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ABSTRACT

SPATIAL-TEMPORAL STOCHASTICITY OF ELECTRIC VEHICLES IN

INTEGRATED TRAFFIC AND POWER SYSTEM

SADHANA SHRESTHA

2016

A penetration of a large number of electric vehicles for charging their batteries in

the grid can have a negative impact to the grid. To prevent a negative effect to the grid, the

behavior of electric vehicles must be accurately modeled and their charging schedules

must be coordinated. Therefore, it is necessary to determine where and how much charge

is available in electric vehicles in the distribution system. In this thesis, a state transition

algorithm is designed to determine a stochastic model of electric vehicles to simulate

electric vehicle movement in an integrated traffic and power network. Dijkstra’s algorithm

is used to determine the shortest distance between end-user residential and office areas.

An uncoordinated and semi-coordinated charging technique are used to charge electric

vehicles at different time intervals at different charging stations based on their driving

patterns. Monte Carlo simulation is performed to analyze the effect of uncertainty in

driving behavior. Results show that uncoordinated charging techniques generate new

peaks in the load profile of each node in the distribution system and cause undervoltage

problems in the power network. The semi-coordinated charging technique introduces a

delay in the charging time to shift electric vehicle charging loads to off-peak times.

Hence, with the semi-coordinated charging method, it is unnecessary to immediately

upgrade the distribution network infrastructure to avoid network overloading.
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CHAPTER 1 INTRODUCTION

1.1 Background

The usage of conventional internal combustion engine (ICE) vehicles contribute to a

large amount of greenhouse gas emissions and air pollution globally. In USA, 27 percent

of global warming pollution is caused by the use of gasoline in vehicles [1]. The global

concern about the environmental change, rise in price of gasoline products, and depletion

of fossil fuels have increased the adoption of electric vehicles (EVs) [2]. EVs are gaining

popularity as environmentally friendly transportation due to their high energy efficiency

and low CO2 emissions compared to conventional vehicles. The surplus of electricity

generated from renewable energy sources can also be considered as a driving force behind

the widespread adoption of EVs. Moreover, EVs have a fast response and can act as either

a source or generator for Vehicle to Grid (V2G) services. There are different EVs like

Tesla, Nissan Leaf, Chevrolet Volt, Faraday Future, etc., which are trying to

commercialize in the vehicle industry. One of the largest EVs developed by Tesla is “Tesla

roadster” that can drive 350 kilometers with maximum speed 210 kmph [3]. In the US, it

is expected that the sales of EVs will reach to 12 percent of all registered vehicles by

2025 [4].

From a distribution planning perspective, EVs are an unknown quantity representing

potential demand that varies both spatially (with respect to space) and temporally (with

respect to time) across the system [5]. To analyze the impact of EVs charging load on the

electric grid, information regarding spatial and temporal distribution of EVs is required.

Due to movement of EVs from one location to another at different time intervals, the total
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number of EV batteries available for charging at any charging station varies with respect

to time. Moreover, there exists uncertainty in EV users’ driving behavior. The driving

behavior depends on arrival time, departure time, driving speed, driving distance, parking

duration, battery capacity of each EV, road condition, etc. This randomness adds

additional complexity in determining the available number of EVs, but this will make

accurate prediction of amount of electricity consumed by EV batteries and their state of

charge. Therefore, modeling of EVs needs to be performed considering the complexity

related with the use of EVs [6].

EVs affect both the traffic and power system. EVs use the traffic network to travel

from one location to another [7]. Energy stored in EV batteries are consumed when they

move in the traffic network. The available battery capacity of EV is inversely proportional

to the total distance traveled. Hence, proper analysis of movement of EVs among various

streets in the traffic network is important. Once the locations of EVs are known,

information regarding amount of energy required to charge them at the respective nearest

charging station can be calculated. EVs are connected to the grid to charge their batteries.

At the end of the day, they are parked for longer time at home. So, charging stations are

installed usually at parking lot of home by utility companies. A normal socket or dedicated

charging socket is available to charge EVs through 120V (Level-1) or a 240V (Level-2)

voltage supply at residential node. Penetration of EVs may not affect transmission system

since large generators are available in power system to balance deficient loads, but these

may adversely affect small distribution networks. Especially, in low (≤ 1 kV) and medium

voltage level distribution systems (1 kV − 36 kV), EV charging loads add more stress.

With an increase in penetration of EVs in the grid, planning and operation of
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distribution system becomes more complicated. Lots of EVs means a large amount of

electricity demand. Most of the EV owners will arrive home from work within narrow

time space and charge them as soon as they reach home. The grid is congested mostly in

the evening due to their own residential load profile. Charging of EVs at the same time

adds more burden to the already congested grid. This uncontrolled and random charging

can cause additional peak in the system load profile, causing severe voltage fluctuations,

increase in system losses, and decrease in the system efficiency in the distribution

network [4]. This results in the overheating of the equipment and leads to the failure of

loads. In long term, it may lead to blackout. To solve these issues, the capacity of

transformers and lines in distribution network may be increased, but at significant cost. On

the other hand, the simplest way to reduce stress in the grid during peak time is not to

charge EVs during that time or charge them at different nodes due to the fact that EVs

charging time can be controlled. Scheduling of charging of EVs at different charging time

appears more realistic than at different charging stations because the charging stations for

a particular house is fixed. However, EVs are parked at office for about 7 hours on

average [8]. Also, solar power is available abundantly during the middle of the day. Thus,

charging at the office can also be a convenient way to recharge EVs. If EVs are fully

charged at the office, then EV charging demands are reduced at home at night.

Additionally, the charging behavior may be influenced more by the electricity price during

the different hours of a day. The price of electricity is highest during the peak hour period.

Several charging techniques, such as off-peak charging technique, coordinated

charging scheme, and smart charging techniques can be applied for EV charging to shift

loads in the middle of night when the cost of electricity is low or during day time when
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solar energy sources can be used to charge EVs [9]. Off-peak charging technique is one of

the simplest charging technique that can potentially reduce the addition of EVs load at

peak time, thus deferring any immediate upgrade in their generation, transmission, and

distribution infrastructure. However, simply shifting EV loads by constant time may cause

simultaneously charging of multiple EV loads, causing even higher increase in peak load

demand and additional voltage drops [10]. So, EV charging loads have to be shifted

randomly based on their arrival time and departure time to flatten the load profile. Monte

Carlo simulations need to be performed to analyze the uncertainties related with use of

EVs [11]. Monte Carlo simulation helps to take better decision by analyzing many

possible outcomes.

In this thesis, the load profile of the distribution system is flattened by using

semi-coordinated charging technique. Demand side management is performed to solve the

aforementioned problems of EVs in the distribution system.

1.2 Previous Work

Many studies have been conducted related to EVs assuming large penetration of

EVs in future grid. Simpson et al. in 2006 analyzed the benefits of using EVs for

customers. They found that the future penetration of EVs are affected by the cost and life

of EVs and their batteries. They concluded that EVs can save up to 45% per vehicle

petroleum consumptions that supports use of EVs in future [12]. Electric Power Research

Institute (EPRI) in 2007 studied the environmental impacts of EVs. They found that EVs

penetration can reduce CO2 emissions from 25% to 85% by 2050 based on different

scenarios [13]. Rezai et al. in 2012 examined the impact of uncoordinated charging in the
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rural distribution system of Canada. They used fast and slow charging technique for EV

charging. They concluded that less than 15% of EV penetration is permissible if fast

charging technique is used, and less than 25% if slow charging method is applied [14].

Clement et al. in 2010 developed coordinated charging technique with the objective

of minimizing power loss and maximizing grid load factor. They assumed that EVs will

arrive home between 6 pm to 9 pm and at office at 10 am. They considered fixed period

for charging EVs, which is not practical [4]. Qian et al. in 2010 determined EV charging

load based on uncontrolled, controlled, and smart charging technique. They found out that

the smart charging technique provides maximum benefit to the customer and utility

operator. However, they have assumed that all EVs are charged from fixed starting time at

home and office. They have also considered the same load profile in residential and

commercial areas that is unrealistic [10].

Fernandez et al. in 2011 proposed a technique to examine the impact of different

level of EV penetration in distribution system design. They found that energy loss in the

system may rise up to 40% with maximum EV penetration. The cost of distribution

system that can tolerate a maximum EV penetration are found to be around 15% higher

than network with no EV penetration. However, they have not considered distribution of

EVs at different time interval while modeling EV charging load [15]. Taylor et al. in 2010

used real world driving data from National House Travel Survey (NHTS) to generate

pattern of EV arriving at home in a day. They assumed that EV charging loads follow the

pattern of arrival time distribution. But, they have not controlled the duration for which

EVs are connected to the grid for charging. They also used controlled charging technique

in order to shift EV charging load during off-peak hour by adding constant time delay.
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However, it creates another peak in the system. They have not considered the randomness

in driving behavior [16].

Lee et al. in 2012 used real world driving data obtained from the survey conducted

by University of Michigan Transportation Research Institute to develop temporal

distribution of arrival and departure time. They proposed statistical modeling approach to

generate realistic driving pattern. The driving patterns are randomly assigned to the spatial

temporal model of EVs. However, they have not use Monte Carlo methods to analyze the

randomness in the driving behavior [17]. Lojowska et al. in 2012 used Copula distribution

to derive relationship between arrival time, departure time, and distance traveled. They

also used two charging technique to derive EV charging load, i.e., uncontrolled charging

method and controlled charging technique with charging time represented by uniform

distribution with interval between arrival and departure time. The driving distances are

represented by random probability distribution function. However, they did not consider

traffic network to determine the route EVs follow [9].

Tang et al. in 2016 developed probabilistic model of nodal EV charging demand.

EVs are assumed to move with respect to time and space in an integrated traffic and power

network. Random trip chains are considered to model randomness in driving behavior.

However, they have not done power flow analysis to observe the effects of nodal EV

charging loads in power system. Only uncoordinated charging technique is applied in this

work. The modeling of EV also did not account for randomness in driving speed of EV

users [7].

No work has been done to analyze the impact of nodal EV charging load network

considering EV model developed taking into account realistic driving pattern and EV
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movement in integrated traffic and power network.

1.3 Motivation

The main motivation for this work is due to the need to decrease the negative impact

of EVs in distribution system by considering spatial-temporal behavior of EVs as a

distributed storage system. The hypothesis for this study is that demand side management

using off–time charging technique will smoothen the load profile of various systems and

maintain the voltage within permissible limits.

1.4 Objective

The objective of this thesis is to determine EV charging loads based on spatial

temporal model of EV and use different charging technique to examine the impact

charging load on various nodes of distribution system. The specific tasks of this research

were to:

1) Develop model of integrated traffic and power network based on Bus 5 distribution

system of Roy Billinton Test System (RBTS) [7];

2) Modeling of EV users driving pattern;

3) Use several charging techniques for charging EVs at different locations; and

4) Use Monte Carlo simulation to analyze nodal voltage profile with addition of EV

charging load in RBTS Bus 5.

The tasks performed will determine EV charging loads at various nodes with respect

to time and space when different charging techniques are used. Moreover, this study will
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determine the importance of demand side EV charging load management for improving

the nodal voltage profile.

1.5 Contributions

The major contributions of this work are:

1) Addition of realistic driving patterns in an integrated traffic and electric power network

considering randomness in driving behavior;

2) Use of Dijkstra’s algorithm to determine shortest driving distance between residential

and commercial nodes;

3) Develop state transition algorithm to calculate number of EVs at different nodes; and

4) Use Monte Carlo simulations and semi-controlled charging techniques to eliminate

voltage problems in distribution system due to EV charging loads.

1.6 Thesis Outline

This thesis has been organized as follows: Chapter 2 describes the concept of EVs,

Dijkstra’s algorithm, different charging techniques, and RBTS Bus 5 distribution network.

Chapter 3 introduces the procedure to develop and implement Dijkstra’s algorithm in

integrated traffic and power network, and use of Monte Carlo simulation for load flow

analysis. It describes about system model used for purpose of simulation. Chapter 4

presents the simulation results and analysis. Finally, Chapter 5 presents the conclusions,

limitations, and possible future work.
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CHAPTER 2 THEORY

Chapter 2 provides detailed information on EVs, battery technologies used in EVs

and EV battery charging techniques. Graph theory and Dijkstra’s algorithm are also

explained in detail. Theories related to distribution network, load flow analysis, and

Monte Carlo simulations are also presented.

2.1 Electric Vehicles (EVs)

EVs are those vehicles which are powered completely or partially by using

electricity. EVs consist of several parts such as battery, electric motor, generator,

mechanical transmission, and power control system. Batteries are used to store the energy.

EVs are driven by one or more electric motors that are powered by rechargeable batteries.

The first four- wheel EV was developed by William Morrison in 1830 with

non-rechargeable batteries [18]. Since then, there has been huge progress in development

of EV technology. The range of distance that can be traveled by fully charged EVs are

shorter than that of conventional gas/diesel fueled vehicles. The distance that EVs can

travel varies with speed, driving style, and geographical features of driving locations.

However, according to U.S. Department of Transportation Federal Highway

Administration, this range is enough for more than 90% of all household vehicle trips in

U.S. [19].

The advantages of using EVs as compared to conventional ICE based vehicles are

described below.

1) Energy Efficient: EVs are highly efficient as compared to conventional ICE vehicles.



10

EVs convert 59%-62% of energy from grid to power wheel while conventional

vehicles convert only 17%-21% of total energy.

2) Environmentally Friendly: EVs are not responsible for producing any pollutants.

Power plants that generate electricity for EVs may emit harmful gases, but renewable

energy sources such as solar, wind, etc., can be used to charge batteries. These

renewable sources do not cause any pollution to the environment.

3) Performance Benefits: EVs need less maintenance. They operate quietly as compared

to conventional vehicles.

Figure 2.1. Integration of EVs to Distribution Network [20]

2.1.1 Classification of EVs

EVs are classified baesd on their size, battery capacities and charging method. The

three major types of EVs are described below:
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2.1.1.1 Plug-in Hybrid Electric Vehicles

Plug-in Hybrid Electric Vehicles (PHEV) are those vehicles that may be powered

by conventional fuel such as gasoline, oil, etc., or electric energy stored in a battery. Due

to the storage of energy in PHEV battery, it can reduce the consumption of gasoline under

typical driving condition. Since electricity is cleaner source of energy, PHEV emits less

greenhouse gases as compared to conventional vehicle. Chevy Volt, Ford Fusion Energi,

etc. are the examples of PHEVs.

2.1.1.2 Extended Range Electric Vehicles

Extended Range Electric Vehicles (EREVs) are those vehicles with internal

combustion engine and larger battery bank of size 16-27 kWh. The ICE coupled with the

battery provides large driving range by recharging the battery whenever required. Electric

motor turns the wheel while gasoline engine generates electricity needed to power electric

motor. EREVs can run without using gasoline until the battery needs recharging. Toyota

Prius, BMW i3, etc., are examples of EREVs.

2.1.1.3 Battery Electric Vehicles

Battery Electric Vehicles (BEVs) are those vehicles that use chemical energy stored

in rechargeable battery packs. Batteries are charged by plugging into an outlet or charging

station. BEV has electric motors and motor controllers instead of ICE for the purpose of

propulsion. These vehicles never produce tailpipe emissions and have longer driving

range as compared to PHEVs. Nissan LEAF, Ford Focus Electric, etc. are some of the

examples of BEVs.
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2.1.2 Battery Technologies

Secondary or rechargeable batteries are the energy storage devices used in EVs.

Electric battery are the combination of two or more electric cells connected together. DC

electricity is generated due to chemical reaction between electrodes and electrolyte. The

requirement of the battery varies with the type of EV. While discharging, circuits are

closed due to connection of electrochemical cell with load. Electrons move from anode

through load to cathode. During charging, electrons flow in opposite direction creating

potential difference between electrochemical cell. The most common type of battery used

in EVs are explained below.

2.1.2.1 Lead Acid Battery

Lead acid battery is one of the oldest and most popular battery technology. It uses

lead and lead dioxide as electrode. It is popular due to its low cost and large power to

weight ratio. It is commonly used for the purpose of starter, lightning and ignition in

traditional cars. The main drawbacks of this battery is low energy density and restricted

lifetime.

2.1.2.2 Nickel Cadmium Battery

Nickel cadmium battery uses nickel oxyhydroxide and metallic cadmium as

electrodes. It has higher specific energy content as compared to lead acid batteries. It is

more tolerant to deep charging and has higher power density. Since cadmium is toxic in

nature and memory effect reduce cell voltage, this battery is not used widely.
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2.1.2.3 Nickel Metal Hydride Battery

Nickel metal hydride battery uses nickel cadmium cell and hydrogen absorbing

alloy as electrodes. It has higher energy and power density as compared to nickel

cadmium battery. It has good cycle life and is less toxic in nature.

2.1.2.4 Lithium Ion Battery

Lithium ion battery is one of the most promising battery that uses intercalated

lithium compound as electrode material. Since lithium is lightest metal, it has greatest

potential for electrochemical reaction. It provides largest energy density for weight. The

cells are very tolerant of reverse currents, deep discharge, and high drain rate. However, it

is fragile and requires a protection circuit to operate safely. The battery subjects to ageing

if not used and frequently fails after two-three years.

Figure 2.2. Comparison of performance of different battery technologies [21]

Figure 2.2 shows the specific energy and power of different battery based at various

rated capacities. C-rate means the rate at which battery is being discharged in terms of its
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rated capacity. 10 C-rate means the battery will become fully discharged in 10 hours. The

traditional rechargeable battery type used in EVs is the lead-acid battery. However, other

batteries are also gaining popularity in modern EVs. In this thesis, EVs are assumed to

have lithium ion battery.

Table 2.1 shows the type of battery used by several EVs manufacturing companies.

Table 2.1. Batteries used in EVs of selected car manufacturers [22]

Company Country Vehicle Model Battery Technology

GM USA Chevy- Volt Li-ion

Saturn Vue Hybrid NiMH

Ford USA Escape, Fusion, MKZ HEV Ni-MH

Escape PHEV Li-ion

Toyata Japan Prius, LExus NiMH

Honda Japan Civic, Insight NimH

Hyundai South Korea Sonata Lithium Polymer

Chrysler USA Chrysler 200C EV Li-ion

BMW Germany ML450, S400 NiMH

Mini E (2012) Li-ion

BYD China E6 Li-ion

Daimler Benz Germany ML450, S400 NiMH

Smart EV (2010) Li-ion

Mitsubishi Japan iMiEV (2010) Li-ion

Nissan Japan Altima Ni-MH

Leaf EV (2010) Li-ion

Tesla USA Roadster (2009) Li-ion

Think Norway Think EV Li-ion, Sodium or

Metal Chloride
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2.1.3 Battery Characteristics

The key parameters that need to be considered while modeling EV batteries are

described below.

2.1.3.1 Battery Capacity

Battery capacity is the maximum amount of energy that can be extracted from

battery under specific conditions. It is determined by the mass of active material available

in the battery. The capacity of battery is affected due to ageing, charging and discharging

rate of battery, and the ambient temperature. It is measured in terms of Watt-hour (Wh) or

Ampere-hour (Ah). Ah is commonly used in battery system as battery voltage change

with variation in charging or discharging cycle. Ah represents the number of hours a

battery can supply current. This amount is equal to the discharge rate of battery voltage. If

the capacity of battery is 10 Ah, it can supply 10A current for 1 hour or 5A current for 2

hours. Wh is the product of Ah and nominal voltage of battery.

2.1.3.2 State of Charge

State of charge (SOC) is defined as available capacity of battery expressed as

percentage of its rated capacity. For EVs, SOC is equivalent to fuel gauge.

Mathematically, SOC can be expressed as,

SOC =
A
Q

(2.1)

where

A is the available battery capacity, and
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Q is the rated battery capacity.

Depth of discharge (DOD) is another means of measuring battery capacity. It is

opposite of SOC. If the battery is fully charged, SOC is 100% and DOD is 0% and if it is

fully discharged, SOC is 0% and DOD is 100%.

SOC of EV battery decreases with movement of EV from one location to another.

2.1.3.3 Charging Efficiency

Charging efficiency is the rate by which the electricity from the grid is supplied to

the battery in usable form. Most of the energy is used in restoring original chemical

condition in cell. Some of the energy is lost during the charging process in the battery and

the charger as heat. The charging efficiency varies with the type of the battery charger and

battery manufacturer. Charging process cannot be 100% efficient.

2.1.4 EV Charging Scheme

SOC of EV batteries decrease when EVs travel from one location to another. Hence,

EVs are plugged in to the grid to charge their batteries. Different charging techniques can

be implemented which are listed below:

2.1.4.1 Uncoordinated Charging Scheme

This is the most conventional charging scheme in which EVs are charged as soon as

they arrive at any charging station, i.e., home or office. EVs owners’ do not receive any

incentive to use this technique. They do not have any information to schedule the charging

time. When EVs are plugged in to distribution network and charged using this technique,

most of EVs are charged during the time with peak system load. This will affect the

voltage profile of the various nodes of distribution system.
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2.1.4.2 Coordinated Charging Scheme

This is the similar to the uncoordinated charging technique, but when EVs are

connected to the electricity network, charging process is controlled by smart grid

aggregator based on time frame [23]. Charging process is delayed by certain time to avoid

peak demand period. The delay time is based on information from the EV owner about

their charging requirement and the time when the charging process has to be complete.

The line loading are reduced by large amount as charging load are distributed over the

large time frame. Sometime, while shifting loads, another peak are created which might

negatively affect system voltage.

2.1.4.3 Smart Charging Scheme

In this technique, EVs are charged only when grid permits or requires to charge.

Different optimization techniques are used to improve the operation of power network

such as power factor, voltage profile improvement. An optimal EV charging schedule are

obtained based on desired customer or grid objective. Communications are required

between the grid operator and EV owner. Smart charging are also useful when renewable

energy sources are integrated to the grid.

2.1.4.4 Vehicle to Grid Charging Scheme

This is the modified form of smart charging technique in which EVs can transfer

power back to the grid. V2G service can be done by discharging energy through

bidirectional power flow or through charge rate modulation with unidirectional power

flow [24].
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2.2 Distribution System

Power system consists of generating units, transmission system, and distribution

system. Distribution system supplies electrical energy from transmission substations to

different customers by converting voltage to suitable level. The customers may be

residential, commercial, or industrial customers. Figure 2.3 shows the schematic diagram

of power system.

Figure 2.3. Schematic of transmission and distribution system [25]

Distribution system includes bulk power substations, sub-transmission lines,
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distribution substations, primary feeder, distribution transformer, secondary circuit and

service drops. Figure 2.4 shows the schematic diagram of radial distribution system. The

function of each unit in distribution system is described below:

1) Bulk power substation

Bulk power substation receives power from generating units through transmission lines

and converts extra high voltage into sub-transmission voltage.

2) Sub-transmission system

Sub-transmission system consists of circuits nominally rated at 69 kV. They are

obtained from bulk power substation.

3) Distribution substation

Distribution substation converts circuit from sub transmission system into primary

feeder voltage.

4) Primary distribution circuits

Primary distribution circuits are circuits from distribution substation and are

responsible for supplying power for residential, commercial and industrial customers.

5) Distribution transformers

Distribution transformers step down voltage from primary feeder to customer level

voltage.

6) Secondary circuits and service drops

They distribute electricity to customer premises from distribution transformer.
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Figure 2.4. Distribution System [26]

Table 2.2 shows the typical voltage level that are used in various units of power

network.

Table 2.2. Typical Voltage in Use [26]

Type Main Sub Primary Distribution

Transmission Transmission Distribution Secondary

I 69,000 V 13,800 V 2,400 V 120 V

II 138,000 V 23,000 V 4,160 V 120/240 V

III 220,000 V 34,500 V 13,800 V 240 V

IV 345,000 V 69,000 V 23,000 V 277/480 V

V 500,000 V 138,000 V 34,500 V 480 V
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2.2.1 Roy Billinton Test System

RBTS is a standard six bus system that is modeled for the purpose of reliability

studies at the transmission level. It consists of two generator buses (Bus 1 and Bus 2) and

five load buses (Bus 2- Bus 6). It has eleven generators and nine transmission lines. The

total installed capacity of this system is 240 MW with peak load of 185 MW. It has four

voltage levels i.e., 230 kV, 138 kV, 33 kV and 11 kV [27]. Figure 2.5 shows complete

single line diagram of RBTS. Each bus can be used for purpose of modeling and

simulation of distribution network.

Figure 2.5. Single Line Diagram of RBTS [27]
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2.2.1.1 RBTS Bus 5 Distribution System

RBTS Bus 5 distribution system represents typical urban areas with residential,

commercial, office, and buildings and governmental customers. It consists of four feeders

and twenty six load points. Among twenty six load points, thirteen load points are

connected to residential customers, three load points to office buildings, five load points to

the government and institutions, and remaining five to the commercial customers. The

peak load of this system is 20 MW. Figure 2.6 shows the distribution network of RBTS

Bus 5 system. Table 2.3 shows the classification of various load points based on customer

type and their peak load.

Figure 2.6. Distribution System for RBTS Bus 5 [27]
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Table 2.3. Customer Data [27]

Number of Loadpoints Customer type Peak load per

loadpoints loadpoint (MW)

4 1, 2, 20, 21 Residential 0.76

4 4, 6, 15, 25 Residential 0.75

5 1, 26, 9, 10, 11, 13 Residential 0.57

5 3, 5, 8, 17, 23 Government 1.11

5 7, 14, 18, 22, 24 Commercial 0.74

4 12, 16, 19 Office building 0.62

2.3 Graph Theory

Graph theory is a branch of mathematics that deals with points and lines. Graph

represents any network and their connection with each other. In graph, there are collection

of vertices which are connected together by edges. Mathematically, a graph G is defined

as an ordered pair with set of vertices V(G) connected by set of edges E(G) with incidence

function ψG as,

G = {V (G),E(G),ψG} (2.2)

Figure 2.7 represents a simple graph. The set of V(G), E(G) and ψG are expressed

as,

V (G) = {v1,v2,v3,v4,v5} (2.3)

E(G) = {e1,e2,e3,e4,e5,e6} (2.4)

ψG(e1)= {v2,v1}, ψG(e2)= {v3,v2}, ψG(e3)= {v3,v1}, ψG(e4)= {v4,v3}, ψG(e5)= {v5,v3}

(2.5)
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Figure 2.7. A Simple Graph [27]

Arrow sign represents the direction of edges. If arrow is not used, the path between

two vertices is bidirectional. Graph theory are useful for representing complex networks.

It can be used to model the road network, water supply network, power network, design of

integrated circuits (ICs) for computers, etc. In road network, nodes represent

crossroads/towns and edges represent distance between different streets. In power

network, nodes represent different nodes of distribution network or buses of power system

and edges represent distribution or transmission lines.

2.3.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is used to determine the shortest path between a source node

and other remaining nodes in the graph. The graph may be directed or undirected. In any

graph, it is possible to have more than one shortest path between two vertices. Each path

between two nodes are assigned with certain weight. The weight must be non-negative

value for Dijkstra’s algorithm. While determining shortest path between two nodes (i.e.,

traveling salesman), the shortest path may not travel through all vertices. The length of
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shortest path between source node and destination node can be calculated. Consider a

graph, G with source vertex, s such that G = {V,E,C}, sεE and ci j≥0 for edge (i, j)εE.

ci j is the cost of traveling path i to j. ‘p’ represents the permanent status for visited node

and ‘t’ represents temporary status for unvisited node. d j represents distance of node j.

The following steps are followed to determine the shortest path from s to remaining nodes.

1) Set zero distance value to node s since the cost to visit from node s to node s is zero

and mark it as visited. The state of node s is (0, p).

2) Assign cost to all other nodes as infinity and mark them as unvisited node. The state of

other node is (∞, t).

3) Assign node s as current node.

4) Find set J of unvisited nodes that can be traveled from current node i by using path

(i, j).

5) For each jεJ, the distance d j is updated such that,

new d j = min{d j,di + ci j}.

6) Find the node j with smallest distance among all nodes jεJ, then find j∗ such that

min
jεJ

d j = d j∗ .

7) Set node j∗ as visited/permanent node and mark this node as current node.

8) Repeat step (4) to (7) till all nodes are marked as permanent node.

9) Stop the process.
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d j∗ represents the length of shortest path between source node s and other node j.

The time complexity of Dijkstra’s algorithm is the total time required to run this algorithm

which is the function of total number of vertex V and number of edges E. The total run

time is calculated as,

O(E logV ) (2.6)

Figure 2.8 shows an example of step wise working of Dijkstra’s algorithm for

determining shortest path between Node 1 and Node 6. Figure 2.8(a) represents a simple

graph with six nodes represented with circle and paths represented with solid black lines.

Number on the paths represent the distance (weights) between nodes. Let us assume an

EV travels from Node 1 to Node 6. There are several possible paths EV may follow to

travel from Node 1 to Node 6 such as 1-2-5-6 or 1-3-2-5-4-6 or 1-3-5-6 or 1-4-5-6. We are

interested in finding shortest path. The graph is represented as,

V (G) = {1,2,3,4,5,6} (2.7)

E(G) = {e1,e2,e3,e4,e5,e6,e7,e8} (2.8)

ψG(e1) = {v2,v1}= 3,ψG(e2) = {v3,v2}= 4,ψG(e3) = {v3,v1}= 4,

ψG(e4) = {v1,v4}= 2,ψG(e5) = {v2,v5}= 2,ψG(e6) = {v3,v5}= 6,

ψG(e7) = {v6,v4}= 4,ψG(e8) = {v5,v4}= 1,ψG(e9) = {v6,v5}= 2

(2.9)
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(a) step 0 (b) step 1

(c) step 2 (d) step 3

(e) step 4 (f) step 5

(g) step 6 (h) step 7

Figure 2.8. A simple graph with a Dijkstra’s algorithm example

At first, Node 1 is selected as current node and its cost is assigned as zero.
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Remaining nodes are marked as unvisited node and their weights are assigned as ∞ as

shown in Figure 2.8(b). Then, the distance between Node 1 and its neighbouring nodes

i.e., Node 2, Node 3 and Node 4 are calculated and their weights are updated as 3, 4 and 2

units respectively. Then, Node 1 is marked as visited node (represented by circle) and

Node 4 is selected as current node in Figure 2.8(c). The distance of neighboring nodes of

Node 4 i.e., Node 5 and Node 6 are calculated to be 3 unit and 6 unit respectively.Node 4

is marked as visited node which is shown in Figure 2.8(d). Since, both Node 2 and Node 5

have equal weight (3 unit), i.e., minimum weight among unvisited nodes, Node 2 is

selected as current node. The new weight of Node 3 and Node 5 are calculated to be 7 and

5 respectively. Since, new weight of Node 3 and Node 5 are higher than previous weight,

their weights remain unchanged. Node 2 is marked as visited node as shown in

Figure 2.8(e). Node 5 is selected as current node. New value of neighboring nodes 3 and 6

are 9 unit and 5 unit respectively. Since the new value of Node 3 are higher, its value

remains unchanged. Node 5 is marked as visited node and Node 3 is marked as current

node as shown in Figure 2.8(f). Since all neighbouring nodes of Node 3 are visited, Node

3 is also marked as visited node as shown in Figure 2.8(g). Node 6 is marked as current

node. Node 7 is also marked as visited node as all other nodes are visited as shown in

Figure 2.8(h). So, the shortest path between Node 1 and Node 6 is 1-4-5-6 and the

distance between them is 5 unit.

2.4 Load Flow Analysis

Load flow analysis is steady state analysis tool that calculates the voltage and angle

magnitude at all buses. Information on real and reactive power demand, generator terminal
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voltage, real power generation, and network topology are provided. It also determines the

current injected to each node, the power injected to and from any bus, the line flow, and

losses in the lines. It gives an overall view on how power flows in the system.

Load flow equations are non-linear equations which are represented by

Equation 2.10 and 2.11.

Pk =
N

∑
j=1
|Vk||Vj|(Gk jCos(θk−θ j)+Bk jSin(θk−θ j)) (2.10)

Qk =
N

∑
j=1
|Vk||Vj|(Gk jSin(θk−θ j)−Bk jCos(θk−θ j)) (2.11)

where

Pk is active power injected at node k.

Qk is reactive power injected at node k.

Vk and Vj are voltages at node k and node j respectively.

θk and θ j are phase angle at node k and node j respectively.

Gk j is conductance of line between node k and node j.

Bk j is susceptance of line between node k and node j.

AC power flow or DC power flow techniques are used to solve power flow

equations. AC power flow technique can be Newton Raphson method or Gauss Seidel

method. Out of four unknown variables in load flow equations, two are known and two are

determined by solving Equation 2.10 and 2.11 at each bus type. In PQ bus, the active and

reactive powers at each bus are known and voltage magnitude and phase angle are

unknown. In PV bus, the active power and voltage magnitude are known and the reactive
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power and voltage phase angle are unknown. In slack bus, the voltage magnitude and

angle are known and active and reactive power are unknown. Voltage of slack bus is

considered as reference bus.

Load flow analysis has great significance in the planning phase of any power

system. It gives idea on whether the existing network can support the increasing load

demand. Power system planners can decide whether they need to add more generators to

meet power demand and prevent system from being overloaded. With proper design of

power system, large control on initial investment and operating cost can be done.

2.5 National Household Travel Survey

National Household Travel Survey (NHTS) provides important information on how

people use their vehicle [8]. The survey is conducted by American Federal Highway

Administration from April 2008 to April 2009. More than 150 thousand households were

randomly contacted using Computer Assisted Telephone Interviewing Technology. People

were asked several questions regarding their driving behavior for a day. Each household

member filled a travel survey form for the assigned date. They also provide trip

information over 24 hour period. All information is focused on vehicle rather than person

or household. Information regarding mode of transportation, length of route, time of

travel, route for travel, reason for travel, etc. were collected. The survey involves all mode

of transformation. NHTS are important to determine the position of vehicles at different

time interval. They are also useful in determining navigation algorithm, designing

charging station location of electric vehicles, and vehicle design.
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2.6 Monte Carlo Simulation

Monte Carlo simulation is computerized mathematical technique that performs

repeated random sampling to obtain statistical results. This technique runs simulations for

hundreds or thousands of iteration choosing different randomly selected variables. The

results describe the likelihood or probability of getting any result. The results obtained

from simulation can be used to create probability distribution, confidence intervals,

tolerance zones, and histograms. This method is useful when the model involves large

number of random variables, the model is complicated, or non-linear. Better decisions can

be taken to reduce the possible risks related with uncertainty. Monte Carlo simulations

have wide range of applications in the field of engineering, applied statistics,

computational biology, transportation, and the environment.
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CHAPTER 3 PROCEDURE

The various procedures used to achieve the objective of this thesis are elaborated in

this chapter. The following tasks were performed to accomplish the goal.1

Task 1: Develop benchmark model of integrated traffic and power network.

Task 2: Use Dijkstra’s algorithm to find the shortest route between residential and

commercial nodes.

Task 3: Modeling of EV users driving behavior.

Task 4: Design of state transition algorithm to find number of EVs at various nodes.

Task 5: Develop system model for the purpose of simulation.

Task 6: Use uncoordinated and semi-coordinated techniques for charging EV

batteries.

Task 7: Perform load flow analysis and Monte Carlo simulation to analyze effect of

EVs on distribution system.

3.1 Benchmark Model of Integrated Traffic and Power Network

An integrated traffic and power network incorporates both a road network and

distribution system. To know the effect of EV penetration in the medium voltage

distribution network, it is important to consider movement of EVs in traffic system. The

capacity of EV batteries changes as they travel, and EVs need to be charged when they

1The part of this work related to modeling of integrated traffic and power network, state transition al-
gorithm and uncoordinated charging technique has been accepted to publish in paper ‘S. Shrestha and T.M.
Hansen, “Spatial-Temporal Stochasticity of Electric Vehicles in Integrated Traffic and Power Network”, 2016
IEEE International Conference on Electro/Information Technology, Grand forks, ND, May 19-21, 2016.’ and
work related to semi-coordinated charging technique, load flow analysis and Monte Carlo simulation has
accepted to appear in paper ‘S. Shrestha and T.M. Hansen, “Distribution Feeder Impacts of Electric Vehicles
Charging in an Integrated Traffic and Power Network”, North American Power Symposium 2016, Denver,
CO, Sept 18-20, 2016.’
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arrive at charging stations. The number of EVs at charging locations changes with time,

impacting the EV charging load connected to the nodes. Therefore, an integrated traffic

and power network similar to one proposed in [7] is developed, as shown in Figure 3.1,

using graph theory. The benchmark model of the system was developed using ‘gplot’

command in MATLAB. The following command is used.

gplot(A,xy) (3.1)

where

A is n-by-n adjacency matrix. A(i, j) is zero if node i and j are not connected. A(i, j)

represents the distance between node i and node j if they are connected with each other.

n is the number of nodes in power network or number of crossroads in traffic

network.

xy is an n-by-2 matrix with each element representing the Cartesian coordinates of

location of nodes or crossroads.

In Figure 3.1, the length and width of traffic network are 15.28 km and 16.1 km,

respectively. The grey color represents traffic system of city area and red color represents

the distribution system network, i.e., RBTS Bus 5 distribution system. The grey dashed

lines represent the streets and circles represent cross roads. Red lines represent the

distribution lines with red triangles representing the nodes. To model the system, EVs are

assumed to be in one of the following three states:

• State 1: EV is in a residential area;
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Figure 3.1. Integrated Traffic and Power System [7], [28]

• State 2: EV is in an office area; or

• State 3: EV is in transit.

In this work, two residential buses and two commercial nodes are considered for

modeling the system. Node 23 and Node 29 are assumed as residential nodes that own

EVs. Node 43 and Node 45 are assumed as commercial nodes, but the method is general

enough to extend to n nodes. EVs travel from one residential bus to another commercial

bus using traffic network. EVs are connected to the power network for charging their

batteries when EV is in either State 1 or State 2.
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3.2 Shortest Route between Residential and Commercial Node

There are several routes in traffic network which EV owners can use to reach their

destination. In this work, for the purpose of modeling driving behavior, EV owners are

assumed to follow shortest route to their destination. Residential nodes are assumed to be

starting node and office nodes as destination node. EVs travel from each residential area

to each office area. Each path is assigned with certain length, i.e., distance. Dijkstra’s

algorithm is used to determine the shortest path each EV uses. The MATLAB function

‘dijkstra’ was used to determine the shortest path and distance between these nodes. The

usage of Dijkstra’s algorithm is expressed by Equation 3.2.

[Cost, Route] = di jkstra(G, S, D) (3.2)

where

S is the starting node,

D is the destination node,

G is an adjacency matrix that represent the value of the edge,

Cost is the shortest length between starting and destination node, and

Route is the shortest path an EV follows to reach destination node.

Table 3.1. Shortest Driving Distance

Location Residential Area 1 Residential Area 2

Office Area 1 43.47 km 43.93 km

Office Area 2 39.56 km 40.48 km
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Figure 3.2. Shortest path between residential area 1 and office area 1

Figure 3.3. Shortest path between residential area 1 and office area 2
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Figure 3.4. Shortest path between residential area 2 and office area 1

Figure 3.5. Shortest path between residential area 2 and office area 2
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Solid lines (cyan color) in Figures 3.2, 3.3, 3.4, and 3.5 represent the shortest route

between residential and office nodes. In this thesis, residential area 1 and residential area 2

connected to Nodes 23 and 29, respectively are starting nodes and office area 1 and office

area 2 connected to Nodes 43 and 45, respectively are destination nodes or vice-versa.

The shortest distance between these residential and office nodes are shown in Table 3.1.

3.3 EV Modeling

For modeling of EVs, information on departure time of EVs are taken from NHTS.

Randomness in driving speed and parking duration are modeled using normal distribution.

This method works for any EV battery, but in this work each EV is assumed to have

Mitsubishi battery.

3.3.1 End User Driving Pattern

Figure 3.6 provides detail information of number of vehicles traveling from home to

different destinations at different time interval in a day. The navy blue curve represents the

total number of vehicles that move from home to office and vice-versa. In this work, the

total number of vehicles represented by the navy blue curve in Figure 3.6 traveling before

10 am has been considered as the total number of vehicles moving from home to office,

and the same number of vehicles travel back home after a certain time interval i.e., the rest

period.
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Figure 3.6. End User Driving Pattern [8]

Figure 3.7. EVs leaving residential nodes [8]

Using Webplotdigitizer, discrete data were extracted from blue curve at 15 – minute

time intervals. In this work, residential node 23 and 29 are assumed as point of common
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coupling for 278 and 216 houses, respectively. Each household is assumed to have four

EVs to highlight the negative impacts of EV charging. Hence, the number of vehicles are

scaled down in such a way that total number of EVs connected to nodes 23 and 29 are

1,112 and 864, respectively. Out of total EVs, it is assumed that 50% of EVs travel to

office area 1 and remaining 50% to office area 2. The distribution of EVs leaving these

nodes based on their departure time at 15 – minute time interval for a day are shown in

Figure 3.7.

3.3.2 End User Driving Speed

The speed of EVs vary according to drivers and routes taken. Most people in cities

drive near the speed limit (the average speed), but some drivers’ speeds lie above or below

average speed. To make the driving behavior more realistic, the average speed (Vt) of EVs

in a day are assumed to follow a normal distribution pattern Vt ∼ N(µt , σt) [29]. The

probability density function of speed is

f (Vt ,µt ,σt) =
1

2πσ2
t

e
− (Vt−µt )2

2σ2
t (3.3)

where

Vt is the speed of EV at time ‘t’,

µt is the mean of speed, and

σt is the standard deviation of speed.
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Figure 3.8. Speed of EVs leaving home at different time interval in a day

Here, the average speed of EVs are assumed to be 45 km/hr and standard deviation

as 5 km/hr [30]. Figure 3.8 shows the speed of EVs leaving home at different time

interval. Once Vt is known, time required to travel from home to office is calculated using

Equation 3.4.

Ti j =
d
Vt

(3.4)

where,

d is the shortest distance between bus i and bus j from Table 3.1.

3.3.3 Parking Duration

Parking duration varies according to driver. Due to uncertainty in driving behavior,

some drivers may leave parking spot earlier or later than average parking duration. In this

work, it is assumed that parking duration of EVs in any office follows a normal
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distribution Tp,t∼ N(µp,t , σp,t) [7].The probability density function of parking duration is

f (Tp,t ,µp,t ,σp,t) =
1

2πσ2
p,t

e
− (Vp,t−µp,t )2

2σ2
p,t (3.5)

where

Tp,t is the parking time of EV that arrives at office at time ‘t’,

µp,t is the mean of parking duration, and

σp,t is the standard deviation of parking duration.

Here, average parking duration is assumed to be 7 hours and standard deviation is

1.75 hours [8]. Figure 3.9 shows the time EVs are parked at office when they arrive at

office at different time interval.

Figure 3.9. Parking duration for EVs arriving at office at different time interval in a day
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3.3.4 Battery Model

Mitsubishi i-MiEV is one of the highly efficient car produced by Mitsubishi Motors.

For the purpose of the simulation, it is assumed that all EVs contain same battery of type

i.e., battery found in Mitsubishi i-MiEV. The capacity of each battery is 16 kWh [31].

Charging stations at office or home are assumed to have level 2 charger. These chargers

charge battery at voltage level 220 V–240 V with the charging current of 15 A. According

to SAE J1772 standard, the charging rate is 3.3 kW [31], [32]. It takes around 7 hours to

fully charge the battery. So, the charging efficiency is considered as 90%. According to

U.S. Environmental Protection Agency, the specific energy consumed by each battery is

0.1678 kWh/km [33].

3.3.5 State Transition Algorithm

A state transition algorithm is developed to calculate the number of EVs available at

different home and offices at different time interval. Figure 3.10 shows a state switching

model that shows movement of EVs from home area to office area.

Figure 3.10. State Switching Model

Calculations are based on the assumption that
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1) There is movement of EVs from each home to each office,

2) There is no movement of EVs between homes or between offices, and

3) All EVs start and end their journey at home.

Figure 3.11 represents simple working steps of state transition algorithm. Number

of residential and commercial areas, EVs leaving home, nodes to which residential and

commercial areas are located are given as input. From NHTS travel survey data, number

of EVs leaving from home m to office n at 15 – minutes time interval, nHmOn(t), are

obtained. The simulation is performed for 24 hours i.e. from 12 a.m. to 11:59 p.m. with

15 – minutes time interval. This algorithm is executed for 24× 60
15 = 96 times.

Figure 3.11. State Transition Algorithm
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The various steps that are followed to calculate number of EVs at different time

interval are explained in details below:

1) Input number of home (a) and offices (b); m = 1,2, . . . ,a and n = 1,2, . . . ,b;

2) Input bus number to which home and offices are connected;

3) Initially m = 1 and n = 1;

4) Use Dijkstra’s algorithm to calculate shortest path between each home and office,

(YHmOn);

5) Randomly generate speed of EVs, (VHmOn,t), traveling at different time interval using

Equation 3.3;

6) Calculate time required to reach office from home or vice-versa;

THmOn,t = TOnHm,t =
YHmOn

VHmOn,t
(3.6)

7) Calculate number of EVs that reach office at time ‘t’;

nHm

On
(t +THmOn,t) = nHmOn(t) (3.7)

8) Randomly generate parking duration at office; Tp,HmOn,t , using Equation 3.5;

9) Calculate number of EVs traveling from office to home at different time interval;

nOnHm(t) = nHm
On

(t +Tp,HmOn,t) (3.8)
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10) Calculate number of EVs that arrive home at time ‘t’;

nOn
Hm

(t +TOnHm,t) = nOnHm(t) (3.9)

11) Calculate total number of EVs at home m due to movement of EVs from office n;

nHm On(t +15) = nHm On(t)+nOn
Hm

(t +15)−nHmOn(t +15) (3.10)

12) Calculate total number of EVs at office n due to movement of EVs from home m;

nOn Hm(t +15) = nOn Hm(t)+nHm
On

(t +15)−nOnHm(t +15) (3.11)

13) Repeat above steps from (3) to (12) for every combination of m and n;

14) Calculate total number of EVs at each home, office and in movement;

nHm(t) =
b

∑
n=1

nHm On(t) where,m = 1,2...a (3.12)

nOn(t) =
a

∑
m=1

nHm On(t) where,n = 1,2...b (3.13)

nHtotal =
b

∑
n=1

a

∑
m=1

nHm On(15) (3.14)

nmovement(t) = nHtotal −
a

∑
m=1

nHm(t)−
b

∑
n=1

nOn(t) (3.15)
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15) Calculate probability of finding EVs at each home and office;

PHm(t) =
nHm(t)
nHtotal

(3.16)

POn(t) =
nOn(t)
nHtotal

(3.17)

3.4 Charging Techniques

Uncoordinated and semi-coordinated charging methods are applied in this work.

3.4.1 Uncoordinated Charging Technique

EVs are connected to the grid for charging as soon as they are parked at any

charging station, and the charging continues until the battery is fully charged or another

trip begins. Here,

tcharging = tarrival (3.18)

where

tcharging is the time at which EVs start charging, and

tarrival is the time at which EVs arrive at a charging station.

If an EV leaves home ‘m’ at time ‘t1’ and arrives at office ‘n’ at time ‘t2’, then SOC

of each EV battery at time ‘t2’ is calculated using Equation (3.19).

SOC(t2) = SOC(t1)−
uy
e
×100 (3.19)

where

e is total battery capacity of each EV,
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y is distance between home m and office n in km, and

u is energy consumption in kWh/km.

If an EV stays parked at the office for time ‘tp’, then the SOC of the EV battery

before the return trip is calculated using Equation (3.20).

SOC(t2 + tp) = min(SOC(t2)+
η×Q×tp×100

e
,100) (3.20)

where

η is the charging efficiency, and

Q is the charging rate in kW.

If an EV reaches home ‘m’ at time ‘t3’ in the evening from the office, then SOC of

EV battery at time ‘t3’ is calculated using Equation (3.21).

SOC(t3) = SOC(t2 + tp)−
uy
e
×100 (3.21)

Once, the SOC is known, the available battery capacity at each charging station at each

time intervals can be calculated. If the number of EVs arrive at office at time T1, T2,. . . ,T ,

then, the capacity of batteries available at office at any time ‘t’ are calculated using

equation (3.22).

Co f f ice(t)= SOC(T1 + t)×e×nHm
On

(T1)+SOC(T2 + t)×e×nHm
On

(T2)+...+SOC(T )×e×nHm
On

(t)

(3.22)
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Here, SOC(Tn + t) can be calculated as,

SOC(Tn + t) = min(SOC(Tn)+
η×Q×(t−Tn)×100

e
,100) (3.23)

SOC(Tn) = SOC(tl−n)−
uy
e
×100 (3.24)

where

Tn = T1, T2,...,T , and

tl−n is the the time at which EVs that arrive at office at time Tn leave home.

If the number of EVs arrive at home at time t1, t2,..., t, then the capacity of batteries

available at home at time ‘t’ are calculated using Equation 3.25.

Chome(t) = SOC(t1 + t)×e×nOn
Hm

(t1)+SOC(t2 + t)×e×nOn
Hm

(t2)+ ...+SOC(t)×e×nOn
Hm

(t)

(3.25)

Here, SOC(tn + t) can be calculated as,

SOC(tn + t) = min(SOC(tn)+
η×Q×(t− tn)×100

e
,100) (3.26)

SOC(tn) = SOC(Tn + tp)−
uy
e
×100 (3.27)

where

tn=t1, t2,...,t.

The uncharged battery capacity, Cuncharged , at time ‘t’ can be calculated using



50

Equation 3.28.

Cuncharged(t) =C f ullcharged(t)−Cavaiable(t) (3.28)

where

C f ull charged is the total capacity of batteries if all EVs are fully charged, and

Cavailable is the available capacity of batteries.

3.4.2 Semi-Coordinated Charging Technique

In this method, once EVs arrive at any charging station, they are connected to gird

for charging only after certain time delay. If EV arrives at any location at time ‘t2’ and is

parked for time ‘tparking’, then time taken to charge EV (tcharging) are calculated by using

Equation (3.29) or (3.30).

tcharging =
(SOC(t2 + tp)−SOC(t2))e

ηQ
, i f tcharging≤tparking (3.29)

tcharging = tparking, otherwise (3.30)

At home, the time at which EVs start charging is represented by a uniform distribution

tdelay home∼U(tarrival home, tlimit home).

tlimit home = 12am+0.5×R− tcharging home (3.31)

where

tarrival home is the time when EVs arrive at home,

R is the rank whose value is 1 for first group of EVs that arrive at home from office,
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2 for second group of EVs and so on, and

tcharging home is the total time required to fully charge EV batteries at home.

At office, the delay in charging time is represented by uniform distribution

tdelay o f f ice∼U(tarrival o f f ice, tlimit o f f ice).

tlimit o f f ice = tdeparture o f f ice− tcharging o f f ice (3.32)

tdeparture o f f ice = tarrival o f f ice− tparking o f f ice (3.33)

where

tarrival o f f ice is the time when EVs arrive at office,

tdeparture o f f ice is the time when EVs leave office, and

tparking o f f ice is the time for which EVs stay at office.

SOC of the batteries between the time interval when EVs arrive at any charging

station and the charging begin is same as the SOC at the beginning when they arrive at that

charging station. If EVs arrive at office at time ‘t1’ and then start charging at ‘td’, then

SOC of EVs at time ‘t’ are calculated using Equation (3.34) and (3.35).

SOC(td + t) = min(SOC(td)+
η×Q×(t− td)×100

e
,100) (3.34)

SOC(td) = SOC(t1) (3.35)

The available and uncharged batteries capacity are calculated in the similar way as

in uncoordinated charging technique described in Section 3.4.1.
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3.5 EV charging load

When EVs whose SOC is not 100% are charged, they act as additional load to the

grid. EV charging load (EVcharging load) at any charging station are calculated using

Equation 3.36.

EVcharging load(t) = Q×NEV s(t) (3.36)

where

NEV s(t) is the total number of EVs at any charging station at time ‘t’ whose SOC is

not equal to 1, i.e., whose batteries are not fully charged.

If N1, N2,...,N EVs arrive at office 1 and start charging at time T1, T2,...,T , then total

EV charging load, EVload , at time ‘T ’ is calculated using Equation 3.37.

EVload(T ) = N1×F1×Q+N2×F2×Q+ ... +N×F×Q (3.37)

where

Fi is the variable whose value is 1 if SOC(Ti +T )<1 and 0 if SOC(Ti +T )=1 ,

i=1,2,..,n.

SOC(Ti +T ) is calculated using Equation 3.23 or 3.34.

3.6 System Load

System load are assumed to vary with respect to time in a day in residential and

commercial nodes with EVs. Hence, different load profile are considered for the

residential and commercial customers with EVs. Figure 3.12 shows the daily load curve

of residential area 1(magenta curve), residential area 2 (blue curve), office area 1 (red
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curve), and office area 2 (green curve) The peak load of residential area 1, residential area

2, office area 1 and office area 2 are 0.76 MW, 0.59 MW, 0.74 MW and 0.74 MW,

respectively [34]. Residential areas have peak load from 4 pm to 6 pm while office areas

have peak load from 10 am to 4 pm. It is because most of the loads are consumed by

lighting units and electric heaters during evening time at home. Electricity is consumed

mainly by computers and printers during daytime at office. The same load curve is

considered for office area 1 and office area 2, hence the red and green curve are

overlapped in Figure 3.12. Loads on remaining nodes in RBTS Bus 5 system are assumed

to be constant. The peak loads at various nodes of RBTS bus 5 are explained in

Section 2.2.1.1. In load flow analysis, these loads represent the load demand at various

nodes of distribution power system.

Figure 3.12. System Load for residential areas (magenta and blue curves) and commercial
areas (red and green curves). The two office areas are assumed to have the same load
profile, hence the curves overlap. [34]
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3.7 Calculation of nodal voltage using load flow analysis

MATPOWER is used as simulation tool for performing load flow analysis [35]. EV

charging loads are connected to the various nodes of distribution system, increasing the

total demand. The total demand of the system (Ltotal) is calculated using Equation 3.38.

Ltotal = Lsystem +EVload (3.38)

where

Lsystem is the system load, and

EVload is the total EV charging load.

To observe the impact of these loads on voltage profile of RBTS Bus 5 distribution

system, load flow analysis is performed for a single day. The permissible node voltage in

medium voltage distribution networks is assumed to be 0.95 to 1.05 p.u. Newton-Raphson

method is used to determine the voltage profile at each node for each case. Each of the

line impedances for the three phases are assumed to be the same. In this work, a balanced

three-phase approximation is used. The line impedance of single phase lines of RBTS Bus

5 distribution system are shown in Table 3.2.

Table 3.2. Line Impedance of RBTS Bus 5 Distribution System

Type Impedance (Ω)

Main Feeder 0.211 + 0.414j

Lateral Feeder 0.341 + 0.456j

The rating of the transformer in main feeder is 15 kVA and in lateral feeder is 8.8

kVA. The distribution system for Bus 5 has two 138/11 kV transformers. Each feeder has
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voltage level of 11 kV. Each load points are supplied by 11/0.415 kV transformer. Only

active loads are considered in this work.

3.8 Calculation of average nodal voltage using Monte Carlo simulation

Figure 3.13. Flowchart for Monte Carlo simulations for determining voltage at each node
based on the movement and charging of EVs.

Each time the program is executed, the total number of EVs available at any home

or office at any time interval are found to be different due to the randomness in the driving
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speed and parking duration. This will cause variations in EV charging loads and the

voltage profile of the system. Therefore, the simulation is run 50 times, and the range of

the minimum and maximum voltage at each node at different time intervals is determined.

The average value of the voltage is calculated to observe whether or not the voltage at

each node lies within permissible limits. The minimum voltage at each node at any time

interval is the voltage that is found to be lowest at that node among the values obtained

over 50 simulations. The average voltage at each node at any time interval is the value

calculated by taking mean of all the voltages obtained over 50 simulations. Figure 3.13

shows flowchart for calculating minimum and average voltage using Monte Carlo

simulations.

3.9 Simulation Cases

Four cases were considered for the purpose of simulation and analysis. These cases

were used to calculate EV charging loads for different charging scenarios and analyze

their impacts on node voltages. In case 1 and case 3, EVs were charged at home only

using uncontrolled and semi-coordinated charging technique, respectively. EV charging

loads were shifted at office during afternoon to reduce peak loads at home during the

evening. Hence, in case 2 and case 4, EVs were charged both at home and office using

uncoordinated and semi-coordinated charging technique, respectively. Table 3.3 contains

the summary of all four cases.
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Table 3.3. Simulation Cases

Case Description

Case 1 EVs are charged only at home using uncoordinated

charging technique

Case 2 EVs are charged both at home and office using uncoordinated

charging technique

Case 3 EVs are charged only at home using semi-coordinated

charging technique

Case 4 EVs are charged both at home and office using semi-coordinated

charging technique
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CHAPTER 4 RESULT AND ANALYSIS

Chapter 4 shows results and analysis obtained from simulation of EV model

developed in integrated traffic and power system. Results for residential node 23 and

commercial node 43 are only presented. The distribution of EVs with respect to time and

space are presented. EV charging load are shown for different cases. The voltage profile at

various nodes due to this EV charging loads are demonstrated. Finally, average voltage

obtained from Monte Carlo simulations are also presented.

4.1 Location of EVs in Integrated Traffic and Power Network

Figure 4.1. Number of EVs available at different locations in a day
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Figure 4.1 shows the number of EVs available at different locations (i.e., at

residential area, office area, or in transit) at different time intervals in the simulated day. It

can be observed that the number of EVs is higher in residential areas (represented by the

green and blue curve in Figure 4.1) during the morning and evening. The number of EVs

is high at residential areas from 12 am until 7 am, and starts to decrease during the

daytime. From 9 am until 3 pm, most EVs are parked in office areas (represented by the

red and black curves in Figure 4.1). During the evening after 6 pm, the number of EVs

increases in residential areas because EVs start to return home from the office. The

number of EVs in transit, represented by the magenta curve in Figure 4.1, has two peaks,

i.e., from 7 am to 9 am and 3 pm to 5 pm. This is due to movement of EVs from home to

the office in the morning and the movement of EVs from the office back home in the

evening. The zigzag pattern in these curves is due to the randomness in driving speed and

parking duration. The total number of EVs, represented by cyan curve, at each time

interval is constant.

Figure 4.2 shows the total probability of finding EVs at different locations. It

follows a pattern similar to Figure 4.1, as the probability of finding EVs at any location is

directly related to the number of EVs at that location. The probability is calculated based

on the total number of EVs taken for simulation. The probability of finding EVs is higher

in the morning and evening in residential areas, and office areas in the afternoon.

4.2 Capacity of EV batteries available at different location

Because the SOC of EV batteries decrease due to the movement from one location

to another, EV batteries are charged when they are parked. EVs are connected to the
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Figure 4.2. Probability of finding EVs at different locations in a day

power network through charging stations as soon as they arrive at a charging location or

after certain time delay, and are until they are fully charged or next trip starts. Four

different charging scenarios explained in Section 3.9 are analyzed.

4.2.1 Capacity of EV batteries at residential nodes when no charging occurs at office

Figure 4.3 shows the capacity of EV batteries available at residential node 23 when

EVs are charged only at home. Solid lines represent the cases when EVs are charged

using uncoordinated charging technique (Case 1). Dashed lines represent the cases when

EVs are charged using semi-coordinated charging technique (Case 3). Capacity of

batteries available for charging at any time, i.e., uncharged battery capacity is represented

by blue curve. Capacity of batteries available at Node 23 is represented by red curve



61

Figure 4.3. EV battery capacity at residential node 23 when no charging occurs at office

which is the total amount of battery capacities that can participate in V2G services. This

amount is highest after 12 am in the case when EV charged with uncoordinated charging

technique because most of the EVs that return from offices become fully charged at home

by that time. During morning, uncharged battery capacities are zero because all EVs are

fully charged. When EVs return to home from office during evening, their SOC decreases

and uncharged battery capacities become available, however, they are connected to the

grid for charging their batteries. At Node 23, very low batteries are uncharged until 12 am

when uncoordinated charging technique is used. Uncharged batteries capacity are higher

for the case using semi-coordinated charging technique (represented by dotted blue curve)

since most of the batteries are charged after certain time delay in order to avoid coinciding

with peak loads. Most of them are charged only after 12 am.
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4.2.2 Capacity of EV batteries at commercial nodes when no charging occurs at office

]

Figure 4.4. EV battery capacity at office node 43 when no charging occurs at office in the
uncoordinated (Case 1) and semi-coordinated (Case3) cases.

Figure 4.4 shows the capacity of EV batteries available at office node 43 when EVs

are charged only at home. The uncharged battery capacity are maximum from 10 am to 12

pm since most of the EVs are available at office during that time. The uncharged battery

capacities at office due to uncoordinated and semi-coordinated charging overlap with each

other because no EVs are charged at offices. The decrease in uncharged battery capacities

at commercial node after 1 pm is due to the movement of EVs from office to residential

areas at the end of the day.
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4.2.3 Capacity of EV batteries at residential nodes when charging occurs at office

Figure 4.5. EV battery capacity at residential node 23 when charging occurs at office in the
uncoordinated (Case 2) and semi-coordinated (Case 4) cases.

Figure 4.5 shows the capacity of EV batteries available at residential node 23 when

EVs are charged at both home and offices. The pattern of graphs for uncoordinated

charging is similar to those in Figure 4.3. The difference is that the capacity of batteries

available for charging are lower as compared to the case when EVs are charged at home

only. This is because EVs become fully charged while they are parked at the office (i.e., a

full charge at the beginning of the trip from office to home). At residential node 23, all

EVs become fully charged at 10 pm. The batteries need to be connected to the grid for

shorter time in Case 2 as compared to Case 1. Red curves show the capacity of batteries at

residential area that can participate in V2G services. These capacities are higher at
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residential node in Case 2 as compared to Case 1. The uncharged battery capacities at

residential nodes are higher for the Case 4 because EV loads are connected to grid for

charging after certain time delay only. Hence, the capacity of batteries available for V2G

service is lower for Case 4 as compared to Case 2.

4.2.4 Capacity of EV batteries at commercial nodes when charging occurs at office

Figure 4.6. EV battery capacity at commercial node 43 when charging occurs at office in
the uncoordinated (Case 2) and semi-coordinated (Case 4) cases.

Figure 4.6 shows the capacity of EV batteries available at office node 43 when EVs

are charged at offices too. EVs are charged as soon as they arrive at office and all EVs

become fully charged at 1 pm in Case 2 (represented by solid blue graph), but in Case 4,

uncharged battery capacities are higher as compared to Case 2. All EVs become fully

charged in Case 4 at 5 pm at office node 43. This is because EVs charging loads are
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shifted uniformly throughout the parking duration so as to avoid larger EV charging

during peak load periods. For V2G services, battery capacities available are higher in

Case 2 as compared to Case 4. Uncharged battery capacities are zero after 8 pm because

the number of EVs at office area is zero.

4.3 Temporal Distribution of Loads

The total load connected to each node of distribution system increases due to

penetration of large number of EV charging loads. When no EVs are connected, total load

is equal to the system load. EVs charging loads are much higher than the system load and

are added to the system load .

4.3.1 Load connected to residential node when no charging occurs at office

Figure 4.7. Load connected to a residential node 23 when no charging occurs at offices in
the uncoordinated (Case 1) and semi-coordinated (Case3) cases.
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Figure 4.7 shows the total load connected to the residential node 23 when EVs are

charged at home only. Because EVs are not charged at offices, total loads connected to

office nodes are equal to the system load connected to those nodes in Case 1 and Case 3.

At residential node 23, peak loads are observed during the evening, i.e., from 4 pm to 7

pm due to uncoordinated charging of EVs. With semi-coordinated charging techniques,

most of the EV charging loads are shifted to nighttime. During evening times, the load

curve is flattened. The peak load for Case 1 decreased from 3.4 MW to 2.2 MW.

4.3.2 Load connected to residential and commercial node when charging occurs at office

Figure 4.8. Load connected to a residential node 23 and commercial node 43 when charging
occurs at offices in the uncoordinated (Case 2) and semi-coordinated (Case 4) cases.

Figure 4.8 shows the total load connected to the residential nodes 23 (blue curve)

and office node 43 (red curve) when EVs are charged at both homes and offices. Due to

charging of EVs at office nodes, the peak load at residential node 23 is reduced from 3.4
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MW (Case 1) to 2.9 MW (Case 2). The peak load at office node 43 is increased from 0.74

MW (Case 1) to 2.6 MW (Case 2). Due to semi-coordinated charging, EV loads are

shifted toward off-peak hours and peak load at Node 43 is reduced from 2.6 MW to 2.3

MW (Case 4) and the peak load at residential node 23 is reduced from 2.9 MW to 1.6 MW

(Case 4). EV charging loads are uniformly distributed throughout parking duration at

residential and commercial nodes in Case 4, while in Case 2 peaks are created in the

system load. Hence, parking of EVs at office nodes cause shift in EV charging loads

spatially and semi-coordinated charging technique cause shift in EV charging loads

temporally.

4.4 Impact of EV charging load on node voltage for a single run case

Due to EV charging loads connected to the distribution network, voltage of various

nodes of RBTS Bus 5 distribution system are affected. Uncoordinated charging technique

exhibits under voltage issues on various nodes while semi-coordinated charging technique

improves the voltage of affected buses. The voltage profile of one of the most affected

residential and commercial nodes are explained in Section 4.4.1 and 4.4.2.

4.4.1 Voltage profile of residential nodes and commercial nodes when no EV charging

occurs at office

Figure 4.9 shows the voltage at the residential node 23 when EVs are charged at

home only. The cyan curve shows the voltage without any EVs connected and the solid

green curve shows the voltage when EV loads are charged using the uncoordinated

charging technique. The voltage drops below the allowable limit from 3:30 pm to 8 pm

because most of the EVs are connected to Node 23 for charging during that time. In the
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Figure 4.9. Voltage profile of residential node 23 for a day when no charging occurs at
offices in the uncoordinated (Case 1) and semi-coordinated (Case 3) cases.

worst case, the voltage drops to 0.936 p.u. The dotted green curve shows the voltage using

the semi-coordinated charging technique. In this case, the voltage drops to 0.952 p.u. in

worst condition which lies within standard limit. This is due to the shifting of EV loads

away from the peak load period.

Figure 4.10 shows the voltage at the commercial node 43 when EVs are charged at

home only. The curves for all three cases overlap with each other because there is no EV

charging load at office area. The voltage for all these cases lie within standard limit. The

fluctuation in the voltage is due to the variation of system load at various time of the day.
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Figure 4.10. Voltage profile of commercial node 43 for a day when no charging occurs at
offices in the uncoordinated (Case 1) and semi-coordinated (Case 3) cases.

4.4.2 Voltage profile of residential nodes and commercial nodes when charging occurs at

offices

Figure 4.11 and 4.12 shows the voltage at residential node 23 and commercial node

43 when EVs are charged at both homes and offices. Due to load increment and

decrement in office nodes and residential nodes, respectively, the voltage profile degraded

in commercial nodes and improved in residential nodes in Case 2 as compared to Case 1.

In Figure 4.11, solid blue curve shows that from 5 pm to 6:30 pm, the voltage at node 23

is below the standard limit. At worst condition, the minimum voltage is found to be 0.942

p.u. which is better as compared to Case 1. Even though the voltage profile is improved in

Case 2, the voltage lies below permissible limits during the peak time. The voltage profile
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Figure 4.11. Voltage profile of residential node 23 for a day when charging occurs at offices
in the uncoordinated (Case 2) and semi-coordinated (Case 4) cases.

is improved by introducing delays in the charging time (represented by the dotted blue

curve). In Case 4, the minimum voltage is found to be 0.964 p.u, which lies within

standard limit. As shown in Figure 4.12, at the office most of the EVs are charged

between 9 am and 11 am (Case 2). The minimum voltage at node 43 reaches 0.946 p.u.

due to uncontrolled charging (represented by solid red curve) and 0.95 p.u. due to

semi-controlled charging method (represented by solid red curve in 4.12) which lies

within limits.

4.5 Impact of EV charging load on node voltage using Monte Carlo simulation

To observe the effect of uncertainty related with driving behavior, the simulation is

run multiple times using different values of driving speed and parking duration, i.e.,

performing Monte Carlo simulation. The possible range of voltage at various node of
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Figure 4.12. Voltage profile of commercial node 43 for a day when charging occurs at
offices in the uncoordinated (Case 2) and semi-coordinated (Case 4) cases.

distribution network are determined. Figure 4.13– 4.15 give an overview of voltage profile

during the worst case scenarios.

4.5.1 Voltage profile of residential nodes using Monte Carlo simulations when no charg-

ing occurs at office

Figure 4.13 shows the minimum and average voltage at residential node 23 when

charging are performed at home only obtained over 50 Monte Carlo simulations. The

minimum allowable limit is represented by the dotted straight line. The average voltage

with uncoordinated charging technique (solid brown curve) drops below the standard

limit, whereas the average voltage is within the standard limit using the semi-coordinated

charging technique (solid green curve). However, the voltage due to semi-coordinated

charging drops below standard limit during worst case scenarios (dotted green curve).
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Figure 4.13. Voltage profile of residential node 23 obtained using Monte Carlo simulation
when no charging occurs at offices in the uncoordinated (Case 1) and semi-coordinated
(Case 3) cases.

4.5.2 Voltage profile of residential nodes and commercial nodes using Monte Carlo sim-

ulations when charging occurs at offices

Figure 4.14 show the minimum and average voltage at residential node 23 when

charging are performed at both home and offices obtained over 50 Monte Carlo

simulations. The average voltage lies slightly below the standard limit in Case 2 (solid

magenta curve) as compared to Case 1. This is because EVs become fully charged at the

office. Using the semi-coordinated charging technique, the average voltage lies within the

allowable range (solid blue curve). However, the minimum voltage in Case 2 (dotted

magenta curve) and Case 4 (dotted blue curve) lies below the standard limit. This is

because of shifting charging EV loads within narrow time frame.
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Figure 4.14. Voltage profile of residential node 23 obtained using Monte Carlo simulation
when no charging occurs at offices in the uncoordinated (Case 2) and semi-coordinated
(Case 4) cases.

Figure 4.15. Voltage profile of commercial node 43 obtained using Monte Carlo simulation
when no charging occurs at offices in the uncoordinated (Case 1) and semi-coordinated
(Case 3) cases.
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Figure 4.15 shows the minimum and average voltage at commercial node 43 when

charging are performed at both home and offices obtained over 50 Monte Carlo

simulations. Although the voltage at the residential node is improved, the average

commercial node voltage dips below 0.95 p.u. during peak load hours in Case 2 (solid red

curve). At Node 43, on average, voltage drop reaches up to 0.942 p.u. and 0.952 p.u.

during peak load time in Case 2 and Case 4, respectively. With semi-coordinated charging,

the average voltage lies above 0.95 p.u during the whole day. However, the voltage

reaches to 0.944 p.u. during worst case with semi-coordinated charging technique.
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CHAPTER 5 CONCLUSION

5.1 Summary

EVs will replace conventional combustion engine based vehicles to solve

environmental and economic issues in the future. Higher penetration of EVs will cause

negative impacts to the voltage and thermal limits of the power grid. Therefore, EV

charging needs must be scheduled to reduce stress in the grid. For scheduling, it is

important to determine the location of the EVs with respect to space (spatial) and time

(temporal). Hence, a state transition algorithm was developed that determined the number

of EVs available at any charging station at different time interval. Using this information,

the total capacity of batteries available for charging and discharging at any charging

station was determined. EV charging loads connected to any node can be calculated using

information of number of EVs whose SOC is not 100 percent. However, the capacity of

EV batteries available at any charging station depends on the randomness in driving

behavior. There is also uncertainty related to the route EV users follow in traffic network.

The decrease in SOC of EV battery is dependent on length of path EV travels in traffic

system. Hence, detailed modeling of EVs in integrated traffic and power network is

necessary.

EV batteries are charged when they are parked at any charging station. EV batteries

are flexible loads whose charging can be shifted at different time of a day. Simulation

results showed that the distribution networks are negatively affected when EVs are

charged only at the end of the day using uncoordinated charging technique. The

residential nodes with EVs will increase peak load demand that will cause voltage
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problems in medium voltage distribution system. Hence, EV charging loads can be shifted

towards commercial nodes to reduce the peak EV loads at residential nodes, but if EVs are

charged at office areas with uncoordinated charging technique, EV charging time will

coincide with peak load hours, exacerbating the peak demand. So, off-peak time charging

need to be applied to maintain the voltage of medium voltage network within allowable

limits. Therefore, the best way to mitigate voltage issues due to EV charging load is to

shift them with respect to both time and position, i.e., use semi-coordinated charging

method to charge EVs at both home and offices.

A model of EV was developed using the RBTS Bus 5 distribution system and traffic

network developed by Tang et al. in [7]. The shortest distances between residential and

commercial nodes were calculated by simulating EVs in the integrated traffic and power

network. Randomness in driving behavior was added by considering speed and parking

duration as normal distribution. End user driving pattern were obtained from NHTS. Slow

chargers with charging rate of 3.3 kW were used to charge EVs. EV charging demand at

different residential and commercial nodes were calculated in MATLAB using above

information. Nodal voltage in power network were analyzed by adding EV charging load

in nodes of RBTS Bus 5 system. The simulations were performed in MATPOWER to

observe the voltage profile of nodes with EVs.

Simulation results showed that the load profile of the system was smoothened and

the loading of the networks were reduced by using semi-coordinated charging techniques

at home and office nodes. The voltage at residential and commercial nodes with EVs was

improved to within permissible limits. This prevents the immediate need of additional

transformers and other expensive equipment to solve voltage drop issues. Since this
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method does not require any change in existing distribution system infrastructure, it can

be considered as an inexpensive method. However, results from Monte Carlo simulations

showed that even with the semi-coordinated charging method, the nodal voltage goes

below allowable limit during worst case scenarios.

5.2 Conclusions

A state transition algorithm is suitable for determining the size of charging station

based on number of EVs available at that charging station with respect to time and space.

This algorithm can be used for any power system model with any number of residential

and office areas combined with a traffic network. Randomness in driving behavior

involves randomness in driving speed, parking duration and driving distance of EV users.

Uncoordinated charging technique provides large charging demand to the power network

that creates congestion in power system. EVs provide additional peak loads during

morning and evening time at residential nodes and during afternoon at commercial nodes.

A semi-coordinated charging technique shift EV charging loads towards off-peak hours

and flattened the system load profile. This improves the voltage deviation in distribution

network. This method is very useful for the planning and operation of distribution system,

but sometimes due to randomness in driving behavior, semi-coordinated charging

techniques cannot maintain the system voltage within the standard limit.

5.3 Future Work

In this thesis, the simulations are performed for a single day. However, simulations

need to be done for longer time durations considering different system load profile for

weekdays and weekends for better analysis. In the future, stochastic methods can be used
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to forecast EV charging loads. Renewable energy sources, like solar and wind, should be

added in the power system to charge EV batteries. Optimal use of available energy

sources need to be done for charging EV batteries. Fully coordinated smart charging

techniques that can provide maximum benefit to the customers can be applied. Different

type of trip chain in a day, example, home to office to shopping center to home, home to

school to office to school to home, etc. should be considered. Charging stations may be

added in recreation areas using fast chargers. Information regarding capacity of batteries

obtained using state transition algorithm can be used for power system restoration during

blackout using EV batteries.
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