
South Dakota State University
Open PRAIRIE: Open Public Research Access Institutional
Repository and Information Exchange

Theses and Dissertations

2016

Plasma Treatment of Zinc Oxide Thin Film and
Temperature Sensing Using the Zinc Oxide Thin
Film
Al-Ahsan Talukder
South Dakota State University, alahsan.talukder@jacks.sdstate.edu

Follow this and additional works at: http://openprairie.sdstate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and
Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public
Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

Recommended Citation
Talukder, Al-Ahsan, "Plasma Treatment of Zinc Oxide Thin Film and Temperature Sensing Using the Zinc Oxide Thin Film" (2016).
Theses and Dissertations. Paper 1049.

http://openprairie.sdstate.edu?utm_source=openprairie.sdstate.edu%2Fetd%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openprairie.sdstate.edu?utm_source=openprairie.sdstate.edu%2Fetd%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openprairie.sdstate.edu/etd?utm_source=openprairie.sdstate.edu%2Fetd%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openprairie.sdstate.edu/etd?utm_source=openprairie.sdstate.edu%2Fetd%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=openprairie.sdstate.edu%2Fetd%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openprairie.sdstate.edu/etd/1049?utm_source=openprairie.sdstate.edu%2Fetd%2F1049&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:michael.biondo@sdstate.edu


PLASMA TREATMENT OF ZINC OXIDE THIN FILM AND TEMPERATURE 

SENSING USING THE ZINC OXIDE THIN FILM   

 

 

 

 

 

BY  

AL-AHSAN TALUKDER 

 

 

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the 

Master of Science 

Major in Electrical Engineering 

South Dakota State University 

2016 

 

 





iii 

 

ACKNOWLEDGEMENTS 

This thesis work was supported by Department of Electrical Engineering and 

Computer Science, South Dakota State University. 

I would like to express my gratitude to Dr. Qi Hua Fan for providing me an 

opportunity to work as a graduate research assistant at his research group in South Dakota 

State University. I appreciate his guidance and encouragement throughout the course of 

my research work. I am grateful to our group’s alumni, Jyotshna Pokharel for her 

guidance and directions during the beginning of my research work. I would like to thank 

Dr. Maheshwar Shrestha, Yamini Mohan, and Ishop Amatya for their cordial support 

during this journey.   

I would also like to thank my family members back in Bangladesh for their love 

and support. 

  



iv 

 

TABLE OF CONTENTS 

LIST OF FIGURES .......................................................................................................... vii 

LIST OF TABLES ...............................................................................................................x 

ABSTRACT ....................................................................................................................... xi 

CHAPTER 1. INTRODUCTION .....................................................................................1 

1.1. Background ...............................................................................................................1 

1.2. Previous Work ..........................................................................................................4 

1.3. Motivation .................................................................................................................8 

1.4. Objective ...................................................................................................................8 

CHAPTER 2. THEORY ....................................................................................................9 

2.1. Properties of zinc oxide ............................................................................................9 

2.1.1. Optical properties of zinc oxide .........................................................................9 

2.1.2. Structural properties of zinc oxide ...................................................................10 

2.1.3. Electrical properties of zinc oxide ...................................................................12 

2.2. Fabrication of zinc oxide film .................................................................................13 

2.2.1. Sol-gel process .................................................................................................13 

2.2.2. Spin coating .....................................................................................................14 

2.2.3. Annealing .........................................................................................................15 

2.3. Capacitively coupled plasma discharge ..................................................................16 



v 

 

2.4. Characterization of zinc oxide thin films ................................................................17 

2.4.1. Spectrophotometer ...........................................................................................17 

2.4.2. X-ray diffraction ..............................................................................................19 

2.4.3. Hall Effect measurement ..................................................................................21 

2.4.4. Atomic force microscopy .................................................................................24 

CHAPTER 3. EXPERIMENTAL PROCEDURE ........................................................26 

3.1. Fabrication of ZnO thin film ...................................................................................26 

3.1.1. Substrate Preparation .......................................................................................26 

3.1.2. Deposition of ZnO thin film ............................................................................26 

3.2. Plasma processing of ZnO thin film .......................................................................28 

3.2.1. Transmittance of plasma treated ZnO films .....................................................28 

3.2.2. XRD spectrum of plasma treated ZnO films ...................................................29 

3.2.3. Electrical properties of plasma treated ZnO films ...........................................30 

3.3. Temperature sensing using zinc oxide thin film .....................................................31 

3.3.1. Transmittance and spectral intensity measurements ........................................31 

3.3.2. Setup for ZnO based temperature sensing .......................................................32 

3.3.3. Structural and morphological measurement ....................................................33 

CHAPTER 4. RESULTS AND ANALYSIS ..................................................................35 

4.1. Plasma treatment of zinc oxide thin film ................................................................35 



vi 

 

4.1.1. Effect of plasma treatment on transmittance of ZnO films ..............................35 

4.1.2. Effect of plasma treatment on structural property of ZnO films .....................38 

4.1.3. Effect of plasma treatment on electrical parameters of ZnO films ..................42 

4.2. Temperature sensing using zinc oxide thin film .....................................................46 

4.2.1. Optical measurements for ZnO based temperature sensor...............................46 

4.2.2. Temperature sensing using ZnO film ..............................................................49 

4.2.3. ZnO film’s structural and morphological property before and after test .........51 

CHAPTER 5. CONCLUSIONS ......................................................................................53 

5.1. Summary .................................................................................................................53 

5.2. Conclusions .............................................................................................................56 

5.3. Future work .............................................................................................................57 

  



vii 

 

LIST OF FIGURES 

Figure 2.1. An example transmittance and reflectance spectrum for ITO film (modified 

[60]). .............................................................................................................. 10 

Figure 2.2. ZnO crystal structures (a) cubic rocksalt (b) cubic zinc blende, and (c) 

hexagonal wurtzite [1]. .................................................................................. 11 

Figure 2.3. Wurtzite ZnO structure with lattice constants: a = 3.25 Å and c = 5.2 Å, bond 

angles: α and β (=109.47˚) [1]. ...................................................................... 12 

Figure 2.4. Schematic diagram of Sol-gel spin coating process [70]. .............................. 14 

Figure 2.5. A schematic diagram of spin coating process [73]. ........................................ 15 

Figure 2.6. Capacitively coupled RF plasma discharge system........................................ 16 

Figure 2.7. A simple schematic diagram of spectrophotometer [80]. ............................... 18 

Figure 2.8. Geometry of interference of two waves scattered by two planes [81]. .......... 20 

Figure 2.9. Schematic diagram of an X-ray diffractometer [82]. ..................................... 21 

Figure 2.10. Simple illustration of Hall Effect [84]. ......................................................... 22 

Figure 2.11. Schematic showing the Hall Effect in (a) p-type semiconductor (b) n-type 

semiconductor [83]. ....................................................................................... 23 

Figure 2.12. Schematic diagram of an atomic force microscope [87]. ............................. 25 

Figure 3.1. Fisher scientific ultrasonic bath (model: FS20D). .......................................... 26 

Figure 3.2. Laurell spin coater (model: WS-400B-6NPP/LITE). ..................................... 27 

Figure 3.3. Thermo Scientific furnace. ............................................................................. 27 



viii 

 

Figure 3.4. Schematic diagram of custom capacitive coupled plasma system. ................ 28 

Figure 3.5. Transmittance measurement system using Filmetrics F-20 optical 

spectrometer. .................................................................................................. 29 

Figure 3.6. Rigaku Smartlab X-ray diffractometer [88]. .................................................. 30 

Figure 3.7. HMS-3000 Ecopia Hall Effect measurement system. .................................... 31 

Figure 3.8. Schematic diagram of experimental setup for ZnO based optical temperature 

sensor. ............................................................................................................ 33 

Figure 3.9. BRUKER Dimension icon atomic force microscope. ..................................... 34 

Figure 4.1 Transmittance of oxygen plasma treated ZnO film. ........................................ 35 

Figure 4.2. Transmittance of hydrogen plasma treated ZnO films. .................................. 36 

Figure 4.3. Transmittance spectra of the ZnO film treated with oxygen, hydrogen, and 

nitrogen plasmas separately and sequentially. ............................................... 38 

Figure 4.4. XRD intensities of ZnO films treated with oxygen plasma. .......................... 39 

Figure 4.5 XRD intensities of ZnO films treated with hydrogen plasma. ........................ 40 

Figure 4.6. XRD intensity patterns of as-deposited, 20 min O2, 30 sec H2, 20 min N2, and 

all plasma treated ZnO films. ......................................................................... 42 

Figure 4.7. Carrier concentration (n) of as-deposited, 20 min O2, 30 sec H2, 20 min N2, 

and all plasma treated ZnO film. ................................................................... 44 

Figure 4.8. Hall mobility (µ) of as-deposited, 20 min O2, 30 sec H2, 20 min N2, and all 

plasma treated ZnO film. ............................................................................... 45 



ix 

 

Figure 4.9. Resistivity of as-deposited, 20 min O2, 30 sec H2, 20 min N2, and all plasma 

treated ZnO film. ........................................................................................... 46 

Figure 4.10. Transmittance versus wavelength of sol-gel derived ZnO film at different 

temperatures. .................................................................................................. 47 

Figure 4.11. Transmittance versus wavelength of glass substrate at different temperatures.

 ....................................................................................................................... 48 

Figure 4.12. Normalized spectral intensity distribution of the UV LED light source. ..... 49 

Figure 4.13. Photodiode current at varying temperature for ZnO coated glass and glass 

substrate. ........................................................................................................ 50 

Figure 4.14.  XRD pattern of a ZnO thin film: (a) as-prepared and (b) tested at 310°C. . 51 

Figure 4.15. AFM 2D topography of (a) as prepared (b) tested at 310 °C, AFM 3D 

topography of (c) as prepared, and (d) tested at 310 °C. ............................... 52 

 

  



x 

 

LIST OF TABLES 

Table 4.1. FWHM values for XRD peaks of ZnO films treated with oxygen plasma ...... 39 

Table 4.2. FWHM values for XRD peaks of ZnO films treated with hydrogen plasma. . 40 

Table 4.3. FWHM values of XRD peaks of oxygen, hydrogen, and nitrogen plasma 

treated ZnO films. .......................................................................................... 42 

 

  

 

 

  



xi 

 

ABSTRACT 

PLASMA TREATMENT OF ZINC OXIDE THIN FILM AND TEMPERATURE 

SENSING USING THE ZINC OXIDE THIN FILM 

AL-AHSAN TALUKDER 

2016 

Zinc oxide is a direct and wide bandgap, II-VI semiconductor. It has large exciton 

binding energy, large piezoelectric constant, strong luminescence, and high thermal 

conductivity. These properties make zinc oxide as a suitable material for various 

optoelectronic applications.  Vacuum based processes of fabrication of zinc oxide thin 

film dominate the market for their better electrical and optical properties. In this work, 

zinc oxide thin films were prepared by easy and low cost solution method with oriented 

crystal growth along (002) plane. To improve electrical and optical property of the 

fabricated zinc oxide thin films, films were treated with oxygen, hydrogen, and nitrogen 

plasmas. Oxygen plasma treatment improved the crystallinity of zinc oxide thin film. 

Hydrogen plasma treatments were found very effective in improving the electrical 

conductivity of the film sacrificing film’s transmittance. Nitrogen plasma treatment 

following hydrogen plasma treatment could restore the transmittance maintaining the 

improved electrical property. Sequential oxygen, hydrogen, and nitrogen plasma 

treatment decreased the resistivity of zinc oxide thin film by more than two order 

maintaining transmittance close to the as deposited film. This work also reports a 

temperature sensor based on the temperature-dependent bandgap of zinc oxide 

semiconductors. Transmittance measurement of the ZnO films at different temperatures 

showed sharp absorption edge at around 380 nm and red shift characteristics.  An optical 
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temperature sensor was established using the zinc oxide coated glass as sensing element, 

ultra-violet light emitting diode as light source, and a ultra-violet photodiode as light 

detector. Short circuit current of the photodiode was measured over a range of the zinc 

oxide film’s temperature. The short circuit current decreased linearly with the increase of 

the temperature and the sensitivity was ~0.1 μA/°C.  
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Zinc oxide is a very promising compound semiconductor material. It has a direct 

and wide bandgap of 3.37 eV at room temperature which enables it to be used in various 

optoelectronic applications including light-emitting diodes, laser diodes and 

photodetectors working in blue/UV region of electromagnetic spectrum [1, 2]. Its large 

exciton binding energy of 60 meV enables applications in exciton effect based optical 

devices [3, 4].  Zinc oxide is available in large single crystal which offers a greater 

advantage over other wide bandgap semiconductors. Growth on native substrate results 

zinc oxide layer with reduced defect densities, which gives better performance in various 

optoelectronic and photonic devices [5]. Surface property of zinc oxide thin film and 

nanostructure is sensitive to the exposure of different gases. This makes zinc oxide a 

promising material for gas and chemical sensor applications [6]. As the bandgap of zinc 

oxide is affected by temperature, thin film of zinc oxide can also be used in temperature 

sensing applications [7, 8].    

Zinc oxide is increasing its demand as a material for transparent conductive oxide 

(TCO). TCOs are optically transparent in visible electromagnetic spectrum and 

electrically conductive. TCOs are used in liquid crystal displays (LCD), organic light 

emitting diode (OLED) displays, thin film solar cells, and touch screens [9, 10]. Indium 

tin oxide (ITO) is the most widely used TCO in current market for its high transmittance 

and conductivity. But ITO is becoming expensive for indium’s scarcity in nature [10-12]. 

Florine tin oxide (FTO) could be an alternative of ITO for its suitable conductivity and 

low cost. But FTO’s use is limited for its low transmittance in infrared region, current 
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leakage due to its structural defects. Indium doped cadmium oxide and aluminum doped 

zinc oxide are good replacement for ITO or FTO for their transmittance and conductance 

required for display, touchscreen and solar cell applications. Indium doped cadmium 

oxide’s use is limited for cadmium’s toxicity. Zinc oxide is a promising TCO material for 

its availability, low cost, non-toxicity, suitable optical and structural property [10, 13].                     

Zinc oxide thin films can be grown by various techniques including chemical 

vapor deposition (CVD) [14], RF magnetron sputtering [15], epitaxy [16], pulsed laser 

deposition (PLD) [17] and metal organic chemical vapor deposition (MOCVD) [18-20]. 

These techniques dominate the current market, although they are costly vacuum-based 

processes. Solution-based sol-gel deposition of ZnO thin films has been reported as a 

simple, easy and low-cost method [21-35]. Sol-gel derived nanocrystalline zinc oxide 

thin films suffer from relatively poor electrical and optical properties, due to the high 

density of carrier traps and potential barriers at grain boundaries [36]. Post treatments e.g. 

annealing, plasma processing can improve the quality and performance of the fabricated 

thin films [37-39].  

Plasma is one of the four fundamental states of matter. It is ionized gas containing 

positive ions and free electrons in proportions resulting in more or less no overall electric 

charge. Plasma is typically formed at low pressures or at very high temperatures. Plasmas 

can have temperatures and energy densities higher than can be attained by chemical or 

other means. Plasmas can produce energetic active species which cause physical changes 

or chemical reactions that can occur only with difficulty or not at all in ordinary chemical 

reactions. Active species can include ultraviolet or visible photons; charged particles, 
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including electrons, ions, and free radicals; and highly reactive neutral species, excited 

atomic states, and reactive molecular fragments. Low temperature plasmas can be 

sustained by electron impact ionization of feed gases driven by external radio frequency 

power (RF) source [40].  

Plasma processing has wide applications in microelectronics industries. RF 

plasma has been utilized for processing metallic, semiconductor, and dielectric materials 

in micro/nano fabrication, deposition of thin films, modification of surface properties. 

Without plasma assisted etching and material deposition on semiconductor wafers large 

scale microelectronics manufacturing would simply be unfeasible [41]. Plasma 

processing has also been used in tuning optical, electrical properties of transparent 

conductive oxides and zinc oxide thin films [37-39, 42, 43].  

          Conventional temperature measurement using thermocouple is based on 

thermoelectric effect and requires the sensor being in direct contact with the interested 

object [44, 45]. In many applications, electrical feedthrough is not allowed or not 

convenient. Hence, optical measurement of temperature which does not require electrical 

feedthrough is needed. Infrared temperature sensors have been used for temperature 

measurement [46]. As thermal emission depends on surface status and morphology, 

careful calibration is necessary for achieving high accuracy [46].  

It is known that the electrical and optical properties of semiconductors strongly 

depend on temperature. The effect of temperature on the energy bandgap is of particular 

interest. In general, the bandgap of semiconductors decreases with increasing temperature 

[47]. This fundamental property leads to the potential of using semiconductors for 
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temperature sensing, although most semiconductor devices require small variation of 

bandgap in the operation temperature range. Among common semiconductors, zinc oxide 

(ZnO) has relatively large bandgap-temperature coefficient[7]. Zinc oxide has bandgap of 

3.37 eV at room temperature [48, 49]. This leads to a sharp optical absorption edge at 

about 368 nm. The absorption edge exhibits red-shift with increasing temperature [50]. 

The bandgap-temperature coefficient of ZnO is -0.0003 eV K
-1

 [51, 52]. These properties 

make ZnO as an attractive material for optical temperature sensing.  

1.2. Previous Work 

Hydrogen can act as a shallow electron donor in several conductive oxide 

materials, either in interstitial positions or on an oxygen site [53, 54]. Effects of hydrogen 

plasma treatment on spray pyrolysis processed transparent conducting oxides were first 

reported by Major et al. in 1986. From X-ray photoelectron spectroscopy results they 

reported that hydrogen plasma could not reduce IZO films which they attributed to the 

presence of protective OH and OH ... O species on the surface of IZO [39].  

C-axis orientated, polycrystalline ZnO films were fabricated on Pyrex glass 

substrate by sol-gel process and dc electrical conductivity and optical properties were 

investigated by Natsume et al. on 2000 [21]. Effect of air annealing temperature on 

electrical resistivity was experimented in temperature range 500-575 ˚C. Minimum 

resistivity of 28.2 Ω was obtained for annealing temperature of 525 ˚C. Films were 

transparent in the 400 – 1000 nm wavelength range of electromagnetic spectrum and had 

sharp absorption edges at 380nm. The absorption analysis revealed optical bandgap of 

3.20- 3.21 eV and direct electron transition.  



5 

 

 

 

Hydrogen’s doping characteristics in ZnO based on density functional theory was 

reported by Walle et al. on 2000 [53]. Generally, hydrogen acts as an amphoteric 

impurity: in p-type material, hydrogen incorporates as H
+
 (a donor), and in n-type 

material as H
-
 (an acceptor) counteracting prevailing conductivity. But in ZnO which 

typically exhibits n-type conductivity, hydrogen acts as a shallow donor and increases the 

conductivity. These insights have important consequences and utilization of hydrogen in 

other oxides too.     

Two years later, on 2002, Hofmann et al. experimentally proved the prediction of 

Van de Walle [Phys. Rev. Lett. 85, 1012 (2000)] by electron paramagnetic resonance 

(EPR) and electron nuclear double resonance (ENDOR) spectroscopy measurements 

[55]. EPR and Hall measurements showed the presence of two donors (D1 and D2) in 

nominally undoped ZnO single crystals. It was found that one of the two observed donor 

resonances was related to hydrogen. The concentration of hydrogen donor in 

commercially available ZnO was reported to be (6±2) x 10
16

 cm
-3

.  

The effect of hydrogen and other dopants (Al, Li, and 3d transitional metals) on 

the conductivity of zinc oxide film was investigated through ac impedance spectroscopy 

by Zhou et al. on 2004 [56]. Aluminum doping of ZnO increased the dc conductivity by 

about two orders. Lithium acted as acceptor and Li doping decreased the intrinsic n-type 

carrier density hence reduced the conductivity of the ZnO film. It was also found that 3d 

transitional metals (Mn, Co, and Cu) doping decreased the conductivity where Cu doping 

decreased the conductivity most i.e. two orders lower than the undoped ZnO. Hydrogen 

doping was done by ion implantation method. Hydrogen doping increased conductivity of 
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ZnO by four orders i.e. from 5E-2 to 350 Ω
-1

cm
-1

. Effects of hydrogen dopant on film’s 

structural and optical property were not reported.  

Nitrogen doped p-type zinc oxide films were grown using high-vacuum plasma-

assisted chemical vapor deposition method by Barnes et al. in 2005[57]. Films were (002) 

oriented and nitrogen doping concentration range was 0-2%. XRD measurement revealed 

that lattice constant decreased with increasing nitrogen doping concentration. P-type 

conductivity was confirmed for high doping level by both Seebeck and Hall 

measurements. The p-type conductivity was unstable and films became n-type after 

several days.  

Effects of oxygen plasma on surface composition and work function of radio 

frequency magnetron sputtered zinc oxide films were reported by Kuo et.al in 2012. 

Oxygen plasma treatment resulted in an electronegative surface and an associated dipole 

moment, which increased the work function of ZnO from 3.74 eV to 4.21 eV [42]. 

Effects of oxygen plasma on optical and electrical properties of zinc oxide films were not 

reported.  

On 2014, Morales-Masis et al. reported improved conductivity in amorphous 

aluminum doped zinc tin oxide (a-ZTO:Al) thin films by hydrogen plasma treatment. 

They showed that hydrogen plasma treatment reduced the resistivity of RF magnetron 

sputtered a-ZTO:Al films by 57% and increased the absorbance by only 2% [58]. These 

works insinuated the possibility of improving electrical properties of sol-gel processed 

ZnO by H2 plasma treatment.      
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A transmission-type fiber optic temperature sensor was reported on 2010 [50]. 

The sensor was made by depositing ZnO thin film onto sapphire fiber-ending, which was 

set in the region to be measured. Light from a white light source passed along a 

multimode optical fiber and reached a graded index lens where the light got collimated 

and then travelled through the sapphire fiber and ZnO sensing element. Then the light 

was again focused by another graded index lens to the output multimode optical fiber. 

The output light from the multimode optical fiber was detected by an optical 

spectroscope. That transmission type fiber optic sensor had a resolution of 2 °C.  

A reflection-type fiber optic temperature sensor using ZnO thin film was reported 

on 2014 [59]. That reflection type sensor’s main part was a sensing head, which was 

made up of a convex lens, a metal tube, and a cone type sapphire prism. The sensing head 

was connected to a coupling fiber end. Light from a LED source of wavelength 350-450 

nm was first injected to the coupling fiber. Light passed along the fiber and reached the 

sensing head, reflected back in ZnO coated cone prism, and again travelled along another 

branch of fiber which was coupled to a fiber-optical spectroscope. For these ZnO-based 

sensors the main sensing part had physical contact with other parts of the sensing system. 

Furthermore, the bandgap of insulators (e.g. optical fiber) is also expected to change with 

temperature. No previous studies tried to identify and/or distinguish the effects from the 

ZnO and the support material (e.g. optical fiber). 
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1.3. Motivation 

Need for improved electrical properties of zinc oxide thin films maintaining good 

optical and structural properties. Need for an optical temperature measurement scheme 

requiring no electrical feedthrough or direct contact.   

1.4. Objective 

Fabricate zinc oxide thin film by easy and low cost solution based sol-gel process. 

Investigate whether plasma processing can improve opto-electronic properties of sol-gel 

derived zinc oxide thin film. In addition, develop a zinc oxide based optical temperature 

sensor. For accomplishing the objectives, following tasks were completed. 

1. Fabricate zinc oxide thin film on glass substrate by easy and low cost solution 

based sol-gel process. 

2. Treat the zinc oxide thin films by oxygen, hydrogen, and nitrogen plasma to 

improve film’s opto-electronic properties. 

3. Investigate the temperature dependent red-shift property of absorption edge of 

zinc oxide film and develop an optical temperature sensor.   
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CHAPTER 2. THEORY 

2.1. Properties of zinc oxide  

2.1.1. Optical properties of zinc oxide 

Transmittance of a zinc oxide film depends upon the fabrication condition, 

impurity and defect density, and thickness of the film. The percentage transmittance of 

any thin film is related to its thickness (𝑡) and absorption co-efficient (𝛼) by following 

equation; 

               %𝑇 = 10−𝛼𝑡 × 100 (2.1) 

Higher the thickness of the film, lower the transmittance of the film. Zinc oxide films can 

be prepared with transmittance above 90%. Transmittance measurement of zinc oxide 

film shows a sharp absorption edge at 380 nm which refers to the photon energy of 3.26 

eV. This absorption edge corresponds to the direct inter-band transition of electron from 

valance band to conduction band [5].  

Zinc oxide film is doped with a metal such as Al or Ga to increase the carrier 

density hence the conductivity of the film. Transmission window of a transparent 

conductive oxide (TCO) is limited by plasma oscillation frequency and bandgap 

associated frequency. Plasma oscillations alternatively known as Langmuir waves refer to 

the rapid oscillations of the electron density in conducting media. It can be described as 

dielectric function’s instability of the of a free electron gas. At higher frequencies of 

photon than the material’s plasma frequency, material acts like a transparent dielectric. At 

lower photon frequencies than the plasma frequency material reflects or absorb the 

photons. Angular frequency (ωp) of plasma oscillation is defined by following equation,        



10 

 

 

 

               ωp = √(
ne2

meε0
) (2.2) 

where, n is the number density of electrons, e is the unit charge, me is the mass of 

an electron, ε0 is the vacuum permittivity. It is usually desired to increase the 

conductivity hence high electron density of the film for TCO applications. As seen from 

Eqn. (2.2), increase of n will result in increased plasma frequency i.e. decreased plasma 

oscillation wavelength which narrows the transmission window of the TCO. Figure 2.1 

shows an example transmittance and reflectance spectrum for indium tin oxide (ITO) film 

along with plasma frequency.    

 

Figure 2.1. An example transmittance and reflectance spectrum for ITO film (modified 

[60]). 

2.1.2. Structural properties of zinc oxide  

Group II-IV semiconductors usually crystallize in either cubic zinc blende or 

hexagonal wurtzite structure. Crystal structure of ZnO shares hexagonal wurtzite, cubic 

zinc blende, and cubic rocksalt as shown in Figure 2.2. Wurtzite structure is 
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thermodynamically stable at ambient conditions and thus most common. ZnO zinc-

blende structure is metastable and can only be stabilized by growth on cubic substrates 

such as ZnS, GaAs/ZnS. ZnO rocksalt structure may be obtained at relatively high 

pressures usually above 10 GPa [1].  

 

Figure 2.2. ZnO crystal structures (a) cubic rocksalt (b) cubic zinc blende, and (c) 

hexagonal wurtzite [1].  

Figure 2.3 shows the ZnO wurtzite structure with lattice constants and bond 

angles. It has been that highly c-axis oriented wurtzite ZnO films could be synthesized on 

silicon, glass or sapphire substrate. Hexagonal ZnO wurtzite unit cell has lattice constants 

ranging from 3.2475 to 3.2501 Å for the a parameter and from 5.2042 to 5.2075 Å for the 

c parameter [1].  The bonding of ZnO is mostly ionic (Zn
2+

 and O
2-

) with catine and 

anion radii of 0.074 nm and 0.140 nm respectively which accounts for preferential 

formation of wurtzite structure and strong piezoelectricity in ZnO.  
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Figure 2.3. Wurtzite ZnO structure with lattice constants: a = 3.25 Å and c = 5.2 Å, bond 

angles: α and β (=109.47˚) [1]. 

2.1.3. Electrical properties of zinc oxide 

Zinc oxide has relative large-direct bandgap of ~3.3 eV at room temperature. This 

large bandgap of facilitate use of zinc oxide for breakdown voltages, lower electronic 

noise, ability to sustain large electric fields, and high-power and high-temperature 

operation. The bandgap of zinc oxide can be tuned by alloying with MgO and CdO. 

Adding of Mg increases the bandgap whereas Cd decreases the bandgap of ZnO. 

Undoped zinc oxide has n-type conductivity. Cause of this n-type conductivity has been 

debated for long time. It has been postulated that n-type conductivity comes from oxygen 

vacancies or zinc interstitials in zinc oxide structure [61-64]. But recent density 

functional calculations proved that oxygen vacancies and zinc interstitials in zinc oxide 

are deep donors hence cannot contribute to the conductivity of ZnO [53]. This has also 

been experimentally proved by electron paramagnetic resonance (EPR) and Hall 

measurements that oxygen vacancies cannot contribute to conductivity rather the 

interstitial and substitutional hydrogen act as shallow donor and contribute the n-type 

conductivity of ZnO [55]. N-type conductivity of ZnO can be enhanced by substituting 
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Zn atom with group-III (e.g. Al, Ga, In) or by substituting O atom with group-VII 

elements (e.g. Cl or I) [65]. Resistivity of zinc oxide is related to carrier mobility and 

concentration in zinc oxide by following equation, 

               𝜌 =  
1

𝑛𝑒µ
 

(2.3) 

where 𝑛 is carrier density, µ is carrier mobility, 𝑒 is charge of electron and 𝜌 is the 

resistivity of zinc oxide.  

Reproducible, stable, and consistent p-type doping of zinc oxide has been proved 

to be a difficult task [1]. P-type doping is tough because of the presence of high-density 

shallow donors and defects such as oxygen vacancy which is no longer considered 

shallow donor but still act as compensation center for p-type dopants. P-type doping of 

ZnO can be accomplished by group-I elements such as Li, Na, K; group-V elements such 

as N, P and As. Cu and Ag can also be used to achieve p-type doping of ZnO. However 

many of these dopants are deep acceptors and cannot contribute to p-type conductivity of 

ZnO [48]. Though fabrication of p-type ZnO has been reported, reproducible, long 

lasting, and consistent p-n junction has not yet been realized [66-68].  

2.2. Fabrication of zinc oxide film 

2.2.1. Sol-gel process 

Sol-gel process is a wet-chemical technique for producing solid materials from 

small molecules. This process is usually used for fabrication of metal oxides. In this 

process, the sol (or solution) gradually evolves toward a gel-like network comprising 

both a liquid phase and a solid phase [69]. Sol-gel process of thin film deposition has 
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many advantages over other techniques. It allows easy control over the chemical 

composition of the precursor solution. It is also low temperature process and it offers 

high yield, fast throughput roll to roll fabrication of various organic and inorganic thin 

films [69]. Sol-gel process of ZnO fabrication requires three basic steps: (i) solution 

preparation, (ii) coating and (iii) heat treatment. The precursor solution can be coated on 

the substrate using different method such as dip coating, spin coating or spray technique. 

Figure 2.4 shows a schematic diagram of Sol-gel process involving spin coating method.  

 

Figure 2.4. Schematic diagram of Sol-gel spin coating process [70].  

2.2.2. Spin coating 

Spin coating is a widely used method to deposit uniform thin film on flat 

substrate. A machine is used to rotate the sample in this process which is known as spin 

coater or spinner. In this method, the substrate is mounted on the chuck of the spin coater 

and the coating material is dropped at the center of the substrate which is either still or 

spinning at very low speed. Then the sample is spun at higher speed to spread the coating 

material uniformly over the substrate by centrifugal force arising from rotation of the 

sample. During the spinning of coated substrate, solvent evaporates and a uniform and 

thin layer of coating material on the substrate is formed. ZnO film of uniform thickness 

can be deposited using spin coating process. In this process, ZnO precursor solution is 
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dropped onto the substrate then the substrate is rotated usually at 2000-4000 revolutions 

per minute for 10-40 seconds. Higher spinning speed and longer spinning time results in 

thinner film. The thickness of the film also depends on the solution viscosity. Film 

thickness (𝑡) is dependent upon spin speed (𝑓), initial solution viscosity (𝑣0), and 

evaporation rate (𝑒) by following equation: [71, 72]  

               𝑡 = 𝑓−2/3𝑣0
1/3𝑒1/3 

(2.4) 

 

Figure 2.5. A schematic diagram of spin coating process [73]. 

2.2.3. Annealing  

Annealing is a heat treatment of any material to alter its physical and sometime 

chemical changes to the material to make it more crystalline and less defective. During 

the annealing process the individual atoms of the material gains energy, migrate in the 

lattice, and reduce dislocation defects. Solution based zinc oxide thin film fabrication 

requires preheating and annealing of the spin coated or dip coated samples to evaporate 

the organic solvents and decompose zinc acetate to form zinc oxide film on the substrate. 

At high temperature, zinc oxide atoms crystallize in preferred orientation. Solution based 

zinc oxide fabrication usually requires annealing temperature equal or higher than 500 

degree Celsius. Higher annealing temperature of sol-gel processed zinc oxide film results 

in larger crystal size [52, 74-78]. Ivanova et al. reported sol-gel derived zinc oxide film 
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with crystal size of 22nm for annealing temperature of 400 ˚C  whereas crystal size was 

40 nm for 750 ˚C annealing temperature [74]. However, very high annealing temperature 

can cause micro fracture and damage the film resulting increased surface roughness [77].    

2.3. Capacitively coupled plasma discharge 

Capacitively coupled plasma (CCP) is widely used because of its simplicity, low-

pressure operation, and relatively low equipment cost. A CCP system has two electrodes 

separated by small distance. Feed gas is supplied at lower than atmospheric pressure. A 

CCP system is driven by a radio-frequency (RF) power supply which usually operates at 

13.56 MHz. One of two electrodes is connected to the RF power supply, and the other 

one is grounded. As this configuration is alike in principle to a capacitor in an electric 

circuit, the configuration is called a capacitively coupled plasma system.  A schematic 

diagram of a typical capacitively coupled plasma discharge system is shown in Figure 

2.6. A matching network with variable reactive elements is added for maximum power 

transfer from the external power source to the plasma load.  

 

Figure 2.6. Capacitively coupled RF plasma discharge system.  

When RF power is applied to the metallic electrodes, the feed gas is ionized. The 

applied electric field accelerates electron and gives rise to its kinetic energy. If the 

electric field is strong enough, the accelerated electrons hit other atoms, ionize those 
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atom, and produces secondary electrons. This process leads to avalanche breakdown 

resulting ionization of the feed gas. Some of the exited electrons recombine with the atom 

and lose energy in the form of visible radiation resulting glowing of the discharge. 

Typical electron density is ~ 10
9
 – 10

10
 cm

-3
 in capacitively coupled plasma systems. RF 

power supply initiates and sustains the plasma discharge by providing power to the 

plasma [41].  

2.4. Characterization of zinc oxide thin films 

2.4.1. Spectrophotometer 

A spectrophotometer is an optical characterization system which can determine 

the transmittance, absorbance, and reflectance spectrum of a sample over ultra-violate, 

visible, and near infra-red range of electromagnetic spectrum. As the name implies, a 

spectrophotometer consists of two parts; a spectrometer and a photometer. The 

spectrometer can produce light of any desired wavelength and the photometer can detect 

the intensity of any incident light of any specific wavelength. A simple schematic 

diagram of spectrophotometer is shown in Figure 2.7. Main parts of a spectrophotometer 

are a light source, a monchromator, a sample holder, and a detector. The monochromator 

splits the light coming from the source into individual wavelength components, and 

allows a single wavelength light at a time. The monochromatic light passes through the 

sample and incidents on the detector [79]. The detector can detect the intensity of light 

transmitted through the sample and give corresponding electrical signal. The software 

installed in the computer receives this voltage signal and gives a spectrum over wide 

wavelength range (e.g. 200 -1700 nm).  
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Figure 2.7. A simple schematic diagram of spectrophotometer [80]. 

The transmittance irradiance (𝐼) is related to incident irradiance (𝐼0) by Beer Lambert 

law given in Eqn. 2.5 where α is the absorption coefficient and t is the thickness.  

               𝐼 = 𝐼𝑜10−𝛼𝑡 (2.5) 

Transmittance is the ratio of transmittance irradiance (𝐼) is related to incident irradiance 

(𝐼0) given in Eqn. 2.6 and usually expressed in percentage (%).  

               %𝑇 =
𝐼

𝐼0
× 100 = 10−𝛼𝑡 × 100 (2.6) 

As shown in Eqn. 2.7, absorbance 𝐴 is the product of absorption coefficient, 𝛼 and 

thickness, 𝑡 of the sample.  

               𝐴 = 𝛼𝑡 (2.7) 

Absorbance 𝐴 is related to Transmittance 𝑇 as given in Eqn. 2.8. When all the light 

passes through the sample without any absorption, Absorbance 𝐴 is zero, and 

Transmittance is 100%. If all the light is absorbed, Transmittance is 0% and Absorbance 

is infinite [79].  
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               𝐴 = log (
𝐼0

𝐼
) = log

100

%𝑇
= 2 − log(%𝑇)  (2.8) 

2.4.2. X-ray diffraction 

X-ray diffraction (XRD) is an analytical technique for phase identification of 

crystalline materials and used for determining crystal structure, crystallinity, lattice 

parameters, atomic spacing, and percent phase composition of sample under test. In XRD 

X-ray is used as its wavelength is comparable with the spacing of the atomic layers of 

crystalline sample. XRD measurements work as a fingerprint of a crystalline material.  

Crystalline materials contain layers of atoms arranged periodically in specific order. 

When monochromatic X-ray beam strike the sample, x-ray beam is scattered by atoms in 

different layers. Such geometry is shown in Figure 2.8.  Scattered beam travels in another 

direction and produce constructive and destructive interference determined by Bragg’s 

law:  

               2𝑑 sin 𝜃 = 𝑛𝜆 
(2.9) 

here, 𝑑 is the spacing between diffracting planes, λ is the wavelength of the beam, 

𝜃 is the incident angle, and 𝑛 is any integer indicating order of diffraction.  
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Figure 2.8. Geometry of interference of two waves scattered by two planes [81].  

 An X-ray diffractometer is composed three main components; an X-ray tube, a 

sample holder, and an X-ray detector as shown in Figure 2.9. X-ray is produced in the X-

ray tube by bombarding a metal target by electron beam emitted from a hot filament. The 

electron beam knockout electrons from K-shell of the target material. Vacancy in the K-

shell is filled by electron dropping down from L or M shell. These dropping electron 

emits energy in the form of X-ray having wavelength in Angstrom range. Copper is the 

most common target material producing x-ray having wavelength of 1.5418Å. The X-ray 

beam is collimated and passed through a monochromator to filter the x-ray beam of 

specific wavelength. The monochromatic X-ray beam is then directed to sample. Incident 

X-ray interacts with the atomic layers of sample which scatter the incident beam toward 

x-ray detector. X-ray detector detects the scattered beam of X-ray and counts the number 

of scattered X-rays. The arrangement of detector mounting is such that when the sample 

is rotated by and angle of θ from the incident beam, the detector mounted on the arm 
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rotates by angle of 2θ to collect the diffracted X-rays. An instrument named goniometer 

is used to maintain the angle and rotate the sample. [81, 82]     

   

Figure 2.9. Schematic diagram of an X-ray diffractometer [82].    

2.4.3. Hall Effect measurement 

Hall Effect measurement is an electrical characterization method utilizing Hall 

Effect to determine carrier density, mobility of carriers, and electrical resistivity in 

semiconductors. Hall Effect is production of electric voltage difference across a flat 

conductor orthogonal to electrical current and a magnetic field applied perpendicular to 

the direction of electrical current. Figure 2.10 shows a simple illustration of Hall Effect. 

When a magnetic field is applied perpendicular to the direction of current flow, the 

carriers of the current experience a Lorentz force normal to both magnetic field and 

current direction and distribution of carrier becomes non uniform. The Lorentz force is a 

vector quantity which has magnitude and direction determined by carrier type 

(electron/hole), magnetic field’s direction and carrier’s direction. Resultant force on the 

carrier is, 
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 𝑭 = 𝒒(𝑬 + 𝒗 × 𝑩) 
(2.10) 

Where, 𝑬 is the applied electric field, 𝒗 is the velocity of the carriers, 𝒒 is the 

carrier’s charge, and 𝑩 is the applied magnetic flux density.  [83, 84]     

   

Figure 2.10. Simple illustration of Hall Effect [84].  

Hall Effect measurement can determine the carrier type based on the direction of 

Hall voltage. Figure 2.11 shows the direction of Hall voltages for p-type and n-type 

semiconductor. For p-type semiconductor majority carrier is hole. Upon application of 

magnetic flux density Bz, Lorentz force is exerted on holes, holes are accumulated in left 

side of conductor and holes are depleted on right side causing a Hall voltage with positive 

polarity on left side of the conductor as shown in Figure 2.11 (a). For n-type 

semiconductor Hall voltage is produced with negative polarity on left side of the 

conductor as shown in Figure 2.11 (b).  
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Figure 2.11. Schematic showing the Hall Effect in (a) p-type semiconductor (b) n-type 

semiconductor [83]. 

The magnitude of the Hall voltage is given by, 

               𝑉𝐻 =
𝐼𝐵

𝑞𝑛𝑡
 

(2.11) 

Here 𝐼 is the electric current,  𝐵 is the Magnetic flux density, 𝑛  is the carrier density and    

𝑡 is the conductor’s thickness. Eqn. 2.7 can be used to find carrier density when all other 

quantities are known and measureable. Sheet density 𝑛𝑠 is more convenient and its value 

is𝑛𝑡. Then the value of sheet density 𝑛𝑠 is, 

               
𝑛𝑠 =  

𝐼𝐵

𝑞𝑉𝐻
 (2.12) 

The sheet resistance 𝑅𝑠 of the semiconductor can be determined using convenient van der 

Pauw resistivity measurement technique. Since sheet resistance involves sheet career 

density and mobility, Hall mobility can be determined from Eqn. 2.13 [85], 
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               µ =
1

𝑞𝑛𝑠𝑅𝑠
=  

𝑉𝐻

𝐼𝐵𝑅𝑆
  

(2.13) 

2.4.4. Atomic force microscopy  

Atomic force microscope (AFM) is a high precision scanning probe microscope 

which is used in studying sample in nanoscale. Figure 2.12 shows a schematic diagram of 

an atomic force microscope. In AFM a tip which is 3-6 um tall pyramid with 15-40nm 

end radius is mounted on a cantilever. Tip is raster scanned over the sample to get the 

morphology of the sample. When the tip is brought close to the sample, force (f) between 

the sample and tip causes deflection (x) of the cantilever according to the Hooke’s law,  

               𝑓 = −𝑘𝑥 
(2.14) 

where, f= force between tip and sample, k = spring constant of cantilever, and x = 

deflection of the cantilever. Deflection of the cantilever is detected by an optical 

arrangement. A laser beam strike is reflected off the back of the cantilever to a segmented 

photodetector. Whenever, the tip moves up and down following the sample surface’s 

morphology, the position of the reflected lased point moves from set point at 

photodetector.  This information is sent to a computer by feedback loop to control the z-

axis movement of stage (piezo-scanner) to maintain constant separation and force 

between tip and sample. The sample is moved in x-y plane to raster scan the desired 

surface, and corresponding y axis movement information of the tip is recorded at the 

computer to construct a three dimensional morphology of the sample  surface. AFM is 

usually operated in three different operating modes: contact mode, tapping mode, and 

non-contact mode [86].  
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Figure 2.12. Schematic diagram of an atomic force microscope [87].    
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CHAPTER 3. EXPERIMENTAL PROCEDURE 

3.1. Fabrication of ZnO thin film 

3.1.1. Substrate Preparation  

Glass slides were cut into small pieces of dimension 2.5 cm x 2.5 cm for using as 

substrate. Glass substrates were ultrasonically cleaned in Fisher Scientific ultrasonic bath 

(shown in Figure 3.1) using soapy water, deionized water, acetone and 2-propanol 

sequentially for 10 minutes in each solution. Then the glass slides were dried in nitrogen 

blow and stored in sample storing box.    

 

Figure 3.1. Fisher scientific ultrasonic bath (model: FS20D). 

3.1.2. Deposition of ZnO thin film  

To prepare zinc oxide sol-gel, zinc acetate dihydrate [Zn(CH3COO).2H2O], 2-

methoxethanol [CH3OCH2CH2OH] and ethanolamine [HOCH2CH2NH2] were used. 

Molar ratio of ethanolamine to zinc acetate dihydrate was 1.0 and the concentration of 

zinc acetate was 0.35 M. The solution was then stirred at 500 rpm for two hours followed 

by stirring for one more hour at 80 ˚C to evaporate organic compounds. The zinc oxide 
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solution was dropped onto the cleaned and dried glass substrates using pipette. The 

substrate was then rotated at 2500 rpm for 30 seconds using Laurell spin coater (shown in 

Figure 3.2) to obtain a thin film on the glass substrates. Thin film coated glass substrates 

were then dried in a furnace (shown in Figure 3.3) at 500 ˚C for one hour to evaporate 

solvent and remove organic residuals. The samples were again spin coated and dried in 

oven. This process was repeated ten times to get final ZnO thickness of ~200 nm on the 

glass substrate.       

 

Figure 3.2. Laurell spin coater (model: WS-400B-6NPP/LITE). 

 

Figure 3.3. Thermo Scientific furnace.   
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3.2. Plasma processing of ZnO thin film 

  The samples were treated separately with oxygen, hydrogen and nitrogen using a 

custom capacitive coupled RF plasma system. Simple schematic diagram of the plasma 

system is shown in Figure 3.4.  RF power source frequency and power was maintained at 

13.56 MHz and 50 watts respectively. Plasma was formed in a 50 cm long and 2 cm 

diameter quartz tube which was sealed in one end with rubber washer and pumped down 

using a roughing pump. Other end of the tube was connected to the gas cylinders via 

tubing and pressure gauges. Gas cylinders containing 10% O2 in Argon, 10% H2 in 

Argon, and pure N2 were used. The flow rate of the gas was controlled to maintain the 

discharge pressure at ~2 Torr.  

 

Figure 3.4. Schematic diagram of custom capacitive coupled plasma system. 

3.2.1. Transmittance of plasma treated ZnO films 

Optical transmittance of the ZnO samples was measured using Filmetrics F-20 

spectrometer thin film analyzer with Hamamatsu (L120290) light source (shown in 

Figure 3.5) having combination of halogen and deuterium lamps. The light source was 

turned ON and 5 minutes wait time was maintained to let the light source be stable. 

Shutter of the source was opened to allow the light be incident on the sample. Top optical 

cable’s distance from the sample stage was adjusted to focus the light from the fiber on 
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the stage surface. Filmetrics F-20 software was opened from the computer. Optics recipe 

was edited for transmittance measurement. The system was calibrated for 100% and 0% 

transmittance by removing any sample on the stage and placing an opaque sample on the 

stage respectively. Then the interested sample was placed on the stage, measurement was 

taken from the software.    

 

Figure 3.5. Transmittance measurement system using Filmetrics F-20 optical 

spectrometer.  

3.2.2. XRD spectrum of plasma treated ZnO films 

Crystallinity characterization of the ZnO films was carried out using Rigaku 

Smartlab X-ray diffractometer (XRD) shown in Figure 3.6 with Cu-Kα radiation (λ-1.54 

Å). X-ray diffraction unit and CPU were turned ON. Door lock was opened, sample was 

place on the sample stage and door was closed. Smart-lab guidance software from the 

computer was used in order to measure the XRD spectrum. Startup menu was used to 

ramp the voltage at 40KV and current at 44mA which took 15 minutes to heat the X-Ray 

filament. Medium resolution PB/PSA icon was used to assign the parameters for 



30 

 

 

 

measurement. Angle of measurement was assigned from 20 to 80 degree at a scan rate of 

0.5 degrees/min. Execute icon was used to start the measurement. FWHM values were 

obtained by using PDXL2 software. Shutdown button was used to reduce the filament 

voltage and current; sample was taken out and X-ray diffraction door was closed safely. 

 

Figure 3.6. Rigaku Smartlab X-ray diffractometer [88].  

3.2.3. Electrical properties of plasma treated ZnO films 

HMS-3000 Ecopia Hall Effect measurement system shown in Figure 3.7 was used 

to measure electrical parameters- resistivity, hall mobility and carrier concentration of 

zinc oxide films. Ecopia Hall Effect system was turned on along with HMS-3000 

software from the computer. Sample size 1 cm x 1 cm was attached to the sample board 

and placed in instrument’s the magnetic field. The magnetic intensity and current values 

were set to 0.4 T and 10 mA respectively. Films mobility and carrier concentration were 

then obtained by pressing the measure icon on the software.           
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Figure 3.7. HMS-3000 Ecopia Hall Effect measurement system. 

3.3. Temperature sensing using zinc oxide thin film 

3.3.1.  Transmittance and spectral intensity measurements  

3.3.1.1. Absorption edge of zinc oxide thin film 

Junction tip of K-type thermocouple (model: Agilent U1186A) was attached to 

zinc oxide film firmly by using a paper clip. Other end of the thermocouple was plugged 

to a hand held multimeter using an adaptor. Zinc oxide thin film coated glass was heated 

up to ~200 ˚C using hot air blower. Then the hot ZnO film coated glass was placed on the 

stage of Filmetrics optical spectrophotometer. Transmittance of the ZnO film coated glass 

was measured in the same way described in section 3.2.1. Transmittance measurements 

were taken when the multimeter was reading film’s temperature 50 ˚C, 90 ˚C, 130 ˚C, 

and 170 ˚C. Independent axis (wavelength, nm) was adjusted from 365 nm to 410 nm to 

observe the temperature’s effect on zinc oxide film’s transmittance.  

3.3.1.2. Absorption edge of glass substrate 

Junction tip of K-type thermocouple (model: Agilent U1186A) was attached to 

bare glass substrate firmly by using a paper clip. Other end of the thermocouple was 
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plugged to a hand held multimeter using an adaptor. The glass substrate was heated up to 

~200 ˚C using hot air blower. Then the hot glass substrate was placed on the stage of 

Filmetrics optical spectrophotometer. Transmittance of the glass substrate was measured 

in the same way described in section 3.2.1. Transmittance measurements were taken 

when the multimeter was reading glass substrate’s temperature 50 ˚C, 90 ˚C, 130 ˚C, and 

170 ˚C. Independent axis (wavelength, nm) was adjusted from 265 nm to 410 nm to 

observe the temperature’s effect on glass substrate’s transmittance.  

3.3.1.3. Spectral Intensity distribution of the UV LED  

The UV LED (model: RL5-UV0315-380) purchased from “Super Bright LED” 

was placed on stage of Filmetrics optical spectrophotometer. The light source of 

spectrophotometer measurement system was kept off. Then the UV LED was powered by 

3.5 volt DC power supply. Then measurement was taken by the Filmetrics software 

following the procedure described in section 3.2.1 and obtained intensity spectrum was 

normalized in Origin software.       

3.3.2. Setup for ZnO based temperature sensing  

Figure 3.8 shows a schematic diagram of an experimental setup for ZnO based 

optical temperature sensor. A ultra-violet light emitting diode of 380 nm wavelength was 

powered at 3.5 volts by a DC power supply. Two convex lenses were used to focus the 

light emitted from the LED. ZnO coated glass was fixed on an aluminum block set inside 

a pair of heaters. The ceramic heaters were connected to the output terminals of a 

temperature controller (Omega CN38S). A thermocouple was attached to the ZnO film to 

calibrate the actual temperature of the ZnO film and fed to the temperature controller. 
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ZnO film along with the heaters setup was placed in between the convex lenses so that 

the UV light would focus in a small area on the ZnO film. A UV photodiode was placed 

at the focus point of second convex lens. The terminals of the photodiode were connected 

to a Fluke 289 True RMS multimeter to measure the photo-current. Using the 

temperature controller, the ZnO film was heated to different temperatures and 

corresponding photo-current was recorded. The response of the photodiode was also 

recorded for bare glass heated to different temperatures.     

 

 
 

Figure 3.8. Schematic diagram of experimental setup for ZnO based optical temperature 

sensor. 

3.3.3. Structural and morphological measurement  

3.3.3.1. XRD measurement of ZnO film before and after using as sensing element 

XRD measurement of as prepared zinc oxide film was done following the same 

procedure described in section 3.2.2. The zinc oxide film was then used in the 

temperature sensing system. Then the zinc oxide film was again taken back to the XRD 

measurement system for obtaining the XRD spectrum of the tested zinc oxide film. The 

XRD spectrum of as prepared and tested zinc oxide film were compared.     
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3.3.3.2. AFM topography of ZnO film before and after using as sensing element 

BRUKER Dimension icon atomic force microscope (AFM) shown in Figure 3.9 

with ScanAsyst software was used to characterize morphology of zinc oxide film before 

and after using as sensing element. ‘Nanoscope 9.1’ icon was double clicked to open 

AFM Control program. “ScanAsyst in Air” program was selected and experiment was 

allowed to be loaded. In the workflow toolbar, ‘Align’ window was opened and probe 

was aligned by adjusting two knobs (for X and Y movement) of the probe holder; moving 

the reflected laser point to the central X-Y cross point of detector indicated by maximum 

sum signal. Navigate window was clicked for loading focusing the sample. In navigate 

window, sample was loaded and stage was moved to scan position. Then the sample 

surface was focused by moving the stage up/down. In the engage window, proper 

parameters were set for scan size, aspect ratio, scan rate, X/Y offset positions, and 

samples/line. Then engage icon was clicked to start the scanning process and 2D & 3D 

topography images were saved.    

     

Figure 3.9. BRUKER Dimension icon atomic force microscope.  
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CHAPTER 4. RESULTS AND ANALYSIS 

4.1. Plasma treatment of zinc oxide thin film 

4.1.1. Effect of plasma treatment on transmittance of ZnO films 

4.1.1.1. Oxygen plasma treatment of zinc oxide film 

Figure 4.1shows transmittances of oxygen plasma treated ZnO film. The ZnO thin 

films treated with oxygen plasma for, 5 minutes, 10 minutes, 20 minutes, 40 minutes and 

as deposited film had almost same transmittance in visible spectrum (400 nm - 700 nm). 

The average transmittance was around 85% in visible range of electromagnetic spectrum. 

Oxygen plasma treatment did not affect or worsen the transmittance of the film. A 

transmission edge is also noticeable in wavelength 365-385 nm which corresponds to the 

bandgap energy (3.40 - 3.22 eV) of zinc oxide.   
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Figure 4.1 Transmittance of oxygen plasma treated ZnO film. 
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4.1.1.2. Hydrogen plasma treatment of zinc oxide film 

Figure 4.2 shows transmittances of ZnO films treated with hydrogen plasma for 

30 seconds, 1 minute, and 2 minutes. Hydrogen plasma treatment of ZnO film decreased 

it’s transmittance in visible wavelength spectrum. As the hydrogen treatment time was 

increased transmittance continued to decrease. This reduction in transmittance was 

attributed to the creation of oxygen vacancies by hydrogen plasma. Hydrogen plasma 

reduced the ZnO film and created oxygen vacancies in the zinc oxide film. Each oxygen 

vacancy left two free electrons, which might combined with a zinc ion and formed zinc 

metal. Increased oxygen vacancies and formation of metal might reduce the transmittance 

of the film.  
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Figure 4.2. Transmittance of hydrogen plasma treated ZnO films. 
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4.1.1.3. Oxygen, hydrogen, and nitrogen plasma treatment of zinc oxide film 

Oxygen plasma could enhance the crystallinity of as deposited film which will be 

shown in section 4.1.2.1. Hydrogen plasma decreased both transmittance and crystallinity 

of the film which will be shown in section 4.1.2.2. Beyond 30 second treatment time 

hydrogen plasma caused very poor optical transmittance of the film as shown in section 

4.1.1.2. Hydrogen plasma treatment only for 30 second could enhance electrical property 

enough which will be presented in section 4.1.3. That is why for sequential plasma 

treatments, 20 minutes oxygen plasma was followed by 30 seconds hydrogen plasma 

treatment. This section will present that 20 minutes nitrogen plasma following hydrogen 

plasma treatment could restore the optical transmittance to ~80%. Figure 4.3 compares 

the transmittance spectra of the ZnO film treated with oxygen, hydrogen, and nitrogen 

plasmas separately and sequentially. Average transmittance over visible wavelength 

range (400-700 nm) for the as-deposited ZnO film, oxygen plasma treated film, and 

nitrogen plasma treated film were 82%, 81.3% and 81.2%, respectively, which were 

within 1% variation. Hydrogen plasma treated sample had the lowest transmittance 

having average value of 76.7% in visible wavelength spectrum. Hydrogen plasma worked 

as reducing agents and created oxygen vacancies, might form metal zinc, and defects in 

the film. The increase defects were attributed to reduce transmittance by scattering the 

light wave. Treatment with all three plasmas sequentially resulted in higher transmittance 

than hydrogen plasma treated sample. The average transmittance over visible wavelength 

spectrum for all plasma treated sample was 79.8%. Nitrogen plasma treatment following 

hydrogen plasma could overcome the adverse effect on transmittance of hydrogen 

plasma. Nitrogen species might form bond with preceding hydrogen plasma introduced 
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metal zinc. Nitrogen species might also occupied the oxygen vacancies resulting in 

significant improvement of transmittance.     
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Figure 4.3. Transmittance spectra of the ZnO film treated with oxygen, hydrogen, and 

nitrogen plasmas separately and sequentially. 

4.1.2. Effect of plasma treatment on structural property of ZnO films  

4.1.2.1. Oxygen plasma treatment of zinc oxide film 

Figure 4.4 shows XRD intensities of ZnO films treated with oxygen plasma. 

Oxygen plasma treatment did not shift the peak position (at 2θ = 34.40 degree) of XRD 

patterns of ZnO films. Table 4.1 shows FWHM values for XRD peaks of ZnO films 

treated with oxygen plasma. FWHM values were affected to some extent by the time of 

oxygen plasma treatment. Lowest FWHM value and sharpest XRD peak was found for 

20 minutes oxygen plasma treated ZnO film which is supposed to have highest 

crystallinity. This increase in crystallinity is attributed to the making of new bond by 

oxygen species from plasma with interstitial Zn
2+

 ions hence expanding the grain 
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boundaries. Oxygen plasma might also have decreased the oxygen vacancies to improve 

crystallinity. Oxygen plasma treatment more than 20 minutes did not continue to sharpen 

the peak. Oxygen plasma treatment of 40 minutes gave higher FWHM value than that of 

20 minutes treated sample. Excess oxygen plasma treatment beyond 20 minutes might 

have reacted and broken Zn-O bond to reduce crystal grain size.   
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Figure 4.4. XRD intensities of ZnO films treated with oxygen plasma.  

Table 4.1. FWHM values for XRD peaks of ZnO films treated with oxygen plasma 

Oxygen plasma 

condition 

As 

deposited 

5 min 

oxygen 

10 min 

oxygen 

20 min 

oxygen 

40 min 

oxygen 

FWHM 0.3639 0.3603 0.3585 0.3567 0.3652 
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4.1.2.2. Hydrogen plasma treatment of zinc oxide film 

Figure 4.5 shows XRD intensities of ZnO films treated with hydrogen plasma for 

30 seconds, 1 minute, and 2 minutes. Maximum peak intensity was observed for as 

deposited film and peak intensity continued to decrease with increasing hydrogen plasma 

treatment time. This was attributed to the increased oxygen vacancies. As stated earlier, 

hydrogen plasma adsorbed oxygen species from the ZnO film and decreased the 

crystallinity of the ZnO film. Table 4.2 shows FWHM values for XRD peaks of ZnO 

films treated with hydrogen plasma for 30 seconds, 1 minute, and 2 minutes. With 

increasing time of hydrogen plasma treatment, FWHM value increased indicating 

reduced crystallinity.   

20 30 40 50 60 70 80

In
te

n
si

ty
 (

a
.u

.)

2 theta (degree)

2 min H
2

1 min H
2

30 sec H
2

As deposited

 

Figure 4.5 XRD intensities of ZnO films treated with hydrogen plasma. 

Table 4.2. FWHM values for XRD peaks of ZnO films treated with hydrogen plasma. 

H2 plasma 

condition 

As 

deposited 

30 seconds 

hydrogen  

1 minute 

hydrogen  

2 minutes 

hydrogen  

FWHM 0.3639 0.3695 0.3847 0.3777 
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4.1.2.3. Oxygen, hydrogen, and nitrogen plasma treatment of zinc oxide film 

Figure 4.6 shows XRD intensity patterns for ZnO film treated with oxygen, 

hydrogen, nitrogen plasma. Table III shows FWHM values for oxygen, hydrogen and 

nitrogen plasma treated ZnO films. As-deposited film had FWHM value of 0.3639. 

Oxygen treated ZnO film had the lowest FWHM value of 0.3567 which indicated 

maximum crystal size for oxygen plasma treated film. Oxygen plasma treatment reduced 

the oxygen vacancies and made new Zn-O bond with interstitial zinc atom in film hence 

increased the crystallinity of the film. Hydrogen plasma treatment increased the FWHM 

value to 0. 3695 which indicated reduced crystallinity. Hydrogen plasma treatment 

reduced the ZnO film and created oxygen vacancies in addition to form hydrogen donor 

level which decreased the crystallinity of the film.[53] Nitrogen plasma treatment 

decreased FWHM value slightly from 0.3639 to 0.3630 indicating nitrogen plasma’s 

favorable effect on crystallinity of ZnO film. Nitrogen species from the plasma might 

have repaired some dangling bonds at the grain boundary and occupied some oxygen 

vacancies. FWHM of sample treated with all plasmas was 0.3634 which was even a little 

lower than the as deposited sample. Nitrogen species from the nitrogen plasma might fill 

the oxygen vacancies left behind by the hydrogen plasma treatment.  Thus deterioration 

of crystallinity of ZnO film by hydrogen plasma could be substantially compensated by 

following nitrogen plasma treatment. 
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Figure 4.6. XRD intensity patterns of as-deposited, 20 min O2, 30 sec H2, 20 min N2, and 

all plasma treated ZnO films. 

Table 4.3. FWHM values of XRD peaks of oxygen, hydrogen, and nitrogen plasma 

treated ZnO films. 

Plasma 

Conditions 

As 

deposited 

20 min 

O2 

30 sec 

H2 

20 min 

N2 

20 min O2+ 30 sec H2+ 20 

min N2 

FWHM 0.3639 0.3567 0. 3695 0.3630 0.3634 

 

4.1.3.   Effect of plasma treatment on electrical parameters of ZnO films  

The cause of n-type conductivity of undoped ZnO has been widely debated. It has 

been assumed for long time that oxygen vacancies in ZnO cause this n-type conductivity. 

But density functional calculations by Van de Walle and electron paramagnetic resonance 

(EPR) measurement by Hofmann et al. confirms that oxygen vacancies are deep donors 
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and cannot contribute to conductivity of ZnO [53, 55]. It has also been found that Zn 

interstitials and Zn antisites are also deep donors and cannot contribute to ZnO 

conductivity [89, 90]. Rather interstitial (Hi) and substitutional (HO) hydrogens act as 

shallow donor and contribute to n-type conductivity of ZnO [53, 55]. Following results of 

this work is also supportive to hydrogen’s contribution to the conductivity of ZnO.  

Figure 4.7, Figure 4.8, and Figure 4.9 shows carrier concentration (n), Hall mobility (µ), 

and electrical resistivity (ρ) of as-deposited, 20 min O2, 30 sec H2, 20 min N2, and all 

plasma treated ZnO films respectively. Figure 4.7 shows as deposited film had carrier 

concentration of 8.47E17 cm
-3

. Plasma treatments increased carrier concentration except 

oxygen plasma treatment. Oxygen plasma treatment decreased n of as-deposited film to 

2.53E17. Besides repairing grain boundaries, oxygen plasma oxidized the film and 

removed existing Hi and HO donors which were incorporated to the film from organic 

compounds during growth, hence decreased the carrier concentration.  
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Figure 4.7. Carrier concentration (n) of as-deposited, 20 min O2, 30 sec H2, 20 min N2, 

and all plasma treated ZnO film. 

Repairing of grain boundaries of the film by oxygen plasma enabled easy drift of 

carrier through grain boundaries hence increased carrier mobility to 1.64 cm
2
/ (V.s), 

shown in Figure 4.8. Again Figure 4.7 depicts that hydrogen treatment increased n almost 

by an order to 7.28E18 cm
-3

. This large increase in n is attributed to formation of shallow 

hydrogen donor level immediately below the conduction band, significantly increasing 

the free carrier concentration [53, 54]. Besides forming Hi
+
 and HO

+
 donor, hydrogen 

plasma also created some oxygen vacancies which was revealed by the increase in 

mobility to 23.3 cm
2
/V/s (shown in Figure 4.8) resulting from decreased O scattering 

center. Nitrogen plasma treatment slightly increased both n and µ of the film which is 

ascribed to the removal of organic components and repairing defects. Sample treated with 

all three plasmas had highest n of 1.13E19 (shown in Figure 4.7) which resulted from 

combined favorable effects of hydrogen and nitrogen plasma treatment on carrier 
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concentration.  Figure 4.8 depicts that all plasma treated sample had mobility of 6 cm
2
/ 

(V.s) which is way lower than the mobility of hydrogen plasma treated film. For all 

plasma treated sample, nitrogen species from nitrogen plasma filled up the oxygen 

vacancies left by preceding hydrogen plasma treatment hence introduced carrier 

scattering center and resulted decreased Hall mobility.      
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Figure 4.8. Hall mobility (µ) of as-deposited, 20 min O2, 30 sec H2, 20 min N2, and all 

plasma treated ZnO film. 

Figure 4.9 shows the effect of different plasma conditions on electrical resistivity of 

ZnO films. All conditions of plasma treatments decreased the resistivity of the ZnO film. 

Oxygen plasma treatment decreased the resistivity to 15 ohm-cm. Though the oxygen 

plasma treatment lowered carrier concentration (shown in Figure 4.7), increased mobility 

(shown in Figure 4.8) managed to reduce film’s resistivity to some extent. Hydrogen 

plasma treated sample showed lowest resistivity of 0.0367 ohm-cm which was caused by 
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the increased mobility and carrier concentration. ZnO film treated sequentially with all 

three plasmas showed resistivity of 0.0367 ohm-cm which is 99.57% lower than the as 

deposited film.  

 

 

 

Figure 4.9. Resistivity of as-deposited, 20 min O2, 30 sec H2, 20 min N2, and all plasma 

treated ZnO film. 

4.2. Temperature sensing using zinc oxide thin film 

4.2.1. Optical measurements for ZnO based temperature sensor 

4.2.1.1. Absorption edge of zinc oxide thin film 

Figure 4.10 illustrates transmittance spectra of the sol-gel derived ZnO film at 

different temperatures. A sharp absorption edge was observed between 370 nm and 400 

nm wavelength. A red shift of the absorption edge was observed in the transmittance 

curves with increase of film’s temperature. The red shift of ZnO films is attributed to the 

bandgap reduction of semiconductors and dielectrics at high temperature which can be 

explained by Varshni’s empirical expression of Equation 1,  
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Eg(T) = Eg(0) −
αT2

T+β
                                                                         (1)                                       

where, Eg(0), α, and β are material’s constants, and T is temperature.
 
Other 

factors such as point defects in the ZnO thin film and temperature-induced change in 

band tail, temperature dependent stress/strain might also have contributed in redshift of 

transmission edge. In this work we considered application of uniform heating, such as 

radiation heating. An example is to measure the temperature in the center part of a 

vacuum system that is uniformly heated. Specifically, in our experiment, the ZnO coated 

glass was held on a slot of aluminum block and the central part of the ZnO film where 

light passed through was kept far away from the contact point. Thus the central part of 

the film was not expected to experience pronounced differential thermal expansion which 

might also affect the bandgap of ZnO film.  

 

Figure 4.10. Transmittance versus wavelength of sol-gel derived ZnO film at different 

temperatures. 
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4.2.1.2. Absorption edge of glass substrate 

Figure 4.11 shows transmittance spectra of bare glass substrate at different 

temperatures. The bare glass substrate also exhibited red shift of the absorption edge in 

between 270 nm and 360 nm, which was not so pronounced as the absorption edge films. 

Note that the absorption edge of the glass substrate did not overlap with that of the ZnO 

films. In the region of absorption edge of the ZnO films (i.e. 370–400 nm), the 

transmittance of glass remained almost constant at around 92% which allowed the ZnO 

film to dominate the change of transmittance of the ZnO coated glass in the film’s 

absorption edge wavelength region.  

 

Figure 4.11. Transmittance versus wavelength of glass substrate at different temperatures.  

4.2.1.3. Spectral Intensity distribution of the UV LED  

Figure 4.12 shows normalized spectral intensity distribution of the UV LED used 

in the measurement. Peak intensity of the UV LED was found at 387 nm, which fell right 



49 

 

 

 

in the most sensitive region of the ZnO absorption edge. The UV LED radiated optical 

power mostly in the wave length range from 370 nm to 420 nm.          

 

Figure 4.12. Normalized spectral intensity distribution of the UV LED light source.  

4.2.2. Temperature sensing using ZnO film 

The ZnO coated sample was maintained at different temperatures using the 

temperature controller and corresponding photodiode’s short circuit current was 

measured. The temperature was varied from 50 to 310 °C. Figure 4.13 shows photodiode 

response at various temperatures for the ZnO coated glass and bare glass substrate. The 

short circuit current of photodiode decreased linearly as the temperature of the ZnO 

coated glass increased, which resulted from the shifting of absorption edge of ZnO 

toward longer wavelength. The photodiode current decreased by 24.99 µA from 74 µA to 

49.01 µA as the temperature of ZnO coated glass was increased from 50 °C to 310 °C. 

Photocurrent decreased by 33.77% for the ZnO coated glass in measured temperature 

range. Linear regression line along with the equation of the response photocurrent 
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obtained by Microsoft Excel tool has also been shown in  Figure 4.13. The linear trend-

line indicated a negative slope of 0.0973 µA/C and R-square value of 0.996 which was 

very close to unity. The bare glass substrate resulted in a slight and slow decrease in the 

photo-current. Photocurrent decreased by 1.59 µA from 74.89 µA to 73.30 µA as the 

temperature of glass substrate was increased from 50 °C to 310 °C. Photocurrent 

decreased by only 2.12% for the glass substrate in measured temperature range. This 

decrease in photo current was mainly attributed to the disturbed and inferior focusing of 

light on photodiode at raised temperature caused by heat haze: an inferior transmission of 

light through hot air due to temperature and refractive index gradient. So, the linear 

decrease in photocurrent for ZnO coated glass was caused by the red-shift of absorption 

edge of ZnO film. Thus, the ZnO coated glass can be used for an optical temperature 

sensing system. The experimental result indicated a temperature coefficient of ~0.1 

µA/C.     

 

Figure 4.13. Photodiode current at varying temperature for ZnO coated glass and glass 

substrate. 
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4.2.3. ZnO film’s structural and morphological property before and after test 

4.2.3.1. XRD measurement of ZnO film before and after test  

     X-ray diffraction measurements were performed on ZnO films before and after the 

temperature measurement to verify its thermal stability. Figure 4.14 shows XRD patterns 

of the as-prepared and tested ZnO films. The observed peak positions were 34.41° and 

34.39° with full width half maximum (FWHM) of 0.41° and 0.40° for the as-prepared 

and tested samples, respectively. The single diffraction peak at 34.4° corresponding to 

(002) crystallographic plane indicated a strong preferred orientation of the ZnO crystal 

structure. The XRD results confirmed good thermal stability of the sol-gel ZnO films, 

which were suitable for temperature sensing.   

  

Figure 4.14.  XRD pattern of a ZnO thin film: (a) as-prepared and (b) tested at 310°C. 

4.2.3.2. AFM topography of ZnO film before and after test  

Figure 4.15  shows 2D and 3D AFM topography of the as-prepared and tested 

ZnO thin films. Surface roughness was 3.71 and 2.97 nm for the as-prepared and tested 
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ZnO thin films, respectively. Testing of the films as sensing element did not worsen or 

roughen the surface, which made the film re-usable for temperature sensing.  

    

 
 

Figure 4.15. AFM 2D topography of (a) as prepared (b) tested at 310 °C, AFM 3D 

topography of (c) as prepared, and (d) tested at 310 °C.  
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CHAPTER 5. CONCLUSIONS 

5.1. Summary  

Zinc oxide is a group II-VI semiconductor with direct and wide bandgap of 3.37 

eV at room temperature.  ZnO is a promising material for UV optoelectronic application 

for its direct-wide bandgap. Its large exciton binding energy of 60 meV enables 

applications in exciton effect based optical devices.  Zinc oxide is also a promising 

material for transparent conductive oxide (TCO) for LCD, OLED displays, thin film solar 

cells, and touch screens. ZnO is more advantageous material over other TCOs such as 

ITO, FTO, and CdO:In for its availability, low cost, non-toxicity, and suitable optical and 

structural property.  

Zinc oxide thin films are mostly grown by various costly vacuum based 

fabrication method. Solution-based sol-gel deposition of ZnO thin films has been 

reported as a simple, easy and low-cost method. Sol-gel derived nanocrystalline zinc 

oxide thin films suffer from relatively poor electrical and optical properties. Finding ways 

to improve electrical and optical properties of sol-gel processed zinc oxide has been 

seeking attention of researchers.  So, there is a need for improved electrical properties of 

sol-gel derived zinc oxide thin film maintaining good optical and structural properties. 

Most temperature measurement system requires physical and/or electrical contact 

between the main sensing element and supporting parts of the measurement system. In 

many applications, such electrical feedthrough is not allowed or not convenient. Hence, 

optical measurement of temperature which does not require electrical feedthrough is 
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needed. Temperature dependent red-shift property of ZnO film makes it as an attractive 

material for optical temperature sensing.   

ZnO oxide thin films were fabricated on glass substrate from zinc acetate 

dihydrate, 2-methoxethanol and ethanolamine via sol-gel spin coating method. To 

improve electrical and optical properties, the samples were treated with oxygen, 

hydrogen and nitrogen plasma. Optical transmittance, crystallinity, surface morphology, 

and electrical parameters of the ZnO films were characterized by Filmetrics F-20 

spectrophotometer, Rigaku Smartlab x-ray diffractometer, Bruker Dimension Icon AFM, 

and Ecopia Hall Effect measurement system respectively.  Moreover, an optical 

temperature sensor was then established using the ZnO coated glass as sensing element, 

ultra-violet (UV) light emitting diode (LED) as light source, and a UV photodiode as 

light detector. 

The average transmittance over visible wavelength range for the as-deposited 

ZnO film, oxygen plasma treated film, and nitrogen plasma treated film were 82%, 

81.3% and 81.2%, respectively. Hydrogen plasma treated sample had the lowest 

transmittance having average value of 76.7% in visible wavelength spectrum. Treatment 

with all three plasmas sequentially resulted in much higher transmittance than hydrogen 

plasma treated sample. The average transmittance over visible wavelength range for the 

sequential plasma treated sample was 79.8%. Nitrogen plasma treatment following 

hydrogen plasma led to recovery of the adverse effect on transmittance by hydrogen 

plasma. 
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Crystallinity of the films was revealed by FWHM values. The as-deposited film 

had FWHM value of 0.3639. Oxygen treated ZnO film had the lowest FWHM value of 

0.3567 which indicated better crystallinity. Hydrogen plasma treatment increased the 

FWHM value to 0. 3695, which indicated reduced crystallinity. Nitrogen plasma 

treatment decreased FWHM value slightly from 0.3639 to 0.3630 indicating nitrogen 

plasma’s favorable effect on crystallinity of ZnO film. FWHM of sample treated with the 

three plasmas was 0.3634, which was even a little lower than the as-deposited sample. 

Thus, deterioration of crystallinity of ZnO film by hydrogen plasma could be 

substantially compensated by the nitrogen plasma treatment. 

Previous theoretical and experimental investigation confirmed interstitial (Hi) and 

substitutional (HO) hydrogens contribution toward n-type conductivity of ZnO. The as-

deposited film had carrier concentration of 8.47E17 cm
-3 

mobility of 0.349 cm
2
/ (V.s). 

Plasma treatments increased carrier concentration except oxygen plasma treatment, which 

led to decreased n of 2.53E17 cm
-3

. Oxygen plasma treatment increased carrier mobility 

to 1.64 cm2/ (V.s). Hydrogen treatment increased carrier concentration almost by an 

order to 7.28E18 cm
-3

 and led to the increased mobility of 23.3 cm
2
/ (V.s). The sample 

treated in sequence with the three plasmas had highest carrier concentration of 1.13E19 

cm
-3 

mobility of 6 cm
2
/ (V.s). Sequential oxygen-hydrogen-nitrogen plasma treatment 

resulted in resistivity of 0.0367 ohm-cm, which was over two orders lower than the as-

deposited film 

Transmittance spectra of the sol-gel derived ZnO film was measured at different 

temperatures. A sharp absorption edge was observed between 370 nm and 400 nm 
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wavelength. A red shift of the absorption edge was observed in the transmittance curves 

with increase of film’s temperature. For realizing an optical temperature sensing system, 

ZnO coated glass sample was used as main sensing element. The temperature 

measurement system was tested for temperature range of 50 - 310 °C. Short circuit 

current of photodiode decreased linearly as the temperature of the ZnO coated glass was 

increased. The photodiode’s current reduced by 24.8 µA for the ZnO coated glass as the 

sample temperature was increased from 50 °C to 310 °C.  

5.2. Conclusions 

Nanocrystalline zinc oxide thin films were fabricated by a solution-based process 

and treated with oxygen, hydrogen, and nitrogen plasmas. The as-deposited films had 

resistivity of 21.1 Ohm-cm and transmittance of 82%. Oxygen plasma could repair 

defects and increased the crystallinity of the film. Hydrogen plasma treatment introduced 

hydrogen donors resulting in high carrier density and oxygen vacancies that led to 

increased carrier mobility. Hydrogen plasma reduced the transmittance of the ZnO films 

to 76.7%. Sequential plasma treatment (oxygen-hydrogen-nitrogen) greatly reduced the 

ZnO film resistivity by more than two orders, while the average transmittance in visible 

range remained close to the as-deposited film of ~80%. Optical bandgap of sol-gel 

derived ZnO thin films exhibited strong temperature dependence. The bandgap narrowing 

was evidenced by pronounced red-shift of the optical absorption edge with increasing 

temperature. Optical temperature sensing could be realized based on the absorption of the 

ZnO thin films using an ultra-violet light emitting diode of 380 nm center wavelength and 

a UV photo-detector. The photo-current detected by the photo-diode decreased linearly 

with the increase in the temperature of the ZnO film. The ZnO thin film based optical 
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temperature sensing can be engineered and customized for various applications where 

conventional sensor is not feasible and/or IR thermometry does not give satisfactory 

performance.     

5.3. Future work 

Nitrogen plasma treatment can be adopted to achieve p-type conductivity of zinc 

oxide film which is still a big challenge in the research of ZnO material. Further 

modification to the temperature sensor such as using a reference detector can be 

implemented to overcome the instability of the power supply and UV light source.    
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