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ABSTRACT 

EFFECT OF POISSON’S RATIO ON MATERIAL PROPERTIES 

CHARACTERIZATION BY NANOINDENTATION WITH A CYLINDRICAL FLAT 

TIP INDENTER 

MD MEHADI HASSAN 

2016 

Nano indentation technology is commonly used to determine the mechanical 

properties of different kinds of engineering materials. The young’s modulus of the 

materials can be calculated with the load depth data obtained from an indentation test 

with a known Poisson’s ratio. In this investigation the NANOVEA micro/nano-

indentation tester with a cylindrical flat-tip indenter will be used to find the elastic 

modulus, hardness and Pile up. Low carbon steel AISI1018, alloy steel AISI 4340 and 

aluminum alloy 6061 were selected for the case study. Finite element (FE) analysis using 

axisymmetric 3-D models used to establish the relationship between Poisson’s ratio and 

the deformation of indentation / materials strain hardening exponential index with a 

cylindrical flat tip indenter. The modeling was done by considering the Poisson ratio 

ranging from 0 to 0.48 in order to find the influences of Poisson ratio on the elastic-

plastic properties was verified by associated experimental results. From the modeling 

results, it was found the indentation depth has very little effect on calculating the elastic 

modulus of the sample material in the same Poisson ratio and the hardness slowly 

increases with the increase of maximum indentation depth as well as increase the Poisson 

ratio. The maximum pile up value for the three materials decreases with the decrease of 

Poisson ratio that was very sensitive. 
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Chapter 1 Introduction 

1.1      Background 

1.1.1  Poisson Effect 

Advent technology in modern times has outstripped so many challenges in the 

material system world. Uncovering accurate mechanical properties such as Young’s 

modulus, Poisson’s ratio, yield strength, and ultimate strength have become critical 

factors for making research and design of engineering materials. Among all the materials 

properties, Poisson’s ratio define as  the negative ratio of transverse to axial strain, is one 

of the fundamental parameter whose accurate value would give more reliable and 

precision value for any design of structures where all dimensional changes resulting from 

the application of the applied force needed to be taken into account [1]. When a material 

is compressed in one direction, it usually tends to expand in the other two directions 

perpendicular to the direction of compression. This phenomenon is called the Poisson 

effect. In the early times, Poisson’s ratio was characterized at macro level obtained from 

stress strain relationship by using tensile testing machines according to the American 

Society for Testing and Materials (ASTM) standard [1] [2]. This macro/nano-scale 

mechanical properties that are critical to characterize for advanced material system like 

thin films, coatings, nanostructured materials. During the last 20 years, researchers have 

become more interested in mechanical properties of small volumes of materials which 

may differ from macro scale properties due to the size and surface effect [3]. The 

resulting technique, termed nanoindentation, has become more ubiquitous for mechanical 

property measurements at surfaces. 
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1.1.2     Nanoindentation 

Nano-indentation is widely adopted method to measure elastic, plastic and time 

dependent mechanical properties, including the hardness, Young’s modulus, Poisson’s 

ratio of thin films and structural applications of materials with micro or nano-sized 

features. This method has gained popularity with the development of machines that were 

capable of recording very small loads and displacements to a high level of precision and 

accuracy [4]. The size of the mechanical systems is decreasing day by day and especially 

will begin to approach atomic length scales. Thus it’s obligatory to develop experimental 

methods and corresponding theoretical analysis to characterize material properties at 

these nano scales. In recent years new experimental and computational approaches are 

being inaugurate to interpret the experimentally observed phenomena with the veritable 

mechanical testing at small scales. 

The depth sensing indentation with high tenacity of load and displacement up to 

nanoscale works on the principle, where an indenter with known geometry is penetrated 

into a sample material’s surface up to a certain depth and then recant. Both the applied 

load and indentation depth is simultaneously monitored and recorded by high resolution 

sensors of the indentation system. If the material properties and the experimental 

indentation data is known then desired mechanical properties can be extracted [5]. 
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1.1.3     Major mechanical properties 

The mechanical properties of a material are those properties that involve a 

reaction to an applied load in the elastic or plastic behavior of a material under pressure. 

The most common mechanical properties are tensile strength, ductility, hardness, 

modulus of elasticity, yield strength impact resistance, fracture toughness and fatigue. 

Elasticity is the ability of a material to return to its original shape after the load is 

removed whereas plastic properties refers to the ability of a material to deform 

permanently without breaking or rupturing. Hardness is the property of a material for 

indentation and scratching that measure how resistant of solid surface is to change of 

permanent shape when a compressive external force is applied. The yield strength is the 

minimum stress which produces permanent plastic deformation. Elastic modulus is 

defined as the slope of a stress-stain curve in the elastic deformation region which defines 

stiffness of a material as it undergoes stress to deform along an axis and then returns to its 

original shape after the force is removed. Ultimate yield strength is the maximum stress 

that a material can carry without the permanent change of dimensions and ultimate tensile 

strength is the maximum amount of tensile stress that a material can withstand before 

failing. Proportional limit is the highest stress at which stress is linearly proportional to 

strain. The elastic modulus can be easily determined by nanoindentation as need few 

analytical solution relating to the applied load, indentation depth. Moreover the plastic 

properties such as yield strength can hardly be found due to the finding of analytical 

solution. 
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1.2       Previous Work 

Zheng et al. [6]   performed indentation on articular cartilages for simultaneous 

estimation of Poisson’s method and Young’s modulus, in which they established the 

relationship between Poisson’s ratio and the deformation-dependent indentation stiffness 

for different aspect ratio (indenter radius/tissue original thickness) in the indentation test 

after making computer-modeling using Finite Element analysis. From the FE results, they 

found that the indentation stiffness linearly increased with the deformation. Based on the 

deformation –dependent indentation stiffness obtained from the force-deformation data, 

they extracted value of Poisson’s ratio and then calculated Young’s modulus with the 

estimated Poisson’s ratio. Their numerical results showed percentage errors of estimated 

Poisson’s ratio and corresponding Young’s modulus ranged from 1.7% - 3.2% and 3.0%-

7.2% respectively, with the aspect ratio greater than one. Kim et al. [7] was measured the 

Poisson’s ratio of MEMS thin film by designing double ring shaped specimen in which 

they analyzed the load –deflection data of double ring specimen subjected to nano-

indenter loading. They obtained the Poisson’s ratio by comparing the stiffness results of 

the double-ring specimen from the analytical model and the nano-indentation experiment 

which was measured to be 0.254 with deviation of 0.0125. They validate their results 

comparing with the Poisson’s ratio of LPCVD polysilicon with the thickness 2.33 µm 

and demonstrated their method as reliable one. 

Liu et al. [8] was determined Young’s modulus and Poisson’s ratio of coatings on 

the basis of Hertz theory for the contact of coated bodies by means of elastic indentation 

tests where they analyzed the load-displacement data from the spherical indentation. 

They determined these values at the same time through minimizing the differences 
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between the measured and specifically defined modified Young’s moduli so that they 

didn’t require to make any assumption on pressure distribution and Poisson’s ratio.  

Garcia and Rasty [9] obtained Poisson’s ratio for bulk materials by using the non-

linear least squares approach. They explored the Hertzian contact equation by not 

assuming a priori value of Poisson’s ratio. Instead of assuming value for Poisson’s ratio, 

they used least-squares approach emphasizing only the elastic portion of the Hertzian 

contact, and thus made simultaneous determination value of elasticity and Poisson’s ratio. 

Clifford et al [10] investigated the effect of the Poisson’s ratios by using FEA for 

both the over layer and the substrate on the nanoindentation of an elastic two-phase 

system. They calculated the combined modulus as a function of indentation depth for a 

variety of different systems. They developed analytical equations to account change in 

Poisson’s ratio for both layers and thus showed nanoindentation results may be expressed 

analytically using a simple extension of the equation of Clifford and Seah [11]. And that 

function can describe the reduced modulus value measured using Oliver and Pharr’s 

method [12]. 

Jung et al [13] analyzed two different techniques to measure mechanical 

properties such as the elastic modulus and the residual stress of thin film, bulge test and 

nano-indentation test. In the bulge test, uniform pressure applies one side of thin film to 

measure the membrane deflection that allows characterization of the mechanical 

properties such as the elastic modulus and the residual stress. They modified King’s 

model that can be used to estimate the mechanical properties of the thin film to avoid the 
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effect of substrates. Both techniques are different of the mathematical relationship 

between the modulus and Poisson's ratio.  

Bamber et al [14] discuss two different techniques, nanoindentation and acoustic 

microscopy; both of which can be used to determine Young's modulus and Poisson’s 

ratio. They involve the introduction of the gamma correction factor [15] which requite for 

the elastic–plastic contact in real materials and compared graphically experimental results 

of Young's modulus and Poisson’s ratio by both techniques. The intersection of the 

acoustic curve and the nanoindentation curve for fused silica provided an accurate 

estimation of Young's modulus and Poisson's ratio. 

Chen et al [16] studied the effect of Poisson's ratio on two-dimensional elastic-

plastic stress by using the body force method which caused the plastic deformation due to 

force doublets. 

Pintaude et al [17]  discusses five model expand of the Tabor proposes, showing 

that their similarity depending on the specific mechanical properties of tested material 

which used to make the conversion between yield stress and hardness. They used 

diamond as a spherical indenter to avoid large deformations during the indentation 

process. 

Green et al [18] showed the location of the maximum elastic distress both in 

spherical and cylindrical Hertzian contacts based on the maximum shear stress theories. It 

depends on Poisson ratio that the maximum distress can occur at the contact surface as 

well as underneath the surface. In the both case maxima of the von Mises and shear 

stresses occur at two different Poisson ratios 0.1938 and 0.24 accordingly. 
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Norbury et al [19] investigated the effect of Poisson's ratio on the deformation of 

auxetics behaviors of the material and other parameters including the sample thickness, 

indentation depth and indenter size. They conclude the negative Poisson's ratios have also 

the direct influence on the membrane deformation as the depth load curve, the deflection 

profile and the contact area.  

Abd-Elhady et al [20] analyzed the influence of Poisson's ratio on stress and strain 

concentration factors of plate with circular notch by using three dimensional finite 

element method to determine the site of crack initiation. They conclude that the 

maximum stress and strain concentration factors increase with increasing the Poisson's 

ratio varied from 0.1 to 0.4 with decrease the biaxial ratio. 

Yu et al [21]  and Grant et al [22] investigated the influence of Poisson’s ratio on 

the thickness-dependent stress concentration factor (SCF) of a plate with elliptic holes by 

use of three-dimensional finite element method. The result shows that the SCF increases 

with the increase of Poisson’s ratio from 0.1 to 0.49.  

Abdulaliyev et al [23] and J. Dundurs et al [24] described theoretically the effect 

of Poisson’s ratio on three-dimensional stress distribution in plane elasticity. The stress 

elements are individualistic from Poisson’s ratio with surface tractions of the body.  

E. Liu et al [25] illustrated the viscoelastic-plastic behavior of viscoelastic 

materials in linear rheological constitutive model to obtain Poisson’s ratio by load step 

indentation. 
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1.3       Motivation 

Traditionally tensile test was the most popular method for measuring mechanical 

properties which is a devastating test and takes long time as need massive machine effort. 

This test is impracticable to perform on nano scale or area such as an area being laser 

scanned, explosive-bonded, thin film-coated or micro/nano-structured materials. In order 

to overcome these issues, nanoindentation techniques as a more reliable, cost effective, 

flexible and accurate method are widely used in a nano scale which is motivated by 

modern applications, e.g. microelectronics, MEMS, photovoltaic cells, laser treatment of 

surfaces, explosive bonding adhesion and coating of thin layers in complex structures etc. 

In nanoindentation technique it is impossible to characterize mechanical 

properties without Poisson ratio of the specimen. In this case Poisson ratio is important 

factor to characterize material properties.  The relationship between Poisson’s ratio and 

stiffness obtained from the force-deformation data that extracted value of Poisson’s ratio 

is needed to calculate the Young’s modulus with the estimated Poisson’s ratio. 

Previously nanoindentation was concentrated on the Berkovich indenter tip, a 

pyramidal shape diamond tip or other indenter like spherical or conical indenters. But 

now a days the cylindrical flat tip indenter can be used, which has some attractive 

features such as constant contact area and leads to a faster and feasible way for finding 

mechanical properties of endless unknown material specimen within micro/nano-scale. 

Major motivation for this work is to overcome the issues related the effect of Poisson 

ratio on materials properties with the cylindrical flat tip indentation so that the benefits 

offered by this kind of indenter can be utilized. 
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1.4       Objectives 

The purpose of this research is explore the relationship of Poisson’s ratio and the 

deformation of indentation / materials strain hardening exponential index with cylindrical 

flat punch. More specifically the following concerns have been addressed in details: 

 Develop a relation between Poisson ratio and the maximum pile up. 

 Build a three dimensional solid model for AISI 1018, AISI 4340 and 6061T6 

materials based on the true stress strain data and perform finite element 

simulation. 

 Determine the load displacement curve for different value of Poisson’s ratio of 

range (0-0.48) for three materials where keeping all other parameters constant. 

 Validate the proposed FE model via evaluating the mechanical behavior of 

cylindrical flat tip nanoindentation with the results found from literature. 

 Analysis mechanical properties including elastic modulus, hardness, pileup and 

compare the results with the experimental ones for three materials. 

 Extraction of Poisson’s ratio through micro/nano indentation testing with 

cylindrical flat tip indenter. 
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Chapter 2 Theory 

2.1       Poisson’s Ratio 

Poisson’s Ratio, ν is define as absolute value of the ratio of Transverse / Lateral 

strain to the longitudinal / axial strain in the elastic region. In other word the Poisson ratio 

is the fraction of expansion divided by the fraction of compression. Mathematically 

expressed as follows: 

ν =
ϵ୘୰ୟ୬ୱ୴ୣ୰ୱୣ
ϵ୐୭୬୥୧୲୳ୢ୧୬ୟ୪

=
∆d
D

∆l
L൘                                                                                                     (2-1) 

When a material undergo a tensile force P, it occurs a stress regarding to the 

applied force. In proportion to the stress, the cross section is declined by Δd from the 

diameter D and the length elongates by ΔL from the length L illustration in Fig. 2.1. 

 

 

 

Fig. 2.1: Tensile test of a sample. 

 

When a material is compressed in one direction, it usually tends to expand in the 

other two directions perpendicular to the direction of compression. This circumstance is 

called the Poisson effect. 

 

 

 ܮ

 P P ܦ
∆݀ 

∆݈ 
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2.2       Stress-strain correlation 

Tensile test is most reliable test for the characterization of the materials property. 

Generally tensile test uses for large instrumentation which needs immense strength to pull 

apart metal and plastic. In the tensile test, load is applied on the sample that undergoes 

elastic deformation followed by plastic deformation. The sample will always return to its 

original dimensions in the elastic region. Further increasing the load it stars to yield and 

enters plastic deformation that will not no longer return to the original shape as called 

strain hardening. Strain is found by the change in length linearly compared to the original 

length of the specimen as shown in Equation (2-2) 

e =
∆L
L଴

=
1
L଴
න dL
୐

୐బ
=

L − L଴
L଴

=
L

L଴
− 1                                                                               (2-2) 

Here, e is the Elastic strain, L0 and L are the original length and new length of the 

specimen accordingly. 

The density of metal is almost incompressible.  In case of very large plastic 

strains, the density changes by less than 0.1 percent [26].  By considering the volume of a 

metal is a constant as it is undergoing plastic deformation leading to Equation (2-3) 

AL = A଴L଴                                                                                                                                 (2-3)   

Here, A and A0 is the new and original cross section area of the specimen accordingly. 

 The natural strain or true strain ε concept first introduced Ludwik [27] where he 

used instant changed gage length for the measurement. Mathematically expressed of true 

strain as follows, where ε is the strain, L is the gage length. 
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ε = ෍
L୧ − L୧ିଵ

L୧ିଵ
 =

1
L଴

ஶ

ଵ

න dL
୐

୐బ
= ln

L
L଴

                                                                                 (2-4) 

 

The equation (2-2) is substitute to the equation (2-4) that given the true strain of the 

material. 

ε = ln(e + 1)                                                                                                                           (2-5) 

 

The true stress, σ is define as the applied load to the cross sectional area of the 

sample. True stress always starts in the plastic region. However, engineering stress rises 

and then falls after an act the onset of necking. The relation between true stress and the 

engineering stress are developed by assuming the volume is constant and direction of the 

strain distribution is same along the length of the specimen shown in equation (2-4). 

σ =
P
A =

P
A଴

A଴

A = σୣ(e + 1)                                                                                                  (2-6) 

 

The power law equation developed by Ludwik’s equation shown in equation (2-5) 

σ = a + bεୡ                                                                                                                                 (2-7) 

The values a, b, and c are arbitrary constants fitted to data from the stress-strain 

curve. From Ludwik’s equation [27] the relation between the elasto- plastic strain 

hardening and the true stress-strain can be expressed by linear and exponential functions 

for elastic region and elasto-plastic region accordingly. 
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σ = ቊ
εE                                                   σ < σ୷
ε୷E + k(ɛ − ε୷)୫                     σ ≥ σ୷                                                                      (2-8)  

 

Here ߝ௬ is the true strain at the yield point where (ߪ௬ =  k and m are the materials ,(ܧ௬ߝ

strain hardening coefficient and exponential index respectively. The value for the strain 

hardening coefficient and exponential index can be exerted by plotting a double 

logarithm plot to the maximum load from experimental true stress-strain data. These two 

constant describe completely the shape of the true stress-strain curves. The value of k 

indicates the level of strength of the material and the magnitude of forces required for 

testing, while the value of m correlates the slope of the true stress- strength curve [28]. 
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2.3       Indentation Test 

In the nano indentation test the indenter impressed into the surface of the test 

specimen by applied force. Moreover different types of indenters are used for the test 

which differs on their tip geometry. Almost all the indenter are made from diamond due 

to its properties of hardness, thermal conductivity and chemical inertness. Generally 

indenter are two types: Sharp indenter Blunt indenter. Cones and Pyramid are define as 

Sharp indenter. On the other hand cylindrical flat punch and Spherical indenters are the 

Blunt indenter.  

Berkovich is a three sided pyramidal indenter which have three intersecting 

polished planes approach congenitally make a sharp point tip. The apex angle of the 

Berkovich indenter is 65.30 which provide the equal area to depth ratio same as the 

Vickers indenter. Vickers indenter has four sided with polar faces at a semi-angle α=680 

which make β=220 with the specimen surface [29]. The knoop indenter has two different 

semi-angle with four sided pyramidal. The cylindrical flat punch indenter is more 

uniform and simply characterized by the tip diameter and requires few parameter for 

computing the indentation pressure. It has constant contact area during the indentation 

process and it quickly outstretch to the hemi- spherical elastic plastic condition whereas 

the contract area varies with time for the other indenters. 
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2.4       Load Displacement Curve 

Load displacement curve is important factor to figure out the mechanical 

properties in the nano indentation process. Load is applied from zero to maximum in 

small increments during loading process and plastic deformation happens in the surface 

of the specimen. During the unloading process load is reverted to zero from the 

maximum value and the specimen tries to reform its original shape but plastic 

deformation prevents the full recovery. In the load-depth curve the loading portion has 

both elastic and plastic retaliation where the unloading segment mention to entirely 

elastic allowance shown in Fig. 2.2. 

 

Fig. 2.2: Load Depth curve 

Here, the depth of the residual impression hr, the elastic displacement during 

unloading he, the maximum depth hmax from the original specimen surface at maximum 

load Pmax. 
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For cylindrical flat tip indenter during unloading the elastic displacement can be 

express as follows  

P = 2aE୰h                                                                                                                                 (2-9) 

Where ܽ  is the contact radius which is equal to the cylindrical flat tip indenter, P is the 

applied force on the specimen surface.  Oliver-Pharr et al [30] [12] proposed a method for 

calculating the material properties as defined the stiffness S of the material is equal the 

slop of the initial portion of the unloading curve. The relation between stiffness and the 

contact area is described in equation (2-7) 

dP
dh = S = 2 a E୰                                                                                                                    (2-10) 

 

Where Er is the reduced elastic modulus. From equation (2-7), in terms of contact area 

can be written as, 

dP
dh = S = 2 E୰ ඨ

A
π                                                                                                            (2-11) 

Finally elastic modulus of the specimen E is obtain for the unloading curve using the 

cylindrical indenter from the following equation, 

1
E୰

=
1 − νଶ

E +
1 − ν୧ଶ

E୧
                                                                                                         (2-12) 

 

Here ߭௜ and ܧ௜ are the Poisson’s ratio and the Elastic modulus for the indenter and ν and 

E are the Poisson’s ratio and the Elastic modulus for the specimen respectively. 
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The hardness H is define as the maximum load per unite area can be expressed as 

following equation, 

H =
P୫ୟ୶

A                                                                                                                                   (2-13) 
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Chapter 3 FE Model Formulation and Simulation 

3.1       Finite Element modeling 

Finite element modeling has been predominantly used in the area of 

nanoindentation simulation as one of the effective tool to simulate the indentation 

response at the nanoscale level for more than a decade [31]. Bhattacharya and Nix [32] 

were the first to use FEM for successfully simulation of the load vs. depth response of 

sub micrometer indentations on bulk materials. Recently, many researchers have widely 

adopted FEM since the simulation and analysis of indentation is more complex 

mathematically and analytically. Huang [33], Pinch [34] [35], Song [36], Poon [37] are 

used ABAQUAS software for finite element analysis. During recent years ANSYS is 

most popular software for its spectacular feature and also power full and incredible 

engineering appliance which can be used to solve the problem with accuracy and 

reliability of the outputs. Rao and Reddy [38], Chen [39], Strange [40], Gadelrab [41] are 

used ANSYS software of different version for simulating the finite element analysis. 

There are some limitations for the finite element model that the total number of elements 

and computational time is confined. 
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3.2       Generation of Axisymmetric Model  

3.2.1    3-D Geometry Input 

Academic FEA software ANSYS version 14.5 ref [42] was used for modeling the 

indentation test. An axisymmetric model was built assuming that the specimen and 

indenter are perfect alignment and are symmetrical along the vertical axis. Three different 

specimen of aluminum 6061T6, AISI1018 and AISI4340 steel are chosen for modeling. 

A 3-D homogeneous 8 node solid structure element type SOLID 185 was chosen that 

capable of linear characteristics such as hyperelasticity, elasto-plastic stress strain, large 

strain stress stiffening and deflection. A 3-D target segment TARGET 170 and 3-D 4 

node surface to surface contract element CONTA 173 was employed for indenter and the 

specimen accordingly. The target element was used to represent various target surfaces 

for the identified contact elements. Contact takes place when one of the target segment 

elements are penetrated by the element surface on the specified target surface. The 

nominal diameter for the cylindrical indenter was 10µm and the height was 5µm whereas 

the actual diameter for testing was 9.318 µm. The dimension of the specimen was 40µm 

in diameter and 20µm in height. These dimensions are consider to generate half of the 

model as indenter and specimen. There is no gap between the indenter and the specimen 

as perfectly aligned model. The maximum indentation depth was selected 0.2 µm to 0.4 

µm. The total number of elements and nodes are 29171 and 31591 respectively.  The 

origin of the Cartesian coordinate system recline at the bottom surface of the indenter in 

the center. The Geometry of the model is shown in Fig. 3.1 and Fig. 3.2  displays the 

areas of the half model. 
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Fig. 3.1: 3-D symmetric model 

 

Fig. 3.2: Area for the indenter and specimen 

 

Indenter  
Specimen 
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The 3-D comprehensive model is shown in Fig. 3.3. The mechanical properties of 

the specimen measured by the nanoindentation modeling is sensitive to the thickness of 

the specimen. A non-linear spring damper element COMBIN39 was used vertically to 

restrain the effect of thickness connected to each node with the bottom of the specimen. 

The length of the spring damper was 5 µm and considered that there was no mass of the 

spring even no bending or torsion. 

 

Fig. 3.3: 3-D comprehensive model 
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3.2.2      Mesh the Model 

The mesh density and the refine are very important to improve the accuracy of the 

model when having a small displacement with a large force. Hence, the region of interest 

lies directly underneath the indenter was used comparatively denser around the edge of 

the indenting area as the deformation during the indentation process is primarily 

concentrated near that region. However, due to the limitation of current version of 

ANSYS software, a robust amount of elements were not possible to employ in the current 

3-D model. By considering the convergence of the load-depth curve and the limitation of 

the total number of elements and nodes, the element size were determined for the model 

which shown in Fig. 3.4 and Fig. 3.5. Mapped meshing was chosen for the simulation. 

 

 

Fig. 3.4: Mesh exemplification for the 3-D symmetric model 
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Fig. 3.5: Meshed elements of the model. 

 

3.2.3      Boundary Condition 

To get an authentic solution, appropriate boundary condition as well as the 

loading condition is a crucial factor. The displacement of the boundary condition is set 

such as all the nodes on the y axis can only have the displacement in the y direction. The 

indenter upper surface all the nodes have the displacement only y direction and can move 

only y direction during the loading and unloading step. The other direction x and z 

direction is set to zero shown in the Fig. 3.6 and Fig. 3.7 boundary constraints for the 

model. The spring elements are associated vertically to each node at the bottom surface 

of the specimen where the other end of the spring element is constrained i.e. all the nodes 

can’t shift any direction as a result this suppress the specimen from sliding when the 
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sample is indented. The damping coefficient was used 4.5 micro Newton sec per micro 

meter for this model. 

 

Fig. 3.6: Boundary conditions Z axis and X axis of the model. 

 

Fig. 3.7: Boundary constraints of the model. 
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3.2.4      Apply Load 

There was two load steps used in the modeling where one is loading and the other 

one is unloading. During the loading step, indenter displacement is applied towards the y 

direction on the specimen up to the maximum indentation depth shown in Fig. 3.8 . 

During the unloading step, the indenter returns to its original position incrementally, the 

indenter was lifted up to the half of its way back to the original position as the load 

becomes zero before reaching that depth. 

 

Fig. 3.8: Graphical representation of displacement during loading 
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Chapter 4 Result and Discussion 

4.1       Model Validation 

After completing the model the true stress and strain values obtained from the 

tensile test were imported into ANSYS batch file. The friction coefficient was set for the 

model was 0.15 based on the research accomplish by Yurkov [43]. There was sliding 

friction of diamond on steel and aluminum which can be ignored. Hu et al [44] showed 

that the friction coefficient on indentation testing varied between 0.1 and 0.2 of diamond 

indenter on AISI1018, AISI4340 and 6061T6 which is less effect on yield strength. 

The load displacement data from the tensile tests were converted in to engineering 

stress-strain data. The average true stress-strain curves of each material are shown in Fig. 

4.1 that compare the experimental and the theoretical results. 

 

 

Fig. 4.1: Average true stress-strain curves for materials of AISI 4340, AISI 1018 and 
6061T6 
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To validate the modeling results obtained from FEM simulations, corresponding 

nanoindentation experimental results [44]  were used to compare the indentation profiles. 

Load-depth response for cylindrical flat tip indentation of AISI 4340, AISI 1018 and 

Aluminum for modeling and experimental data can be seen from Fig. 4.2. The modeling 

L-D curve is much harder whereas it appears to be quite stiffer having higher loads 

compared to the experimental load-depth curve. 

 

Fig. 4.2: Sample load vs depth curves of the different material corresponding 
Poisson ratio 0.3 

 

From 3-D modeling result the average elastic modulus and the hardness for 

AISI1018 are 209.24 GPa and 2.02 GPa and from 2-D modeling result [44] the elastic 

modulus and the hardness are 208.96 GPa and 2.06 GPa respectively which varies within 

0.1339%.  
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4.2       Model of AISI-1018 

4.2.1    Effect of Poisson ratio on maximum indentation depth 

Load depth respond for cylindrical flat tip indentation for modeling data can be 

shown in Fig. 4.3, Fig. 4.4 and Fig. 4.5 based on maximum depth 0.4µm, 0.3µm and 

0.2µm accordingly.  

 

Fig. 4.3: Load displacement curve for hmax 0.4 µm 

 

Fig. 4.4: Load displacement curve for hmax 0.3 µm 
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Fig. 4.5: Load displacement curve for hmax 0.2 µm 

 

From the modeling results of load depth curves, it is clear that the indentation 

load increased with the increase of Poisson ratio for the different indentation depth. The 

modeling L-D curve appears to be quite stiffer having higher load with the increase of 

Poisson ratio where the maximum indentation depth is same. The indentation depth has 

very little effect on material properties of the specimen corresponding the same Poisson 

ratio. 
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4.2.2    Effect of hardness 

The hardness slowly increases, almost linearly, as maximum indentation depth 

increases. The difference is within ±6.5 when maximum depth ranges from 200 nm to 

400 nm which corresponds to the maximum indentation load of 128.05 mN to 179.06 mN 

as shown in Fig. 4.6. 

  

Fig. 4.6: Effect of Poisson ratio on hardness 

In the same Poisson ratio the hardness of modeling data is almost constant, while 

the testing data [45] shows fluctuation due to strain hardening shown in Fig. 4.7. 

 

Fig. 4.7: Compare hardness data corresponding Poisson ratio 0.3 
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4.2.3    Effect of Elastic Modulus 

The data shown in Fig. 4.8 indicates that the elastic modulus doesn’t vary with 

different maximum indentation depth.  The elastic modulus slowly increases with the 

increase of Poisson ratio. It was found that the value for elastic modulus ranges from 204 

to 220 GPa with different Poisson ratio. 

 

Fig. 4.8: Effect of Poisson ratio on Elastic Modulus 

From modeling it can be seen that elastic modulus varies within 0.14% with 

respect to depth in the same Poisson ratio. The average experimental modulus of elastic 
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Fig. 4.9: Compare Elastic modulus corresponding Poisson ratio 0.3 
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4.2.4     Effect of Maximum load 

The maximum indentation load obtained by FE simulation 179.065 mN when the 

Poisson ratio is 0.48 in the hmax 0.4 µm. From the modeling results shown in Fig. 4.10, it 

is clear that the indentation load increased with the increase of Poisson ratio for the 

different indentation depth. The average experimental max load varies within 10% from 

the modeling data shown in Fig. 4.11. 

 

Fig. 4.10: Effect of Poisson ratio on maximum load 
 

 

Fig. 4.11: Compare maximum load data corresponding Poisson ratio 0.3 
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4.2.5    Effect of Maximum Pile Up 

From the Fig. 4.12 it can be seen that the deeper the maximum indentation, the 

higher the maximum pile up. It was found that the value for maximum pile up ranges 

from 6 to 91 nm with different Poisson ratio which is very sensitive. The average 

experimental maximum pile up measured by the laser microscope varies within 10% 

from the modeling data shown in Fig. 4.13 in the same Poisson ratio. 

 

Fig. 4.12: Effect of Poisson ratio on maximum Pile up 

 

 

Fig. 4.13: Compare maximum Pile up corresponding Poisson ratio 0.3 
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Fig. 4.14, Fig. 4.15 and Fig. 4.16  shows the pile up curve with different depth 

corresponding to the Poisson ratio from 0 to 0.48 of Steel 1018.  

 

Fig. 4.14: Pile up curve corresponding to Poisson ratio with hmax 0.4 µm 

 

Fig. 4.15: Pile up curve corresponding to Poisson ratio with hmax 0.3 µm 

 

Fig. 4.16: Pile up curve corresponding to Poisson ratio with hmax 0.2 µm 
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4.3       Model of AISI-4340 

4.3.1    Effect of Maximum Indentation Depth 

Load depth respond for cylindrical flat tip indentation for modeling data can be 

shown in Fig. 4.17, Fig. 4.18 and Fig. 4.19 based on maximum depth 0.4µm, 0.3µm and 

0.2µm accordingly.  

 

Fig. 4.17: Load displacement curve for hmax 0.4 µm 

 

 

Fig. 4.18: Load displacement curve for hmax 0.3 µm 
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Fig. 4.19: Load displacement curve for hmax 0.2 µm 
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4.3.2    Effect of hardness 

The hardness slowly increases, almost linearly, as maximum indentation depth 

increases. The difference is within ±8 when maximum depth from 200 nm to 400 nm 

which corresponds to the maximum indentation load of 150 mN to 214 mN as shown in 

Fig. 4.20.  From the modeling data in the same Poisson ratio is linear, while the testing 

data [44] shows fluctuation due to strain hardening shown in Fig. 4.21. The average 

hardness of steel 4340 is 2.36 GPa corresponding the Poisson ratio 0.3. 

 

Fig. 4.20: Effect of Poisson ratio on hardness 

 

Fig. 4.21: Compare hardness data corresponding Poisson ratio 0.3 
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4.3.3    Effect of Elastic Modulus 

The Fig. 4.22 indicates that the elastic modulus doesn’t vary with different 

maximum indentation depth.  The elastic modulus slowly increases with the increase of 

Poisson ratio, but decrease with the increase of maximum depth. It was found that the 

elastic modulus ranges from 175 to 200 GPa with different Poisson ratio. From modeling 

it can be seen that elastic modulus varies within 0.64% with respect to depth in the same 

Poisson ratio. The average experimental [44] modulus of elastic was 187.84 GPa that 

varies within 1.72 % from the modeling shown in Fig. 4.23. 

 

Fig. 4.22: Effect of Poisson ratio on Elastic Modulus 

 

Fig. 4.23: Compare Elastic modulus corresponding Poisson ratio 0.3 
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4.3.4     Effect of Maximum load 

The maximum indentation load obtained by FE simulation 214.16 mN when the 

Poisson ratio is 0.48 in the hmax 0.4 µm. From the modeling results shown in Fig. 4.24, it 

is clear that the indentation load increased with the increase of Poisson ratio for the 

different indentation depth. The average experimental [44] max load varies within 7.61 % 

from the modeling data shown in Fig. 4.25. 

 

Fig. 4.24: Effect of Poisson ratio on maximum load 

 

 

Fig. 4.25: Compare max load data corresponding Poisson ratio 0.3 
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4.3.5     Effect of Maximum Pile Up 

From the modeling data in Fig. 4.26 it can be seen that the deeper the maximum 

indentation, the higher the maximum pile up. It was found that the value for maximum 

pile up ranges from 2.72 to 65.03 nm with different Poisson ratio which is very tactful. 

The average experimental maximum pile up measured by the laser microscope varies 

within 10% from the modeling data shown in Fig. 4.27 in the same Poisson ratio. 

 

Fig. 4.26: Effect of Poisson ratio on maximum Pile up 

 

 

Fig. 4.27: Compare maximum Pile up corresponding Poisson ratio 0.3 
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The pile up curve with different depth corresponding to the Poisson ratio from 0 

to 0.48 of Steel 4340 along the x-y plane to the specimen shown in Fig. 4.28, Fig. 4.29 

and Fig. 4.30.  

 

Fig. 4.28: Pile up curve corresponding to Poisson ratio with hmax 0.4 µm 

 

Fig. 4.29: Pile up curve corresponding to Poisson ratio with hmax 0.3 µm 

 

Fig. 4.30: Pile up curve corresponding to Poisson ratio with hmax 0.2 µm 
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4.4       Model of Aluminum 6061-T6 

For modeling the dimension of the specimen and indenter are same. However, the 

mechanical properties of the specimen and the stress strain testing data from testing were 

imported into ANSYS batch file. 

4.4.1    Effect of Maximum Indentation Depth 

Load depth respond for cylindrical flat tip indentation for modeling data can be 

shown in Fig. 4.31, Fig. 4.32 and Fig. 4.33 based on maximum depth 0.4µm, 0.3µm and 

0.2µm accordingly.  

 

Fig. 4.31: Load displacement curve for hmax 0.4 µm 

 

Fig. 4.32: Load displacement curve for hmax 0.3 µm 
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Fig. 4.33: Load displacement curve for hmax 0.2 µm 
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4.4.2    Effect of hardness 

The hardness slowly increases with the increase of maximum indentation depth. 

The difference is within ±8 when maximum depth from 200 nm to 400 nm which 

corresponds to the maximum indentation load of 68 mN to 83 mN as shown in Fig. 4.34. 

It can be seen from the testing [44] that the hardness values are higher than the modeling 

results shown in Fig. 4.35. The average hardness of Aluminum6061T6 is 0.96 GPa 

corresponding the Poisson ratio 0.33. 

 

Fig. 4.34: Effect of Poisson ratio on hardness 

 

 

Fig. 4.35: Compare hardness data corresponding Poisson ratio 0.33 
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4.4.3    Effect of Elastic Modulus 

The elastic modulus doesn’t vary with different maximum indentation depth 

indicates in Fig. 4.36.  The elastic modulus linearly increases with the increase of Poisson 

ratio. It was found that the elastic modulus ranges from 63 to 81 GPa with different 

Poisson ratio. From modeling it can be seen that elastic modulus varies within 0.66% 

with respect to depth in the same Poisson ratio. The average experimental [44] modulus 

of elastic was 70.64 GPa that varies within 2.90% from the modeling shown in Fig. 4.37. 

 

Fig. 4.36: Effect of Poisson ratio on Elastic Modulus 

 

 

Fig. 4.37: Compare Elastic modulus corresponding Poisson ratio 0.33 
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4.4.4     Effect of Maximum load 

The maximum indentation load obtained by FE simulation 86.39 mN when the 

Poisson ratio is 0.48 in the hmax 0.4 µm. From the modeling results it is clear that the 

indentation load increased with the increase of Poisson ratio for the different indentation 

depth shown in Fig. 4.38. The average experimental [44] max load varies within 8.86% 

from the modeling data shown in Fig. 4.39. 

 

Fig. 4.38: Effect of Poisson ratio on max load 

 

 

Fig. 4.39: Compare max load corresponding Poisson ratio 0.33 
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4.4.5     Effect of Maximum Pile Up 

From the modeling data of Aluminum 6061 it can be seen that the deeper the 

maximum indentation, the higher the maximum pile up. It was found that the value for 

maximum pile up ranges from 7.57 to 93.71 nm with different Poisson ratio which is very 

tactful shown in Fig. 4.40. The average experimental maximum pile up measured by the 

laser microscope varies within 16% from the modeling data shown in Fig. 4.41 in the 

0.33 Poisson ratio. 

 

Fig. 4.40: Effect of Poisson ratio on maximum Pile up 

 

Fig. 4.41: Compare maximum Pile up corresponding Poisson ratio 0.33 

0

25

50

75

100

125

150

0 0.1 0.2 0.3 0.4 0.5

Pi
le

 u
p 

(n
m

)

Poisson ratio

h max-0.4 µm
h max-0.3 µm
h max-0.2 µm

0

50

100

150

200

250

600 650 700 750 800 850 900

Pi
le

 u
p 

(n
m

)

h max (nm)

Modeling
Experimental



48 
 

The pile up curve with different depth corresponding to the Poisson ratio from 0 

to 0.48 of Aluminum 6061 along the x-y plane to the specimen shown in Fig. 4.42, Fig. 

4.43 and Fig. 4.44. The value of maximum pile up decreases with the decrease of 

indentation depth as well as the Poisson ratio. 

 

 

Fig. 4.42: Pile up curve corresponding to Poisson ratio with hmax 0.4 µm 

 

 

Fig. 4.43: Pile up curve corresponding to Poisson ratio with hmax 0.3 µm 
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Fig. 4.44: Pile up curve corresponding to Poisson ratio with hmax 0.2 µm 
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4.5       Yield Strength and strain hardening 

Yield strength is a vital parameter to characterize material’s plastic properties by 

nanoindentation. Considering fully alignments of indenter, simulations were done for the 

different indentation material under the same strain hardening and the values for friction 

coefficient ߤ, strain hardening coefficient k and the exponential index m were figure out 

shown in Table 4.1. In practice, the yield point where the load is 73.9% of the elastic 

material model load is known as 0.1% yield offset based on modeling data and the 0.2% 

offset yield point is the point where the load is 68.6% the load of elastic material model. 

But the maximum indenting forces are comparatively incompatible because of the 

deviation between the yield strength and stress under the same strain. 

 

Table 4.1: Computational value of k and m for different materials  

 Elastic Modulus 
E (GPa) 

Strain hardening 
coefficient, k 

Exponential 
index, m 

AISI-1018 208.242 500 0.315 
AISI-4340 192.475 480 0.40 
Aluminum 6061-T6 72.051 200 0.34 

 

From the Fig. 4.45 it can be seen that the pile up slowly decreases with the 

increase of strain hardening index value corresponding to the maximum depth. The 

average experimental and modeling results is similar in the same Poisson ratio. Table 4.2 

shows the maximum pile up data corresponding the index as varies Poisson ratio of three 

materials.  
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Fig. 4.45: Compare results of pile up vs exponential index in same Poisson ratio 
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Chapter 5 Conclusion 

5.1       Concluding Assert 

The current work indicate that, the cylindrical indentation technique can be used 

to characterize the elasticity and yield strength of the materials in nano scale where the 

conventional experimental mechanical tests become ineffectual or inaccessible. However, 

it is critical to reliably obtain these properties from the perspective of design and 

research. Indentation testing for Aluminum alloy 6061T6, low carbon steel AISI 1018 

and alloy steel AISI4340 has been conducted by computer modeling and validated by 

experiments. The indentation modeling was done by constructing a 3-D symmetric model 

through ANSYS software considering Poisson ratio varies from 0 to 0.48 to extract the 

mechanical properties of materials.  

During the simulation it was identified that the deformation under a cylindrical 

flat tip indenter with perfect alignment can quickly reach a steady state fully plastic flow 

and the indentation depth has very little effect on calculating the elastic modulus of the 

sample material as well as the modeling results. The model shows that the elastic 

modulus results from the unloading curve were less effect of Poisson ratio corresponding 

to the indentation depth. The hardness slowly increases with the increase of maximum 

indentation depth as well as increase the Poisson ratio and it was not influences of the 

mechanical properties. 

From the modeling results the maximum pile up value for the three materials 

decreases with the decrease of Poisson ratio that was very sensitive. The maximum pile 

up value for Aluminum alloy 6061T6, low carbon steel AISI 1018 and alloy steel 
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AISI4340 is 47.36nm, 58.81nm and 37.67nm respectively when the Poisson ratio is 0.3. 

The modeling results were compared with corresponding experimental data in the same 

Poisson ratio where they were in good compatibility with each other. 

In conclusion, computational approaches conducted in this study shows that the 

nano indentation with cylindrical flat tip is a unique and sophisticated tool for 

characterizing the elastic and plastic mechanics of materials in nano/micro scale. 

 

5.2       Succeeding Progress 

Typically FE simulations are more efficient and flexible to study the 

nanoindentation processes and thus to oblige progress in the analytical methods used for 

extracting mechanical properties from experimental data. 

Current work is focused on the finite element modeling to study the elastic plastic 

properties of material by cylindrical flat punch indentation where major investigation lies 

on the effect of Poisson ratio over the mechanical properties of Aluminum alloy 6061T6, 

low carbon steel AISI 1018 and alloy steel AISI4340. To assist the current studies, 

ingenious methods can be introduced to characterize the mechanical properties on a 

significant tilted sample. The work can be extended by performing the Berkovich 

indenter or spherical indenter both simulation and the experimental test on the same 

material to validate the numerical findings as well as the proposed empirical model and 

geometrical corrections can be applied to compensate the effect of Poisson ratio on 

material properties. 
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In addition, the current numerical model can be refined to study some critical 

issues such as mesh distortion. Meshing the model might be responsible for remarkable 

errors in FEA study that effects the mechanical properties as the depth of indentation 

varies and calculating the exert pile up value. Moreover, new FEA simulation can be 

designed by re meshing which will help to understand the effect on the extracted 

parameters. The time saved may be used to conduct further sophisticated simulation with 

more elements in the particular surface that is important designing 3-D modeling of 

nanoindentation. 

The transparent indenter could be used to perform the indentation test during 

experiments is another effective strategy.  For this method an optics system can be 

embedded in the indenter so that the video image easily captured of the deformation of 

the specimen surface during indentation that recorded through the transparent indenter. It 

helps to measure the exert pile up shape during the practical testing by using of different 

microscopy and spectroscopy tools that will lead to the capability of providing 

simultaneous insights into the mechanics of several materials. 
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