑄𝐸(𝐸) 

 𝐼𝑝ℎ = 𝑞 ∫ 𝐼𝑄𝐸(𝐸)(1 − 𝑅(𝐸))𝑏𝑠(𝐸)𝑑𝐸
∞

0
 (2.10) 

 The single diode model can be expanded to incorporate series (𝑅𝑠) and shunt 

(𝑅𝑠ℎ)  resistance as depicted in Figure 2.3. 𝑅𝑠 and 𝑅𝑠ℎ represent internal resistances 

within the solar cell device. From Figure 2.3 it can be seen that the current generated 

from the solar cell is further reduced from 𝑅𝑠ℎ. 𝑅𝑠ℎ represents current that remains 

trapped (also known as leakage current) in the solar cell device, which can be due to 

internal device defects. Ideally, 𝑅𝑠ℎ should have an infinity large resistance so that no 

current can travel through. 𝑅𝑠 can be caused by poor contact between the different layers 

within a solar cell and impedes current flow out of the device. Ideally, 𝑅𝑠 would be equal 

to zero.  
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Figure 2.3. Single diode model of a solar cell for illuminated case with series (𝑅𝑠) and 

shunt (𝑅𝑠ℎ) resistance depicted. 

 𝑅𝑠ℎ and 𝑅𝑠 influence on the output current can be described by 

 𝐼(𝑉) = 𝐼𝑝ℎ − 𝐼0 (𝑒
𝑞(𝑉+𝐼(𝑉)𝑅𝑠)

𝑘𝐵𝑇 ) −
𝑉+𝐼(𝑉)𝑅𝑠

𝑅𝑠ℎ
 (2.11) 

This equation can be solved using an iterative process where the previous solution to 

𝐼(𝑉) is used to solve the current iteration. To start the first iteration, all 𝐼(𝑉) values on 

the right hand side of the equation are set to zero. 

 Figure 2.4 shows the effect (a) decreasing 𝑅𝑠ℎ and (b) increasing 𝑅𝑠 have on the I-

V curve. By decreasing 𝑅𝑠ℎ or increasing 𝑅𝑠, 𝐹𝐹 is reduced. 𝑅𝑠ℎ can be calculated from 

the I-V curve by finding the slop of the line where it connects with the y-axis. Similarly, 

𝑅𝑠 can be calculated from the slop of the line that crosses the x-axis.   
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Figure 2.4. Effect of (a) decreasing 𝑅𝑠ℎ and (b) increasing 𝑅𝑠 have on the I-V curve. 

It should be noted that equations 2.1 through 2.11 can all be expressed in terms of 

current density (𝐽). Current density is current (𝐼) divided by the solar cell area. For 

example, a solar cell with 𝐼𝑠𝑐 = 1.92 𝑚𝐴 and device area of 0.16 𝑐𝑚2 would result in a 

current density of 𝐽𝑠𝑐 = 12.0 𝑚𝐴/𝑐𝑚2. 

2.3 SINGLE JUNCTION SOLAR CELL PHYSICS 

 Solar cells rely on semiconducting materials to absorb light and generate free 

charge carriers. Semiconductors are materials that do not conduct electricity as well as 

conductors, but are not an insulating material either. The conductivity of semiconductors 

typically falls within the range of 10−7 𝑆 𝑐𝑚 to 103 𝑆 𝑐𝑚 [77], however conductivities 

greater than 1 𝑆 𝑐𝑚 are usually only achieved by doping the material (see section 2.3.1).  

All materials (conductors, semiconductors, and insulators) have two kinds of 

energy states a valence band and conduction band. Different names such as lowest 

unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) 
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may be used for different materials but the concept remains the same as depicted in 

Figure 2.5. The valence band is where electrons rest in a non-conductive state. If 

electrons gain enough energy, they are promoted to the conduction band and are able to 

move freely. Insulators have a very large energy gap (𝐸𝑔) between the valence band and 

conduction band and consequently do not conduct electricity. The valence states overlap 

the conduction states in conductors and thus are able to conduct electricity extremely 

well. Semiconductors have a small gap between the valence states and conduction states, 

and need some additional energy to conduct electricity.  

Large Eg

Small Eg

No Eg

Conduction 

bands

Valence bands

(a) (b) (c)
 

Figure 2.5. Energy band diagram of (a) insulator, (b) semiconductor, and (c) conductor. 

In the case of solar cells, this additional energy comes from sunlight absorbed into 

the material. The size of the energy gap between the valence band and conduction band is 

called the band gap. The energy of the light absorbed by the electron must be equal to or 

greater than the band gap energy in order for an electron to become promoted to a 

conductive band. The electrons within the conduction band can be used to do work such 

as charging a battery or powering lightbulbs.  
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2.3.1 SILICON SOLAR CELLS 

 Intrinsic silicon is not very electrically conductive due to a lack of free charge 

carriers in the material. A silicon atom has four electrons in its valence state and each of 

these electrons are being used to bond with four other neighboring atoms. Because each 

electron is bonded with another atom, there are no free electrons or holes to conduct 

electricity. Conductivity (𝜎) measures how well a material is able to conduct electricity 

and is defined as 

 𝜎 = 𝑞𝑛𝜇𝑛 + 𝑞𝑝𝜇𝑝 (2.12) 

where 𝑛 is the number of free electrons, 𝑝 is the number of free holes, and 𝜇𝑛 and 𝜇𝑝 are 

the mobility of the electrons and holes, respectively. From Equation 2.12, very small 

values of 𝑛 and 𝑝, result in low conductivity.  

Free charge carriers can be introduced by a process called doping, where 

impurities such as boron or phosphorous are added into the silicon crystal lattice as 

shown in Figure 2.6. Unlike silicon, boron and phosphorus have three and five valence 

electrons, respectively. When placed into the silicon lattice, boron leaves one atom 

without a bond or a free hole charge charrier (positively charge) and phosphorus contains 

one extra electron to serve as a free electron charge charrier (negative charge). These free 

charge carriers can move about within the crystal lattice by jumping from atom to atom. 

The high charge carrier mobility of silicon relies on its crystallinity. The introduction of 

dopants into the silicon structure causes defects within the crystal structure and in turn 

reduces the charge carrier mobility. From Equation 2.12 it can be infrared that too much 

doping will begin to reduce the conductivity because the mobility of electrons and holes 

becomes compromised.  
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Figure 2.6. (a) intrinsic silicon crystal lattice, (b) silicon crystal lattice doped with boron, 

and (c) silicon crystal lattice doped with phosphorus. 

 A p-n junction is the fundamental basis for silicon solar cell devices and is formed 

by placing a p-type silicon crystal lattice up against a n-type crystal lattice. Figure 2.7 

shows a p-n junction (a) before and (b) and after the free charge carriers reach 

equilibrium. Before equilibrium, the negatively charged electrons in the n-type portion 

are attracted to the positively charged holes in the p-type portion. The electrons then 

move to fill up the empty spaces (holes) which creates negatively charged boron ions and 

leaves behind positively charged phosphorus ions. After some time, the negatively 

charged boron ions and positively charged phosphorus ions create an internal electric 

field 𝐸𝐷
⃗⃗ ⃗⃗   strong enough to repel any additional electrons or holes from recombining 

together. The area where 𝐸𝐷
⃗⃗ ⃗⃗   repels any further electron hole interaction is known as the 

depletion region (also known as the space charge region).  
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Figure 2.7. P-n junction (a) before and (b) and after the free charge carriers reach 

equilibrium 

Figure 2.8 illustrates light being absorbed into a solar cell and freeing an electron-

hole pair, which is used to power a lightbulb. The electron-hole pairs are driven apart by 

the internal electric field within the space charge region. Once the electron and hole have 

drifted into the p-type and n-type region, respectively, they diffuse toward their 

respective electrodes where they are collected and used to do work such as charging a 

battery, or powering a light.  
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Figure 2.8. Light absorbed into a solar cell frees an electron-hole pair, which is used to 

power a lightbulb.  

2.3.2 POLYMER SOLAR CELLS  

 Polymer solar cells use semiconducting polymer materials as the light absorbing 

layer. The most popular combination is a polymer donor material (similar to p-type in 

silicon) and a fullerene acceptor material (similar to n-type in silicon). The term ‘donor’ 

and ‘acceptor’ are assigned because the polymer donates an electron and the fullerene 

accepts the electron. First attempts at polymer solar cells used a bi-layer structure similar 

to Figure 2.8 where the donor layer and acceptor layer are stacked one on top of the 

other. This however resulted in very poor efficiencies due to low light absorption. In 

reality, organic materials are able to absorb light better than inorganic materials such as 

silicon; however, due to their low conductivity, the organic active layer must be made 

extremely thin, which inhibits light absorption. Thicker donor and acceptor layers would 
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result in electron or hole recombination before they could be collected at their respective 

electrodes.  

 The bulk heterojunction (BHJ) structure for (a) regular (p-i-n) and (b) inverted (n-

i-p) polymer solar cells is shown in Figure 2.9. The BHJ was used to increase the 

thickness of the donor/acceptor layers without greatly increasing the risk of electron-hole 

recombination. The increased thickness of the donor/acceptor layers (also referred to as 

the active layer) improved light absorption and overall PCE. The BHJ creates a donor-

acceptor interface throughout the entire active layer so an electron-hole pair do not have 

to travel far to reach this interface despite having a thicker active layer. However, this 

means that charge carriers are also generated close to their opposite electrode (i.e. holes 

generated close to the anode and electrons the cathode). The opposite charge carriers 

within the electrode may recombine with them and reduce the device PCE. To prevent 

this electron-hole recombination, hole transport layers (also known as electron blocking 

layer) and electron transport layer (or hole blocking layer) are incorporated into the 

device to block any of the charge carriers from entering into the wrong electrode while 

safely transporting the correct charge carrier to its respective electrode. As seen in Figure 

2.9, the regular structure refers to having the cathode as a transparent electrode (and 

having a transparent hole transport layer) whereas, inverted structure has the anode as the 

transparent electrode (and a transparent electron transport layer). 
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Figure 2.9. HJB structure for (a) regular and (b) inverted polymer solar cells. 

2.3.3 PEROVSKITE SOLAR CELLS 

 Perovskite solar cell use perovskite crystals as the active layer for light 

absorption. Figure 2.10 shows the perovskite crystal structure. ABX3 is the generic 

chemical formula of a perovskite crystal. In photovoltaic applications A is CH3NH3
+, B is 

Sn2+ or Pb2+, and X is typically F‒, Cl‒, Br‒, or I‒ [59]. The perovskite solar cell has a 

unique ambipolar charge-transport where both holes and electrons can freely flow though 

the material [78, 79], thus there is no need for a p-n junction or donor-acceptor interface. 

Films can be deposited via vaper growth or solution processing and can exhibit similar 

architecture to polymer solar cells (Figure 2.9). Because of the crystalline nature of 

perovskite films, some reports claiming an electron-hole diffusion length greater than 1 

micron [80]. Moreover, perovskite solar cells exhibit excellent light absorption with EQE 

greater than 80% from 350 - 775 nm [56]. In one sense, perovskite solar cells have the 

best qualities of organic, and inorganic solar cells with low cost fabrication, high light 

absorption, and excellent charge transport.  

(a) (b) 

Donor 

Acceptor 

Hole Transport layer 

Electron Transport layer 

Transparent cathode  Transparent Anode 

Cathode Anode 
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Figure 2.10. Perovskite crystal structure. 

 The drawback of perovskite solar cells is their instability. The perovskite crystal 

is very sensitivity to moisture and high temperature (e.g. 100 oC) and can easily break 

down. Moreover, the toxicity of lead raises environmental concerns and essentially 

eliminates the possibility of commercialization [59]. Although lead free perovskite solar 

cells have been tried; their efficiencies are around 5.7%  [59].  

2.4 SEMITRANSPARENT SOLAR CELLS 

 Semitransparent solar cells differ in that they can allow partial visible light (400 

nm - 780 nm) to pass through them, but generate power by absorbing IR (780 nm - 2500 

nm) or UV (200 nm – 400 nm) light. In the case of silicon solar cells, visible and some IR 

light is absorbed. To make these devices transparent, they must be punctured to make 

small holes so that light to shine though. The more transparent these devices are, 

however, the less efficient they become because there is less area to absorb light. There is 

a limit as to how transparent silicon can be made, although for security window 

applications the silicon models of 20% transmittance and 10% efficiency would work 

fine [81]. For applications where greater than 20% efficiency is needed organic solar cells 

are the best option because they can be tuned to absorb only IR light. A semitransparent 
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organic solar cell would utilize both a semitransparent anode, cathode, hole transport 

layer, and electron transport layer. This makes deciphering whether or not the device is 

inverted or regular structure difficult. While many reports choose to not claim any 

structure type, others simply base it on which electrode is the first layer. If the solar cell 

is fabricated on top of the anode it is an inverted structure, if the cathode then regular 

structure. 

2.4.1 BANDGAP AND LIGHT ABSORPTION 

 The energy of light must be equal to or greater than the energy gap between the 

conductive band (LUMO for OSC) and valence band (HOMO for OSC). The energy of 

light can be calculated by 

 𝐸 =
ℏ𝑐

𝜆
 (2.13) 

where 𝐸 is energy, ℏ is planks constant (4.136 × 10−15 𝑒𝑉 ∙ 𝑠), 𝑐 is the speed of light 

(3 × 108 𝑚/𝑠), and 𝜆 is the wavelength of the light. In the case of polymer solar cells, 

the chemical structure can be tuned such that significant absorption occurs in IR region 

but not in the visible light region. This is due to the length of the chemical bonds and 

degrees of freedom through which they can rotate and vibrate. The vibrations within the 

molecular structure are able to resonate with particular wave lengths of light better than 

others. This allows for selectively tuning which can result in semitransparent polymers 

which dominantly absorb in the IR light region and minimal absorption in the visible 

light region. 

2.4.2 PEDOT:PSS TRANSPARENT ELECTRODES 

 PEDOT:PSS is a conductive polymer blend composed of conductive PEDOT and 

a highly soluble PSS polymer.  In its natural state, PEDOT is not very conductive or 



41 

 

 

 

stable, however, it is easily doped and highly stable after being oxidized from air 

exposure [82]. Figure 2.11 shows PEDOT in its natural (a)(b) and oxidized (c)(d) state 

for the benzoid (a)(c) and quinoid (b)(d) structures. PEDOT doping can range from no 

monomers to one third of every monomer [82]. The benzoid structure typically takes on a 

more coiled shape because the single bonds between each monomer are flexible. The 

quinoid structure has double bonds between each monomer which are less flexible and 

results in a more rigid straight line like shape. Because the quinoid tends to hold itself 

more in a straight line, it is the most conductive form of PEDOT [83]. The polymer chain 

that form straight lines improve intra-chain-conductivity because charges can travel 

further distances before needing to hope to another neighboring chain. A coiled up 

polymer chain has extremely poor intra-chain-conductivity as delocalized charges 

(charges that move freely along the polymer backbone) do not travel far, but heavily 

relies on inter-chain-conductive where charges need to hope from one chain to the next in 

order to move about.  
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Figure 2.11. PEDOT in its natural (a)(b) and oxidized (c)(d) form and benzoid (a)(c) and 

quinoid (b)(d) structures. 

Upon its discovery, PEDOT was found to be insoluble and unable to melt [84]. 

By blending PEDOT with PSS the polymer blend can be easily dispersed in water [84]. 

PEDOT in its doped state is a polycation (positively charged polymer), which was found 

to be an insoluble polymer unless the cation charges were neutralized [85]. PSS is water 

soluble and can serve as a counter ion to balance out the positive charges from the 

PEDOT chain. PSS can also be used to synthesize PEDOT by acting as an oxidizing 

agent for the EDOT monomer and initiator in the polymerization process. The end result 

is PEDOT:PSS as the PEDOT and PSS are bound together by coulombic interactions as 

shown in Figure 2.12. PSS is insulating and ultimately reduces the conductivity of 

pristine PEDOT, however, highly ordered PEDOT:PSS morphology allows for some 

conductivity via percolation of conductive cites [86].  

(a) (b) 

(c) (d) 
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Figure 2.12. (a) Doped PEDOT with positive charge coulombically bound to (b) PSS 

species. 

One big misconception about the PEDOT:PSS is that the PSS is actually doping 

the PEDOT and enhancing the overall conductivity of the fill. A study done by Stocker et 

al. demonstrated that the addition of PSS adversely effected the conductivity of PEDOT 

and did not increase the charge carrier concentration [87]. Although PSS acts as an 

oxidizing agent during the synthesis (i.e. the PEDOT becomes doped by introduction of 

additional free charge carriers), this phenomenon is not dependent on the continued 

presents of PSS within the PEDOT:PSS film. By adding more PSS to the PEDOT:PSS 

complex, the number of free charge carriers does not increase. The only role PSS plays in 

(a) 

(b) 
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charge transport is to keep the PEDOT evenly dispersed in the water solution so that it 

can form a good percolation network upon being deposited as a film [85].  

Several reports have treated PEDOT:PSS films with strong acids, such as sulfuric 

acid (H2SO4), methanesulfonic acid (CH3SO3H), and formic acid (HCO2H) to greatly 

enhance the conductivity of PEDOT:PSS films [70, 74, 88, 89]. The proposed 

mechanisms for these enhancements were coulombic screening between the PEDOT and 

PSS specie due to high dielectric constant of acid, dissolving and removing access PSS 

from the PEDOT:PSS in the film, deprotonation of acid (donates a H+) with PSS- to from 

PSSH (thus the PSSH will not interact with the PEDOT and can be easily removed from 

the film), and autoprotolysis of H2SO4 (yielding H3SO4
+ and HSO4

–) to wash away the 

PSS species and serve as a temporary counter-ion so that PEDOT can form a linear 

structure.  

PEDOT:PSS is already dispersed in water, which has an equal or higher dielectric 

constant than many of the acids previously listed, so the dielectric constant is not likely 

the root cause of the conductivity enchantment. Autoprotolysis and deprotonation seem 

most reasonable because the positive and negative ions could actually separate the 

PEDOT+ from the PSS–, moreover, explain the loss of PSS– species though the formation 

of PSSH which separates from the film due to a lack in charge. Without the coulombic 

counterbalance from the PSS– species, the PEDOT+ can easily reorder into a linear 

structure to minimize the interaction of the positive charges along the polymer chain. The 

HSO4
– ions mixed with PEDOT+ would more likely result in a ladder type structure 

verses a scrambled egg type structure as shown in Figure 2.13 [85]. The sulfuric acid can 

be removed from the film after rinsing with water and annealing. 
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Figure 2.13. (a) ladder type structure and (b) scrambled egg type structure for a 

polycation and polyanion blend. 

 Strong acids, however, are not compatible with low-cost, solution-processed mass 

production methods. The highly corrosive nature of strong acids will greatly complicate 

and introduce hazards into the manufacturing process. To avoid these difficulties, 

PEDOT:PSS can also be treated with common solvents such as ethylene glycol, dimethyl 

sulfoxide (DMSO), ethanol, and methanol to enhance the conductivity. Solvents are used 

as additives to the PEDOT:PSS solution prior to film deposition or as a post-treatment on 

PEDOT:PSS films which results in enhanced conductivity.  

 DMSO and ethylene glycol have been the most successful solvent additives to 

enhance the conductivity of PEDOT:PSS films. Many of the mechanisms follow the 

same line as described in the acid treatments: remove excess PSS from the film and 

provide coulombic screening to allow for film reorganization. One commonality of 

solvent additives used to enhance the conductivity of PEDOT:PSS is the high boiling 

point and having a strong polarity or polar functional groups [65, 83]. Although there is 

still much debate on the exact mechanism, the most reasonable would seem that the high 
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boiling point solvent additives results more time for the film to rearrange itself as the 

solvent slowly evaporate or become trapped within the film. The polar functional groups 

of ethylene glycol work to separate excessive amounts of PSS from the film to form 

larger PEDOT:PSS grains surrounded by a smaller insulating PSS barrier would 

otherwise be seen in pristine films [88]. The small PSS barrier enables easier charge 

transport from one PEDOT:PSS grain to another. Similarly, DMSO, a very polar 

molecule, is able to separate the distance of the PEDOT from the PSS chain such that the 

PEDOT is able to form a more linear structure [90-92]. If too much DMSO or EG 

additive is added to the PEDOT:PSS ink, a decrease in conductivity is observed, which is 

attributed to the solvent additive remaining in the film and interfering with charge 

transfer. It should be noted that solvents are not as effective in enhancing the electrical 

conductivity compared to acids, likely due to the lower reactivity of solvents.  

 Post treatments are carried out by soaking films in a bath or heating film while 

drop coating various solvents onto the film. The most successful solvents used have been 

methanol, ethanol-water blend, and ethylene glycol [63, 65, 70]. The main mechanism 

behind the enhancement in electrical conductivity is the removal of or reorganization of 

excess insulating PSS species within the film to form better PEDOT percolating 

networks. 

2.4.3 SILVER NANOWIRE TRANSPARENT ELECTRODES  

 Figure 2.14 illustrates the working principles of a silver nanowire electrode. 

Electrons can travel across the electrodes by moving though the nanowires and nanowire 

junctions. Light is able to transmit though the spaces between the nanowires making them 

visibly transparent. Dense nanowire networks result in higher conductivity and sparse 
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nanowire networks results in higher transparency, therefore an optimal nanowire density 

is needed to maximize both conductivity and transmittance. Thinner and longer 

nanowires result in the best transmittance and conductivity [64]. Longer nanowires 

facilitate higher conductivity because the electrons can travel longer distances before 

needing to switch to a new nanowire at a nanowire junction. Longer nanowires need for 

fewer nanowires and nanowire junctions to achieve high conductivity results in a higher 

transparency. Typical dimensions of commercially available silver nanowires are 100 nm 

in diameter and 20 microns long.  

 

Figure 2.14. Operating principles of silver nanowire electrodes. 

 Silver nanowire electrodes can exhibit sharp peaks greater than 300 nm (places 

where three or more nanowires are stacked on top of one another). These sharp peaks 

typically result in short circuits for solar cells. In order to reduce these sharp peaks, 

various material coatings have been used to fill in the gaps between the nanowires, such 

as zinc oxide, aluminum doped zinc oxide, vanadium oxide, graphene oxide, and 

PEDOT:PSS. Another solution is to reduce the peak height by embedding the nanowires 

within a plastic substrate such as Poly(methyl methacrylate), and Polydimethylsiloxane. 

 Silver nanowires have been shown to fail when subject to electrical stress [73]. 

The proposed mechanism was due to Joule heating at the nanowire junctions [73] and 
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corrosion [93]. Joule heating occurs when excess heat is generated from the current flow 

though the nanowires. The resistance of individual nanowires is typically on the order of 

180 - 320 Ω and the resistance of nanowire junctions is typically 1 - 10 GΩ [64, 94]. The 

extremely high resistance between the nanowire junctions can be reduced to 185 - 450 Ω 

by melting the junctions together or coating the junctions in conductive materials. The 

higher resistance at the nanowire junctions makes them more prone to Joule heating. If 

the heat generated at the nanowire junction is sufficient, the nanowires melt, coalesce, 

and break apart from one another. The broken nanowire junction exacerbates the problem 

as the current is redistributed over a fewer number of nanowire junctions, accelerating the 

failure.  

Silver corrosion or tarnish is not typically due oxygen, but to sulfur compounds in 

the air [93]. Crystal defects within the silver nanowires are especially susceptible to 

corrosion because they are more reactive. Corrosion at crystal defects along the silver 

nanowire results in broken connections along the nanowire. Silver nanowire corrosion 

has been shown to not be dependent on relative humidity but on the environmental 

temperature [95]. This is because humidity does not affect the concentration of sulfur 

compounds in the air but higher temperatures can accelerate the corrosion process.  

To improve the stability of silver nanowires various materials to encapsulate them 

have been used. In general metal oxide encapsulation such as TiO2 and ZnO have been 

shown to improve thermal stability of the nanowire, enabling them to tolerate 

temperature beyond 200 °C with minimal consequence to their optical and electrical 

properties [96, 97]. Encapsulation in PEDOT:PSS has resulted in worse stability 

compared to non-encapsulated nanowires [95]. The fast degradation of silver 
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nanowire\PEDOT:PSS has been attributed to the acidic nature of PEDOT:PSS, and the 

hygroscopic properties of PSS. The acidity of PEDOT:PSS could accelerate the corrosion 

of nanowires especially because both the PEDOT and PSS chains contain a sulfur ion; the 

main element responsible for silver corrosion. Excess PSS within the PEDOT:PSS film 

can absorb water and swell in size. The increase in the size of PSS destroys the 

conductive percolating pathways of the PEDOT chains and SNW embedded in a non-

conductive PEDOT:PSS film may exacerbate the Joule heating problem.  

2.5 SPRAY COATING  

 Figure 2.15 shows the setup of a Gravity fed Spray coater with gas pressure to 

aerosolize liquid and guide spray direction. This method works very well for both large 

and small volume productions, which can ease the transition from small scale laboratory 

research to large scale commercialization. Spray coating works well with solution 

viscosities ranging from 1 to 1000 cP [98]. Silver nanowires are typically dispersed in 

solvents with low boiling points and viscosities such as ethanol (78.4 °C and 1.07 cP) and 

isopropanol alcohol (82.6 °C and 2.96 cP) making spray coating more ideal compared to 

doctor blading, Meyer rod coating, or spin coating. Doctor blading and Meyer rod 

deposition leave excess solvents of the substrate surface, which can result in uneven 

silver nanowire distribution. The centrifugal force on the nanowires from spin coating 

results in poorly connected nanowire networks due to their unidirectional orientation. 

Spray coating allows for a controlled deposition rate so that the atomized solution can 

evaporate before hitting the substrate and form an even coating of randomly orientated 

nanowires. The random nanowire mesh is able to form a good network for electrical 

conductivity while maintaining sufficient gaps within the mesh for transparency. Gravity-



50 

 

 

 

fed handheld spray coaters (Figure 2.15) are low cost and easy to set up in a laboratory, 

but introduces human error, which can result in unevenly sprayed films. Automated spray 

coating systems can increase repeatability, but are much more expensive to purchase and 

maintain than a gravity-fed, handheld spray coater. 

 

Figure 2.15. Setup of a gravity fed Spray coater with gas pressure to aerosolize solution 

and direct spray. 

2.6 SPIN COATING 

 Figure 2.16 show the spin coating setup. A substrate with a liquid solution on top 

is held in place on a rotating platform by vacuum suction. As the substrate spins, a 

centrifugal force (𝐹𝐶𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑒) is created which removes excess solution from the 

substrate, leaving a thin and uniformly coated wet film behind. This film can be dried by 

evaporating in air, annealing, or spinning for a longer amount of time on the spin coater. 

Spin coating can be used to deposit films on the order of nanometers, is highly 

reproducible, and works with a wide range of solution viscosities. Spin coating is widely 
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used for depositing polymer and nanoparticle films [99, 100]. However, controversial 

reports have been made about successfully spin coating silver nanowire electrodes [95, 

101],  which brings this method into question. Another drawback of spin coating is its 

lack of scalability. 

 

Figure 2.16. Spin coating setup 

2.7 ULTRAVIOLET-VISIBLE SPECTROMETER 

Figure 2.17 shows the schematic of an ultraviolet-visible spectrometer (UV-Vis). 

UV-Vis is used to measure the transmittance, reflectance, and absorbance of liquid, solid, 

or gas samples over the ultraviolet to deep infrared (190 - 2500 nm) light range. For 

transparent electrode applications, the transmittance should be greater than 80% [61]. The 

transmittance (𝑇), absorbance (𝐴), and reflectance (𝑅) are given by equations 2.14, 2.15, 

and 2.16, respectively. 

 𝑇 = 𝐼𝑇/𝐼0𝑇 (2.14) 

 𝐴 = − log(𝑇) (2.15) 

 𝑅 = 𝐼𝑅/𝐼0𝑅 (2.16) 

Where 𝐼𝑇 is the intensity of light transmitted though the sample, 𝐼0𝑇 is the intensity of 

light transmitted with no sample or using a reference sample, 𝐼𝑅 is the reflected light 

intensity from the sample, and 𝐼0𝑅 is the reflected light intensity with no sample or using 
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a reference sample. Figure 2.17 has the light intensities 𝐼𝑇, 𝐼0𝑇, 𝐼𝑅, and 𝐼0𝑅 

correspondingly labeled. Light from the lamps inside the UV-Vis is sent to a 

monochromator which separates the light into a spread of individual wavelengths. This 

spread of light is radiated onto a small slit which only allows a very narrow range of 

monochromatic wavelengths to pass though. By rotating the monochromator, a different 

set of wavelengths are able to pass though the slit. In this way, the transmittance, 

absorbance, and reflectance for each wavelength can be tested on a sample. The only 

drawback to schematic shown in Figure 2.17 is the inability to measure light that reflects 

off the sample at any angle other than 0° and 180°. Silver nanowire films have been 

known to effectively scatter light and thus their direct transmittance (i.e. light that passes 

though the film without any change in direction) is around 17-20% lower than the total 

amount of light transmitted though the film [68]. A renovating sphere can be used to 

correct this problem, however, the results reported in this work do not make use of a 

renovating sphere.   
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Figure 2.17. Schematic of an ultraviolet-visible spectrometer 

2.8 FOUR-POINT PROBE 

 The four-point probe is used to measure the conductivity (𝜎), resistivity (𝜌), and 

sheet resistance (𝑅□) of thin films. 𝜎 and 𝜌 are simply the inverse of one another and 

define how well or how difficult electrical current can flow though the material, 

respectively. The sheet resistance is the average resistivity over the samples thickness. 

For transparent electrodes in solar cell applications, a sheet resistance less than 50 Ω/□ is 

desired [102, 103]. Figure 2.18 shows (a) a four-point probe set up and (b) an electrical 

model for four-point probe setup. From Figure 2.18, current can flow though the two 

outside probes and the voltage drop is measured between the two inside probes. This 

unique set up allows for accurate sample measurement without the interference from the 
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probe-sample contact resistance (𝑅𝑐) and wire resistance (𝑅𝑤). The two outside probes 

use a current source to set the value of 𝐼 regardless of 𝑅𝑐 and 𝑅𝑤 values, and the 

voltmeter has such a high internal resistance that 𝑅𝑐 and 𝑅𝑤 become negligible losses. If 

only two probes were used to measure sheet resistance, a volt source would have to be 

used, which would result in the voltage drop across 𝑅𝑤 and 𝑅𝑐 affecting the 

measurement. 

 

Figure 2.18. (a) Four-point probe set up and (b) electrical model for four-point probe 

setup. 

 The sheet resistance can be calculated by 

 𝑅□ =
𝜌

𝑡
≈ 4.552

𝑉

𝐼
 (2.17) 

where 𝑡 is the thickness of the sample (Figure 2.18 a), 𝑉 is the voltage across probes 2 

and 3, and 𝐼 is the current that passes through probes 1 and 4. The 𝜌/𝑡 can be 

approximated to 4.552 × 𝑉/𝐼 only if the distance between the probes is equal (𝑠 = 𝑠1 =

𝑠2 = 𝑠3) and that 𝑡 ≤ 𝑠/2. Four-point probe is not an ideal technique to use on a soft 

sample (such as PEDOT:PSS) because the sharp probes will likely puncture the sample 

and alter the measurement results. 
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2.9 TRANSFER LENGTH METHOD 

 The transfer length method can be used to measure sheet resistance, contact 

resistance (𝑅𝑐), and specific contact resistivity (𝜌𝑐) without threatening to damage soft 

samples. Figure 2.19 shows (a) experimental setup for the transfer length method and (b) 

distance vs resistance plot used to calculate 𝑅□, 𝑅𝑐, and 𝜌𝑐. The 𝑅𝑐 is the resistance 

between the metal contact and the sample and can be found by dividing the value where 

the line in Figure 2.19 (b) crosses the y-access by two. The metal contacts are typically 

deposited via thermal evaporation, printing or some other non-destructive deposition 

method. 𝑅□ can be calculated by 

 𝑅□ = 𝑠𝑙𝑜𝑝𝑒 × 𝑍 (2.18) 

where 𝑠𝑙𝑜𝑝𝑒 is the slope of the line in Figure 2.19 (b), and 𝑍 is the height of the contacts 

deposited on the sample. The 𝜌𝑐 quantifies how well current can flow from the sample to 

the contact and is calculated by 

 𝜌𝑐 = 𝐿𝑇
2 𝑅□ (2.19) 

where 𝐿𝑇 is the transfer length taken to be where line from Figure 2.19 (b) crosses the x-

axis (should cross on the negative side of the access). The transfer length is the average 

distance an electron flows though the sample before being collected in the contact.  
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Figure 2.19. (a) Experimental setup for the transfer length method and (b) distance vs 

resistance plot used to calculate 𝑅□. 

Figure 2.20 shows a modified version of the transfer length method where all the 

electrodes are evenly spaced apart. In order to create a plot like Figure 2.20 (b), contacts 

1 or 5 must be used as a reference electrode. For example, the resistance between 

contacts 1 and 2, 1 and 3, 1 and 4, and 1 and 5 and would correspond to distances of d, 

2d, 3d, and 4d, respectively. The resistance between the contacts and their corresponding 

distances could be used to make a plot similar to Figure 2.20 (b). The distance between 

contacts 1 and 3 is taken to be 2d and not 2d + L. This is because the electrons are 

assumed to flow though the contact 2 and that all contacts have negligible resistance. 

Thus the measured resistance value is predominantly the result of the spaces between 

each electrode. The main drawback of the transfer length method is that it assumes the 

sheet resistance to be uniform across the sample surface. One way to test this is to see if 

the points on distance vs resistance plot form a line. If the points do not exhibit a linear 
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relationship, then the sheet resistance may greatly vary across the sample and the transfer 

length method may not be an unsuitable technique. 

 

Figure 2.20. Modified version of the transfer length method where all the electrodes are 

evenly spaced apart. 

2.10 SCANNING PROBE MICROSCOPY 

 Figure 2.21 shows the experimental set up for scanning probe microscopy. A 

cantilever is scanned over a sample in a raster fashion to gain micron and nano scale 

information. The piezoelectric crystals allow for extremely minute and precise control of 

the cantilever in the x, y and z directions. Depending on the type of cantilever and 

experimental setup, various sample properties can be measured such as: mechanical, 

electrical, surface roughness, friction, hardness, magnetic, chemical, work function, and 

thermal. 
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Figure 2.21. Experimental setup for scanning probe microscopy 

2.10.1 ATOMIC FORCE MICROSCOPY 

 Atomic force microscopy is a scanning probe microscopy technique used to 

measure the surface topography. There various modes used to measure the topography: 

contact, tapping, and noncontact. Consistent with the name, atomic force microscopy 

uses atomic attractive and repulsive forces to measure the topography. Figure 2.22 shows 

the forces distance curve for atomic force microscopy as the tip is brought closer or 

further away from the sample. van der Waals forces repel the tip if it is brought very 

close to the sample and attract the tip towards if it is brought further away. The various 

modes for atomic force microcopy operate with specific regions of the force distance 

cure.  
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Figure 2.22. Force distance curve for atomic force microscopy 

In contact mode the cantilever is brought in contact with the sample (i.e. the 

sample has a repulsive force acting on the tip). The tip is then dragged over the surface 

moving up and down with changes in morphology, which is directly translated from the 

laser reflecting off the cantilever to the position sensitive photodetector (Figure 2.21) into 

a 3-D image. The position sensitive photodetector is composed of four photodetectors. 

The variation of signal intensity from each photodetector provides a description of the 

laser’s position. Contact mode can be performed so that the force between the tip and the 

sample remains constant or the height of the cantilever remains constant. To maintain a 

constant force, the piezoelectric controller adjusts the distance between the cantilever and 

the sample in real time based on the signal from the position sensitive diode. The 

piezoelectric adjustments are translated to topography. In constant height mode the 

cantilever is held at a constant height as it moves across the sample. The cantilever tip 
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will flex up and down with the surface morphology and be translated to topography. 

Contact mode works best for smooth hard samples and can provide the best image 

resolution. The cantilever can scratch and damage soft samples resulting in inaccurate 

morphological information. Rough sample run the risk of breaking the cantilever tip if the 

morphological change is high and sudden. 

 In Tapping mode, the piezoelectric controller oscillates the cantilever so that the 

tip and sample interaction oscillates between attractive and repulsive force regimes. In 

effect, the cantilever tip will lightly tap the samples surface. Noncontact mode will 

operate similarly with the exception that the cantilever tip will not touch the surface and 

operate only within the attractive force regime. In tapping and noncontact mode, the 

morphology, oscillation frequency, and oscillation amplitude are determined from the 

position sensitive photodetector.  Tapping and noncontact mode are carried out using 

frequency modulation (FM) or amplitude modulation (AM). For FM, the frequency of the 

cantilever tip oscillations is held constant during the scan. The frequency of the cantilever 

is affected by the mechanical properties of the sample and can be used to discern 

different material types. FM has successfully been demonstrated to achieve atomic 

resolution. Changes in the tip amplitude can be used to gain topography information. 

Similarly, AM holds the amplitude of the cantilever constant. The peaks and valleys 

encountered by the tip will dampen or amplify the amplitude which is readjusted by the 

piezoelectric controller in real time and translated to topographical information. In 

practice, the most stable modulation is typically selected for imaging, which is influenced 

by the cantilever, sample, and imaging environment. 
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2.10.2 CURENT SENSING ATOMIC FORCE MICROSOCOPY 

 Current sensing atomic force microscopy is performed in contact mode and 

provides morphology, deflection, friction, and current flow mapping. Deflection is the 

difference in signal form the upper two photodetectors and lower two photodetectors on 

the position sensitive photodetector (Figure 2.21). Similarly, friction is the difference in 

signal form the right most two photodetectors and left most two photodetectors on the 

position sensitive photodetector (Figure 2.21). To map current flow, the cantilever 

(typically made from silicon) is coated with chromium and platinum to make it 

electrically conductive and a voltage potential is applied between the sample and the tip. 

Once the tip comes in contact with the sample, current can flow and be mapped out as the 

tip moves across the sample (typically on the order of 10-9 - 10-12 Ampere). The 

additional conductive coating on the cantilever makes the tip extra thick and reduces 

topography resolution. The conductive coating can ware off or become contaminated 

during scanning, which inhibits current mapping capabilities. To minimize tip 

contamination or degradation, the cantilever tip should touch the sample surface as 

lightly as possible.  

2.11 SCANNING ELECTRON MICROSCOPE 

 Scanning electron microscope is used to magnify objects beyond typically optical 

microscope capability. The resolution of optical microscopes is limited due to the length 

of light waves in the visible region ranging from 450 – 750 nm. The scanning electron 

microscope uses electrons, which are much smaller than atoms and has achieve a 

resolution as low as 2.5 nm [104]. Because scanning electron microscopes use electrons 

to magnify samples, the images appear in black and white. Figure 2.23 shows scanning 
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electron microscope operating principles. An electron gun is used to generate electrons, 

which are then directed into a beam by the anode. The magnetic lens and scanning coils 

focus the electron beam onto the sample, which is scanned in a raster fashion. The back 

scattered detector detects and counts the number of electrons reflected off the sample. 

Electrons emitted from the sample are collected and counted by the secondary electron 

detector. The secondary electron detector provides topographical information based on 

the number of electron counts it receives. More electron counts correspond to a brighter 

the spot on the image. The back scattered electron detector works in a similar manner but 

describes variation in material composition on the sample via lighter and darker spots. To 

prevent interference from air molecules, scanning electron microscope is performed in a 

vacuum. The sample being imaged must be conductive or have a conductive coating 

applied to prevent accumulation of charges from the electron beam, which would damage 

the sample before any useful information could be obtained. 
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Figure 2.23. Scanning electron microscope operating principles. 

2.12 ENERGY DISPERSIVE X-RAY SPECTROSCOPY 

 Energy dispersive X-ray spectroscopy (EDS) is an extension of the scanning 

probe microscopy and can be used to map out the elements present within the sample. 

EDS shines X-rays or high energy electrons onto the sample which are capable of 

ejecting core shell electrons. Figure 2.24 shows the (a) ejection of a core shell electron 

due to collision with a high energy electron beam and (b) emission of X-ray due to outer 

shell electron relaxing to the core shell. The electron composition for each element is 
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different, thus the energy of the emitted X-ray from the outer shell electron as it 

transitions to a lower energy state will correlate to that specific element. 

 

 

Figure 2.24. (a) Ejection of a core shell electron due to collision with a high energy 

electron beam and (b) emission of X-ray due to outer shell electron relaxing to the core 

shell. 

2.13 X-RAY DIFFRACTION SPECTROSCOPY 

 X-Ray diffraction spectroscopy is used to determine the crystal phase 

composition, structure, orientation, unit cell lattice parameters, and crystallite size. Figure 

2.25 illustrates the working principle of X-Ray diffraction spectroscopy. The incoming 

X-rays are reflected off the crystal lattice according to Bragg’s law. The reflected X-rays 

participate in constructive or destructive interference, which enhances or mitigates the 

reflected signal intensity. The signal intensity is plotted with respect to the incident angle 

of the incoming X-ray. The slight variations in bonds within the crystal result in a signal 

that has a mean value and a variance distribution. The full width at half maximum 

(FWHM) of signal peaks show how crystalline the material is and the angles at which the 

peaks occur can be used to identify the crystal chemical composition.  Unlike EDS, X-ray 

a b 
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diffraction spectroscopy does not eject core electrons from the atoms because the energy 

of the X-ray beam is lower that the X-rays (or electron beams) used in EDS.  

 

Figure 2.25. Working principle of X-Ray diffraction spectroscopy. 

 The conditions which reflected X-rays will maximize constructive interference 

(produce the highest signal intensity) is described by Bragg’s Law 

 2𝑑 sin 𝜃 = 𝑛𝜆,      𝑛 = 0,1,2… (2.20) 

where 𝑑 is the distance between the planes reflecting the X-rays, 𝜃 is the angle of the 

incident and reflected X-rays, 𝑛 is the order of interference, and 𝜆 is the wavelength of 

the incident X-ray. The Scherrer equation can be used to calculate the crystallite size 

within the sample and is given by 

 𝜏 =
𝐾𝜆

𝛽 cos𝜃
 (2.21) 

where 𝜏 is the mean crystallite size, 𝐾 is the dimensionless shape factor (typically taken 

to be 1), 𝜆 is the X-ray wavelength, 𝛽 is the width of the peak at half the maximum 

intensity, and 𝜃 is the angle at the maximum peak intensity (Bragg angle). The 

crystallites are microscopic crystals that make up a portions of a film. In the case of 

perovskite crystals, atomic force microscopy may detect small particles on the order of 
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nm on a film surface but these particles can be composed of crystallites on the order of 

hundreds of angstroms as detected by XRD. Perovskites used in solar cells typically 

undergo constructive interference at 14.1° and 28.5°, and 43.2° which corresponds to the 

(110), (220), and (330) planes within the crystal [105]. 

2.14 RAMAN SPECTRSCOPY  

 Raman spectroscopy uses the Raman effect to identify the types of chemical 

bonds within a sample. The Raman effect is the shift in energy which occurs between 

light that is radiated on a material and the light that is reflected off the material. The shift 

in energy is caused by the light interacting with the vibrational modes of the molecular 

bonds. Figure 2.26 shows the vibrational modes for a water molecule. The bonds between 

the oxygen and hydrogen molecules have various degrees of freedom in which they can 

oscillate. Light (typically a laser in the case of Raman) is absorbed by interacting with 

these oscillations and is remitted at a particular energy in relation to bonds resonate 

frequencies. These signals are then collected, translated into wavenumber (Δ𝜔), and 

plotted based on their signal intensity. 

 

Figure 2.26. Vibrational modes for a water molecule 

 The wavenumber can be calculated by  

 Δ𝜔 = (
1

𝜆0
−

1

𝜆1
)

107(𝑛𝑚)

1(𝑐𝑚)
 (2.22) 
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where 𝜆0 is the wavelength of monochromatic light source (i.e. laser) with units of nm, 

and 𝜆1 is the wavelength of the remitted light form the sample with units of nm. Δ𝜔 is 

typically expressed in terms of 𝑐𝑚−1. The intensity of the signal typically corresponds to 

number of bonds present in the sample. The slight variations in vibrations from molecule 

to molecule result in a signal that has a mean value and a variance distribution. The size 

of the FWHM of the signal peaks relays how crystalline the material is (the smaller the 

FWHM the more crystalline the material). 

 In the case of PEDOT the benzoid and quinoid structure exhibit a small shift in 

the Raman peak wavenumber due to the change in the 𝐶𝛼 = 𝐶𝛽 bond on the thiophene 

[83, 106]. The quinoid structure can also result in a smaller FWHM due to a more 

ordered film. 

  



68 

 

 

 

CHAPER 3 EXPERIMENTAL PROCEDURES 

3.1 FABRICATION AND CHARACTERIZATION OF PEDOT:PSS TRANSPARENT 

ELECTRODES 

3.1.1 GLASS SLIDE CLEANING AND PREPARATION 

Precut 1.5 cm by 1.5 cm by 2 mm glass substrates were obtained from Hartford 

Glass Company. Substrates were blown with pressurized N2 gas (30 PSI) to remove large 

debris, wiped with Kim Wipe tissues (Fisherbrand 07301005) to remove excess grease or 

finger prints, and blown again to remove any fibers from the Kim Wipe tissues. 

Substrates were then ultrasonicated for 20 minutes in soapy deionized (DI) water, pure DI 

water, acetone, and lastly propan-2-ol. The glass slides were stored in IPA prior to future 

use.  

Prior to use, glass slides were blow dried with pressurized N2 gas and plasma 

cleaned for 20 minutes. Figure 3.1 shows the plasma cleaning set up with a BOC 

Edwards XDS5 vacuum pump on the right and a PDC-32G plasma cleaner on the left. 

The vacuum pump was allowed to run for 5 minutes, then oxygen gas was slowly added 

to the chamber for 10 seconds, such that the position of the glass substrates was not 

disturbed due to the pressure change. The plasma cleaner was turned on and set to a 

medium power level. Every five minutes, oxygen gas was added to the chamber for 10 

seconds. After 20 minutes, the power was turned off, the plasma cleaner and vacuum 

pump were turned off, and the chamber was slowly aired. Glass substrates were kept in a 

petri dish for immediate use. 
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Figure 3.1. Photograph of plasma cleaning set up with a BOC Edwards XDS5 vacuum 

pump on the right and a PDC-32G plasma cleaner on the left. 

3.1.2 FABRICATION OF PEDOT:PSS TRANSPARENT ELECTRODES 

 Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) was 

obtained from Heraeus (PH1000). Ethylene glycol (EG), dimethyl sulfoxide (DMSO), 

and blends thereof (1:1, 2:1, and 1:2) were used as solvent additives to the PEDOT:PSS 

in 5, 10 and 15 wt. %. Films were spin coated at 4000 RPM with an acceleration of 2000 

RPM/s for 60 seconds using a WS-650B-23NPP/LITE spin coater depicted in Figure 3.2. 

The spin coater was fed with pressurized gas at 50 PSI to regulate spin speed and 

connected to Fisher Scientific MaximaDry pump to create a suction on the glass substrate 

during the spin coating process. After spin coating, films were allowed to air dry 

(approximately 5 - 15 minutes) and annealed at 120 °C for 10 minutes. 
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Figure 3.2. Photograph of spin coater. 

 Post treatments were carried out by soaking PEDOT:PSS films in water, ethylene 

glycol, DMSO, ethanol, and different equimolar blend combinations of these solvents for 

2 minutes. The solvents and solvent blends were poured in a petri dish where the 

PEDOT:PSS films were placed to soak. Following the soaking the PEDOT:PSS films 

were submerged in DI water for 20 seconds and annealed at 120 °C for 10 minutes. 

3.1.3 THICKNESS MEASURMENTS OF PEDOT:PSS TRANSPARENT 

ELECTRODES 

 Figure 3.3 show a photograph of the Veeco Dektak 150 used to measure film 

thickness. Operation procedures for the Dektak can be found in the user’s guide manual 

located on the computer desktop entitled “Dektak Documentation.” The Dektak was set 

to measure both hills and valleys, used a force of 1 to 5 mN, 30 to 60 second time 

duration of scans, and a 5 μm thickness resolution using Dektak software. A standardized 

sample (Veeco 301-031-44nm) of 46.4 nm height was used to calibrate the Dektak and 
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find optimal settings before each use. The “Level the Trace at the Current R and M 

Cursor Intercepts” tool was used to flatten data that was plotted with a slope.  

 

Figure 3.3. Photograph of Veeco Dektak 150 used to measure film thickness. 

3.1.4 SHEET RESISTANCE OF PEDOT:PSS TRANSPARENT ELECTRODES 

Sheet resistance for PEDOT:PSS electrodes was measured using the transfer 

length method. The bottom portion of the PEDOT:PSS electrode was etched away using 

a cotton applicator dipped in DI water. Figure 3.4 shows the (a) mask using during the 

silver contact deposition and a sample with silver contacts and (b) the thermal 

evaporation system inside the glove used to deposit the silver contacts. Operating 

procedures can be found in the glovebox manual found in South Dakota State University 

Daktronics Engineering hall room 058 [107]. Silver contact were 100 nm thick under 10-5 

mbar base pressure. The rate of deposition was linearly increased starting at 0.1 Å/s and 

reaching 0.3 Å/s after 8 nm had been deposited, 0.5 Å/s after 15 nm had been deposited, 

1 Å/s after 30 nm had been deposited, and 1.5 Å/s after 50 nm had been deposited. The 
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rate of 1.5 Å/s was held constant until 100 nm of silver had been deposited. After the 

deposition was complete, the thermal evaporation was stopped, but the chamber was held 

under vacuum until the vacuum pressured dropped to 10-5 mbar. Once the pressure had 

dropped, the turbo pump was allowed to spin down, and the chamber was aired. 

 

 

 

Figure 3.4. Photographs of (a) mask using during the silver contact deposition and a 

sample with silver contacts and (b) the thermal evaporation system inside the glove used 

to deposit the silver contacts. 

Figure 3.5 shows the Keithley 2400 used to measure the resistance between the 

electrodes with an inset of a sample to be measurement. The clips were moved along the 
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pins on the 3M clip to measure the resistance between different electrodes. The resistance 

and distance between the electrodes were recorded in Excel 2016 and used to calculated 

the sheet resistance. 

 

Figure 3.5. Photograph of Keithley 2400 used to measure the resistance between the 

electrodes with an inset of a sample to be measurement. 

The distance between the electrodes was measured using a Hitachi S-3400N 

scanning electron microscopy (SEM) (Figure 3.6). The operating procedures for the SEM 

and Quarts PCI image processing software can be found in the user’s guide Manuel 

located next to the SEM system [108]. The SEM was operated using a probe current of 

30 – 50 %, saturation current of 130 – 150 μA, and accelerated voltage of 10 - 25 kV. All 

images where take with a 10 mm working distance between the sample and backscattered 

detector. SEM images were exported, analyzed, and saved in JPEG format using Quarts 

PCI software.  
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Figure 3.6. Photograph of Hitachi S-3400N system used for SEM imaging and EDX 

measurements. 

3.1.5 OPTICAL PHOTOGRAPHS OF PEDOT:PSS ELECTRODES 

 Optical photographs of PEDOT:PSS electrodes were taken using a Cannon EOS 

400D digital single-lens reflex (DSLR) camera using an EFS 18 - 55 mm lens. The 

camera was set to manual mode with an ISO of 100 - 400. The aperture, shutter speed, 

and lens focusing were adjusted before each shot to best accommodate the lighting 

conditions and camera position with respect to the PEDOT:PSS electrodes. The operating 

manual for the Cannon EOS 400D can be found online [109]. 

3.1.6 TOPOGRAPHY OF PEDOT:PSS TRANSPARENT ELECTRODES 

 Figure 3.7 shows the Agilent 5500 scanning probe microscope (SPM) used to take 

topography and current sensing AFM (CS-AFM) images. Operating instructions for the 

AFM can be found online [110]. The 5500 SPM was controlled through Pecoview 

software on the desktop computer. Images taken in AM tapping mode were performed in 
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air under normal atmospheric conditions and produced topographical, amplitude, and 

phase images. A 75 kHz SSS-SEIH-SPL or HiRes-C14/Cr-Au-5 tips from NanoSensors 

were used to scan across a 2 by 2 μm size area on the samples. All settings were left at 

the default setting except the I and P gain, which were given a value ranging from 8 to 

10. Images were processed in Gwyddion SPM imaging software. User manuals on how to 

operate the software can be found at Gwyddion’s website [111]. The following tools were 

used to edit AFM images: “Level data by mean plain subtraction,” “Correct lines by 

matching median heights,” and “Shift minimum data value to zero.” The color range was 

adjusted by selecting “stretch color range to part of the data” and selecting “explicitly set 

fixed color range.” The base color which represented 0 nm was set as the minimum and 

the maximum was adjusted to best enhance the features within the image. The color of 

the images was selected to be “Gold” by right clicking on the color bar. 

 

Figure 3.7. Photograph of Agilent 5500 scanning probe microscope (SPM) used to take 

topography and current sensing AFM (CS-AFM) images. 
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3.1.7 CURRENT SENSING ATOMIC FORCE MICROSCOPY OF PEDOT:PSS 

ELECTRODES 

 CS-AFM was performed in contact mode using the Agilent 5500 system shown in 

Figure 3.7. A Pt/Ir coated silicon tip (Budget Sensors ContE-G) with radius of 20 nm, 

force constant of 0.2 N/m, and resonance frequency of 14 kHz was used for imaging. The 

deflection of the laser was adjusted to -1.00 V ± 0.02 V. The tip was lowered at a rate of 

0.3 μm/s until it came in contact with the sample. Once in contact with the sample, the set 

point was raised such that the tip lost contact with the sample, and then slowly lowered 

again until the tip lightly touched the sample. Performing a “soft touch” by using the set 

point removes excess friction between tip and sample. Without the soft touch, the Pt/Ir 

coating quickly rubs off and the silicon tip loses its ability to conduct current. Prior to 

imaging, I-V curves were generated in Pecoview software by selecting spectroscopy 

under the controls tab and choosing current vs. sample bias. I-V curves were used to 

insure an ohmic contact existed between the tip and the sample. Measurements were 

taken under a 0.1 - 0.3 V bias placed on the Pt/Ir coated tip. CS-AFM Images were 

viewed and cropped using Gwyddion software with no other modification and 

topography images were processed as described in section 3.1.6. 

3.1.8 TRANSMITTANCE OF PEDOT:PSS TRANSPARENT ELECTRODES 

 Figure 3.8 shows the transmittance measurement set up using the Agilent 8353 

UV-Visible spectrophotometer (UV-Vis). The UV-Vis utilizes a tungsten and hydrogen 

lamp generate a light spectrum ranging from UV to infrared (300 nm – 1100 nm). The 

Chemstation software was used to control the UV-Vis though a desktop interface. 

Operation instructions for the UV-Vis and Chemstation can be found in the user’s manual 
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located in Daktronics engineering 056 [112]. Air was used as a reference for all samples. 

Samples were placed on a foam platform in front of the liquid sample holder. All data 

was exported in .CSV format and later analyzed in Microsoft Excel 2007 - 2016.  

  

Figure 3.8. Photograph of Agilent 8353 UV-Visible spectrophotometer for transmission 

spectroscopy. 

3.1.9 RAMAN SPECTROSCOPY OF PEDOT:PSS ELECTRODES 

 Figure 3.9 shows the LabRam HR800 system used for Raman spectroscopy. 

Raman spectroscopy was performed using an Argon laser with a wavelength of 514.5 

nm, a 300 nm grating, D3 filter, and 60 second detector integration time. Operating 

procedures for the LabRam HR800 can be found in the standard operation procedures 

(SOP) next to the system [113]. Optical images of each site measured were saved along 

with the Raman data that was exported in .TXT format. The Raman data was later plotted 

and analyzed in Microsoft Excel 2007 – 2016. 
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Figure 3.9. Photograph of LabRam HR800 system used for Raman spectroscopy. 

3.1.10 FABRICATION OF ITO FREE PEROVSKITE SOLAR CELLS  

 Figure 3.10 shows the device structure of the perovskite solar cell. PEDOT:PSS 

(Clevios PH1000) with 15 wt. % DMSO:EG 1:1 was blended with IPA 2:1 v/v to 

improve wetting. The PEDOT:PSS ink was then spin coated at 2000 RPM with an 

acceleration of 2000 RPM/s for 45 seconds. The films were allowed to air dry for 15 

minutes before annealing at 120 °C for 10 minutes. After annealing, the films were 

soaked in water:EG:ethanol 1:1:1 volume ratio for two minutes followed by submersion 

in DI water for 20 seconds and annealing at 120 °C for 10 minutes. Additional layers 

were spin coated following the same procedures as the first layer except the spin speed 

was increased to 4500 RPM. A cotton applicator dipped in water was used to wipe off the 

bottom portion of the PEDOT:PSS electrode (Figure 3.11). Silver past (PELCO colloidal 

silver 16031) was applied to the left most edge to serve as a contact on the anode and 

prevent successive layers of the device from coating that area. Patterned ITO substrates 

were cleaned according to procedures outlined in section 3.1.1 and used as reference 

electrode. PEDOT:PSS (Clevios 4083) blended with IPA 2:1 v/v was spin coated at 4500 
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RPM with 4000 RPM/s acceleration for 45 seconds onto the patterned PEDOT:PSS 

(PH1000) or ITO electrode and annealed at 120 °C for 10 minutes. The mixed halide 

perovskite solution was made by mixing 581 mg of lead iodide (PbI2), 225 mg of 

Methylammonium iodide (CH3NH3I), and 39 mg of lead chloride (PbCl2) in 1 ml of γ-

butyrolactone blended with DMSO (7:3 v/v) inside a N2 filled glove box. The perovskite 

solution was stirred at 1150 RPM at 70 °C for at least 2 hours before use. The perovskite 

solution was spin coated inside a N2 filled glove box at 750 RPM (750 RPM/s) for 20 

seconds which was then ramped up to 4000 PRM (4000 RPM/s) for the remaining 60 

seconds (Figure 3.12 depicts the spin coater used inside the glove box). Half way into the 

spin coating the perovskite layer, 160 μl of toluene was drop coated onto the film to 

remove the DMSO solvent. [6,6]-phenyl C61-butyric acid methyl ester (PC60BM) was 

mixed in chlorobenzene solution (20 mg/ml) and stirred at 1150 RPM on 70 °C heated 

surface for at least 2 hours before use. The PC60BM solution was spin coated on top of 

the perovskite layer at 2000 RPM (2000 RPM/s) for 40 seconds. Rhodamine powder 

(company and model number) was mixed in IPA to form a 0.5 mg/ml solution. The 

Rhodamine solution was spin coated on top of the PC60BM layer at 4000 RPM (4000 

RPM/s) for 40 seconds. The top silver electrodes were thermally evaporated according to 

the procedures outlined in section 3.1.4. 
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Figure 3.10. Device structure of the perovskite solar cell. 

 

 

 

 

 

Figure 3.11. Etching PEDOT:PSS with cotton applicator. 
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Figure 3.12. Photograph of spin coater used inside grove box to deposit perovskite, 

PC60BM, and Rhodamine films. 

3.1.11 X-RAY DIFFRACTION SPECTROMETER OF PEDOT:PSS ELECTRODES  

 Figure 3.13 shows the Rigaku Smartlab system used to obtain X-Ray Diffraction 

(XRD) spectrum. The XRD measurement were carried out at 2.2 kW power using a Cu-

Kα (1.54 Å) radiation. Operating procedures can be found in the SOP for the XRD 

located in Daktronics Engineering Hall 056 [114]. XRD data was viewed in PDXL 

Software and edited, if necessary, using “Hide BG” before the data was copied, pasted, 

and saved into a Microsoft Excel 2016 spread sheet for future analysis. The “Hide BG” 

feature subtracts out any background noise in the form of long broad humps that distracts 

from the sharp peaks observed in the spectrum. The average crystallite domain size was 

automatically calculated by PDXL software using the Scherrer equation (see chapter 2 

section 2.13 for more details).  
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Figure 3.13. Photograph of Rigaku Smartlab system used to obtain X-Ray Diffraction 

(XRD) spectrum. 

3.1.12 I-V CHARACTERIZATION OF PEROVSKITE SOLAR CELLS  

 Figure 3.14 shows the experimental set up using (a) Agilent 4155C semiconductor 

parameter analyzer and (b) Xenon arc lamp (Newport 67005) for I-V characterization. 

The Newport 69911 power supply (Figure 3.15) was turned on and used to set Xenon arc 

lamp power to 300 W. The Xenon arc lamp was turned on and allowed to stabilize for 30 

minutes. The Agilent 4155C was turned on. Once booted up, the entire rows for V1 and 

V2 variables were deleted from the VNAME column, after pressing “next” the sweep 

mode was set to “double,” a start and stop voltage set to 0 - 1 V, and a hold time of 0.5 

seconds. To view the I-V plot area the “graph/List” button was pressed. To begin the I-V 

measurement the scan rate “short” was pressed (scans at a rate of 0.01V per 0.01 
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seconds) followed by the “single” button to take a single measurement. To save the data, 

the “graph/List” was pressed again to view the raw data, followed by “spread sheet.” A 

name for the I-V data was typed followed by pressing “Execute” to save the data to a 

floppy disk. The floppy disk was then transferred to a PC were all the data was placed in 

Excel 2007 - 2016 spread sheets for future analysis. In Excel the data was plotted onto I-

V curves and 𝐼𝑠𝑐, 𝑉𝑜𝑐, 𝐹𝐹, 𝑅𝑠, 𝑅𝑠ℎ, and 𝜂 were calculated (see chapter 2 section 2.1 and 

2.2 for details).  

 

Figure 3.14. Photograph of experimental set up using (a) Agilent 4155C semiconductor 

parameter analyzer and (b) Xenon arc lamp (Newport 67005) for I-V characterization. 

 

Figure 3.15. Photograph of Newport 69911 power supply used to power the Xenon Arc 

lamp. 

(a) (b) 
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3.1.13 TRANSIENT PHOTOCURRENT MEASUREMENT OF PEDOT:PSS 

ELECTRODES 

 Figure 3.16 shows the experimental set up for transient photocurrent 

measurement. A Nitrogen Laser (Photon Technologies international GL-3300) coupled 

with a Dye laser (Photon Technologies international GL-301) was shined onto the solar 

cell which generated a small photocurrent which decayed with time. The photocurrent 

signal was detected by an oscilloscope (Agilent Technologies MSO-X-4154A mixed 

oscilloscope) with a small resistance of 50 Ω to simulate short circuit conditions. The 

data was saved onto a USB flash drive, transferred to a PC, and plotted in Excel 2007-

2016. Origin software was used to fit the decay curve with a mono-exponential function. 

The data was plotted in Origin and highlighted and from the pull down menu 

Analysis\fittings\fit exponential “open dialogue” was selected. Under the settings tab 

from the popup menu “ExpDac1” was selected and under the code tab “Ok” was selected. 

In the plot window the value shown for t1 in the table was taken to be the charge 

transport time. 

 

Figure 3.16. Photograph of experimental setup for transient photocurrent measurement. 
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3.2 SILVER NANOWIRE TRANSPARENT ELECTRODES FABRICATION AND 

CHARACTERIZATION  

3.2.1 SILVER NANOWIRE SYNTHESIS AND SOLUTION PREPARATION 

 Figure 3.17 shows a dry run setup for silver nanowire synthesis. In a 20 ml vial, 

0.5 grams of silver nitrate (Fisher Scientific CAS 7761-88-8) was dissolved in 6 ml of 

ethylene glycol (Arcos CAS 107-21-1). A 25 mM solution of CuCl2 (Fisher Scientific 

CAS 7447-39-4) in ethylene glycol was made. Prior to use, glassware was cleaned with 

scrubbed with soap and water and rinsed with water. The two necked round bottom flask 

(100 ml or 250 ml) was cleaned by ultrasonciating for 20 minutes each in soapy DI water, 

DI water, acetone, and IPA and dried with pressurized N2 gas (30 PSI) before use. 

Vegetable oil was poured into the glass trough for the oil bath and placed on the hotplate 

(Corning PC-420D). In the two necked round bottom flask, 0.3 grams of 

Polyvinylpyrrolidone (PVP) (Sigma-Aldrich CAS 9003-39-8) was dissolved in 24 ml of 

ethylene glycol, placed in the oil bath, which was heated to 141 °C, 145 °C, 151 °C, or 

160 °C and stirred at 280 RPM. The temperature of the PVP solution was controlled 

using a Corning Temperature Controller (Cat#6795PR). Once the temperature was stable, 

40 μl of the CuCl2 solution was added to the PVP solution and allowed to mix for 1 

minute. The AgNO3 solution was ultrasonicated for 4 minutes until it became a 

translucent pale amber color. The AgNO3 solution was added drop by drop for 8 to 9 

minutes. The solution was added at a slower rate towards the beginning (~5 μl/second) 

and faster after 3 minutes (10 μl/second) towards the end of the reaction 100 μl/second (7 

to 8 minutes). The reaction was then sealed with a glass plug until shimmering swirls 
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became visible within the reaction; indicating the silver nanowires had formed. The 

reaction was then cooled and stored in 20 ml glass vials until they were cleaned.  

 

Figure 3.17. Photograph of dry run setup for silver nanowire synthesis. 

 Silver nanowires were cleaned by centrifuging (Figure 4.18) a dilute silver 

nanowire solution with acetone (1:2) at 2000 RPM for 20 minutes. The supernatant was 

discarded and the silver nanowires were dispersed in DI water. This process was repeated 

three more times with DI water, after which the nanowires were finally dispersed in IPA. 

The concentration of the silver nanowire solution was determined by placing 1 ml of 

solution in the centrifuge at 6000 RPM for 5 minutes, discarding the supernatant, drying 

out the nanowires, and weighing the centrifuge vial with the dry silver nanowires inside. 



87 

 

 

 

The original weight of the vial was subtracted from its weight with the nanowires. 

Typical concentrations were around 5 - 10 mg/ml.  

 

Figure 3.18. Photograph of Eppendorf Centrifuge 5424 used to clean silver nanowires. 

3.2.2 SILVER NANOWIRE TRANSPARENT ELECTRODE FABRICATION 

 Figure 4.19 shows the (a) mater airbrush G255-SET and (b) unbranded airbrush 

with 7cc fluid cup used to spray coat spray silver nanowires. Both spray coaters were 

connected to a hoes via nipple fitting and the hose was attached to a gas cinder with 

pressure regulator via nipple fitting (Figure 3.20). The gas pressure was set to 25 PSI. 

Silver nanowire solution was diluted to 1.5 - 0.23 mg/ml and 0.5 ml was sprayed onto a 

glass substrate (prepared according to section 3.1.1) heated to 140 °C, which took 

approximately 1 to 2 minutes. The glass substrate was taped down to a ceramic plate to 

prevent it from blowing away during the spray coating process. Silver nanowire 

electrodes were annealed at 140 - 200 °C for 30 minutes to achieve sheet resistances 
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below 50 Ω/□. UV-ozone treatment was performed for one minute using a Novascan 

PSD-PROUV4T UV-ozone system.  

 

Figure 3.19. Photograph of (a) Mater airbrush G255-SET and (b) unbranded airbrush 

with 7cc fluid cup used to spray coat spray silver nanowires. 

 

Figure 3.20. Photograph of nitrogen gas cylinder used to supply gas pressure to the 

airbrush with inset of the three-way valve nipple where the hose for the spray coater was 

connected. 

(a) (b) 
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3.2.3 MEASURING SILVER NANOWIRE ELECTRODE TRANSMITTANCE AND 

SHEET RESISTANCE 

 Transmittance of silver nanowire electrodes was measured according to 

procedures in section 3.1.8. Sheet resistance was measured using four-point probe 

method. Figure 3.21 shows the Guardian SRM - 232 - 100 used to measure sheet 

resistance with an inset of the probes. To measure the sheet resistance, the Guardian was 

assembled by connecting the probes to the surface resistivity meter via cat 6 cable and 

turned on by pressing and holding the power button. The four probes where then pressed 

onto the silver nanowire electrode and the sheet resistance was read off the Guardian 

display screen. When finished, the four-point probe was disassembled and placed in the 

storage container; the resistivity meter automatically turns off. 

 

Figure 3.21. Photograph of Guardian SRM - 232 - 100 used to measure sheet resistance 

with an inset of the probes. 
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3.3 LIFETIME TEST AND CHARACTERIZATION OF SILVER NANOWIRE 

ELECTRODES 

3.3.1 LIFETIME TEST MEASUREMENT OF SILVER NANOWIRE ELECTRODES 

Figure 3.22 shows the experimental set up for measuring the lifetime of silver 

nanowire electrodes under electrical stress with inset of 3M clips clamping a sample 

(upper left) and a silver nanowire electrode with silver contacts (lower right). A Keithley 

2602A was interfaced though GPIB cable to a desktop PC and controlled though 

LabView 2015. The LabView program can be viewed in APPENDIX A. Silver nanowire 

electrodes had silver contacts deposited according to section 3.1.4 with the exception of 

the three middle long mask cutouts were blocked off with scotch tape (Figure 3.22 lower 

right). Two 3M and alligator clips were used to connect the Keithley to the silver 

nanowire electrode, which were subject to 20 mA of constant current. The resulting, 

voltage, time, and resistance was recorded every hour by the LabView program and 

saved in an excel spread sheet.  
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Figure 3.22. Photograph of experimental set up for measuring the lifetime of silver 

nanowire electrodes under electrical stress with inset of 3M clips clamping a sample 

(upper left) and a silver nanowire electrode with silver contacts (lower right). 

3.3.2 SCANNING ELECTRON MICROSCOPE, OPTICAL PHOTOGRAPHY, X-RAY 

DIFFRACTION SPECTROMETER, AND ENERGY DISPERSIVE X-RAY 

SPECTROSCOPY OF SILVER NANOWIRE ELECTRODES 

 Scanning electron microscope, optical photography, and x-ray diffraction 

procedures are outlined in sections 3.1.4, 3.1.5, and 3.1.11, respectively. The only 

differences in x-ray diffraction procedures was that no software tools were used to edit 

the data.  

 Energy Dispersive X-ray Spectroscopy (Figure 3.6) operating procedures can be 

found in the user’s manual near the system [115]. The probe current during EDS 

measurements was increased to 60 - 70% so that the number of X-ray counts from the 

EDS exceeded 1000. The infrared camera in the SEM system was turned off so that it 

would not interfere with X-ray signal. Images of the EDS location sites were taken from 

both the SEM and EDS software interfaces. EDS spectrums and SEM images were 



92 

 

 

 

exported into word documents. Element for detection were selected based on assumption 

of elements expected to be present within the sample. For example, the glass slides were 

made of silicon, oxygen, and sodium so the detector was set to detect silicon and oxygen. 

Elements silver is reactive with such as sulfur or chlorine were set to be detected. The 

automatic software detection of elements such as cadmium or ytterbium were removed 

from the detection list because their presents within the sample was not reasonable. 

 To isolate the detection of oxygen due to silver oxide, gold coated silicon wafers 

(model number) were used as substrates. Silicon wafers (~1.5 by 1.5 cm) were cleaned by 

soaking in near boiling soapy DI water, DI water in a piranha solution (H2SO4:H2O2 30 

wt. % concentration) for 5 minutes each. Silicon substrates were rinsed with DI water and 

dried under compressed nitrogen. Figure 3.23 shows the Plasma Sciences Inc. CrC-150 

Sputtering System used to deposit a 200 nm thick gold layer on the silicon substrates. The 

SOP for the CrC sputtering system can be found in the clean room at Daktronics 

Engineering hall [116]. Silver nanowires were spray coated according to the procedures 

in section 3.2.3. 
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Figure 3.23. Photograph of Plasma Sciences Inc. CrC-150 Sputtering System used to 

deposit gold. 
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CHAPER 4 RESULTS AND ANALYSIS 

4.1 DEVELOPMENT OF PEDOT:PSS TRANSPARENT ELECTRODES 

4.1.1 SOLVENT ADDITIVES TO PEDOT:PSS ELECTRODES  

 Figure 4.1 shows the sheet resistance for PEDOT:PSS with various solvent 

additives. These films were 43 nm thick on average. All films show a dramatic decrease 

in sheet resistance from pristine films which exhibited 478 to 550 kΩ/□. Films with 

dimethyl sulfoxide (DMSO) additives sheet resistance decreased from 700 to 400 Ω/□ 

with increasing weight (wt.) %, which is consistent with previous reports [91]. The 

optimal wt. % for ethylene glycol (EG) was found to be 10 wt. %, which also matched 

previous reports [117, 118]. Other reports claim 5 wt. % for DMSO or EG additives to be 

optimal [63, 119]. The reason for these contradictory reports may be attributed to 

processing conditions. This work utilized a slow drying for PEDOT:PSS films which has 

not been reported elsewhere. Films with 15 wt. % 1:1 EG:DMSO solvent blend additive 

were observed to have the lowest sheet resistance of 297 Ω/□. These trends were found to 

be repeatable for 8 samples and no reports on optimal solvent blend additives were found. 
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Figure 4.1. Comparison of sheet resistance for PEDOT:PSS with various solvent 

additives. 

  Figure 4.2 shows time lapsed photos of the slow drying process for PEDOT:PSS 

film with 15 wt. % 1:1 DMSO:EG additive. These photos are represented for samples 

with 15 wt. % of other solvents and solvent blends and took approximately 15 minutes to 

completely dry in air. Samples with 0, 5, and 10 wt. % additive take 0, 5, and 10 minutes 

to completely dry, respectively. The increasing dry time is directly linked to the amount 

of solvent additive in the PEDOT:PSS films. The longer drying time was attributed to 

additional high boiling point solvents within the film and may allow for the films to 

rearrange PEDOT and PSS in a more optimal morphology. 
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Figure 4.2. Time lapsed photos of the slow drying process for PEDOT:PSS film with 15 

wt. % 1:1 DMSO:EG additive. 

 Figure 4.3 shows the sheet resistance for PEDOT:PSS films soaked in various 

solvents and solvent blends. The lowest average sheet resistance was found to be 326 

Ω/□ for 1:1:1 water:EG:ethanol blend. Various other blends with EG such as 1:1 

water:EG, 1:1 EG:ethanol, and 1:1:1 DMSO:EG:ethanol also exhibited lower sheet 

resistance ranging from 350 - 387 Ω/□. Intrinsic EG exhibited a high sheet resistance of 

441 Ω/□, which suggests that EG needs to be blended with a solvent such as water or 

ethanol to be more effective. Similar trends were observed by Xia. et al. who blended 

organic solvents with water [65]. They found water:ethanol blends gave the best 

enhancement in conductivity and attributed the ethanol to help solvate the PEDOT:PSS 

film and allow the water to penetrate and help rearrange the film. However, water can 

also be used to dissolve PEDOT:PSS, and the data from Figure 4.3 suggest that both the 

ethanol and water can be used to solvate the PEDOT:PSS where the EG polar groups will 
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help reorganize the film. It is curious that DMSO did not have the same enhancing effects 

as EG, and suggests there are different mechanisms behind how the two solvents 

influence PEDOT:PSS films. 

 

 

Figure 4.3. Sheet resistance for PEDOT:PSS films soaked in various solvents and solvent 

blends. 

Figure 4.4 shows topography images of (a) pristine PEDOT:PSS and PEDOT:PSS 

with (b) 10 % wt. EG, (c) 15 % wt. DMSO, (d) 15 % wt. 1:1 DMSO:EG additives, and 

(e) 15 % wt. 1:1 DMSO:EG after being soaked in water:EG:ethanol (1:1:1). The pristine 

film had a rolling-hill like morphology. After adding 10 wt. % EG small circular grains 

are observed to appear in the film. In contrast, 15 wt. % DMSO exhibited smaller oblong 

grains in the film. The difference in morphology for EG and DMSO additives cases 
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suggests that each additive interact with the PEDOT:PSS differently. Consequently, it is 

not unreasonable to assume that the mechanism for conductivity enhancement is also 

different. The morphology for 15 wt. % 1:1 EG:DMSO also exhibits a fibrous 

morphology similar to films with only DMSO additive. After soaking the film in 1:1:1 

water:EG:ethanol no significant morphology changes were observed.  

 

 
 

Figure 4.4. Topography images of (a) pristine PEDOT:PSS and PEDOT:PSS with (b) 10 

% wt. EG, (c) 15 % wt. DMSO, (d) 15 % wt. 1:1 DMSO:EG additives, and (e) 15 % wt. 

1:1 DMSO:EG after being soaked in water:EG:ethanol (1:1:1). 
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Small granular features are often reported for PEDOT:PSS samples with EG, 

which have been proposed to be composed of highly ordered PEDOT:PSS grains 

surrounded by a PSS shell [83, 120]. Current-sensing atomic force microscopy (CS-

AFM) was used to understand the composition of these small granular features. Figure 

4.5 shows the (a) topography, (b) CS-AFM performed at 0.1 V bias for PEDOT:PSS 

films with 10 wt. % EG, and (c) line scan from images (a) and (b) (indicated by white 

line). Figure 4.5 (a) shows the small granular features present and Figure 4.5 (b) shows 

small islands of higher current levels. The small islands of higher current observed in in 

Figure 4.5 (b) should correspond to the small grains in observed in Figure 4.5 (a) if the 

grains are composed of highly ordered PEDOT:PSS. From Figure 4.5 (d), the small 

islands of higher current in CS-AFM do correspond to peaks in the topography which 

suggests that the small grains are highly conductive and supports the notion that they are 

composed of highly ordered PEDOT:PSS domains. Moreover, the dark areas around the 

small islands of high current would correspond to the non-conducting PSS shell around 

the highly ordered PEDOT:PSS grains. 
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Figure 4.5. (a) Topography, (b) current-sensing atomic force microscopy performed at 

0.1 V bias for PEDOT:PSS films with 10 wt. % EG, and (c) line scan from images (a) 

and (b) (indicated by white line). 

Figure 4.6 show the (a) topography and (b) current-sensing atomic force 

microscopy performed at 0.3 V bias pristine PEDOT:PSS films. The pristine film is much 

less conductive compared to the film in Figure 4.5 (b). The higher voltage bias also 

strongly supports this as when the pristine sample was scanned with 0.1 V bias (as 

performed for Figure 4.5 (b)) no current was detected, which was attributed to a thick 

insulating PSS barrier and lack of conductive PEDOT networks within the film.  
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Figure 4.6. (a) Topography and (b) current-sensing atomic force microscopy performed at 

0.3 V bias pristine PEDOT:PSS films. 

Figure 4.7 shows the (a) topography of PEDOT:PSS film with 15 wt. % 

DMSO:EG (1:1) additive and corresponding CS-AFM images under 0.1 Volt bias after 

(a) first, (c) second, and (d) third consecutive scans. Figure 4.7 (b) shows a constant value 

of 10 nA and demonstrates superior electrical properties of 15 wt. % DMSO:EG over the 

10 wt. % EG additive from Figure 4.5 (b); this is also consistent with sheet resistance 

values from Figure 4.1. After a second scan over the same area (Figure 4.7 (c)), the 

current begins to drop, attributed to the platinum\Chromium plating on the silicon AFM 

tip wearing off. After a third scan (Figure 4.7 (d)), the current has dramatically dropped 

and the current flow reversed, which was attributed to future removal of the 

platinum\Chromium plating and altering the work function of the AFM tip. Figure 4.7 (b) 

though (d) demonstrate how easily the CS-AFM tips can be damaged after only three 

scans.  

a b 
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Figure 4.7. (a) Topography of PEDOT:PSS film with 15 wt. % DMSO:EG (1:1) additive 

and corresponding CS-AFM images under 0.1 Volt bias after (a) first, (c) second, and (d) 

third consecutive scans. 

 Figure 4.8 shows the ultraviolet-visible absorbance spectra of PEDOT:PSS films 

(a) with various EG wt. % additives and with 15 wt. % 1:1 EG:DMSO before and after 

post treatment and (b) PEDOT:PSS films with various wt. % DMSO additives. The two 

peaks observed at 193 nm and 225 nm are attributed to PSS absorption [74]. A decrease 

in peak intensity at 193 nm and 225 nm are observed with increasing wt. % of EG and a 

dramatic decrease in peak intensity is observed after solvent blend post treatment. The 

decrease in peak intensity was attributed to EG rearranging the PSS within the 

PEDOT:PSS film. It is possible that excess PSS was removed during the spin coating 

process, but Xia et al. showed that by rearranging the PSS morphology to an uneven 

a b 

c d 
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distribution across the film a decrease in absorption can be expected [65]. It is proposed 

here that the polar groups from the EG are interacting with the PSS species to rearing it in 

an uneven distribution during the film formation. The decrease in absorption from the 

post treatment can be attributed to excess PSS species being washed away from the film. 

Because the absorbance of the film from 310 nm to 1100 nm does not change, it can be 

infrared that the film thickness is not changing with increasing wt. % additives. Figure 

4.8 b shows no change in PSS peak absorption with increasing DMSO wt. % additive, 

thus the DMSO does not seem to have a significant impact on the PSS species within the 

film.  

 

Figure 4.8. Ultraviolet-visible absorbance spectra of PEDOT:PSS films (a) with various 

EG wt. % additives and with 15 wt. % 1:1 EG:DMSO before and after post treatment and 

(b) with various wt. % DMSO additives. 

 Figure 4.9 shows the Raman spectra for PEDOT:PSS films for increasing % wt. 

of (a) EG and (b) DMSO additive. The peak occurring between 1350 - 1425 cm-1 is 

attributed to Cα=Cβ symmetric stretching within the PEDOT species [83, 106, 121]. 
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Figure 4.9 (a) shows no change with increasing % wt. of EG additive, thus EG does not 

appear to affect the PEDOT species. A redshift is observed in Figure 4.9 (b) with 

increasing DMSO additive. The redshift can be attributed to the PEDOT changing from 

its less conductive benzoid structure to its more conductive quinoid structure. This 

change in chemical resonance structure is attributed to the DMSO additive. The strong 

dipole moment of DMSO may help separate PSS from PEDOT, enabling the PEDOT to 

take on a linear formation. Figure 4.9 b also shows that the DMSO:EG blend had the 

largest redshift, this suggests the solvent blend was more efficient at converting the 

PEDOT to its quinoid structure. APPENDIX B shows the Raman spectroscopy for all 

solvent blend additives, again 15 wt. % 1:1 DMSO:EG was observed to have the largest 

redshift. This is also in agreement that the films with 15 wt. % 1:1 DMSO:EG exhibited 

the lowest sheet resistance, as the quinoid PEDOT structure is more conductive than the 

benzoid structure. 

 

Figure 4.9. Raman spectra for PEDOT:PSS films for increasing % wt. of (a) EG and (b) 

DMSO and 1:1 DMSO:EG additive. 

0

0.2

0.4

0.6

0.8

1

1.2

1250 1300 1350 1400 1450

N
o
m

al
iz

ed
 I

n
te

n
si

ty
 (

a.
u
.)

Wavenumber (cm-1)

0% EG
5% EG
10% EG
15% EG

0

0.2

0.4

0.6

0.8

1

1.2

1200 1250 1300 1350 1400 1450

N
o
m

al
iz

ed
 I

n
te

n
si

ty
 (

a.
u
.)

Wavenumber (nm-1)

15% DMSO:EG (1:1)
0% DMSO
5% DMSO
10% DMSO
15% DMSO

a b 



105 

 

 

 

Figure 4.10 illustrates PEDOT:PSS morphology for (a) pristine, (b) 10 wt. % EG, 

(c) 15 wt. % DMSO, (d) 15 wt. % DMSO:EG 1:1, and (e) 15 wt. % DMSO:EG 1:1 

additive after post treatments. Figure 4.10 (a) depicts the rolling hill morphology of the 

pristine film which is more disordered and has PSS blocking electron pathways. In Figure 

4.10 (b), the small circular grains observed in Figure 4.4 (b) for 10 wt. % additive of EG 

being composed of a more ordered PEDOT and PSS species. Figure 4.10 (c) depicts more 

oblong grains observed for 15 wt. % DMSO additive in Figure 4.4 (c) and PEDOT taking 

its quinoid form. Figure 4.10 (d) depicts similar morphology to Figure 4.10 (c) but with 

fewer PSS barriers for 15 wt. % DMSO:EG (1:1) as observed from the absorption 

spectrum in Figure 4.8. The solvent additive blend provides a duel mechanism where the 

EG rearranges the PSS species to reduce insulating barriers and the DMSO enable 

PEDOT to convert to the quinoid structure. Figure 4.10 (e) depicts similar morphology to 

Figure 4.10 (d) but with fewer PSS species due to the post treatment washing them away 

also observed from the absorption spectrum in Figure 4.8 (a). The post treatment further 

reduces the PSS insulating barriers within the PEDOT:PSS film. 
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Figure 4.10. Morphology illustration of PEDOT:PSS for (a) pristine, (b) 10 wt. % 

ethylene glycol (EG), (c) 15 wt. % DMSO, (d) 15 wt. % DMSO:EG 1:1, and (e) 15 wt. % 

DMSO:EG 1:1 additive after post treatments. 

4.1.2 PEROVSKITE SOLAR CELL FABRICATION USING PEDOT:PSS 

ELECTRODES 

 The PEDOT:PSS with 15 wt. % 1:1 DMSO:EG with a post treatment of soaking 

in 1:1:1 water:EG:ethanol was used to fabricate the perovskite solar cell. Four layers of 

these PEDOT:PSS films were deposited on top of one another, which exhibited a sheet 

resistance of 80 Ω/□ and average transmittance over 350 nm - 900 nm of 73%. Due to the 

hydrophobic nature of the PEDOT:PSS films after the post treatment, the PEDOT:PSS 

ink was blended 2:1 with IPA to improve wetting for additional layers. The sheet 

resistance and transmittance were not able to meet the objectives listed in Chapter 1. A 

a b c 

d e 

PEDOT: 

PSS: 
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three layer PEDOT:PSS electrode exhibited an average transmittance around 80% but 

had high sheet resistance above 100 Ω/□. The four-layer electrode was considered the 

best tradeoff between sheet resistance and transmittance. 

 Figure 4.11 shows the (a) XRD spectra of perovskite on top of a four layer 

PEDOT:PSS electrode and ITO electrode and topography images of perovskite on top of 

(b) ITO and (c) PEDOT:PSS electrodes. From Figure 4.11 (a) the characteristic 

perovskite crystal peaks 14.1° and 28.5° confirm that the perovskite was able to form on 

top of the PEDOT:PSS electrode. The crystallite sizes for the perovskite film on the 

PEDOT:PSS and ITO electrode were calculated to be 216 Å and 235 Å, respectively by 

using the Scherrer equation. Figure 4.11 (b) and (c) show the average perovskite 

crystallite size on the ITO and PEDOT:PSS electrode is ~250 nm and ~284 nm, 

respectively. The smaller perovskite crystallite and particle size on the PEDOT:PSS 

electrode could lead poorer photovoltaic device performance due to a higher number of 

defects, which would act as trap states to free flowing electrons and holes. 
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Figure 4.11. (a) XRD spectra of perovskite on top of a four layer PEDOT:PSS electrode 

and ITO electrode and topography images of perovskite on top of (b) ITO and (c) 

PEDOT:PSS electrodes. 

 Figure 4.12 shows (a) perovskite device structure and (b) I-V curves for 

perovskite solar cells. The PCE for the perovskite solar cell with PEDOT:PSS electrode 

was 5.3% vs 12.4% for the ITO electrode. The poorer performance form the PEDOT:PSS 

electrode was due to a low 𝐽𝑠𝑐, 𝑉𝑜𝑐, and 𝐹𝐹 compared to the ITO as shown in Table 4.1. 

The lower 𝐽𝑠𝑐 for the PEDOT:PSS based device was attributed to the PEDOT:PSS 
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electrode’s average transmittance (over 350 nm - 900 nm) of 73% compared vs. ITO, 

which exhibited 84% transmittance. Lower transmittance results in lower light absorption 

and photocurrent. The lower 𝑉𝑜𝑐 for the PEDOT:PSS electrodes can be attributed to a 

higher defect density within the perovskite layer, which is also supported by smaller 

crystallite and particle size from the XRD and AFM data, respectively, in Figure 4.11 for 

perovskite films on top of PEDOT:PSS electrodes [55, 122]. The low 𝐹𝐹 for the 

PEDOT:PSS based device was attributed to the PEDOT:PSS electrode’s high sheet 

resistance of 80 Ω/□ vs. 16 Ω/□ for the ITO electrode.  

 

    

Figure 4.12. (a) Perovskite device structure and (b) I-V curves for perovskite solar cells. 

Table 4.1. Device parameters for perovskite solar cells made using PEDOT:PSS and ITO 

as transparent electrode.   

 Jsc (mA/cm2) Voc (V) FF PCE (%) 

PEDOT:PSS 15.0 0.84  0.42 5.3 

ITO 21.1 0.9 0.65  12.4 

-25

-20

-15

-10

-5

0

5

10

15

0 0.2 0.4 0.6 0.8 1

C
u
rr

en
t 

d
en

si
ty

 (
m

A
/c

m
2
)

Voltage (V)

4 layer PEDOT:PSS electrode

ITO

a b 



110 

 

 

 

 Figure 4.13 shows the transient photocurrent for perovskite solar cells made with 

4 layer PEDOT:PSS electrodes and ITO electrodes. A charge transport time of 0.9 μs and 

1.1 μs was found for perovskite solar cells with ITO and PEDOT:PSS electrodes, 

respectively. The charge transport time for PEDOT:PSS electrodes was very similar to 

that of ITO, which suggests that charge transport within the solar cell in not significantly 

affected. If the transmittance and conductivity of the PEDOT:PSS electrode can be 

increased, without increasing surface roughness, it could easily replace ITO as a 

transparent electrode. 

 

 

Figure 4.13. Transient photocurrent for perovskite solar cells made with 4 layers of 

PEDOT:PSS electrodes and ITO electrodes. 
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4.2 SILVER NANOWIRE TRANSPARENT ELECTRODES LIFETIME UNDER 

ELECTRICAL STRESS  

4.2.1 EFFECT OF UV-OZONE ON SILVER NANOWIRE ELECTRODES 

 Figure 4.14 shows the dependence of sheet resistance and transmittance at 550 nm 

on annealing temperature with 30 minutes annealing time (highlighted in blue columns) 

and 10 minutes annealing time (no highlight). Samples annealed at 140 °C and 160 °C for 

10 minutes were able to achieve transmittances above 80 % (above solid black line) and 

sheet resistances below 50 Ω/□ (below dotted red line). Thus, the objectives outlined 

chapter 1 were met using silver nanowire electrodes. Samples annealed at 200 °C were 

fabricated with silver nanowires synthesized at 160 °C; all other data was obtained using 

silver nanowires synthesized at 150 °C. Longer annealing times for silver nanowire 

electrodes fabricated with silver nanowires at 150 °C resulted in higher sheet resistance 

attributed to the nanowire melting and breaking apart. All silver nanowire electrodes 

made with silver nanowires synthesized at 160 °C and annealed at temperatures 180 °C 

or less resulted in sheet resistances greater than 100 Ω/□. This was attributed silver 

nanowires synthesized at 160 °C having a higher heat resistance and the lower 

temperatures not being able to meld the nanowire junctions together. 
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Figure 4.14. Dependence of sheet resistance and transmittance at 550 nm on annealing 

temperature with 30 minutes annealing time (highlighted data) and 10 minutes annealing 

time (no highlight). 

Table 4.2 shows the dependance of sheet resistance on UV-ozone treatment time 

for silver nanowire electrodes. With increaseing UV-ozone treatment time, the sheet 

resistance of the films increased. This was attributed to the ozone reacting with the silver 

to form a silver oxide layer on the outside of the nanowires. Silver oxide is not 

condcutive and would ultimatly reduce the sheet resistance of the films. 

Table 4.2. Dependance of sheet resistance on UV-ozone treatment time on silver 

nanowire electrodes 

Test Trial Sheet Resistance with UV-Ozone Treatment Times 

0 min 1 min 2 mins 5 mins 10 mins 

1 15 Ω/□ 17 Ω/□ 19 Ω/□ 20 Ω/□ 22 Ω/□ 

2 36 Ω/□ 59 Ω/□ 60 Ω/□ 68 Ω/□ 97 Ω/□ 
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 Figure 4.15 shows the EDX spectra for silver nanowire (a) before and (b) after 1 

minute of UV-ozone treatment with SEM image inset of the measurement location. The 

silver nanowires were deposited on gold coated silicon. The gold coating was 200 nm 

thick and used to prevent the EDX from detecting oxygen from silicon dioxide, which 

commoly forms on silicon wafers. Table 4.3 shows that no oxygen was detected from the 

silver nanowire/gold/silicon sample, attributed to the gold layer preventing detection of 

silicon dioxide. After the UV-ozone treatment a small wt.% of oxygen is detected, which 

was attributed to the silver forming silver oxide. Silver is able to form an oxide easier 

than gold, therefore the the detection of oxygen is more likely due to the formation of 

silver oxide than gold oxide. This data are also consistant with Table 4.2 where a silver 

oxide layer would increase the sheet resistant of the silver nanowire electrodes. 

 

 

Figure 4.15. EDX spectrum for silver nanowire electrodes (a) before and (b) after 1 

minute of UV-ozone treatment with SEM image inset of the measurement location. 
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Table 4.3. Wt.% of elecments detected from silver nanowire electrodes before and after 1 

minute UV-ozone treamtent. 

  Before UV-Ozone Treatment After UV-Ozone Treatment 

Element. Line Intensity 

(c/s) 

Error 

2-sig 

Concentration 

(wt.%) 

Intensity 

(c/s) 

Error 

2-sig 

Concentration 

(wt.%) 

O Ka 0.00 0.000 0.000  0.88 0.595 0.203 

Si Ka 4.04 1.271 0.402  2.11 0.918 0.144 

S Ka 0.00 0.000 0.000  0.00 0.000 0.000 

Cu Ka 0.19 0.274 0.115  1.52 0.780 0.638 

Ag La 17.97 2.681 9.816  28.52 3.377 10.596 

Au Ma 253.12 10.062 89.667 365.61 12.093 88.420 

 

4.2.2 ELECTRODE FAILURE UNDER ELECTRICAL STRESS 

Figure 4.16 shows the frequency of the silver nanowire (a) diameter and (b) 

length. The average nanowire diameter for silver nanowire synthesized at 150 °C and 160 

°C was 72 nm and 88 nm, respectively. The average length for the silver nanowires 

synthesized in both cases was 16 μm. The dimensions of the nanowire in both batches 

was considered to be similar enough to not affect the outcome of the measurement and 

from here on will be collectively referred to by their overall average diameter of 80 nm.  
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Figure 4.16. Distribution of silver nanowire (a) diameter and (b) length. 

Figure 4.17 shows SEM images of silver nanowires, with magnified inset, 

synthesized at (a) 150 °C and (b) 160 °C. The silver nanowire morphology appears to be 

similar in both cases such that it was not considered to play an important role in the 

measurement outcome. 

  

 

Figure 4.17. SEM images of silver nanowire, with zoomed inset, synthesized at (a) 150 

°C and (b) 160 °C. 
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Figure 4.18 shows the dependence of silver nanowire formation time on silver 

nanowire synthesis temperature. The silver nanowire reaction time was found to be 

linearly related to synthesis temperature. Higher synthesis temperatures result in faster 

reaction times. In addition, the longer the nanowire reaction was carried out after the 

nanowires formed, the nanowire diameter would continue to grow (see APPENDIX C). 

Thus, at higher reaction temperatures nanowire diameter increased much more quickly. A 

longer reaction time is easier to control the nanowire dimensions because of their slower 

reaction time. At around 140 °C, however, the reaction results in poorly formed 

nanowires. The inset of Figure 4.18 shows an SEM image of silver nanowire synthesized 

at 140 °C, which exhibit large particles and rough surface morphology compared to those 

in Figure 4.17. The rough morphology was attributed to the lower temperatures inhibiting 

proper crystalline growth of the silver nanowires on the (111) plain. Hu et. al. reported 

that 140 °C was the lowest temperature silver nanowire reactions could be carried out at 

[123]. 

 



117 

 

 

 

 

Figure 4.18. Dependence of silver nanowire formation time on synthesis temperature. 

The inset is a SEM image of silver nanowire synthesized at 140 °C. 

 The silver nanowire average diameter, synthesis temperature, UV- treatment 

condition, electrode annealing temperature, and the resulting sheet resistance are shown 

in Table 3.4.  The sheet resistance of the silver nanowire electrodes for each respective 

test was considered comparably close in value to not have a significant effect on the 

electrode lifetime. To achieve sheet resistance below 50 Ω/□, electrodes used in test 1 

and test 2 required a minimum of 140 °C and 200 °C annealing temperatures despite both 

having similar diameters. This discrepancy was attributed to the synthesis temperature of 

the silver nanowires. Silver nanowires formed at 160 °C were more heat resistant than 

nanowires formed at 150 °C and needed higher temperature to meld the nanowire 

junctions together. Typically, thinner nanowire requires less annealing temperature, but 

the difference in average nanowire diameters of 72 nm and 87 nm does not seem large 

enough to account a 60 °C difference in annealing temperature, therefore it may be 

related to how crystalline the silver nanowires are. Nanowires with higher degree of 
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crystallinity will be less likely to melt at lower temperature compared to those with a 

more amorphous nature [124]. The silver nanowires with average diameter of 233 nm 

required an annealing temperature of 300 °C to achieve sheet resistances below 50 Ω/□. 

The higher annealing temperature for thicker nanowires was attributed to their larger 

diameter acting more like bulk silver. Bulk silver has a melting temperature of 962 °C, 

yet nanowires are able to melt at lower temperatures because the faction of atoms on the 

surface to the total number of atoms becomes is large. As the nanowires become thicker 

in diameter, this fraction decreases in size and the nanowires becoming much more 

thermally stable. The major disadvantage of thick nanowires is that they are much less 

transparent due to the thick diameters interacting with visible light and they create a 

higher surface roughness.  

Table 4.4. Relationship between silver nanowire average diameter, synthesis 

temperature, synthesis temperature, UV- treatment condition, electrode annealing 

temperature, and the resulting sheet resistance. 

Test Average Nanowire Diameter 

(synthesis temperature) 

UV Treated Sheet 

Resistance 

Electrode Annealing 

Temperature 

1 72 nm (150 °C) Yes 39 Ω/□ 140 °C 

1 72 nm (150 °C) No 41 Ω/□ 140 °C 

2 87 nm (160 °C) Yes 23 Ω/□ 200 °C 

2 87 nm (160 °C) No 23 Ω/□ 200 °C 

3 233 nm Yes 20 Ω/□ 300 °C 

3 233 nm No 15 Ω/□ 300 °C 
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Figure 4.19 shows a voltage verse time plot for silver nanowire electrodes with 

different synthesis temperatrues and nanowire diameters subject to 20 mA/cm2 of 

constant current density. Interestingly, the UV-treated silver nanowires lasted two days 

longer in both cases for thinner nanowires. This was attributed to the oxide layer 

protecting the silver nanowires from corosion due to sulfur compounds in the air. Silver 

nanowires, with average nanowire diameter of 80 nm, synthesized at 150 °C and 160 °C 

lasted for 54 and 32 days, respectively, which is a new record for nanowires of this size. 

The longer lifetime of for silver nanowire synthesized at 150 °C was attributed to the 

lower contact resistance at the nanowire junctions compared to nanowires synthesized at 

160 °C. Table 4.4 shows silver nanowires synthesized at 150 °C required a lower 

annealing temperature, which suggests the nanowire junctions are easilly melded 

together. UV-treated and non-UV-treated silver nanowires with thicker diameters, failed 

after 128 days and 263 days, respectivly. The longer lifetime time of thicker nanowires 

was attributed to their higher thermal stability and longer corosion time. If the nanowires 

begin to corode, a larger diameter will reqire more time to completely corode than 

smaller diameters. The non-UV-treated nanowire electrroes with thicker diameters met 

the 6000 hour objective in Chapter 1. 
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Figure 4.19. Voltage verse time plot for silver nanowire electrodes with different 

synthesis temperatrues and nanowire diameters subject to 20 mA/cm2 of constant current 

density. 

Figure 4.20 shows a photograph of silver nanowire electrodes with 233 nm 

average nanowire diameters after (a) freshly sprayed, (b) 9 month of air exposure, (c) 9 

month of air exposure after failed from electrical, (d) failed from electrical stress, and 

silver nanowire electrodes with 80 nm average nanowire diameter (e) after failure and 15 

months’ exposure to air and (f) 15 months’ exposure to air. The dark grey color in Figure 

4.20 (b) was attributed to sulfur tarnishing the silver nanowires. However, the purple-red-

brown and yellow colors in Figure 4.20 (c) and (d) could be attributed to chlorine or 

sulfur silver tarnish [125]. It is interesting to note that the yellow color was always 

present as long as the electrode was subject to electrical stress. Once the power was 

turned off, the yellow color would fade to a purple-red-brown. Figure 4.20 (e) and (f) do 

not exhibit much color attributed to the thinner nanowires diameters lending to a more 

transparent electrode.  
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Figure 4.20. Photographs of silver nanowire electrodes with 233 nm average nanowire 

diameters after (a) freshly sprayed, (b) 5 month of air exposure, (c) 5 month of air 

exposure after failed from electrical, (d) failed from electrical stress, and Silver nanowire 

electrodes with 80 nm average nanowire diameter (e) after failure and 15 months’ 

exposure to air and (f) 15 months’ exposure to air. 

Figure 4.21 shows the EDS spectra of silver nanowire electrodes with thicker 

nanowire diameters with SEM image inset of measurement location after (a) failure from 

electrical stress and (b) left in air for 9 months. From the corresponding Table 4.5, sulfur 

was detected and no chlorine was detected in both cases. This is consistent with previous 

reports that claim sulfur compounds in air are primarily responsible for the corrosion of 

silver nanowires [73, 93]. The presence of sulfur (and not chlorine) was attributed to the 

silver nanowires corroding.  

(a) (b) (c) 

(d) (e) (f) 
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Figure 4.21. EDS spectrum of silver nanowire electrode with thicker nanowire diameters 

with SEM image inset of measurement location after (a) failure from electrical stress and 

(b) left in air for 9 months. 

Table 4.5. Wt.% of elecments detected from Figure 4.19 (a) and (b). 

  After failure from electrical stress After 9 month air exposure 

Element Line Intensity 

(c/s) 

Error 

2-sig 

Concentration 

(wt.%) 

Intensity 

(c/s) 

Error 

2-sig 

Concentration 

(wt.%) 

O Ka 10.92 2.090 1.850 5.28 1.454 0.969 

Si Ka 175.58 8.380 20.575 166.49 8.161 17.756 

S Ka 8.70 1.865 1.091 0.48 0.437 0.046 

Cl Ka 0.00 0.000 0.000 0.00 0.000 0.000 

Cu Ka 1.21 0.695 0.920 0.92 0.608 0.185 

Ag La 150.28 7.753 75.563 255.76 10.114 81.044 
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Figure 4.22 shows (a) XRD spectra of silver nanowires with average diameters of 

233 nm (b) zoomed in portion of (a). The two large peaks located at 38.2° and 44.4° in 

Figure 4.22 (a) and smaller peaks located at 64.5° and 77.5° in Figure 4.22 (b) can be 

attributed silver nanowires (111), (200), (220), and (311), respectively. These peaks were 

located using ICDD reference 01-087-0720 and also line up well with other reports [126]. 

Other smaller peaks from Figure 4.22 (b) located at 34.3°, 36.4°, 39.8°, and 42.4°, were 

attributed to Ag8S, Ag8S, AgS2, and Cu2O, respectively. These peaks were identified 

using ICDD reference number 01-078-2076 for Cu2O, 01-083-0674 for Ag8S, and 01-

083-0674 for AgS2. XRD future confirms the presents of sulfur bonding with the silver 

nanowires. The color changes observed in Figure 4.20 are likely due to sulfur tarnish on 

the silver nanowires.  
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Figure 4.22. (a) XRD spectra of silver nanowires with average diameters of 233 nm (b) 

zoomed in portion of (a) 

Figure 4.23 shows SEM images of failed silver nanowires electrodes with average 

diameters of (a) (b) 80 nm and (c) (d) 223 nm, where (a) and (c) are representative of the 

entire sample and (b) and (d) depict broken nanowires. From Figure 4.13 (a) and (c) no 
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broken nanowires or faulty connections are observed, and finding locations depicted in 

Figure 4.23 (b) and (d) proved difficult and time consuming. This suggests that the silver 

nanowire electrode failed due to a few key faults in the conductive percolating nanowire 

network. It is possible that the lifetime of the electrode could be enhanced if the 

conductive pathways within the nanowire mesh was more evenly distributed. Figure 4.23 

(b) and (d) show that the failure points for thinner nanowire typically occurred at 

nanowire junctions where failure points for thicker nanowires occurred along the 

nanowires themselves. This was attributed to that the thinner nanowires failing due to 

Joule heating and corrosion while the thicker nanowires failed due to corrosion. The 

longer lifetime of UV-treated electrodes for thinner nanowires was attributed to the thin 

oxygen layer slowing the corrosion process from the sulfur compounds in the air. The 

corrosion of the nanowires would occur more rapidly at nanowire junction, due to the 

higher temperature from Joule heating. The corrosion reduces the conductive area of the 

nanowires, which accelerates failure due to Joule heating. The thicker nanowires, on the 

other hand, likely had lower resistance at nanowire junctions. However, thicker 

nanowires are still susceptible to corrosion especially at defect cites within the nanowire 

[93]. The failure of UV-treatment thicker nanowire electrodes was attributed to the UV-

treatment reducing the conductive area of the nanowires, thus making defect cites more 

susceptible to Joule heating and corrosion [93, 95]. Figure 4.23 (d) also shows the two 

broken nanowires had a diameter of 121 nm and 167 nm, which is much thinner than the 

average nanowire diameter. It is likely that the thicker nanowires would last much longer 

if key percolating network connections were not dependent on thinner nanowires. 
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Figure 4.23. SEM images of failed silver nanowire electrodes with average diameters of 

(a) (b) 80 nm and (c) (d) 223 nm, where (a) and (c) are representative of the entire sample 

and (b) and (d) depict broken nanowires. 

Figure 4.24 shows voltage vs time of silver nanowire electrodes subject to 20 mA 

of constant current. After two months of rest time, the failed silver nanowire electrode 

was able to exhibit low voltage levels for 3 more days. After a second failure and one-

week rest time, the silver nanowire electrode exhibited low voltage levels for 3 hours. 

This self-healing could be very useful in light of stability concerns of silver nanowire 

electrodes. To date no tests have been made to study silver nanowire under electrical 

stress with intermittent rest times to simulate the operation of a solar cell at day and night 

a b 

c d 
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time. The self-healing was attributed to melted nanowires reforming together after 

cooling. 

 

 

Figure 4.24. Voltage vs time of silver nanowire electrodes subject to 20 mA of constant 

current. 

In summary, the PEDOT:PSS electrode exhibited a sheet resistance of 80 Ω/□ and 

average transmittance of 73%, which fell short of the objectives of sheet resistance less 

than 50 Ω/□ and average transmittance greater than 80%. The silver nanowire electrodes 

with nanowire diameters of 80 nm and 233 nm were able to lasted a maximum of 1,365 

hours and 6,319 hours, respectively. The thicker nanowires were able to meet the 6000-

hour objective but the thinner nanowires were not. UV-ozone treated thinner nanowires 

lasted for 2 days longer than non-treated electrodes, which was attributed to the oxide 

layer resisting nanowire tarnishing. Thicker nanowires failed sooner with UV-ozone 

treatment due to longer time for sulfur compounds to penetrate the protective oxide. 

Silver nanowires also exhibited a self-healing after being allowed to rest after failure. For 
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the first time a self-healing trait was observed in the silver nanowire electrodes. Given 

proper protection form tarnishing is provided, the self-healing of silver nanowire 

electrode would recover during the night and exhibit a long term stability. 
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CHAPER 5 CONCLUSIONS 

5.1 SUMMARY 

 The demand for energy continues to climb as the world’s fossil fuel supply wanes. 

Fossil fuels cannot provide a sustainable future. Renewable energy is the best option 

ensure future energy security. It is clear that wind, hydro, nuclear, and solar all have a 

part to play in the needed energy paradigm shift. But of the aforementioned renewable 

energies, only solar has the potential to meet global energy demands, not pose an 

environmental threat, or suffer from negative sentiment. Building integrated 

photovoltaics and one way to make effective use of available space and generate power 

where it is needed. Semitransparent organic solar cells for power generating windows is 

one example of building integrated photovoltaics. In order to be cost effective, however, 

the entire device must be solution processed, not utilizing expensive vacuum deposited 

indium tin oxide (ITO) electrodes.  

 Indium tin oxide has been the dominate transparent electrode technology for 

organic solar cells. Silver nanowire electrodes and poly(3,4-

ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) electrodes after strong 

acid treatments have shown much promise as a solution processed alternative to ITO. 

Strong acid treatments on PEDOT:PSS electrodes are not compatible with low cost role-

to-role fabrication on flexible plastic substratights. PEDOT:PSS films with solvent 

additives or solvent post treatments have not enhanced the conductivity to compete with 

ITO. To solve this, solvent blend additives and post treatments could be used as an 

alternative. The lifetime of silver nanowires was shown to fail quickly under electrical 

stress, with the best results reporting up to 20 days [95]. Adding a silver oxide layer to 
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the silver nanowires or increasing the nanowire diameter could enhance corrosion 

resistance and heat tolerance of the silver nanowire electrodes.  

There is a need for a fully solution processed-ITO free semi-transparent solar cell 

for power generating window applications. The objective of this work was to fabricate a 

fully solution processed semi-transparent solar cell without the use of ITO or vacuum 

deposition technology. To achieve this objective the following tasks were established: 1) 

Fabricate a transparent silver nanowire electrode (cathode) and PEDOT:PSS electrode 

(anode) with transparency greater than 80% and sheet resistance less than 50 Ω/□, 2) 

improve silver nanowire lifetime to 6000 hours or greater under constant electrical stress, 

and 3) fabricate a semitransparent solar cell with average transmittance greater than 50% 

within the visible light region (450 - 750 nm) and PCE greater than 4% using 

PEDOT:PSS and silver nanowire semitransparent electrodes. 

 PEDOT:PSS is composed of an electrically conductive polymer PEDOT+ and 

made soluble though coulombic interactions with the electrically insolating PSS-. Acid 

treatments on PEDOT:PSS films effectively removed excess PSS- and change PEDOT+ 

to its more conductive quinoid structure. Ethylene glycol (EG) or dimethyl sulfoxide 

(DMSO) solvent additives enhanced conductivity via morphology optimization and 

inducing quinoid PEDOT+ structure, respectively. Solvent post treatments wash away 

excess PSS- species. Using both solvent additives and solvent post treatments could 

mimic acid treatment on PEDOT:PSS films.  

 Silver nanowires have been shown to fail under electrical stress due to Joule 

heating and sulfur corrosion. When electrical current passes through these junctions, heat 

is generated, which causes the nanowires to melt and break electrical contact. Structural 
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defects in the silver nanowires are more susceptible to corrosion especially at elevated 

temperatures. A silver oxide is more heat resistance and could help prevent sulfur from 

corroding the nanowires, moreover, thicker nanowires may be more heat tolerant.  

 The effect of solvent additives, solvent blend additives, solvent post treatments, 

and solvent blend post treatments on the sheet resistances of PEDOT:PSS electrodes was 

investigated and optimized. Using transfer length method, atomic force microscopy 

(AFM), current sensing AFM, UV-visible spectroscopy, and Raman spectroscopy. A 

perovskite solar cell was fabricated on top of a four layer PEDOT:PSS semi-transparent 

electrode and characterized with AFM, X-ray diffraction (XRD), I-V curves, and 

transient photocurrent.  

 The lifetime of silver nanowire electrodes was studied by subjecting them to 20 

mA of constant current. The effects of different synthesis temperature, UV-ozone 

treatment, and nanowire diameter had on the lifetime was investigated. The electrodes 

were characterized using four-point-probe, UV-visible spectroscopy, scanning electron 

microcopy, energy dispersive X-ray spectroscopy, and XRD.  

 A four layer PEDOT:PSS electrode with 15 wt. % DMSO:EG (1:1) and post 

treatment by soaking in water:EG:ethanol (1:1:1) solution exhibited a sheet resistance of 

80 Ω/□ and average transmittance of 73%, which did not meet the task outlined in 

chapter 1. A perovskite solar cell fabricated on the PEDOT:PSS electrode exhibited a low 

power conversion efficiency (PCE) of 5.3%, which was attributed to defects within the 

perovskite layer, high sheet resistance of PEDOT:PSS electrode, and low transmittance 

of the PEDOT:PSS electrodes compared to the ITO reference device of 12.3% PCE.  



132 

 

 

 

 Silver nanowires electrodes met the task outlined in chapter 1 with sheet 

resistance less than 50 Ω/□ and transmittance greater than 80%. UV-ozone treated 

electrodes lasted for two days longer than non-treated silver nanowire electrodes (average 

diameter of 80 nm) and was attributed to the UV-ozone creating a protective silver oxide 

layer. Silver nanowires with thicker average nanowire diameters (233 nm) lasted for 128 

days and 263 days for UV-ozone treated and non-UV-ozone treated electrodes, 

respectively, which met the 6000 hour lifetime goal outlined in chapter 1. The thicker 

nanowires were more heat tolerant and failure was attributed to sulfur corrosion. The 

reduction in lifetime from UV-ozone treatment was attributed making these defect cites 

more reactive. This is the first report of silver nanowire electrodes observed to have self-

healing property after allowed to rest due to failure from electrical stress. The self-healing 

in silver nanowire electrodes could be monumental for solar cell applications as the 

electrodes would be able to self-repair at night time. 

5.2 CONCLUSIONS 

 PEDOT:PSS semitransparent electrodes did not meet the goals outlined in 

Chapter 1. Solvent blend additives and post treatments were not able to reduce the sheet 

resistance below 50 Ω/□ while maintaining a transmittance greater than 80%. Silver 

nanowire electrodes, on the other hand, were able to meet this goal. The lifetime of non-

UV-ozone treated silver nanowires electrodes with average nanowire diameter of 233 nm 

was able to exceed 6000 hour lifetime goal from chapter 1. Silver nanowire electrodes 

with thinner average nanowire diameter of 80 nm and UV-ozone treated silver nanowire 

electrodes (233 nm average diameter) did not meet the 6000 hour lifetime goal. Due to 
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time constraints, semi-transparent solar cell was not fabricated and the objective of this 

work is not complete. 

5.3 FUTURE WORK   

 PEDOT:PSS semitransparent electrodes sheet resistance can be further reduced 

by adding silver nanoparticles (less than 50 nm in diameter) into the PEDOT:PSS film. 

The silver nanoparticles would create a plasmonic effect and absorb UV light. A polymer 

active layer tuned to absorb infrared light in conjunction with the silver nanoparticles 

would enable a device to take advantage of all non-visible light regions of the solar 

spectrum. Silver nanowires embedded in a polydimethylsiloxane (PDMS) matrix should 

be explored as a bottom flexible electrode. Polymer active layers that absorbed in the 

infrared regions decompose at temperatures greater than 100 °C, thus having silver 

nanowire bottom electrode would be advantageous due higher annealing temperatures for 

the silver nanowires and electron transport layer. ZnO and AZO electron transport layers 

typically require annealing temperatures of 200 °C or greater and a top PEDOT:PSS 

would not need annealed. However, both inverted and regular semitransparent solar cell 

structure using silver nanowire and PEDOT:PSS electrodes should be explored.  
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APPENDIX A 

 

Figure A.1. Front Panel display from lab view program used for lifetime measurements 

on silver nanowire electrodes, where Source Level 1 and 2 are set to 0.02 A and the 

maximum limit is 10 volts. 
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Figure A.2. Block diagram corresponding the Front Panel in Figure A.76. 
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APPENDIX B 

 

Figure B.1. Raman spectrum of PEDOT:PSS films with various % wt. of EG:DMSO 1:1, 

1:2, and 2:1 v/v ratios 
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APPENDIX C 

 

Figure C.1. Silver nanowires synthesized at 160 C after (a) 10, (b) 15, and (c) 20 minutes 

of reaction time with average nanowire diameter of 60 nm, 312 nm, and 350 nm, 

respectively.  

(a) 

(b) 

(c) 
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