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ABSTRACT 

THE EFFECTS OF PREOVULATORY ESTRADIOL ON THE UTERINE 

ENVIRONMENT AND CONCEPTUS SURVIVAL FROM FERTILIZATION TO 

MATERNAL RECOGNITION OF PREGNANCY  

EMMALEE J. NORTHROP 

2016 

     Preovulatory estradiol has been reported to play a critical role in pregnancy 

establishment and embryonic survival, but the mechanism by which estradiol exerts its 

effects has not been well characterized.  The objective of this thesis is to determine the 

effects of preovulatory estradiol on the uterine environment and conceptus survival from 

fertilization to maternal recognition of pregnancy.  Beef cows/heifers were synchronized 

with the CO-Synch protocol and AIed (d 0).  Cows were classified by estrus expression 

(estrus and no estrus), and uteri were flushed to collect d16 conceptuses nonsurgically 

(Rep 1; n = 29), or following slaughter (Rep 2; n = 37).  Uterine luminal fluid (ULF) was 

analyzed for protein, glucose, and interferon tau (IFNT) concentrations.  For replicate 1, 

total cellular RNA was extracted from blood leukocytes (d 16) to determine expression of 

interferon-stimulated genes (ISG): ISG-15, OAS-1, and MX2.  For replicate 2, total 

cellular RNA was extracted from caruncular (CAR) and intercaruncular (INCAR) 

endometrial tissue to determine relative abundance of select glucose transporters 

(SLC2A1, SLC2A4, SLC2A5, and SLC5A1).  There was no difference in conceptus 

recovery rate between estrus and no estrus cows (P = 0.20; 48% vs 29%) or between 

replicates (P = 0.46; 44% vs 33%).  There were no differences between estrus and no 

estrus cows for ULF protein concentration (P = 0.36; 2222 ± 513 vs 1547 ± 525 mg/mL).  
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There was no difference (P > 0.20) in d 16 expression of ISG-15, OAS-1, or MX2 

between estrus and no estrus cows, nor a difference between cows in which a conceptus 

was or was not recovered.  In addition, there were no differences in IFNT concentrations 

in the ULF among estrus and no estrus cows (P = 0.42), nor a difference among cows that 

did and did not have a conceptus recovered from them (P = 0.71).  Cows that exhibited 

estrus had greater glucose concentrations in ULF (P = 0.05; 51 ± 1.86 vs 45 ± 1.92 

mg/dL) compared to no estrus cows, but there was no difference in protein concentration 

in the ULF (P = 0.36; 2222 ± 513 vs 1547 ± 525 mg/mL).  Cows in which a conceptus 

was recovered had greater concentrations of protein in the ULF (P = 0.05; 2643 ± 585 

mg/mL) compared to cows in which a conceptus was not recovered (1126 ± 463 mg/mL),  

glucose concentration was similar between groups (P = 0.29; 47 ± 2.12 vs 50 ± 1.70 

mg/dL).  For replicate 2, in both CAR and INCAR endometria, cows that exhibited estrus 

had greater abundance of SLC2A1 (P = 0.05) and SLC5A1 (P < 0.04) mRNA.  Presence 

of a conceptus tended to increase (P = 0.10) abundance of SLC5A1 mRNA in INCAR 

tissue, but had no effect (P > 0.13) on abundance of SLC2A1 mRNA in either tissues or 

SLC5A1 mRNA in CAR tissue.  In CAR tissue, cows from which a conceptus was 

recovered had decreased SLC2A4 mRNA abundance (P = 0.04), but there was no effect 

of estrus (P = 0.14) and no effect of estrus or conceptus in INCAR tissue.  There was no 

difference in SLC2A5 mRNA abundance between estrus and no estrus cows (P > 0.20), 

nor between conceptus and no conceptus cows (P > 0.58) in CAR or INCAR tissue.  In 

summary, conceptus recovery rates, IFNT, and protein concentration in ULF did not 

differ between cows that did or did not exhibit estrus, but ULF glucose content was 

greater in cows that exhibited estrus.  There was no difference in ULF glucose 
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concentration or IFNT between cows that did and did not have a conceptus, but ULF 

protein concentration was greater in cows from which a conceptus was recovered.  Thus, 

there was no indication of increased conceptus survival to d 16 of pregnancy based on 

estrus expression, but ULF glucose and protein concentration changed based on estrus 

expression and conceptus presence.   
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CHAPTER I 

REVIEW OF LITERATURE 

INTRODUCTION 

Embryonic mortality is a major factor that impacts production and economic 

efficiency in the cattle industry.  Early embryonic death is costly to livestock producers, 

and leads to a decrease in herd productivity and an increase in calving interval.  Among 

beef cattle, fertilization rates are estimated to be 90% with calving rates of 55%.  This 

suggests around 35% embryonic mortality, with ~70-80% of this embryonic loss 

occurring between day 8 and 16 post AI (Disken et al., 2006).  In the United States, early 

embryonic loss costs the beef industry approximately 1.4 billion dollars annually 

(Bellows et al., 2002).  With a continuously growing world population, the demand for 

beef will increase, and optimal reproductive efficiency in beef cattle will become a more 

important issue.   

Possible factors that lead to early embryonic loss include: genetic defects, 

reproductive diseases, heat stress, and nutrition (Bridges et al., 2012).  Previous research 

has indicated that estradiol leading up to breeding may be a critical factor for 

establishment of a successful pregnancy (Perry et al., 2005).  Preovulatory estradiol has 

several roles within the female reproductive tract.  It impacts follicular growth, oocyte 

maturation, sperm transport, uterine environment, and embryonic survival (Pohler et al., 

2012).  This review will start with an overview of the estrous cycle, and then go into 

further details about the importance of estradiol in the establishment and maintenance of 

pregnancy from fertilization to maternal recognition of pregnancy in cattle.    
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BOVINE ESTROUS CYCLE 

 Heifers reach puberty when gondatropin-releasing hormone (GnRH) is secreted 

from the hypothalamus at a sufficient amplitude and frequency to stimulate a surge of 

luteinizing hormone (LH) to be released from the anterior pituitary (Karsch et al., 1997).  

Once a female attains puberty she enters a period of reproductive cyclicity.  A normal 

estrous cycle is defined as the recurrent set of physiological and behavioral changes that 

occur from one period of estrus to another (Senger, 2003).  The length of the estrous 

cycle varies among species due to differences in length of both the luteal phase and the 

follicular phase; however, the average length of the estrous cycle in cattle is 21 days.  The 

estrous cycle usually consists of two or three waves of follicular growth in cattle (Forde 

et al., 2011).  An estrous cycle can be divided into the follicular phase (proestrus and 

estrus) and the luteal phase (metestrus and diestrus).  During the follicular phase, 

preovulatory follicles grow and develop and begin to secrete estradiol (Echternkamp and 

Hansel, 1973).  During the luteal phase, the dominant ovarian structure is the corpus 

luteum (CL), which produces progesterone (Smith et al., 1994).  Proestrus (day 17-20) 

begins when progesterone decreases following luteolysis, it is characterized by a 

significant increase in estradiol production by the developing follicles.  Estrus (day 0) is 

the most widely recognized stage due to the visual signs associated with sexual 

receptivity.  Ovulation of the preovulatory follicle occurs during this stage.  In cattle, 

estrus usually lasts between 12-16 hours (Allrich, 1994), and estradiol concentrations 

peak approximately 36 hours prior to ovulation (Chenault et al, 1975).  Metestrus (day 1-

5) is the stage in the estrous cycle when follicular cells (granulosa and thecal cells) 

transform into the luteal cells that make up the CL (Smith et al., 1994).  Diestrus (day 6-
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14) is the longest stage of the estrous cycle, and is the period during which the CL is fully 

functional and progesterone secretion is at its greatest (Forde et al., 2011).   
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Figure 1.  Hormonal profiles associated with the different stages of the bovine estrous 
cycle (Senger, 2003).    
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ESTRADIOL 

 Increased fertilization success, embryo quality and survival (Atkins et al., 2013), 

and pregnancy maintenance (Perry et al., 2005) has been associated with elevated 

preovulatory estradiol concentrations.  Estradiol 17-beta is the most common form of 

estrogen found in the body, and is produced by growing follicles within the ovary 

(Kaneko et al., 1991).  Granulosa cells within the follicle synthesize this steroid hormone 

by the mechanism known as the two cell-two gonadotropin theory (Fortune and Quirk, 

1988; Figure 2).  In this theory, LH binds to its receptors on the theca interna cells, which 

stimulates the conversion of cholesterol into androsteindione.  Androgens then diffuse 

across the lamina basalis into the granulosa cells (Dorrington et al., 1975).  Follicle 

stimulating hormone (FSH) binds to its receptor on the granulosa cells to increase 

aromatase activity.  Aromatase is the enzyme responsible for conversion of androgens 

into estradiol (Bao and Garverick, 1998).  The synergism between granulosa and theca 

interna cells is critical for maximal estrogen production (Liu and Hsueh, 1986).  
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Figure 2. Two-cell, two-gonodotropin model for hormone production.    
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ROLES OF PREOVULATORY ESTRADIOL 

Follicular cell growth:  

 Estradiol concentrations within the follicle regulate steroidogenic enzyme 

expression.  Specifically it upregulates the action of FSH on aromatase activity (Zhuang 

et al., 1982), and induces the expression of FSH and LH receptors among granulosa cells 

(Richards et al., 1976).  Estradiol also influences follicular dynamics by increasing 

granulosa cell mitosis and gap junction formation (Goldenberg et al., 1972; Merk et al., 

1972), along with increasing luteinizing hormone receptors (Kessel et al., 1985). 

 Perry et al. (2014) determined that there was a positive relationship between cows 

that exhibited estrus between follicle size and peak estradiol concentration, but no linear 

relationship was seen among cows that did not exhibit estrus.  Previous research has also 

reported a positive relationship between follicle size, circulating concentrations of 

estradiol, and fertilization success among beef cattle (Perry et al., 2005).  Cows that were 

forced to ovulate smaller follicles (<10 mm in diameter) following an injection of GnRH 

experienced decreased pregnancy rates and increased late embryonic mortality (Perry et 

al., 2005).  This decrease in fertility was associated with decreased circulating estradiol at 

time of artificial insemination and inferior progesterone production.  There has also been 

a positive correlation between length of proestrus/estradiol exposure and pregnancy 

success.  Bridges et al. (2010) reported that cattle that experienced a shorter proestrus 

period had decreased pregnancy success compared to cows that had a longer exposure to 

preovulatory estradiol.   
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Oocyte Development:  

 Bovine follicles containing oocytes with less progesterone and three-eight fold 

greater cytochrome P450 aromatase (CYP19A1) activity were more capable of being 

fertilized and developing into a blastocyst (Hazeleger et al., 1995; Driancourt et al., 

1998).  Similar findings have also been reported in in vitro fertilization studies; bovine 

oocytes cultured in media with increased concentrations of estradiol were more likely to 

develop to the blastocyst stage (Mermilloid et al., 1999).  The positive effects of elevated 

concentrations of estradiol on bovine oocyte competence may be attributed to the impact 

of estradiol on estrogen receptors within the oocyte and surrounding cumulus cells 

(Driancourt et al., 1998).   

Sperm transport:   

 At the initiation of estrus, uterine pH decreases from a pH of 7 to 6.5 (Perry and 

Perry 2005).  This change in uterine pH has been reported to increase the number of 

sperm that reach the site of fertilization (Larimore et al., 2015).  Changes in sodium 

hydrogen exchangers have been reported to be responsible for these changes in uterine 

pH among beef cattle (Bolzenius et al., 2016) and mice (Wang et al., 2003).  This rapid 

decrease in uterine pH at the initiation of estrus may increase sperm longevity by 

decreasing motility, thus optimizing fertilization efficiency (Jones and Bavister, 2000).  

Decreased uterine pH at the time of AI has also been reported to increase pregnancy 

success when using a fixed- time AI protocol (Bolzenius et al., 2016).  Previous research 

has reported that ovariectomized ewes require exogenous estradiol for effective sperm 

transport (Allison and Robinson, 1972).  Thus, sperm transport through the female 
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reproductive tract is optimized during estrus when estradiol concentrations are elevated 

(Hawk, 1983).  

Uterine Environment: 

 Increased circulating concentrations of preovulatory estradiol have also been 

reported to have a beneficial impact on the uterine environment and embryo survival, 

however the mechanism has not been well established (Atkins et al., 2013; Jinks et al., 

2013).  Estradiol induced expression of endometrial receptors, production of uterine 

proteins (Bartol et al., 1981), and increased expression of many genes involved in uterine 

extracellular matrix remodeling that are necessary for embryo growth and a successful 

pregnancy (Bauersachs et al., 2005).  Miller et al. (1977) conducted a study that 

determined the impact of giving large or small doses of exogenous estradiol to 

ovariectomized sheep.  Following embryo transfer on day 4, animals that were given a 

small dose of estradiol had decreased uterine weight, total protein content, progesterone 

and estrogen receptor within the uterus, and pregnancy success compared to ewes given a 

larger dose.  Whether or not an animal was exposed to elevated concentrations of 

estradiol also impacted gene expression within the endometrium (Bridges et al., 2012).  

Nuclear progesterone receptors in the deep glandular epithelium and mRNA abundance 

for estradiol receptor alpha in the uterine epithelium was decreased among animals that 

had decreased preovulatory concentrations of estradiol compared to animals that were 

exposed to elevated concentrations during the preovulatory period (Bridges et al., 2012), 

and these differences in mRNA expression and concentrations of receptor proteins may 

contribute to embryonic losses after day 15.5 of pregnancy.   
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ESTRUS 

 Initiation of estrus occurs due to increased circulating concentrations of estradiol 

at a time when progesterone is not present (De Silva et al., 1981).  In the absence of 

progesterone, estradiol acts on the hypothalamus to induce estrus behavior and an LH 

surge resulting in ovulation (Chenault et al., 1975).  During this period of sexual 

receptivity, a cow will stand to be mounted by a bull or other cows (Eerdenburg et al., 

1996).  The effects of estradiol on the initiation of estrus appear to be an all or none 

effect; however, there is no absolute threshold because it differs between individual cows.  

Initiation of estrus and the LH surge are influenced by the rate at which estradiol 

increases during the preovulatory period (Rozell and Keisler, 1990).  Once estrus occurs, 

no additional amounts of estradiol can further stimulate the expression of the behavioral 

estrus (Allrich, 1994).  Efficient estrus detection has been reported to be critical for 

pregnancy success (Foote, 1975).   

Cows in standing estrus within 24 hours of fixed-time AI have been reported to 

have greater pregnancy success (90% and 88% on days 26 and 68) than nonestrus cows 

(29% and 26% on days 26 and 68; Perry et al., 2005).  Cows that expressed estrus have 

also been reported to have increased embryo survival to day 30 of gestation (Jinks et al., 

2013).  Madsen et al. (2014) used ovariectomized cows to demonstrate the importance of 

preovulatory estradiol on the survival of embryos transferred on day 7.  Cows that were 

exposed to estradiol prior to progesterone treatment were more likely to maintain 

pregnancy to day 29.  The critical period for pregnancy loss for control cows occurred 

between days 22-24 (during placental attachment).  This suggests the importance of 

preovulatory estradiol on embryo growth and attachment.  
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BOVINE EMBRYO DEVELOPMENT 

 Fertilization occurs within the oviduct, the embryo then enters the uterus 

approximately around day 4 (Black and Davis, 1962).  While in the uterus, the embryo 

undergoes several cell divisions leading to a morula (16 cell stage; Forde and Lonergan, 

2012).  After further differentiation, the morula develops into a blastocyst which consists 

of an inner cell mass and a trophectoderm layer (Forde and Lonergan, 2012).  The inner 

cell mass eventually gives rise to the fetus, while the outer trophectoderm cells will 

develop into the placenta (Forde and Lonergan, 2012).  During the blastocyst stage, 

contact with the endometrium is not necessary.  Unlike in humans and rodents, bovine 

blastocysts do not invasively implant in the endometrium, they are free floating in the 

uterus until around day 19 when attachment occurs (Betteridge and Flechon, 1988).  On 

day 9, the blastocyst hatches from the zona pellucida (Forde and Lonergan, 2012).  On 

day 11-12, the blastocyst becomes ovid shaped, the trophectoderm cells begin to 

proliferate and the elongation process begins (Grealy et al., 1996).  On day 13, the 

conceptus is approximately 2 mm long, but by day 16 the elongated conceptus can reach 

60 mm in length (Betteridge et al., 1980).  The bovine blastocyst/conceptus is capable of 

doubling its length everyday between day 9 and 16 (Berg et al, 2010).  During this time 

of elongation, the conceptus becomes more dependent on the maternal uterine 

environment and secretions from the uterus for survival, growth, and attachment (Filant 

and Spencer, 2014).  Blastocyst growth into an elongated bovine conceptus has not been 

able to be duplicated in vitro (Betteridge and Flechon, 1988).   
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Figure 3.  Conceptus position/development and hormone profiles from fertilization to 
attachment (Spencer, 2013).   
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Table 1.  Timeline for bovine embryo development. 

 

 
Developmental Event 

 
Day  

Estrus 0 

Ovulation 1 

Fertilization 1 

First cell division 2 
8 cell stage 3 

Migration to uterus 5-6 

Maternal recognition of pregnancy 15-17 

Attachment to uterus 19 

Adhesion to uterus 21-22 

Placentation  25 

Birth 283 

 

Adapted from: Shea, 1981; Flechon and Renard, 1978; and Peters, 1996 
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MATERNAL RECOGNITON OF PREGNANCY 

 

 In cattle, maternal recognition of pregnancy occurs around day 16 after estrus 

(Bazer, 1997).  This physiological process is defined as the requirement for the conceptus 

to produce and secrete a signal that acts on the uterus and ovary to ensure the 

maintenance of a functional corpus luteum so progesterone production and pregnancy can 

be maintained (Bazer, 2013).  In cattle this signal is interferon tau (IFNT).  During this 

critical period it is necessary for the conceptus to secrete enough IFNT at the appropriate 

time to ensure that the corpus luteum does not regress.  The ability of the developing 

embryo to secrete sufficient quantities depends on its stage of development and quality 

(Ealy and Yang, 1998).  The conceptus signal is critical for the prevention of the pulsatile 

release of PGF2α secretion and the promotion of uterine gland secretory activity through 

the effects of IFNT.  Previous research has reported that there is a significant amount of 

embryonic loss occurring around maternal recognition of pregnancy (Thatcher, et al., 

2001). 

Interferon Tau:  

 Interferon tau is a type 1 interferon with antiviral and antiproliferative properties.  

It is a glycoprotein with five helixes, composed of 172 amino acids (Li and Roberts, 

1994).  It was first discovered in sheep when culturing conceptuses with radiolabeled 

amino acids and detecting a low molecular weight protein initially named protein X 

(Bazer, 2013).  The signal transduction pathway that is responsible for the amplification 

of IFNT begins when IFNT binds to its receptor composed of IFNAR1 and IFNAR2 

subunits.  This activates Janus activated kinases (JAKs) and other kinase signaling 
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pathways (Platanias, 2005).  This causes the formation of STAT-1 transcription 

homodimers, which complex with gamma activation factor (GAF).  This complex is then 

translocated into the nucleus where it binds to gamma activation site elements (GAS) in 

the promotor region of interferon-stimulated genes to amplify the effects of IFNT 

(Mamane et al., 1999).  A different pathway with similar effects involves interferon 

stimulatory gene factor 3 (ISGF3G), STAT 1: STAT 2 heterodimer, and IRF9 forming a 

complex that moves into the nucleus to influence interferon stimulated gene expression 

(Stewart et al., 2002).  Interferon stimulated genes have also been associated with uterine 

receptivity in cattle, and will be discussed later in further detail. 
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Figure 4.  Signal transduction pathway for interferon tau (Decker et al., 2005).   
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 Expression of IFNT begins in the mononuclear cells of the trophectoderm during 

the early morula, late blastocyst stage (day 6-7 of pregnancy; Kubisch, 1998).  Interferon 

tau works in a paracrine manner on the endometrium, as trophectoderm cells proliferate 

the greater the contact with the maternal uterine lining, at the same time the IFNT signal 

is being amplified.  Interferon tau mRNA and protein content increases dramatically 

between days 14-21, this coincides with elongation and trophectoderm proliferation (Ealy 

and Yang, 1998).  Secretion of IFNT decreases rapidly at the time of uterine attachment 

from day 19-day 21(Ealy and Yang, 1998).   
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Figure 5.  Bovine IFNT expression during early pregnancy (Ealy and Yang, 1998). 
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Impact of progesterone on IFNT and embryo viability: 

 An embryo must secrete sufficient amounts of IFNT by day 16 to prevent the 

regression of the corpus luteum.  Maternal progesterone plays a key role in creating a 

suitable environment for this to happen.  Supplementary progesterone enhances 

conceptus development (Garrett et al., 1988).  A delayed rise in circulating 

concentrations of progesterone resulted in decreased embryo size and decreased 

quantities of IFNT being produced (Mann and Lamming, 2001).  This could result in the 

failure of an embryo to signal its presence leading to early embryonic mortality.  

Furthermore, Robinson et al. (2006) also found that elongated embryos (> 10 cm) 

produced more IFNT compared to smaller embryos, but had similar levels of expression 

of IFNT mRNA.   

Impact of uterine derived factors on IFNT: 

 Fibroblast growth factor 2 (FGF2) is a mitogen, morphogen, and angiogenic 

factor that plays a role in embryogenesis (Gospodarowicz, 1991).  Expression of FGF2 

mRNA was present in early bovine embryos starting at the blastocyst stage (Daniels et 

al., 2000), and supplementation of FGF2 to CT-1 bovine trophectoderm cells resulted in 

increased expression of IFNT after 24 hours and secretion of IFNT after 72 hours.  

Furthermore, supplementation of FGF2 to bovine blastocysts, stimulated IFNT 

production without stimulating cell numbers (Michael et al., 2006).  The bovine 

endometrium appears to be the source of FGF2, as FGF2 was not detected in the 

conceptus.  Thus FGF2 likely acts as regulator in IFNT production in bovine blastocysts 

(Michael et al., 2006).  Granulocyte-macrophage colony stimulating factor (GM-CSF) is 
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a cytokine that is produced by the bovine endometrium (De Moraes et al., 1999) and 

supplementation of the bovine trophectoderm cell line (CT-1) with GM-CSF increased 

both IFNT secretion and increased bovine blastocyst development in culture (Imakawa et 

al., 1993).   

 Transforming growth factor beta (TGF-β) and activin B are expressed in the 

endometrium and have been reported to be involved in cell proliferation, differentiation, 

tissue remodeling, decidualisation, and establishment of pregnancy (Jones et al., 2006).  

In vitro, exogenous (TGF-β) in culture medium facilitated embryo development and 

promoted blastocyst proliferation and development (Paria & Dey, 1990).  Recombinant 

Activin A treatment to cultured bovine embryos reduced the time taken to reach the 

blastocyst stage and improved hatching rates (Orimo et al., 1996).    

Antiluteolytic effects:  

  Oxytocin is synthesized and secreted by large luteal cells, and is also secreted by 

the posterior pituitary (Wathes and Denning, 1992; Hooper, 1996).  When oxytocin binds 

its receptors on the endometrium, it activates a PKC secondary messenger system leading 

to the pulsatile release of PGF2α (Silvia, 1993).  During a normal estrous cycle, estrogen 

enhances post receptor events mediated by oxytocin to ensure adequate PGF2α pulse 

frequency to cause luteolysis (Bazer et al., 2012).  Interferon tau is secreted by the 

conceptus, leading to the suppression of the estrogen receptor alpha and a decrease in 

oxytocin receptor mRNA (Bazer et al., 1997).  Furthermore, endometrial oxytocin 

receptor was decreased in pregnant cows compared to cyclic cows during the luteolytic 

period (Thatcher et al., 1995).  Prostaglandin production was further downregulated in 
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cattle, by an increase in the production of an endometrial prostaglandin synthesis 

inhibitor (EPSI) known as linoleic acid (Thatcher et al., 1994).  Linoleic acid acts as a 

competitive inhibitor of arachidonic acid for cyclooxygenase 2 (COX2) (Thatcher et al., 

1995).  This is critical as COX2 is the rate-limiting enzyme controlling PGE2 and PGF2 

alpha synthesis; it converts arachidonic acid into PGH2 (Arosh et al., 2004).  Interferon 

tau also alters the PGE2: PGF2 alpha ratio in favor of PGE2, which is luteotrophic (Pratt 

et al., 1977).  Interferon tau not only has anti luteolytic effects, but also plays a role in the 

secretory activity of uterine glands (Godkin et al., 1984).  Interferon tau binds to the 

apical portion of the uterine glands, and promotes protein synthesis, which is critical for 

preimplantation embryonic survival (Godkin et al., 1984).  Ovine IFNT effects on de 

novo synthesis and endometrial proteins in vitro lead to an increase in secretion of 11 

proteins and a decrease in six proteins, many of these have yet to be identified (Vallet and 

Lamming, 1991).  
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Figure 6.  The actions of interferon tau on the signaling and maintenance of pregnancy 

(maternal recognition of pregnancy).  Adapted from: Spencer et al., 2004  
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UTERINE ENVIRONMENT 

Uterine Histotroph:  

 The uterine endometrium is a complex tissue comprised of luminal, superficial 

and deep glandular epithelial cells as well as fibroblast-like stromal cells each having an 

important role in the elongation process and endometrial secretions.  Alterations in the 

endometrial transcriptome for uterine receptivity and attachment must occur (Forde and 

Lonergan, 2012).  Interferon tau, progesterone, prostaglandins, and cortisol have been 

reported to regulate these changes in uterine endometrial gene expression (Brooks et al., 

2014).  For a successful pregnancy, the conceptus and the uterine environment must be in 

synchrony with each other.  The maternal environment needs to provide sufficient 

secretions for the developing embryo, this is known as the uterine histotroph (Gao et al., 

2009a).  The uterine histotroph contains uterine epithelium secretions and molecules that 

are transported into the uterine lumen to provide nutrients for the developing conceptus, 

and it is composed of a complex mixture of enzymes, growth factors, cytokines, 

lymphokines, hormones, amino acids, proteins, and glucose (Gao et al., 2009a).  A 

suboptimal uterine environment often leads to poor development and embryonic 

mortality.   

 Between days 15 and 50 the endometrial glands undergo significant hyperplasia, 

followed by hypertrophy to allow for an increase in surface area and maximal production 

of uterine histotroph (Moffatt et al., 1987).  Nutritional deficiencies during early 

pregnancy have been reported to have significant effects on pregnancy outcome and 

postnatal health and growth (Dunn and Moss, 2014).  Grey et al.  (2001) placed uterine 



24 

gland knockout sheep phenotype (UGKO) with fertile rams; however, no pregnancies 

were ever determined on day 25 after insemination.  When day 7 blastocysts were 

transferred into synchronized control and UGKO ewes, pregnancy was established in 

control ewes, but not UGKO ewes (Grey et al., 2001).  This shows that endometrial 

glands and their secretions are necessary for conceptus development and pregnancy 

establishment.  Progesterone has been reported to alter tight and adheren junctions in the 

uterus which impact uterine histotroph transport and sequestration into the uterine lumen 

during early pregnancy (Satterfield et al., 2007).  Tight junction and adheren associated 

proteins were moderately to abundantly present in the endometrium on day 10 of 

pregnancy, however at day 12 these proteins decreased resulting in leaky channels to 

allow nutrient exchange between the conceptus and mother (Satterfield et al., 2007).  

While we do recognize its importance in embryo survival, little is known about 

compositional differences among cyclic and pregnant animals.  Glucose, amino acids, 

glutathione, calcium, and sodium have been reported to be increased in uterine luminal 

fluid of pregnant ewes compared to cyclic ewes between day 10 and 16 of the estrous 

cycle (Gao et al., 2009a).  The increase in these nutrients among pregnant animals 

indicates that conceptus regulatory molecules can stimulate nutrient transport into the 

uterine lumen.   

Glucose:  

 Glucose and glutamine are known to regulate trophoblast proliferation and 

function.  They are the main energy sources used by a conceptus for development.  

Glucose enhances trophoblast growth by activation of glutamine fructose-6-phosphate 

amidotransferase (GFAT)-mediated FKBP12-rapamycin complex-associated protein 1 
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(FRAP1, formerly mTOR) signaling pathway (Wen et al., 2005).  Neither the conceptus 

nor the endometrium is capable of gluconeogenesis (Gao et al., 2009b) thus for glucose to 

be made available to the conceptus it must be delivered to the uterus via glucose 

transporters (Leese and Barton, 1984; Pantaleon and Kay, 1998).  Glucose can be used by 

the conceptus to make glycogen, nucleic acids, proteins, and lipids during the peri-

implantation period (Gao et al., 2009a).  In sheep, total glucose content in uterine luminal 

fluid has been reported to increase six fold between days 10 and 15 of gestation (Gao et 

al., 2009a; Flechon et al., 1986).  During this critical period the conceptus is transitioning 

from a spherical embryo to a filamentous embryo.  In mice, glucose at a blastocyst level 

have been reported to influence apoptotic REDOX regulating pathways, thus, mouse 

embryos that lacked certain glucose transporters failed to develop due to increased 

apoptosis (Frolova and Moley, 2011).   

 Transport of glucose across the plasma membrane is mediated by facilitative 

and/or sodium dependent transporters.  Facilitative transporters work bidirectionally, and 

are energy independent (Wood and Trayhum, 2003).  Thirteen facilitative transporters 

have been discovered (SLC2A1-SLC2A12), many of them are present in preimplantation 

blastocysts (Riley and Moley, 2006).  Sodium dependent transporters work against the 

electrochemical gradient (SLC5A; Zhao and Keating, 2007).  Facilitative and sodium 

dependent transporters work together to optimize glucose transport into the uterine lumen 

where it can be utilized for the growth and development of a conceptus (Gao et al., 

2009b).  Circulating progesterone concentrations during diestrus has been reported to 

influence glucose transporter expression (Shimizu et al., 2010).  
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 The SLC2A1 glucose transporter is ubiquitous in humans, and is found in high 

abundance in the bovine conceptus (Navarrete et al., 2000).  Through 

immunohistochemistry the SLC2A1 transporter has been localized mainly to glandular 

and luminal epithelial cells (Franca et al., 2015).  It has also been found in the 

extraembryonic endoderm and trophectoderm of the conceptus between days 14 and 20 

of pregnancy (Gao et al., 2009b).  A study done by Gao et al. (2009b) found that 

SLC2A1 mRNA was increased in pregnant ewes starting at day 10 compared to cyclic 

ewes.  In ovariectomized ewes that were treated with progesterone from days 5 to 16 

increased SLC2A1 mRNA 4.2 fold.  Intrauterine infusion of IFNT from day 11 to 16 in 

ewes increased SLC2A1 mRNA 2.1 fold.  Thus, expression of SLC2A1 appears to be 

regulated by both progesterone and IFNT in the glandular and superficial glandular 

epithelium.   

 The glucose transporter SLC2A3 has a low Km and plays a critical role in 

embryonic development that cannot be compensated for by the overexpression of 

SLC2A1 (Gangly et al., 2007).  Mice lacking the SLC2A3 gene had restricted fetal 

growth and failed pregnancies (Gangly et al., 2007).  Expression of SLC2A3 mRNA has 

also been detected in the extraembryonic endoderm and trophectoderm of sheep 

conceptuses between Days 12 and 20 of pregnancy (Gao et al., 2009b).   

 The glucose transporter SLC2A4 has been widely studied for its role in diabetes.  

Additionally, it has been found in the trophectoderm of the cow, rabbit, rat, and mouse 

blastocyst stage embryos (Navarrete et al., 2000).  In humans, insulin and glucose in the 

maternal system can regulate the expression of SLC2A4 in syncytiotrophoblasts 

(Ericsson et al., 2005).  Gao et al. (2009b) found that SLC2A4 expression in the 
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extraembryonic endoderm and trophectoderm of a conceptus remained constant in cyclic 

ewes, but increased in pregnant ewes between day 10 and 18 of pregnancy. Treatment of 

ovariectomized ewes with progesterone tended to increase mRNA for SLC2A4 in the 

endometrium, while the combined effects of progesterone and IFNT increased SLC2A4 

mRNA levels 1.9 fold (Gao et al., 2009b).  

 The glucose transporter SLC5A1 may function as a uniporter to transport sodium, 

urea, and water (Wright and Turk, 2004).  Among cyclic ewes, expression of SLC5A1 

mRNA increased between days 10 and 14 of pregnancy, but decreased by day 16 (Gao et 

al., 2009b).  Similarly, pregnant ewes had an increase in endometrial expression of 

SLC5A1 mRNA between days 10 and 12 of the cycle, but expression remained elevated 

through day 16 (Gao et al., 2009b).  In ewes treated with progesterone, SLC5A1 mRNA 

abundance was greater regardless of IFNT treatment (Gao et al., 2009b).    

 Glucose transporters are found throughout the body in various tissues (see table 

2), previous literature has focused on select glucose transporters (SLC2A1, SLC2A3, 

SLC2A4, and SLC5A1) when examining glucose transport in the uterus.  The expression 

of these select transporters differs between cyclic and pregnant ruminants (Gao et al., 

2009).  These changes in glucose transporter expression may serve as a potential 

mechanism to regulate glucose concentration in the uterine lumen where it can be utilized 

for growth by the developing conceptus.  
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Table 2.  Summary of glucose transporter properties. 

 
Protein 

 
Major Sites of Expression 

 
Functions 

Facilitative Glucose Transporters 
SLC2A1 Ubiquitous distribution in tissue Basal glucose uptake, 

transport across blood 
tissue barriers 

SLC2A2 Liver, islets, kidney, small 
intestine 

High capacity, low 
affinity transport 

SLC2A3 
 

Brain and nerve cells Neuronal transport 

SLC2A4 Muscle, fat, and heart, uterus Insulin regulated 
transport in muscle and 

fat 
SLC2A5 Intestine, kidney, testis, uterus Transport of fructose 

SLC2A6 Spleen, leukocytes, brain  

SLC2A7 Small intestine, colon, testis Transport of fructose 

SLC2A8 Testis, blastocyst, brain, muscle, 
adipocytes 

Fuel supply of mature 
spermatozoa, insulin 

responsive transport in 
blastocyst 

SLC2A9 Liver, kidney  

SLC2A10 Liver, pancreas  

SLC2A11 Heart, muscle Muscle specific, 
fructose transport 

SLC2A12 
 

Heart, prostate, mammary gland  

Sodium/Glucose Cotransporters 

SLC5A1 Kidney, intestine, uterus Glucose reabsorption in 
intestine and kidney 

SLC5A2 Kidney Low affinity and high 
selectivity for glucose 

SLC5A3 Small intestine, skeletal muscle Glucose activated 
sodium channel 

Adapted from: Zhao and Keating, 2007 
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Changes in uterine gene expression:  

 In response to pregnancy, genes involved in cell adhesion, endometrial 

remodeling, and modulation change within the uterus.  Spencer et al.  (2008) found that 

more genes were altered in the intercaruncular region of the endometrium compared to 

the caruncular region, which is most likely due to the spread of glandular epithelial cells 

in this area.  In particular, interferon stimulated gene (ISG) expression in the uterine 

endometrium is upregulated as a result of IFNT secretion by the conceptus (Yankey et al., 

2001).  Interferon stimulated genes are hypothesized to regulate uterine receptivity to 

implantation as well as survival and growth of the conceptus (Kim et al., 2012).  There 

are more than 100 known ISGs, but not all are expressed equally among pregnant and 

cyclic animals (Samuel, 1991).  Previous research has focused on increased expression of 

specific ISGs [Interferon stimulated protein 15 kDa (ISG15)(Austin et al., 1996), 

myxovirus-resistance proteins 1 and 2 (MX)(Charleston and Stewart, 1993), and 2’ 5’ 

oligoadenylate synthestase (OAS1) (Johnson et al., 2001)] in peripheral blood 

mononuclear cells during pregnancy.  

 Madsen et al. (2013) found that the expression of ISG15, MX2, and OAS1 was 

increased on day 17, 19, and 21 among pregnant animals compared to nonpregnant 

animals.  Gifford et al. (2007) reported that expression of MX2 increased as early as day 

16 after insemination, and ISG15 increased around day 18 of pregnancy in cattle.  While, 

Green et al.  (2010) reported that MX2 and ISG15 were greater among pregnant cows on 

day 18 and 20.  Parity status also appears to influence the ISG response to IFNT (Green 

et al., 2010).  It is speculated that this may be due to primiparous animals having larger 

embryos that secrete more IFNT (Green et al., 2010).  
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 Early pregnancy detection is key for efficient reproductive management.  

Enzyme-linked immunosorbent assays (ELISAs) for pregnancy specific protein B and 

pregnancy-associated glycoproteins (PAGs) are used to detect pregnancies > 28 days 

after AI (Green et al., 2005), transrectal ultrasonography is utilized to detect pregnancy 

beginning around day 28, and rectal palpation can be performed beginning around day 35 

(Kastelic et al., 1988); however, these options do not give us the opportunity to identify 

which cows are pregnant before the next expected estrus (day 21).  Further research is 

needed to determine if measuring ISGs in maternal blood before day 18 is accurate 

enough to determine pregnancy status at this early stage, if this was made possible open 

cattle could be resynchronized for AI on day 21 after the first insemination (Lucy et al., 

2004).   

PROGESTERONE  

The role of progesterone in the maintenance of pregnancy:  

 The corpus luteum is the main source of progesterone, and it is essential for the 

maintenance of pregnancy (McDonald et al., 1952).  Reduced luteal function is often 

associated with infertility in ruminants (Gaverick and Smith, 1986).  Adequate 

progesterone secretion is necessary for stimulating endometrial secretions, embryo 

growth and development, and maintenance of pregnancy by altering endometrial gene 

expression (Garrett et al., 1998).  The postovulatory rise of progesterone is associated 

with an increase in pregnancy success (Forde et al., 2009).  Pregnant cows have been 

reported to have greater progesterone concentrations as early as day 6 after artificial 
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insemination compared to open cows (Mann et al., 1999), while Funston et al. (2005) 

reported that augmenting progesterone had no effect on pregnancy rates in cattle.  

 It has been demonstrated that the magnitude of progesterone concentrations 

increasing following ovulation contributes to conceptus development and survival; 

however, the mechanism is not well understood (Shelton et al., 1990).  It is suspected that 

progesterone induces changes is endometrial gene expression that leads to changes in 

uterine histotroph composition (Spencer et al., 2008).  Bartol et al. (1981) determined that 

protein accumulation within the uterine lumen is related to length of progesterone 

stimulation.  Supplementing pregnant cows with progesterone for four days has been 

reported to enhance embryo development by increasing protein secretion by the uterus on 

day 5 and 14 post ovulation (Garrett et al., 1988).  It has also been documented that 

insertion of intravaginal progesterone device between day 5 and 9 of the cycle increases 

embryo length 16 days post artificial insemination, while supplementation between day 

12 and 16 did not increase embryo length (Mann et al., 2006).  

EMBRYO LOSS 

 In cattle, fertility is dependent on the following two criteria: animals need to be 

cycling naturally or by synchronization protocol and need to develop the appropriate 

endocrine conditions within the uterus to ensure a suitable environment capable of 

supporting a developing embryo (Hoelker et al., 2014).  Balancing the embryo-maternal 

environment is critical for avoiding reproductive failure (Spencer et al., 1996).  

Inadequate changes in endometrial gene expression can be detrimental to the survival of 

an embryo (Lonergan et al., 2006).   
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 Some causes for uterine deficiencies include: failure of ovarian steroids to 

regulate factors in the endometrium, dysregulation of genes and receptors responsible for 

nutrient delivery for the development and attachment of conceptus, and the inability of 

the uterus to respond to the pregnancy signal from the conceptus (Bridges et al., 2014).  

Miller and Moore (1976) conducted an experiment using ovariectomized sheep and found 

that the sequence of steroid exposure is critical for embryo survival (progesterone 

priming, estradiol, and then progesterone after fertilization), and elevated concentrations 

of estradiol during the preovulatory period were critical for the maintenance of pregnancy 

(Madsen et al., 2015).  Inadequate estradiol production before ovulation results in 

alterations in the expression and localization of uterine genes and proteins that are 

necessary for uterine function and embryo development (Bridges et al., 2014).   

Progesterone following ovulation also plays a critical role in the synchrony 

between the uterine environment and the embryo (Rowsen et al., 1972).  Decreased 

concentrations of preovulatory estradiol have been associated with premature luteolysis 

(Mann and Lamming, 2000), and an inadequate uterine environment (Bridges et al., 

2013).  When ovariectomized beef cows were treated with estradiol (cypionate or 

benzoate) embryo survival was increased to day 29 of pregnancy compared to cows that 

had no exposure to estradiol (Madsen et al., 2015).  Furthermore, during the time period 

between maternal recognition of pregnancy and attachment, cows that received estradiol 

only lost 35% of their existing pregnancies, while control animals lost 75% of their 

existing pregnancies (Madsen et al., 2015).    

 Environmental factors such as ambient temperature and humidity have been 

correlated with seasonal decreases in pregnancy success; in particular heat stress around 
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the time of insemination can decrease pregnancy rates (Gwazdauskas et al., 1973; 

Ingraham et al., 1974; Ealy et al., 1993).  Heat stress affects the degree of dominance of 

the selected follicle by a reduction in the steroidogenic capacity of theca and granulosa 

cells leading to a decrease in estradiol production (Wolfenson et al., 1997).  As a result, 

the duration and intensity of estrus is reduced (Younas et al., 1993).  

 Oocytes and embryos (< 3 days after conception) are the most susceptible to the 

adverse effects of high temperatures (Ealy et al., 1993).  Due to high ambient 

temperatures, an increase in uterine temperature may result in an increased conceptus 

metabolic rate leading to changes in nutrient uptake (Biggers et al., 1987).  This along 

with decreased nutrient secretion by the uterus may result in abnormal conceptus 

development or death (Biggers et al., 1987).  Exposure to a period of hyperthermia for a 

10 hour period between the onset of estrus and artificial insemination in heifers resulted 

in retarded embryo development and increased embryo death when examined on day 7 

after insemination (Puteney et al., 1989).  A possible explanation for this is thermal 

induction of chromosomal abnormalities while the oocyte is resuming meiosis (Putney et 

al., 1989).  

 SUMMARY 

 An adequate uterine environment is necessary for maternal and conceptus 

communication.  The uterine environment must provide appropriate endocrine conditions 

to support a developing conceptus and for maternal recognition of pregnancy to occur 

around day 16.  Previous research has established that preovulatory estradiol influences 

follicular growth, oocyte maturation, sperm transport, uterine environment, and embryo 

survival.  Elevated preovulatory concentrations have been reported to have greater 
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pregnancy rates compared to nonestrus animals.  Therefore, the next chapter will focus 

on the role of preovulatory estradiol on the uterine environment and conceptus survival 

from fertilization to maternal recognition of pregnancy.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

CHAPTER II 

THE EFFECTS OF PREOVULATORY ESTRADIOL ON THE UTERINE 

ENVIRONMENT AND CONCEPTUS SURVIVAL FROM FERTILIZATION TO 

MATERNAL RECOGNITION OF PREGNANCY  

ABSTRACT 

 The role of preovulatory estradiol on the uterine environment and embryo 

survival has not been well established in cattle.  The objective of this study is to 

determine the effects of preovulatory estradiol on the uterine environment and conceptus 

survival up until maternal recognition of pregnancy.  Beef cows/heifers were 

synchronized with the CO-Synch protocol and AIed (d 0).  Cows were classified by 

estrus expression (estrus and no estrus).  Uteri were flushed to collect d 16 conceptuses 

nonsurgically (Rep 1; n = 29), or following slaughter (Rep 2; n = 37).  Uterine luminal 

fluid (ULF) was analyzed for protein, glucose, and interferon tau (IFNT) concentrations.  

For rep 1, total cellular RNA was extracted from blood leukocytes (d 16) to measure the 

expression of interferon-stimulated genes (ISG): ISG-15, OAS-1, and MX2.  For rep 2, 

total cellular RNA was extracted from caruncular (CAR) and intercaruncular (INCAR) 

endometrial tissue to measure relative abundance of glucose transporters (SLC2A1, 

SLC2A4, SLC2A5, and SLC5A1).  There was no difference in conceptus recovery rate 

between estrus and no estrus cows (P = 0.20; 48% vs 29%).  There was no difference (P 

> 0.20) in d 16 expression of ISG-15, OAS-1, or MX2 between estrus and no estrus 

cows, nor a difference between cows with or without a conceptus.  There were no 

differences in IFNT concentrations in the ULF among estrus and no estrus cows (P = 
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0.42), nor a difference among cows that did and did not have a conceptus recovered (P = 

0.71).  Cows that exhibited estrus had greater glucose concentrations in ULF (P = 0.05; 

51 ± 1.86 vs 45 ± 1.92 mg/dL).  Cows in which a conceptus was recovered had greater 

concentrations of protein in the ULF (P = 0.05; 2643 ± 585 mg/mL vs 1126 ± 463 

mg/mL).  In both CAR and INCAR endometria, animals that exhibited estrus had greater 

abundance of SLC2A1 (P = 0.05) and SLC5A1 (P = 0.04) mRNA.  Presence of a 

conceptus tended to increase (P = 0.10) abundance of SLC5A1 mRNA in INCAR tissue, 

but had no effect (P > 0.13) on abundance of SLC2A1 mRNA in either tissues or 

SLC5A1 mRNA in CAR tissue.  In CAR tissue, cows from which a conceptus was 

recovered had decreased SLC2A4 mRNA abundance (P = 0.05), but there was no effect 

of estrus (P = 0.14) and no effect of estrus or conceptus in ICAR tissue.  There was no 

difference in SLC2A5 mRNA abundance between estrus and no estrus cows (P > 0.20), 

nor between conceptus and no conceptus cows (P > 0.58) in CAR or INCAR tissue.  In 

summary, conceptus recovery rates, IFNT, and protein concentration in ULF did not 

differ between cows that did or did not exhibit estrus, but ULF glucose concentration was 

greater in cows that exhibited estrus.  Protein concentration in ULF was greater in cows 

from which a conceptus was recovered.  Thus, there was no indication of increased 

conceptus survival to d 16 of pregnancy based on estrus expression, but glucose and 

protein in the ULF did change based on estrus expression and conceptus presence, 

possibly due to changes in glucose transporter expression.  
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INTRODUCTION 

Initiation of estrus occurs due to increased circulating estradiol at a time when 

progesterone is not present (De Silva et al., 1981).  In the absence of progesterone, 

estradiol acts on the hypothalamus to induce estrus behavior and an LH surge resulting in 

ovulation (Chenault et al., 1975).  Preovulatory estradiol impacts follicular growth, 

oocyte maturation, sperm transport, uterine environment, and embryo survival (Pohler et 

al., 2012).  Cows in standing estrus within 24 hours of fixed-time AI have been reported 

to have greater pregnancy success than nonestrus cows (Perry et al., 2005), and cows that 

exhibit estrus have also been reported to have increased embryo survival to day 30 of 

gestation (Jinks et al., 2013).        

Miller et al. (1977) determined the impact of giving large or small doses of 

exogenous estradiol to ovariectomized sheep.  Following embryo transfer on day 4, 

animals that were given a small dose of estradiol had decreased uterine weight, total 

protein content, progesterone and estrogen receptor within the uterus, and pregnancy 

success compared to ewes given a larger dose.  Madsen et al. (2014) used ovariectomized 

cows to demonstrate the importance of preovulatory estradiol on the survival of embryos 

transferred on day 7.  Cows that were exposed to estradiol prior to embryo transfer were 

more likely to maintain pregnancy to day 29 compared to cows not exposed to estradiol.  

These studies indicate the beneficial role estradiol has in providing a uterine environment 

suitable for a developing embryo.   

The uterine histotroph is the uterine epithelium secretions and molecules that are 

transported into the uterine lumen to provide nutrients for the developing conceptus.  It is 
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composed of a mixture of enzymes, growth factors, cytokines, lymphokines, hormones, 

amino acids, proteins, and glucose (Gao et al., 2009a).  Glucose in particular regulates 

trophoblast proliferation and function (Wen et al., 2005).  It is a major energy source used 

by the conceptus for growth and development.  Glucose is delivered into the uterus where 

it can be utilized by the conceptus via glucose transporters (Leese and Barton, 1984; 

Pantaleon and Kay, 1998).  In sheep, total glucose content in uterine flushes has been 

reported to increase six fold between days 10 and 15 of gestation (Gao et al., 2009a; 

Flechon et al., 1986).  Thus the uterine histotroph is important for conceptus growth and 

development, especially during the time at which the embryo is undergoing 

morphological changes from spherical to filamentous (Bazer, 1975).  Grey et al. (2001) 

placed uterine gland knockout sheep (UGKO) with fertile rams, no pregnancies were ever 

identified on day 25 after insemination.  Blastocyst growth into an elongated bovine 

conceptus has not been able to be duplicated in vitro (Betteridge and Flechon, 1988).  

Both of these studies demonstrate that endometrial glands and their secretions are 

required for conceptus development and pregnancy establishment. 

 Among beef cattle, fertilization rates are estimated to be 90% with calving rates 

of 55%.  This suggests approximately 35% embryonic mortality, with ~70-80% of this 

embryonic loss occurring between day 8 and 16 post AI (Disken et al., 2006).  Therefore, 

the objective of this current study was to determine the impact of preovulatory estradiol 

during a fixed time AI protocol on uterine environment and conceptus survival from 

fertilization to maternal recognition of pregnancy, during a time in which early 

embryonic loss is most prevalent.  
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MATERIALS AND METHODS 

Animals and Treatments: 

 All procedures were approved by the South Dakota State University Institutional 

Animal Care and Use Committee. Angus crossed beef cows/heifers (Rep 1: n=29, Rep 2: 

n=37) at the SDSU Beef Breeding Unit were synchronized with a CO-Synch protocol.  

GnRH was administered (100 µg as 2 mL of Factrel i.m.; Pfizer Animal Health, Madison, 

NJ) on d -7, followed by PGF2 alpha (PG; 25 mg as 5 mL of Lutalyse i.m.; Pfizer Animal 

Health, Madison, NJ) on day -2, and on d 0, cows were administered GnRH (100 µg as 2 

mL of Factrel i.m.; Pfizer Animal Health, Madison, NJ) and artificially inseminated.  

Ultrasonography and Estrus Detection:  

  Follicular dynamics were assessed by transrectal ultrasonography using an 

Aloka 500V ultrasound with a 7.5MHz linear probe (Aloka, Wallingford, CT) on d -9, d 

0, and d 3 to characterize follicular development and ovulation.  All follicles on each 

ovary > 8 mm in diameter were recorded, and only cows that ovulated following the 

GnRH injection at fixed-time AI were utilized in the study.  Ovulation was defined as the 

disappearance of a previously recorded large follicle, and confirmed by changes in 

circulating concentrations of progesterone.  Estrus was monitored visually on d 0 through 

d 3 with the aid of EstroTect patches (Western Point, Inc., Apple Valley, MN).  Cows 

that had greater than half of the patch scratched off were characterized as exhibiting 

standing estrus.  
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Blood Sampling and Radioimmunoassay: 

 Blood samples were collected by venipuncture of the jugular vein into 10 mL 

Vacutainer tubes (Fisher Scientific, Pittsburgh, PA).  For the first replicate, blood was 

collected on d -2, d -1, d 0, then every other day up until d 16.  For the second replicate, 

blood was collected on d -2, d -1, d 0, then every other day up until d 15.  Blood was 

allowed to coagulate at room temperature prior to centrifugation at 1,200 x g for 30 

minutes at 4°C. Serum was collected and stored at -20°C until radioimmunoassays were 

performed.  Radioimmunoassays (RIA) were performed on serum samples to determine 

circulating progesterone concentrations using the methods described by Engel et al. 

(2008).  Intra- and interassay CVs were 4.9% and 7.5% and 6.0% and 13.2% for 

Replicate 1 and 2, respectively, and assay sensitivity was 0.4 ng/mL.  Serum 

concentrations of estradiol were determined within replicate by a single assay using the 

methods described by Perry and Perry (2008).  Intraassay CVs were 5.03% and 4.76%, 

for replicate 1 and 2, respectively.  Assay sensitivity was 0.5 pg/mL. 

Conceptus flushing (Replicate 1):  

 In replicate 1, uteri were flushed nonsurgically using a modified foley catheter.  

The catheter was inserted into the vagina through the cervix, and into the uterus.  A 

syringe was used to inflate the balloon; cows were flushed with 100 ml of flush media to 

maintain a constant volume.  The uteri were massaged, and fluid drained through a filter 

above a conical tube.  Flush media was assessed under a microscope to determine if a 

conceptus was present or not.  More saline was added, if no conceptus was recovered, 

and this additional media was collected separately.     
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Reproductive tract processing (Replicate 2): 

 Reproductive tracts were collected from the abattoir immediately following 

slaughter on d 16, and kept on ice.  An incision was made at the anterior end of the 

uterine horn contralateral to the corpus luteum, a plastic tube was placed in the uterine tip 

and sutured to prevent any fluid loss while the other horn was clamped off. The uterine 

horns were flushed with 30 ml of saline, and then massaged for equal fluid distribution in 

the uterus.  The uterine flush was then collected in a 50ml conical tube, and was further 

analyzed under the microscope to determine if a conceptus was present.  The ipsilateral 

uterine horn was cut anterior to the bifurcation, and then cut open to expose 

intercaruncular and caruncular tissue, which was then dissected for further analysis of 

glucose transporter expression.  

RNA extraction of maternal leukocytes and RTPCR (Replicate 1): 

 For replicate 1, d 7 and d 16 plasma and blood leukocytes were collected by 

jugular venipuncture in a 10 mL Vacutainer tubes (Fisher Scientific, Pittsburgh, PA).  

The blood was then centrifuged at 1,200 x g for 30 minutes at 4°C. Blood leukocytes 

were collected, Tri-Reagent was added and mixed in 1:1 volumetric ratio (Molecular 

Research Center, Inc., Cincinnati, OH), and stored at -80°C until RNA isolation.  SV 

Total RNA Isolation System (Promega, Madison, WI) was used to isolate RNA following 

the manufacturer’s instructions.  Pure RNA was dissolved in nuclease free water, and a 

spectrophotometer (NanoDrop Technologies, Wilmington, DE) was used to determine 

RNA concentration.  Isolated RNA samples were then stored at -80°C.  The RNA 

collected on d 7 and d 16 were diluted to 40 ng/µl and RTPCR was performed in 
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duplicate using iScript One-Step RT-PCR Kit with SYBR Green (BioRad) and 

Stratagene MX 3000P QPCR machine.  Expression of ISG15, MX2, and OAS1 was 

measured using the primers in Table 3, and GAPDH was used as a reference gene.  All of 

the primers were diluted to a concentration of 10 µM.  Each plate had negative controls to 

assure no background contamination.  The PCR program was 30 min at 42°C and 10 min 

at 95°C for inactivation of reverse transcriptase.  Transcription was then followed by 30 

sec at 95°C for melting, 1 min at 60°C for annealing, and 1 min at 72 °C for extension for 

40 cycles.  Primers were previously published for GAPDH (Han et. al., 2006), ISG15, 

MX2, and OAS1 (Green et al., 2010).    
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Table 3.  Genes, primer sequences, and product size for genes amplified during RTPCR. 

 

 

  

 
Gene 

 
Primer 

 
Primer Sequence 

 
Product 

size 

 
Reference 

ISG15 Forward 
Reverse 

5’-CAGCCAACCAGTGTCTGCAGAGA-3’ 
5’-CCAGGATGGAGATGCAGTTCTGC-3’ 

293 Green et 
al., 2010 

MX2 Forward 
Reverse 

5’-CTTCAGAGACGCCTCAGTCG-3’ 
5’-TGAAGCAGCCAGGAATAGTG-3’ 

232 Green et 
al., 2010 

OAS1 
 

Forward 
Reverse 

5’-ACCCTCTCCAGGAATCCAGT-3’ 
5’-GATTCTGGTCCCAGGTCTGA-3’ 

199 Green et 
al., 2010 

GAPDH Forward 
Reverse 

5’-GATTGTCAGCAATGCCTCCT-3’ 
5’-GGTCATAAGTCCCTCCACGA-3’ 

94 Han et al., 
2006 
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RNA extraction of endometrial tissue and RTPCR (Replicate 2):  

 Caruncular and intercaruncular endometrial tissue samples were homogenized 

prior to RNA isolation.  RNA was extracted using the Qiagen RNeasy Plus Mini Kit 

(Austin, Texas) following the manufacturer’s instructions.  Pure RNA was dissolved in 

nuclease free water, and a spectrophotometer (NanoDrop Technologies, Wilmington, DE) 

was used to determine RNA concentration for each sample.  The RNA samples were then 

stored at -80°C.  The RNA was diluted to 70 ng/µl and RTPCR was performed in 

duplicate using iScript One-Step RT-PCR Kit with SYBR Green (BioRad) and 

Stratagene MX 3000P QPCR machine.  Expression of SLC2A1, SLC2A4, SLC2A5, and 

SLC5A1 was measured using the primers in Table 4, and GAPDH was used as a 

reference gene.  All of the primers were diluted to a concentration of 10 µM.  Each plate 

contained negative controls to assure no background contamination.  The PCR program 

was 10 min at 50°C and 1 min at 95°C for inactivation of reverse transcriptase.  

Transcription was then followed by 15 sec at 95°C for melting, 30 sec at 60°C for 

annealing for 40 cycles.  All CVs were less than 21%.  Amplicons were electrophoresed 

on 2% agarose gels to determine product size and were verified for identity by 

sequencing (Iowa State Genomics Core). 
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Table 4.  Genes, primer sequences, and product size for genes amplified during RTPCR. 

 
Gene 

 
Primer 

 
Primer Sequence 

 
Product 

size 

 
Reference 

SLC2A1 Forward 
Reverse 

5’-TAACCGCAACGAGGAGAACC-3’ 
5’-AGAAAACAGCGTTGATGCCG-3’ 

227 Rozen and 
Skaletsky, 

2000 
SLC2A4 Forward 

Reverse 
5’-AGTTCCTAAGACAAGATGCCG-3’ 
5’-AGAATACGCCAAGGACCAAG-3’ 

103 Franca et 
al., 2015 

SLC5A1 
 

Forward 
Reverse 

5’-TCACCGCCCTTTACACAATC-3’ 
5’-CACCATACCCTCCCACTTC-3’ 

132 Franca et 
al., 2015 

SLC2A5 Forward 
Reverse 

5’-CCATTCATCCAAGTGGGCCT-3’ 
5’-GTCGACGGTGGAAACTCCTT-3’ 

203 Rozen and 
Skaletsky, 

2000 
GAPDH Forward 

Reverse 
5’-GATTGTCAGCAATGCCTCCT-3’ 
5’-GGTCATAAGTCCCTCCACGA-3’ 

94 Han et al., 
2006 
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Uterine luminal fluid (ULF) analyses:  

 Uterine luminal fluid underwent a 1:100 volumetric dilution.  Glucose Liquicolor 

Kit (Boerne, TX) was used to determine glucose concentrations according to the 

manufacturer’s instructions.  Total protein concentration in the ULF was determined 

using the Micro BCA Protein Assay Kit (Rockford, IL) according to the manufacture’s 

directions.  Interferon tau concentration was determined for all ULF samples in Thomas 

Spencer’s laboratory at the University of Missouri using a semi-quantitative western blot 

method (Satterfield et al., 2006).  

Statistical Analysis: 

 Circulating progesterone and estradiol concentrations were analyzed by the 

MIXED procedure of SAS using repeated measures.  Conceptus recovery rate, protein, 

glucose, and IFNT concentrations were analyzed using the MIXED procedure in SAS.  

The statistical model included: treatment (estrus or no estrus) (conceptus or no 

conceptus), time, and their interaction.  Day 16 ISG expression and glucose transporter 

expression were analyzed using the MIXED procedure in SAS, and both were corrected 

for by the expression of GAPDH.  
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RESULTS 

Hormone Profiles.   

 Serum estradiol concentrations during the preovulatory period were different 

between estrus and no estrus cows (P < 0.01; Figure 7); however, serum estradiol 

concentrations did not differ (P = 0.47) between cows that did and did not have a 

conceptus recovered on day 16 of pregnancy (Figure 8).  There was no difference in 

serum progesterone concentrations between cows that did and did not exhibit estrus (P = 

0.41; Figure 9), nor was there a difference among cows that did and did not have a 

conceptus recovered on day 16 of pregnancy (P = 0.93; Figure 10).  

Conceptus survival to d 16:  

 In replicate 1, day 16 ISG expression of ISG15, MX2, and OAS1 were not 

different (P > 0.20) between estrus and no estrus cows (Figure 11), nor was there a 

difference (P > 0.20) between cows that did and did not have a conceptus recovered from 

them (Figure 12).  Interferon tau concentrations in the ULF did not differ (P = 0.42) 

between estrus and no estrus cows, nor was there a difference between cows that did and 

did not have a conceptus recovered from them (P = 0.71; Figure 13).  There was no 

difference in conceptus recovery rates between estrus and no estrus cows (P = 0.20; 48% 

vs 29%), nor was there a difference in recovery rates between replicates (P = 0.46; 44% 

vs 33%; Figure 14).   
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Uterine Flush Media Analysis:  

 Total protein concentration in ULF was greater (P < 0.05) among cows that a 

conceptus was recovered from (Figure 15).  However, there was no difference (P = 0.36) 

in total protein concentration among cows that did and did not exhibit estrus (Figure 15).  

Glucose concentration in ULF did not differ among cows that did and did not have a 

conceptus recovered (P = 0.29), however cows that exhibited estrus had greater glucose 

concentrations in their ULF compared to cows that did not exhibit estrus (P = 0.05; 

Figure 16).  

Glucose Transporter Expression:  

 In caruncular endometria, cows that exhibited estrus had greater abundance of 

SLC2A1 (P = 0.05) and SLC5A1 (P = 0.04) mRNA (Figure 17), but there was no 

difference in SLC2A1 and SLC5A1 mRNA abundance between conceptus and no 

conceptus animals (P > 0.15; Figure 18).  Cows from which a conceptus was recovered 

had decreased SLC2A4 mRNA abundance (P = 0.04; Figure 18), while there was no 

difference in SLC2A4 abundance between cows that did and did not exhibit estrus (P = 

0.15; Figure 17).  There was no difference in SLC2A5 mRNA abundance between estrus 

and no estrus cows (P = 0.91; Figure 17), nor between conceptus and no conceptus cows 

(P = 0.58; Figure 18) in caruncular tissue.   

 In intercaruncular tissue, there was no difference in SLC2A4 and SLC2A5 mRNA 

abundance between estrus and no estrus cows, nor between conceptus and no conceptus 

cows (P > 0.20; Figure 19, 20). Presence of a conceptus tended to increase (P = 0.10) 

abundance of SLC5A1 mRNA in intercaruncular tissue (Figure 20), while cows that 
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exhibited estrus had increased SLC5A1 mRNA abundance (P < 0.01; Figure 19).  There 

was no difference in SLC2A1 abundance between conceptus and no conceptus cows (P = 

0.17; Figure 20), while cows that exhibited estrus had greater SLC2A1 abundance in 

intercaruncular tissue (P < 0.05; Figure 19).  
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Figure 7.  Circulating estradiol concentrations (pg/mL) in estrus and no estrus cows on d-
2, d-1, and d0.  There was an effect of estrus, time, and estrus by time (P < 0.01) on 
serum estradiol concentrations between cows that did and did not exhibit estrus.  
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Figure 8.  Circulating estradiol concentrations (pg/mL) on d-2, d-1, and d0 for cows that 
did and did not have a d16 conceptus recovered from them.  There was no difference in 
estradiol concentrations between the conceptus and no conceptus cows (P = 0.47), while 
there was an effect of time (P < 0.01).  
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Figure 9.  Circulating concentrations of progesterone (ng/mL) among estrus and no estrus 
cows every other day from d 3 to d 15.  There was no difference in circulating 
progesterone concentrations among estrus and no estrus cows (P = 0.41), while there was 
an effect of time (P < 0.01).  
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Figure 10.  Circulating progesterone concentrations (ng/mL) among animals that did and 
did not have a d16 conceptus recovered from them.  There was no difference in 
progesterone concentrations between the conceptus and no conceptus cows (P = 0.93), 
while there was an effect on time (P < 0.01).  
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Figure 11.  Day 16 interferon stimulated gene expression (ISG15, MX2, OAS1) among 
cows that did and did not exhibit estrus.  There were no differences in ISG15, MX2, and 
OAS1 gene expression between estrus and no estrus cows (P > 0.20). 
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Figure 12.  Day 16 interferon stimulated gene expression (ISG15, MX2, OAS1) among 
cows that did and did not have a conceptus recovered from them.  There were no 
differences in ISG15, MX2, and OAS1 gene expression between conceptus and no 
conceptus cows (P > 0.20).  
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Figure 13.  Interferon tau concentration (intensity) in ULF for cows that did/did not 
exhibit estrus and cows that did/did not have a conceptus recovered from them.  There 
were no differences in interferon tau concentration when comparing estrus/no estrus cows 
(P = 0.42) or conceptus/no conceptus cows (P = 0.71).  
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Figure 14.  Conceptus recovery rates did not differ between estrus and no estrus cows (P 
= 0.20; 48% vs 29%).  Nor was there a difference between replicate 1 and 2 (P = 0.46; 
44% vs 33%).  
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Figure 15.  Total protein concentration (mcg/mL) in ULF for cows that did/did not 
exhibit estrus and cows that did/did not have a conceptus recovered from them.  There 
was no difference in protein concentration among estrus and no estrus cows (P = 0.36), 
while cows that had a conceptus recovered from them had greater protein content in the 
ULF compared to the no conceptus cows.  * P = 0.05 
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Figure 16.  Glucose concentration (mg/dL) in ULF for cows that did/did not exhibit 
estrus and cows that did/did not have a conceptus recovered from them.  Cows that 
exhibited estrus had a greater glucose concentration in the ULF.  There was no difference 
in glucose concentration among the conceptus/no conceptus cows (P = 0.29).  * P = 0.05 
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Figure 17.  Glucose transporter expression (SLC2A1, SLC2A4, SLC2A5,  SLC5A1) in 
caruncular endometrial tissue among cows that did and did not exhibit estrus. Cows that 
exhibited estrus had greater SLC2A1 (P = 0.05) and SLC5A1 (P = 0.04) mRNA 
abundance.                                

* Significance within a transporter (P < 0.05) 
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Figure 18.  Glucose transporter expression (SLC2A1, SLC2A4, SLC2A5,  SLC5A1) in 
caruncular endometrial tissue among cows that did and did not have a conceptus 
recovered from them.  Cows from which a conceptus was recovered had decreased 
SLC2A4 abundance (P = 0.05).   

* Significance within a transporter (P < 0.05)  
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Figure 19.  Glucose transporter expression (SLC2A1, SLC2A4, SLC2A5, SLC5A1) in 
intercaruncular endometrial tissue among cows that did and did not exhibit estrus. Cows 
that exhibited estrus had greater SLC2A1 (P = 0.05) and SLC5A1 (P < 0.01) mRNA 
abundance.          

* Significance within a transporter (P < 0.05)   

** Significance within a transporter (P < 0.01)     
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Figure 20.  Glucose transporter expression (SLC2A1, SLC2A4, SLC2A5,  SLC5A1) in 
intercaruncular endometrial tissue among cows that did and did not have a conceptus 
recovered from them.  Presence of a conceptus tended to increase SLC5A1 mRNA 
abundance (P = 0.10).   

+ Tendency within a transporter (+ P < 0.10) 
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DISCUSSION 

 It has been well established that the initiation of estrus occurs due to increased 

circulating concentrations of estradiol at a time when progesterone is not present (De 

Silva et al., 1981), and as previously demonstrated (Perry and Perry, 2008), cows that 

exhibited estrus had greater preovulatory estradiol concentrations compared to cows that 

did not exhibit estrus.  However, in the current study, serum estradiol concentrations did 

not differ between cows that did and did not have a conceptus recovered on day 16 of 

pregnancy.  The corpus luteum is the main source of progesterone, and it is essential for 

the maintenance of pregnancy (McDonald et al., 1952).  Adequate progesterone secretion 

is necessary for stimulating endometrial secretions, embryo growth and development, and 

maintenance of pregnancy by altering endometrial gene expression (Garrett et al., 1998).  

The postovulatory rise of progesterone is associated with an increase in pregnancy 

success (Forde et al., 2009).  The current study found no differences in circulating 

progesterone concentrations between cows that did and did exhibit estrus, and there was 

also no difference in cows that did and did not have a conceptus recovered from them.  

 Previous research found that ovariectomized cows that were exposed to estradiol 

prior to progesterone treatment were more likely to maintain pregnancy to day 29, but it 

was hypothesized that embryo survival to maternal recognition of pregnancy was similar 

between cows that were and were not exposed to estradiol (Madsen et al., 2015).  In 

cattle, maternal recognition of pregnancy occurs around day 16 after estrus (Bazer, 1997).  

The conceptus must produce and secrete interferon tau (IFNT), which acts on the uterus 

and ovary to ensure the maintenance of a functional corpus luteum so progesterone 

production and pregnancy can be maintained (Bazer, 2013).  Expression of IFNT begins 
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in the mononuclear cells of the trophectoderm during the early morula, late blastocyst 

stage (day 6-7 of pregnancy; Kubisch, 1998).  Robinson et al. (2006) reported that 

intrauterine IFNT concentrations were increased from day 14 to day 18 among pregnant 

animals, and was positively correlated to embryo size.  In the current study, there was no 

difference in conceptus recovery rates between cows that did and did not exhibit estrus, 

and IFNT concentrations on day 16 of pregnancy in the ULF did not differ between cows 

that did and did not exhibit estrus.  The lack of differences in IFNT concentration in the 

ULF may be due to early embryonic loss occurring.  

 Interferon stimulated gene expression in the uterine endometrium is upregulated 

as a result of IFNT secretion by the conceptus (Yankey et al., 2001).  Interferon 

stimulated genes are hypothesized to regulate uterine receptivity to implantation as well 

as survival and growth of the conceptus (Kim et al., 2012).  In the present study, there 

were no differences in ISG15, OAS1, and MX2 expression on day 16 between cows in 

which a conceptus was or was not recovered.  Previous work has reported that expression 

of MX2 increased as early as day 16 after insemination, and ISG15 increased around day 

18 of pregnancy in cattle (Gifford et al., 2007).  Green et al. (2010) reported MX2 and 

ISG15 expression was greater in pregnant compared to non-pregnant cows on day 18 and 

20.  This further suggests conceptus survival to maternal recognition of pregnancy is 

similar between cows that do and do not exhibit estrus prior to fixed-time AI. 

 For embryo survival to occur the maternal uterine environment needs to provide 

sufficient nutrients to the developing embryo, these nutrients are provided in what is 

known as the uterine histotroph (Gao et al., 2009a).  The uterine histotroph is composed 

of a mixture of enzymes, growth factors, cytokines, lymphokines, hormones, amino 
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acids, proteins, and glucose (Gao et al., 2009a).  Estradiol has been reported to induce 

endometrial receptors and expression of uterine proteins (Bartol et al., 1981), as well as 

induce the expression of many genes involved in uterine extracellular matrix remodeling 

that are necessary for embryo growth and a successful pregnancy (Bauersachs et al., 

2005).  In addition, IFNT has also been reported to influence uterine gene expression 

(Chen et al., 2006).  When pregnant and cyclic ewes were compared, 30 genes were up 

regulated and nine were down regulated during pregnancy.  Many of the upregulated 

genes were associated with antiviral responses, while the downregulated genes were 

associated with preventing the regression of the corpus luteum.  Miller et al. (1977) 

conducted a study administering small and large doses of estradiol; ovariectomized ewes 

given a small dose of estradiol had decreased uterine weight, total protein content, and 

pregnancy success prior to reaching maternal recognition of pregnancy compared to ewes 

given a larger dose.  However, preovulatory estradiol concentrations did not cause 

differences in ULF protein concentration in the current study on day 16 of pregnancy, 

while cows that had a conceptus recovered from them had a greater protein in the ULF 

compared to cows in which no conceptus was recovered.  The difference between the 

current study and the study by Miller et al. (1977) is likely in the timing of uterine 

collection.  Miller examined the uterus prior to maternal recognition of pregnancy, and in 

the current study uteri were flushed/collected after maternal recognition had occurred.  

Thus, the stimulation of uterine genes by IFNT may have masked a difference in uterine 

protein between estrus and no estrus cows. 

 Glucose is a major fuel source used by the conceptus; it is transported into the 

uterus via glucose transporters (Leese and Barton, 1984; Pantaleon and Kay, 1998).  
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Glucose can then be used by the conceptus to make glycogen, nucleic acids, proteins, and 

lipids during the peri-implantation period (Gao et al., 2009a).  In sheep, total glucose 

content in uterine flushes has been reported to increase six fold between days 10 and 15 

of gestation, during this time period the embryo is undergoing morphological changes 

from spherical to filamentous (Gao et al., 2009; Flechon et al., 1986).  In the current 

study, glucose concentrations in the ULF were greater in cows that exhibited estrus 

compared to cows that did not exhibit estrus.  However, there was no difference in ULF 

glucose concentration between cows that did and did not have a conceptus recovered 

from them.  Thus, this increase in glucose among cows that exhibited estrus may 

contribute to increased pregnancy success on day 30 among cows that exhibit estrus prior 

to fixed-time AI. 

 Transport of glucose across the plasma membrane is mediated by facilitative 

and/or sodium dependent transporters.  Glucose transporters are found throughout the 

body in various tissues (Zhao et al., 2007).  Previous literature has focused on select 

glucose transporters (SLC2A1, SLC2A3, SLC2A4, and SLC5A1) when examining 

glucose transport in the uterus.  The expression of these select transporters differed 

between cyclic and pregnant ruminants (Gao et al., 2009b).  In the present study, in 

caruncular endometria, cows that exhibited estrus had greater abundance of SLC2A1 and 

SLC5A1 mRNA.  There was no difference in SLC2A4 and SLC2A5 abundance between 

cows that did and did not exhibit estrus.  In intercaruncular tissue, there was no difference 

in SLC2A4 and SLC2A5 mRNA abundance between estrus and no estrus cows, while 

cows that exhibited estrus had increased SLC2A1 and SLC5A1 mRNA abundance.  
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 In caruncular endometria, there was no difference in SLC2A1, SLC2A5, and 

SLC5A1 mRNA abundance between conceptus and no conceptus cows.  However, cows 

from which a conceptus was recovered had decreased SLC2A4 mRNA abundance.  In 

intercaruncular tissue, there was no difference in SLC2A1, SLC2A4, and SLC2A5 

mRNA abundance, but presence of a conceptus tended to increase abundance of SLC5A1 

mRNA.  A study done by Gao et al. (2009b) found that SLC2A1 mRNA was increased in 

pregnant ewes starting at day 10 compared to cyclic ewes.  They found that expression of 

SLC2A1 appeared to be regulated by both progesterone and IFNT.  According to Gao et 

al. (2009b), SLC2A4 mRNA abundance also increased in pregnant ewes between day 10 

and 18 of pregnancy, and treatment of ovariectomized ewes with progesterone and IFNT 

increased SLC2A4 mRNA levels 1.9 fold.  Previous research has also reported that 

pregnant ewes had an increase in endometrial expression of SLC5A1 mRNA between 

days 10 and 12 of the cycle, and expression remained elevated through day 16 (Gao et al., 

2009b).  However, in in the present study there was no difference in circulating 

concentrations of progesterone or concentrations of IFNT in the ULF.  Furthermore, the 

reduction in SLC2A4 may indicate the ability of the conceptus to partially regulate 

glucose in the uterine environment, as excess glucose has been reported to negatively 

impact stem cell differentiation in mice (Yang et al., 2016) and to negatively impact 

implantation in humans (Zhou et al., 1997).  Franca et al. (2015) reported no differences 

in SLC2A1, SLC2A4, SLC2A5, and SLC5A1 transcript abundance or in uterine 

concentrations of glucose on day 10 between large follicle (LF)-large CL (LCL) cows 

versus small follicle (SF)-small CL (SCL) cows. However, large follicle cows had greater 

plasma estradiol concentrations on day -2, -1, and 0 compared to SF-SCL cows.  These 
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changes in glucose transporter expression may serve as a potential mechanism to regulate 

glucose concentration in the uterine lumen where it can be utilized for growth by the 

developing conceptus. 

 In summary, there were no differences in conceptus survival based on recovery 

rates, IFNT concentrations, and ISG expression among cows that did and did not exhibit 

estrus.  However, glucose transporter expression in the endometrium, and also glucose 

and protein concentration in the ULF was influenced by preovulatory estradiol and 

conceptus presence.  Thus, differences in conceptus survival to pregnancy determination 

among cows that exhibit estrus prior to fixed-time AI is not a factor in conceptus survival 

to maternal recognition of pregnancy, but transport of glucose to the uterus among cows 

that exhibited estrus may contribute to the increased pregnancy success at these later time 

points. 
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APPENDIX 

Table A1: Day 16 replicate 1 conceptus data from nonsurgical flushing.  

  

REPLICATE 1 CONCEPTUS DATA 
ID Estrus 

Expression 
Conceptus 
Presence 

Trophectoderm Fragment Lengths (mm) 

0043 YES NO  
69 NO NO  

0081 YES NO  
0099 NO NO  
0114 YES NO  
0154 YES YES 55.17, 36.15, 28.32, 50.64, 56.31, 26.39 
197 NO YES 3.25 
3028 YES NO  
4209 NO YES 27.7, 65.6 
5217 NO NO  
6072 YES YES 27.58 
8359 YES YES 61.96 
9039 YES YES 51.44, 33.58, 58.36, 72.11, 16.49, 65.49 
9043 NO NO  
9173 YES NO  
Y103 NO NO  
Y110 YES NO  
Y111 NO NO  
Y113 NO NO  
Y116 NO NO  
Y142 NO NO  
Y192 YES NO  
Z203 NO NO  
Z207 YES YES 27.8, 76.58, 8 
Z245 YES NO  
Z255 NO YES 41.1, 10.78, 13.92, 3.84, 4.55 
Z301 NO NO  
Z305 YES NO  
Z309 YES YES 82.82, 65.97, 85.83, 12.4, 37.43, 78.19, 

28.58, 53.06, 40.91, 61.51, 18.75, 16.46, 
53.69, 41.04, 26.48, 10.19 
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      Table A2: Day 16 replicate 2 conceptus data from flushing following slaughter.  

 

 

REPLICATE 2 CONCEPTUS DATA 

ID Estrus 
Expression 

Conceptus 
Presence Trophectoderm Fragment Lengths (mm) 

8 NO NO  
0043 NO YES 13.49, 1.86 
067 YES YES 2.18, 0.71 
69 NO NO  
71 YES NO  

0081 NO NO  
0099 NO NO  
0114 NO NO  
117 YES YES 15.43, 2.66 
197 NO YES 25.97, 0.88 
244 YES YES 3.17, 1.88 
254 YES NO  
3028 NO NO  
3327 YES NO  
4209 NO YES 14.12, 0.93 
5217 NO NO  
5342 NO YES 35.24, 1.11 
6072 NO NO  
8359 NO NO  
9039 NO NO  
9043 NO NO  
9173 NO NO  
Y066 NO NO  
Y103 NO NO  
Y110 YES YES 3.28, 1.03 
Y111 NO NO  
Y113 NO NO  
Y116 NO NO  
Y142 NO NO  
Y192 YES NO  
Z203 YES NO  
Z207 NO NO  
Z245 NO YES 40.51, 0.96 
Z255 NO NO  
Z301 NO NO  
Z305 NO NO  
Z309 NO NO  
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